WorldWideScience

Sample records for river basin colorado

  1. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  2. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  3. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-11-26

    ....20350010.REG0000, RR04084000] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  4. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  5. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  6. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  7. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  8. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  9. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  10. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    Science.gov (United States)

    1982-07-01

    Percichthyidae Striped bass 1ile sxiiis Pocilldae Mosquito fish Cainbusia affnus Sailfin mollie Poecilia latipin a Mexican mollie Poecila mexicana Salmonidae...Colorado River Basin Progress Report No. 8, 195 pp. Vitt, L.J. and R.D. Ohmart, 1978. Herpetofauna of the Lower Colorado River: Davis Dam to the

  11. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  12. Updated streamflow reconstructions for the Upper Colorado River Basin

    Science.gov (United States)

    Woodhouse, C.A.; Gray, S.T.; Meko, D.M.

    2006-01-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past. Copyright 2006 by the American Geophysical Union.

  13. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  14. Analysis of drought determinants for the Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Balling Jr, R.C. [Department of Geography, Arizona State University, Tempe, AZ 85287 (United States); Goodrich, G.B. [Department of Geography and Geology, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2007-05-15

    Ongoing drought in the Colorado River Basin, unprecedented urban growth in the watershed, and numerical model simulations showing higher temperatures and lower precipitation totals in the future have all combined to heighten interest in drought in this region. In this investigation, we use principal components analysis (PCA) to independently assess the influence of various teleconnections on Basin-wide and sub-regional winter season Palmer Hydrological Drought Index (PHDI) and precipitation variations in the Basin. We find that the Pacific Decadal Oscillation (PDO) explains more variance in PHDI than El Nino-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the planetary temperature combined for the Basin as a whole. When rotated PCA is used to separate the Basin into two regions, the lower portion of the Basin is similar to the Basin as a whole while the upper portion, which contains the high-elevation locations important to hydrologic yield for the watershed, demonstrates poorly defined relationships with the teleconnections. The PHDI for the two portions of the Basin are shown to have been out of synch for much of the twentieth century. In general, teleconnection indices account for 19% of the variance in PHDI leaving large uncertainties in drought forecasting.

  15. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    OpenAIRE

    Miller, W. P.; T. C. Piechota; Gangopadhyay, S.; T. Pruitt

    2011-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting Syste...

  16. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    Science.gov (United States)

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  17. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  18. Beyond Lees Ferry: Assessing the Long-term Hydrologic Variability of the Lower Colorado River Basin

    Science.gov (United States)

    Wade, L. C.; Rajagopalan, B.; Lukas, J. J.; Kanzer, D.

    2011-12-01

    The future reliability of Colorado River Basin water supplies depends on natural hydrologic variability, climate change impacts and other human factors. Natural variability is the dominant component at annual to decadal time scales and thus, capturing and understanding the full range of such variability is critical to assessing risks to near- and mid-term water supplies. Paleohydrologic reconstructions of annual flow using tree rings provide much longer (400+ years) records of annual flow than do historical gage records, and thus a more complete representation of potential flow sequences. While the long-term natural variability of the Upper Colorado River Basin has been well-captured by high-quality multi-century reconstructions of the annual flow of the Colorado River at Lees Ferry, AZ, there has been no equivalent effort for the whole of the Lower Colorado River Basin, including the Gila River. The contribution of the Lower Basin to overall basin flows is estimated to be 15% on average, but this percentage varies significantly from year to year, potentially impacting water supply risk and management for the entire basin. We present preliminary results from an ongoing effort to assess the hydroclimatic variability of the Lower Basin and to develop reconstructions of annual streamflows for the Gila River and Lower Colorado River near Yuma, AZ, commensurate with the existing Lees Ferry reconstructions. We model the flow of the Gila at the confluence with the Colorado River using Generalized Pareto Distribution (GPD) and a generalized linear model (GLM) using Lower Basin tributaries, including the upper Gila River and its tributaries (e.g., Salt, Tonto, and Verde Rivers). We also present preliminary reconstructions of Lower Basin streamflows from tree-ring data using different modeling approaches, including GLM and non-parametric k-nearest-neighbor (KNN). These reconstructions of the Lower Basin flows should facilitate more robust estimation of water supply risk to

  19. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  20. Response surfaces of vulnerability to climate change: The Colorado River Basin, the High Plains, and California

    Science.gov (United States)

    Romano Foti; Jorge A. Ramirez; Thomas C. Brown

    2014-01-01

    We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that...

  1. Alternative Water Allocation in Kyrgyzstan: Lessons from the Lower Colorado River Basin and New South Wales

    Directory of Open Access Journals (Sweden)

    Nazir Mirzaev

    2010-08-01

    Full Text Available Focus group discussions and a modeling approach were applied to determine policy and regulatory refinements for current water allocation practices in Kyrgyzstan. Lessons from the Lower Colorado River basin, Texas and New South Wales, Australia were taken into consideration. The paper analyzes the impact of adopting some of these interventions within the socio-environmental context that currently prevails in Kyrgyzstan. The optimization model for water distribution at the river-basin scale was developed using GAMS 2.25 software. Application of the model to the Akbura River basin indicated efficiencies in the proposed institutional rules especially in low water years.

  2. Warming may create substantial water supply shortages in the Colorado River basin

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2007-01-01

    The high demand for water, the recent multiyear drought (1999-2007), and projections of global warming have raised questions about the long-term sustainability of water supply in the southwestern United States. In this study, the potential effects of specific levels of atmospheric warming on water-year streamflow in the Colorado River basin are evaluated using a water-balance model, and the results are analyzed within the context of a multi-century tree-ring reconstruction (1490-1998) of streamflow for the basin. The results indicate that if future warming occurs in the basin and is not accompanied by increased precipitation, then the basin is likely to experience periods of water supply shortages more severe than those inferred from the longterm historical tree-ring reconstruction. Furthermore, the modeling results suggest that future warming would increase the likelihood of failure to meet the water allocation requirements of the Colorado River Compact.

  3. Selected hydrologic data, Yampa River basin and parts of the White River basin, northwestern Colorado and south-central Wyoming

    Science.gov (United States)

    Giles, T.F.; Brogden, Robert E.

    1978-01-01

    Selected hydrologic data are presented from four energy-related projects conducted by the U.S. Geological Survey in the Yampa River basin and parts of the White River basin in northwestern Colorado and south-central Wyoming. Water-quality data during 1974 and 1975 and parts of 1976 for 129 ground-water sites and 119 surface-water sites are tabulated. For most samples, major cations, anions, and trace metals were analyzed. For the same time period, field measurements of specific conductance, temperature, and pH were made on 252 springs and wells. These samplings sites, as well as the locations of 20 climatological stations, 18 snow-course sites, and 43 surface-water gaging stations, are shown on maps. Geologic units that contain coal deposits or supply much of the water used for stock and domestic purposes in the area also are shown on a map. (Woodard-USGS)

  4. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    Science.gov (United States)

    Lindsay V. Reynolds,; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  5. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    Science.gov (United States)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  6. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    Science.gov (United States)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  7. Land Cover Information for the Upper Colorado River Basin in Daymet Climate Data resolution (nlcd_UCRB_daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — nlcd_UCRB_daymet_resolution.txt is an Esri ASCII grid representing land cover information for the Upper Colorado River Basin. The 2011 National Land Cover Database...

  8. Hydrologic Soil Group for the Upper Colorado River Basin in Daymet Climate Data resolution (hsg_UCRB_Daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — hsg_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the hydrologic soil group (HSG) for the Upper Colorado River Basin. The HSG for an area is...

  9. Available Water Capacity for the Upper Colorado River Basin in Daymet Climate Data resolution (awc_UCRB_Daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — awc_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC (available water...

  10. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  11. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  12. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data

    OpenAIRE

    Fassnacht, SR; Dressler, KA; Bales, RC

    2003-01-01

    Inverse weighted distance and regression nonexact techniques were evaluated for interpolating methods snow water equivalent (SWE) across the entire Colorado River Basin of the western United States. A 1-km spacing was used for the gridding of snow telemetry (SNOTEL) measurements for the years 1993, 1998, and 1999, which on average, represented higher than average, average, and lower than average snow years. Because of the terrain effects, the regression techniques (hypsometric elevation and m...

  13. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2012-11-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  14. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  15. Effects of climate change and land use on water resources in the Upper Colorado River Basin

    Science.gov (United States)

    Belnap, Jayne; Campbell, D.H.

    2011-01-01

    The health of the Colorado River watershed is critical to the socioeconomic and ecosystem well-being of the Southwestern United States. Water in springs, streams, and rivers supports a range of aquatic and riparian ecosystems that contain many endangered species. Terrestrial habitats support a wide array of plants and wildlife. In addition, this region is enjoyed by millions of people annually for its recreational and esthetic opportunities. The Colorado River provides water for about 25 million people and is used to irrigate 2.5 million acres of farmland. However, competition for this water is expected to increase as human populations dependent on this water are projected to increase to 38 million by 2020. Climate change is expected to further exacerbate water issues in this region. Drought in the Southwest during 2000-04, caused by both reduced precipitation and a series of the hottest years on record, resulted in streamflows lower than during the 1930s Dust Bowl or the 1950s. Increased temperatures alone are a major factor in reducing surface-water flows in this region. For instance, precipitation received during the winter of 2005 was at the 100-year average. However, low soil moisture and high January-July temperatures resulted in flows that were only 75 percent of average. Climate models predict future warmer temperatures and reduced precipitation in the Upper Colorado River Basin (UCRB), which would reduce water available to humans and ecosystems.

  16. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  17. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  18. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  19. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    Science.gov (United States)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  20. Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin

    Science.gov (United States)

    Skiles, S. McKenzie; Painter, Thomas H.; Belnap, Jayne; Holland, Lacey; Reynolds, Richard; Goldstein, Harland; Lin, J.

    2015-01-01

    Dust deposition onto mountain snow cover in the Upper Colorado River Basin frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau. Dust loading has increased since the intensive settlement in the western USA in the mid 1880s. The effects of dust-on-snow have been well studied at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, the first high-altitude area of contact for predominantly southwesterly winds transporting dust from the southern Colorado Plateau. To capture variability in dust transport from the broader Colorado Plateau and dust deposition across a larger area of the Colorado River water sources, an additional study plot was established in 2009 on Grand Mesa, 150 km to the north of SBBSA in west central, CO. Here, we compare the 4-year (2010–2013) dust source, deposition, and radiative forcing records at Grand Mesa Study Plot (GMSP) and Swamp Angel Study Plot (SASP), SBBSA's subalpine study plot. The study plots have similar site elevations/environments and differ mainly in the amount of dust deposited and ensuing impacts. At SASP, end of year dust concentrations ranged from 0.83 mg g−1 to 4.80 mg g−1, and daily mean spring dust radiative forcing ranged from 50–65 W m−2, advancing melt by 24–49 days. At GMSP, which received 1.0 mg g−1 less dust per season on average, spring radiative forcings of 32–50 W m−2 advanced melt by 15–30 days. Remote sensing imagery showed that observed dust events were frequently associated with dust emission from the southern Colorado Plateau. Dust from these sources generally passed south of GMSP, and back trajectory footprints modelled for observed dust events were commonly more westerly and northerly for GMSP relative to SASP. These factors suggest that although the southern Colorado Plateau contains important dust sources, dust contributions from other dust sources contribute to dust loading in this region

  1. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    Science.gov (United States)

    Kimbrough, Robert A.; Holmes, Jr., Robert R.

    2015-11-25

    On September 9, 2013, rain began to fall in eastern Colorado as a large low-pressure system pulled plumes of tropical moisture northward from the Pacific Ocean and the Gulf of Mexico. By September 16, 2013, as much as 12 to 20 inches of rain had fallen in the foothills of the Front Range of the Southern Rocky Mountains and adjacent plains near Colorado Springs, Colorado, north to the Colorado-Wyoming border. The rain caused major flooding during September 9–18, 2013, in a large part of the South Platte River Basin and in the Fountain Creek Basin. The floods resulted in several fatalities, more than 31,000 damaged or destroyed structures, and an estimated 3 billion dollars in damages. The U.S. Geological Survey (USGS) documented peak stage, streamflow, or both from the flood event for 80 sites located on selected rivers and streams in the South Platte River and Fountain Creek Basins and on the Platte River in Nebraska. The majority of flood-peak streamflows occurred on September 12 or 13, 2013, coinciding with the period of maximum rainfall. The flood resulted in new record peak streamflows at 17 streamgages having at least 10 years of record; 13 in the South Platte River Basin and 4 in the Fountain Creek Basin.

  2. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    Science.gov (United States)

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  3. The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, N.S.; Wood, A.W.; Voisin, N.; Lettenmaier, D.P.; Palmer, R.N. [Department of Civil and Environmental Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950-1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected 'business-as-usual' (BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010-2039, 2040-2069, 2070-2098). Average annual temperature changes for the Colorado River basin were 0.5C warmer for control climate, and 1.0, 1.7, and 2.4C warmer for Periods 1-3, respectively, relative to the historical climate. Basin-average annual precipitation for the control climate was slightly (1%) less than for observed historical climate, and 3, 6, and 3% less for future Periods 1-3, respectively. Annual runoff in the control run was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1-3, respectively. Analysis of water management operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resources system relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1-3, respectively. Releases from Glen Canyon Dam to the Lower Basin (mandated by the Colorado

  4. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  5. Proceedings of the Colorado River Basin Science and Resource Management Symposium, November 18-20, 2008, Scottsdale, Arizona

    Science.gov (United States)

    Melis, Theodore S.; Hamill, John F.; Bennett, Glenn E.; Coggins,, Lewis G.; Grams, Paul E.; Kennedy, Theodore A.; Kubly, Dennis M.; Ralston, Barbara E.

    2010-01-01

    Since the 1980s, four major science and restoration programs have been developed for the Colorado River Basin to address primarily the conservation of native fish and other wildlife pursuant to the Endangered Species Act (ESA): (1) Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin (commonly called the Upper Colorado River Endangered Fish Recovery Program) (1988); (2) San Juan River Basin Recovery Implementation Program (1992); (3) Glen Canyon Dam Adaptive Management Program (1997); and (4) Lower Colorado River Multi-Species Conservation Program (2005). Today, these four programs, the efforts of which span the length of the Colorado River, have an increasingly important influence on water management and resource conservation in the basin. The four efforts involve scores of State, Federal, and local agencies; Native American Tribes; and diverse stakeholder representatives. The programs have many commonalities, including similar and overlapping goals and objectives; comparable resources and threats to those resources; and common monitoring, research, and restoration strategies. In spite of their commonalities, until recently there had been no formal opportunity for information exchange among the programs. To address this situation, the U.S. Geological Survey (USGS) worked in coordination with the four programs and numerous Federal and State agencies to organize the first Colorado River Basin Science and Resource Management Symposium, which took place in Scottsdale, AZ, in November 2008. The symposium's primary purpose was to promote an exchange of information on research and management activities related to the restoration and conservation of the Colorado River and its major tributaries. A total of 283 managers, scientists, and stakeholders attended the 3-day symposium, which included 87 presentations and 27 posters. The symposium featured plenary talks by experts on a variety of topics, including overviews of the four

  6. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; Van Riper, Charles

    2017-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (p<0.05) for a net reduction of 61 mm/year. This is lower than initial literature projections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  7. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    Science.gov (United States)

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied Springer Science+Business Media, LLC.

  8. An Application of Advanced Ensemble Streamflow Prediction Methods to Assess Potential Impacts of the 2015 - 2016 ENSO Event over the Colorado River Basin

    Science.gov (United States)

    Miller, W. P.; Lamb, K. W.; Piechota, T. C.; Lakshmi, V.; Santos, N. I.; Tootle, G. A.; Kalra, A.; Fayne, J.

    2015-12-01

    Water resource managers throughout the Western United States have struggled with persistent and severe drought since the early 2000s. In the Colorado River Basin, the National Oceanic and Atmospheric Administration's (NOAA's) Colorado Basin River Forecast Center (CBRFC) provides forecasts of water supply conditions to resource managers throughout the basin using Ensemble Streamflow Prediction (ESP) methods that are largely driven by historical observations of temperature and precipitation. Currently, the CBRFC does not have a way to incorporate information from climatic teleconnections such as the El Niño Southern Oscillation (ENSO). ENSO describes warming sea surface temperatures in the Pacific Ocean that typically correlate with cool and wet winter precipitation events in California and the Lower Colorado River Basin during an El Niño event. Past research indicates the potential to identify analog ENSO events to evaluate the impact to reservoir storage in the Colorado River Basin. Current forecasts indicate the potential for one of the strongest El Niño events on record this winter. In this study, information regarding the upcoming ENSO event is used to inform water supply forecasts over the Upper Colorado River Basin. These forecasts are then compared to traditionally derived water supply forecast in an attempt to evaluate the possible impact of the El Niño event to water supply over the Colorado River Basin.

  9. Impacts of golden alga Prymnesium parvum on fish populations in reservoirs of the upper Colorado River and Brazos River basins, Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Farquhar, B.; Patino, Reynaldo

    2013-01-01

    Several reservoirs in the upper Colorado River and Brazos River basins in Texas have experienced toxic blooms of golden alga Prymnesium parvum and associated fish kills since 2001. There is a paucity of information, however, regarding the population-level effects of such kills in large reservoirs, species-specific resistance to or recovery from kills, or potential differences in the patterns of impacts among basins. We used multiple before-after, control-impact analysis to determine whether repeated golden alga blooms have led to declines in the relative abundance and size structure of fish populations. Sustained declines were noted for 9 of 12 fish species surveyed in the upper Colorado River, whereas only one of eight species was impacted by golden alga in the Brazos River. In the upper Colorado River, White Bass Morone chrysops, White Crappie Pomoxis annularis, Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, River Carpsucker Carpiodes carpio, Freshwater Drum Aplodinotus grunniens, Channel Catfish Ictalurus punctatus, Flathead Catfish Pylodictis olivaris, and Blue Catfish I. furcatus exhibited sustained declines in relative abundance, size structure, or both; Gizzard Shad Dorosoma cepedianum, Longnose Gar Lepisosteus osseus, and Common Carp Cyprinus carpio did not exhibit those declines. In the Brazos River, only the relative abundance of Blue Catfish was impacted. Overall, toxic golden alga blooms can negatively impact fish populations over the long-term, but the patterns of impact can vary considerably among river basins and species. In the Brazos River, populations of most fish species appear to be healthy, suggesting a positive angling outlook for this basin. In the upper Colorado River, fish populations have been severely impacted, and angling opportunities have been reduced. Basin-specific management plans aimed at improving water quality and quantity will likely reduce bloom intensity and allow recovery of fish populations to the

  10. Land Cover Information for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (nlcd_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — nlcd_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing land cover information for the Upper Colorado River Basin. The 2011 National Land Cover Database...

  11. Hydrologic Soil Group for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (hsg_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — hsg_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing the hydrologic soil group (HSG) for the Upper Colorado River Basin. The HSG for an area is...

  12. Overland Flow Direction Information for the Upper Colorado River Basin in Daymet Climate Data resolution (overland_flow_direction_UCRB_daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_daymet_resolution.txt is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  13. Available Water Capacity for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (awc_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — awc_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC is the amount of water...

  14. Overland Flow Direction Information for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (overland_flow_direction_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  15. Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin

    Science.gov (United States)

    Solder, J. E.; Heilweil, V. M.; Stolp, B. J.; Susong, D.

    2015-12-01

    The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs ( 100) also show a hydraulic pressure response. While not fully representative of the UCRB, results from the 19 springs indicate that groundwater discharge responds to climate variation and water-demand imbalances over a relatively short time period of years.

  16. Skill Assessment of Water Supply Outlooks in the Colorado River Basin

    Directory of Open Access Journals (Sweden)

    Brent Harrison

    2015-07-01

    Full Text Available Water-supply outlooks that predict the April through July (snowmelt runoff and assist in estimating the total water-year runoff, are very important to users that rely on the major contributing watersheds of the Colorado River. This study reviewed the skill level of April through July forecasts at 28 forecast points within the Colorado River basin. All the forecasts were made after 1950, with considerable variation in time period covered. Evaluations of the forecasts were made using summary measures, correlation measures and categorical measures. The summary measure, a skill score for mean absolute error, indicated a steady increase in forecast skill through the forecast season of January to May. The width of the distribution for each monthly forecast over the 28 locations remained similar through the forecast season. The Nash-Sutcliffe score, a correlation measure, showed similar results, with the Nash-Sutcliffe median showing an increase from 0.4 to 0.8 during the forecast season. The categorical measures used a three-section partition of the April through July runoff. The Probability of Detection for low and high flows showed an increase in skill from approx. 0.4 to 0.8 during the forecast season. The same score for mid-flow years showed limited increase in skill. The low False Alarm Rate illustrated the under forecast of high-flow years. The Bias of the mid-runoff forecasts indicated over forecast early in the forecast season (January to March, with lower Bias later in the forecast season (April and May, ending the forecast season at 1.0, indicating no Bias. Forecasts for both low and high runoff were under forecast early in the season with a Bias near 0.5, improving to nearly 1.0 by the end of the forecast season. The Hit Rate measure illustrated the difficulty of mid-flow forecasts, starting at 0.5 in January and increasing to 0.75 in May due to the forecasting assumption of normal climatology for the remaining forecast period. There was no

  17. Response of selenium concentrations in groundwater to seasonal canal leakage, lower Gunnison River Basin, Colorado, 2013

    Science.gov (United States)

    Linard, J.I.; McMahon, P.B.; Arnold, L.R.; Thomas, J.C.

    2016-05-23

    Selenium is a water-quality concern in the lower Gunnison River Basin because irrigation water interacting with seleniferous soils derived from the Mancos Shale Formation has mobilized selenium and increased its concentrations in surface water. Understanding the occurrence of elevated selenium concentrations in groundwater is necessary because groundwater discharge is an important source of selenium in surface water in the basin. In 2013, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and the Colorado Water Conservation Board, began a study to understand how changes in groundwater levels attributed to canal leakage affected the concentrations and speciation of dissolved selenium in groundwater. The purpose of this report is to characterize the groundwater adjacent to an unlined leaky canal. Two locations, near the East Canal (W-N1 and W-N2) and farther from the East Canal (W-M1 and W-M2), were selected for nested monitoring well installations. The pressure exerted by changes in canal stage was more readily transferred to the deep groundwater measured in the W-N1 near the canal than the shallow groundwater at the W-N2 well. No definitive relation could be made between canal water-level elevation and water-level elevations in monitoring wells farther from the canal (W-M1 and W-M2). 

  18. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    Science.gov (United States)

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  19. Profile surveys in the Colorado River basin in Wyoming, Utah, Colorado, and New Mexico

    Science.gov (United States)

    Herron, William Harrison

    1917-01-01

    In connection with studies of the utilization of rivers the United States Geological Survey has from time to time made surveys and profiles of some of the more important streams of the country and published the results in its series of water-supply papers. In some parts of the country these surveys were made chiefly to determine the location of power sites on streams adapted to the development of power by low or medium heads of 20 to 100 feet; in others the purpose of the surveys was more closely related to the possibility of storing water at certain points and diverting it for use in irrigation.The earlier surveys, such as those of Green River above Fontenelle, Wyo., made in 1909 (Pls. I-V) were of a reconnaissance type and as a rule show no contours along the banks. The later surveys are typified by that of the Gila in the vicinity of Cliff and Redrock, N. Mex., made in 1915 (Pls. XLI-XLIII) and show conditions in much greater detail. These later surveys were made by means of plane table and stadia. Elevations are based on heights derived from primary or precise levels of the United States Geological Survey. The maps are made in the field and show not only the outlines of river banks, the islands, the positions of rapids, falls, shoals, and existing dams, and the crossings of all ferries and roads, but the contours of banks to an elevation high enough to indicate the possibility of using the stream.

  20. Water-level changes in the High Plains aquifer, Republican River Basin in Colorado, Kansas, and Nebraska, 2002 to 2015

    Science.gov (United States)

    McGuire, V.L.

    2016-12-29

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. More than 95 percent of the water withdrawn from the High Plains aquifer is used for irrigation. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). The Republican River Basin is 15.9 million acres (about 25,000 square miles) and is located in northeast Colorado, northern Kansas, and southwest Nebraska. The Republican River Basin overlies the High Plains aquifer for 87 percent of the basin area. Water-level declines had begun in parts of the High Plains aquifer within the Republican River Basin by 1964. In 2002, management practices were enacted in the Middle Republican Natural Resources District in Nebraska to comply with the Republican River Compact Final Settlement. The U.S. Geological Survey, in cooperation with the Middle Republican Natural Resources District, completed a study of water-level changes in the High Plains aquifer within the Republican River Basin from 2002 to 2015 to enable the Middle Republican Natural Resources District to assess the effect of the management practices, which were specified by the Republican River Compact Final Settlement. Water-level changes determined from this study are presented in this report.Water-level changes from 2002 to 2015 in the High Plains aquifer within the Republican River Basin, by well, ranged from a rise of 9.4 feet to a decline of 43.2 feet. The area-weighted, average water-level change from 2002 to 2015 in this part of the aquifer was a decline of 4.5 feet.

  1. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA.

    Science.gov (United States)

    Andersen, Douglas C; Cooper, David J; Northcott, Krista

    2007-09-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests.

  2. Hydrology and management of Lakes Mead and Mohave within the Colorado River Basin: Chapter 3 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Holdren, G. Chris; Tietjen, Todd; Turner, Kent; Miller, Jennell M.

    2012-01-01

    The Colorado River Basin covers parts of seven States: Colorado, Wyoming, Utah, New Mexico, Nevada, Arizona, and California; at 1,450 mi (2,333.5 km) in length, the Colorado River is the seventh longest river in the United States (fig. 3-1). The Bureau of Reclamation has the responsibility for management of this system, in coordination with the seven basin States, within a complex framework of law, regulations, compact, treaty, and policies often referred to collectively as the “Law of the River.” Lake Mead is a critical component of the overall Colorado River management, providing the capacity to store almost 2 years of the average runoff of the river.

  3. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    OpenAIRE

    B. L. Harding; A. W. Wood; Prairie, J. R.

    2012-01-01

    The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate projections from 16 global climate models (GCMs) were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although pri...

  4. Energy development vs water quality in the Upper Colorado and Upper Missouri River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, A.B.; Klemetson, S.L.; Torpy, M.F.; McKee, M.

    1978-10-01

    This report examines the relationship between energy development and water quality in the Upper Colorado and Upper Missouri River Basins. The location and type of energy resources and present and possible future developments are identified relative to the water resource systems. Impacts from energy developments are discussed in terms of the various pollutants generated by energy extraction and processing activities, and the pollution transport mechanisms and pathways by which they can enter surface and groundwater. The report discusses the implications for energy development of the water quality aspects of legislative requirements and regulations. These include the Federal Water Pollution Control Act Amendments, the Safe Drinking Water Act, the Surface Mining Control and Reclamation Act, the Resource Conservation and Recovery Act, and the Toxic Substances Control Act. Many of the potential water pollution problems associated with energy development will occur through the transport of pollutants from air pollution and solid waste disposal. The consumptive use of all water withdrawn for energy processing as a pollution control measure raises three important issues--each of which represents a potential conflict between energy developers' compliance with the legislation and western water law: (1) junior rights and water transfer, (2) the beneficial use question, and (3) the reasonable use measure of certain water quality practices.

  5. Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin

    Science.gov (United States)

    Pool, T.K.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.

    2010-01-01

    Freshwater conservation efforts require an understanding of how natural and anthropogenic factors shape the present-day biogeography of native and non-native species. This knowledge need is especially acute for imperiled native fishes in the highly modified Lower Colorado River Basin (LCRB), USA. In the present study we employed both a taxonomic and functional approach to explore how natural and human-related environmental drivers shape landscape-scale patterns of fish community composition in the LCRB. Our results showed that hydrologic alteration, watershed land use, and regional climate explained 30.3% and 44.7% of the total variation in fish community taxonomic and functional composition, respectively. Watersheds with greater dam densities and upstream storage capacity supported higher non-native functional diversity, suggesting that dams have provided additional "niche opportunities" for non-native equilibrium life-history strategists by introducing new reservoir habitat and modifying downstream flow and thermal regimes. By contrast, watersheds characterized by greater upstream land protection, lower dam densities, and higher variation in spring and summer precipitation supported fish communities with a strong complement of native species (opportunistic-periodic strategists). In conclusion, our study highlights the utility of a life-history approach to better understand the patterns and processes by which fish communities vary along environmental gradients.

  6. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  7. Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado

    Science.gov (United States)

    Pulwarty, R. S.

    2008-12-01

    Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand

  8. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Directory of Open Access Journals (Sweden)

    Darren L Ficklin

    Full Text Available In the Upper Colorado River Basin (UCRB, the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow, and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB

  9. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    Science.gov (United States)

    Ficklin, Darren L; Stewart, Iris T; Maurer, Edwin P

    2013-01-01

    In the Upper Colorado River Basin (UCRB), the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs) project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st) century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow), and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st) century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB could

  10. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Vincent; Boye, Kristin; Kukkadapu, Ravi K.; Bone, Sharon; Lezama Pacheco, Juan S.; Cardarelli, Emily; Janot, Noémie; Fendorf, Scott; Williams, Kenneth H.; Bargar, John R.

    2017-12-01

    River floodplains, heavily used for water supplies, housing, agriculture, mining, and industry, may have water quality jeopardized by native or exogenous metals. Redox processes mediate the accumulation and release of these species in groundwater. Understanding the physicochemical, hydrological, and biogeochemical controls on the distribution and variability and variability of redox conditions is therefore critical to developing conceptual and numerical models of contaminants transport within floodplains. The distribution and intensity of redox activity at the Rifle, CO, site within the Upper Colorado River Basin (UCRB), are believed to be controlled by textural and compositional heterogeneities. Regionally, the UCRB is impacted by former uranium and vanadium ore processing, resulting in contaminations by U, Mo, V, As, Se, and Mn. Floodplains throughout the UCRB share sediment and groundwater characteristics, making redox activity regionally important to metal and radionuclide mobility. In this study, Fe and S speciation were used to track the distribution and stability of redox processes in sediment cores from three floodplain sites covering a 250 km range in the central portion of the UCRB. The results of the present study support the hypothesis that Fe(III) and sulfate reducing sediments are regionally important in the UCRB. The presence of organic carbon together with pore saturation were the key requirements for reducing conditions, dominated by sulfate-reduction. Sediment texture moderated the response of the system to external forcing, such as oxidant infusion, making fine-grain sediments resistant to change in comparison to coarser-grained sediments. Exposure to O2 and NO3- mediates the reactivity and longevity of freshly precipitated sulfides creating the potential for release of sequestered radionuclides and metals. The physical and chemical parameters of reducing zones evidenced in this study are thus thought to be key parameters on the dynamic exchange

  11. Evaluation of MODIS, Epan and DAYMET-derived Potential Evapotranspiration Products in the Upper Colorado River Basin

    Science.gov (United States)

    Hogue, T. S.; Barik, M.; Franz, K.; Kinoshita, A. M.

    2013-12-01

    Potential evapotranspiration (PET) is a key variable in hydrologic forecasting, drought analysis, ecological modeling, and irrigation demand. This presentation overviews an analysis of a Moderate Resolution Imaging Spectroradiometer (MODIS) based PET product for seven basins in the Upper Colorado River Basin. The MODIS-PET (daily, 250m) is evaluated against two distributed PET products, the Colorado Basin River Forecast Center's North American Land Data Assimilation System (NLDAS) synthetic pan data (Epan) (daily, 0.125°) and a Hargreaves PET derived from Numerical Terradynamic Simulation Group's DAYMET variables (daily, 1km). The three distributed PET products showed large seasonal and climate variability, with the MODIS-PET better representing spatial variability, especially with respect to elevation change in the tested basins. All PET products are also evaluated against three regional flux towers. The MODIS-PET and Epan better represent flux tower values, while the Daymet PET significantly underestimates the point-based PET. The MODIS-PET are calculated in near-real-time which we advocate will ultimately provide more reasonable representation of current climatological conditions and the ability for near real-time streamflow forecasting, drought monitoring and crop water demand.

  12. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    Science.gov (United States)

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  13. Point sources of emerging contaminants along the Colorado River Basin: Source water for the arid Southwestern United States

    Science.gov (United States)

    Jones-Lepp, Tammy L.; Sanchez, Charles; Alvarez, David A.; Wilson, Doyle C.; Taniguchi-Fu, Randi-Laurant

    2012-01-01

    Emergingcontaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the UnitedStates. The objective of this study was to evaluate pointsources of ECs along the ColoradoRiver, from the headwaters in Colorado to the Gulf of California. At selected locations in the ColoradoRiver Basin (sites in Colorado, Utah, Nevada, Arizona, and California), waste stream tributaries and receiving surface waters were sampled using either grab sampling or polar organic chemical integrative samplers (POCIS). The grab samples were extracted using solid-phase cartridge extraction (SPE), and the POCIS sorbents were transferred into empty SPEs and eluted with methanol. All extracts were prepared for, and analyzed by, liquid chromatography-electrospray-ion trap mass spectrometry (LC-ESI-ITMS). Log Dow values were calculated for all ECs in the study and compared to the empirical data collected. POCIS extracts were screened for the presence of estrogenic chemicals using the yeast estrogen screen (YES) assay. Extracts from the 2008 POCIS deployment in the Las Vegas Wash showed the second highest estrogenicity response. In the grab samples, azithromycin (an antibiotic) was detected in all but one urban waste stream, with concentrations ranging from 30 ng/L to 2800 ng/L. Concentration levels of azithromycin, methamphetamine and pseudoephedrine showed temporal variation from the Tucson WWTP. Those ECs that were detected in the main surface water channels (those that are diverted for urban use and irrigation along the ColoradoRiver) were in the region of the limit-of-detection (e.g., 10 ng/L), but most were below detection limits.

  14. Airborne LiDAR and hyperspectral mapping of snow depth and albedo in the Upper Colorado River Basin, Colorado, USA by the NASA JPL Airborne Snow Observatory

    Science.gov (United States)

    Deems, J. S.; Painter, T. H.

    2014-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, and is paired with a hyperspectral imager to provide an unprecedented snowpack monitoring capability and enabling a new operational paradigm. We present the initial results from this new application of multi-temporal LiDAR and hyperspectral mapping. During the snowmelt seasons of 2013 and 2014, the ASO mapped snow depth and albedo in the Uncompahgre River Basin in Colorado's Upper Colorado River Basin on a nominally monthly basis. These products enable an assessment and comparison of spatial snow accumulation and melt processes in two years with very different snowmelt hydrographs.

  15. Manual for estimating selected streamflow characteristics of natural-flow streams in the Colorado River basin in Utah

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1986-01-01

    Methods are presented for estimating 10 streamflow characteristics at three types of sites on natural flow streams in the Colorado River Basin in Utah. The streamflow characteristics include average discharge and annual maximum 1-, 7-, and 15-day mean discharges for recurrence intervals of 10, 50 and 100 years. At or near gaged sites, two methods weight gaging station data with regression equation values to estimate streamflow characteristics. At sites on ungaged streams, a method estimates streamflow characteristics using regression equations. The regression equations relate the streamflow characteristics to the following basin and climatic characteristics: contributing drainage area, mean basin elevation, mean annual precipitation, main channel slope, and forested area. Separate regression equations were developed for four hydrologically distinct regions in the study area. The standard error of estimate for the 10 streamflow characteristics ranges from 13% to 87%. Basin, climatic, and streamflow characteristics, available as of September 30, 1981, are presented for 135 gaging stations in Utah, Arizona, Colorado, and Wyoming. In addition, weighted estimates of the streamflow characteristics based on station data and the regression equation estimates are provided for most gaging stations. (Author 's abstract)

  16. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin

    Science.gov (United States)

    Roberts, James J.; Fausch, Kurt D.; Peterson, Douglas P.; Hooten, Mevin B.

    2013-01-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a greater than or equal to 90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 

  17. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin.

    Science.gov (United States)

    Roberts, James J; Fausch, Kurt D; Peterson, Douglas P; Hooten, Mevin B

    2013-05-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a ≥90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. © 2013 Blackwell Publishing Ltd.

  18. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  19. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  20. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  1. Effects of climate variability on water storage in the Colorado river basin

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Troch, P.A.A.; Uijlenhoet, R.; Torfs, P.J.J.F.; Durcik, M.

    2009-01-01

    Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colora

  2. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  3. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin

    Science.gov (United States)

    Senay, Gabriel; Friedrichs, MacKenzie O.; Singh, Ramesh K.; Velpuri, Naga Manohar

    2016-01-01

    Evapotranspiration (ET) mapping at the Landsat spatial resolution (100 m) is essential to fully understand water use and water availability at the field scale. Water use estimates in the Colorado River Basin (CRB), which has diverse ecosystems and complex hydro-climatic regions, will be helpful to water planners and managers. Availability of Landsat 8 images, starting in 2013, provides the opportunity to map ET in the CRB to assess spatial distribution and patterns of water use. The Operational Simplified Surface Energy Balance (SSEBop) model was used with 528 Landsat 8 images to create seamless monthly and annual ET estimates at the inherent 100 m thermal band resolution. Annual ET values were summarized by land use/land cover classes. Croplands were the largest consumer of “blue” water while shrublands consumed the most “green” water. Validation using eddy covariance (EC) flux towers and water balance approaches showed good accuracy levels with R2 ranging from 0.74 to 0.95 and the Nash–Sutcliffe model efficiency coefficient ranging from 0.66 to 0.91. The root mean square error (and percent bias) ranged from 0.48 mm (13%) to 0.60 mm (22%) for daily (days of satellite overpass) ET and from 7.75 mm (2%) to 13.04 mm (35%) for monthly ET. The spatial and temporal distribution of ET indicates the utility of Landsat 8 for providing important information about ET dynamics across the landscape. Annual crop water use was estimated for five selected irrigation districts in the Lower CRB where annual ET per district ranged between 681 mm to 772 mm. Annual ET by crop type over the Maricopa Stanfield irrigation district ranged from a low of 384 mm for durum wheat to a high of 990 mm for alfalfa fields. A rainfall analysis over the five districts suggested that, on average, 69% of the annual ET was met by irrigation. Although the enhanced cloud-masking capability of Landsat 8 based on the cirrus band and utilization of the Fmask algorithm improved the

  4. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    Science.gov (United States)

    Henneberg, Mark F.

    2016-08-10

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data

  5. Intercomparison of global river discharge simulations focusing on dam operation—multiple models analysis in two case-study river basins, Missouri-Mississippi and Green-Colorado

    Science.gov (United States)

    Masaki, Yoshimitsu; Hanasaki, Naota; Biemans, Hester; Müller Schmied, Hannes; Tang, Qiuhong; Wada, Yoshihide; Gosling, Simon N.; Takahashi, Kiyoshi; Hijioka, Yasuaki

    2017-05-01

    We performed an intercomparison of river discharge regulated by dams under four meteorological forcings among five global hydrological models for a historical period by simulation. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri-Mississippi and Green-Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river's course to critically examine the performance of hydrological models because the performance can vary with the locations.

  6. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    Science.gov (United States)

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.

    2008-12-01

    While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is

  7. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    B. L. Harding

    2012-11-01

    Full Text Available The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate projections from 16 global climate models (GCMs were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although prior studies and associated media coverage have focused heavily on the likelihood of a drier future for the Colorado River Basin, approximately 25 to 35% of the ensemble of runs, by 2099 and 2039, respectively, result in no change or increases in streamflow. The broad range of projected impacts is primarily the result of uncertainty in projections of future precipitation, and a relatively small part of the variability of precipitation across the projections can be attributed to the effect of emissions pathways. The simulated evolution of future temperature is strongly influenced by emissions, but temperature has a smaller influence than precipitation on flow. Period change statistics (i.e., the change in flow from one 30-yr period to another vary as much within a model ensemble as between models and emissions pathways. Even by the end of the current century, the variability across the projections is much greater than changes in the ensemble mean. The relatively large ensemble analysis described herein provides perspective on earlier studies that have used fewer scenarios, and suggests that impact analyses relying on one or a few climate scenarios are unacceptably influenced by the choice of projections.

  8. The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    B. L. Harding

    2012-01-01

    Full Text Available The impact of projected 21st century climate conditions on streamflow in the Upper Colorado River Basin was estimated using a multi-model ensemble approach wherein the downscaled outputs of 112 future climate scenarios from 16 global climate models (GCMs were used to drive a macroscale hydrology model. By the middle of the century, the impacts on streamflow range, over the entire ensemble, from a decrease of approximately 30% to an increase of approximately the same magnitude. Although prior studies and associated media coverage have focused heavily on the likelihood of a drier future for the Colorado River Basin, approximately one-third of the ensemble of runs result in little change or increases in streamflow. The broad range of projected impacts is primarily the result of uncertainty in projections of future precipitation, and a relatively small part of the variability of precipitation across the projections can be attributed to the effect of emissions scenarios. The simulated evolution of future temperature is strongly influenced by emissions, but temperature has a smaller influence than precipitation on flow. Period change statistics (i.e., the change in flow from one 30-yr period to another vary as much within a model ensemble as between models and emissions scenarios. Even over the course of the current century, the variability across the projections is much greater than the trend in the ensemble mean. The relatively large ensemble analysis described herein provides perspective on earlier studies that have used fewer scenarios, and suggests that impact analyses relying on one or a few scenarios, as is still common in dynamical downscaling assessments, are unacceptably influenced by choice of projections.

  9. Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin

    Science.gov (United States)

    Paukert, Craig P.; Pitts, K.L.; Whittier, Joanna B.; Olden, Julian D.

    2011-01-01

    Anthropogenic disturbances impact freshwater biota but are rarely incorporated into conservation planning due to the difficulties in quantifying threats. There is currently no widely accepted method to quantify disturbances, and determining how to measure threats to upstream catchments using disturbance metrics can be time consuming and subjective. We compared four watershed-scale ecological threat indices for the Lower Colorado River Basin (LCRB) using landscape-level threats of land use (e.g., agricultural and urban lands), waterway development and diversions (e.g., number of canals, dams), and human development (e.g., road and railroads density, pollution sites). The LCRB is an ideal region to assess ecological threat indices because of the increasing need for conservation to ensure the persistence of native fishes in highly altered habitat. Each threat was measured for severity (i.e., level of influence on the upstream watershed) and frequency throughout each watershed; both severity and frequency were measured using two different methods. Severity values were based either on peer-reviewed literature and weighted in accordance to their published ecological impact, or assumed equal severity across stressors. Threat frequency was calculated according to either the presence/absence of each stressor, or on the relative density of each stressor in the watershed. Each measure of severity was combined with a measure of frequency, creating four ecological threat indices, and transformed to a 0–100 scale. Threat indices were highly correlated (slopes of 0.94–1.63; R2 of 0.82–0.98), and were highest for watersheds close to urban centers, including Phoenix, Tucson, and Flagstaff, Arizona, and Las Vegas, Nevada. Road crossings and density appeared to be the most influential stressors in the index, but the removal of any individual stressor only changed the index by planning for the Lower Colorado River Basin.

  10. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  11. Point Sources of Emerging Contaminants Along the Colorado River Basin: Impact on Water Use and Reuse in the Arid Southwest

    Science.gov (United States)

    Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf...

  12. The dynamic feedbacks between channel changes in the Colorado River Basin and the rapid invasion of Tamarisk

    Science.gov (United States)

    Manners, R.; Schmidt, J. C.

    2009-12-01

    The resiliency and sensitivity of western rivers to future climate change may be partly anticipated by the response of these rivers to past perturbations in stream flow and sediment supply. Predictions of earlier spring runoff and reduced peak flows of snowmelt-dominated streams mimic hydrologic changes caused by the closure and operation of large dams built within the past century. In the Colorado River Basin, channels have narrowed between 5 and 26% following large dam construction, but the correlation between flow reduction and channel narrowing is confounded by changes in bank strength caused by the rapid spread of the non-native riparian shrub, tamarisk (Tamarix spp.). Thus, predictions of future changes in channel form and analysis of past changes related to dams must distinguish between channel narrowing caused by direct changes in flow, and caused by the indirect effects wherein changes in flow regime allow expansion of non-native riparian vegetation that in turn leads to accelerated channel narrowing. Our research evaluates the geomorphic controls on tamarisk colonization, the role of tamarisk in accelerating the narrowing process, and the dynamic feedbacks between channel changes on western rivers and the invasion of non-native riparian species. The transformation of formerly active bars and channel margins into stable inset floodplain surfaces is the dominant process by which these channels have narrowed, as determined by detailed alluvial stratigraphy and dendrogeomorphology. We recreated the 3-dimensional bar surface present at the time of tamarisk establishment by excavating an extensive network of trenches. In doing this, we evaluated the hydraulic environment within which tamarisk established. We also characterized the hydrodynamic roughness of aging tamarisk stands from ground-based LiDAR scans to evaluate the role of tamarisk in the promotion of floodplain formation. Our study sites are representative of the predominant geomorphic organization of

  13. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  14. Input Digital Datasets for the Soil-Water Balance Groundwater Recharge Model of the Upper Colorado River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5...

  15. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    Science.gov (United States)

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  16. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    Science.gov (United States)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  17. Analysis of Dissolved Selenium Loading for Selected Sites in the Lower Gunnison River Basin, Colorado, 1978-2005

    Science.gov (United States)

    Thomas, Judith C.; Leib, Kenneth J.; Mayo, John W.

    2008-01-01

    Elevated selenium concentrations in streams are a water-quality concern in western Colorado. The U.S. Geologic Survey, in cooperation with the Colorado Department of Public Health and Environment, summarized selenium loading in the Lower Gunnison River Basin to support the development of total maximum daily selenium loads at sites that represent the cumulative contribution to U.S. Environmental Protection Agency 303(d) list segments. Analysis of selenium loading included quantifying loads and determining the amount of load that would need to be reduced to bring the site into compliance, referred to as 'the load reduction,' with the State chronic aquatic-life standard for dissolved selenium [85th percentile selenium concentration not to exceed 4.6 ?g/L (micrograms per liter)], referred to as 'the water-quality standard.' Streamflow and selenium concentration data for 54 historical water-quality/water-quantity monitoring sites were compiled from U.S. Geological Survey and Colorado Department of Public Health and Environment data sources. Three methods were used for analysis of selenium concentration data to address the variable data density among sites. Mean annual selenium loads were determined for only 10 of the 54 sites due to data availability limitations. Twenty-two sites had 85th percentile selenium concentrations that exceeded the water-quality standard, 3 sites had 85th percentile selenium concentrations less than the State standard, and 29 sites could not be evaluated with respect to 85th percentile selenium concentration (sample count less than 5). To bring selenium concentrations into compliance with the water-quality standard, more than 80 percent of the mean annual selenium load would need to be reduced at Red Rock Canyon, Dry Cedar Creek, Cedar Creek, Loutzenhizer Arroyo, Sunflower Drain, and Whitewater Creek. More than 50 percent of the mean annual load would need to be reduced at Dry Creek to bring the site into compliance with the water

  18. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    Science.gov (United States)

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  19. Evaluation of GPM-based Multi-satellite IMERG Precipitation Products Over the Lower Colorado River Basin, Texas

    Science.gov (United States)

    Omranian, S. E.; Sharif, H. O.

    2016-12-01

    This study evaluates the Global Precipitation Measurement (GPM) satellite products by analyzing extreme rainfall events over the Lower Colorado River Basin, Texas that resulted in unprecedented flash floods in May 2015. Records of a dense rain gauge network (241 stations) are compared with Integrated Multi-satellite Retrievals for GPM (IMERG) products. The spatial resolution of the GPM satellite product is 0.1º x 0.1º and the temporal resolution is 30 minutes. Reference gauge-based observations are distributed through the basin with total area of over 5,000 square kilometers at 15-minute time intervals. A preliminary assessment of GPM-based IMERG precipitation products shows reasonable correlation, especially when for periods of high amounts of rainfall. the results indicate that GPM satellite products can potentially be employed in hydrologic modeling, especially for large events. Moreover, since the IMERG products have semi-global coverage, it can be extremely useful in hydrological modeling and analysis studies over ungauged or poorly gauged regions.

  20. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  1. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Colorado River basin

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Gross, Timothy S.; Echols, Kathy R.; Davis, Anne P.; May, Tom W.; Orazio, Carl E.; Coyle, James J.; Tillitt, Donald E.

    2006-01-01

    Seven fish species were collected from 14 sites on rivers in the Colorado River Basin (CDRB) from August to October 2003. Spatial trends in the concentrations of accumulative contaminants were documented and contaminant effects on the fish were assessed. Sites were located on the mainstem of the Colorado River and on the Yampa, Green, Gunnison, San Juan, and Gila Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and channel catfish (Ictalurus punctatus) were the targeted species. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using performance-based and instrumental methods. 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ) was measured using the H4IIE rat hepatoma cell bioassay. Selenium (Se) and mercury (Hg) concentrations were elevated throughout the CDRB, and pesticides concentrations were greatest in fish from agricultural areas in the Lower Colorado River and Gila River. Selenium concentrations exceeded toxicity thresholds for fish (>1.0 ?g/g ww) at all sites except from the Gila River at Hayden, Arizona. Mercury concentrations were elevated (>0.1 ?g/g ww) in fish from the Yampa River at Lay, Colorado; the Green River at Ouray National Wildlife Refuge (NWR), Utah and San Rafael, Utah; the San Juan River at Hogback Diversion, New Mexico; and the Colorado River at Gold Bar Canyon, Utah, Needles, California, and Imperial Dam, Arizona. Concentrations of p,p'-DDE were relatively high in fish from Arlington, Arizona (>1.0 ?g/g ww) and Phoenix, Arizona (>0.5 ?g/g ww). Concentrations of other banned pesticides including toxaphene, total chlordanes, and dieldrin were also greatest at these two sites but did not exceed toxicity thresholds

  2. Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins

    Science.gov (United States)

    Clark, M.P.; Serreze, M.C.; McCabe, G.J.

    2001-01-01

    Snow-water equivalent (SWE) data measured at several hundred montane sites in the western United States are used to examine the historic effects of El Nino and La Nina events on seasonal snowpack evolution in the major subbasins in the Columbia and Colorado River systems. Results are used to predict annual runoff. In the Columbia River Basin, there is a general tendency for decreased SWE during El Nino years and increased SWE in La Nina years. However, the SWE anomalies for El Nino years are much less pronounced. This occurs in part because midlatitude circulation anomalies in El Nino years are located 35?? east of those in La Nina years. This eastward shift is most evident in midwinter, at which time, SWE anomalies associated with El Nino are actually positive in coastal regions of the Columbia River Basin. In the Colorado River Basin, mean anomalies in SWE and annual runoff during El Nino years depict a transition between drier-than-average conditions in the north, and wetter-than-average conditions in the southwest. Associations during La Nina years are generally opposite those in El Nino years. SWE anomalies tend to be more pronounced in spring in the Lower Colorado River Basin. Our predictions of runoff reveal modest skill for scenarios using only historic El Nino and La Nina information. Predictions based on the water stored in the seasonal snowpack are, in almost all cases, much higher than those based on El Nino-Southern Oscillation (ENSO) information alone. However, combining observed midwinter snow conditions with information on seasonal snowpack evolution associated with ENSO improves predictions for basins in which ENSO signals exhibit strong seasonality.

  3. Variability of low flow magnitudes in the Upper Colorado River Basin: identifying trends and relative role of large-scale climate dynamics

    Directory of Open Access Journals (Sweden)

    M. Pournasiri Poshtiri

    2014-07-01

    Full Text Available Low flow magnitude in a head water basin is important for planners because minimum available amount of water in a given time period often leads to concerns regarding serious repercussions, in both up and downstream regions. This is a common scenario in arid region like Colorado River basin located in the southwestern US. Low flow variability in Colorado River is due to complex interactions between several natural and anthropogenic factors; but we aim to identify the relative role of climate on varying low flow magnitudes at different spatial locations. The research questions we aim to answer are: Is there a systematic variability in water availability during the driest time of a year or season? How does that vary across locations and is there a link between large-scale climate and low flow variations? Towards that aim we select 17 stream gauge locations, which are identified as "undisturbed" meaning that these stations represent near-natural river flow regimes in the headwater region of Colorado River, which provides a useful resource for assessment of climate and hydrology associations without the confounding factor of major direct (e.g. water abstraction or indirect (e.g. land-use change human modification of flows. A detailed diagnostic analysis gives us fair understanding on the variability of low flow magnitude that is explained by climate. We also present spatial heterogeneity of hydro-climatological linkages that is important for suitable adaptive management measures.

  4. Influences of fragmentation on three species of native warmwater fishes in a Colorado River Basin headwater stream system, Wyoming

    Science.gov (United States)

    Compton, R.I.; Hubert, W.A.; Rahel, F.J.; Quist, M.C.; Bower, M.R.

    2008-01-01

    We investigated the effects of constructed instream structures on movements and demographics of bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, and roundtail chub Gila robusta in the upstream portion of Muddy Creek, an isolated headwater stream system in the upper Colorado River basin of Wyoming. Our objectives were to (1) evaluate upstream and downstream movements of these three native species past a small dam built to divert irrigation water from the stream and a barrier constructed to prevent upstream movements of nonnative salmonids and (2) describe population characteristics in stream segments created by these structures. Our results indicated that upstream and downstream movements of the three target fishes were common. Fish of all three species moved frequently downstream over both structures, displayed some upstream movements over the irrigation diversion dam, and did not move upstream over the fish barrier. Spawning migrations by some fish into an intermittent tributary, which was not separated from Muddy Creek by a barrier, were observed for all three species. Both the irrigation diversion dam and the fish barrier contributed to fragmentation of the native fish populations, and considerable differences in population features were observed among segments. The instream structures may eventually cause extirpation of some native species in one or more of the segments created by the structures. ?? Copyright by the American Fisheries Society 2008.

  5. Storm and flood of July 31-August 1, 1976, in the Big Thompson River and Cache la Poudre River basins, Larimer and Weld Counties, Colorado

    Science.gov (United States)

    McCain, Jerald F.; Shroba, R.R.

    1979-01-01

    PART A: Devastating flash floods swept through the canyon section of Larimer County in north-central Colorado during the night of July 31-August I, 1976, causing 139 deaths, 5 missing persons, and more than $35 million in total damages. The brunt of the storms occurred over the Big Thompson River basin between Drake and Estes Park with rainfall amounts as much as 12 inches being reported during the storm period. In the Cache la Poudre River basin to the north, a rainfall amount of 10 inches was reported for one locality while 6 inches fell over a widespread area near the central part of the basin. The storms developed when strong low-level easterly winds to the rear of a polar front pushed a moist, conditionally unstable airmass upslope into the Front Range of the Rocky Mountains. Orographic uplift released the convective instability, and light south-southeasterly winds at middle and upper levels allowed the storm complex to remain nearly stationary over the foothills for several hours. Minimal entrainment of relatively moist air at middle and upper levels, very low cloud bases, and a slightly tilted updraft structure contributed to a high precipitation efficiency. Intense rainfall began soon after 1900 MDT (Mountain Daylight Time) in the Big Thompson River and the North Fork Cache la Poudre River basins. A cumulative rainfall curve developed for Glen Comfort from radar data indicates that 7.5 inches of rain fell during the period 1930-2040 MDT on July 31. In the central part of the storm area west of Fort Collins, the heaviest rainfall began about 2200 MDT on July 31 and continued until 0100 MDT on August 1. Peak discharges were extremely large on many streams in the storm area-exceeding previously recorded maximum discharges at several locations. The peak discharge of the Big Thompson River at the gaging station at the canyon mouth, near Drake was 31,200 cubic feet per second or more than four times the previous maximum discharge of 7,600 cubic feet per second at

  6. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach

    Science.gov (United States)

    Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.

    2014-01-01

    Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.

  7. Remote Sensing-based Estimates of Potential Evapotranspiration for Hydrologic Modeling in the Upper Colorado River Basin Region

    Science.gov (United States)

    Barik, Muhammad Ghulam

    Potential Evapotranspiration (PET) is used as a common input to calculate evaporative demand in hydrological, ecological and biological modeling. Dynamic and distributed measurement of PET is important for improved hydrologic predictions at the watershed scale since PET varies with time and space. In this work, an advanced dynamic PET estimation is proposed by integrating geostationary satellite products into a currently existing remote sensing-based PET algorithm and evaluated in the framework of operational hydrologic forecasting modeling. The development work is approached through a series of studies. At first, a previously developed Moderate Resolution Imaging Spectroradiometer (MODIS) based PET (MODIS-PET) product applied over several flux towers and basins in the Upper Colorado River Basin (UCRB) to determine its applicability and predictive ability in comparison to other ground based distributed PET methods. Results from this primary study indicate the MODIS-PET is an improved PET estimation method compared to the other two contemporary distributed PET products that were tested over this geographically complex study region. In addition to elevation and cloud cover, uncertainties are associated with the MODIS-PET algorithm pertaining from three model variables; land surface temperature, air temperature and surface emissivity. The crude hypothetical sinusoidal curve considered in the conversion of instantaneous MODIS-PET to the daily PET estimation can potentially be replaced with satellite data with improved temporal resolution. Hence, integration of Geostationary Operational Environmental Satellites (GOES), a series of geostationary satellites with frequent observations, data in the MODIS-PET algorithm is performed in the second part. The coupling of GOES within the MODIS-PET algorithm shows significant improvement over the previously developed stand-alone MODIS-PET product, especially for cloudy days and high temperature pixels. Finally, evaluation of these

  8. Chapter A. Effects of urbanization on stream ecosystems in the South Platte River basin, Colorado and Wyoming

    Science.gov (United States)

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat

  9. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    Science.gov (United States)

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  10. Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations

    Science.gov (United States)

    Painter, Thomas H.; Skiles, S. Mckenzie; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Dust in snow accelerates snowmelt through its direct reduction of snow albedo and its further indirect reduction of albedo by accelerating the growth of snow grains. Since the westward expansion of the United States that began in the mid-19th century, the mountain snow cover of the Colorado River Basin has been subject to five-fold greater dust loading, largely from the Colorado Plateau and Great Basin. Radiative forcing of snowmelt by dust is not captured by conventional micrometeorological measurements, and must be monitored by a more comprehensive suite of radiation instruments. Here we present a 6 year record of energy balance and detailed radiation measurements in the Senator Beck Basin Study Area, San Juan Mountains, Colorado, USA. Data include broadband irradiance, filtered irradiance, broadband reflected flux, filtered reflected flux, broadband and visible albedo, longwave irradiance, wind speed, relative humidity, and air temperatures. The gradient of the snow surface is monitored weekly and used to correct albedo measurements for geometric effects. The snow is sampled weekly for dust concentrations in plots immediately adjacent to each tower over the melt season. Broadband albedo in the last weeks of snow cover ranged from 0.33 to 0.55 across the 6 years and two sites. Total end of year dust concentration in the top 3 cm of the snow column ranged from 0.23 mg g-1 to 4.16 mg g-1. These measurements enable monitoring and modeling of dust and climate-driven snowmelt forcings in the Upper Colorado River Basin.

  11. Catchment-flowline network and selected model inputs for an enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    Science.gov (United States)

    Buto, Susan G.; Spangler, Lawrence E.; Flint, Alan L.; Flint, Lorraine E.

    2017-01-01

    This USGS data release consists of the synthetic stream network and associated catchments used to develop spatially referenced regressions on watershed attributes (SPARROW) model of dissolved-solids sources and transport in the Upper Colorado River Basin as well as geology and selected Basin Characterization Model (BCM) data used as input to the model.

  12. Temporal inconsistencies in coarse-scale snow water equivalent patterns: Colorado River Basin snow telemetry-topography regressions

    Directory of Open Access Journals (Sweden)

    Fassnacht, S. R.

    2012-05-01

    Full Text Available The relation between snow water equivalent (SWE and 28 variables (27 topographically-based topographic variables and canopy density for the Colorado River Basin, USA was explored through a multi-variate regression. These variables include location, slope and aspect at different scales, derived variables to indicate the distance to sources of moisture and proximity to and characteristics of obstacles between these moisture sources and areas of snow accumulation, and canopy density. A weekly time step of snow telemetry (SNOTEL SWE data from 1990 through 1999 was used. The most important variables were elevation and regional scale (81 km² slope. Since the seasonal and inter-annual variability is high, a regression relationship should be formulated for each time step. The inter-annual variation in the relation between SWE and topographic variables partially corresponded with the amount of snow accumulated over the season and the El Niño Southern Oscillation cycle.Se analiza la relación entre el equivalente de agua en la nieve (SWE y 28 variables (27 variables topográficas y otra basada en la densidad del dosel para la Cuenca del Río Colorado, EE.UU. mediante regresión multivariante. Estas variables incluyen la localización, pendiente y orientación a diferentes escalas, además de variables derivadas para indicar la distancia a las fuentes de humedad y la proximidad a las barreras topográficas, además de las características de las barreras topográficas entre las fuentes de humedad, las áreas de acumulación de nieve y la densidad del dosel. Se utilizaron telemetrías semanales de nieve (SNOTEL desde 1990 hasta 1999. Las variables más importantes fueron la elevación y la pendiente a escala regional (81 km². Dada la alta variabilidad estacional e interanual, fue necesario establecer regresiones específicas para cada intervalo disponible de datos. La variación interanual en la relación entre variables topográficas y el SWE se

  13. Importance of Organic Matter-Uranium Biogeochemistry to Uranium Plume Persistence in the Upper Colorado River Basin

    Science.gov (United States)

    Bargar, J.; Janot, N.; Jones, M. E.; Bone, S. E.; Lezama-Pacheco, J.; Fendorf, S. E.; Long, P. E.; Williams, K. H.; Bush, R. P.

    2014-12-01

    Recent evidence suggests that biologically driven redox reactions, fueled by sedimentary lenses enriched in detrital organic matter, play major roles in maintaining the persistent uranium groundwater plume in the subsurface at the U.S. Department of Enery's Rifle, CO field research site. Biogeochemical cycling of C, N, Fe, and S is highly active in these organic-rich naturally reduced zones (NRZs), and uranium is present as U(IV). The speciation of these elements profoundly influences the susceptibility of uranium to be reoxidized and remobiliized and contribute to plume persistence. However, uranim speciation in particular is poorly constrained in these sytems. To better evaluate the importance of NRZs to uranium mobility and plume persistence at the Rifle site, the DOE-BER-funded SLAC SFA team has characterized vertical concentration profiles and speciation of uranium, iron, sulfur, and NOM in well bores at high spatial resolution (4 inch intervals). Up to 95% of the sedimentary uranium pool was found to be concentrated in NRZs, where it occurs dominantly as non-crystalline forms of U(IV). Uranium accumulation and the presence of the short-lived sulfide mackinawite (FeS) at NRZ-aquifer interfaces indicate that NRZs actively exchange solutes with the surrounding aquifer. Moreover, sediment textures indicate that NRZs are likely to be abundant in riparian zones throughout the upper Colorado River basin (U.S.A.), which contains most of the contaminated DOE legacy uranium ore processing sites in the U.S. These results suggest that NRZ-uranium interactions may be important to plume persistence regionally and emphasize the importance of understanding molecular-scale processes.

  14. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  15. Characteristics of streams and aquifers and processes affecting the salinity of water in the upper Colorado River basin, Texas

    Science.gov (United States)

    Slade, R.M.; Buszka, P.M.

    1994-01-01

    The upper Colorado River and some of its tributaries between Lake J.B. Thomas and O.H. Ivie Reservoir contain saline water (defined as water having dissolved-solids concentrations greater than 1,000 milligrams per liter). Dissolved-solids loads at nine streamflow water-quality stations increased from 1986 to 1988. The largest increases were in Beals Creek and in the Colorado River downstream from Beals Creek as a result of outflow of saline water from Natural Dam Salt Lake. The outflow contained 654,000 tons of dissolved solids and had a mean dissolved-solids concentration of 7,900 milligrams per liter. This amount represents about 51 percent of the dissolved-solids load to E.V. Spence Reservoir during 1986-88.

  16. Changes in streamflow extremes in the Colorado River Basin and implications for the water-energy nexus

    Science.gov (United States)

    Solander, K.; Bennett, K. E.; Middleton, R. S.

    2016-12-01

    The global phenomenon of climate change-induced shifts in precipitation leading to "wet regions getting wetter" and "dry regions getting drier" has been widely studied. However, the propagation of the changes in atmospheric moisture conditions to the ground within stream channels is not a direct relationship due to a combination of temporal differences in these moisture shifts and how water interacts with various land surfaces. Precipitation and streamflow changes in the Colorado River Basin (CRB) are of particular interest due to its rapidly growing population, projected temperature increases that are expected to be higher than elsewhere in the contiguous United States, and subsequent climate-driven disturbances including drought, vegetation mortality, and wildfire, thereby making the region more vulnerable to shifts in hydrologic extremes. Here, we attempt to determine how streamflow extremes have changed in the CRB by using the Generalized Extreme Value (GEV) and Mann-Kendall trend analysis on historical observations and future simulations. We specifically evaluate these changes in the context of key high- and low-flow metrics including the maximum, 95th percentile, 5th percentile, minimum, center timing, and 7Q10 maximum and minimum flows using daily data at the monthly, seasonal, and annual timescales. By evaluating how the center timing and other streamflow statistics are changing at different elevations, this study also assesses the relative influence of changes in snowmelt versus overall precipitation on the associated shifts in extremes. Historical streamflow records were obtained from the United States Geological Survey (USGS) GAGES II dataset, while future records were derived using downscaled simulations from IPCC's CMIP5 Global Climate Model (GCM) database. Although preliminary results of the future simulations suggest that climate change will cause 7Q10 low flows to increase by 7% over the long-term, the combined impacts of climate and vegetation

  17. A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2012-12-01

    The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical

  18. Using water, bryophytes, and macroinvertebrates to assess trace element concentrations in the Upper Colorado River Basin

    Science.gov (United States)

    Deacon, J.R.; Spahr, N.E.; Mize, S.V.; Boulger, R.W.

    2001-01-01

    This study examined trace elements concentrations and macroinvertebrate community structure at 32 sites in 22 streams in Colorado. Sites affected by mining activities (mining sites) and sites that were minimally disturbed (nonmining sites) were selected for the assessment. Water and transplanted aquatic bryophyte samples were analyzed for trace elements. Macroinvertebrate samples were collected to assess the effects of trace elements on the aquatic community of the stream. All samples of aquatic bryophytes had detectable concentrations of Cd, Cu, Pb and Zn. Principal components analysis of chemical and physical properties classified sites into three groups. The first group represented sites that were unaffected to minimally affected by mining activities; the second group was characterized by sites with Cd, Pb and Zn predominant in the mineralogy; and the third group was characterized by sites with Cu predominant in the mineralogy. Six macroinvertebrate families were common in the study area. Median values of total abundance, taxa richness and mayfly and stonefly abundance were reduced at mining sites. Abundances of Heptageniidae, Chloroperlidae and Rhyacophila and Baetis sp. also were reduced at sites with elevated trace element concentrations. Tanytarsini chironomids were most abundant at reference and minimally-disturbed sites.

  19. Frequency-magnitude-area relationships for precipitation and flood discharges derived from Next-Generation Radar (NEXRAD): Example application in the Upper and Lower Colorado River Basins

    Science.gov (United States)

    Orem, C. A.; Pelletier, J. D.

    2012-12-01

    Flood-envelope curves, i.e. plots of measured flood discharges versus contributing area for many drainage basins in a given hydroclimatic region, are useful for constraining the upper limit of possible discharges in that region. Their usefulness, however, is limited by the lack of recurrence interval information. In this study, we show that frequency-magnitude-area (FMA) curves can be constructed for precipitation and flood discharges using Stage III Next-Generation Radar (NEXRAD) precipitation estimates and flow-routing algorithms. These FMA curves constrain extreme flood discharges in drainage basins within a region and also provide recurrence interval information. The methods in this study follow the flood-envelope curve approach in that drainage basins of similar size are grouped and data aggregated into one population. We improve on the flood-envelope curve approach by assigning a recurrence interval and errors to flood magnitudes based on a large population of NEXRAD observations taken over time and space. We demonstrate the application of these methods by quantifying the FMA curves for the Upper and Lower Colorado River Basins. Results show that areally-averaged precipitation rates are power-law functions of drainage basin area for a wide range of recurrence intervals. Regression analyses give an average exponent of approximately 0.77 ± 0.04. FMA curves of flood discharges are not power-law functions of area, but instead exhibit the characteristic concave-down shape of published flood-envelope curves in log-log space. The concave-down shape is due to both hydrodynamic and geomorphic dispersion, but not limitations on the increase in precipitation with increasing area, as evidenced by the power-law relationship between area and precipitation rate. Flood discharges calculated by our method are comparable to, but slightly higher than, those reported in the literature for our study regions, suggesting that previously published flood-envelope curves for these

  20. Chapter A. Effects of urbanization on stream ecosystems in the South Platte River basin, Colorado and Wyoming

    Science.gov (United States)

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat

  1. Study of extrabasinal-sourced rock clasts in Mesozoic and Cenozoic conglomerates and stream terrace gravels from the Colorado River Basin upstream from the Grand Canyon

    Science.gov (United States)

    Stoffer, P. W.; Dearaujo, J.; Li, A.; Adam, H.; White, L.

    2008-12-01

    Far-travelled durable, extrabasinal pebbles occur in Mesozoic and Tertiary conglomerate-bearing rock formations and in unconsolidated stream terrace gravels and mesa-capping gravel deposits of Late Tertiary and Quaternary age throughout the Colorado Plateau. Pebble collections were made from each of the major modern tributaries of the Colorado River for possible correlation of remnant gravel deposits remaining from the ancestral regional drainage system that existed prior to the formation of the Grand Canyon. Pebble collecting and sorting techniques were used to make representative collections with both representative and eye-catching lithologies that can be most useful for correlation. Pebbles found in the conglomerate and younger gravel deposits were evaluated to determine general sediment source areas based on unique lithologies, pebble-shape characteristics, and fossils. Chert pebbles derived from source areas in the Great Basin region during the Mesozoic are perhaps the most common, and many of these display evidence of tectonic fracturing during deep burial sometime during their geologic journey. Unique chert pebble lithologies correlate to specific rock units including chert-bearing horizons within the Triassic Shinarump Formation, the Jurassic Morrison and Navajo Formations, and the Cretaceous Mancos Shale. Quartzite, metaconglomerate, and granitic rocks derived from Precambrian rocks of the Rocky Mountain region are also common. Reworked rounded and flattened quartzite cobbles probably derived from shingled beaches along the western shoreline of the Late Cretaceous Western Interior Seaway are also common along the Green River drainage. Xenolith-bearing volcanic rocks, fossil wood, and shell fossils preserved in concretion matrix can be linked to other unique source areas and stratigraphic units across the region. By correlating the pebbles with their sources we gain insight into the erosional history of the Colorado Plateau and the evolution of the

  2. On the Edge: the Impact of Climate Change, Climate Extremes, and Climate-driven Disturbances on the Food-Energy-Water Nexus in the Colorado River Basin

    Science.gov (United States)

    Bennett, K. E.; McDowell, N. G.; Tidwell, V. C.; Xu, C.; Solander, K.; Jonko, A. K.; Wilson, C. J.; Middleton, R. S.

    2016-12-01

    The Colorado River Basin (CRB) is a critical watershed in terms of vulnerability to climate change and supporting the food-energy-water nexus. Climate-driven disturbances in the CRB—including wildfire, drought, and pests—threaten the watershed's ability to reliably support a wide array of ecosystem services while meeting the interrelated demands of the food-energy-water nexus. Our work illustrates future changes for upper Colorado River headwater basins using the Variable Infiltration Capacity hydrologic model driven by downscaled CMIP5 global climate data coupled with pseudo-dynamic vegetation shifts associated with changing fire and drought conditions. We examine future simulated streamflow within the context of an operational model framework to consider the impacts on water operators and managers who rely upon the timely and continual delivery of streamflow. We focus on results for a large case study basin within the CRB—the San Juan River—showing future scenarios where this ecosystem is pushed towards the extremes. Our findings illustrate that landscape change in the CRB cause delayed snowmelt and increased evapotranspiration from shrublands, which leads to increases in the frequency and magnitude of both droughts and floods within disturbed systems. By 2080, coupled climate and landscape change produces a dramatically altered hydrograph resulting in larger peak flows, reduced lower flows, and lower overall streamflow. Operationally, this results in increased future water delivery challenges and lower reservoir storages driven by changes in the headwater basins. Ultimately, our work shows that the already-stressed CRB ecosystem could, in the future, be pushed over a tipping point, significantly impacting the basin's ability to reliably supply water for food, energy, and urban uses.

  3. Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin

    Directory of Open Access Journals (Sweden)

    M. Kopytkovskiy

    2015-03-01

    New hydrological insights for the region: Precipitation projections from climate models vary up to 16%; flow projections revealed greater differences, up to 50%. The climate models projected increase in temperature at low elevations with extreme seasonality at high elevations, although summer temperatures increased at all elevations. The models projected a 60% decline in precipitation at lower elevations and a 74% increase at high elevations, although precipitation declined during the summer months at all elevations. Using the A2 scenario an overall decrease in annual flow was predicted, attributed to a reduction in precipitation and increasing temperature trends; however, this was not consistent during the winter months, which showed an increase in precipitation at high elevations and a modest temperature increase during the winter and resulted in an increase in stream flow. The responses to climate change on reservoir levels varied basin-wide due to variability in precipitation, evapotranspiration, and stream flow. Simulations indicated that water levels in Blue Mesa Reservoir (the largest reservoir in the UCRB would decline by more than 70% with increasing annual temperatures. Reservoirs with smaller surface areas to the volume ratio were not significantly impacted by evapotranspiration. Our results indicate that hydropower management strategies in the UCRB must adapt to potential climate change, but the required adaptations are dependent on several factors including reservoir size and location.

  4. Geology and structure of the Pine River, Florida River, Carbon Junction, and Basin Creek gas seeps, La Plata County, Colorado

    Science.gov (United States)

    Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.

    1997-01-01

    Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.

  5. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    Science.gov (United States)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  6. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  7. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-12-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  8. Projected changes in seasonal drought and flood conditions in the Sierra Nevada and Colorado River basins (USA)

    Science.gov (United States)

    Stewart-Frey, Iris; Ficklin, Darren; Carrillo, Carlos; McIntosh, Russell

    2014-05-01

    The Sierra Nevada and Colorado River mountain ranges are the principal source of water for large urban and agricultural demands in the North American Southwest. In this region, GCM ensemble output suggests varying and modest precipitation changes, while air surface temperatures are expected to increase by several degrees by the end of the century. This study used the downscaled output of an ensemble of 16 GCMs and 2 emission scenarios to drive the SWAT watershed model, and to assess the impact of projected climatic changes on water availability and water quality through 2100. We then assess the changes in likelihood of occurrence of high (> 125%, > 150%) and low (< 75%, 150% of historic averages in high elevation regions and in main channels. The occurrence of extreme low flows are likely to significantly increase for the spring and summer seasons, with low flows of

  9. Summary of biological and contaminant investigations related to stream water quality and environmental setting in the Upper Colorado River basin, 1938-95

    Science.gov (United States)

    Deacon, Jeffrey R.; Stephens, Verlin C.

    1996-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program, an inventory of the biological and contaminant investigations for the Upper Colorado River Basin study unit was conducted. To enhance the sampling design for the biological component of the program, previous studies about the ecology of aquatic organisms and contaminants were compiled from computerized literature searches of biological data bases and by contacting other Federal, State, and local agencies. Biological and contaminant investigations that have been conducted throughout the basin since 1938 were categorized according to four general categories of biological investigations and two categories of contaminant investigations: algal communities, macroinvertebrate communities, fish communities, habitat characterization, contaminants in organism tissue, and contaminants in bed sediment. The studies were identified by their locations in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, and by the predominant land use in the area of the investigation. Studies on algal communities and contaminants in organism tissue and in bed sediment are limited throughout the basin. Studies on macroinvertebrate and fish communities and habitat characterization are the most abundant in the study unit. Natural and human factors can affect biological communities and their composition. Natural factors that affect background water-quality conditions are physiography, climate, geology, and soils. Algae, macroinvertebrates, and fish that are present in the Southern Rocky Mountains and the Colorado Plateau physiographic provinces vary with altitude and physical environment. Green algae and diatoms are predominant in the higher altitude streams, and blue-green, golden-brown, and green algae are predominant in the lower altitude streams. Caddisflies, mayflies, and stoneflies are the dominant macroinvertebrates in the higher altitudes, whereas aquatic worms, leeches

  10. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  11. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin

    Directory of Open Access Journals (Sweden)

    N. Christensen

    2006-12-01

    Full Text Available Implications of 21st century climate change on the hydrology and water resources of the Colorado River basin were assessed using a multimodel ensemble approach in which downscaled and bias corrected output from 11 General Circulation Models (GCMs was used to drive macroscale hydrology and water resources models. Downscaled climate scenarios (ensembles were used as forcings to the Variable Infiltration Capacity (VIC macroscale hydrology model, which in turn forced the Colorado River Reservoir Model (CRMM. Ensembles of downscaled precipitation and temperature, and derived streamflows and reservoir system performance were assessed through comparison with current climate simulations for the 1950–1999 historical period. For each of the 11 GCMs, two emissions scenarios (IPCC SRES A2 and B1, corresponding to relatively unconstrained growth in emissions, and elimination of global emissions increases by 2100 were represented. Results for the A2 and B1 climate scenarios were divided into period 1 (2010–2039, period 2 (2040–2069, and period 3 (2070–2099. The mean temperature change averaged over the 11 ensembles for the Colorado basin for the A2 emission scenario ranged from 1.2 to 4.4°C for periods 1–3, and for the B1 scenario from 1.3 to 2.7°C. Precipitation changes were modest, with ensemble mean changes ranging from −1 to −2 percent for the A2 scenario, and from +1 to −1 percent for the B1 scenario. An analysis of seasonal precipitation patterns showed that most GCMs had modest reductions in summer precipitation and increases in winter precipitation. Derived 1 April snow water equivalent declined for all ensemble members and time periods, with maximum (ensemble mean reductions of 38 percent for the A2 scenario in period 3. Runoff changes were mostly the result of a dominance of increased evapotranspiration over the seasonal precipitation shifts, with ensemble mean runoff reductions of −1, −6, and −11 percent for the A2 ensembles

  12. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    Science.gov (United States)

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  13. In-place oil shale resources in the saline-mineral and saline-leached intervals, Parachute Creek Member of the Green River Formation, Piceance Basin, Colorado

    Science.gov (United States)

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.

    2014-01-01

    A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.

  14. Selenium impacts on razorback sucker, Colorado River, Colorado: II. Eggs

    Science.gov (United States)

    Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.

    2005-01-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 ??g/g from Horsethief, 46 ??g/g from Adobe Creek, 38 ??g/g from North Pond, and 6.0 ??g/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  15. Selenium impacts on razorback sucker, Colorado River, Colorado II. Eggs.

    Science.gov (United States)

    Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A

    2005-05-01

    Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 microg/g from Horsethief, 46 microg/g from Adobe Creek, 38 microg/g from North Pond, and 6.0 microg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.

  16. Random versus fixed-site sampling when monitoring relative abundance of fishes in headwater streams of the upper Colorado River basin

    Science.gov (United States)

    Quist, M.C.; Gerow, K.G.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the upper Colorado River basin (UCRB) have declined in distribution and abundance due to habitat degradation and interactions with normative fishes. Consequently, monitoring populations of both native and nonnative fishes is important for conservation of native species. We used data collected from Muddy Creek, Wyoming (2003-2004), to compare sample size estimates using a random and a fixed-site sampling design to monitor changes in catch per unit effort (CPUE) of native bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, roundtail chub Gila robusta, and speckled dace Rhinichthys osculus, as well as nonnative creek chub Semotilus atromaculatus and white suckers C. commersonii. When one-pass backpack electrofishing was used, detection of 10% or 25% changes in CPUE (fish/100 m) at 60% statistical power required 50-1,000 randomly sampled reaches among species regardless of sampling design. However, use of a fixed-site sampling design with 25-50 reaches greatly enhanced the ability to detect changes in CPUE. The addition of seining did not appreciably reduce required effort. When detection of 25-50% changes in CPUE of native and nonnative fishes is acceptable, we recommend establishment of 25-50 fixed reaches sampled by one-pass electrofishing in Muddy Creek. Because Muddy Creek has habitat and fish assemblages characteristic of other headwater streams in the UCRB, our results are likely to apply to many other streams in the basin. ?? Copyright by the American Fisheries Society 2006.

  17. Colorado River Mile System, Tenths of Miles

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage contains points representing tenth of miles in the GCMRC river mile system. The points fall along the centerline of the Colorado River from Glen Canyon...

  18. Enhanced and updated spatially referenced statistical assessment of dissolved-solids load sources and transport in streams of the Upper Colorado River Basin

    Science.gov (United States)

    Miller, Matthew P.; Buto, Susan G.; Lambert, Patrick M.; Rumsey, Christine A.

    2017-03-07

    Approximately 6.4 million tons of dissolved solids are discharged from the Upper Colorado River Basin (UCRB) to the Lower Colorado River Basin each year. This results in substantial economic damages, and tens of millions of dollars are spent annually on salinity control projects designed to reduce salinity loads in surface waters of the UCRB. Dissolved solids in surface water and groundwater have been studied extensively over the past century, and these studies have contributed to a conceptual understanding of sources and transport of dissolved solids. This conceptual understanding was incorporated into a Spatially Referenced Regressions on Watershed Attributes (SPARROW) model to examine sources and transport of dissolved solids in the UCRB. The results of this model were published in 2009. The present report documents the methods and data used to develop an updated dissolved-solids SPARROW model for the UCRB, and incorporates data defining current basin attributes not available in the previous model, including delineation of irrigated lands by irrigation type (sprinkler or flood irrigation), and calibration data from additional monitoring sites.Dissolved-solids loads estimated for 312 monitoring sites were used to calibrate the SPARROW model, which predicted loads for each of 10,789 stream reaches in the UCRB. The calibrated model provided a good fit to the calibration data as evidenced by R2 and yield R2 values of 0.96 and 0.73, respectively, and a root-mean-square error of 0.47. The model included seven geologic sources that have estimated dissolved-solids yields ranging from approximately 1 to 45 tons per square mile (tons/mi2). Yields generated from irrigated agricultural lands are substantially greater than those from geologic sources, with sprinkler irrigated lands generating an average of approximately 150 tons/mi2 and flood irrigated lands generating between 770 and 2,300 tons/mi2 depending on underlying lithology. The coefficients estimated for six

  19. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    Science.gov (United States)

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL

  20. Community-based restoration of desert wetlands: the case of the Colorado River delta

    Science.gov (United States)

    Osvel Hinojosa-Huerta; Mark Briggs; Yamilett Carrillo-Guerroro; Edward P. Glenn; Miriam Lara-Flores; Martha Roman-Rodriguez

    2005-01-01

    Wetland areas have been drastically reduced through the Pacific Flyway and the Sonoran Desert, with severe consequences for avian populations. In the Colorado River delta, wetlands have been reduced by 80 percent due to water management practices in the Colorado River basin. However, excess flows and agricultural drainage water has restored some areas, providing...

  1. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    Science.gov (United States)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by

  2. Oil shale resources of the Uinta Basin, Utah and Colorado

    Science.gov (United States)

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  3. Ground-water resources of the South Platte River Basin in western Adams and southwestern Weld Counties, Colorado

    Science.gov (United States)

    Smith, Rex O.; Schneider, P.A.; Petri, Lester R.

    1964-01-01

    The area described in this report consists of about 970 square miles in western Adams and southwestern Weld Counties in northeastern Colorado. It includes that part of the South Platte River valley between Denver and Kuner, Colo., all of Beebe Draw, and the lower part of the valley of Box Elder Creek. The stream-valley lowlands are separated by rolling uplands. The climate is semiarid, the normal annual precipitation being about 13 inches; thus, irrigation is essential for stable agricultural development. The area contains about 220,000 acres of irrigated land in the stream valleys. Most of the remaining 400,000 acres of land is used for dry farming or grazing because it lacks irrigation water. Most of the lowlands were brought under irrigation with surface water during the early 1900's, and now nearly all the surface water in the area is appropriated for irrigation within and downstream from the area. Because the natural flow of the streams is sometimes less than the demand for water, ground water is used to supplement the surface-water supply. Wells, drilled chiefly since 1930, supply the supplemental water and in some places are the sole supply for irrigation use. Rocks exposed in the area are of sedimentary origin and range in age from Lato Cretaceous to Recent. Those that are consolidated, called 'bedrock' in this report, consist of the Fox Hills sandstone and the Laramie and Arapahoe formations, all of Late Cretaceous age, and the Denver formation and Dawson arkose of Late Cretaceous and Tertiary age. The surface of the bedrock was shaped by ancestral streams, the valleys of which are reflected by the present surface topography. Dune sand, slope wash, and thin upland deposits of Quaternary age mantle the bedrock in the divide areas, and stream deposits ranging in thickness from 0 to about 125 feet partly fill the ancestral valleys. The valley-fill deposits consist of beds and lenses of clay, silt, sand, gravel, cobbles, and boulders. Abundant supplies of

  4. The Three Colorado Rivers: Comparing the Physical, Legal, and Economic Allocation of a Shared River

    Science.gov (United States)

    Rushforth, R.; Ruddell, B. L.

    2015-12-01

    : For many rivers, the legal allocation of surface water was settled decades ago. The process of apportioning surface water between multiple stakeholders is an arduous process with opposing interests competing for scarce resources. The political capital spent initially allocating a river often cannot be regained, stymieing future attempts for re-allocation. The Colorado River Compact (Compact), signed in 1922, has been "the law of the river" for over 90 years. Since its signing, the Colorado River Basin (CRB) population has increased tenfold, while average river flows have decreased due to threats unforeseeable to Compact signers, such as global climate change. Water sharing agreements, like the Compact, legally re-allocate physical river flows; however, water is increasingly shared through trade rather than aqueducts. Virtual water, or the water embodied by a good or service, is a trade adaption to resource scarcity, namely water and land. This study presents findings of a virtual water complement to the Compact. The goal of this study is to determine how the legal allocation of physical water resources are re-allocated as virtual water via economic trade in a shared river basin. Results are presented by at the sub-basin, state, and county-level, showing the geographic origin and destination of virtual water from CRB states and the Upper and Lower basins. A water stress index is calculated to show the indirect water stress of Colorado River water resources and network statistics are employed to rank the importance of virtual water sources in the CRB.

  5. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    Science.gov (United States)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  6. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: a tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John E.; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-12-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2-10,000 years. Historical variability in discharge was assessed as the ratio of 10-90 % flow-exceedance ( R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  7. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: a tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John E.; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-07-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2-10,000 years. Historical variability in discharge was assessed as the ratio of 10-90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  8. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    Directory of Open Access Journals (Sweden)

    Bruce K. Wylie

    2010-07-01

    Full Text Available This study identifies areas with ecosystem performance anomalies (EPA within the Upper Colorado River Basin (UCRB during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming tended to have a higher (lower percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007 persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  9. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    Science.gov (United States)

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  10. Background Contaminants Evaluation of the Republican River Drainage- Colorado, Kansas, and Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Republican River Basin is a very large watershed in west-central Kansas, eastern Colorado, Wyoming and southern Nebraska. This study was conducted to determine...

  11. Experimental investigation of the effect of vegetation on soil, sediment erosion, and salt transport processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA.

    Science.gov (United States)

    Because of concerns about salinity in the Colorado River, this study focused on saline and sodic soils associated with the Mancos Shale formation with the objective of investigating mechanisms driving sediment yield and salinity loads and the role of vegetation in altering soil chemistry in the Pric...

  12. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  13. Real-time estimation of snow water equivalent in the Upper Colorado River Basin using MODIS-based SWE Reconstructions and SNOTEL data

    Science.gov (United States)

    Schneider, Dominik; Molotch, Noah P.

    2016-10-01

    Changes in climate necessitate improved snowpack information to better represent anomalous distributions of snow water equivalent (SWE) and improve water resource management. We estimate the spatial distribution of SWE for the Upper Colorado River basin weekly from January to June 2001-2012 in quasireal-time by two regression techniques: a baseline regression of in situ operationally measured point SWE using only physiographic information and regression of these in situ points combining both physiographic information and historical SWE patterns from a remote sensing-based SWE reconstruction model. We compare the baseline regression approach to our new regression in the context of spatial snow surveys and operational snow measuring stations. When compared to independent distributed snow surveys, the new regression reduces the bias of SWE estimates from -5.5% to 0.8%, and RMSE of the SWE estimates by 8% from 0.25 m to 0.23 m. Notable improvements were observed in alpine terrain with bias declining from -38% to only 3.4%, and RMSE was reduced by 13%, from 0.47 to 0.41 m. The mean increase in cross-validated r2 for the new regression compared to the baseline regression is from 0.22 to 0.33. The largest increase in r2 in any one year is 0.19, an 83% improvement. The new regression estimates, on average, 31% greater SWE depth than the baseline regression in areas above 3000 m elevation, which contributes up to 66% of annual SWE volume in the driest year. This indicates that the historical SWE patterns from the reconstruction adds information to the interpolation beyond the physiographic conditions represented by the SNOTEL network. Given that previous works using SWE reconstructions were limited to retrospective analyses by necessity, the work presented here represents an important contribution in that it extends SWE reconstructions to real-time applications and illustrates that doing so significantly improves the accuracy of SWE estimates.

  14. An Analysis of The Early Development and Protection of the Colorado River

    Institute of Scientific and Technical Information of China (English)

    Zhao Qian

    2009-01-01

    This thesis attempts an environmental analysis of the Colorado River in Southwest America.and examines the early issues of economic development and environmental protection on the Colorado River Basin from a historical perspective.The thesis first provides a brief description of the geography of the Colorado River,paying special attention to the early exploration of the Colorado River by Native Americans and later European colonizers as well as their different attitudes toward nature.Then the thesis looks at the forces of economic development and nature preservation in the progressive era against the arid setting of the Southwest.In the conclusion,the author demonstrates the importance and necessity of the environmental protection of the Colorado River in the beginning period of the America West.

  15. Multi-Target Calibration with a VIC Hydrologic Model: Impacts of Climate Change and Risk Assessment in the Colorado River Basin

    Science.gov (United States)

    Wi, S.; Isenstein, L.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Variable Infiltration Capacity (VIC) model is applied to the headwaters of the Arkansas River (Colorado Springs) in the USA for the purpose of water supply evaluation. Modeling the hydrologic regime of the Arkansas River is a challenge due to the large number of diversions and regulations that might impact the natural streamflow. Since the Arkansas River headwaters are snow-melt dominated, a snow cover dataset can provide additional information during the model calibration process. Remote sensing snow data have been successfully used in previous studies coupled with hydrologic modeling to improve calibration results. Using the daily snow data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and this study tests different calibration schemes to determine the most suitable calibration target(s) for the Colorado Springs. First, the VIC model is calibrated to streamflow and snow alone, and then a mutli-objective optimization is utilized to calibrate the model to streamflow and snow simultaneously. A well calibrated hydrologic model can be employed particularly for climate change assessments to inform decision makers about water availability and water supply under different climate conditions. This study will provide such information to Colorado Springs in which development in terms of water supply is expected to grow considerably; increases in demands are projected to be 28% higher than the present demands (approximately 102 billion gallons) by the year 2050.

  16. Mega drought in the Colorado River Basin, water supply, and adaptive scenario planning for the Phoenix Metropolitan Area; simulations using WaterSim 5.

    Science.gov (United States)

    Sampson, D. A.

    2015-12-01

    The Decision Center for a Desert City (DCDC), a boundary organization, bridges science and policy (to foster knowledge-based decision making); we study how decisions are made in the face of uncertainty. Our water policy and management model for the Phoenix Metropolitan Area (hereafter "Phoenix"), termed WaterSim, represents one such bridging mechanism. We evaluated the effect of varying the length of drought on water availability for Phoenix. We examined droughts (starting in 2000) lasting 15, 25, and 50 years. We picked a 60-year window of runoff estimates from the paleo reconstruction data for the Colorado River (CO) (1121 through 1180 A.D.), and the two local rivers (1391 through 1450 A.D.), and assumed that the proportional difference in median flow between these periods and the long-term record represented an estimate of potential drought reductions on river flows. This resulted in a 12%, and 19% reduction in flows for the CO River and the Salt-Verde (SV) Rivers, respectively. WaterSim uses 30-year trace periods from the historical flow records to simulate river flow for future projections. We used each 30-year trace from the historical record (1906 to present, CO River; 1945 to present SV Rivers) , and default settings, to simulate 60 year projections of Lake Mead elevation and the accompanying Colorado River water shortages to Phoenix. Overall, elevations for Lake Mead fell below the 1st shortage sharing tier (1075 ft) in 83% of the simulations; 74% of the simulations fell below the 2nd tier (1050 ft), and 64% fell below the 3rd (1025 ft). Length of drought, however, determined the shortage tiers met. Median elevations for droughts ending in 2015, 2025, and 2050 were 1036, 1019, and 967 feet msl, respectively. We present the plausible water futures with adaptive anticipatory scenario planning for the projected reductions in surface water availability to demonstrate decision points for water conservation measures to effectively manage shortage conditions.

  17. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L{sup −1}) to 4070 μg L{sup −1}, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO{sub 3} inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO{sub 3} application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential

  18. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    Science.gov (United States)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  19. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    Science.gov (United States)

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  20. Climate Variability: Adaptation Strategies for Colorado River Management

    Science.gov (United States)

    Fulp, T. J.; Prairie, J. R.

    2008-12-01

    The importance of the Colorado River system to the western United States and the Republic of Mexico is well documented. Much has been written recently in response to the lingering drought and increasing demands on the system. Questions such as "has the river run out of water?", "how low can it go?", and "will Lake Mead go dry?" express the concern that the river system will be hard-pressed to continue to meet future demands, particularly if droughts tend toward increased magnitudes and longer durations. Reservoirs on the main stream of the Colorado River are managed by the Bureau of Reclamation (Reclamation), on behalf of the Secretary of the U.S. Department of the Interior (Secretary). Over 80% of the 60 million acre-feet of storage capacity is contained in Lake Powell and Lake Mead, large reservoirs that are located in each of the sub-basins (Upper Basin and Lower Basin) defined in the 1922 Colorado River Compact. In response to the worst drought conditions in approximately one hundred years of recorded history and the lack of specific operational guidelines for operation of Lake Powell and Lake Mead for drought and low reservoir conditions, the Secretary adopted new operational guidelines in December 2007 that will be used for an interim period (through 2026). The Interim Guidelines were the result of an intense, three-year effort in accordance with the National Environmental Policy Act of 1969 (NEPA). Several alternative operational rules were compared with respect to future potential impacts to Colorado River resources, including lake levels, water delivery, hydropower production, water quality, recreation, and fish and wildlife and published in an Environmental Impact Statement (EIS). Due to the large uncertainty regarding future inflows into the system, particularly in a changing climate, these comparisons were presented in probabilistic terms in order to assess the risk of key events (e.g., the timing and magnitude of water shortages). Because it is

  1. Forecasting the Colorado River Discharge Using an Artificial Neural Network (ANN) Approach

    CERN Document Server

    Mehrkesh, Amirhossein

    2014-01-01

    Artificial Neural Network (ANN) based model is a computational approach commonly used for modeling the complex relationships between input and output parameters. Prediction of the flow rate of a river is a requisite for any successful water resource management and river basin planning. In the current survey, the effectiveness of an Artificial Neural Network was examined to predict the Colorado River discharge. In this modeling process, an ANN model was used to relate the discharge of the Colorado River to such parameters as the amount of precipitation, ambient temperature and snowpack level at a specific time of the year. The model was able to precisely study the impact of climatic parameters on the flow rate of the Colorado River.

  2. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    Science.gov (United States)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in

  3. Mahogany Ledge Digital Line Outcrop of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mahogany ledge outcrop was needed to limit resource calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale Assessment.

  4. Raton basin coalbed methane production picking up in Colorado

    Science.gov (United States)

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  5. Mineral Occurrence data for the Eocene Green River Formation in the Piceance and Uinta Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This legacy database lists occurrences of minerals identified in the Green River Formation in the Uinta and Piceance Basins, Utah and Colorado using X-ray...

  6. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for

  7. Availability and chemical quality of ground water in the Crystal River and Cattle Creek Drainage Basins near Glenwood Springs, west-central Colorado

    Science.gov (United States)

    Brogden, Robert E.; Giles, T.F.

    1976-01-01

    Parts of the Crystal River and cattle Creek drainage basins near Glenwood Springs, Colo., have undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in the two drainage basins include: alluvium, basalts, the Mesa Verde Formation, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Maroon Formation, Eagle Valley Evaporite, and undifferentiated formations. Except for aquifers in the alluvium, and basalt, well yields are generally low and are less than 25 gallons per minute. Well yields form aquifers in the alluvium and basalt can be as much as several hundred gallons per minute. Water quality is dependent of rock type. Calcium bicarbonate is the predominant type of water in the study area. However, calcium sulfate type water may be found in aquifers in the Eagle Valley Evaporite and in the alluvium where the alluvial material has been derived from the Eagle Valley Evaporite. Concentrations of selenium in excess of U.S. Public Health Service standards for drinking water can be found locally in aquifers in the Eagle Valley Evaporite. (Woodard-USGS)

  8. Reconnaissance of ground-water resources in a part of the Yampa River basin between Craig and Steamboat Springs, Moffat and Routt counties, Colorado

    Science.gov (United States)

    Brogden, R.E.; Giles, T.F.

    1977-01-01

    Parts of the Yampa River basin near the towns of Steamboat Springs and Craig, Colo., have undergone rapid population growth in recent years. Aquifers in the study area include: alluvium; the Browns Park, Wasatch, Fort Union, Lance, Williams Fork, and Iles Formations; and the Lewis and Mancos Shales. Well yields are generally less than 25 gpm (gallons per minute). In the alluvium of the Yampa River, well yields may be as much as 900 gpm. Where the sandstones of the Williams Fork and Iles Formations are fractured, well yields have been reported to be as much as 100 gpm. Well yields from the Lewis and Mancos Shales are less than 5 gpm. The quality of the ground water is variable and dependent on rock type. Most of the waters are calcium and sodium bicarbonate types. Calcium sulfate type waters are found where water in the aquifer has been in contact with gypsum, organic materials, or coals. Dissolved-solids concentrations of ground water range from as little as 82 to as much as 4,230 milligrams per liter. (Woodard-USGS)

  9. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  10. Simulating the potential effects of climate change in two Colorado basins and at two Colorado ski areas

    Science.gov (United States)

    Battaglin, W.; Hay, L.; Markstrom, S.

    2011-01-01

    The mountainous areas of Colorado are used for tourism and recreation, and they provide water storage and supply for municipalities, industries, and agriculture. Recent studies suggest that water supply and tourist industries such as skiing are at risk from climate change. In this study, a distributed-parameter watershed model, the Precipitation-Runoff Modeling System (PRMS), is used to identify the potential effects of future climate on hydrologic conditions for two Colorado basins, the East River at Almont and the Yampa River at Steamboat Springs, and at the subbasin scale for two ski areas within those basins. Climate-change input files for PRMS were generated by modifying daily PRMS precipitation and temperature inputs with mean monthly climate-change fields of precipitation and temperature derived from five general circulation model (GCM) simulations using one current and three future carbon emission scenarios. All GCM simulations of mean daily minimum and maximum air temperature for the East and Yampa River basins indicate a relatively steady increase of up to several degrees Celsius from baseline conditions by 2094. GCM simulations of precipitation in the two basins indicate little change or trend in precipitation, but there is a large range associated with these projections. PRMS projections of basin mean daily streamflow vary by scenario but indicate a central tendency toward slight decreases, with a large range associated with these projections. Decreases in water content or changes in the spatial extent of snowpack in the East and Yampa River basins are important because of potential adverse effects on water supply and recreational activities. PRMS projections of each future scenario indicate a central tendency for decreases in basin mean snow-covered area and snowpack water equivalent, with the range in the projected decreases increasing with time. However, when examined on a monthly basis, the projected decreases are most dramatic during fall and

  11. Crustal structure across the Colorado Basin, offshore Argentina

    Science.gov (United States)

    Franke, Dieter; Neben, Soenke; Schreckenberger, Bernd; Schulze, Albrecht; Stiller, Manfred; Krawczyk, Charlotte M.

    2006-06-01

    The geology of the wide shelves surrounding the South Atlantic is closely linked to the kinematics and history of the opening of the ocean. However, several wide sedimentary basins, which developed along the margins show peculiarities that are not yet understood in the context of the evolution of the South Atlantic. The Colorado Basin, a wide sedimentary basin on the broad shelf of Argentina, extends in EW direction. The basin's evolution oblique or orthogonal to the continent-ocean boundary indicates that it is not a product of simple progressive extension and crustal thinning. In addition a basement high, paralleling the continental margin and separating the Colorado Basin from the deep-sea basin is a common interpretation. These findings are hardly in accordance with the idea that the Colorado Basin is an extensional basin that developed in conjunction with the early E-W opening phase of the South Atlantic in the Late Jurassic/Early Cretaceous. The composition, type, and structure of the basement, key points for the evaluation of the basins evolution, are widely speculative. In this context multichannel seismic reflection data from the Argentine Shelf and a 665-km-long onshore-offshore refraction profile, running across the Colorado Basin onto the coast are discussed in combination with gravity data. The stratigraphy for the sedimentary successions was adopted from the literature and the reflection seismic marker horizons formed besides the interval velocities the input for the starting model for refraction seismic traveltime modelling. The modelling strategy was an iterative procedure between refraction seismic traveltime and gravity modelling. The preparation of the density models was coarsely orientated on published velocity-density relations. The modelling results are in favour of a continuation of the main onshore geological features beneath the sedimentary infill of the Colorado Basin. We interpret the basement along the line from west to east as offshore

  12. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  13. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  14. Corbiculae fluminea as a bioindicator on the Lower Colorado River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Tissue samples from Asiatic clam (Corbimla fluminea) from the lower Colorado River were analyzed for trace element concentrations. Selenium and arsenic were elevated...

  15. The twenty-first century Colorado River hot drought and implications for the future

    Science.gov (United States)

    Udall, Bradley; Overpeck, Jonathan

    2017-03-01

    Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.Plain Language SummaryBetween 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change

  16. Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-10-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951-2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970-2000, with much greater variability seen for results using observed climate data.

  17. Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-03-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951-2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970-2000, with much greater variability seen for results using observed climate data.

  18. Chronology of Miocene Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, Rebecca J.; Fluette, Amy; McDougall, Kristin; Housen, Bernard A.; Janecke, Susanne U.; Axen, Gary J.; Shirvell, Catherine R.

    2007-01-01

    Late Miocene to early Pliocene deposits at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ± 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River.

  19. Ecological River Basin Management.

    Science.gov (United States)

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  20. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  1. Land Disturbance Associated with Oil and Gas Development and Effects of Development-Related Land Disturbance on Dissolved-Solids Loads in Streams in the Upper Colorado River Basin, 1991, 2007, and 2025

    Science.gov (United States)

    Buto, Susan G.; Kenney, Terry A.; Gerner, Steven J.

    2010-01-01

    Oil and gas resource development in the Upper Colorado River Basin (UCRB) has increased substantially since the year 2000. The UCRB encompasses several significant oil and gas producing areas that have the potential for continued oil and gas resource development. Land disturbance associated with oil and gas resource development is caused by activities related to constructing drill pads to contain drilling and well maintenance equipment and roads to access the drill pad. Land disturbed by oil and gas development has the potential to cause increased erosion, stream degradation, habitat fragmentation and alteration, and increase public use of areas that may be environmentally sensitive. Land disturbance resulting from oil and gas resource development has not been monitored and mapped on a regional scale in the UCRB. However, information on the location and age of oil and gas wells in the UCRB is available. These data combined with geographic data analysis and modeling techniques were used to estimate the total area of disturbed land associated with oil and gas resource development in 1991 and in 2007 in the UCRB. Additional information about anticipated oil and gas development in the UCRB was used to project land disturbance to the year 2025. Results of the analysis indicate that approximately 117,500 acres (183 mi2) of total land disturbance was associated with drill pads and related roads in the UCRB in 1991. The estimated area of disturbed land associated with oil and gas development increased 53 percent to 179,400 acres (280 mi2) in 2007. Projecting oil and gas development through 2025 results in a potential near doubling of the land surface disturbance to approximately 319,300 acres (500 mi2). Estimated land disturbance for 1991 and 2007 were input to a contaminant transport model developed for the UCRB to assess the statistical significance of energy-related land disturbance to contributing dissolved solids to basin streams. The statistical assessment was an

  2. Conservation planning for the Colorado River in Utah

    Science.gov (United States)

    Christine Rasmussen,; Shafroth, Patrick B.

    2016-01-01

    Strategic planning is increasingly recognized as necessary for providing the greatest possible conservation benefits for restoration efforts. Rigorous, science-based resource assessment, combined with acknowledgement of broader basin trends, provides a solid foundation for determining effective projects. It is equally important that methods used to prioritize conservation investments are simple and practical enough that they can be implemented in a timely manner and by a variety of resource managers. With the help of local and regional natural resource professionals, we have developed a broad-scale, spatially-explicit assessment of 146 miles (~20,000 acres) of the Colorado River mainstem in Grand and San Juan Counties, Utah that will function as the basis for a systematic, practical approach to conservation planning and riparian restoration prioritization. For the assessment we have: 1) acquired, modified or created spatial datasets of Colorado River bottomland conditions; 2) synthesized those datasets into habitat suitability models and estimates of natural recovery potential, fire risk and relative cost; 3) investigated and described dominant ecosystem trends and human uses, and; 4) suggested site selection and prioritization approaches. Partner organizations (The Nature Conservancy, National Park Service, Bureau of Land Management and Utah Forestry Fire and State Lands) are using the assessment and datasets to identify and prioritize a suite of restoration actions to increase ecosystem resilience and improve habitat for bottomland species. Primary datasets include maps of bottomland cover types, bottomland extent, maps of areas inundated during high and low flow events, as well as locations of campgrounds, roads, fires, invasive vegetation treatment areas and other features. Assessment of conditions and trends in the project area entailed: 1) assemblage of existing data on geology, changes in stream flow, and predictions of future conditions; 2) identification

  3. Colorado River Wildlife Management Area (Green River Easements) [Land Status Map: Sheet 1 of 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map was produced by the Division of Realty to depict landownership at Colorado River Wildlife Management Area. It was generated from rectified aerial...

  4. Response of Colorado river runoff to dust radiative forcing in snow

    Science.gov (United States)

    Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.

    2010-01-01

    The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.

  5. 76 FR 77549 - Colorado River Indian Tribes-Amendment to Health & Safety Code, Article 2. Liquor

    Science.gov (United States)

    2011-12-13

    ... Bureau of Indian Affairs Colorado River Indian Tribes--Amendment to Health & Safety Code, Article 2... amendment to the Colorado River Tribal Health and Safety Code, Article 2. Liquor, Section 2-403(12). The... liquor ordinances for the purpose of regulating liquor transactions in Indian country. The Colorado...

  6. Beyond Colorado's Front Range - A new look at Laramide basin subsidence, sedimentation, and deformation in north-central Colorado

    Science.gov (United States)

    Cole, James C.; Trexler, James H.; Cashman, Patricia H.; Miller, Ian M.; Shroba, Ralph R.; Cosca, Michael A.; Workman, Jeremiah B.

    2010-01-01

    This field trip highlights recent research into the Laramide uplift, erosion, and sedimentation on the western side of the northern Colorado Front Range. The Laramide history of the North Park?Middle Park basin (designated the Colorado Headwaters Basin in this paper) is distinctly different from that of the Denver basin on the eastern flank of the range. The Denver basin stratigraphy records the transition from Late Cretaceous marine shale to recessional shoreline sandstones to continental, fluvial, marsh, and coal mires environments, followed by orogenic sediments that span the K-T boundary. Upper Cretaceous and Paleogene strata in the Denver basin consist of two mega-fan complexes that are separated by a 9 million-year interval of erosion/non-deposition between about 63 and 54 Ma. In contrast, the marine shale unit on the western flank of the Front Range was deeply eroded over most of the area of the Colorado Headwaters Basin (approximately one km removed) prior to any orogenic sediment accumulation. New 40Ar-39Ar ages indicate the oldest sediments on the western flank of the Front Range were as young as about 61 Ma. They comprise the Windy Gap Volcanic Member of the Middle Park Formation, which consists of coarse, immature volcanic conglomerates derived from nearby alkalic-mafic volcanic edifices that were forming at about 65?61 Ma. Clasts of Proterozoic granite, pegmatite, and gneiss (eroded from the uplifted core of the Front Range) seem to arrive in the Colorado Headwaters Basin at different times in different places, but they become dominant in arkosic sandstones and conglomerates about one km above the base of the Colorado Headwaters Basin section. Paleocurrent trends suggest the southern end of the Colorado Headwaters Basin was structurally closed because all fluvial deposits show a northward component of transport. Lacustrine depositional environments are indicated by various sedimentological features in several sections within the >3 km of sediment

  7. Nearshore thermal gradients of the Colorado River near the Little Colorado River confluence, Grand Canyon National Park, Arizona, 2010

    Science.gov (United States)

    Ross, Rob; Grams, Paul E.

    2013-01-01

    Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.

  8. Radiocarbon Depression in Aquatic Foodwebs of the Colorado River, USA: Coupling Between Carbonate Weathering and the Biosphere

    Science.gov (United States)

    Sickman, J. O.; Huang, W.; Lucero, D.; Anderson, M.

    2012-12-01

    The 14C isotopic composition of living organisms is generally considered to be in isotopic equilibrium with atmosphere CO2. During the course of investigations of aquatic foodwebs of the Colorado River, we measured substantial radiocarbon depression of organisms within planktonic and benthic foodwebs of Copper Basin Reservoir, a short residence-time water body at the intake to the Colorado River Aqueduct. All trophic levels had depressed radiocarbon content with inferred "age" of ca. 1,200 radiocarbon years (range: 0.85 to 0.87 fraction modern carbon (fmc)). Additional measurements of the radiocarbon content of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were made in other major rivers in California (New (near Salton Sea), Santa Ana (near Riverside), San Joaquin (near Fresno) and Salinas (near San Luis Obispo)). In the New River (which is composed primarily of irrigation tailwater derived from the Colorado River), the radiocarbon values for DIC closely matched those found in biota of the Copper Basin Reservoir (0.85 to 0.87 fmc), but radiocarbon values for DOC were slightly higher (0.91 to 0.95 fmc). In the other California rivers, radiocarbon concentrations in DIC were generally below modern and lower than corresponding levels in DOC; in the case of the Santa Ana River, DOC was older than DIC as a result of wastewater inputs from upstream treatment plants. Together these data suggest that the carbonate equilibrium of California rivers is influenced by weathering of carbonate minerals which produces HCO3- with no 14C. We hypothesize that this dead carbon can move into aquatic foodwebs via algae and phytoplankton uptake during photosynthesis, depressing the 14C content of aquatic foodwebs below that of the atmosphere. Based on a simple two-component mixing model incorporating carbonate weathering and atmospheric CO2, we estimate that 15-17% of the carbon in the aquatic foodweb of Copper Basin is derived directly from mineral weathering of

  9. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  10. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  11. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  12. How integrated is river basin management?

    Science.gov (United States)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  13. It takes more than water: Restoring the Colorado River Delta

    Science.gov (United States)

    Pitt, Jennifer; Kendy, Eloise; Schlatter, Karen; Hinojosa-Huertaf, Osvel; Flessa, Karl W.; Shafroth, Patrick B.; Ramirez-Hernandez, Jorge; Nagler, Pamela L.; Glenn, Edward P.

    2017-01-01

    Environmental flows have become important tools for restoring rivers and associated riparian ecosystems (Arthington, 2012; Glenn et al., 2017). In March 2014, the United States and Mexico initiated a bold effort in restoration, delivering from Morelos Dam a “pulse flow” of water into the Colorado River in its delta for the purpose of learning about its environmental effects (Flessa et al., 2013; Bark et al., 2016). Specifically, scientists evaluated whether the pulse flow, albeit miniscule compared to historical floods, could provide the ecological functions needed to establish native, flood-dependent vegetation to restore natural habitat along the riparian corridor.

  14. An ecosystem services framework for multidisciplinary research in the Colorado River headwaters

    Science.gov (United States)

    Semmens, D.J.; Briggs, J.S.; Martin, D.A.

    2009-01-01

    A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can

  15. Hydrogeological modeling of water exchange between a river valley aquifer and the Colorado River at a riparian corridor of the Colorado River Delta

    Science.gov (United States)

    Perez-Gonzalez, D.; Ramirez-Hernandez, J.; Zamora, F.

    2008-05-01

    The Colorado River Delta has shown a high capacity of regeneration in spite of the drastic reduction of the freshwater flows. This river has an important ecological value for the remaining ecosystems at the regional and continental level. It is not known when this river will present again surpluses of superficial water in the basin, as it happened in the decades of 1980 and 1990. The ecosystems of the Delta depend on the availability of groundwater to survive. The practices of blanket irrigation in the Valley of Mexicali have favored the vertical refill of the aquifer. Part of this water that infiltrates the ground is captured by the Colorado River (CR). As a consequence, even in years in which the CR has not received surpluses of superficial water low flow can be observed in the river, especially in the area of our study that comprises 12 km of the CR between the interception of the railroad with the river and the entrance to Carranza City. This low flow provides water to maintain the riparian vegetation of the zone. For this reason, it is important to know the hydrologic relationship between the river aquifer and the CR. The purpose of this work is to determine the volumes of water supplied by the aquifer to the riparian system and its relationship with the vegetation. Measurements of the fluctuations of the freatic level (FL) in 27 boreholes located in 8 cross sections during more than 2 years have been used for this study. The system was modelled using the program MODFLOW considering diverse water levels in the CR and flow exchange with the aquifer. The hydrogeological properties of the aquifer were found from slug tests and correlations with the textures of 100 soil samples. The modeling results allow to separate the zone of study in three sections. The first one extends 5km from the railroad to the south. In this section the CR receives water from the aquifer producing the observed water in the river bed all the year. The second section, of approximately 2 km

  16. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  17. RESULTADOS PRELIMINARES DEL SITIO ZOKO ANDI 1. APORTES PARA LA ARQUEOLOGÍA DEL CURSO INFERIOR DEL RÍO COLORADO (PROVINCIA DE BUENOS AIRES / Preliminary results of Zoko Andi 1 site. Contributions to the archaeology of the lower basin of the Colorado River

    Directory of Open Access Journals (Sweden)

    Gustavo Martinez

    2014-11-01

    Full Text Available El objetivo de este trabajo es presentar la cronología y las principales tendencias de los análisis geoarqueológicos, zooarqueológicos, de la tecnología lítica y de los entierros humanos recuperados en el sitio arqueológico Zoko Andi 1 (Pdo. de Patagones. Éste se localiza en una duna, sobre la margen derecha del curso inferior del río Colorado. Se obtuvieron nueve fechados radiocarbónicos provenientes de especímenes faunísticos, restos óseos humanos y carbón que ubican la cronología del sitio entre ca. 1500-400 años AP. Las dataciones obtenidas, en conjunción con los aspectos estratigráficos identificados, indican la existencia de al menos dos lapsos de ocupación. El primero de ellos se ubica en torno a los ca. 1500-1300 años AP (Holoceno tardío inicial, mientras que el otro se localiza en ca. 800-400 años AP (Holoceno tardío final. En este sentido, se trata del primer sitio del área en cuya secuencia se distinguen dos componentes que se corresponden con los dos bloques temporales del Holoceno tardío. Los resultados obtenidos hasta el momento en las distintas líneas de análisis se ajustan parcialmente a las tendencias propuestas en los modelos formulados para el área y son brevemente discutidas en este trabajo.   Palabras clave: transición pampeano-patagónica oriental; Holoceno tardío; geoarqueología; tecnología lítica; subsistencia; prácticas mortuorias.   Abstract The objective of this paper is to present the chronology and the main trends obtained from the results of geoarchaeology, zooarchaeology, lithics and human burials of Zoko Andi 1 archaeological site (Patagones district, Buenos Aires province. The site is located in a dune, on the right bank of the lower basin of the Colorado River. Nine radiocarbon dates from faunal remains, human bones and charcoal place the chronology of the site at ca. 1500-400 years BP. The chronology obtained in conjunction with stratigraphic aspects of the site indicates the

  18. Neural network approach to stream-aquifer modeling for improved river basin management

    Science.gov (United States)

    Triana, Enrique; Labadie, John W.; Gates, Timothy K.; Anderson, Charles W.

    2010-09-01

    SummaryArtificial neural networks (ANNs) are applied to efficient modeling of stream-aquifer responses in an intensively irrigated river basin under a variety of water management alternatives for improving irrigation efficiency, reducing soil water salinity, increasing crop yields, controlling nonbeneficial consumptive use, and decreasing salt loadings to the river. Two ANNs for the main stem river and the tributary regime are trained and tested using solution datasets from a high resolution, finite difference MODFLOW-MT3DMS groundwater flow and contaminant transport model of a representative subregion within the river basin. Stream-aquifer modeling in the subregion is supported by a dense field data collection network with the ultimate goal of extending knowledge gained from the subregion modeling to the sparsely monitored remainder of the river basin where data insufficiency precludes application of MODFLOW-MT3DMS at the desired spatial resolution. The trained and tested ANNs capture the MODFLOW-MT3DMS modeled subregion stream-aquifer responses to system stresses using geographic information system (GIS) processed explanatory variables correlated with irrigation return flow quantity and quality for basin-wide application. The methodology is applied to the Lower Arkansas River basin in Colorado by training and testing ANNs derived from a MODFLOW-MT3DMS modeled subregion of the Lower Arkansas River basin in Colorado, which includes detailed unsaturated and saturated zone modeling and calibration to the extensive field data monitoring network in the subregion. Testing and validation of the trained ANNs shows good performance in predicting return flow quantities and salinity concentrations. The ANNs are linked with the GeoMODSIM river basin network flow model for basin-wide evaluation of water management alternatives.

  19. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  20. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  1. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  2. TIN Dataset Model of Overburden Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany Zone was needed to perform calculations in the Piceance Basin, Colorado as part of a 2009...

  3. TIN Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009 National...

  4. Reporting Polygons to Summarize Overburden Material Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Reporting polygons were created to display and quantify overburden material above the Mahogany Zone, by PLSS section, in the Piceance Basin, Colorado as part of a...

  5. Raster Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  6. Mahogany Ledge Digital Structure Contour Lines of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mahogany ledge structure contour lines were needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale...

  7. Raster Dataset Model of Overburden Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the overburden material above the Mahogany Zone was needed to perform calculations in the Piceance Basin, Colorado as part of a...

  8. Raster Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of...

  9. Raster Dataset Model of Nahcolite Resources in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ESRI GRID raster datasets were created to display and quantify nahcolite resources for eight oil shale zones in the Piceance Basin, Colorado as part of a 2009...

  10. TIN Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  11. The Base of the Parachute Creek Member Digital Line Outcrop of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The base of the Parachute Creek Member outcrop was needed to limit resource calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale...

  12. TIN Dataset Model of the Mahogany Zone Structure in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the Mahogany Zone structure was needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009 National Oil...

  13. Raster Dataset Model of the Mahogany Zone Structure in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the Mahogany Zone structure was needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009...

  14. [Draft] Environmental Impact Statement : San Luis Valley Project : Colorado Closed Basin Division

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Closed Basin Division, San Luis Valley Project, Alamosa and Saguache Counties, Colorado, is a multi-purpose water resource plan designated to salvage and deliver...

  15. Water scarcity in the Jordan River basin.

    Science.gov (United States)

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region.

  16. 76 FR 6819 - Agency Information Collection Activities: Proposed Information Collection; Colorado River...

    Science.gov (United States)

    2011-02-08

    ... River Valuation Survey AGENCY: National Park Service. ACTION: Notice; request for comments. SUMMARY: We..., health, and safety. Other federal rules (National Environmental Policy Act, 1969 and NPS guidelines...: Colorado River Valuation Survey. Type of Request: New. Affected Public: General public;...

  17. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  18. 78 FR 58344 - Proposed Information Collection: Colorado River Total Value Survey

    Science.gov (United States)

    2013-09-23

    ... National Park Service Proposed Information Collection: Colorado River Total Value Survey AGENCY: National... Colorado River riparian resource, and on alternative flow release scenarios from Glen Canyon Dam designed to protect canyon flora and fauna. The final survey will provide information for the...

  19. 78 FR 66267 - Safety Zone; HITS Triathlon Series; Colorado River; Lake Havasu, AZ

    Science.gov (United States)

    2013-11-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; HITS Triathlon Series; Colorado River; Lake... establishing a safety zone upon the navigable waters of the Colorado River in support of the HITS Triathlon.... is sponsoring the HITS Triathlon Series, which will involve 1,200 swimmers transiting North...

  20. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  1. Stratigraphy and petroleum potential of Trout Creek and Twentymile sandstones (Upper Cretaceous), Sand Wash Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Siepman, B.R.

    1985-05-01

    The Trout Creek and Twentymile Sandstones (Mesaverde Group) in Moffat and Routt Counties, Colorado, are thick, upward-coarsening sequences that were deposited along the western margin of the Western Interior basin during Campanian time. These units trend northeast-southwest and undergo a facies change to coal-bearing strata on the northwest. Surface data collected along the southeastern rim of the Sand Wash basin were combined with well-log data from approximately 100 drill holes that have penetrated the Trout Creek or Twentymile in the subsurface. The sandstones exhibit distinctive vertical profiles with regard to grain size, sedimentary structures, and biogenic structures. A depositional model that incorporates the key elements of the modern Nile River (northeast Africa) and Nayarit (west-central Mexico) coastal systems is proposed for the Trout Creek and Twentymile sandstones and associated strata. The model depicts a wave-dominated deltaic, strand-plain, and barrier-island system. Depositional cycles are asymmetrical in cross section as they are largely progradational and lack significant transgressive deposits. Source rock-reservoir rock relationships are ideal as marine shales underlie, and coal-bearing strata overlie sheetlike reservoir sandstones. Humic coal, the dominant source of Mesaverde gas, generates major quantities of methane upon reaching thermal maturity. Existing Mesaverde gas fields are largely structural traps, but stratigraphic and combination traps may prove to be equally important. The sparsely drilled deeper part of the basin warrants testing as large, overpressured-gas accumulations in tight-sandstone reservoirs are likely to be found.

  2. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Daesslé, L.W., E-mail: walter@uabc.edu.mx [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Geldern, R. van [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany); Orozco-Durán, A. [Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, CarreteraTranspeninsular Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, CP 22860 Ensenada, Baja California (Mexico); Barth, J.A.C. [Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Department of Geography and Geosciences, GeoZentrum Nordbayern, Schlossgarten 5, 91054 Erlangen (Germany)

    2016-01-15

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132 × 10{sup 6} m{sup 3} were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. - Highlights: • Isotope ratios of oxygen and hydrogen quantify water lost through evaporation. • Evaporation losses between 16.1 and 17.3% during the 2014 Colorado River • Larger water volumes are required to influence the estuary ecosystem.

  3. Dating of Pliocene Colorado River sediments: Implications for cosmogenic burial dating and the evolution of the lower Colorado River

    Science.gov (United States)

    Howard, Keith A.; Matmon, Ari; Stock, Greg M.; Granger, Darryl E.

    2017-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma.Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the

  4. Dating of Pliocene Colorado River sediments: implications for cosmogenic burial dating and the evolution of the lower Colorado River

    Science.gov (United States)

    Matmon, Ari; Stock, Greg M.; Granger, Darryl E.; Howard, Keith A.

    2011-01-01

    We applied cosmogenic 26Al/10Be burial dating to sedimentary deposits of the ancestral Colorado River. We compared cosmogenic burial ages of sediments to the age of an independently well-dated overlying basalt flow at one site, and also applied cosmogenic burial dating to sediments with less precise independent age constraints. All dated gravels yielded old ages that suggest several episodes of sediment burial over the past ∼5.3 m.y. Comparison of burial ages to the overlying 4.4 Ma basalt yielded good agreement and suggests that under the most favorable conditions, cosmogenic burial dating can extend back 4–5 m.y. In contrast, results from other sites with more broadly independent age constraints highlight the complexities inherent in burial dating; these complexities arise from unknown and complicated burial histories, insufficient shielding, postburial production of cosmogenic isotopes by muons, and unknown initial 26Al/10Be ratios. Nevertheless, and in spite of the large range of burial ages and large uncertainties, we identify samples that provide reasonable burial age constraints on the depositional history of sediment along the lower ancestral Colorado River. These samples suggest possible sediment deposition and burial at ca. 5.3, 4.7, and 3.6 Ma. Our calculated basinwide erosion rate for sediment transported by the modern Colorado River (∼187 mm k.y.−1) is higher than the modern erosion rates inferred from the historic sediment load (80–100 mm k.y.−1). In contrast, basinwide paleo-erosion rates calculated from Pliocene sediments are all under 40 mm k.y.−1 The comparatively lower denudation rates calculated for the Pliocene sediment samples are surprising given that the sampled time intervals include significant Pliocene aggradation and may include much incision of the Grand Canyon and its tributaries. This conflict may arise from extensive storage of sediment along the route of the Colorado River, slower paleobedrock erosion, or the inclusion

  5. Late Neogene exhumation of the Piceance basin, N.W. Colorado, USA: Integrated analysis of multiple thermochronometers and subsidence modeling

    Science.gov (United States)

    Vernon, A. J.; Kendall, J. J.; Becker, T. P.; Patterson, P. E.; Reiners, P. W.; Kapp, J.

    2010-12-01

    The retrograde history of sedimentary basins is often poorly constrained by the study of subsidence, compaction, and thermal diffusion models. As part of industry/academic collaborative research on the fundamental processes active in convergent tectonics we combined multiple paleothermometers, paleobarometers, and thermochronometers on deep borehole samples with modern heat flow measurements to provide powerful constraint for estimating the exhumation history in an area. The Piceance basin (N.W. Colorado) lies east of the leading edge of the Cretaceous to early Eocene Sevier thrust belt, and is flanked by several basement-involved structures (Douglas Creek arch, White River dome, Uinta uplift, White River uplift) that exhibit growth from the Maastrichtian through the late Eocene. The youngest preserved strata within the Piceance basin are within the early Oligocene Uinta Formation, although there are deposits as young as Miocene locally preserved in the region that may have also capped the basin. The timing of uplift, river incision, and plateau-scale exhumation within this region fits into the larger context of the evolution of the Colorado River drainage system. A series of core, cutting, and surface samples were compiled to develop a synthetic well (or vertical section) of over 5000 m. Samples were collected from stratigraphic intervals ranging from the Jurassic to the Eocene and analyzed for apatite and zircon U-Th/He ages, as well as apatite fission track length distributions and ages. As the exhumation model was the unconstrained parameter, the timing and magnitude of the cooling associated with such an event was systematically varied. Thermal histories of each sampled interval were extracted from differing exhumation scenarios in the Piceance basin model (which tracks the temperature and pressure evolution during burial and denudation) and forward modeled using HeFTy. The combined use of several thermochronometers (apatite and zircon U-Th/He, apatite fission

  6. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries

    Science.gov (United States)

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Echols, K.R.; Gross, T.S.; May, T.W.; Anderson, P.J.; Coyle, J.J.; Tillitt, D.E.

    2007-01-01

    Common carp (Cyprinus carpio), black bass (Micropterus spp.), and channel catfish (Ictalurus punctatus) were collected from 14 sites in the Colorado River Basin (CRB) to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8-tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Selenium (Se) and mercury (Hg) concentrations in fish were elevated throughout the CRB, and pesticide concentrations were greatest in fish from agricultural areas in the Lower Colorado River and Gila River. Selenium concentrations exceeded toxicity thresholds for fish (> 1.0????g/g ww) at all CRB sites except the Gila River at Hayden, Arizona. Mercury concentrations were elevated (> 0.1????g/g ww) in fish from the Yampa River at Lay, Colorado; the Green River at Ouray National Wildlife Refuge (NWR), Utah and San Rafael, Utah; the San Juan River at Hogback Diversion, New Mexico; and the Colorado River at Gold Bar Canyon, Utah, Needles, California, and Imperial Dam, Arizona. Concentrations of p,p???-DDE were relatively high in fish from the Gila River at Arlington, Arizona (> 1.0????g/g ww) and Phoenix, Arizona (> 0.5????g/g ww). Concentrations of other formerly used pesticides including toxaphene, total chlordanes, and dieldrin were also greatest at these two sites but did not exceed toxicity thresholds. Currently used pesticides such as Dacthal, endosulfan, ??-HCH, and methoxychlor were also greatest in fish from the Gila River downstream of Phoenix. Total polychlorinated biphenyls (PCBs; > 0.11????g/g ww) and TCDD-EQs (> 5??pg/g ww) exceeded wildlife guidelines in fish from the Gila River at Phoenix. Hepatic ethoxyresorufin O-deethylase (EROD) activity was also relatively high in carp from the Gila River at Phoenix and in bass from the Green River at Ouray NWR. Fish from some sites showed

  7. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  8. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  9. Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management

    Science.gov (United States)

    Smith, Jansen A.; Auerbach, Daniel A.; Flessa, Karl W.; Flecker, Alexander S.; Dietl, Gregory P.

    2016-09-01

    Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50-125 individuals m-2 in the pre-dam era to three individuals m-2 today, have likely resulted in a reduction, on the order of 5900-15 000 t C yr-1 (4.1-10.6 mol C m-2 yr-1), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.

  10. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation.

    Science.gov (United States)

    Daesslé, L W; van Geldern, R; Orozco-Durán, A; Barth, J A C

    2016-01-15

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132×10(6) m(3) were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area.

  11. An evaluation of the evolution of the latest miocene to earliest pliocene bouse lake system in the lower Colorado river valley, southwestern USA

    Science.gov (United States)

    Spencer, J.E.; Pearthree, P.A.; House, P.K.

    2008-01-01

    The upper Miocene to lower Pliocene Bouse Formation in the lower Colorado River trough of the American Southwest was deposited in three basins - from north to south, the Mohave, Havasu, and Blythe Basins - that were formed by extensional fault ing in the early to middle Miocene. Fossils of marine, brackish, and freshwater organ isms in the Bouse Formation have been interpreted to indicate an estuarine environment associated with early opening of the nearby Gulf of California. Regional uplift since 5 Ma is required to position the estuarine Bouse Formation at present elevations as high as 555 m, where greater uplift is required in the north. We present a compilation of Bouse Formation elevations that is consistent with Bouse deposition in lakes, with an abrupt 225 m northward increase in maximum Bouse elevations at Topock gorge north of Lake Havasu. Within Blythe and Havasu Basins, maximum Bouse elevations are 330 m above sea level in three widely spaced areas and reveal no evidence of regional tilting. To the north in Mohave Basin, numerous Bouse outcrops above 480 m elevation include three widely spaced sites where the Bouse Formation is exposed at 536-555 m. Numerical simulations of initial Colorado River inflow to a sequence of closed basins along the lower Colorado River corridor model a history of lake filling, spilling, evaporation and salt concentration, and outflow-channel incision. The simulations support the plausibility of evaporative concentration of Colorado River water to seawater-level salinities in Blythe Basin and indicate that such salinities could have remained stable for as long as 20-30 k.y. We infer that fossil marine organ isms in the Bouse Formation, restricted to the southern (Blythe) basin, reflect coloniza tion of a salty lake by a small number of species that were transported by birds.

  12. Holocene landscape evolution and geoarcheology of low-order streams in the Rio Grande basin, San Juan Mountains, Colorado, USA

    Science.gov (United States)

    Carver, Daniel P.; Beeton, Jared M.

    2014-09-01

    This geoarcheological study investigates soil stratigraphy and geochronology of alluvial deposits to determine Holocene landscape evolution within the Hot Creek, La Jara Creek, and Alamosa River drainage basins in the San Juan Mountains of Colorado. Geomorphic mapping and radiocarbon dating indicate synchronicity in patterns of erosion, deposition, and stability between drainage basins. In all three basins, the maximum age of mapped alluvial terraces and fans is ~ 3300 cal yr BP. A depositional period seen at both Hot Creek and the Alamosa River begins ~ 3300 to 3200 cal yr BP. Based on soil development, short periods of stability followed by alluvial fan aggradation occur in the Alamosa River basin ~ 2200 cal yr BP. A period of landscape stability at Hot Creek before ~ 1100 cal yr BP is followed by a period of rapid aggradation within all three drainages between ~ 1100 and 850 cal yr BP. A final aggradation event occurred between ~ 630 and 520 cal yr BP at La Jara Creek. These patterns of landscape evolution over the past ~ 3300 yr provide the framework for an archeological model that predicts the potential for buried and surficial cultural materials in the research area.

  13. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  14. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    Science.gov (United States)

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m(3) GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  15. Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009

    Science.gov (United States)

    Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.

    2012-01-01

    The Concho River Basin is part of the upper Colorado River Basin in west-central Texas. Monotonic trends in streamflow statistics during various time intervals from 1916-2009 were analyzed to determine whether substantial changes in selected streamflow statistics have occurred within the Concho River Basin. Two types of U.S. Geological Survey streamflow data comprise the foundational data for this report: (1) daily mean discharge (daily discharge) and (2) annual instantaneous peak discharge. Trend directions are reported for the following streamflow statistics: (1) annual mean daily discharge, (2) annual 1-day minimum discharge, (3) annual 7-day minimum discharge, (4) annual maximum daily discharge, and (5) annual instantaneous peak discharge.

  16. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  17. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed o...

  18. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...

  19. Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

    1989-07-01

    The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

  20. Native fish sanctuaries of the lower Colorado River: Cibola High Levee Pond, Desert Pupfish Pond

    Science.gov (United States)

    Mueller, G.

    2005-01-01

    Historically, the Colorado River was one of the most formidable rivers in the world. Each spring, melting snow from the mountains scoured the desert landscape moving millions of tons of sediment to the sea. The Grand Canyon lays testament to its erosive nature. Summer heat would bring seasonal droughts, reducing the river to a trickle impacting humans, animals, and fish.

  1. A Dreissena Risk Assessment for the Colorado River Ecosystem

    Science.gov (United States)

    Kennedy, Theodore A.

    2007-01-01

    Executive Summary Nonnative zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis, respectively; see photo above) were accidentally introduced to the Great Lakes in the 1980s and subsequently spread to watersheds of the Eastern United States (Strayer and others, 1999). The introduction of Dreissena mussels has been economically costly and has had large and far-reaching ecological impacts on these systems. Quagga mussels were found in Lakes Mead and Havasu in January 2007. Given the likelihood that quagga mussels and, eventually, zebra mussels will be introduced to Lake Powell and the Colorado River at Lees Ferry, it is important to assess the risks that introduction of Dreissena mussels pose to the Colorado River ecosystem (here defined as the segment of river from just below Glen Canyon Dam to Diamond Creek; hereafter CRE). In this report, I assess three different types of risks associated with Dreissena and the CRE: (1) the risk that Dreissena will establish at high densities in the CRE, (2) the risk of ecological impacts should Dreissena establish at high densities in the CRE or in Lake Powell, and (3) the risk that Dreissena will be introduced to tributaries of the CRE. The risk of Dreissena establishing within the CRE is low, except for the Lees Ferry tailwater reach where the risk appears high. Dreissena are unlikely to establish at high densities within the CRE or its tributaries because of high suspended sediment, high ratios of suspended inorganic:organic material, and high water velocities, all of which interfere with the ability of Dreissena to effectively filter feed. The rapids of Grand Canyon may represent a large source of mortality to larval Dreissena, which would limit their ability to disperse and colonize downstream reaches of the CRE. In contrast, conditions within the Lees Ferry tailwater generally appear suitable for Dreissena establishment, with the exception of high average water velocity. If Dreissena establish within the

  2. Contaminants in Waterbirds, Grackles, and Swallows Nesting on the Lower Colorado River, Arizona, 2000-2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Levels and potential effects of organochlorine compounds and metals were assessed in 106 eggs representing nine avian species nesting at four lower Colorado River...

  3. Water classification of the Colorado River Corridor, Grand Canyon, Arizona, 2013—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data area classified maps of water in the Colorado River at a discharge of approximately 227 meters squared/second in Grand Canyon from Glen Canyon Dam to...

  4. Riparian vegetation classification of the Colorado River Corridor, Grand Canyon, Arizona, 2013—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are classification maps of total riparian vegetation along the Colorado River in Grand Canyon from Glen Canyon Dam to Pearce Ferry in Arizona. The data...

  5. Applications of satellite snow cover in computerized short-term streamflow forecasting. [Conejos River, Colorado

    Science.gov (United States)

    Leaf, C. F.

    1975-01-01

    A procedure is described whereby the correlation between: (1) satellite derived snow-cover depletion and (2) residual snowpack water equivalent, can be used to update computerized residual flow forecasts for the Conejos River in southern Colorado.

  6. Southwestern Riparian Plant Trait Matrix, Colorado River, Grand Canyon, Arizona, 2014 - 2016—Data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains information on the physical traits and environmental tolerances of plant species occurring along the lower Colorado River through Grand Canyon....

  7. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  8. Sustainable water deliveries from the Colorado River in a changing climate

    OpenAIRE

    Barnett, Tim P.; Pierce, David W.

    2009-01-01

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10–30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed ≈5...

  9. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    Science.gov (United States)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  10. Digital spatial data as support for river basin management: The case of Sotla river basin

    Directory of Open Access Journals (Sweden)

    Prah Klemen

    2013-01-01

    Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

  11. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  12. Damming the rivers of the Amazon basin

    Science.gov (United States)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  13. CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts

    Science.gov (United States)

    : Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.

    2011-01-01

    A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.

  14. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    Science.gov (United States)

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  15. Effective Monitoring of Small River Basins

    Directory of Open Access Journals (Sweden)

    W. Symader

    2002-01-01

    Full Text Available As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  16. Effective Monitoring of Small River Basins

    OpenAIRE

    2002-01-01

    As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  17. Water power and flood control of Colorado River below Green River, Utah

    Science.gov (United States)

    La Rue, Eugene Clyde; Work, Hubert; Grover, Nathan C.

    1925-01-01

    The purpose of this report is to present the facts regarding available water supply and all known dam sites on Colorado River between Cataract Canyon, Utah, and Parker, Ariz., and to show the relative value of these dam sites. To determine the relative value of the dam sites, a comprehensive plan of development for Colorado River below the mouth of Green River is presented that will provide for the maximum practicable utilization of the potential power, maximum preservation of water for irrigation, effective elimination of the flood menace, and adequate solution of the silt problem. This plan, which is preliminary and is offered by the writer to show the basis for his conclusions relative to flood control, irrigation, power development, and silt storage, contemplates the construction of 13 dams making available 3,383 feet of head for the development of power and a maximum of 42,000,000 acre-feet of storage capacity for the control of floods, equalization of flow, and storage of silt.

  18. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Science.gov (United States)

    Wickert, Andrew D.

    2016-11-01

    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  19. Operational river discharge forecasting in poorly gauged basins: the Kavango River basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.;

    2015-01-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically based and distributed modeling schemes employing data...... assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. The objective of this study is to develop open-source software tools to support hydrologic forecasting and integrated water resources management...

  20. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  1. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  2. Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.

    2016-01-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  3. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  4. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  5. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  6. Backwater manipulations for endangered fishes: Management implications of selenium on National Wildlife Refuges of the Lower Colorado River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Many studies have evaluated selenium in the lower Colorado River, but none have reviewed selenium levels after river water has been directed into previously isolated...

  7. Colorado River fish monitoring in Grand Canyon, Arizona; 2002–14 humpback chub aggregations

    Science.gov (United States)

    Persons, William R.; Van Haverbeke, David R.; Dodrill, Michael J.

    2017-01-31

    The humpback chub (Gila cypha) is an endangered cyprinid species endemic to the Colorado River. The largest remaining population of the species spawns and rears in the Little Colorado River in Grand Canyon. Construction and operation of Glen Canyon Dam has altered the main-stem Colorado River in Glen and Grand Canyons. Cold, clear water releases from the dam result in a river that is generally unsuitable for successful humpback chub reproduction. During the early 1990s, nine locations within the main-stem Colorado River were identified as humpback chub aggregations—areas with a consistent and disjunct group of fish with no significant exchange of individuals with other aggregations. We monitored main-stem Colorado River aggregations of humpback chub in Grand Canyon during 2010 to 2014 and compared our results to previous investigations. Relative abundance, as described by catch per unit effort (fish per hour) of adult humpback chub at most main-stem aggregations, generally increased from the 1990s to 2014. In addition, distribution of humpback chub in the main-stem Colorado River has increased since the 1990s. Movement of humpback chub between the Little Colorado River and other aggregations likely adds fish to those aggregations. There is clear evidence of reproduction near the 30-Mile aggregation, and reproduction at Middle Granite Gorge and downstream seems likely based on catches of gravid fish and captures of very young fish, especially during relatively warm water releases from Glen Canyon Dam, 2004 to 2011. Humpback chub relative abundance at Shinumo and Havasu Creek inflows increased following translocations of young humpback chub starting in 2009. In light of this information, we modify the original nine aggregations, combining two previously separate aggregations and dropping two locations to form six distinct aggregations of humpback chub. Trends in humpback chub abundance at main-stem aggregations, relative to management actions (for example

  8. Quality of water, Quillayute River basin, Washington

    Science.gov (United States)

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  9. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    Science.gov (United States)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  10. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    NARCIS (Netherlands)

    Mostert, E.; Pahl-Wostl, C.; Rees, Y.; Searle, B.; Tabara, D.; Tippett, J.

    2007-01-01

    We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning

  11. Research on runoff forecast approaches to the Aksu River basin

    Institute of Scientific and Technical Information of China (English)

    OUYANG RuLin; CHENG WeiMing; WANG WeiSheng; JIANG Yan; ZHANG YiChi; WANG YongQin

    2007-01-01

    The Aksu River (the international river between China and Kirghiz) has become the main water source for the Tarim River. It significantly influences the Tarim River's formation, development and evolution.Along with the western region development strategy and the Tarim River basin comprehensive development and implementation, the research is now focused on the Aksu River basin hydrologic characteristic and hydrologic forecast. Moreover, the Aksu River is representative of rivers supplied with glacier and snow melt in middle-high altitude arid district. As a result, the research on predicting the river flow of the Aksu River basin has theoretical and practical significance. In this paper, considering the limited hydrometeorological data for the Aksu River basin, we have constructed four hydrologic forecast approaches using the daily scale to simulate and forecast daily runoff of two big branches of the Aksu River basin. The four approaches are the upper air temperature and the daily runoff correlation method, AR(p) runoff forecast model, temperature and precipitation revised AR(p) model and the NAM rainfall-runoff model. After comparatively analyzing the simulation results of the four approaches, we discovered that the temperature and precipitation revised AR(p) model, which needs less hydrological and meteorological data and is more predictive, is suitable for the short-term runoff forecast of the Aksu River basin. This research not only offers a foundation for the Aksu River and Tarim Rivers' hydrologic forecast, flood prevention, control and the entire basin water collocation, but also provides the hydrologic forecast reference approach for other arid ungauged basins.

  12. Sustainable water deliveries from the Colorado River in a changing climate.

    Science.gov (United States)

    Barnett, Tim P; Pierce, David W

    2009-05-05

    The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.

  13. North Park Basin, Colorado, for 1999 National Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a polygon representing the extent of the North Park coal basin boundary. This theme was created specifically for the National Coal...

  14. Water balance of the Lepenci river basin, Kosova

    Science.gov (United States)

    Osmanaj, L.; Avdullahi, S.

    2009-04-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. Kosova has four water basins, such as the Basin of river Drini i Bardhe, Ibri, Morava e Binqes and Lepenci. The Basin of river Lepenci is located in South-eastern part of Kosova with surface of 650 km2, belongs to Axios river basin discharging into Aegean Sea. The annual rainfall is 670-1.000 mm and specific runoff 8 - 20 l/s/km2. There are also steep mountains in this area. In this case study we have calculate the water balance of the river Lepenc Basin. The Basin of river Lepenc we have divided in to 3 catchments: of Nerodima river, and upper and lower part of river Lepenci. This basin is covered by three municipalities such as municipality of Ferizaj, Kaçanik and Shterpc. The data on precipitation are obtained from three metering stations, such as the metering station of Ferizaj, Kaçanik and Jazhnice. The obtained records are elaborated. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. In a basin of river Lepenci we have four stations for measuring the discharges and levels: in Ferizaj, and Kaçanik - Nerodime river and in Hani i Elezit - Lepenc river. The river basin Lepenc has two inflowing points, where are Lepenci river in the border with the FYR of Macedonia and Sazli village near Ferizaj. Key works: precipitation, evaporation, flow, river, discharges,

  15. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  16. The Role of stocking in the reestablishment and augmentation of native fish in the Lower Colorado River mainstream (1998-2002)

    Science.gov (United States)

    Mueller, Gordon

    2003-01-01

    The Colorado River has experienced dramatic physical and biological change. Rated as the fifth largest river in the USA by volume, today its waters seldom reach the sea. Water diversions gradually reduce its flow to a point where its last remaining waters are diverted at Morales Dam leaving nearly 100 km of historic channel dry. In contrast, lower basin storage reservoirs cover 36% of the historic channel. Remaining portions of the flowing river have been channelized and straightened to a point where it now resembles a large canal. Levees, mechanical dredging, and the natural forces of erosion have degraded the river channel nearly 2 m in some locations, isolating it from its floodplain and affecting local water tables. The river no longer functions as a natural stream system characteristic of spring run-off, summer spates, and droughts. Today it serves as a water storage and conveyance system to meet human needs.

  17. Abundance Trends and Status of the Little Colorado River Population of Humpback Chub: An Update Considering 1989-2006 Data

    Science.gov (United States)

    Coggins,, Lewis G.

    2008-01-01

    EXECUTIVE SUMMARY In 1967, the humpback chub (Gila cypha) (HBC) was added to the federal list of endangered species and is today protected under the Endangered Species Act of 1973. Only six populations of humpback chub are currently known to exist, five in the Colorado River Basin above Lees Ferry, Arizona, and one in Grand Canyon, Arizona. The majority of Grand Canyon humpback chub are found in the Little Colorado River (LCR)-the largest tributary to the Colorado River in Grand Canyon-and the Colorado River near its confluence with the Little Colorado River. Monitoring and research of the Grand Canyon humpback chub population is overseen by the U.S. Geological Survey's (USGS) Grand Canyon Monitoring and Research Center (GCMRC) under the auspices of the Glen Canyon Dam Adaptive Management Program (GCDAMP), a Federal initiative to protect and improve resources downstream of Glen Canyon Dam. This report provides updated information on the status and trends of the LCR population in light of new information and refined assessment methodology. An earlier assessment of the LCR population (Coggins and others, 2006a) used data collected during 1989?2002; the assessment provided here includes that data and additional data collected through 2006. Catch-rate indices, closed population mark-recapture model abundance estimates, results from the original age-structured mark recapture (ASMR) model (Coggins and others, 2006b), and a newly refined ASMR model are presented. This report also seeks to (1) formally evaluate alternative stock assessment models using Pearson residual analyses and information theoretic procedures, (2) use mark-recapture data to estimate the relationship between HBC age and length, (3) translate uncertainty in the assignment of individual fish age to resulting estimates of recruitment and abundance from the ASMR model, and (4) evaluate past and present stock assessments considering the available data sources and analyses, recognizing the limitations

  18. Avulsion processes at the terminus of low-gradient semi-arid fluvial systems: Lessons from the Río Colorado, Altiplano endorheic basin, Bolivia

    Science.gov (United States)

    Donselaar, M. E.; Cuevas Gozalo, M. C.; Moyano, S.

    2013-01-01

    The Río Colorado dryland river system in the southeast of the endorheic Altiplano Basin (Bolivia) terminates on a very flat coastal plain at the edge of the Salar de Uyuni, the world's largest salt pan with an area of ca. 12,500 km2. Since the Pleistocene the basin has experienced several lake expansion and contraction cycles in response to wetter and drier climate periods, respectively. At present the basin is in a dry climate period which results in a lake level lowstand and progradation of fluvial systems such as the Río Colorado onto the former lake bottom. The present field study of the terminus of the Río Colorado shows that the river experiences a gradual downstream decrease of bankfull width and depth. This bankfull decrease is caused by the combined effects of: (1) extremely low gradient of the lake bottom and, hence, loss of flow energy, and (2) downstream transmission losses due to high evaporation potential and river water percolation through the channel floor. Peak water discharge in seasonal, short-duration rain periods causes massive overbank flooding and floodplain inundation. On satellite images the morphology of the river terminus has a divergent pattern and resembles a network of coeval sinuous distributary channels. However, field observations show that only one channel is active at low flow stage, and at high-flow stage an abandoned, partially infilled channel may be active as well. The active channel at its termination splits into narrow and shallow anastomosing streams before its demise on the lacustrine coastal plain. The rest of the channels which form the divergent network are older sediment-filled abandoned sinuous river courses with multiple random avulsion points. These channel deposits, together with extensive amalgamated crevasse-splay deposits, form an intricate network of fluvial sand deposits. Successive stages of progressively deeper crevasse-channel incision into the floodplain are the result of waning-stage return flow of

  19. River basin management plans for the European Water Framework Directive

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Behrendt, H.; Ruboek, G.H.; Schoumans, O.F.

    2004-01-01

    The newly adopted EU water framework directive aims at protecting different water bodies by performing impact analysis and developing river basin management plans before 2009. The adoption of management measures in river basins demands that catchment managers are able to quantify the importance of d

  20. Geomorphic change and sediment transport during a small artificial flood in a transformed post-dam delta: The Colorado River delta, United States and Mexico

    Science.gov (United States)

    Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.

    2016-01-01

    The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not

  1. Selected Biological Characteristics of Streams in the Southeastern Uinta Basin, Utah and Colorado

    OpenAIRE

    United States Geological Survey

    1981-01-01

    Biological sampling was carried out during 1976-78 in five streams in the southeastern Uinta Basin, Utah and Colorado, in order to provide baseline water-quality data for an area of potential oil-shale development. The biological activity in the streams sampled generally is limited by physical factors more so than by chemical constituents and plant nutrients. Characteristics of streamflow, such as high turbidity, fluctuating water levels, and moderate to high salinity, limit production of f...

  2. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental asses...... in their SEAs of RBMPs is weak. In this paper the connections between climate change and water are reviewed. As a result, it is suggested that climate change needs to be considered in three ways: mitigation, adaptation and baseline adaptation. Udgivelsesdato: December......In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...... assessment (SEA). An important environmental factor for the water sector is climate change, especially the changes it causes to the water environment. However, based on an argument of an inadequate knowledge base regarding climate change impacts, the prospect of Danish authorities including climate change...

  3. Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

    2011-01-01

    The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly

  4. Long lasting dynamic disequilibrium in river basins

    Science.gov (United States)

    Goren, Liran; Willett, Sean D.; McCoy, Scott W.; Perron, J. Taylor; Chen, Chia-Yu

    2014-05-01

    The river basins of ancient landscapes such as the southeastern United States exhibit disequilibrium in the form of migrating divides and stream capture. This observation is surprising in light of the relatively short theoretical fluvial response time, which is controlled by the celerity of the erosional wave that propagates upstream the fluvial channels. The response time is believed to determine the time required for fluvial landscapes to adjust to tectonic, climatic, and base-level perturbations, and its global estimations range between 0.1 Myr and 10s Myr. To address this discrepancy, we develop a framework for mapping continuous dynamic reorganization of natural river basins, and demonstrate the longevity of disequilibrium along the river basins in the southeastern United States that are reorganizing in response to escarpment retreat and coastal advance. The mapping of disequilibrium is based on a proxy for steady-state elevation, Ξ, that can be easily calculated from digital elevation models. Disequilibrium is inferred from differences in the value of Ξ across water divides. These differences indicate that with the present day drainage area distribution and river topology the steady-state channels elevation across the divides differs, and therefore divides are expected to migrate in the direction of the higher Ξ value. We further use the landscape evolution model DAC to explore the source of the longevity of disequilibrium in fluvial landscapes. DAC solves accurately for the location of water divides, using a combination of an analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC simulations demonstrate topological, geometrical, and topographical adjustments that persist much longer than the theoretical response time, and consequently, extend the time needed to diminish disequilibrium in the landscape and to reach topological and topographical steady-state. This behavior is interpreted

  5. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    Science.gov (United States)

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  6. Morphometric analyses of the river basins in Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Wagle, B.G.

    to satisfy Horton's Laws. The bifurcation ratios show the maturity of the dissected basins. Except for the basins of Mandovi and Zuvari rivers which are more elongated and less circular, the other five basins are more circular and less elongated. The high...

  7. Economic value of angling on the Colorado River at Lees Ferry: Using secondary data to estimate the influence of seasonality

    Science.gov (United States)

    Bair, Lucas S.; Rogowski, David L.; Neher, Chris

    2016-01-01

    Glen Canyon Dam (GCD) on the Colorado River in northern Arizona provides water storage, flood control, and power system benefits to approximately 40 million people who rely on water and energy resources in the Colorado River basin. Downstream resources (e.g., angling, whitewater floating) in Glen Canyon National Recreation Area (GCNRA) and Grand Canyon National Park are impacted by the operation of GCD. The GCD Adaptive Management Program was established in 1997 to monitor and research the effects of dam operations on the downstream environment. We utilized secondary survey data and an individual observation travel cost model to estimate the net economic benefit of angling in GCNRA for each season and each type of angler. As expected, the demand for angling decreased with increasing travel cost; the annual value of angling at Lees Ferry totaled US$2.7 million at 2014 visitation levels. Demand for angling was also affected by season, with per-trip values of $210 in the summer, $237 in the spring, $261 in the fall, and $399 in the winter. This information provides insight into the ways in which anglers are potentially impacted by seasonal GCD operations and adaptive management experiments aimed at improving downstream resource conditions.

  8. Geologic map of the Peach Orchard Flat quadrangle, Carbon County, Wyoming, and descriptions of new stratigraphic units in the Upper Cretaceous Lance Formation and Paleocene Fort Union Formation, eastern Greater Green River Basin, Wyoming-Colorado

    Science.gov (United States)

    Honey, J.D.; Hettinger, R.D.

    2004-01-01

    This report provides a geologic map of the Peach Orchard Flat 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. In addition, four lithostratigraphic units were named: the Red Rim Member of the Upper Cretaceous Lance Formation, and the China Butte, Blue Gap, and Overland Members of the Paleocene Fort Union Formation.

  9. Remote sensing approach to map riparian vegetation of the Colorado River Ecosystem, Grand Canyon area, Arizona

    Science.gov (United States)

    Nguyen, U.; Glenn, E.; Nagler, P. L.; Sankey, J. B.

    2015-12-01

    Riparian zones in the southwestern U.S. are usually a mosaic of vegetation types at varying states of succession in response to past floods or droughts. Human impacts also affect riparian vegetation patterns. Human- induced changes include introduction of exotic species, diversion of water for human use, channelization of the river to protect property, and other land use changes that can lead to deterioration of the riparian ecosystem. This study explored the use of remote sensing to map an iconic stretch of the Colorado River in the Grand Canyon National Park, Arizona. The pre-dam riparian zone in the Grand Canyon was affected by annual floods from spring run-off from the watersheds of Green River, the Colorado River and the San Juan River. A pixel-based vegetation map of the riparian zone in the Grand Canyon, Arizona, was produced from high-resolution aerial imagery. The map was calibrated and validated with ground survey data. A seven-step image processing and classification procedure was developed based on a suite of vegetation indices and classification subroutines available in ENVI Image Processing and Analysis software. The result was a quantitative species level vegetation map that could be more accurate than the qualitative, polygon-based maps presently used on the Lower Colorado River. The dominant woody species in the Grand Canyon are now saltcedar, arrowweed and mesquite, reflecting stress-tolerant forms adapted to alternated flow regimes associated with the river regulation.

  10. Introduction: CRevolution 2: origin and evolution of the Colorado River System II

    Science.gov (United States)

    Karlstrom, Karl E.; Beard, L. Sue; House, Kyle; Young, Richard A.; Aslan, Andres; Billingsley, George; Pederson, Joel

    2012-01-01

    A 2010 Colorado River symposium held in Flagstaff, Arizona, in May 2010, had 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built on two previous decadal scientific meetings, focused on forging scientific consensus where possible, while also articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau–Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift, with consensus that multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology are needed to test the relative importance of tectonic and geomorphic forcings in shaping the spectacular landscapes of the Colorado Plateau region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences, and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in the shaping landscape of elevated plateaus.

  11. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009

    Science.gov (United States)

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.

    2017-03-23

    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  12. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  13. Monitoring micropollutants in the Swist river basin.

    Science.gov (United States)

    Christoffels, Ekkehard; Brunsch, Andrea; Wunderlich-Pfeiffer, Jens; Mertens, Franz Michael

    2016-11-01

    Micropollutant pathways were studied for the Swist river basin (Western Germany). The aim was to verify the effectiveness of a monitoring approach to detect micropollutants entering the river. In a separate sewer system, water was frequently found to be contaminated with micropollutants. Improper connections of sewage canals to the stormwater network seemed to be the cause of pollution. Wastewater treatment plants (WWTPs) exerted the largest influence on micropollutants for the receiving river. During a flu outbreak, antibiotics in the Swist stemming from WWTPs increased remarkably. Elevated levels of pharmaceuticals were measured in discharges from a combined sewer overflow (CSO). The study showed that the pharmaceutical load of a CSO was significantly reduced by advanced treatment with a retention soil filter. Painkillers, an anticonvulsant and beta blockers were the most often detected pharmaceuticals in the sewage of urban areas. Herbicides, flame retardants and industrial compounds were also observed frequently. On cropland, Chloridazon and Terbuthylazine compounds were often found in landscape runoff. Fungicides and insecticides were the most frequent positive findings in runoff from orchards. The paper shows that a coherent approach to collecting valid information regarding micropollutants and to addressing relevant pathways as a basis for appropriate management strategies could be established.

  14. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  15. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; Van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  16. Generalized geologic map of part of the upper Animas River watershed and vicinity, Silverton, Colorado

    Science.gov (United States)

    Yager, D.B.; Bove, D.J.

    2002-01-01

    This dataset represents geology compiled for the upper Animas River Watershed near Silverton, Colorado. The source data used are derived from 1:24,000, 1:20,000, 1:48,000 and 1:250,000-scale geologic maps by geologists who have worked in this area since the early 1960's.

  17. Bureau of Reclamation-Lower Colorado River Management Plan for the Yuma Clapper Rail

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Presently there are just over 4,200 acres of cattail/bulrush along the lower Colorado River (LCR) in the United States, most of which is managed by the U.S. Fish and...

  18. 75 FR 37749 - White River National Forest, Colorado, Oil and Gas Leasing Environmental Impact Statement

    Science.gov (United States)

    2010-06-30

    ... Forest Service White River National Forest, Colorado, Oil and Gas Leasing Environmental Impact Statement... Oil and Gas Leasing and Final EIS and Record of Decision. The proposed revision includes the following: Changing what lands will be available for oil and gas leasing; changing or adding stipulations to...

  19. The Influence of Dam Discharge Regime and Canyon Orientation on Ecosystem Metabolism in the Colorado River

    Science.gov (United States)

    Kennedy, T. A.; Tietjen, T.; Wright, S.

    2005-05-01

    Since the closure of Glen Canyon Dam and the beginning of flow regulation of the Colorado River in Grand Canyon in 1963, considerable efforts have been directed toward understanding the aquatic ecology of this altered ecosystem. Understanding what controls resource availability has been a central focus of these efforts because the Colorado River supports populations of sport fish and endangered humpback chub, both of which appear to be strongly resource limited. There is evidence that dam discharge regime and canyon orientation influence algal standing crop due to their effects on water velocity (scour) and solar insolation, respectively. We explored whether these physical factors influenced rates of primary production and ecosystem respiration, two different metrics of resource availability, in the clear tailwater section of the Colorado River by conducting whole system metabolism measurements across a range of discharge regimes and in reaches with different orientation (i.e. N-S vs. E-W). We found that while both discharge regime and canyon orientation influence rates of primary production, seasonal changes in light availability appear to have a far stronger influence on rates of primary production in the Colorado River. Water temperature appeared to be the main driver of ecosystem respiration.

  20. 78 FR 59230 - Special Local Regulations; Annual Marine Events on the Colorado River, Between Davis Dam...

    Science.gov (United States)

    2013-09-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 Special Local Regulations; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona) Within the San Diego...

  1. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Administration and management of the..., MAINTENANCE, AND REPLACEMENT AT THE BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.7 Administration and management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project...

  2. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Science.gov (United States)

    2011-10-04

    ... not be hindered by the safety zone. Recreational vessels will not be allowed to transit through the... vessels intending to transit or anchor in a portion of the lower Colorado River at Lake Havasu from... Captain of the Port will cease enforcement of this safety zone and will announce that fact via...

  3. 78 FR 33703 - Safety Zone; Great Western Tube Float; Colorado River; Parker, AZ

    Science.gov (United States)

    2013-06-05

    ... transit through the safety zone if they request and receive permission from the Captain of the Port or his... or operators of vessels intending to transit or anchor in the impacted portion of the Colorado River... announce that fact via Broadcast Notice to Mariners. (c) Definitions. The following definition applies...

  4. 75 FR 38768 - Ashley National Forest, UT, High Uintas Wilderness-Colorado River Cutthroat Trout Habitat...

    Science.gov (United States)

    2010-07-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service Ashley National Forest, UT, High Uintas Wilderness--Colorado River Cutthroat Trout Habitat Enhancement AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental...

  5. Social Learning in European River-Basin Management: Barriers and Fostering Mechanisms from 10 River Basins

    Directory of Open Access Journals (Sweden)

    Erik Mostert

    2007-06-01

    Full Text Available We present and analyze 10 case studies of participatory river-basin management that were conducted as part of the European HarmoniCOP project. The main theme was social learning, which emphasizes the importance of collaboration, organization, and learning. The case studies show that social learning in river-basin management is not an unrealistic ideal. Resistance to social learning was encountered, but many instances of social learning were found, and several positive results were identified. Moreover, 71 factors fostering or hindering social learning were identified; these could be grouped into eight themes: the role of stakeholder involvement, politics and institutions, opportunities for interaction, motivation and skills of leaders and facilitators, openness and transparency, representativeness, framing and reframing, and adequate resources. Promising topics for further research include the facilitation of the social learning processes, the role of power, and interactions in political and institutional contexts.

  6. Floods in the Skagit River basin, Washington

    Science.gov (United States)

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  7. Analytical framework for River Basin Management Planning

    DEFF Research Database (Denmark)

    Nielsen, Helle Ørsted; Pedersen, Anders Branth; Frederiksen, Pia

    This paper proposes a framework for the analysis of the planning approach, and the processes and procedures, which have been followed in the preparation of the River Basin District Management Plans (RBMPs). Different countries have different policy and planning traditions and -styles. Developed...... over a range of years, institutional set-up and procedures have been adapted to these. The Water Framework Directive imposes a specific ecosystem oriented management approach, which directs planning to the fulfilment of objectives linked to specific water bodies, and an emphasis on the involvement...... of stakeholders and citizens. Institutional scholars point out that such an eco-system based approach superimposed on an existing institutional set-up for spatial planning and environmental management may create implementation problems due to institutional misfit (Moss 2004). A need for adaptation of procedures...

  8. Birds of the Shatan River Basin, Mongolia

    Directory of Open Access Journals (Sweden)

    Onolragchaa Ganbold

    2015-06-01

    Full Text Available In our study we recorded 149 species of birds belonging to 97 genera and 36 families in 15 orders. These bird species compose 32% of Mongolian registered bird fauna. Of these 149 species, 54% are passeriformes. Our observation was held in three different habitats: mountains ranging with rocks and forest (88 species, river basins (45 species, and an area around human habitation, specifically train stations outside towns (16 species. Of our studied bird species, 11 are enlisted in the International Union for Conservation of Nature red list as endangered, vulnerable, or near threatened species, and 144 are known as least concerned. Also 20 species are listed in Annexes I and II of the Convention on International Trade in Endangered Species, and 15 species are listed in Annexes I and II of the Convention on the Conservation of Migratory Species.

  9. Value and Resilience in the Case of 'Invasive' Tamarix in the Colorado River Riparian Corridor

    Science.gov (United States)

    Loring, P. A.; Gerlach, S.; Zamora, F.

    2009-12-01

    A common premise of science for conservation and sustainability is an assumption that despite any human definitions of value, there are ecological first principles, e.g., resilience, which must be understood if sustainability is to be possible. As I show here, however, pursuits such as restoration, conservation, and sustainability remain tangled in (and sometimes at odds with one another regarding) many value-laden decisions regarding the equity, justice, and morality of human-environment interactions. These include such important decisions as: what should be restored or sustained and for whom, how and by whom, and at what cost. This paper uses examples from the lower Colorado River Riparian Corridor, in particular the issue of the so-called ‘invasive’ saltcedar (Tamarix spp.), to illustrate some of the implicit value judgments common to the practice of managing ecosystems. There are many possible perspectives to be taken on a matter like Tamarix, each implicitly or explicitly representing different worldviews and agendas for the ecosystems in question. Resilience theory provides one such perspective, but as I show here, it proves incapable of producing recommendations for managing the corridor that are free of subjective valuations. I end with a case study of habitat and Tamarix management practices in the Mexican portion of the Colorado River Delta, highlighting the proven potential when up-front values are explicitly coupled to the practice of sustainability science, rather than left as details for 'good governance,' a realm presently imagined as separate from science, to sort out. Map of the Colorado River Delta. The Sonoran Institute manages projects in the Mexican portion of the Colorado River Delta region, along the Rio Hardy, the mainstem of the Colorado River in Baja California, MX and in the Cienega de Santa Clara wetlands, Sonora, MX. Map courtesy of Water Education Foundation. www.watereducation.org

  10. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  11. A large-scale environmental flow experiment for riparian restoration in the Colorado River delta

    Science.gov (United States)

    Shafroth, Patrick B.; Schlatter, Karen; Gomez-Sapiens, Martha; Lundgren, Erick; Grabau, Matthew R.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Flessa, Karl W.

    2017-01-01

    Managing streamflow is a widely-advocated approach to provide conditions necessary for seed germination and seedling establishment of trees in the willow family (Salicaceae). Experimental flow releases to the Colorado River delta in 2014 had a primary objective of promoting seedling establishment of Fremont cottonwood (Populus fremontii) and Goodding's willow (Salix gooddingii). We assessed seed germination and seedling establishment of these taxa as well as the non-native tamarisk (Tamarix spp.) and native seepwillow shrubs (Baccharis spp.) in the context of seedling requirements and active land management (land grading, vegetation removal) at 23 study sites along 87 river km. In the absence of associated active land management, experimental flows to the Colorado River delta were minimally successful at promoting establishment of new woody riparian seedlings, except for non-native Tamarix. Our results suggest that the primary factors contributing to low seedling establishment varied across space, but included low or no seed availability in some locations for some taxa, insufficient soil moisture availability during the growing season indicated by deep groundwater tables, and competition from adjacent vegetation (and, conversely, availability of bare ground). Active land management to create bare ground and favorable land grades contributed to significantly higher rates of Salicaceae seedling establishment in a river reach with high groundwater tables. Our results provide insights that can inform future environmental flow deliveries to the Colorado River delta and its ecosystems and other similar efforts to restore Salicaceae taxa around the world.

  12. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State...; and (4) identify a comprehensive approach for efficient management of basin water supplies....

  13. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    Science.gov (United States)

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  14. Civilization’s Drying Cradle: Water Politics in the Tigris-Euphrates River Basin

    Science.gov (United States)

    2012-03-22

    Stanford Law Review 19, no. 2 (January 1967): 368, in JSTOR (accessed March 4, 2012). 75Treaty between the United States of America and Mexico...and Environment Database , “Colorado River Water Dispute (Colorado Case),” http://www1.american.edu/TED/colorado.htm (accessed March 4, 2012). 78U.S

  15. Water resources data, Texas water year 1998, volume 3. Colorado River basin, Lavaca River basin, Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 126 gaging stations; stage only at 3 gaging stations; stage and contents at 15 lakes and reservoirs; water quality at 62 gaging stations; and data for 35 partial-record stations comprised of 8 flood-hydrograph, 14 low-flow, and 18 creststage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  16. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  17. Wind River Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Wind River coal basin boundary. This theme was created specifically for the National Coal...

  18. Snake River Plain Basin-fill aquifer system

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not...

  19. Landslide Inventory for the Little North Santiam River Basin, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase is an inventory of existing landslides in the Little North Santiam River Basin, Oregon (2009). Each landslide feature shown has been classified...

  20. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  1. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    Science.gov (United States)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  2. 78 FR 77397 - Flood Control Regulations, Marshall Ford Dam (Mansfield Dam and Lake Travis), Colorado River, Texas

    Science.gov (United States)

    2013-12-23

    ..., school district, or special district with a population of less than 50,000; or (3) a small organization...--city of Hannibal; LCRA--Lower Colorado River Authority; M&T Irr--Modesto & Turlock Irr; Mrcd Irr...

  3. Clumped isotope paleothermometry of the Mio-Pliocene freshwater Lake Mohave. Lower ancestral Colorado River, USA

    Science.gov (United States)

    Lang, K. A.; Huntington, K. W.

    2015-12-01

    The fluvio-lacustrine deposits of the Bouse Formation are an archive of ancestral Colorado River integration in the Late Miocene and Early Pliocene. In Mohave Valley along the California-Arizona-Nevada border, exposures of the Bouse Formation are observed ~400 m above the modern river elevation, which has been interpreted as evidence of tectonic uplift following a regionally extensive marine incursion and integration of the ancestral Colorado River by capture. However, recent investigations instead favor a "top-down" process of river integration by sequential infilling of freshwater lakes that does not require subsequent tectonic uplift. Accurate interpretation of the Bouse Formation's depositional environment is needed to test these models and ultimately, constrain the timing and mechanism of southwestern Colorado Plateau uplift. To further constrain interpretations of depositional environment, we present new clumped isotope analyses with major and trace element geochemistry and scanning electron microscopy of carbonate samples from the Bouse Formation in Mohave Valley. Here the Bouse Formation contains three distinct facies: basal marl and limestone overlain by thick beds of calcareous claystone interbedded with siltstone and sandstone and locally overlain by tufa. Bulk geochemistry of all facies is consistent with a similar freshwater source yet each facies is isotopically distinct, potentially indicating a strong influence of facies-specific fractionation processes. Carbonate formation temperatures measured in tufa samples are variable, suggesting multiple generations of calcite precipitation. Formation temperatures from basal marl and claystone samples are generally consistent with near-surface lake temperatures, broadly supporting a lacustrine depositional environment and "top-down" process of ancestral Colorado River integration. More broadly, our results quantify the variability in carbonate formation temperatures with different lacustrine facies and

  4. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  5. Sediment delivery by ungaged tributaries of the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Webb, Robert H.; Griffiths, Peter G.; Melis, Theodre S.; Hartley, Daniel R.

    2000-01-01

    Sediment input to the Colorado River in Grand Canyon, Arizona, is a valuable resource required to sustain both terrestrial and aquatic ecosystems. A total of 768 ungaged tributaries deliver sediment to the river between Glen Canyon Dam and the Grand Wash Cliffs (river miles -15 to 276). The 32 tributaries between the dam and Lee's Ferry produce only streamflow floods, whereas 736 tributaries in Grand Canyon produce streamflow floods and debris flows. We used three techniques to estimate annual streamflow sediment yield from ungaged tributaries to the Colorado River. For the Glen Canyon and Marble Canyon reaches (river miles -15 to 61.5), respectively, these techniques indicate that 0.065.106 and 0.610.106 Mg/yr (0.68.106 Mg/yr of total sediment) enters the river. This amount is 20 percent of the sediment yield of the Paria River, the only gaged tributary in this reach and a major sediment contributor to the Colorado River. The amount of sand delivered ranges from 0.10.106 to 0.51.106 Mg/yr, depending on the sand content of streamflow sediment. Sand delivered in Glen Canyon is notably coarser (D50 = 0.24 mm) than sand in other reaches (D50 = 0.15 mm). A relation is given for possible variation of this sediment delivery with climate. Debris flows transport poorly-sorted sediment onto debris fans in the Colorado River. In the pre-dam era, debris fans were completely reworked during Colorado River floods, liberating all fine-grained sediment to the river; in the post-dam river on average only 25 percent of debris-fan volume is reworked, leading to storage of sand in the matrix of debris fans. We develop a sediment-yield model for debris flows that uses a logistic-regression model of debris-flow frequency in Grand Canyon, a regression model of debris-flow volumes, particle- size distributions of intact debris-flow deposits, and debris-fan reworking. On average, debris flows deliver between 0.14.106 and 0.30.106 Mg/yr of sediment to debris fans throughout Grand Canyon

  6. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, Ashlynn S [Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 1 University Station C1786, Austin, TX 78712 (United States); Clayton, Mary E; Webber, Michael E, E-mail: ashlynn.stillwell@mail.utexas.edu, E-mail: mclayton34@mail.utexas.edu, E-mail: webber@mail.utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2011-07-15

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m{sup 3}-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  7. [Upper Steele Bayou Projects : Yazoo River Basin, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a collection of documents related to four projects which were proposed by the U.S. Army, Corps of Engineers in the Yazoo River Basin. The Upper Yazoo Basin...

  8. Sedimentation Study on Upstream Reach of Selected Rivers in Pahang River Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Khairul Amri Kamarudin

    2017-02-01

    Full Text Available The sedimentation study on the upstream reach of Pahang River is located in the Bentong River Basin. The detail hydrographic survey for each river in the Bentong River Basin was carried out in May 2016. Nine stations were selected to represent the sediment concentration at Bentong River, Pahang, Malaysia. Bentong River Basin is one of the river catchment in Pahang River Basin, Malaysia. Before this, Bentong River deterioration in water quality, resulting from the sedimentation problems and unsustainable development management around the river basin. This study was implemented to prove the sedimentation problem, especially the formation of Total  Suspended Solid (TSS in the Bentong River. There are two important parameters were quantified in this study such as the concentration of suspended solid (mg/L and the river discharge (Q values (m³/s. The method used in this study to analysis the concentration of TSS using Gravimetric Method. The result showed the sedimentation in the Bentong River was unstable and the highest of TSS up to 367.6 mg/L that is categorized under the class V which > 300 mg/L based on the National Water Quality Standard (NWQS result showed the coefficient correlation between the observed Q and the TSS concentration in the Bentong River is significant R² = 0.919, there are strong positive relationship between TSS concentration production and the river discharge value in the Bentong River. The study found that the contributors to the high sedimentation problems resulting from the sediments generated from the unsustainable land use, which effectively trapping the bed sediments, rainfall intensity, backflow that carries out high sediments as well as sedimentation produced due to the river bank erosion.

  9. Estimates of Water Use of Saltcedar (Tamarix ramosissima) on the Lower Colorado River: from Plant to Stand to River Reach

    Science.gov (United States)

    Glenn, E. P.; Nagler, P. L.; Didan, K.; Osterberg, J.

    2007-12-01

    Saltcedar (Tamarix ramosissima) removal projects have been proposed to salvage water that would other wise support saltcedar evapotranspiration (ET), and to allow native vegetation to recolonize western U.S. riparian corridors. We measured stem-level sap flow at Cibola NWR on the Lower Colorado River to answer some of the scientific questions about the possible consequences of saltcedar removal. We then conducted wide-area studies using remote sensing technology by scaling from the three ground sites using TM- and MODIS-based ET estimates. The sites were different distances from the river channel and differed in depth to water table and salinity of the ground water. Results were then extrapolated to the river reach (from Davis Dam to the delta of the river in Mexico). Saltcedar stands at Cibola had moderate rates of ET, based on remote sensing estimates, averaging 1.1 m yr-1, similar to rates determined for other locations on the river and for other river systems. Leaf area index (LAI) values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. Despite high ground water salinity (5,000-10,000 mg l-1), the sites away from the river did not have saline surface soils, supporting studies showing that saltcedar does not salinize riverbanks. Approximately 1 percent of the mean annual river flow is lost to saltcedar ET on the Lower Colorado River in the U.S. Based on these results, the opportunities for water salvage through saltcedar removal appear to be constrained by its modest ET rates.

  10. river basin, north eastern nigeria, using swat model *ejieji

    African Journals Online (AJOL)

    USER

    2016-03-29

    Mar 29, 2016 ... Hade ia-:ama are-Komadugu-Yobe River basin (H:KYRB) is one of the ma or .... Prediction of the Streamflow of Hadejia-Jama are-Komadugu-Yobe-River. ..... Assessment Tool Input/Output documentation version 2009. Texas.

  11. SLIDE INVENTORY IN DUBRACINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Aleksandar Toševski

    2013-12-01

    Full Text Available he slide inventory in Dubračina river basin consists of 39 slides. They have been detected by field geomorphological mapping and visual analysis of 1 meter digital elevation model. The slides detected using elevation model are validated by the field checking as well. The outline of all slides is generated using digital elevation model. The total area affected by sliding is 81873 m2 which is 0,44% of researched area. The area, volume, total lenght, width of displaced mass, dip angle of slope on the slide location and dip direction of sliding have been defined for each slide. Slides areas are ranging from 150 to 12956 m2. Minimal total slide lenght from the crown to the tip is 20 m and maximal is 226 m. Angles of slope dip on slide locations are ranging from 10,1° to 28,6° focusing that 76,7% total area affected by sliding has slope dip angle on slide location up to 20°. According to weighting factor calculations lithological unit flysch (E2,3 is marked as the most significant lithological factor of the sliding. All slides are located in the flysch weathering zone where zone crop out. It has been shown that terrain tendency for excessive erosion is very limitative factor in using digital elevation model for the remote slide mapping (the paper is published in Croatian.

  12. Problems of Syrdarya river basin management

    Institute of Scientific and Technical Information of China (English)

    Serdar EYEBERENOV; Baijing CAO; Fengting LI

    2009-01-01

    Prior to independence, Central Asian countries were closely interconnected through the regional management incorporating water, energy, and food sectors. This approach, supported by the central government of Union of Soviet Socialist Republics (USSR), functioned effectively - meeting the needs of both upstream and downstream countries. However, after independence, Central Asian countries started prioritizing their own economic development policies without due account to regional concerns such as joint use of water resources, leading to instability.In this study, the case of Syrdarya basin was investigated to show how,such strategies create tension in the region, since primary focus is given to national interests, without consideration for regional problems. To address this issue, an integrated approach to incorporating water,energy, and agriculture is needed. It is suggested that a single sector approach on water alone does not lead to stability, and a multi-sectoral approach is necessary to ensure sustainable development. Countries sharing benefits from the river have to be responsible for costs of operation and maintenance of the water facilities.

  13. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical

  14. River monitoring from satellite radar altimetry in the Zambezi River basin

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.; McEnnis, S.; Berry, P. A. M.;

    2012-01-01

    Satellite radar altimetry can be used to monitor surface water levels from space. While current and past altimetry missions were designed to study oceans, retracking the waveforms returned over land allows data to be retrieved for smaller water bodies or narrow rivers. The objective of this study...... is the assessment of the potential for river monitoring from radar altimetry in terms of water level and discharge in the Zambezi River basin. Retracked Envisat altimetry data were extracted over the Zambezi River basin using a detailed river mask based on Landsat imagery. This allowed for stage measurements...

  15. Emergence, concept, and understanding of Pan-River-Basin (PRB

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-12-01

    Full Text Available In this study, the concept of Pan-River-Basin (PRB for water resource management is proposed with a discussion on the emergence, concept, and application of PRB. The formation and application of PRB is also discussed, including perspectives on the river contribution rates, harmonious levels of watershed systems, and water resource availability in PRB system. Understanding PRB is helpful for reconsidering river development and categorizing river studies by the influences from human projects. The sustainable development of water resources and the harmonization between humans and rivers also requires PRB.

  16. Oil and Gas Well locations, Upper Colorado River Basin, 2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Federal onshore lands contain an estimated 20 percent of the oil and 25 percent of the undiscovered natural gas resources in the United States (U.S. Bureau of Land...

  17. USGS 2015 JSankey Riparian Vegetation and Colorado River

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data include image-based classifications of total vegetation from 1965, 1973, 1984, 1992, 2002, 2004, 2005, and 2009, and characteristics of the river channel...

  18. Rhythmic bedding in prodeltaic deposits of the ancient Colorado River: Exploring genetic processes

    Science.gov (United States)

    Waresak, Sandra; Nalin, Ronald; Lucarelli, Andrea

    2016-04-01

    Prodeltaic deposits represent a valuable archive for the characterization of deltaic depositional systems, offering a distal, minimally reworked record of dominant processes active at the fluvial-marine interface. The Fish Creek Basin (CA, US) preserves a ~ 3-km thick, lower Pliocene, progradational deltaic succession formed when the ancestral Colorado River infiltrated a marine rift basin (the early Gulf of California). The unit in this succession interpreted as prodeltaic, corresponding to the upper Mud Hills Member of the Deguynos Formation, consists of ~ 300 m of muddy siltstones. A striking attribute of parts of this unit is the presence of rhythmic bedding, with consistently alternating silt- to fine sand-dominated and clay-dominated beds forming couplets with an average thickness of 12 cm. By performing a detailed sedimentological analysis of the rhythmites and investigating periodicities in bed thickness, our study aimed at reconstructing the mode of deposition of this enigmatic prodeltaic succession. We measured at high stratigraphic resolution 265 consecutive couplets, for a total thickness of 33 m. Individual beds have good lateral persistence of at least tens of meters and gradational to sharp, flat contacts. Observed sedimentary structures are concentrated on the coarser portion of the couplets and mostly consist of parallel and wavy lamination, with subordinate ripple cross-lamination and localized internal scours. Bioturbation appears low in intensity or absent. Most notably, grain size analysis performed with laser diffraction techniques on several couplets shows a consistent pattern of inverse grading transitioning to normal grading. The cumulative evidence of these sedimentological features indicates that deposition of the rhythmites was accomplished via hyperpycnal flows, each couplet most likely representing an individual event in a setting characterized by high overall depositional rates. We performed time series analysis on bed thickness of

  19. Modeling Methane Leakage from Faulty Wellbores in the Denver-Julesburg Basin, Colorado

    Science.gov (United States)

    Lackey, G.; Rajaram, H.; Karra, S.; Sherwood, O.; Burke, T. L.

    2015-12-01

    Regulations in the state of Colorado mandate that all oil and gas wells be constructed with surface casings that extend 50 feet below the depth of the deepest potable aquifer, and production casings that are cemented to at least 200 feet above the shallowest producing formation. Building wells in accordance with the minimum regulations leaves an uncemented annulus between the production casing and the surrounding rock matrix, extending from the bottom of the surface casing to the top of the production casing cement. In Colorado, this annulus is sealed at the ground surface by the "bradenhead valve". Stray methane can enter the uncemented annulus through faulty cement in the producing formation or an intermediate gas-bearing zone and migrate upwards along the production casing. The gas dissolves into the annular fluid and accumulates below the bradenhead valve building pressure. Data from the Colorado Oil and Gas Conservation Commission (COGCC) indicates that 1,492 wells in the Denver-Julesburg (DJ) Basin have recorded bradenhead pressures greater than 20 psi since 2007. A leak of this kind creates the potential for both the single-phase transport of dissolved methane and the multiphase transport of methane gas away from the well. The degree to which methane transport occurs depends not only on the size of the leak but also the construction of the wellbore. In Colorado, the definition of potable groundwater has changed with time. To meet increasing demands for water, drinking water wells have been drilled deeper. As a result, there are potentially 4,144 wells in the DJ Basin with surface casings too shallow to protect the deepest potable aquifer. In this work, we investigate how a methane leak into the open annulus of an oil and gas wellbore, could result in the transport of dissolved and gas phase methane into a nearby drinking water aquifer. We construct a multiphase wellbore model that computes the pressure distribution and gas fraction along the uncemented

  20. Evaluating natural gas development impacts on stream ecosystems in an Upper Colorado River watershed

    Science.gov (United States)

    Holloway, J. M.; Bern, C.; Schmidt, T. S.; McDougal, R. R.; Clark, M. L.; Stricker, C. A.; Wolf, R. E.

    2011-12-01

    Oil and gas development in the western United States is increasingly placing at odds the management of two critical natural resources: fossil fuels and water. Muddy Creek, part of the Upper Colorado River watershed, is a semi-arid catchment in a sagebrush steppe ecosystem. Muddy Creek flows throughout the year and includes both perennial and ephemeral tributaries. Primary land use includes livestock grazing, oil and gas development, and recreational activities. A multi-discipline study has been initiated to determine potential impacts of the projected increase of coal bed natural gas development. Hundreds of permits for drilling co-produced waters have been issued, but low energy prices have slowed development. A watershed assessment was conducted in 2010 to determine areas within the watershed that are more susceptible to mobilization of trace elements that occur in soils forming on marine shales. Soil, stream sediment, and water samples were collected and analyzed for major elements and a suite of trace elements, with arsenic and selenium identified as potential elements of concern. A study of benthic and riparian invertebrates is being conducted to evaluate the uptake of these elements into the food web at targeted locations in the Muddy Creek watershed. Continued work will address sources of salinity to Muddy Creek, and ultimately to the Upper Colorado River. Impacts from energy development can include mobilization of naturally occurring sulfate salts through soil disturbance. Formation waters currently discharged to the surface from two failed wells within the watershed will be evaluated for their contribution to salinity, as well as dissolved organic carbon, nitrogen species, and trace elements, to the Upper Colorado River. Upon completion, this study will provide a baseline that can assist in land-use management decisions as oil and gas extraction expands in the Upper Colorado River watershed.

  1. Spatial and temporal variability of nutrient retention in river basins: A global inventory

    NARCIS (Netherlands)

    Tysmans, D.J.J.; Löhr, A.J.; Kroeze, C.; Ivens, W.P.M.F.; Wijnen, van T.K.

    2013-01-01

    Nutrient export by rivers may cause coastal eutrophication. Some river basins, however, export more nutrients than others. We model the Basin-Wide Nutrient Export (BWNE) Index, defined as nutrient export by rivers as percentage of external nutrient inputs in the basins. We present results for rivers

  2. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  3. Descriptions of the Animas River-Cement Creek Confluence and Mixing Zone Near Silverton, Colorado, During the Late Summers of 1996-1997

    Science.gov (United States)

    2005-01-01

    Descriptions of the Animas River-Cement Creek Confluence and Mixing Zone near Silverton , Colorado, during the Late Summers of 1996 and 1997 U.S...circum-neutral Animas River in a high-elevation region of the San Juan Mountains near Silverton , Colorado. Cement Creek is acidic and enriched in metals...Animas River drains an extensively mineralized caldera in the San Juan Mountains near Silverton , Colorado (Yager and Bove, 2002). This is an area of

  4. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Minnick, Matthew D [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Mattson, Earl D [Idaho National Lab. (INL), Idaho Falls, ID (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States) Dept. of Cilvil and Environmental Engineering; Murray, Kyle E. [Univ. of Oklahoma, Norman, OK (United States) Oklahoma Geological Survey

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  5. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  6. Discharge and water quality of springs in Roan and Parachute Creek basins, northwestern Colorado, 1981-83

    Science.gov (United States)

    Butler, D.L.

    1985-01-01

    This report is a compilation and interpretation of discharge, water-quality, and radiochemical data collected at springs in the oil-shale regions of Roan and Parachute Creek basins, Colorado, from 1981 to 1983. Springs located on upland plateaus and ridges are mixed-cation bicarbonate water types with 216 to 713 milligrams per liter dissolved solids. Calcite and dolomite dissolution are dominant chemical reactions in upland springs. Springs located in the canyons contain greater concentrations of sodium and sulfate and have 388 to 3,970 milligrams per liter dissolved solids. Gypsum dissolution is an important chemical reaction in canyon spring water. The only trace constituents with mean concentration greater than 10 micrograms per liter in the study area were barium, boron, lithium and strontium. None of the canyon springs investigated represent discharge from the lower aquifer in the Green River Formation. Analysis of chemical and discharge data for streams in the Roan Creek drainage showed evidence of lower-aquifer discharge into the canyons. Springs located near an oil-shale mine or processing plant could be used for monitoring groundwater quality and quantity. Bicarbonate, fluoride, arsenic, boron, lithium, mercury, ammonia, and organic carbon may be chemical indicators of mine or process-water contamination of shallow aquifers near an oil-shale plant or mine. (USGS)

  7. Assessment of undiscovered oil and gas resources in the Paradox Basin Province, Utah, Colorado, New Mexico, and Arizona, 2011

    Science.gov (United States)

    Whidden, Katherine J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 560 million barrels of undiscovered oil, 12,701 billion cubic feet of undiscovered natural gas, and 490 million barrels of undiscovered natural gas liquids in the Paradox Basin of Utah, Colorado, New Mexico, and Arizona.

  8. Hydroclimatological changes in the Bagmati River Basin, Nepal

    Institute of Scientific and Technical Information of China (English)

    Yam Prasad DHITAL; TANG Qiuhong; SHI Jiancheng

    2013-01-01

    Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years.Changes in temperature,precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins.In this study,the temperatures (maximum and minimum),precipitation,and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin,Nepal.Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature,precipitation,and discharge.Increasing trend of temperature was found in all seasons,although the change rate was different in different seasons for both minimum and maximum temperatures.However,stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin.Both precipitation and discharge trend were increasing in the pre-monsoon season,but decreasing in the post-monsoon season.The significant trend of precipitation could not be observed in winter,although discharge trend was decreasing.Furthermore,the intensity of peak discharge was increasing,though there was not an obvious change in the intensity of maximum precipitation events.It is expected that all these changes have effects on agriculture,hydropower plant,and natural biodiversity in the mountainous river basin of Nepal.

  9. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  10. Colorado

    Directory of Open Access Journals (Sweden)

    Gerardo Rodríguez Quiroz

    2008-01-01

    Full Text Available La conservación de la biodiversidad cuenta, entre sus principales mecanismos de intervención, con las áreas naturales protegidas. En el alto Golfo de California (AGC se ubica la Reser-va de la Biosfera del Alto Golfo de California y Delta del Río Colorado, en la que subsisten especies de alto valor económico, así como especies en peligro de extinción. Este último factor justificó el establecimiento de la reserva. El estudio analiza la efectividad de la Reserva del Alto Golfo como mecanismo de protección de los recursos naturales, en particular de las que están en riesgo de desaparecer, así como de comprobar si los pescadores han mejorado sus condiciones de vida tras la operación de esa área natural. La exploración se llevó a cabo mediante la aplicación de una encuesta a los pescadores. Se sugiere que es indispensable un gran esfuerzo, de autoridades y grupos organizados, para encontrar soluciones al manejo de la Reserva, a fin fijar un programa que permita la recuperación de las especies en peligro de extinción, elevar la calidad de vida de los pescadores y con ello garantizar un equilibrio entre la conservación y la sustentabilidad de la pesca y de los pescadores en el Alto Golfo de California.

  11. Colorado

    Science.gov (United States)

    2002-01-01

    An early-season snowfall accents the Rocky Mountains through western and central Colorado. This true-color image made from data collected by MODIS on October 26, 2001, highlights the contrast between various irrigated areas and the otherwise dry environment at the foothills of the Rockies. One such example is the city of Denver and its outlying suburbs, which can be seen best in the high-resolution image. In areas that would normally harbor drought-tolerant grasses, shrubs and trees, humans are living, watering their lawns, and farming; those watered, green areas differ substantially from the surrounding hues of brown. Numerous National Parks and Monuments dot the Southwestern U.S. The Great Sand Dunes National Monument is one such park. Running along the western base the Sangre de Cristo Range(just below the image's center), a subsection of the Rockies, the monument possesses some of the highest inland sand dunes in the U.S., with crests reaching over 700 feet.

  12. Streamflow gains and losses in the Colorado River in northwestern Burnet and southeastern San Saba Counties, Texas

    Science.gov (United States)

    Braun, Christopher L.; Grzyb, Scott D.

    2015-08-12

    In October 2012, the U.S. Geological Survey (USGS), in cooperation with the Central Texas Groundwater Conservation District, began an assessment to better understand if and where groundwater from the Ellenburger-San Saba aquifer is discharging to the Colorado River, and if and where Colorado River streamflow is recharging the Ellenburger-San Saba aquifer in the study area. Discharge measurements were made to determine if different reaches of the Colorado River in northwestern Burnet and southeastern San Saba Counties are gaining or losing streamflow, the locations and quantities of gains and losses, and whether the gains and losses can be attributed to interaction between the river and the Ellenbuger-San Saba aquifer. To assess streamflow gains and losses, two sets of synoptic gain-loss discharge measurements representing different streamflow conditions were completed. In the first gain-loss streamflow survey during December 3–6, 2012 (hereinafter the fall 2012 gain-loss survey), discharge measurements were made at low-flow conditions ranging from about 30 to 60 cubic feet per second (ft3/s) at seven locations along the Colorado River. In the second gain-loss streamflow survey during May 31–June 1, 2014 (hereinafter the spring 2014 gain-loss survey), discharge measurements were made at high-flow conditions ranging from about 660 to 900 ft3/s at 12 locations along the Colorado River.

  13. Institutions and Societal Impacts of Climate in the Lower Colorado and San Pedro Basins of the U.S.-Mexico Border Region

    Science.gov (United States)

    Varady, R. G.; Wilder, M.; Morehouse, B. J.; Garfin, G. M.

    2007-05-01

    The U.S. Southwest and Mexico border region feature two prominent river basins, the Colorado and Rio Grande, and ecologically important sub-basins such as the San Pedro. The area within which these transboundary basins lie is characterized by overall aridity and high climatic variability over seasonal to decadal and longer time scales. Throughout human occupation, numerous and diverse strategies for buffering climate impacts have emerged. The most notable response has been an increasingly complex system of institutions and structures designed to buffer water scarcity. The Colorado River Compact, and the laws governing allocation of waters from the Rio Grande River, together with the dams, hydropower generators, canals and other engineered features, represent two of the most complex systems. Drought nevertheless remains a looming specter across much of the binational border region. Institutional mechanisms for responding to drought range from awareness-raising and capacity-building efforts, to implementation of formal drought plans, to storing water to make up for deficits, and water conservation rules that become increasingly stringent as drought intensifies. A number of formal and informal binational institutions operate in the region. Some are venerable, like the century-old International Boundary and Water Commission (IBWC) and its Mexican counterpart the Comision Internacional de Limites y Agua (CILA). Others, like the Border Environment Cooperation Commission and the North American Development Bank, were created in the mid-1990s with the North American Free Trade Agreement. These institutions, both domestic and transnational, operate in a complex binational, bicultural environment with contrasting legal and administrative traditions. Under such constraints, they manage water resources and ecosystems and attempt to improve water and sanitation infrastructure in the context of deep and extended drought. But in spite of their efforts, society and natural habitat

  14. Late pleistocene aggradation and degradation of the lower colorado river: Perspectives from the Cottonwood area and other reconnaissance below Boulder Canyon

    Science.gov (United States)

    Lundstrom, S.C.; Mahan, S.A.; Paces, J.B.; Hudson, M.R.; House, P.K.; Malmon, D.V.; Blair, J.L.; Howard, K.A.

    2008-01-01

    Where the lower Colorado River traverses the Basin and Range Province below the Grand Canyon, significant late Pleistocene aggradation and subsequent degrada tion of the river are indicated by luminescence, paleomagnetic, and U-series data and stratigraphy. Aggradational, finely bedded reddish mud, clay, and silt are underlain and overlain by cross-bedded to plane-bedded fine sand and silt. That sequence is commonly disconformably overlain by up to 15 m of coarse sand, rounded exotic gravel, and angular, locally derived gravel. Luminescence dates on the fine sediments range from ca. 40 ka to 70 ka, considering collective uncertainties. A section of fine grained sediments over a vertical range of 15 m shows normal polarity magnetization and little apparent secular variation beyond dispersion that can be explained by com paction. Aggradation on large local tributaries such as Las Vegas Wash appears to have been coeval with that of the Colorado River. The upper limits of erosional rem nants of the sequence define a steeper grade above the historical river, and these late Pleistocene deposits are greater than 100 m above the modern river north of 35??N. Ter race gravels inset below the upper limit of the aggradational sequence yield 230Th dates that range from ca. 32 ka to 60 ka and indicate that degradation of the river system in this area closely followed aggradation. The thick sequence of rhythmically bedded mud and silt possibly indicates set tings that were ponded laterally between valley slopes and levees of the aggrading river. Potential driving mechanisms for such aggradation and degradation include sediment-yield response to climate change, drought, fire, vegetation-ecosystem dynam ics, glaciation, paleofloods, groundwater discharge, and building and destruction of natural dams produced by volcanism and landslides. ?? 2008 The Geological Society of America.

  15. Drought in the Klamath River Basin

    Science.gov (United States)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  16. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    Science.gov (United States)

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  17. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  18. Sustainable development indicators: Case study for South Morava river basin

    Directory of Open Access Journals (Sweden)

    Veljković Nebojša D.

    2013-01-01

    Full Text Available The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index. Developed aggregate indicator of sustainable development is calculated and analyzed for South Morava river basin in Serbia, for the period from 1980 to 2010. The beneficiaries of these indicators are the experts from the field of environmental protection and water management who should use it for elaboration of reports directed towards the creators of economic development policy and river basin management planning. Elaborated according to the given methodology, the indicator Ecoregion Sustainable Development Index is available for the decision makers on the national level, internationally comparative and it provides the conditions for further elaboration and application.

  19. The coordination of regional interest in developing river basin

    Institute of Scientific and Technical Information of China (English)

    Chen Xiangman

    2006-01-01

    River basin is a special region with the characteristics of entirety and relation, regionality and diversity,gradation and network, openness and dissipation etc. It is an important unit that organizes and governs national economy as well as a natural region. In river basin, all natural essential factors relate closely each other, and there is remarkable influence between inter-regions. In the process of developing river basin, the multiplex main interest body,the diverse interest demand and the multi-ways of interest realization constitute a complicated interest network, and result in various contradictions and conflicts. Therefore, effective regional interest coordination mechanism should be established to coordinate various regional interest relations. They are the public interest realization mechanism, the fair interest assignment mechanism, the effective interest integration mechanism, the expedited interest expression mechanism and the reasonable interest compensative mechanism.

  20. Backwater effects in the Amazon River basin of Brazil

    Science.gov (United States)

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  1. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Jensen, Iris Hedegaard; Guzinski, R.

    2014-01-01

    assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools...... to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic–hydrodynamic model which is entirely based...... on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators...

  2. Eolian sand transport pathways in the southwestern United States: Importance of the Colorado River and local sources

    Science.gov (United States)

    Muhs, D.R.; Reynolds, R.L.; Been, J.; Skipp, G.

    2003-01-01

    Geomorphologists have long recognized that eolian sand transport pathways extend over long distances in desert regions. Along such pathways, sediment transport by wind can surmount topographic obstacles and cross major drainages. Recent studies have suggested that three distinct eolian sand transport pathways exist (or once existed) in the Mojave and Sonoran Desert regions of the southwestern United States. One hypothesized pathway is colian sand transport from the eastern Mojave Desert of California into western Arizona, near Parker, and would require sand movement across what must have been at least a seasonally dry Colorado River valley. We tested this hypothesis by mineralogical, geochemical and magnetic analyses of eolian sands on both sides of the Colorado River, as well as sediment from the river itself. Results indicate that dunes on opposite sides of the Colorado River are mineralogically distinct: eastern California dunes are feldspar-rich whereas western Arizona dunes are quartz-rich, derived from quartz-rich Colorado River sediments. Because of historic vegetation changes, little new sediment from the Colorado River is presently available to supply the Parker dunes. Based on this study and previous work, the Colorado River is now known to be the source of sand for at least three of the major dune fields of the Sonoran Desert of western Arizona and northern Mexico. On the other hand, locally derived alluvium appears to be a more important source of dune fields in the Mojave Desert of California. Although many geomorphologists have stressed the importance of large fluvial systems in the origin of desert dune fields, few empirical data actually exist to support this theory. The results presented here demonstrate that a major river system in the southwestern United States is a barrier to the migration of some dune fields, but essential to the origin of others. Published by Elsevier Science Ltd.

  3. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    Science.gov (United States)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  4. Survival, growth, and movement of subadult humpback chub, Gila cypha, in the Little Colorado River, Arizona

    Science.gov (United States)

    Dzul, Maria C.; Yackulic, Charles B.; Stone, Dennis M.; Van Haverbeke, David R.

    2016-01-01

    Ecologists estimate vital rates, such as growth and survival, to better understand population dynamics and identify sensitive life history parameters for species or populations of concern. Here, we assess spatiotemporal variation in growth, movement, density, and survival of subadult humpback chub living in the Little Colorado River, Grand Canyon, AZ from 2001–2002 and 2009–2013. We divided the Little Colorado River into three reaches and used a multistate mark-recapture model to determine rates of movement and differences in survival and density between sites for different cohorts. Additionally, site-specific and year-specific effects on growth were evaluated using a linear model. Results indicate that summer growth was higher for upstream sites compared with downstream sites. In contrast, there was not a consistent spatial pattern across years in winter growth; however, river-wide winter growth was negatively related to the duration of floods from 1 October to 15 May. Apparent survival was estimated to be lower at the most downstream site compared with the upstream sites; however, this could be because in part of increased emigration into the Colorado River at downstream sites. Furthermore, the 2010 cohort (i.e. fish that are age 1 in 2010) exhibited high apparent survival relative to other years. Movement between reaches varied with year, and some years exhibited preferential upstream displacement. Improving understanding of spatiotemporal effects on age 1 humpback chub survival can help inform current management efforts to translocate humpback chub into new locations and give us a better understanding of the factors that may limit this tributary's carrying capacity for humpback chub.

  5. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  6. Water resources of Wisconsin: lower Wisconsin River basin

    Science.gov (United States)

    Hindall, S.M.; Borman, Ronald G.

    1974-01-01

    This report describes the physical environment, availability, distribution, movement, quality, and use of water in the upper Wisconsin River basin as an aid in planning and water management. The report presents general information on the basin derived from data obtained from Federal, State, and local agencies, New field data were collected in areas where information was lacking. More detailed studies of problem areas may be required in the future, as water needs and related development increase.

  7. Transforming River Basin Management In South Africa: Lessons from the Lower Komati River

    NARCIS (Netherlands)

    Waalewijn, P.; Wester, P.; Straaten, van K.

    2005-01-01

    This paper analyzes the transformation of river basin management in South Africa by focusing on the political processes involved in the creation of new water management bodies and irrigation infrastructure in the Lower Komati sub-basin. Institutional reform is described and analyzed in terms of the

  8. Interlinking feasibility of five river basins of Rajasthan in India

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Vyas

    2016-09-01

    Annual surplus water of about 1437 MCM in the river Chambal is going waste and ultimately reaches to sea after creating flood situations in various places in India including Rajasthan, while on the other hand 1077 MCM water is a requirement in the four other basins in Rajasthan i.e. Banas, Banganga, Gambhir and Parbati at 75% dependability. Interlinking and water transfer from Chambal to these four river basins is the prime solution for which 372 km link channel including 9 km tunnel of design capacity of 300 cumec with 64 m lift is required.

  9. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  10. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley–Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin. Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  11. Deep structure of the Argentine margin inferred from 3D gravity and temperature modelling, Colorado Basin

    Science.gov (United States)

    Autin, J.; Scheck-Wenderoth, M.; Götze, H.-J.; Reichert, C.; Marchal, D.

    2016-04-01

    Following previous work on the Colorado Basin using a 3D crustal structural model, we now investigate the presence of lower crustal bodies at the base of the crust using 3D lithospheric gravity modelling and calculations of the conductive thermal field. Our first study highlighted two fault directions and depocentres associated with thinned crust (NW-SE in the West and NE-SW at the distal margin). Fault relative chronology argues for two periods of extension: (1) NW-SE faulting and thinning in the western Colorado Basin and (2) NE-SW faulting and thinning related to the continental breakup and formation of the NE-SW-striking volcanic margins of the Atlantic Ocean. In this study, the geometry of modelled high-density Lower Crustal Bodies (LCBs) enables the reproduction of the gravimetric field as well as of the temperature measured in wells down to 4500 m. The modelled LCBs correlate with geological observations: (1) NW-SE LCBs below the deepest depocentres in the West, (2) NE-SW LCBs below the distal margin faults and the seaward dipping reflectors. Thus the proposed poly-phased evolution of the margin could as well correspond to two emplacement phases of the LCBs. The calculated conductive thermal field fits the measured temperatures best if the thermal properties (thermal conductivity and radiogenic heat production) assigned to the LCBs correspond to either high-grade metamorphic rocks or to mafic magmatic intrusions. To explain the possible lithology of the LCBs, we propose that the two successive phases of extension are accompanied by magma supply, emplaced (1) in the thinnest crust below the older NW-SE depocentres, then (2) along the NE-SW continentward boundary of the distal margin and below the volcanic seaward dipping reflectors. The South African conjugate margin records only the second NE-SW event and we discuss hypotheses which could explain these differences between the conjugate margins.

  12. Comparison of two methods for estimating base flow in selected reaches of the South Platte River, Colorado

    Science.gov (United States)

    Capesius, Joseph P.; Arnold, L. Rick

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, compared two methods for estimating base flow in three reaches of the South Platte River between Denver and Kersey, Colorado. The two methods compared in this study are the Mass Balance and the Pilot Point methods. Base-flow estimates made with the two methods were based upon a 54-year period of record (1950 to 2003).

  13. Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

    Science.gov (United States)

    Mast, M. Alisa

    2017-07-13

    Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

  14. Structural Geometry of a Sector of the Colorado River Delta, Baja California, Mexico, Based on Seismic Reflections

    Science.gov (United States)

    Chanes-Martínez, J. Juan; González-Escobar, Mario; Suárez-Vidal, Francisco; Gallardo-Mata, Clemente G.

    2014-07-01

    A structural study in the SW section of the Colorado River delta using seismic reflection data is presented. The study area is located along the Cerro Prieto transform fault, which extends from the northern Gulf of California through the Mexicali Valley and is an active fault within the Pacific-North American plate boundary zone. The research was supported by a database of five seismic profiles with a total length of 215 km, collected in the early 80's by Petróleos Mexicanos. The results show a high density of faults, most of which are buried by sediments. Within the Cerro Prieto fault zone, several faults were identified, such as: Palmas, Mesa, and Pangas Viejas, until now unknown. In addition, even though the Indiviso fault was investigated and superficially identify prior to this work, herein mapped at depth. West of the Cerro Prieto fault zone lies the Las Tinajas basin, bound by the Dunas and Saldaña faults and by the Montague basin to the southeast. The deformation zone along the plate boundary is 18-km-wide, stretching from the Cerro Prieto fault in the east to the Pangas Viejas fault in the west. The orientations of the faults are NW-SE, and if projected from the southern side of the Sierra Cucapah southward, the faults tend to join the Cerro Prieto fault. In the Las Tinajas basin, the acoustic basement is deeper than 5,000 m. Some of the largest vertical displacements generated by the 2010 7.2-Mw El Mayor-Cucapah earthquake occurred southeast of the epicenter and coincided with the location of the Pangas Viejas Fault, which is buried by sediments. Before this event, seismic activity was very low, and no structures were known in the area. In this paper, we demonstrate that there are at least seven major faults that may now pose a high seismic hazard.

  15. Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado

    Science.gov (United States)

    Lindsey, D.A.

    1998-01-01

    erosion of a highland is the appearance of abundant feldspar in the Late Cretaceous Vermejo Formation. Above the Vermejo, unconformities overlain by conglomerate indicate continued thrusting and erosion of highlands from late Cretaceous (Raton) through Eocene (Cuchara) time. Eocene alluvial-fan conglomerates in the Cuchara Formation may represent erosion of the Culebra thrust block. Deposition in the Raton Basin probably shifted north from New Mexico to southern Colorado from Paleocene to Eocene time as movement on individual thrusts depressed adjacent segments of the basin.

  16. 76 FR 13438 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-11

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  17. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Science.gov (United States)

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  18. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    Science.gov (United States)

    Patel, L. K.; Pillai, J.

    2011-12-01

    Himalayan region consist many glaciers and glacier-fed rivers. About 17% of the Indian Himalayan Region (IHR) is under permanent cover of Ice and snow and have more than 9000 glaciers and high altitude fresh water lakes. Stream runoff originating from the glaciers has direct implication in geomorphology of the region. Present study is an attempt to find out the stages in the geomorphic development of a higher altitudinal river basin, Pindari river basin. Development of a landscape is equal to the some total of the development of each individual drainage basin of which it is composed. Morphometric parameters of the river basin had been identified viz. linear, areal and relief aspect and examined. Pindari river basin is a 5th order high altitudinal, sub-dendratic, parallel and perennial tributary of Alaknanda River, formed by three main tributaries (Sunderdhunga, Pindari and Kafini). It has the catchment area above 557.63 Km2. This river originates from combined action of rain and snow fall from Pindari glacier which is part of Nanda Devi Biosphere Reserve (a world heritage site). Pindari river basin is located between 1600 m to 6880 m elevation ,and 300 03' 23" -300 19' 04" N Latitude and 790 45' 59" - 80 0 04' 13"E Longitude. Due to microclimatic conditions Pindari river basin generally dry with low annual precipitation. There is heavy rainfall during monsoon season. The approximate variation in the precipitation is from 750 mm to 2000 mm. For estimating the Morphometric parameter SOI toposheet on 1:50000 scale and Landsat data (ETM+) having 15m resolution were georectified in RS and GIS environment. SRTM data was used in analysis of elevation and slope range of the study area. Extensive field study was held on during the year 2010. Morphometric parameters (linear, aerial and relief) of the study area had been estimated. It is observed that Pindari river basin is a sub-dendratic, higher relief, youth, fine texture; elongated basin has peak flow, high discharge, and

  19. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  20. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  1. 2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    Science.gov (United States)

    Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.

    2009-01-01

    Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.

  2. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    Science.gov (United States)

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  3. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    Science.gov (United States)

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  4. Effects of a test flood on fishes of the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Valdez, R.A.; Hoffnagle, T.L.; McIvor, C.C.; McKinney, T.; Leibfried, W.C.

    2001-01-01

    A beach/habitat-building flow (i.e., test flood) of 1274 m3/s, released from Glen Canyon Dam down the Colorado River through Grand Canyon, had little effect on distribution, abundance, or movement of native fishes, and only short-term effects on densities of some nonnative species Shoreline and backwater catch rates of native fishes, including juvenile humpback chub (Gila cypha), flannelmouth suckers (Catostomus latipinnis), and bluehead suckers (C. discobolus), and all ages of speckled dace (Rhinichthys osculus), were not significantly different before and after the flood. Annual spring spawning migrations of flannelmouth suckers into the Paria River and endangered humpback chub into the Little Colorado River (LCR) took place during and after the flood, indicating no impediment to fish migrations. Pre-spawning adults staged in large slack water pools formed at the mouths of these tributaries during the flood. Net movement and habitat used by nine radio-tagged adult humpback chub during the flood were not significantly different from prior observations. Diet composition of adult humpback chub varied, but total biomass did not differ significantly before, during, and after the flood, indicating opportunistic feeding for a larger array of available food items displaced by the flood. Numbers of nonnative rainbow trout (Oncorhynchus mykiss) disadvantage alien predators and competitors and enhance survival of native fishes.

  5. Erosion properties of cohesive sediments in the Colorado River in Grand Canyon

    Science.gov (United States)

    Akahori, R.; Schmeeckle, M.W.; Topping, D.J.; Melis, T.S.

    2008-01-01

    Cohesive sediment deposits characterized by a high fraction of mud (silt plus clay) significantly affect the morphology and ecosystem of rivers. Potentially cohesive sediment samples were collected from deposits in the Colorado River in Marble and Grand Canyons. The erosion velocities of these samples were measured in a laboratory flume under varying boundary shear stresses. The non-dimensional boundary shear stress at which erosion commenced showed a systematic deviation from that of non-cohesive sediments at mud fractions greater than 0.2. An empirical relation for the boundary shear stress threshold of erosion as a function of mud fraction was proposed. The mass erosion rate was modelled using the Ariathurai-Partheniades equation. The erosion rate parameter of this equation was found to be a strong function of mud fraction. Under similar boundary shear stress and sediment supply conditions in the Colorado River, cohesive lateral eddy deposits formed of mud fractions in excess of 0.2 will erode less rapidly than non-cohesive deposits. Copyright ?? 2008 John Wiley & Sons, Ltd.

  6. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA.

    Science.gov (United States)

    Walters, David M; Rosi-Marshall, Emma; Kennedy, Theodore A; Cross, Wyatt F; Baxter, Colden V

    2015-10-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 μg g(-1) Hg and 1.35-2.65 μg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries.

  7. THE VOLTA RIVER BASIN OF GHANA

    African Journals Online (AJOL)

    - ... Variables that are considered include the absolute population, population den- ... Concept and theories of the population—natural resource nexus are ... White Volta sub~basin is located in the north of Ghana, extending southwards to.

  8. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Science.gov (United States)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2013-05-01

    Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA). Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300-2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern

  9. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments

    Science.gov (United States)

    Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.

    2016-12-01

    Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.

  10. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    Science.gov (United States)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  11. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  12. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  13. Nearshore temperature findings for the Colorado River in Grand Canyon, Arizona: possible implications for native fish

    Science.gov (United States)

    Ross, Robert P.; Vernieu, William S.

    2013-01-01

    Since the completion of Glen Canyon Dam, Arizona, in 1963, downstream water temperatures in the main channel of the Colorado River in Glen, Marble, and Grand Canyons are much colder in summer. This has negatively affected humpback chub (Gila cypha) and other native fish adapted to seasonally warm water, reducing main-channel spawning activity and impeding the growth and development of larval and juvenile fish. Recently published studies by U.S. Geological Survey scientists found that under certain conditions some isolated nearshore environments in Grand Canyon allow water to become separated from the main-channel current and to warm, providing refuge areas for the development of larval and juvenile fish.

  14. Southwestern riparian plant trait matrix, Colorado River, Grand Canyon, 2014 to 2016 - Data

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara; Sarr, Daniel; Merritt, David M.; Shafroth, Patrick B.; Scott, J. A.

    2016-01-01

    This dataset contains information on the physical traits and environmental tolerances of plant species occurring along the lower Colorado River through Grand Canyon. Due to the unique combination of plant species within the Grand Canyon, this flora shares species with many riparian areas in the western U.S.A. and represents obligate wetland to obligate upland plant species. Data for the matrix were compiled from published scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Categorical, ordinal, and continuous data are included in this dataset. This dataset does not contain sensitive or classified data.

  15. Integrated geographical research in the Khovd River basin (Mongolia)

    Science.gov (United States)

    Mukhanova, Mariia; Syromyatina, Margarita; Kurochkin, Yuriy; Chistyakov, Kirill

    2017-04-01

    Khovd River located in the endorheic basin of Grate Lakes Depression is a main river of western Mongolia. It has more than 500 km length and runs from the glaciers of the Tavan Bogd Mountains through different vegetation zones to the terminal Khar-Us lake. The main purpose of the study is to estimate the current state and dynamics of the geosystems in this river basin as it plays a critical part in the water supply of submontane desert steppe plains of western Mongolia. One of the objectives is to understand the formation and regime of water discharge in this inland river basin with glaciation. The results are mostly based on the 2013-2016 integrated field research including glaciological, meteorological, hydrological and dendrochronological measurements as well as hydrometeorological stations' data analysis and remote sensing data acquired from satellites. Last year the main attention was given to hydrological and hydrochemical research. In summer we measured TDS concentration in 71 points throughout the stream course of Khovd River and its tributaries. TDS is changing from 0-1 ppm at glaciers to 67 ppm at river mouth and 93 ppm at Khar-Us lake. The hydrochemical analysis shows that the water type is changing from hydrocarbonate-calcium at the beginning of the river to the sulfate-calcium at the mouth. Glaciers play a crucial role in feeding the river only in its upper part. Glaciological study revealed that the areas of the main glaciers were not much changed since 1989, while the glacier tongue regression was fixed. The total glacier area decreased approximately by 4.5 % in the Tsagaan-Gol basin and by 6.9 % in the Tsagaan-Us basin from 1989 to 2013. Large glaciers were retreating at an average rate of 28-34 m/year between 2001 and 2014. The hydrometeorological data analysis shows that most of the catchment area is characterized by aridization tendency for the last 10 years. This fact is well confirmed by the dendrochronological streamflow reconstruction of the

  16. Salinity of the Little Colorado River in Grand Canyon confers anti-parasitic properties on a native fish

    Science.gov (United States)

    Ward, David L.

    2012-01-01

    Water in the Little Colorado River within Grand Canyon is naturally high in salt (NaCl), which is known to prohibit development of external fish parasites such as Ich (Ichthyophthirius multifiliis). The naturally high salinity (>0.3%) of the Little Colorado River at baseflow may be one factor allowing survival and persistence of larval and juvenile humpback chub (Gila cypha) and other native fishes in Grand Canyon. We compared salinity readings from the Little Colorado River to those reported in the literature as being effective at removing protozoan parasites from fish. In laboratory tests, 10 juvenile roundtail chub (Gila robusta; 61–90 mm TL) were randomly placed into each of 12, 37-L aquaria filled with freshwater, water obtained from the Little Colorado River (0.3% salinity), or freshwater with table salt added until the salinity reached 0.3%. Roundtail chub was used as a surrogate for humpback chub in this study because the species is not listed as endangered but is morphologically and ecologically similar to humpback chub. All roundtail chub infected with Ich recovered and survived when placed in water from the Little Colorado River or water with 0.3% salinity, but all experimental fish placed in freshwater died because of Ich infection. The naturally high salinity of the Little Colorado River at baseflow (0.22%–0.36%), appears sufficiently high to interrupt the life cycle of Ich and may allow increased survival of larval and juvenile humpback chub relative to other areas within Grand Canyon.

  17. Plant biomass in the Tanana River Basin, Alaska.

    Science.gov (United States)

    Bert R. Mead

    1995-01-01

    Vegetation biomass tables are presented for the Tanana River basin. Average biomass for each species of tree, shrub, grass, forb, lichen, and moss in the 13 forest and 30 nonforest vegetation types is shown. These data combined with area estimates for each vegetation type provide a tool for estimating habitat carrying capacity for many wildlife species. Tree biomass is...

  18. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    Science.gov (United States)

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  19. An urban flood in the kashio river basin

    OpenAIRE

    Matsuda, Iware

    1987-01-01

    An urban flood is one of knotty problems derived from land development. Taking the Kashio River basin of Kanagawa Prefecture as an example, the relationships between urbanization and flood hazards were historically discussed. It was explained that a flood prevention work in one area affects other areas. The historical change in conditions for flood hazards can be divided into six stages.

  20. Placentation in dolphins from the Amazon River Basin

    DEFF Research Database (Denmark)

    da Silva, Vera M F; Carter, Anthony M; Ambrosio, Carlos E

    2007-01-01

    A recent reassessment of the phylogenetic affinities of cetaceans makes it timely to compare their placentation with that of the artiodactyls. We studied the placentae of two sympatric species of dolphin from the Amazon River Basin, representing two distinct families. The umbilical cord branched...

  1. Appropriate models in decision support systems for river basin management

    NARCIS (Netherlands)

    Xu, YuePing; Booij, Martijn J.; Morell, M.; Todorovik, O.; Dimitrov, D.; Selenica, A.; Spirkovski, Z.

    2004-01-01

    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the

  2. An ecosystem services approach in the Tisza river basin

    NARCIS (Netherlands)

    Minca, E.L.; Petz, K.; Werners, S.E.

    2008-01-01

    The Tisza River Basin in Hungary and Romania is increasingly impacted by floods and droughts. Ecosystems have the capacity to mitigate the effect of these weather extremes. The provision of ecosystem services – the benefits people obtain from ecosystems – is strongly affected by the way in which eco

  3. Pyomyositis in the upper Negro river basin, Brazilian Amazonia

    DEFF Research Database (Denmark)

    Borges, Alvaro Humberto Diniz; Faragher, Brian; Lalloo, David G

    2012-01-01

    Pyomyositis remains poorly documented in tropical Latin America. We therefore performed a retrospective review of cases admitted to a hospital in the upper Negro river basin during 2002-2006. Seasonality was assessed by the cosinor model and independent predictors of outcome were identified...

  4. Work plan for the Sangamon River basin, Illinois

    Science.gov (United States)

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  5. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  6. Geochemical evaluation of upper cretaceous fruitland formation coals, San Juan Basin, New Mexico and Colorado

    Science.gov (United States)

    Michael, G.E.; Anders, D.E.; Law, B.E.

    1993-01-01

    Geochemical analyses of coal samples from the Upper Cretaceous Fruitland Formation in the San Juan Basin of New Mexico and Colorado were used to determine thermal maturity, type of kerogen, and hydrocarbon generation potential. Mean random vitrinite reflectance (%Rm) of the Fruitland coal ranges from 0.42 to 1.54%. Rock-Eval pyrolysis data and saturated to aromatic hydrocarbon ratio indicate that the onset of thermal hydrocarbon generation begins at about 0.60% Rm and peak generation occurs at about 0.85% Rm. Several samples have hydrogen index values between 200 and 400, indicating some potential for liquid hydrocarbon generation and a mixed Type III and II kerogen. Pentacyclic and tricyclic terpanes, steranes, aromatic steroids and methylphenanthrene maturity parameters were observed through the complete range of thermal maturity in the Fruitland coals. Aromatic pentacyclic terpanes, similar to those found in brown coals of Australia, were observed in low maturity samples, but not found above 0.80% Rm. N-alkane depleted coal samples, which occur at a thermal maturity of approx. 0.90% Rm, paralleling peak hydrocarbon generation, are fairly widespread throughout the basin. Depletion of n-alkanes in these samples may be due to gas solution stripping and migration fromthe coal seams coincident with the development of pressure induced fracturing due to hydrocarbon generation; however, biodegradation may also effect these samples. ?? 1993.

  7. CO{sub 2} sequestration in an unmineable coalbed - San Juan Basin, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D.; Jensen, J.R. [BP Amoco, Sunbury-on-Thames (United Kingdom)

    2001-07-01

    BP Amoco (BPA) is investigating the sequestration of approximately 464 tonnes per day of vented CO{sub 2} from gas processing plant by injecting the CO{sub 2} into a non-mineable natural gas producing coal in the Colorado portion of the San Juan Basin. Removed CO{sub 2} from this production will be re-injected into the coalbed for sequestration. BPA has concentrated efforts on utilizing nitrogen to enhance the recovery of methane from coals and currently operates the largest and most significant project of its kind. On a pilot basis, CO{sub 2} sequestration, as an enhanced recovery process for Fruitland coals, has also been undertaken in the San Juan Basin (SJB). The two gases behave differently in coals. CO{sub 2} is readily adsorbed on the coal and therefore displaces the methane whereas the nitrogen strips the methane from the coals by reducing the partial pressure of the methane. Injection, production and reservoir data will be used to evaluate the success of the CO{sub 2} sequestration. BPA will use its proprietary GCOMP Reservoir Model to investigate the flow and adsorption of CO{sub 2}, simulate the process, compare field results with model predictions, and adjust the model to better match actual field performance. Preliminary simulations indicate that some incremental methane production will be recovered, while sequestering nearly all of the injected CO{sub 2} in the coals seams. 3 figs.

  8. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  9. Case study of the Sarawak River Basin

    African Journals Online (AJOL)

    2012-12-20

    Dec 20, 2012 ... (World Weather and Climate Information, 2010–2011) .... Batu Kitang Water Treatment Plant to form the Sarawak River, before flowing into the South China .... current study, and areas shaded in light blue are the flood-prone.

  10. Implications of low-temperature cooling history on a transect across the Colorado Plateau-Basin and Range boundary, west central Arizona

    Science.gov (United States)

    Bryant, B.; Naeser, C.W.; Fryxell, J.E.

    1991-01-01

    Fission track ages of apatite and zircon from metamorphic, plutonic, and sedimentary rocks along a 80-km transect across the Colorado Plateau-Basin and Range boundary in west central Arizona show differences in the low-temperature cooling histories between the provinces. The transect extends from Cypress Mountain in the Colorado Plateau transition zone to the eastern Buckskin Mountains in the Basin and Range. -from Authors

  11. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  12. Priority targets for environmental research in the Sinos River basin.

    Science.gov (United States)

    Spilki, F R; Tundisi, J G

    2010-12-01

    The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  13. Priority targets for environmental research in the Sinos River basin

    Directory of Open Access Journals (Sweden)

    FR. Spilki

    Full Text Available The Sinos River Basin is often mentioned as a highly degraded watershed. A series of impacts on water quality, soil and air has been reported in this environment on a recurring basis over the years. This situation of environmental degradation has its origins in a process of huge economic development uncoupled from environmental conservation concerns. The intense consequent urbanization observed for the municipalities within the watershed was not preceded by urban planning proper zoning. The time has arrived for initiatives in scientific research in the Sinos River basin that are applicable to a more efficient and integrated management and recovery of the basin. In this article, a set of targets for research is suggested which the authors consider as the main priorities for the next few years, aiming for better knowledge and better management of the watershed. Some are still in course, while others have to be initiated as soon as possible.

  14. RUNOFF POTENTIAL OF MUREŞ RIVER UPPER BASIN TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    V. SOROCOVSCHI

    2012-03-01

    Full Text Available Runoff Potential of Mureş River Upper Basin Tributaries. The upper basin of the Mureş River includes a significant area of the Eastern Carpathians central western part with different runoff formation conditions. In assessing the average annual runoff potential we used data from six gauging stations and made assessments on three distinct periods. Identifying the appropriate areas of the obtained correlations curves (between specific average runoff and catchments mean altitude allowed the assessment of potential runoff at catchment level and on geographical units. The potential average runoff is also assessed on altitude intervals of the mentioned areas. The runoff potential analysis on hydrographic basins, geographical units and altitude intervals highlights the variant spatial distribution of this general water resources indicator in the different studied areas.

  15. Prediction of water flows in Colorado River, Argentina Predicción de caudales en río Colorado, Argentina

    OpenAIRE

    Pierini, Jorge O.; Gómez,Eduardo A; Luciano Telesca

    2012-01-01

    The identification of suitable models for predicting daily water flow is important for planning and management of water storage in reservoirs of Argentina. Long-term prediction of water flow is crucial for regulating reservoirs and hydroelectric plants, for assessing environmental protection and sustainable development, for guaranteeing correct operation of public water supply in cities like Catriel, 25 de Mayo, Colorado River and potentially also Bahía Blanca. In this paper, we analyze in Bu...

  16. Estimation of Continental-Basin-Scale Sublimation in the Lena River Basin, Siberia

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Suzuki

    2015-01-01

    Full Text Available The Lena River basin in Siberia produces one of the largest river inflows into the Arctic Ocean. One of the most important sources of runoff to the river is spring snowmelt and therefore snow ablation processes have great importance for this basin. In this study, we simulated these processes with fine resolution at basin scale using MicroMet/SnowModel and SnowAssim. To assimilate snow water equivalent (SWE data in SnowAssim, we used routine daily snow depth data and Sturm’s method. Following the verification of this method for SWE estimation in the basin, we evaluated the impact of snow data assimilation on basin-scale snow ablation. Through validation against MODIS snow coverage data and in situ snow survey observations, we found that SnowAssim could not improve on the original simulation by MicroMet/SnowModel because of estimation errors within the SWE data. Vegetation and accumulated snowfall control the spatial distribution of sublimation and we established that sublimation has an important effect on snow ablation. We found that the ratio of sublimation to snowfall in forests was around 26% and that interannual variation of sublimation modulated spring river runoff.

  17. Fishes of the Taquari-Antas river basin (Patos Lagoon basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    FG. Becker

    Full Text Available The aquatic habitats of the Taquari-Antas river basin (in the Patos Lagoon basin, southern Brazil are under marked environmental transformation because of river damming for hydropower production. In order to provide an information baseline on the fish fauna of the Taquari-Antas basin, we provide a comprehensive survey of fish species based on primary and secondary data. We found 5,299 valid records of fish species in the basin, representing 119 species and 519 sampling sites. There are 13 non-native species, six of which are native to other Neotropical river basins. About 24% of the total native species are still lacking a taxonomic description at the species level. Three native long-distance migratory species were recorded (Leporinus obtusidens, Prochilodus lineatus, Salminus brasiliensis, as well as two potential mid-distance migrators (Parapimelodus nigribarbis and Pimelodus pintado. Although there is only one officially endangered species in the basin (S. brasiliensis, restricted range species (21.7% of total species should be considered in conservation efforts.

  18. Groundwater and surface-water interaction and potential for underground water storage in the Buena Vista-Salida Basin, Chaffee County, Colorado, 2011

    Science.gov (United States)

    Watts, Kenneth R.; Ivahnenko, Tamara I.; Stogner, Robert W.; Bruce, James F.

    2014-01-01

    By 2030, the population of the Arkansas Headwaters Region, which includes all of Chaffee and Lake Counties and parts of Custer, Fremont, and Park Counties, Colorado, is forecast to increase about 73 percent. As the region’s population increases, it is anticipated that groundwater will be used to meet much of the increased demand. In September 2009, the U.S. Geological Survey, in cooperation with the Upper Arkansas Water Conservancy District and with support from the Colorado Water Conservation Board; Chaffee, Custer, and Fremont Counties; Buena Vista, Cañon City, Poncha Springs, and Salida; and Round Mountain Water and Sanitation District, began a 3-year study of groundwater and surface-water conditions in the Buena Vista-Salida Basin. This report presents results from the study of the Buena Vista-Salida Basin including synoptic gain-loss measurements and water budgets of Cottonwood, Chalk, and Browns Creeks, changes in groundwater storage, estimates of specific yield, transmissivity and hydraulic conductivity from aquifer tests and slug tests, an evaluation of areas with potential for underground water storage, and estimates of stream-accretion response-time factors for hypothetical recharge and selected streams in the basin. The four synoptic measurements of flow of Cottonwood, Chalk, and Browns Creeks, suggest quantifiable groundwater gains and losses in selected segments in all three perennial streams. The synoptic measurements of flow of Cottonwood and Browns Creeks suggest a seasonal variability, where positive later-irrigation season values in these creeks suggest groundwater discharge, possibly as infiltrated irrigation water. The overall sum of gains and losses on Chalk Creek does not indicate a seasonal variability but indicates a gaining stream in April and August/September. Gains and losses in the measured upper segments of Chalk Creek likely are affected by the Chalk Cliffs Rearing Unit (fish hatchery). Monthly water budgets were estimated for

  19. Flood forecasting and alert system for Arda River basin

    Science.gov (United States)

    Artinyan, Eram; Vincendon, Beatrice; Kroumova, Kamelia; Nedkov, Nikolai; Tsarev, Petko; Balabanova, Snezhanka; Koshinchanov, Georgy

    2016-10-01

    The paper presents the set-up and functioning of a flood alert system based on SURFEX-TOPODYN platform for the cross-border Arda River basin. The system was built within a Bulgarian-Greek project funded by the European Territorial Cooperation (ETC) Programme and is in operational use since April 2014. The basin is strongly influenced by Mediterranean cyclones during the autumn-winter period and experiences dangerous rapid floods, mainly after intensive rain, often combined with snow melt events. The steep mountainous terrain leads to floods with short concentration time and high river speed causing damage to settlements and infrastructure. The main challenge was to correctly simulate the riverflow in near-real time and to timely forecast peak floods for small drainage basins below 100 km2 but also for larger ones of about 1900 km2 using the same technology. To better account for that variability, a modification of the original hydrological model parameterisation is proposed. Here we present the first results of a new model variant which uses dynamically adjusted TOPODYN river velocity as function of the computed partial streamflow discharge. Based on historical flooding data, river sections along endangered settlements were included in the river flow forecasting. A continuous hydrological forecast for 5 days ahead was developed for 18 settlements in Bulgaria and for the border with Greece, thus giving enough reaction time in case of high floods. The paper discusses the practical implementation of models for the Arda basin, the method used to calibrate the models' parameters, the results of the calibration-validation procedure and the way the information system is organised. A real case of forecasted rapid floods that occurred after the system's finalisation is analysed. One of the important achievements of the project is the on-line presentation of the forecasts that takes into account their temporal variability and uncertainty. The web presentation includes a

  20. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    NARCIS (Netherlands)

    Zeng, Z; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  1. Assessing water footprint at river basin level: a case study for the Heihe River Basin in Northwest China

    NARCIS (Netherlands)

    Zheng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y.

    2012-01-01

    Increasing water scarcity places considerable importance on the quantification of water footprint (WF) at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this stu

  2. Multiple Time Scale Analysis of River Runoff Using Wavelet Transform for Dagujia River Basin, Yantai, China

    Institute of Scientific and Technical Information of China (English)

    LIU Delin; LIU Xianzhao; LI Bicheng; ZHAO Shiwei; LI Xiguo

    2009-01-01

    Based on monOdy river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoffin the Dagnjia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoff in the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48×106m3/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runoff time series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.

  3. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  4. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas Valley.

    Science.gov (United States)

    Venkatesan, Arjun K; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2011-06-01

    This study evaluates the impact of urban growth in the Las Vegas Valley (LVV), Nevada, USA on salinity of the Colorado River. In the past thirty eight years the LVV population has grown from 273,288 (1970) to 1,986,146 (2008). The wastewater effluents and runoff from the valley are diverted back to the Colorado River through the Las Vegas Wash (LVW). With the growth of the valley, the salinity released from urban areas has increased the level of TDS in the wastewater effluents, ultimately increasing the TDS in the Colorado River. The increased usage of water softeners in residential and commercial locations is a major contributor of TDS in the wastewater effluents. Controlling TDS release to the Colorado River is important because of the 1944 Treaty signed between the USA and Mexico. In addition, the agriculture salinity damage cost for the Colorado River has been estimated to be more than $306 a million per year using 2004 salinity levels. With the expected growth of LVV in coming years the TDS release into Lake Mead will increase over time. For this purpose, it is important to investigate future TDS release into the Colorado in anticipation of potential TDS reducing measures to be adopted. In this research, a dynamic simulation model was developed using system dynamics modeling to carry out water and TDS mass balances over the entire LVV. The dynamic model output agreed with historic data with an average error of 2%. Forecasts revealed that conservation efforts can reduce TDS load by 16% in the year 2035 when compared to the current trend. If total population using water softeners can be limited to 10% in the year 2035, from the current 30% usage, TDS load in the LVW can be reduced by 7%. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Flow-adjusted trends in dissolved selenium load and concentration in the Gunnison and Colorado Rivers near Grand Junction, Colorado, water years 1986--2008

    Science.gov (United States)

    Mayo, John W.; Leib, Kenneth J.

    2012-01-01

    As a result of elevated selenium concentrations, many western Colorado rivers and streams are on the U.S. Environmental Protection Agency 2010 Colorado 303(d) list, including the main stem of the Colorado River from the Gunnison River confluence to the Utah border. Selenium is a trace metal that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other adverse impacts in birds and fish, including several threatened and endangered fish species. Salinity in the upper Colorado River has been the focus of source-control efforts for many years. Although salinity loads and concentrations have been previously characterized at the U.S. Geological Survey (USGS) streamflow-gaging stations at the Gunnison River near Grand Junction, Colo., and at the Colorado River near the Colorado-Utah State line, trends in selenium load and concentration at these two stations have not been studied. The USGS, in cooperation with the Bureau of Reclamation and the Colorado River Water Conservation District, evaluated dissolved selenium (herein referred to as "selenium") load and concentration trends at these two sites to inform decision makers on the status and trends of selenium. This report presents results of the evaluation of trends in selenium load and concentration for two USGS streamflow-gaging stations: the Gunnison River near Grand Junction, Colo. ("Gunnison River site"), USGS site 09152500, and the Colorado River near Colorado-Utah State line ("Colorado River site"), USGS site 09163500. Flow-adjusted selenium loads were estimated for the beginning water year (WY) of the study, 1986, and the ending WY of the study, 2008. The difference between flow-adjusted selenium loads for WY 1986 and WY 2008 was selected as the method of analysis because flow adjustment removes the natural variations in load caused by changes in mean-daily streamflow, emphasizing human-caused changes in selenium load and concentration. Overall changes in human-caused effects

  6. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    Science.gov (United States)

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  7. Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon

    Science.gov (United States)

    Hall, Robert O.; Yackulic, Charles B.; Kennedy, Theodore A.; Yard, Michael D.; Rosi-Marshall, Emma J.; Voichick, Nicholas; Behn, Kathrine E.

    2015-01-01

    Dams and river regulation greatly alter the downstream environment for gross primary production (GPP) because of changes in water clarity, flow, and temperature regimes. We estimated reach-scale GPP in five locations of the regulated Colorado River in Grand Canyon using an open channel model of dissolved oxygen. Benthic GPP dominates in Grand Canyon due to fast transport times and low pelagic algal biomass. In one location, we used a 738 days time series of GPP to identify the relative contribution of different physical controls of GPP. We developed both linear and semimechanistic time series models that account for unmeasured temporal covariance due to factors such as algal biomass dynamics. GPP varied from 0 g O2 m−2 d−1 to 3.0 g O2 m−2 d−1 with a relatively low annual average of 0.8 g O2 m−2d−1. Semimechanistic models fit the data better than linear models and demonstrated that variation in turbidity primarily controlled GPP. Lower solar insolation during winter and from cloud cover lowered GPP much further. Hydropeaking lowered GPP but only during turbid conditions. Using the best model and parameter values, the model accurately predicted seasonal estimates of GPP at 3 of 4 upriver sites and outperformed the linear model at all sites; discrepancies were likely from higher algal biomass at upstream sites. This modeling approach can predict how changes in physical controls will affect relative rates of GPP throughout the 385 km segment of the Colorado River in Grand Canyon and can be easily applied to other streams and rivers.

  8. Mexicali aquifer and its relation with the Colorado river and the Cerro Prieto geothermal reservoir

    Science.gov (United States)

    Ramirez-Hernandez, J.; Reyes-Lopez, J. A.; Carreon-Diazconti, C.; Lazaro-Mancilla, O.

    2008-05-01

    Until some years ago the Colorado River has been the main recharge source of the Mexicali and the Imperial Valley aquifers. River discharge interruption after the constructions of dams upstream (i.e. Parker, Davis and Hoover) and the creation of great irrigation systems in both Valleys have modified their dynamics. Currently, the distribution of water recharge is the network of irrigation and drainage channels that distribute water to more than 500.000 ha. The chemical quality of the recharge water also has changed because the irrigation run-off water has become more mineralized. On the other hand, the intense steam exploitation of the Cerro Prieto geothermal reservoir has inverted the flow direction from the Volcano Lagoon area that until the 60s constituted the discharge zone of the aquifer and the geothermal reservoir. In this work, changes in the aquifer water recharge regime, the phreatic level and the water chemical quality are analyzed. It was found that after the reduction of the annual water extraction from aquifer up to 750X106 m3, the static levels have reached a dynamic balance that could be altered if water seepage from the irrigation channels, specially from the All American Channel, is reduced. The total dissolved solids (TDS) concentration has increased from 1000 ppm in 1970 to 1800 ppm in 2005. The water of recent infiltration, the gradual cooling of the shallowest strata of the geothermal reservoir, and the almost total disappearance of the hydrothermal surface manifestations are evidences of groundwater flow inversion. The new source of groundwater recharge due to seepage of evaporation disposal geothermal brine pond is documented. This pond incorporates water with a very different chemical composition to the groundwater system. Therefore, mineralization of the shallow aquifer layers and the soil contamination process are identified. It was concluded that the aquifer hydrodynamics in the Valley of Mexicali depends on the irrigation system more

  9. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  10. Driver detection of water quality trends across Mediterranean river basins

    Science.gov (United States)

    Diamantini, Elena; Lutz, Stefanie; Mallucci, Stefano; Majone, Bruno; Merz, Ralf; Bellin, Alberto

    2017-04-01

    In this study, thirteen physicochemical surficial water variables and four drivers (i.e. monthly aggregated air temperature and streamflow, population density and percentage of agricultural land use) were analysed in three large Mediterranean river basins (i.e. Adige, Ebro, Sava). In particular, the purpose of the analysis is to identify how indicators of water quality and drivers of change coevolve in three large river basins representing the diversity of climatic, soil and water uses conditions observed in southern Europe. Spearman rank correlation, principal component analysis, Mann-Kendall trend test and Sen's Slope estimator were performed in order to (i) analyse long-term time series of water quality data during the period 1990-2015, (ii) detect links between variables patterns and drivers and (iii) compare the river basins under investigation with respect to their vulnerability and resilience to the identified drivers of change. Results show that air temperature, considered as a proxy of climate change, has a significant impact in all basins but in particular in the Adige and Ebro: positive trends of water temperature and negative for dissolved oxygen are found to be correlated with upward trends of air temperatures. The aquatic ecosystems of these rivers are therefore experiencing a reduction in oxygen, which may further worsen in the future given the projected increase of temperature for this century. At the same time, monthly streamflow has been shown to reduce in the Ebro River, thereby decreasing the beneficial effect of dilution, as appears evident from the observed upward patterns of chloride concentration and electrical conductivity. Upward trends of chloride and biological oxygen demand in the Adige and Sava and positive trends of phosphate in the Adige are related to the increase of population and finally phosphates in the Sava and biological oxygen demand in the Ebro are highly correlated with agricultural land use. The study showed the complex

  11. Saltcedar (Tamarix spp.) Water Use and Ecohydrological Niches on the Lower Colorado River

    Science.gov (United States)

    Morino, K.; Nagler, P.; Didan, K.; Erker, J.; Osterberg, J.; Hultine, K.; Glenn, E.

    2008-12-01

    In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced native shrubs and trees. Some have advocated removing saltcedar to save water and create environments more favorable to native species. We believe that native species once covered the landscape at densities similar to current saltcedar densities and therefore utilized similar amounts of water; moreover, we hypothesized that saltcedar has invaded areas that have increased in salinity due to reduced flooding. To evaluate these hypotheses, we conducted a multi-faceted study at the Cibola National Wildlife Refuge (CNWR). Using satellite images and reprocessed aerial photographs, we found that the fraction of land covered (fc) with vegetation in 2005-2007 was similar to coverage by native vegetation in 1938. We compared sapflux measurements of native species to saltcedar, and compared soil salinity, ground water depth, and soil moisture across a 1300m transect perpendicular to the Colorado River. On-site measurements of water use and soil and aquifer properties confirmed that although saltcedar grows much better than native species in areas where salinity has increased, rates of transpiration are similar. Over the whole CNWR, projected annual evapotranspiration (ET) was 1.15 m yr-1, 47% of reference crop ET. We conclude that periodic annual flooding would be required to reestablish native vegetation and that water use might actually increase with reduced inhibition of saline ground water on water uptake by the native vegetation.

  12. Abundance trends and status of the Little Colorado River population of humpback chub

    Science.gov (United States)

    Coggins, L.G.; Pine, William E.; Walters, C.J.; Van Haverbeke, D. R.; Ward, D.; Johnstone, H.C.

    2006-01-01

    The abundance of the Little Colorado River population of federally listed humpback chub Gila cypha in Grand Canyon has been monitored since the late 1980s by means of catch rate indices and capture-recapture-based abundance estimators. Analyses of data from all sources using various methods are consistent and indicate that the adult population has declined since monitoring began. Intensive tagging led to a high proportion (>80%) of the adult population being marked by the mid-1990s. Analysis of these data using both closed and open abundance estimation models yields results that agree with catch rate indices about the extent of the decline. Survival rates for age-2 and older fish are age dependent but apparently not time dependent. Back-calculation of recruitment using the apparent 1990s population age structure implies periods of higher recruitment in the late 1970s to early 1980s than is now the case. Our analyses indicate that the U.S. Fish and Wildlife Service recovery criterion of stable abundance is not being met for this population. Also, there is a critical need to develop new abundance indexing and tagging methods so that early, reliable, and rapid estimates of humpback chub recruitment can be obtained to evaluate population responses to management actions designed to facilitate the restoration of Colorado River native fish communities. ?? Copyright by the American Fisheries Society 2006.

  13. Effects of ambient metals concentrations on the benthic macroinvertebrate community in the Animas River, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Covington, S.M.; Parkhurst, B.R. [Cadmus Group Inc., Laramie, WY (United States); Perino, L. [Sunnyside Gold Corp., Silverton, CO (United States)

    1995-12-31

    The Upper Animas River is located in southern Colorado at approximately 9500 feet above mean sea level near the town of Silverton in San Juan County. It drains several first and second order creeks and gulches, many of which are subject to water quality impacts from natural sources of metals and acid mine drainage and mine tailings from historical mining activity. When the State of Colorado proposed new designated uses with more stringent metal standards for the Upper Animas River, Sunnyside Gold Corp was concerned that these new proposed designated uses and their associated standards were unattainable primarily because of existing poor ambient water quality. Studies were designed to address this and other issues. This presentation focuses on ambient metal concentrations and their effect on macroinvertebrate density and composition. Aluminum, cadmium, copper, iron, manganese, and zinc were measured in the water column and in the precipitate on the gravel-cobble substrates at each location. Macroinvertebrate samples were also collected at these locations. The trends in benthic macroinvertebrate community composition in relationship to metal concentration and distribution will be discussed.

  14. Updating river basin models with radar altimetry

    DEFF Research Database (Denmark)

    Michailovsky, Claire Irene B.

    response of a catchment to meteorological forcing. While river discharge cannot be directly measured from space, radar altimetry (RA) can measure water level variations in rivers at the locations where the satellite ground track and river network intersect called virtual stations or VS. In this PhD study...... been between 10 and 35 days for altimetry missions until now. The location of the VS is also not necessarily the point at which measurements are needed. On the other hand, one of the main strengths of the dataset is its availability in near-real time. These characteristics make radar altimetry ideally...... suited for use in data assimilation frameworks which combine the information content from models and current observations to produce improved forecasts and reduce prediction uncertainty. The focus of the second and third papers of this thesis was therefore the use of radar altimetry as update data...

  15. Water Sources and Quantity for Energy Development in Colorado's Denver-Julesburg Basin

    Science.gov (United States)

    Waskom, R.; Kallenberger, J.; Boone, K.; Plombon, B.; Ryan, J. N.

    2014-12-01

    Over the past decade, Colorado has experienced a significant rise in oil and gas development with the greatest concentration of activity occurring in the Denver-Julesburg Basin (DJB) in the Northeast corner of the state. According to the Colorado Oil and Gas Association, as of June 2014, there are approximately 52,200 active oil and gas wells statewide, with over 21,300 located in Weld County, the epicenter of the DJB. In this water-scarce region, much attention is paid to the source and quantity of water being used to produce energy. This information is not readily accessible, but is of great importance to many. In response, our research team is undertaking an evaluation of water quantity impacts and tradeoffs associated with oil and gas development. Technological advancements in horizontal drilling and hydraulic fracturing require additional sources of water - about 2.8 million gallons of per well (Goodwin et al.). The statewide water use for hydraulic fracturing is estimated to be less than 0.1%; however, on a local scale, when water is transferred from agricultural and municipal uses to industrial use, there are economic, environmental and social tradeoffs. Unfortunately, the pathway of a particular water transfer and its associated tradeoffs can be difficult to predict and quantify, further complicating the ability of local and state stakeholders to make sound and informative decisions about energy development. Energy companies are implementing new strategies to ensure reliable water supplies for their operations. These include tapping into non-tributary aquifers to help reduce competition for fully appropriated surface and tributary groundwater sources and recycling and reusing wastewater that results from the drilling and extraction practices. Many conflicting perspectives shape the water-energy discussion in the DJB so non-biased scientific data plays an important role in addressing the questions surrounding water use for energy development. This

  16. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  17. Data from core analyses, aquifer testing, and geophysical logging of Denver Basin bedrock aquifers at Castle Pines, Colorado

    Science.gov (United States)

    Robson, S.G.; Banta, E.R.

    1993-01-01

    This report contains data pertaining to the geologic and hydrologic characteristics of the bedrock aquifers of the Denver basin at a site near Castle Pines, Colorado. Data consist of a lithologic- description of about 2,400 ft of drill core and laboratory determinations of mineralogy, grain size, bulk and grain density, porosity, specific yield, and specific retention for selected core samples. Water-level data, atmospheric-pressure measurements, aquifer-compression measurements, and borehole geophysical logs also are included.

  18. Stochastic modeling and its applications in selected sites in the Colorado River

    Science.gov (United States)

    He, Xiaotian

    Deposition is an important process in shaping the earth's surface. Most depositional processes involving turbulent flows in rivers, lakes and ocean margins are stochastic processes. Basic laws of fluid dynamics are reviewed as well as the scientific literature on fluid modeling to improve our understanding of the underlying dynamics of deposition of sediment in both theory and numerical experiments. Based upon probabilistic theory, fluid dynamics, and empirical formulas, a nonlinear partial differential equation (PDE) model of stochastic processes is developed. The model illustrates time-dependent stochastic processes in detail. Development of the model starts with a one-dimensional simple random walk and ends with a three-dimensional random walk that incorporates turbulence and drift terms. For processes that are simple random walk, the model's underlying equation becomes the familiar heat equation. The major advantage of the stochastic model is that through the introduction of randomness, it can simulate turbulence. The stochastic model is used to examine the effect of drift on the diffusion process. Deposition, erosion, and river flow patterns are discussed. The stochastic model is modified to incorporate erosion and other geological factors. The numerical implementation of the mathematical model is discussed in detail. Due to computational stability, the fully implicit scheme is selected. Historical data at three selected sites along the Grand Canyon part of the Colorado River is applied to investigate the "trustworthiness" of the mathematical model developed in this research. The three sites River Mile 1.5, River Mile 18.0 (also called Eighteen Mile Wash), and River Mile 72.4 (referred as to Unkar Creek) represent three typically different fluvial depositional environments, which are channel marginal depositional environment, flow separation depositional environment and lateral accumulative depositional environment. The first two sites are numerically

  19. A site-specific assessment of the risk of ammonia to endangered Colorado Pikeminnow and Razorback Sucker populations in the upper Colorado River adjacent to the Atlas Mill Tailings Pile, Moab, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Atlas Mill Tailings Pile is located adjacent to the Upper Colorado River near Moab, Utah. Milling of ore ceased in 1984 and the Atlas Corporation subsequently...

  20. River basin closure: Processes, implications and responses

    NARCIS (Netherlands)

    Molle, F.; Wester, P.; Hirsch, P.

    2010-01-01

    Increasing water withdrawals for urban, industrial, and agricultural use have profoundly altered the hydrology of many major rivers worldwide. Coupled with degradation of water quality, low flows have induced severe environmental degradation and water has been rendered unusable by downstream users.

  1. UV filters bioaccumulation in fish from Iberian river basins

    Energy Technology Data Exchange (ETDEWEB)

    Gago-Ferrero, Pablo [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens (Greece); Díaz-Cruz, M. Silvia, E-mail: sdcqam@cid.csic.es [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Barceló, Damià [Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain); Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101 Edifici H2O, E-17003 Girona (Spain)

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/g d.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/g d.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04–0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. - Highlights: • First evidence of UV filters in fish from Iberian rivers • Biota-sediment accumulation factors (BSAFs) were always below 1. • Predator species presented higher UV-F concentrations suggesting trophic magnification.

  2. Decapod crustaceans of the Sinu River Basin, Cordoba, Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Alexander Quirós Rodríguez

    2016-09-01

    Full Text Available To review the composition, abundance and distribution of decapod crustaceans in the Sinu river basin, Department of Cordoba (Colombia eight locations were studied: four on the Sinu River and four in the Low Complex Swampy Sinu. For that, six samplings between April 2005 and May 2006 were made. In total 458 decapod crustaceans were recorded distributed into three families, six genus and eight species. The family best represented was Trichodactylidae with four genus and four species, followed by Palaemonidae with one genus and three species, while family Atyidae recorded only one species. Species such as Macrobrachium carcinus and M. acanthurus presented the wider range of distribution for both the Sinu River as the  Low Complex Swampy Sinu.  Among the identified species Atya crassa in the Sinu River and Trichodactylus quinquedentatus in the Low Complex Swampy Sinu are new records for the Department of Cordoba.

  3. Groundwater quality in the Mohawk River Basin, New York, 2011

    Science.gov (United States)

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  4. Early Pliocene Hiatus in Sand Output by the Colorado River: Evidence From Marine Deposits in the Salton Trough, Southern California

    Science.gov (United States)

    Dorsey, R. J.; Bykerk-Kauffman, A.

    2015-12-01

    Early Pliocene deposits in the western Salton Trough preserve a high-fidelity record of sediment dispersal into the marine realm during initiation and early evolution of the Colorado River (CR). Grain-size fractionation, sediment routing, and transport dynamics of the early CR delta are recorded in sediments of the Fish Creek - Vallecito basin, which was located ~100 km south of Yuma along the transform plate boundary at 5 Ma. Early Pliocene delivery of CR sand to the basin took place in two distinct pulses: (1) deposition of sandy turbidites (Wind Caves Mbr of the Latrania Fm) in a restricted submarine canyon at Split Mt Gorge between ~5.3 and 5.1 Ma; and (2) progradation of a thick, widespread, coarsening-up deltaic sequence of marine mudstone, sandstone, and coquinas (Deguynos Fm) between ~4.8 and 4.2 Ma. Estimated flux of CR sediment during Wind Caves deposition was weak (~3-5 Mt/yr) compared to the long-term average (172±64 Mt/yr). The two pulses of CR sand input are separated by the Coyote Clay (CC, ~5.1-4.8 Ma), a regionally correlable, greenish-yellow-weathering marine claystone unit at the base of the Deguynos Fm. CC gradationally overlies Wind Caves turbidites in the area of the paleocanyon. In contrast, in the Coyote Mts 15-23 km to the south and SE, CC rests on coarse-grained locally-derived late Miocene sedimentary rocks, Alverson volcanics, and metamorphic basement rock along a regional unconformity. Identical claystone facies occur in the NW Indio Hills (restores to Yuma at the mouth of the CR at 5 Ma), and Sierra Cucapa in Mexico (~200 km south of Yuma at 5 Ma). Marine localities outside of the Wind Caves paleocanyon experienced slow to negligible sedimentation along a rugged rocky shoreline until abrupt arrival of CR-derived clay. CC accumulated in a sand-starved, pro-delta marine setting (Winker, 1987) over an inferred N-S distance of ~200 km. We therefore reject an alternate hypothesis that CC accumulated on the muddy slope of the prograding CR

  5. River Sinuosity Classification - Case study in the Pannonian Basin

    Science.gov (United States)

    Petrovszki, J.; Székely, B.; Timár, G.

    2012-04-01

    A new evaluation method is proposed to classify the multiple window-size based sinuosity spectrum, in order to minimize the possible human interpretation error. If the river is long enough for the analysis, the classification could be similarly useful as the sinuosity spectrum is, but sometimes it is more straightforward. Furthermore, for the classification, we did not need the main parameters of the river, e.g. the bankfull discharge. The river sinuosity values were studied in the Pannonian Basin in order to reveal neotectonic influence on their abrupt changes. The map sheets of the Second Military Survey of the Habsburg Empire were used to digitize the natural, pre-regulation meandering river thalwegs. 28 rivers were studied, and the connection between the known fault lines and the river sinuosity changes was detected in 36 points, along 26 structural lines. An unsupervised ISOCLASS classification was carried out on these data, and the sinuosity values were divided into 5 classes. Because of the sinuosity calculation method, 25 kilometer-long river sections are missing at the two endpoints of the channel. So sometimes the displayed section of the river does not cross to the faults represented on the neotectonic map. In the other cases, where the faults are crossing the rivers, the results are corresponding with the results of the sinuosity spectrum: the river-points on the two sides of the faults belong to different classes. The connection between these fault lines and the change of river sinuosity classes was detected in 23 points, along 16 structural lines The research is made in the frame of project OTKA-NK83400 (SourceSink Hungary). The European Union and the European Social Fund also have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.

  6. A Heuristic Dynamically Dimensioned Search with Sensitivity Information (HDDS-S) and Application to River Basin Management

    OpenAIRE

    Jinggang Chu; Yong Peng; Wei Ding; Yu Li

    2015-01-01

    River basin simulation and multi-reservoir optimal operation have been critical for river basin management. Due to the intense interaction between human activities and river basin systems, the river basin model and multi-reservoir operation model are complicated with a large number of parameters. Therefore, fast and stable optimization algorithms are required for river basin management under the changing conditions of climate and current human activities. This study presents a new global opti...

  7. Coho Salmon Master Plan, Clearwater River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  8. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    Science.gov (United States)

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  9. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    Science.gov (United States)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  10. Structure contours on top of Coal marker sands, the Deserado Study Area, Lower White River coal field, Colorado (desstrcg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a shapefile and ARC/INFO coverage of the structure contours on top of the Coal marker sands in the Deserado Study area, Lower White River coal field, Colorado

  11. 33 CFR 100.1102 - Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam...

    Science.gov (United States)

    2010-07-01

    ... Coast Guard-National Park Service agreement exists for both the Glen Canyon and Lake Mead National..., Nevada, from the Pioneer Hotel to the Edgewater Hotel. Laughlin Aquamoto Sports Challenge and Expo.... PDT. Where: That portion of the Colorado River near Laughlin, Nevada, from Davis Dam to Harrah's Hotel...

  12. 78 FR 13811 - Special Local Regulation; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead...

    Science.gov (United States)

    2013-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 Special Local Regulation; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead City, AZ) and Headgate Dam (Parker, AZ) Within the San Diego Captain of...

  13. 77 FR 70121 - Special Local Regulation; Annual Marine Events on the Colorado River Between Davis Dam (Bullhead...

    Science.gov (United States)

    2012-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 Special Local Regulation; Annual Marine Events on the Colorado River Between Davis Dam (Bullhead City, AZ) and Headgate Dam (Parker, AZ) Within the San Diego Captain of...

  14. 77 FR 67563 - Special Local Regulation; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead...

    Science.gov (United States)

    2012-11-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 Special Local Regulation; Annual Marine Events on the Colorado River, Between Davis Dam (Bullhead City, AZ) and Headgate Dam (Parker, AZ) Within the San Diego Captain of...

  15. A Review of Integrated River Basin Management for Sarawak River

    Directory of Open Access Journals (Sweden)

    Kuok K. Kuok

    2011-01-01

    Full Text Available Problem statement: Sarawak River was a life-sustaining water source for the residents in Kuching City and surrounding areas. Raw water is treated at Batu Kitang Water Treatment Plant (BKWTP that supplies more than 98% of the total water production in Kuching City. The raw water supply to BKWTP is not adequate to meet the ever increasing water demand. In order to overcome this problem, four projects had been implemented along Sarawak River for managing and securing water supply to BKWTP. Approach: These four projects are construction of 1.5m height storage weir across Sungai Sarawak Kiri river channel, Kuching Barrage and Shiplock, Bengoh Dam and Kuching Centralized Wastewater Management System (KCWMS. In 2005, 1.5 m height submersible weir was constructed across Sungai Sarawak Kiri channel for increasing the safe yield that can last until year 2010. Kuching Barrage and Shiplock were commissioned in 2000 as barrier to avoid the saline intrusion reaching upper catchment. 24 telemetry stations were installed along Sarawak River for monitoring and regulating the water level. This will preserve high quality water storage at upper catchment of Sarawak River. In year 2010, Bengoh Dam was constructed to ensure adequate raw water will be supplied to BKWTP for meeting the increasing water demand from 2010-2030. This reservoir will store 144 million m3 of fresh water covering reservoir area of 8.77km2. Beyond 2030, the water supply shall not depend solely on fresh water. Results: Black and grey water in Sarawak Catchment was treated through Kuching Centralized Wastewater Management System (KCWMS and recycled for daily used. Conclusion: The treated water that comply Standard A water quality, can distribute for domestic, industrial and irrigation used in nearest future. This will reduce the water demand solely on raw water and create a sustainable living in Kuching City. Beyond 2030, a few alternatives are also proposed for conserving and

  16. Conceptual rainfall-runoff model with limited and low quality data in the Pirai River basin, Bolivia

    Science.gov (United States)

    Gonzalez-Sanchez, Alvaro; Villazon, Mauricio; Willems, Patrick

    2010-05-01

    . In order to avoid this, it has been convenient to apply directly the Thornthwaite method with a local correction factor of 1.25. Afterwards, a monthly correction factor has been introduced to enhance the prediction power of the simplified methods. However this correction factor is not constant throughout the year and whenever possible (at least Tmax and Tmin) the FAO-56 equation should be used. Regarding the Rating curve, for Colorado gauging station 81 rating curves have identified whereas for Bermejo 26, for the period 01/01/1986 to 12/31/1998. In general the statistics are better for Bermejo than for the Colorado gauging station. Similar behavior is observed in the parameters of the rating curve, where the variability is wider in the Colorado gauging station. Afterwards, the NAM model using Mike 11 has been calibrated for the gauged catchments of the Pirai River Basin (i.e.: Colorado, Bermejo, Espejos and Angostura) and finally, based on this completely lumped approach of the hydrological cycle the MIKE BASIN rainfall runoff has been calibrated and validated for the study area. Statistically, for the calibration period the model has shown NSE values around 0.55 whereas for the validation period this parameter was only 0.40 on the average. Since the model is basically for flood prediction, special attention to high flows has been addressed. The models present more or less the same behavior at each of the four gauging station, with a general underestimation, a relatively good agreement in the global water balance, good agreement for high flows and an underestimation for low flows. In general, it can be concluded that the parameters obtained from the lumped approach in the NAM model can be used as a base line for the hydrological model in the GIS environment.

  17. Integrated water resources management in the Ruhr River Basin, Germany.

    Science.gov (United States)

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  18. CHEMICAL WEATHERING PROCESSES AND ATMOSPHERIC CO2 CONSUMPTION OF HUANGHE RIVER AND CHANGJIANG RIVER BASINS

    Institute of Scientific and Technical Information of China (English)

    LI Jing-ying; ZHANG Jing

    2005-01-01

    Rock weathering plays an important role in studying the long-term carbon cycles and global climaticchange. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled byevaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared withthe Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution.The chemical weathering rates were estimated to be 39.29t/(km2·a)and 61.58t/(km2·a)by deduting the HCO3- derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 con-sumption rates by rock weathering were calculated to be 120.84 × 103mol/km2 and 452.46 × 103mol/km2 annually in thetwo basins, respectively. The total CO2 consumption of the two basins amounted to 918.51 × 109mol/a, accounting for3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicateweathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that thesequential weathering may be go on in the two Chinese drainage basins.

  19. Seepage Investigation for Selected River Reaches in the Chehalis River Basin, Washington

    Science.gov (United States)

    Ely, D. Matthew; Frasl, Kenneth E.; Marshall, Cameron A.; Reed, Fred

    2008-01-01

    A study was completed in September 2007 in the Chehalis River basin to determine gain or loss of streamflow by measuring discharge at selected intervals within various reaches along the Chehalis River and its tributaries. Discharge was measured at 68 new and existing streamflow sites, where gains and losses were determined for 36 stream reaches. Streamflow gains were measured for 22 reaches and losses were measured for 13 reaches. No gain or loss was measured at the Chehalis River between the Newaukum and Skookumchuck Rivers. The Chehalis River exhibited a pattern of alternating gains and losses as it entered the area of wide, gentle relief known as the Grand Mound Prairie. The general pattern of tributary ground- and surface-water interaction was discharge to streams (gaining reaches) in the upper reaches and discharge to the ground-water system (losing reaches) as the tributaries entered the broad, flat Chehalis River valley.

  20. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  1. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Science.gov (United States)

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.

    2015-07-01

    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  2. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Directory of Open Access Journals (Sweden)

    S. Zuliziana

    2015-07-01

    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  3. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  4. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  5. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is d

  6. Selected biological characteristics of streams in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Naten, Ronald W.; Fuller, Richard H.

    1981-01-01

    Biological sampling was carried out during 1976-78 in five streams in the southeastern Uinta Basin, Utah and Colorado, in order to provide baseline water-quality data for an area of potential oil-shale development. The biological activity in the streams sampled generally is limited by physical factors more so than by chemical constituents and plant nutrients. Characteristics of streamflow, such as high turbidity, fluctuating water levels, and moderate to high salinity, limit production of flora and fauna biomass. Samples were collected for the determination of bacterial and periphyton concentrations and benthic-invertebrate communities. Bacterial concentrations were generally small, with some fecal contamination, primarily from livestock and wildlife. Members of the order Chlorophyta (green algae) were the major periphytic algae present in three of the streams sampled. Bitter Creek was dominated by members of the order Cyanophyta (blue-green algae), and pennate diatoms were the predominant algae in Willow Creek. The benthic-invertebrate communities generally reflect a nonpolluted environment. Shannon-Weiner diversity indices ranged from 1.14 to 3.08. (USGS)

  7. Engineering report on drilling in the Sand Wash Basin, Colorado. [In support of NURE program

    Energy Technology Data Exchange (ETDEWEB)

    Callihan, M C

    1980-01-01

    The Sand Wash Basin Drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 110 feet (33.5 m) to 1,995 feet (608.1 m). A total of 25,514 feet (7,471.9 m) was rotary drilled, and 1,593.5 feet (485.7 m) were cored resulting in a total of 26,107.5 feet (7,957.6 m) drilled for the project. The objective of the project was to provide comprehensive subsurface geologic data relevant to uranium mineralization. This was accomplished by drilling in major outcrop areas of the Browns Park Formation in Moffat and Routt Counties, Colorado. The project began May 18, 1979; drilling was completed November 4, 1979. Most site restoration and cleanup was completed during the fall of 1979 with the remainder to be completed during the spring of 1980.

  8. Hydrogeology and steady-state numerical simulation of groundwater flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L.R.

    2010-01-01

    The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied

  9. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    Science.gov (United States)

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    Nutrients such as nitrogen and phosphorus are important for aquatic ecosystem health. Excessive amounts of nutrients, however, can make aquatic ecosystems harmful for biota because enhanced growth and decay cycles of aquatic algae can reduce dissolved oxygen in the water. In Puget Sound marine waters, low dissolved oxygen concentrations are observed in a number of marine nearshore areas, and nutrients have been identified as a major stressor to the local ecosystem. Delivery of nutrients from major rivers in the Puget Sound Basin to the marine environment can be large. Therefore, it is important to identify factors related to how nutrients are retained (attenuated) within streams and rivers in the Puget Sound Basin. Physical, chemical, and biological factors related to nutrient attenuation were identified through a review of related scientific literature.

  10. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  11. Sediment balances in the Blue Nile River Basin

    Institute of Scientific and Technical Information of China (English)

    Yasir SAALI; Alessandra CROSATO; Yasir AMOHAMED; Seifeldin HABDALLA; Nigel GWRIGHT

    2014-01-01

    Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network. The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.

  12. River Basin Management Plans - Institutional framework and planning process

    DEFF Research Database (Denmark)

    Frederiksen, Pia; Nielsen, Helle Ørsted; Pedersen, Anders Branth;

    2011-01-01

    The report it a deliverable to the Waterpraxis project, based on research carried out in WP3. It is based on country reports from analyses of water planning in one river basin district in each of the countries Sweden, Finland, Latvia, Lithuania, Poland, Germany and Denmark, and it compares...... the institutional set-up, the public participation and the potentials and barriers for implementing the water plans....

  13. Impact of climate change and agricultural developments in the Taquari