WorldWideScience

Sample records for river alluvial sediment

  1. Radiocarbon dating of floodplain and young terraces alluvial sediments of Latvia rivers

    International Nuclear Information System (INIS)

    Eberhards, G.; Saltupe, B.

    2000-01-01

    This paper include new information about alluvial sediments structure and radiocarbon data of some Latvia free-meandering rivers (Gauja, Ogre, Liela and Maza Jugla, Daugava) floodplains and first terraces. In this present study we examined Gauja river floodplains in the different geomorphological and geological areas. Radiocarbon dating add the fact that the high level floodplain (4-5 m) formation and sediment accumulation take place 3000-5000 years before present (BP) middle level floodplains formed 1500-2100 years BP. Investigations show that one river terraces and floodplains with same relative height have a several absolute age. The rivers crossed same hypsometrical regions (highlands, lowlands) downstream in lowlands alluvial terraces performed as floodplains or from from floodplains to terraces with same height. On the highest, middle and in the lower parts of the rivers with free - meandering channel to - day the dynamic balance of the channel processes exits 4000-5000 years. (author)

  2. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  3. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    Science.gov (United States)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. management within this highly threatened river basin.

  4. Modeling and measuring the relationships between sediment transport processes, alluvial bedforms and channel-scale morphodynamics in sandy braided rivers.

    Science.gov (United States)

    Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.; Unsworth, C. A.

    2017-12-01

    Recent years have seen significant advances in the development and application of morphodynamic models to simulate river evolution. Despite this progress, significant challenges remain to be overcome before such models can provide realistic simulations of river response to environmental change, or be used to determine the controls on alluvial channel patterns and deposits with confidence. This impasse reflects a wide range of factors, not least the fact that many of the processes that control river behaviour operate at spatial scales that cannot be resolved by such models. For example, sand-bed rivers are characterised by multiple scales of topography (e.g., dunes, bars, channels), the finest of which must often by parameterized, rather than represented explicitly in morphodynamic models. We examine these issues using a combination of numerical modeling and field observations. High-resolution aerial imagery and Digital Elevation Models obtained for the sandy braided South Saskatchewan River in Canada are used to quantify dune, bar and channel morphology and their response to changing flow discharge. Numerical simulations are carried out using an existing morphodynamic model based on the 2D shallow water equations, coupled with new parameterisations of the evolution and influence of alluvial bedforms. We quantify the spatial patterns of sediment flux using repeat images of dune migration and bar evolution. These data are used to evaluate model predictions of sediment transport and morphological change, and to assess the degree to which model performance is controlled by the parametrization of roughness and sediment transport phenomena linked to subgrid-scale bedforms (dunes). The capacity of such models to replicate the characteristic multi-scale morphology of bars in sand-bed rivers, and the contrasting morphodynamic signatures of braiding during low and high flow conditions, is also assessed.

  5. Experimental Salix shoot and root growth statistics on the alluvial sediment of a restored river corridor

    Science.gov (United States)

    Pasquale, N.; Perona, P.; Verones, F.; Francis, R.; Burlando, P.

    2009-12-01

    River restoration projects encompass not only the amelioration of flood protection but also the rehabilitation of the riverine ecosystem. However, the interactions and feedbacks between river hydrology, riparian vegetation and aquifer dynamics are still poorly understood. Vegetation interacts with river hydrology on multiple time scales. Hence, there is considerable interest in understanding the morphodynamics of restored river reaches in relation to the characteristics of vegetation that may colonize the bare sediment, and locally stabilize it by root anchoring. In this paper we document results from a number of ongoing experiments within the project RECORD (Restored CORridor Dynamics, sponsored by CCES - www.cces.ch - and Cantons Zurich and Thurgau, CH). In particular, we discuss both the above and below ground biomass growth dynamics of 1188 Salix cuttings (individual and group survival rate, growth of the longest shoots and number of branches and morphological root analysis) in relation to local river hydrodynamics. Cuttings were organized in square plots of different size and planted in spring 2009 on a gravel island of the restored river section of River Thur in Switzerland. By periodical monitoring the plots we obtained a detailed and quite unique set of data, including root statistics of uprooted samples derived from image analysis from a high-resolution scanner. Beyond describing the survival rate dynamics in relation to river hydrology, we show the nature and strength of correlations between island topography and cutting growth statistics. In particular, by root analysis and by comparing empirical histograms of the vertical root distribution vs satured water surface in the sediment, we show that main tropic responses on such environment are oxytropism, hydrotropism and thigmotropism. The main factor influencing the survival rate is naturally found in erosion by floods, of which we also give an interesting example that helps demonstrate the role of river

  6. The role of river hydrology on Salix shoot and root survival statistics on the alluvial sediment of a restored river corridor

    Science.gov (United States)

    Pasquale, Nicola; Perona, Paolo; Verones, Francesca; Francis, Robert; Burlando, Paolo

    2010-05-01

    In river restoration projects there is considerable interest in understanding the morphodynamics of river reaches in relation to the characteristics of vegetation that may colonize the bare alluvial sediment, and locally stabilize it by root anchoring. Vegetation interacts with river hydrology on multiple time scales, but such interactions are at present still poorly understood. In this contribution, we discuss both the above and below ground biomass growth dynamics of 1188 Salix cuttings (individual and group survival rate, growth of the longest shoots and number of branches and morphological root analysis) in relation to local river hydrodynamics. Cuttings were organized in square plots of different size and planted in spring 2009 on a gravel island of the restored river section of River Thur (Niederneunforn, Canton Thurgau, Switzerland). Cuttings in the plots were monitored regularly, from the beginning of the campaign (March) until the end of the growing season (October). We obtained a detailed and quite unique set of data, which includes, among others, root characteristic statistics obtained from image and high-resolution scanner analysis of carefully uprooted samples. Beyond describing the survival rate dynamics in relation to river hydrology, we show the nature and strength of correlations between island topography, cutting growth statistics and local reach morphodynamics (see also Pasquale et. al.3, session HS 3.1). In particular, by comparing empirical histograms of the vertical root distribution vs. those of the saturated water surface in the sediment, we show that main tropic responses are oxytropism, hydrotropism and thigmotropism. Moreover, by numerical modelling of the local hydrodynamics, we can also identify the spatial distribution of preferential locations of oxytropism and hydrotropism. As far as factors causing mortality are concerned, we also show that erosion by flood is responsible for influencing the spatial and temporal distribution of the

  7. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  8. A Numerical Model for Flow and Sediment Transport in Alluvial-River Bends.

    Science.gov (United States)

    1983-12-01

    into the bend divided by the computed total sediment discharge across the section. This insures that sediment continuity is preserved along the...6 * * * 0 * C YORF DEFINITION’S , C PI : PI !!! BOSTON CREME, APPLE, PUMPKIN , LTC* "" C G = GRAVITATIONAL CONSTANT * r AAA = COEFFICI92T IN

  9. {sup 210}Pb geochronology and chemical characterization of sediment cores from lakes of the Parana river alluvial plain

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.F.L.; Damatto, S.R.; Scapin, M.A. [IPEN - Instituto de Pesquisas Energeticas e Nucleares (Brazil); Remor, M.B.; Sampaio, S.C. [UNIOESTE - Universidade Estadual do Oeste do Parana (Brazil)

    2014-07-01

    The flood plain of the upper Parana River is located among the lakes formed by the Brazilian hydroelectric plants being the last part of the Parana river, in Brazil, where there is an ecosystem with interaction river-flood plain. This flood plain has considerable habitat variability, with great diversity of terrestrial and aquatic species, and the floods are the main factor that regulates the operation of this ecosystem. The seasonality of the flood pulses is mainly influenced by the El Nino phenomenon, which increases precipitation in the drainage basin of the flood plain of the upper Parana River. Because of its unique characteristics this ecosystem is the subject of intense study since 1980, mainly from the ecological point of view. Therefore, two sediment cores were collected in the ponds formed by the floods, Patos pond and Garcas pond, in order to characterize the sediment chemically and evaluate a possible historic contamination. The trace element concentrations As, Ba, Br, Ce, Co, Cr, Cs, Eu, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn (mg.kg{sup -1}) and the major elements Si, Al, Fe, Ti, K, Ca, Mg, P, V, Mn, and Na (%) were determined in the sediment cores dated by {sup 210}Pb method, using instrumental neutron activation analysis, X-ray fluorescence and gross beta counting, respectively. The results obtained for the elements Ce, Cr, Cs, La, Nd, Sc, Sm and Th are higher than the values of Upper Continental Crust for both ponds. The sedimentation rates obtained for Garca pond, 0.77 cm.y{sup -1}, and Patos pond, 0.62 cm.y{sup -1} are in agreement with studies performed in sedimentary environments similar to the present work, such as Brazilian wetland Pantanal. The enrichment factor and the geo-accumulation index were used to assess the presence of anthropogenic sources of pollution. Document available in abstract form only. (authors)

  10. Application of biological markers for the identification of oil-type pollutants in recent sediments: Alluvial formation of the Danube river, Oil refinery Pančevo

    Directory of Open Access Journals (Sweden)

    Rašović Aleksandar S.

    2002-01-01

    Full Text Available The purpose of this paper was to examine to which extent the abundance and distribution of certain biological markers may be used for the identification of oil-type pollutants in recent sediments and ground waters. The samples were taken from the area of the Oil Refinery Pančevo (alluvial formation of the Danube River. The organic matter of the investigated samples was isolated using an extraction method with chloroform. The group composition and usual biological markers were analyzed in the obtained extracts. n-Alkanes and acyclic isoprenoids, pristane and phytane were analyzed using gas chromatographie (GC analysis of saturated hydrocarbons. Polycyclic alkanes of the sterane and terpane type were analyzed using gas chromatography-mass spectrometry (GC-MS, i.e. by analyzing the carbamide non-adduct of the total alkane fraction (Single Ion Monitoring SIM-technique. The obtained results indicate that n-alkanes can be used for the identification of oil-type pollutants (for example, if the oil-pollutant is biodegraded or present in very low concentrations, and steranes and triterpanes can be used as very reliable indicators of oil-type pollution in recent sediments and ground waters.

  11. Interaction of fine sediment with alluvial streambeds

    Science.gov (United States)

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  12. Geochemistry and provenance of some detrital heavy minerals of alluvial sediments from Neagra Şarului River, Eastern Carpathians, Romania

    Science.gov (United States)

    Ciortescu, Catalina; Iancu, Ovidiu Gabriel; Bulgariu, Dumitru; Popa, Ciprian

    2014-05-01

    The present work focuses on the analyses of a selection of heavy mineral assemblages sampled from the Neagra Şarului River's alluvia, in order to determine their provenance and distribution, using their geochemical and physical characteristics. The study focused on a mountain river of about 30 km long, located in the north-western part of the Eastern Carpathians, an important tributary of the Bistria River. The bedrocks in the river drainage basin are constituted mainly by igneous rocks from Călimani Volcanic Complex in the west, and secondarily by a small area of low to medium grade metamorphic rocks, part of Crystalline-Mesozoic Zone, in the east. In order to trace the source of each individual mineral species, we prepared our samples via field separation and subsequent laboratory sieving using 8 different size fractions. An electromagnetic separator (Frantz Isodynamic) was used to separate and classify each heavy minerals species, depending on their magnetic susceptibility. Thus prepared, more than 500 grains per samples (from the 0.5-1 mm size fraction) were mounted on thin sections and analyzed using a Cambridge Microscan M9 with EDS system. These analyses served for mineral identification and relative abundance determination. The classification of the minerals and the nature of their inclusions are derived from the major element compositions computed from SEM-EDX analysis. We also used a stereo microscope in order to determine complementary properties of the grains, such as: color, degree of roundness and degree of alteration. In order of abundance, the main heavy minerals are magnetite, hematite, pyroxene, pyrite, manganese oxides, garnet, apatite, titanium oxides (ilmenite, titanite and rutile/anatase), chlorite, olivine, epidote, biotite and rhodochrosite. A particularity of the studied area is the presence of an altered magnetite caused first by the hydrothermal alteration and strong weathering of the source rocks and second by the river's acid water

  13. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  14. INFLUENCE OF SEDIMENT SUPPLY, LITHOLOGY, AND WOOD DEBRIS ON THE DISTRIBUTION OF BEDROCK AND ALLUVIAL CHANNELS

    Science.gov (United States)

    Field surveys in the Willapa River basin, Washington State, indicate that the drainage area?channel slope threshold describing the distribution of bedrock and alluvial channels is influenced by the underlying lithology and that local variations in sediment supply can overwhelm ba...

  15. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    Science.gov (United States)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  16. ESR as a method for the characterization of alluvial sediments

    International Nuclear Information System (INIS)

    Tissoux, H.; Voinchet, P.; Lacquement, F.; Despriée, J.

    2015-01-01

    The possibility of using the parameters involved in the ESR dating of optically bleached quartz grains in a purpose of source determination was checked. In that aim, samples previously taken in different sedimentary formations of the Middle Loire Basin (Central France) and dated by ESR have been observed. First discrimination was made using the thorium and potassium content in the sediments obtained by gamma spectrometry. The plot of these 119 data on the Th/K Schlumberger diagram clearly demonstrated that it was possible to discriminate the clays associations included in the sediment from which the dated quartz are extracted. Clay's nature could then be indicative of the geological nature of the substratum of rivers from their sources. Second discrimination was made using the ESR intensities calculated from Al, Ti–H and Ti–Li paramagnetic centres on 18 samples. It appears that the combination of the non-bleachable aluminum trap (DAT) saturation intensity and the Ti–H/Ti–Li ratio intensities make possible the discrimination of the two main sources of the sediment: Massif Central and Paris Basin. More deeply, The Ti/OBAT (Optically bleachable aluminum traps) intensities made possible the discrimination of quartz grains of different geological sources or with different geothermal history within the Massif Central group. - Highlights: • We used ESR and gamma spectrometry for source determination of alluvial quartz grains. • Th/K ratio distinguishes sediments from rivers flowing in various geological contexts. • Al, Ti–H and Ti–Li ESR centers discriminate quartz of different geological sources.

  17. Caesium-137 in sandy sediments of the River Loire (FR): Assessment of an alluvial island evolving over the last 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Detriche, Sebastien; Rodrigues, Stephane; Macaire, Jean-Jacques; Breheret, Jean-Gabriel; Bakyono, Jean-Paul [Universite Francois-Rabelais de Tours, CNRS/INSU UMR 6113 ISTO, Universite d' Orleans Faculte des Sciences et Techniques, Laboratoire de Geologie des Environnements Aquatiques Continentaux, Parc de Grandmont, 37200 Tours (France); Bonte, Philippe [UMR CNRS-CEA 1572, Laboratoire des Sciences du Climat et de l' Environnement - LSCE, CNRS, Domaine du CNRS, Bat. 12, 91198 Gif-sur-Yvette (France); Juge, Philippe [CETU-Elmis ingenieries, Antenne Universitaire en Val de Vienne, 11 quai Danton, 37500 Chinon (France)

    2010-07-01

    Recent sedimentological and morphological evolution of an island in the River Loire (FR) was investigated using the {sup 137}Cs method. This study describes the morphological adjustment of the island in the last 50 years, which corresponds to the increased bed incision of this sandy, multiple-channel environment because of, among other things, the increase in sediment extraction up to 1995. The results show that some {sup 137}Cs can be retained by sandy particles, potentially in clay minerals forming weathering features included in detrital sand grains. From a morphological perspective, significant lateral erosion can be observed in the upstream part of the island, while a weak lateral accretion occurs in its downstream section. Data about {sup 137}Cs and aerial photographs show that the morphology of the island margins has undergone significant changes leading to a lateral migration, while the centre of the island has remained relatively stable or is slowly eroding. The migration of the island depends on: (1) the withdrawal of inherited pre-incision morphological units, such as levees, or the development of new units, such as a channel shelf; (2) water and sediment supply from surrounding channels during flood events; (3) preferential sediment trapping (20 mm year{sup -1}) from the presence of riparian vegetation on the bank of the secondary channel that is subject to narrowing. The sedimentological and morphological response of the island in the context of incision of the Loire river bed is expressed mainly by lateral migration and secondarily by a low vertical adjustment. (authors)

  18. Caesium-137 in sandy sediments of the River Loire (FR): Assessment of an alluvial island evolving over the last 50 years

    International Nuclear Information System (INIS)

    Detriche, Sebastien; Rodrigues, Stephane; Macaire, Jean-Jacques; Breheret, Jean-Gabriel; Bakyono, Jean-Paul; Bonte, Philippe; Juge, Philippe

    2010-01-01

    Recent sedimentological and morphological evolution of an island in the River Loire (FR) was investigated using the 137 Cs method. This study describes the morphological adjustment of the island in the last 50 years, which corresponds to the increased bed incision of this sandy, multiple-channel environment because of, among other things, the increase in sediment extraction up to 1995. The results show that some 137 Cs can be retained by sandy particles, potentially in clay minerals forming weathering features included in detrital sand grains. From a morphological perspective, significant lateral erosion can be observed in the upstream part of the island, while a weak lateral accretion occurs in its downstream section. Data about 137 Cs and aerial photographs show that the morphology of the island margins has undergone significant changes leading to a lateral migration, while the centre of the island has remained relatively stable or is slowly eroding. The migration of the island depends on: (1) the withdrawal of inherited pre-incision morphological units, such as levees, or the development of new units, such as a channel shelf; (2) water and sediment supply from surrounding channels during flood events; (3) preferential sediment trapping (20 mm year -1 ) from the presence of riparian vegetation on the bank of the secondary channel that is subject to narrowing. The sedimentological and morphological response of the island in the context of incision of the Loire river bed is expressed mainly by lateral migration and secondarily by a low vertical adjustment. (authors)

  19. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    Science.gov (United States)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  20. Characterization of Natural Organic Matter in Alluvial Aquifer Sediments: Approaches and Implications for Reactivity

    Science.gov (United States)

    Fox, P. M.; Nico, P. S.; Hao, Z.; Gilbert, B.; Tfaily, M. M.; Devadoss, J.

    2015-12-01

    Sediment-associated natural organic matter (NOM) is an extremely complex assemblage of organic molecules with a wide range of sizes, functional groups, and structures, which is intricately associated with mineral particles. The chemical nature of NOM may control its' reactivity towards metals, minerals, enzymes, and bacteria. Organic carbon concentrations in subsurface sediments are typically much lower than in surface soils, posing a distinct challenge for characterization. In this study, we investigated NOM associated with shallow alluvial aquifer sediments in a floodplain of the Colorado River. Total organic carbon (TOC) contents in these subsurface sediments are typically around 0.1%, but can range from 0.03% up to approximately 1.5%. Even at the typical TOC values of 0.1%, the mass of sediment-associated OC is approximately 5000 times higher than the mass of dissolved OC, representing a large pool of carbon that may potentially be mobilized or degraded under changing environmental conditions. Sediment-associated OC is much older than both the depositional age of the alluvial sediments and dissolved OC in the groundwater, indicating that the vast majority of NOM was sequestered by the sediment long before it was deposited in the floodplain. We have characterized the sediment-bound NOM from two locations within the floodplain with differing physical and geochemical properties. One location has relatively low organic carbon (mineral association across different biogeochemical regimes and assess the potential reactivity of various NOM pools.

  1. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    Science.gov (United States)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  2. The role of discharge variability in the formation and preservation of alluvial sediment bodies

    Science.gov (United States)

    Fielding, Christopher R.; Alexander, Jan; Allen, Jonathan P.

    2018-03-01

    deposits. This high-peak-variance style is also distinctive of rivers that are undergoing contraction in discharge over time because of the gradual annexation of the channel belt by the establishment of woody vegetation. We propose that discharge variability, both inter-annual peak variation and "flashiness" may be a more reliable basis for classifying the alluvial rock record than planform, and we provide some examples of three classes of alluvial sediment bodies (representing low, intermediate, and high/very high discharge variability) from the rock record that illustrate this point.

  3. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  4. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  5. The application of radioactive tracers for determination of bed-load transport in alluvial rivers

    International Nuclear Information System (INIS)

    Thomsen, T.

    1980-01-01

    Radioactive isotopes have been applied for determining the transport rate of bed load in an alluvial river on the basis of: centroid velocity of the tracer particles, size and material-transporting width of mobile layer. These parameters were found by detailed measurements in the field. Computed values were produced on the basis of Engelund and Fredsoee's model on sediment transport and on the propagation of bed forms. When comparing measured and computed values, the difference was about 25%. Finally, the applicability of tracer methods for solving practical problem is discussed. (author)

  6. Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results

    Science.gov (United States)

    Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.

    2012-12-01

    Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base

  7. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  8. Length scale hierarchy and spatiotemporal change of alluvial morphologies over the Selenga River delta, Russia

    Science.gov (United States)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.

    2017-12-01

    The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to

  9. Landform evolution modeling of fine-grained sedimentation on alluvial fans on Mars and Earth

    Science.gov (United States)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Swander, Z. J.; Fink, D.; Korup, O.; Hesse, P. P.; Singh, T.; Srivastava, P.

    2017-12-01

    Reconstructing how rivers respond to changes in runoff or sediment supply by incising or aggrading has been pivotal in gauging the role of the Indian Summer Monsoon (ISM) as a geomorphic driver in the Himalayas. Here we present new data on how the fluvial systems of the Lesser Himalaya of India has responded to late Quaternary climate change. Our study is based on new chronological data for fluvial aggradation and incision from the Donga alluvial fan and several reaches of the upper Alaknanda River, as well as a meta-analysis of previous work. Fluvial sediments in the Himalayas in general, and quartz from the region in particular, have been previously noted for a number of unsuitable OSL properties including large recuperation and the existence of unremovable feldspar signals, leading to controversial discussions with regard to the reliability of existing OSL chronologies in this region. In order to improve the applicability and validity of OSL in the Lesser Himalaya, we have tested and applied pulsed OSL signals (POSL) to quartz grains from alluvial terrace and fan sediments, and propose a new chronology of regional fluvial aggradation. For previously dated terraces and alluvial fan sections, our POSL ages are systematically older than previously reported OSL ages. These results suggest periods of aggradation in the Alaknanda and Dehradun Valleys mainly between 20 and 50 ka. This most likely reflects decreased stream power during periods of weakened monsoon. The concentration of in-situ cosmogenic beryllium-10 from fluvial bedrock surfaces was also used to infer bedrock surface exposure ages, which should inform about episodes of active fluvial erosion. Resulting exposure ages span between 1.3 and 9.0 ka, suggesting that strath terraces were exposed relatively recently, and incision was dominant through most of the Holocene. In combination, our results support a precipitation-driven climatic control on fluvial dynamics, which regulates the balance between stream

  10. Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment

    Directory of Open Access Journals (Sweden)

    K. Edmaier

    2011-05-01

    Full Text Available The establishment of riparian pioneer vegetation is of crucial importance within river restoration projects. After germination or vegetative reproduction on river bars juvenile plants are often exposed to mortality by uprooting caused by floods. At later stages of root development vegetation uprooting by flow is seen to occur as a consequence of a marked erosion gradually exposing the root system and accordingly reducing the mechanical anchoring. How time scales of flow-induced uprooting do depend on vegetation stages growing in alluvial non-cohesive sediment is currently an open question that we conceptually address in this work. After reviewing vegetation root issues in relation to morphodynamic processes, we then propose two modelling mechanisms (Type I and Type II, respectively concerning the uprooting time scales of early germinated and of mature vegetation. Type I is a purely flow-induced drag mechanism, which causes alone a nearly instantaneous uprooting when exceeding root resistance. Type II arises as a combination of substantial sediment erosion exposing the root system and resulting in a decreased anchoring resistance, eventually degenerating into a Type I mechanism. We support our conceptual models with some preliminary experimental data and discuss the importance of better understanding such mechanisms in order to formulate sounding mathematical models that are suitable to plan and to manage river restoration projects.

  11. Textural parameters distribution in sediments surface of the Uruguay river background between km 221 and 254

    International Nuclear Information System (INIS)

    Capeluto, W.; Campos, T. de los

    2010-01-01

    The aim of this paper is to analyze the distribution of textural statistical parameters and spatial variation in the morphology of the sediment areas. The geology of the area comprises alluvial and alluvial deposits of variable thicknesses overlying deposits of Fray Bent os, Salto and Guichon formations that occasionally emerge in the river bed

  12. Floodplain lakes and alluviation cycles of the lower Colorado River

    Science.gov (United States)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the

  13. Numerical modelling of river processes: flow and river bed deformation

    NARCIS (Netherlands)

    Tassi, P.A.

    2007-01-01

    The morphology of alluvial river channels is a consequence of complex interaction among a number of constituent physical processes, such as flow, sediment transport and river bed deformation. This is, an alluvial river channel is formed from its own sediment. From time to time, alluvial river

  14. Geomorphic and hydraulic controls on large-scale riverbank failure on a mixed bedrock-alluvial river system, the River Murray, South Australia: a bathymetric analysis.

    Science.gov (United States)

    De Carli, E.; Hubble, T.

    2014-12-01

    During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is 'pinched' and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled 'pinch-points' resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the

  15. Controls on sediment cover in bedrock-alluvial channels of the Henry Mountains, Utah

    Science.gov (United States)

    Hodge, R. A.; Yager, E.; Johnson, J. P.; Tranmer, A.

    2017-12-01

    The location and extent of sediment cover in bedrock-alluvial channels influences sediment transport rates, channel incision and instream ecology. However, factors affecting sediment cover and how it responds to changes in relative sediment supply have rarely been quantitatively evaluated in field settings. Using field surveys and SFM analysis of channel reach topography, we quantified sediment cover and channel properties including slope, width, grain size distributions, and bedrock and alluvial roughness in North Wash and Chelada Creek in the Henry Mountains, Utah. Along reaches where upstream sediment supply does not appear to be restricted, we find that the fraction of local bedrock exposure increases as a function of local relative transport capacity . In a downstream section of Chelada Creek, decadal-scale sediment supply has been restricted by an upstream culvert that has caused a backwater effect and corresponding upstream deposition. In this section, alluvial cover is uncorrelated with local stream power. To test the impact of relative sediment supply on sediment cover, a 1D sediment transport model was used to predict the equilibrium sediment cover in Chelada Creek under varying flow and sediment supply conditions. Sediment transport in each model section was predicted using the partial cover model of Johnson (2015), which accounts for differences in bedrock and alluvial roughness on critical shear stress and flow resistance. Model runs in which sediment supply was approximately equal to mean transport capacity produced a pattern of sediment cover which best matched the field observations upstream of the culvert. However, runs where sediment supply was under-capacity produced the pattern most similar to field observations downstream of the culvert, consistent with our field-based interpretations. Model results were insensitive to initial sediment cover, and equilibrium was relatively quickly reached, suggesting that the channel is responsive to changes in

  16. Analysis of cutin and suberin biomarker patterns in alluvial sedi-ments

    Science.gov (United States)

    Herschbach, Jennifer; Sesterheim, Anna; König, Frauke; Fuchs, Elmar

    2015-04-01

    Cutin and suberin are the primary source of hydrolysable aliphatic lipid polyesters in soil organic matter (SOM). They are known as geochemical biomarkers to estimate the contribution of different plant species and tissues to SOM. Despite their potential as biomarkers, cutin and suberin have received less attention as flood plain sediment biomarkers. The objectives of this study were to investigate the efficiency of cutin and suberin as biomarkers in floodplains. Therefore similarities between the lipid pattern in alluvial sediments and in the actual vegetation were considered. Lipids of plant tissues (roots, twigs, leaves) from different species (reed (e.g. Phalaris arun-diacea), Salix alba, Ulmus laevis and grassland (e.g. Carex spec.)) and of the un-derlying soils and sediments were obtained and investigated at four sites in the nature reserve Knoblauchsaue (Hessen, Germany). The four sampling sites differ not only with respect to their vegetation, but also within their distance to the river Rhine. Cutin and suberin monomers of plants and soils were analysed by alkaline hydrolysis, methylation and acetylation and subsequent gas chromatography-mass spectrometry. Resulting lipid patterns were specific for the appropriate plant species and tissues. However, the traceability of single selected lipids was decreasing alongside the soil profile, with the exception of monomers in softwood floodplain soils. Selected tissue specific lipid ratios showed a higher traceability due to strong attributions of lipid ratios in soils and roots of U. laevis and Carex spec. and in leaves of U. laevis and S. alba. In contrast, there was no accordance between the suberin specific lipid ratios in soils and roots of S. alba and P. arundiacea. The most robust interpretations were afforded when a set of multiple biomarkers (i.e. a combination of free lipid ratios and ratios of hydrolysable lipids) was used to collectively reconstruct the source vegetation of different sediment layers.

  17. Influence of geologic structure on alluvial sedimentation in northwestern Yucca Flat, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1983-01-01

    Using downhole photography, alluvial sediments are described in 5 emplacement holes in northwestern Yucca Flat. The holes are located on or near the Grouse Canyon fan. The 3 most proximally located holes contain the coarsest sediments and display a general decrease in grain size in the downfan direction. The 2 most distally located holes contain fine-grained distal facies sediment in the upper parts of the holes and coarse-grained proximal facies gravels lower in the holes. The proximal gravels in the lower half of the sections were derived from the gravity high, a north-south-trending horst which was exposed early during the history of Yucca Flat basin. Alluvial sedimentation eventually exceeded uplift of the horst, which was buried by distal facies sediments, derived from the western basin margin

  18. Evaluation of reforestation in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    King, S.L.; Keeland, B.D.

    1999-01-01

    Only about 2.8 million ha of an estimated original 10 million ha of bottomland hardwood forests still exist in the Lower Mississippi River Alluvial Valley (LMAV) of the United States. The U.S. Fish and Wildlife Service, the U.S. Forest Service, and state agencies initiated reforestation efforts in the late 1980s to improve wildlife habitat. We surveyed restorationists responsible for reforestation in the LMAV to determine the magnitude of past and future efforts and to identify major limiting factors. Over the past 10 years, 77,698 ha have been reforested by the agencies represented in our survey and an additional 89,009 ha are targeted in the next 5 years. Oaks are the most commonly planted species and bare-root seedlings are the most commonly used planting stock. Problems with seedling availability may increase the diversity of plantings in the future. Reforestation in the LMAV is based upon principles of landscape ecology; however, local problems such as herbivory, drought, and flooding often limit success. Broad-scale hydrologic restoration is needed to fully restore the structural and functional attributes of these systems, but because of drastic and widespread hydrologic alterations and socioeconomic constraints, this goal is generally not realistic. Local hydrologic restoration and creation of specific habitat features needed by some wildlife and fish species warrant attention. More extensive analyses of plantings are needed to evaluate functional success. The Wetland Reserve Program is a positive development, but policies that provide additional financial incentives to landowners for reforestation efforts should be seriously considered.

  19. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    Science.gov (United States)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    The construction of sediment rating curves for monitoring stations is a widely used technique to budget sediment fluxes. Changes in the relationship between discharge and sediment concentrations over time are often attributed to human-induced changes in catchment characteristics, such as land use change, dam construction or soil conservation measures and many models have been developed to quantitatively link catchment characteristics and river sediment load. Conversely, changes in river sediment fluxes are often interpreted as indications of major changes in the catchment. By doing so, autogenic processes, taking place within the river channel, are overlooked despite the increasing awareness of their importance. We assessed the role of autogenic processes on the sediment load of Tana River (Kenya). The Tana river was impacted by major dam construction between 1968 and 1988, effectively blocking at least 80% of the sediment transfer from the highlands to the lower river reaches. However, a comparison of pre-dam sediment fluxes at Garissa (located 250 km downstream of the dams) with recent measurements shows that sediment fluxes have not changed significantly. This suggests that most of the sediment in the post-dam period has to originate from inside the alluvial plain of the river, as tributaries downstream of the dams are scarce and intermittent. Several observations are consistent with this hypothesis. We observed that, during the wet season, sediment concentrations rapidly increased below the dams and are not controlled by inputs from tributaries. Also, sediment concentrations were high at the beginning of the wet season, which can be attributed to channel adjustment to the higher discharges. The river sediment does not contain significant amounts of 137Cs or 210Pbxs, suggesting that sediments are not derived from topsoil erosion. Furthermore, we observed a counter clockwise hysteresis during individual events which can be explained by the fact that sediment

  20. Hydrochemical Processes in the Alluvial Aquifer of the Gwydir River (Northern New South Wales, Australia)

    OpenAIRE

    Menció, Anna; Mas-Pla, Josep; Korbel, Kathryn; Hose, Grant C.

    2013-01-01

    The hydrochemistry of the Narrabri Formation, the shallow aquifer system of the alluvial fan of the Gwydir River (NSW, Australia), is analyzed to better understand the hydrogeological processes involved in aquifer recharge, and to set up future management options that preserve the quantity and quality of water resources. Results show that groundwater hydrochemistry in this alluvial aquifer is mainly controlled by silicate weathering and cation exchange. However, salt remobilization in specifi...

  1. Natural radioactivity of Loire river sediments: relations with the lithology

    International Nuclear Information System (INIS)

    Patryl, L.

    2000-01-01

    This study has been carried out on request of the Loire-Bretagne water agency by the Laboratory of geology of Tours univ. (EA2100 GeEAC) in collaboration with CEA-Le Ripault. The main objective was the study of the nature and distribution of natural radioactivity in the Loire river alluvial deposits, its origin in the rocks of the surrounding basins and its links with the alluvial petrography. The radioactive flux linked with the sediments of the bottom of the river has been also determined. The Loire river and its main affluents have been the object of radiological and petrographic analyses (grain size, sands and clays mineralogy, organic matter content). The average radioactivities of 40 K, 238 U and 228 Ac in the alluvial deposits are 934.3 ± 164.7 Bq.kg -1 , 50.6 ± 30.8 Bq.kg -1 and 28.8 ± 18.1 Bq.kg -1 , respectively. The average radioactivity of 238 U, 228 Ac and their daughter products is statistically higher in Loire superieure (Massif Central mounts) than in Loire moyenne (Paris basin). The activities of 238 U and 228 Ac are mainly influenced by the grain size of the alluvial deposits and by the mineralogical composition of the sand fraction. The alluvial deposits are mainly sandy and the coarse fraction is the most abundant. The primary radioactivity is carried by the few zircons of the sediments. The activity of the uranium and thorium families increase with the feldspars content. The fixation of radioactivity seems to be linked with the presence of clay minerals inside the weathered feldspar grains which are abundant in the sands. The radioactivity of the Loire river alluvial deposits shows no important changes with respect to the substratums because of a smoothing due to the predominance of longitudinal fluxes with respect to the lateral ones. The impact of an old uranium mine on the alluvial deposits of the Besbre river is detectable along about a tenth of km s downstream only. Because of the strong variations of radioactivity with granularity, a

  2. Interactions between fauna and environment in recent alluvial soils (Dunajec River, SE Poland)

    Science.gov (United States)

    Mikuś, Paweł; Uchman, Alfred

    2017-04-01

    Recent riverine system is a particular place for interactions between fauna and the deposited sediments containing young and old alluvial soils. It is characterized by large energy gradients in relatively short time, which forces special adaptations of burrowing animals recorded in bioturbation structures. Predators produce mainly shelter burrows (interpreted as domichnia), and saprofags, especially earthworms, produce locomotion and feeding structures (pascichnia). Such structures have been studied in non- or poorly vegetated, sandy or muddy Holocene alluvia in the lower reach of the Dunajec River flowing through the Carpathian Foredeep in SE Poland. The observed burrows are mostly produced by a variety of organisms, including the European mole (Talpa europaea), common earthworm (Lumbricus terrestris), ground beetles (Carabidae), solitary bees (Ammophila), red fox (Vulpes vulpes), European beaver (Castor fiber), shrews (Soricidae), European otter (Lutra lutra), several species of mice (Muridae), voles (Myodae, Microtae), and the swallow sand martin (Riparia riparia). Burrows of a few species of ground beetles have been subjected to more detailed studies. Fertile deposits of older (early to middle Holocene) terraces, formed with many long-term interruptions in sedimentation processes, have a well-developed soil levels, more vulnerable to burrowing than recently deposited sediments. The terraces contain layers of sands and muds, which primary sedimentary structures and layer boundaries are completely or partly disturbed by bioturbation. Organic-rich muds have been moved up and down and mixed with sand. Moreover, sediments have been leached into open burrows during floods or rainfalls. In the natural levee sediments, mostly fine to medium sands, are horizontally burrowed, foremost by earthworms (Lumbricidae). Vertical, long (over 2 m deep) burrows of larger earthworms cross cut the natural levee sediments and enter buried soils. They were formed during a long period

  3. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  4. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers

    Science.gov (United States)

    Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta

    2018-03-01

    The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.

  5. Historical trajectories and restoration strategies for the Mississippi River alluvial valley

    Science.gov (United States)

    Brice B. Hanberry; John M. Kabrick; Hong S. He; Brian J. Palik

    2012-01-01

    Unlike upland forests in the eastern United States, little research is available about the composition and structure of bottomland forests before Euro-American settlement. To provide a historical reference encompassing spatial variation for the Lower Mississippi River Alluvial Valley, we quantified forest types, species distributions, densities, and stocking of...

  6. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  7. Rivers turned to rock: Late Quaternary alluvial induration influencing the behaviour and morphology of an anabranching river in the Australian monsoon tropics

    Science.gov (United States)

    Nanson, Gerald C.; Jones, Brian G.; Price, David M.; Pietsch, Timothy J.

    2005-09-01

    Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4-3 (˜65-50 ka). Aridity then capped these plains with 4-7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path. A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet-dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden

  8. Sedimentation in a river dominated estuary

    CSIR Research Space (South Africa)

    Cooper, JAG

    1993-10-01

    Full Text Available The Mgeni Estuary on the wave dominated cast coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine depositon...

  9. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  10. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  11. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing Through Compartmentalized, Alluvial Aquifers

    Science.gov (United States)

    Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.

    2017-12-01

    As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.

  12. Quantifying relief on alluvial fans using airborne lidar to reveal patterns of sediment accumulation

    Science.gov (United States)

    Morelan, A. E., III; Oskin, M. E.

    2017-12-01

    We present a method of quantifying detailed surface relief on alluvial fans from high-resolution topography. Average slope and curvature of the fan are used together to empirically derive an idealized, radially symmetric fan surface, from which we compute residual topography. Maps produced using this technique highlight spatial patterns of fan deposition and avulsion. Regions of high residual topography reveal active and abandoned sediment lobes accumulated from recent depositional events, often with well-defined channels at their apex. Preliminary observations suggest that surface relief is uniform across a collection of fans in a given region and source lithology. Alluvial fans with granitic catchment lithologies in eastern California (n=12), each with varying source catchment size and mean fan slope, all show relief of around 4 meters. A collection of fans from the Carrizo Plain in central California (n=12), with source catchments set within Miocene marine and nonmarine sedimentary rocks, show significantly lower relief values around 2 meters. We hypothesize that particle grain size determines this contrasting relief through its control on the thickness of fan-building debris flows. In both settings we find that sediment lobes tend to extend toward the fan toe. This pattern supports a process, observed in analog experiments, of fan deposition dominated by back-filling and overtopping of distributary channels by debris-flows.

  13. Hydrogeochemistry of Groundwater and Arsenic Adsorption Characteristics of Subsurface Sediments in an Alluvial Plain, SW Taiwan

    Directory of Open Access Journals (Sweden)

    Libing Liao

    2016-12-01

    Full Text Available Many studies were conducted to investigate arsenic mobilization in different alluvial plains worldwide. However, due to the unique endemic disease associated with arsenic (As contamination in Taiwan, a recent research was re-initiated to understand the transport behavior of arsenic in a localized alluvial plain. A comprehensive approach towards arsenic mobility, binding, and chemical speciation was applied to correlate groundwater hydrogeochemistry with parameters of the sediments that affected the As fate and transport. The groundwater belongs to a Na-Ca-HCO3 type with moderate reducing to oxidizing conditions (redox potential = −192 to 8 mV. Groundwater As concentration in the region ranged from 8.89 to 1131 μg/L with a mean of 343 ± 297 μg/L, while the As content in the core sediments varied from 0.80 to 22.8 mg/kg with a mean of 9.9 ± 6.2 mg/kg. A significant correlation was found between As and Fe, Mn, or organic matter, as well as other elements such as Ni, Cu, Zn, and Co in the core sediments. Sequential extraction analysis indicated that the organic matter and Fe/Mn oxyhydroxides were the major binding pools of As. Batch adsorption experiments showed that the sediments had slightly higher affinity for As(III than for As(V under near neutral pH conditions and the As adsorption capacity increased as the contents of Fe oxyhydroxides as well as the organic matter increased.

  14. Defining the formative discharge for alternate bars in alluvial rivers

    Science.gov (United States)

    Redolfi, M.; Carlin, M.; Tubino, M.; Adami, L.; Zolezzi, G.

    2017-12-01

    We investigate the properties of alternate bars in long straight reaches of channelized streams subject to an unsteady, irregular flow regime. To this aim we propose a novel integration of a statistical approach with the analytical perturbation model of Tubino (1991) which predicts the evolution of bar properties (namely amplitude and wavelength) as consequence of a flood. The outcomes of our integrated modelling approach are probability distribution of the bar properties, which depend essentially on two ingredients: (i) the statistical properties of the flow regime (duration, frequency and magnitude of the flood events, and (ii) the reach-averaged hydro-geomorphic characteristics of the channel (bed material, channel gradient and width). This allows to define a "bar-forming" discharge value as the flow value which would reproduce the most likely bar properties in a river reach under unsteady flow. Alternate bars are often migrating downstream and growing or declining during flood events. The timescale of bar growth and migration is often comparable with the duration of the floods: consequently, bar properties such as height and wavelength do not respond instantaneously to discharge variations (i.e. quasi-equilibrium response) but may depend on previous flood events. Theoretical results are compared with observations in three Alpine, channelized gravel bed rivers with encouraging outcomes.png" class="documentimage" >

  15. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  16. Wood and Sediment Dynamics in River Corridors

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  17. Exchangeable fraction of elements in alluvial sediments under waste disposal site (Zagreb, Croatia)

    International Nuclear Information System (INIS)

    Vertacnik, A.; Barisic, D.; Musani, Lj.; Prohic, E.; Juracic, M.

    1997-01-01

    Concentrations of Ag, Ba, Cd, Ce, Cs, Co, Cr, Eu, Fe, Rb, Sc, Sr, Th, and Zn exchangeable fractions were determined in alluvial sediments at waste disposal site area in the vicinity of water-well field. Samples have been'leached with 0.5M NH 4 Cl at a sample/solution ratio of 1:20 during 24 hours without shaking. INAA of dry NH 4 Cl residues show that the concentrations of exchangeable elements determined in the most of the sediments below the wastes have natural levels. Ag, Ba and Sr are readily exchangeable; Rb, Cs and Zn have lower exchangeability, while Cd, Ce, Th, Sc, Eu, Cr, Fe and Co are rather immobile. Extremely high total and exchangeable silver concentration was found at 6.5-6.8 meters below waste in the aerated layer occasionally under the water table. Exchangeable concentrations in deeper water-bearing sediment layers are not elevated. Due to this, one can presume that the upper sediment layers act as chemical filter generally preventing the infiltration from overlying wastes into water-bearing layers. (author)

  18. Morphodynamics and Sediment connectivity in the Kosi River basin in the Himalaya and their implications for river management

    Science.gov (United States)

    Sinha, R.; Mishra, K.; Swrankar, S.; Jain, V.; Nepal, S.; Uddin, K.

    2017-12-01

    Sediment flux of large tropical rivers is strongly influenced by the degree of linkage between the sediments sources and sink (i.e. sediment connectivity). Sediment connectivity, especially at the catchment scale, depends largely on the morphological characteristics of the catchment such as relief, terrain roughness, slope, elevation, stream network density and catchment shape and the combined effects of land use, particularly vegetation. Understanding the spatial distribution of sediment connectivity and its temporal evolution can be useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability of sediment transfer at a local scale that will propagate downstream through a feedback system. This paper evaluates the morphodynamics and sediment connectivity of the Kosi basin in Nepal and India at various spatial and temporal scales. Our results provide the first order assessment of the spatial sediment connectivity in terms of the channel connectivity (IC outlet) and source to channel connectivity (IC channel) of the upstream and midstream Kosi basin. This assessment helped in the characterization of sediment dynamics in the complex morphological settings and in a mixed environment. Further, Revised Universal Soil Loss Equation (RUSLE) was used to quantify soil erosion and sediment transport capacity equation is used to quantify sediment flux at each cell basis. Sediment Delivery Ratio (SDR) was calculated for each sub-basin to identify the sediment production and transport capacity limited sub-basin. We have then integrated all results to assess the sediment flux in the Kosi basin in relation to sediment connectivity and the factors controlling the pathways of sediment delivery. Results of this work have significant implications for sediment management of the Kosi river in terms of identification of hotspots of sediment accumulation that will in turn be manifested

  19. Temporal-spatial trends in heavy metal contents in sediment-derived soils along the Sea Scheldt river (Belgium)

    International Nuclear Information System (INIS)

    Vandecasteele, B.; Vos, B. de; Tack, F.M.G.

    2003-01-01

    The alluvial plain upstream in the Sea Scheldt was more affected by upland disposal of polluted sediments. - The aim of this study was to survey the alluvial plains of the Sea Scheldt river in Belgium for the presence of old sediment-derived soils, and to appraise the heavy metal contamination at these sites. Historically, sediments of periodical dredging operations have been disposed in the alluvial plain without concern for the potential presence of contaminants. Up to 96% of the areas that were affected by sediment disposal (ca. 120 ha) was found to be polluted by at least one of the metals Cd, Cr, Zn or Pb. Concentrations of Cd, Cr and Zn were, in 10% of the cases, higher than 14, 1400 and 2200 mg/kg DM, respectively. Based on the Flemish decree on soil sanitation, Cu and Ni concentrations were of less environmental concern on any site. The pollution in the Sea Scheldt alluvial plain nevertheless is lower than for the Upper Scheldt alluvial plain. The sediment-derived soils in the most upstream part near Ghent were used for disposal of sediments from dredging operations elsewhere. Metal concentrations were explored and both spatial and temporal trend were analysed. The pollution levels encountered warrant caution as most of the soils affected by historical dredged sediment disposal are currently in use for pasture

  20. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  1. Distal alluvial fan sediments in early Proterozoic red beds of the Wilgerivier formation, Waterberg Group, South Africa

    Science.gov (United States)

    Van Der Neut, M.; Eriksson, P. G.; Callaghan, C. C.

    The 1900 - 1700 M.a. Waterberg Group belongs to a series of southern African cratonic cover sequences of roughly equivalent age. Red beds of the Wilgerivier Formation comprise sandstones, interbedded with subordinate conglomerates and minor mudrocks. These immature sedimentary rocks exhibit lenticular bedding, radial palaeocurrent patterns and features indicative of both streamflow and gravity-flow deposition. A distal wet alluvial fan palaeoenvironmental setting is envisaged, with fan-deltas forming where alluvial lobes prograded into a lacustrine basin. Intrastratal, diagenetic alteration of ferromagnesian detrital grains and ferruginous grain coatings led to the red colouration of the Wilgerivier sediments.

  2. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.

    Science.gov (United States)

    Batlle-Aguilar, J; Morasch, B; Hunkeler, D; Brouyère, S

    2014-01-01

    The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels. © 2013, National Ground Water Association.

  3. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    Science.gov (United States)

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  4. Major periods of erosion and alluvial sedimentation in New Zealand during the Late Holocene

    International Nuclear Information System (INIS)

    Grant, P.J.

    1985-01-01

    During the last 1,800 years there have been eight major periods of erosion and alluvial sedimentation in New Zealand. These and their probable times of occurrence are: Taupo (1,l764 years BP), Post-Taupo (1,600-1,500 years BP), Pre-Kaharoa (1,300-900 years BP), Waihirere (680-600 years BP), Matawhero (450-330 years BP), Wakarara (180-150 years BP), Tamaki (1870-1900 AD) and Waipawa (1950 to present). The Taupo period, which is identified only in North Island, possibly resulted from heavy rainfalls induced by the Taupo Pumice eruption. The other seven periods, which probably occurred universally in both main islands of New Zealand, were almost certainly caused by increased northerly airflow and atmospheric warming over New Zealand, and the associated increased magnitude of major rainstorms and floods, producing increased rates of erosion and channel sediment transport. Such changes were due primarily to a temporary strengthening of the meridional upper atmospheric circulation in the Southwest Pacific region

  5. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    Science.gov (United States)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  6. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Residence times and alluvial architecture of a sediment superslug in response to different flow regimes

    Science.gov (United States)

    Moody, John A.

    2017-01-01

    A superslug was deposited in a basin in the Colorado Front Range Mountains as a consequence of an extreme flood following a wildfire disturbance in 1996. The subsequent evolution of this superslug was measured by repeat topographic surveys (31 surveys from 1996 through 2014) of 18 cross sections approximately uniformly spaced over 1500 m immediately above the basin outlet. These surveys allowed the identification within the superslug of chronostratigraphic units deposited and eroded by different geomorphic processes in response to different flow regimes.Over the time period of the study, the superslug went through aggradation, incision, and stabilization phases that were controlled by a shift in geomorphic processes from generally short-duration, episodic, large-magnitude floods that deposited new chronostratigraphic units to long-duration processes that eroded units. These phases were not contemporaneous at each channel cross section, which resulted in a complex response that preserved different chronostratigraphic units at each channel cross section having, in general, two dominant types of alluvial architecture—laminar and fragmented. Age and transit-time distributions for these two alluvial architectures evolved with time since the extreme flood. Because of the complex shape of the distributions they were best modeled by two-parameter Weibull functions. The Weibull scale parameter approximated the median age of the distributions, and the Weibull shape parameter generally had a linear relation that increased with time since the extreme flood. Additional results indicated that deposition of new chronostratigraphic units can be represented by a power-law frequency distribution, and that the erosion of units decreases with depth of burial to a limiting depth. These relations can be used to model other situations with different flow regimes where vertical aggradation and incision are dominant processes, to predict the residence time of possible contaminated

  8. Residence times and alluvial architecture of a sediment superslug in response to different flow regimes

    Science.gov (United States)

    Moody, John A.

    2017-10-01

    A superslug was deposited in a basin in the Colorado Front Range Mountains as a consequence of an extreme flood following a wildfire disturbance in 1996. The subsequent evolution of this superslug was measured by repeat topographic surveys (31 surveys from 1996 through 2014) of 18 cross sections approximately uniformly spaced over 1500 m immediately above the basin outlet. These surveys allowed the identification within the superslug of chronostratigraphic units deposited and eroded by different geomorphic processes in response to different flow regimes. Over the time period of the study, the superslug went through aggradation, incision, and stabilization phases that were controlled by a shift in geomorphic processes from generally short-duration, episodic, large-magnitude floods that deposited new chronostratigraphic units to long-duration processes that eroded units. These phases were not contemporaneous at each channel cross section, which resulted in a complex response that preserved different chronostratigraphic units at each channel cross section having, in general, two dominant types of alluvial architecture-laminar and fragmented. Age and transit-time distributions for these two alluvial architectures evolved with time since the extreme flood. Because of the complex shape of the distributions they were best modeled by two-parameter Weibull functions. The Weibull scale parameter approximated the median age of the distributions, and the Weibull shape parameter generally had a linear relation that increased with time since the extreme flood. Additional results indicated that deposition of new chronostratigraphic units can be represented by a power-law frequency distribution, and that the erosion of units decreases with depth of burial to a limiting depth. These relations can be used to model other situations with different flow regimes where vertical aggradation and incision are dominant processes, to predict the residence time of possible contaminated

  9. Characterising alluvial aquifers in a remote ephemeral catchment (Flinders River, Queensland) using a direct push tracer approach

    Science.gov (United States)

    Taylor, Andrew R.; Smith, Stanley D.; Lamontagne, Sébastien; Suckow, Axel

    2018-01-01

    The availability of reliable water supplies is a key factor limiting development in northern Australia. However, characterising groundwater resources in this remote part of Australia is challenging due to a lack of existing infrastructure and data. Here, direct push technology (DPT) was used to characterise shallow alluvial aquifers at two locations in the semiarid Flinders River catchment. DPT was used to evaluate the saturated thickness of the aquifer and estimate recharge rates by sampling for environmental tracers in groundwater (major ions, 2H, 18O, 3H and 14C). The alluvium at Fifteen Mile Reserve and Glendalough Station consisted of a mixture of permeable coarse sandy and gravely sediments and less permeable clays and silts. The alluvium was relatively thin (i.e. < 20 m) and, at the time of the investigation, was only partially saturated. Tritium (3H) concentrations in groundwater was ∼1 Tritium Unit (TU), corresponding to a mean residence time for groundwater of about 12 years. The lack of an evaporation signal for the 2H and 18O of groundwater suggests rapid localised recharge from overbank flood events as the primary recharge mechanism. Using the chloride mass balance technique (CMB) and lumped parameter models to interpret patterns in 3H in the aquifer, the mean annual recharge rate varied between 21 and 240 mm/yr. Whilst this recharge rate is relatively high for a semiarid climate, the alluvium is thin and heterogeneous hosting numerous alluvial aquifers with varied connectivity and limited storage capacity. Combining DPT and environmental tracers is a cost-effective strategy to characterise shallow groundwater resources in unconsolidated sedimentary aquifers in remote data sparse areas.

  10. Age and origin of the Gezira alluvial fan between the Blue and White Nile rivers

    Science.gov (United States)

    Williams, martin

    2014-05-01

    The Gezira is a low-angle alluvial fan bounded by the Blue Nile to the east and the White Nile to the west. It is the main agricultural region of Sudan and produces high quality long-staple cotton for export. Dark cracking clays (vertisols) cover much of the Gezira and range in age from 50 kyr to Holocene. The Gezira is traversed by a series of defunct sandy channels that originate between Sennar and Wad Medani on the present-day Blue Nile. With a radius of 300 km and an area of 40,000 km2 the Gezira is a mega-fan. The younger channels range in age from early Holocene to 100 kyr, while near surface channels filled with rolled quartz and carbonate gravels have ages back to >250 kyr. Boreholes in the Gezira reveal coarse alluvial sands and gravels in now buried channels overlain by alluvial clays, forming a repetitive sequence of fining-upwards alluvial units. that probably extend back to Pliocene times. The fan is up to 180 m thick with a volume of ~1,800 km3. The sandy or gravelly bed-load channels coincide with colder drier climates and sparse vegetation in the Ethiopian headwaters of the Blue Nile and the alluvial clays denote widespread flooding during times of stronger summer monsoon. The early stages of such flood events were often accompanied by mass burial of Nile oyster (Etheria elliptica) beds, such as the 45-50 kyr floods that deposited up to 5 m of clay in the northern Gezira. A unique feature of the eastern Gezira is a former Blue Nile channel at least 80 km long running parallel to the present river and entirely filled with volcanic ash. The channel was only 3-4 m deep and 20-30 m wide. Very fine laminations and cross-beds, together with locally abundant phytoliths and sponge spicules, suggest slow-moving water, with flow dispersed across many distributary channels. The ash geochemistry is similar to that in the lower part of the Kibish Formation in the lower Omo valley of southern Ethiopia and points to a minimum age of 100 kyr and a maximum age of

  11. Stochastic Spectral Analysis for Characterizing Hydraulic Diffusivity in an Alluvial Fan Aquifer with River Stimulus

    Science.gov (United States)

    Wang, Y. L.; Zha, Y.; Yeh, T. C. J.; Wen, J. C.

    2015-12-01

    Estimation of subsurface hydraulic diffusivity was carried out to understand the characteristics of Zhuoshui River alluvial fan, Taiwan. The fan, an important agricultural and industrial region with high water demand, is located at middle Taiwan with an area of 1800 km2. The prior geo-investigations suggest that the main recharge region of the fan is at an apex along the river. The distribution of soil hydraulic diffusivity was estimated by fusing naturally recurring stimulus provided by river and groundwater head. Specifically, the variance and power spectrum provided by temporal and spatial change of groundwater head in response to river stage variations are analyzed to estimate hydraulic diffusivity distribution. It is found that the hydraulic diffusivity of the fan is at the range from 0.08 to 16 m2/s. The average hydraulic diffusivity at the apex, middle, and tail of the fan along the river is about 0.4, 0.6, and 1.0 m2/s, respectively.

  12. Delaware River and Upper Bay Sediment Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The area of coverage consists of 192 square miles of benthic habitat mapped from 2005 to 2007 in the Delaware River and Upper Delaware Bay. The bottom sediment map...

  13. Trend analyses with river sediment rating curves

    Science.gov (United States)

    Warrick, Jonathan A.

    2015-01-01

    Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.

  14. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  15. Nursery stock quality as an indicator of bottomland hardwood forest restoration success in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    Douglass F. Jacobs; Rosa C. Goodman; Emile S. Gardiner; K Frances Salifu; Ronald P. Overton; George Hernandez

    2012-01-01

    Seedling morphological quality standards are lacking for bottomland hardwood restoration plantings in the Lower Mississippi River Alluvial Valley, USA, which may contribute toward variable restoration success. We measured initial seedling morphology (shoot height, root collar diameter, number of first order lateral roots, fresh mass, and root volume), second year field...

  16. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume

    Science.gov (United States)

    Lorah, M.M.; Cozzarelli, I.M.; Böhlke, J.K.

    2009-01-01

    The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A

  17. Inverse modelling of fluvial sediment connectivity identifies characteristics and spatial distribution of sediment sources in a large river network.

    Science.gov (United States)

    Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.; Rubin, Z.; Castelletti, A.

    2016-12-01

    Field and laboratory evidence indicates that the spatial distribution of transport in both alluvial and bedrock rivers is an adaptation to sediment supply. Sediment supply, in turn, depends on spatial distribution and properties (e.g., grain sizes and supply rates) of individual sediment sources. Analyzing the distribution of transport capacity in a river network could hence clarify the spatial distribution and properties of sediment sources. Yet, challenges include a) identifying magnitude and spatial distribution of transport capacity for each of multiple grain sizes being simultaneously transported, and b) estimating source grain sizes and supply rates, both at network scales. Herein, we approach the problem of identifying the spatial distribution of sediment sources and the resulting network sediment fluxes in a major, poorly monitored tributary (80,000 km2) of the Mekong. Therefore, we apply the CASCADE modeling framework (Schmitt et al. (2016)). CASCADE calculates transport capacities and sediment fluxes for multiple grainsizes on the network scale based on remotely-sensed morphology and modelled hydrology. CASCADE is run in an inverse Monte Carlo approach for 7500 random initializations of source grain sizes. In all runs, supply of each source is inferred from the minimum downstream transport capacity for the source grain size. Results for each realization are compared to sparse available sedimentary records. Only 1 % of initializations reproduced the sedimentary record. Results for these realizations revealed a spatial pattern in source supply rates, grain sizes, and network sediment fluxes that correlated well with map-derived patterns in lithology and river-morphology. Hence, we propose that observable river hydro-morphology contains information on upstream source properties that can be back-calculated using an inverse modeling approach. Such an approach could be coupled to more detailed models of hillslope processes in future to derive integrated models

  18. Natural radioactivity in stream sediments of Oltet River, Romania

    Science.gov (United States)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and

  19. Laboratory alluvial fans in one dimension.

    Science.gov (United States)

    Guerit, L; Métivier, F; Devauchelle, O; Lajeunesse, E; Barrier, L

    2014-08-01

    When they reach a flat plain, rivers often deposit their sediment load into a cone-shaped structure called alluvial fan. We present a simplified experimental setup that reproduces, in one dimension, basic features of alluvial fans. A mixture of water and glycerol transports and deposits glass beads between two transparent panels separated by a narrow gap. As the beads, which mimic natural sediments, get deposited in this gap, they form an almost one-dimensional fan. At a moderate sediment discharge, the fan grows quasistatically and maintains its slope just above the threshold for sediment transport. The water discharge determines this critical slope. At leading order, the sediment discharge only controls the velocity at which the fan grows. A more detailed analysis reveals a slight curvature of the fan profile, which relates directly to the rate at which sediments are transported.

  20. Development of river sediment monitoring in Croatia

    Science.gov (United States)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who

  1. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    Science.gov (United States)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  2. Controls on alluvial fans morphology

    Science.gov (United States)

    Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.

    2017-12-01

    Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.

  3. Dating sediment cores from Hudson River marshes

    International Nuclear Information System (INIS)

    Robideau, R.; Bopp, R.F.

    1993-01-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently deposited sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river

  4. Application of 2-D sediment model to fluctuating backwater area of Yangtze River

    Directory of Open Access Journals (Sweden)

    Yong Fan

    2009-09-01

    Full Text Available Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.

  5. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.

    2015-01-01

    A study to assess the potential of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas, as a viable source of public-supply water was conducted by the U.S. Geological Survey in cooperation with the Little Rock, District, U.S. Army Corps of Engineers. An important study component was to identify possible changes in hydrologic conditions following installation of James W. Trimble Lock and Dam 13 (December 1969) on the Arkansas River near the study area. Data were gathered for the study in regard to the lithology, hydrologic characteristics, and water quality of the aquifer. Lithologic information was obtained from drillers’ logs of wells drilled from 1957 through 1959. Water-quality samples were collected from 10 irrigation wells and analyzed for inorganic constituents and pesticides. To evaluate the potential viability of the alluvial aquifer in the Van Buren area, these data were compared to similar stratigraphic, lithologic, and groundwater-quality data from the Arkansas River Valley alluvial aquifer at Dardanelle, Ark., where the aquifer provides a proven, productive, sole-source of public-supply water.

  6. Old River Control Complex Sedimentation Investigation

    Science.gov (United States)

    2015-06-01

    investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and numerical modeling . The...Diversion Mississippi river Sediment Shoaling Numerical modeling Field data collection Geomorphic assessment 16. SECURITY CLASSIFICATION OF...District, New Orleans. The investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and

  7. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  8. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  9. The Forgotten Legacy: Sediment From Historical Gold Mining Greatly Exceeds all Other Anthropogenic Sources in SE Australian Rivers

    Science.gov (United States)

    Rutherfurd, I.; Davies, P.; Macklin, M. G.; Grove, J. R.

    2016-12-01

    Coarse and fine sediment has been a major pollutant of Australian rivers and receiving waters since European settlement in 1788. Anthropogenic sediment budget models demonstrate that catchment and channel erosion has increased background sediment delivery by 10 to 20 times across SE Australia, but these estimates ignore the contribution of historical gold mining. Detailed historical records allow us to reconstruct the delivery of coarse and fine sediment (including contaminated sediment) to the fluvial system. Between 1851 and 1900 alluvial gold mining in the state of Victoria liberated between 1.2 billion and 1.4 billion m3 of coarse and fine sediment into streams. Catchment scale modelling demonstrates that this volume is at least twice the volume of all anthropogenic (post-European) erosion from hillslopes, river banks, and gullies. We map the deposition and remobilization of these contaminated legacy mining sediments down selected valleys, and find that many contemporary floodplains are blanketed with mining sediments (although mercury contamination is present but low), and discrete sediment-slugs can be recognized migrating down river beds. Overall, the impact of gold mining is one of the strongest indicators of the Anthropocene in the Australian landscape, and the level of impact on rivers is substantially greater than recognized in the past. Perhaps of most interest is the rapid recovery of many river systems from the substantial impacts of gold mining. The result is that these major changes to the landscape are largely forgotten.

  10. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of

  11. The Temporal-Spatial Distribution of Shule River Alluvial Fan Units in China Based on SAR Data and OSL Dating

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Alluvial fans in arid and semi-arid regions can provide important evidence of geomorphic and climatic changes, which reveal the evolution of the regional tectonic activity and environment. Synthetic aperture radar (SAR remote sensing technology, which is sensitive to geomorphic features, plays an important role in quickly mapping alluvial fan units of different ages. In this paper, RADARSAT-2 (Canada’s C-band new-generation radar satellite and ALOS-PALSAR (Japan’s advanced land observing satellite, phased array type L-band SAR sensor data, acquired over the Shule River Alluvial Fan (SRAF, are used to extract backscattering coefficients, scattering mechanism-related information, and polarimetric characteristic parameters. The correlation between these SAR characteristic parameters and fan units of the SRAF of different ages was studied, and the spatial distribution of fan units, since the Late Pleistocene, was extracted based on the Maximum Likelihood classification method. The results prove that (1 some C-band SAR parameters can describe the geomorphic characteristics of alluvial fan units of different ages in the SRAF; (2 SAR data can be used to map the SRAF’s surface between the Late Pleistocene and the Holocene and to extract the spatial distribution of fan units; and (3 the time-spatial distribution of the SRAF can provide valuable information for tectonic and paleoenvironmental research of the study area.

  12. Sediment Size Distribution at Three Rivers with Different Types of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    sediment size distribution based on land use is very crucial in river maintenance. ... a basis for river catchment management study and can be used by river management .... small. In this case, the difference between upstream and downstream ...

  13. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site

    Science.gov (United States)

    Rits, Daniël S.; van Balen, Ronald T.; Prins, Maarten A.; Zheng, Hongbo

    2017-06-01

    The Luo River is located in the southern part of the Chinese Loess Plateau and the northern part of the Weihe Basin, in Central China. In the basin it flows proximal to the site of the Luyang Wetland core, which is an important archive of climate change over the past 1 Myr in this region. In this paper, the contribution of the Luo River to the sedimentary record is analyzed by reconstructing the evolution of this river during the Middle to Late Pleistocene. It is argued that an alluvial fan of the Luo River has contributed to the sedimentary archive until approximately 200-240 ka. From this moment onwards, the fan became incised and terraces began to form. The formation of a new alluvial fan further downstream led to the disconnection of the Luo River from the Luyang Wetland core site. We propose that this series of events was caused by the displacement of an intra-basinal fault and the resultant faulting-forced folding, which caused increased relative subsidence, and thus increased sedimentation rates at the core site. Therefore, a complete sediment record in the 'Luyang Wetland' was preserved, despite the disconnection from the Luo River. The chronology of the fans and terraces was established using existing age control (U-series, ESR, OSL, pIRIR290 and magnetic susceptibility correlation), and through correlation of the loess-paleosol cover to marine isotope stages. Based on sedimentological characteristics of the fluvial sequence, we suggest that incision of the Luo River occurred in two steps. Small incisions took place at transitions to interglacials and the main incision phases occur at the transition from an interglacial to glacial climate. Due to the incision, basal parts of the oldest Luo River alluvial fan are exposed, and it is in one of these exposures that the famous Dali Man skull was retrieved. This study shows that the Dali Man did not live on a river terrace as previously thought, but on an aggrading alluvial fan, during wet, glacial conditions.

  14. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  15. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively

  16. Dewatering of contaminated river sediments

    Science.gov (United States)

    Church, Ronald H.; Smith, Carl W.; Scheiner, Bernard J.

    1994-01-01

    Dewatering of slurries has been successfully accomplished by the proper use of polymers in flocculating the fine particulate matter suspended in mineral processing streams. The U.S. Bureau of Mines (USBM) entered into a cooperative research effort with the U.S. Army Corps of Engineers (Corps) for the purpose of testing and demonstrating the applicability of mining flocculation technology to dredging activities associated with the removal of sediments from navigable waterways. The Corps has the responsibility for maintaining the navigable waterways in the United States. Current technology relies primarily on dredging operations which excavate the material from the bottom of waterways. The Corps is testing new dredging technology which may reduce resuspension of sediments by the dredging operation. Pilot plant dredging equipment was tested by the Corps which generated larger quantities of water when compared to conventional equipment, such as the clam shell. The transportation of this 'excess' water adds to the cost of sediment removal. The process developed by the USBM consists of feed material from the barge being pumped through a 4-in line by a centrifugal pump and exiting through a 4-in PVC delivery system. A 1,000-gal fiberglass tank was used to mix the polymer concentrate. The polymer was pumped through a 1-in line using a variable speed progressive cavity pump and introduced to the 4-in feed line prior to passing through a 6-in by 2-ft static mixer. The polymer/feed slurry travels to the clarifying tank where the flocculated material settled to the bottom and allowed 'clean' water to exit the overflow. A pilot scale flocculation unit was operated on-site at the Corps' 'Confined Disposal Facility' in Buffalo, NY.

  17. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  18. Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drôme River, southeast France: Contingent responses to external and internal controls

    Science.gov (United States)

    Toone, J.; Rice, S. P.; Piégay, H.

    2014-01-01

    The rehabilitation of degraded river channels is often guided by assumptions of continuity, yet in response to spatial and temporal variations in controlling conditions rivers typically display discontinuous response in space and time. This study examines the development of a 5 km reach of the Drôme River, S.E. France, characterised by alternating alluvial and bedrock zones that are separated by abrupt downstream transitions. This reach is representative of the Drôme River as a whole, and other rivers in the European Alps where braided channel planforms have been replaced by more complex, discontinuous morphologies. The primary aims are to understand how this spatial complexity has developed on the Drôme; evaluate how temporal channel changes have been affected by local factors, particularly bedrock exposures, and by long-term, catchment-scale changes in sediment supply and the flood activity; and consider the implications of this discontinuous geomorphology for reach management. The development of geomorphological zonation is examined by documenting sequential changes in channel planform between seven periods, using aerial photography (1948-2006) and by analysing change in bed elevation from profiles surveyed in 1928, 2003 and 2005. Between 1948 and 2001 bedrock exposed in the channel bed and along the floodplain margins defined discontinuities in sediment connectivity that were largely responsible for the configuration of channel zones. The impact of floods on this system was not proportional to flood magnitude. A modest flood in 1978 was an important event that, by incision and avulsion at key locations, defined a pattern of zonation that persisted until the end of the study in 2006. During the final 5 years of the study, alluvial zones that previously responded to large floods by widening underwent narrowing, despite the occurrence of a large flood, and led to an overall reduction in width variance. This resulted from progressive incision beneath and

  19. Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river

    Science.gov (United States)

    Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.

    2016-12-01

    Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow

  20. Rome in its setting. Post-glacial aggradation history of the Tiber River alluvial deposits and tectonic origin of the Tiber Island

    Science.gov (United States)

    Motta, Laura; Brock, Andrea L.; Macrì, Patrizia; Florindo, Fabio; Sadori, Laura; Terrenato, Nicola

    2018-01-01

    The Tiber valley is a prominent feature in the landscape of ancient Rome and an important element for understanding its urban development. However, little is known about the city’s original setting. Our research provides new data on the Holocene sedimentary history and human-environment interactions in the Forum Boarium, the location of the earliest harbor of the city. Since the Last Glacial Maximum, when the fluvial valley was incised to a depth of tens of meters below the present sea level, 14C and ceramic ages coupled with paleomagnetic analysis show the occurrence of three distinct aggradational phases until the establishment of a relatively stable alluvial plain at 6–8 m a.s.l. during the late 3rd century BCE. Moreover, we report evidence of a sudden and anomalous increase in sedimentation rate around 2600 yr BP, leading to the deposition of a 4-6m thick package of alluvial deposits in approximately one century. We discuss this datum in the light of possible tectonic activity along a morpho-structural lineament, revealed by the digital elevation model of this area, crossing the Forum Boarium and aligned with the Tiber Island. We formulate the hypothesis that fault displacement along this structural lineament may be responsible for the sudden collapse of the investigated area, which provided new space for the observed unusually large accumulation of sediments. We also posit that, as a consequence of the diversion of the Tiber course and the loss in capacity of transport by the river, this faulting activity triggered the origin of the Tiber Island. PMID:29590208

  1. Quantifying modern erosion rates and river-sediment contamination in the Bolivian Andes

    Science.gov (United States)

    Vezzoli, Giovanni; Ghielmi, Giacomo; Mondaca, Gonzalo; Resentini, Alberto; Villarroel, Elena Katia; Padoan, Marta; Gentile, Paolo

    2013-08-01

    We use petrographic, mineralogical and geochemical data on modern river sediments of the Tupiza basin in the Bolivian Andes to investigate the relationships among human activity, heavy-metal contamination of sediments and modern erosion rates in mountain fluvial systems. Forward mixing model was used to quantify the relative contributions from each main tributary to total sediment load of the Tupiza River. The absolute sediment load was estimated by using the Pacific Southwest Inter Agency Committee model (PSIAC, 1968) after two years of geological field surveys (2009; 2010), together with data obtained from the Instituto Nacional del Agua public authority (INA, 2007), and suspended-load data from Aalto et al. (2006). Our results indicate that the sediment yield in the drainage basin is 910 ± 752 ton/km2year and the mean erosion rate is 0.40 ± 0.33 mm/year. These values compare well with erosion rates measured by Insel et al. (2010) using 10Be cosmogenic radionuclide concentrations in Bolivian river sediments. More than 40% of the Tupiza river load is produced in the upper part of the catchment, where highly tectonized and weathered rocks are exposed and coupled with sporadic land cover and intense human activity (mines). In the Rio Chilco basin strong erosion of upland valleys produce an increase of erosion (˜10 mm/year) and the influx of large amounts of sediment by mass wasting processes. The main floodplain of the Tupiza catchment represents a significant storage site for the heavy metals (˜657 ton/year). Fluvial sediments contain zinc, lead, vanadium, chromium, arsenic and nickel. Since the residence time of these contaminants in the alluvial plain may be more than 100 years, they may represent a potential source of pollution for human health.

  2. Natural radioactivity of sediments from Wei River of Shannxi province

    International Nuclear Information System (INIS)

    Wang Fengling; Lu Xinwei

    2008-01-01

    The natural radioactivity level in sediments from Wei River of Shannxi has been surveyed with a NaI(Tl) γ-spectrometer and its radiation hazards to the people has been assessed. The results indicate the natural radioactivity level in sediments from Wei River of Shaanxi is normal and the sediments can be safely used as building materials. (authors)

  3. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil).

    Science.gov (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S

    2015-08-01

    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.

  4. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  5. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K

    International Nuclear Information System (INIS)

    Izquierdo, M.; Tye, A.M.; Chenery, S.R.

    2012-01-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0–15 cm) and subsoil (35–50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type (‘BHT’) Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. -- Highlights: ► The labile

  6. Optical dating using feldspar from Quaternary alluvial and colluvial sediments from SE Brazilian Plateau, Brazil

    International Nuclear Information System (INIS)

    Tatumi, Sonia H.; Peixoto, Maria Naise O.; Moura, Josilda R.S.; Mello, Claudio L.; Carmo, Isabela O.; Kowata, Emilia A.; Yee, Marcio; Brito, Silvio Luiz M.; Gozzi, Giuiliano; Kassab, Luciana R.P.

    2003-01-01

    Opticallly stimulated luminescence (OSL) dating has been applied to a wide variety of materials such as loess, sand dunes, colluvium, alluvium, volcanic products, etc., helping geologic geomorphologic studies. OSL dating results using feldspar crystals extracted from alluvial and colluvial deposits of SE Brazilian Plateau will be presented in this work. The methodology used is based on the regeneration method, with multiple aliquot protocol. A total of 23 sample ages were obtained spanning 6.5-97.2 kyr. Results of radioactive contents and comparison with radiocarbon ages will be discussed

  7. Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan

    Science.gov (United States)

    Kuo, W.; Wang, H.; Stark, C. P.

    2011-12-01

    Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition

  8. Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2014-01-01

    Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually

  9. Biodegradation of nonylphenol in river sediment

    International Nuclear Information System (INIS)

    Yuan, S.Y.; Yu, C.H.; Chang, B.V.

    2004-01-01

    We investigated the biodegradation of nonylphenol monoethoxylate (NP1EO) and nonylphenol (NP) by aerobic microbes in sediment samples collected at four sites along the Erren River in southern Taiwan. Aerobic degradation rate constants (k 1 ) and half-lives (t 1/2 ) for NP (2 μg g -1 ) ranged from 0.007 to 0.051 day -1 and 13.6 to 99.0 days, respectively; for NP1EO (2 μg g -1 ) the ranges were 0.006 to 0.010 day -1 and 69.3 to 115.5 days. Aerobic degradation rates for NP and NP1EO were enhanced by shaking and increased temperature, and delayed by the addition of Pb, Cd, Cu, Zn, phthalic acid esters (PAEs), and NaCl, as well as by reduced levels of ammonium, phosphate, and sulfate. Of the microorganism strains isolated from the sediment samples, we found that strain JC1 (identified as Pseudomonas sp.) expressed the best biodegrading ability. Also noted was the presence of 4'-amino-acetophenone, an intermediate product resulting from the aerobic degradation of NP by Pseudomonas sp. - The effects of manipulating several factors on nonylphenol and nonylphenol monoethoxylate degradation in river sediment were analysed

  10. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  11. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  12. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    Science.gov (United States)

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    An investigation of sediment oxygen demand (SOD) at the interface of the stream and stream bed was performed in the lower Willamette River (river mile 51 to river mile 3) during August, 1994, as part of a cooperative project with the Oregon Department of Environmental Quality. The primary goals of the investigation were to measure the spatial variability of SOD in the lower Willamette River and to relate SOD to bottom-sediment characteristics.

  13. 100 Area Columbia River sediment sampling

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1993-01-01

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g

  14. 100 Area Columbia River sediment sampling

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  15. Alluvial flash-flood stratigraphy of a large dryland river: the Luni River, Thar Desert, Western India

    Science.gov (United States)

    Carling, Paul; Leclair, Suzanne; Robinson, Ruth

    2017-04-01

    Detailed descriptions of the fluvial architecture of large dryland rivers are few, which hinders the understanding of stratigraphic development in aggradational settings. The aim of this study was to obtain new generic insight of the fluvial dynamics and resultant stratigraphy of such a river. The novelty of this investigation is that an unusually extensive and deep section across a major active dryland river was logged and the dated stratigraphy related to the behaviour of the discharge regimen. The results should help improve understanding of the stratigraphic development in modern dryland rivers and in characterizing oil, gas and groundwater reservoirs in the dryland geological record more generally. The Luni River is the largest river in the Thar desert, India, but yet details of the channel stratigraphy are sparse. Discharges can reach 14,000 m3s-1 but the bed is dry most of the year. GPS positioning and mm-resolution surveys within a 700m long, 5m deep trench enabled logging and photography of the strata associations, dated using optically-stimulated luminescence (OSL). The deposits consist of planar, sandy, upper-stage plane bed lamination and low-angle stratification, sandwiching less-frequent dune trough cross-sets. Mud clasts are abundant at any elevation. Water-ripple cross-sets or silt-clay layers occur rarely, usually near the top of sections. Aeolian dune cross-sets also appear sparsely at higher elevations. Consequently, the majority of preserved strata are due to supercritical flows. Localized deep scour causes massive collapse and soft-sediment deformation. Scour holes are infilled by rapidly-deposited massive sands adjacent to older bedded-deposits. Within bedform phase diagrams, estimated hydraulic parameters indicate a dominance of the upper-stage plane bed state, but the presence of dune cross-sets is also related to the flood hydrograph. Repeated deep scour results in units of deposition of different OSL ages (50 to 500 years BP) found at

  16. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  17. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    Science.gov (United States)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  18. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-14

    This report describes a study of the hydrology, hydrogeological framework, numerical groundwater-flow models, and results of simulations of the effects of water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma. The purpose of the study was to provide analyses, including estimating equal-proportionate-share (EPS) groundwater-pumping rates and the effects of projected water use and droughts, pertinent to water management of the Beaver-North Canadian River alluvial aquifer for the Oklahoma Water Resources Board.

  19. Sources, lability and solubility of Pb in alluvial soils of the River Trent catchment, U.K.

    Science.gov (United States)

    Izquierdo, M; Tye, A M; Chenery, S R

    2012-09-01

    Alluvial soils are reservoirs of metal contaminants such as Pb that originate from many different sources and are integrated temporally and spatially through erosional and depositional processes. In this study the source, lability and solubility of Pb were examined in a range of alluvial soils from the middle and lower River Trent and its tributary the River Dove using Pb isotope apportionment and isotopic dilution. All samples were collected within 10 m of the river bank to represent the soil that is most likely to be remobilised during bank erosion. Paired samples were taken from the topsoil (0-15 cm) and subsoil (35-50 cm) to assess differences with depth. Lead concentrations in soil ranged from 43 to 1282 mg/kg. The lability of soil Pb varied between 9 and 56% of total metal concentration whilst Pb concentrations in pore water varied between 0.2 and 6.5 μg/L. There was little difference in the % Pb lability between paired top and sub soils, possibly because soil characteristics such as pH, iron oxides and clay content were generally similar; a result of the recycling of eroded and deposited soils within the river system. Soil pH was found to be negatively correlated with % Pb lability. Source apportionment using (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios showed that the isotopic ratios of Pb in the total, labile and solution pools fitted along a mixing line between Broken Hill Type ('BHT') Pb, used as an additive in UK petrol, and the local coal/Southern Pennine ore Pb. Various anomalies were found in the Pb isotopes of the bankside alluvial soils which were explained by point source pollution. Statistically significant differences were found between (i) the isotopic composition of Pb in the total soil pool and the labile/solution pools and (ii) the isotopic composition of Pb in the labile and solution pools, suggesting an enrichment of recent non-Pennine sources of Pb entering the soils in the labile and solution pools. Copyright © 2012 Natural Environment

  20. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  1. Analysis of Sedimentation Rates in the Densu River Channel: The ...

    African Journals Online (AJOL)

    Sediment is important in determining the morphology of river systems. The Densu basin has come under intense anthropogenic activities such as farming, sand winning, bushfires, among others, which are impacting on the fluvial processes, forms and channel morphology of the river. The study investigated sedimentation of ...

  2. Concentrations of metals in river sediment and wetland vegetations ...

    African Journals Online (AJOL)

    Levels of metals were determined in river sediment, rice and sugarcane juice from Lake Victoria basin where small-scale gold processing activities are carried out to assess levels of contamination. Concentrations of metals in river sediments were generally high in areas that were closest to gold ore processing sites.

  3. A Layered Past: the Transformation and Development of Legacy Sediments as Alluvial Soils

    Science.gov (United States)

    Wade, A.; Richter, D. D., Jr.

    2017-12-01

    Legacy sediments are a widespread consequence of post-colonial upland erosion in the United States. Although these deposits are ubiquitous in valley bottoms of the southeastern Piedmont, mature hardwood forests and collapsed stream banks mask their occurrence. While these deposits have been studied for their fluvial dynamics and water quality impacts, they have received less attention in regards to soil structure and formation. In this study, we characterized legacy sediment mineraology, composition and structure to understand how pedogenic processes are overprinting sediment layering in a 40-hectare Piedmont floodplain. To constrain the timing of deposition, we used Pb-210 and C-14 dating on buried charcoal and tree stumps. Our results show that in 100 years of forest regeneration, vegetation and oscillating floodplain conditions have driven these eroded sediment deposits to evolve as soil profiles both in structure and composition. These textural and nutrient gradients have ramifications for the subsurface flow of nutrients through the floodplain. Given the estimated millennia it will take to erode legacy sediment from Piedmont floodplains, it is important to think of these deposits as new stable environments on their own trajectory of soil evolution.

  4. Clay Mineralogy of AN Alluvial Aquifer in a Mountainous, Semiarid Terrain, AN Example from Rifle, Colorado

    Science.gov (United States)

    Elliott, W. C.; Lim, D.; Zaunbrecher, L. K.; Pickering, R. A.; Williams, K. H.; Navarre-Sitchler, A.; Long, P. E.; Noel, V.; Bargar, J.; Qafoku, N. P.

    2015-12-01

    Alluvial sediments deposited along the Colorado River corridor in the semi-arid regions of central to western Colorado can be important hosts for legacy contamination including U, V, As and Se. These alluvial sediments host aquifers which are thought to provide important "hot spots" and "hot moments" for microbiological activity controlling organic carbon processing and fluxes in the subsurface. Relatively little is known about the clay mineralogy of these alluvial aquifers and the parent alluvial sediments in spite of the fact that they commonly include lenses of silt-clay materials. These lenses are typically more reduced than coarser grained materials, but zones of reduced and more oxidized materials are present in these alluvial aquifer sediments. The clay mineralogy of the non-reduced parent alluvial sediments of the alluvial aquifer located in Rifle, CO (USA) is composed of chlorite, smectite, illite, kaolinite and quartz. The clay mineralogy of non-reduced fine-grained materials at Rifle are composed of the same suite of minerals found in the sediments plus a vermiculite-smectite intergrade that occurs near the bottom of the aquifer near the top of the Wasatch Formation. The clay mineral assemblages of the system reflect the mineralogically immature character of the source sediments. These assemblages are consistent with sediments and soils that formed in a moderately low rainfall climate and suggestive of minimal transport of the alluvial sediments from their source areas. Chlorite, smectite, smectite-vermiculite intergrade, and illite are the likely phases involved in the sorption of organic carbon and related microbial redox transformations of metals in these sediments. Both the occurrence and abundance of chlorite, smectite-vermiculite, illite and smectite can therefore exert an important control on the contaminant fluxes and are important determinants of biogeofacies in mountainous, semiarid terrains.

  5. Elemental analysis of river sediments by PIXE and PIGE

    International Nuclear Information System (INIS)

    Kennedy, V.J.; Augusthy, A.; Varier, K.M.; Magudapathy, P.; Panchapakesan, S.; Nair, K.G.M.; Vijayan, V.

    1999-01-01

    The Chaliyar river, located in Kerala, India has shown preoccupying pollution levels, that constitute a threat to public health and the ecological system. PIXE and PIGE techniques have been employed to measure the elemental concentrations in the river sediment samples. Thick targets were prepared out of the sediment samples collected from various sites along the course of the river. The measurements were carried out using 3 MeV proton beam obtained from 3 MV Tandem pelletron accelerator at Institute of Physics, Bhubaneswar. The elemental concentrations, especially that of heavy metals, at different sites are discussed in detail. Our results show that sediments from a site where the industrial activities are high are significantly high in concentrations of heavy metals (Cr, Ni, Cu, Zn, Hg and Pb) than those collected from non-industrial sites. The measured values are compared with the average composition of unpolluted river sediments and other national and international river sediments. (author)

  6. Sediment deposition rate in the Falefa River basin, Upolu Island, Samoa

    International Nuclear Information System (INIS)

    Terry, James P.; Kostaschuk, Ray A.; Garimella, Sitaram

    2006-01-01

    The 137 Cs method was employed to investigate the recent historical rate of sediment deposition on a lowland alluvial floodplain in the Falefa River basin, Upolu Island, Samoa. Caesium stratigraphy in the floodplain sediment profile was clearly defined, with a broad peak at 145-175 cm depth. The measured rate of vertical accretion over the last 40 years is 4.0 ± 0.4 cm per year. This rate exceeds observations in humid environments elsewhere, but is similar to that recorded on other tropical Pacific Islands. Available flow data for the Vaisigano River in Samoa give a 'near-catastrophic' index value of 0.6 for flood variability. This is associated with the occurrence of tropical cyclones and storms in the Samoa area. Large floods therefore probably contribute to the high rate of floodplain sedimentation on Upolu Island. A small but growing body of evidence suggests that fluvial sedimentation rates on tropical Pacific islands are some of the highest in the world

  7. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.

    Science.gov (United States)

    Ziegler, Brady A; Schreiber, Madeline E; Cozzarelli, Isabelle M

    2017-09-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume

    Science.gov (United States)

    Ziegler, Brady A.; Schreiber, Madeline E.; Cozzarelli, Isabelle M.

    2017-01-01

    In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011–2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich “iron curtain,” associated with the anoxic-suboxic transition zone, migrated 30 m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.

  9. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  10. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  11. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  12. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    Science.gov (United States)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  13. Arboreous vegetation of an alluvial riparian forest and their soil relations: Porto Rico island, Paraná river, Brazil

    Directory of Open Access Journals (Sweden)

    Campos João Batista

    2002-01-01

    Full Text Available The dynamics of alluvial deposits in floodplains forms islands and sandbanks. Deposits frequently accumulate at the river margins and on islands with consequent side growths. One of these sandbanks which started to form in 1952 annexed an area of 12.4ha to the Porto Rico island (53masculine15?W and 22masculine45?S. At present a forest fragment of approximately 2.0 ha exists in this place. The structural analysis of arboreous vegetation of this fragment showed a floristic gradient related to the physical and chemical variations of the substratum. High density of pioneer species associated to the absence of recruitment of new individuals of these and other successional categories indicated that the forest was impaired in its succession process. This fact could be associated with constant disturbances caused by cattle in the area.

  14. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  15. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system.

    Science.gov (United States)

    Wang, Cheng; Yang, Zhongfang; Zhong, Cong; Ji, Junfeng

    2016-09-01

    The contributions of major driving forces on temporal changes of heavy metals in the soil in a representative river-alluviation area at the lower of Yangtze River were successfully quantified by combining geostatistics analysis with the modified principal component scores & multiple linear regressions approach (PCS-MLR). The results showed that the temporal (2003-2014) changes of Cu, Zn, Ni and Cr presented a similar spatial distribution pattern, whereas the Cd and Hg showed the distinctive patterns. The temporal changes of soil Cu, Zn, Ni and Cr may be predominated by the emission of the shipbuilding industry, whereas the significant changes of Cd and Hg were possibly predominated by the geochemical and geographical processes, such as the erosion of the Yangtze River water and leaching because of soil acidification. The emission of metal-bearing shipbuilding industry contributed an estimated 74%-83% of the changes in concentrations of Cu, Zn, Ni and Cr, whereas the geochemical and geographical processes may contribute 58% of change of Cd in the soil and 59% of decrease of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Geomorphic and geochemical controls on leaf wax biomarker transport and preservation in alluvial river systems: Rio Bermejo, Argentina

    Science.gov (United States)

    Repasch, M. N.; Sachse, D.; Hovius, N.; Scheingross, J. S.; Szupiany, R. N.

    2017-12-01

    Rivers are the primary conduits for organic carbon (OC) transfer from vegetation-rich uplands to long-term sinks, and thus are responsible for significant fluxes among different reservoirs of the carbon cycle. Fluxes of terrestrial OC out of river systems are generally less than fluxes into the systems, indicating loss of OC either during active fluvial transport, during residence in the active channel belt, or in older deposits outside of the active channel belt. Sedimentary biomarkers can be used to elucidate the mechanisms of transport, preservation, and/or transformation of OC during its passage from source to sink. In this study we evaluate the influence of fluvial sediment transport on preservation of terrestrial leaf wax n-alkanes. Our natural laboratory is the Rio Bermejo in northern Argentina, which transports sediment and organic matter from the central Andes over 700 km across the foreland basin without input of foreign material from tributaries. Rapid channel migration rates in a region of flexural foreland basin uplift (the forebulge) are responsible for remobilization of floodplain sediment and terrestrial OC. By sampling suspended sediment, river bank sediment, and soil from several locations along the length of the Rio Bermejo, and analyzing the dissolved chemistry, biomarker composition, and compound-specific stable isotopes, we can evaluate the geomorphic and geochemical processes that act to influence the preservation of terrestrial biomarkers through the river system. Data suggest that concentrations of long-chain terrestrial (C25-C33) alkanes decrease downstream, while concentrations of short-chain (C15-C19) alkanes increase. This trend is corroborated by a downstream increase in suspended sediment δ13C values, suggesting a replacement of terrestrial OC by microbial OC. It is likely that microbial degradation is responsible for loss of terrestrial biomarkers as their residence time in the river system increases. Controlled laboratory

  17. Possible Links Among Iron Reduction, Silicate Weathering, and Arsenic Mobility in the Mississippi River Alluvial Aquifer in Louisiana

    Science.gov (United States)

    Borrok, D. M.; Lenz, R. M.; Jennings, J. E.; Gentry, M. L.; Vinson, D. S.

    2017-12-01

    The Lower Mississippi River Alluvial Aquifer (LMRAA) is a critical groundwater resource for Arkansas, Mississippi, and Louisiana. Part of the aquifer in Louisiana contains waters rich in Na, HCO3, Fe, and As. We hypothesize that CO2 generated from dissimilatory iron reduction (DIR) within the aquifer acts to weather Na-bearing silicates, contributing Na and HCO3, which may influence the mobility of As. We examined the geochemistry of the aquifer using historical and new data collected from the Louisiana Department of Environmental Quality (LDEQ). Major and trace element data were collected from about 25 wells in the LMRAA in Louisiana every three years from 2001-2016. Samples collected in 2016 were additionally analyzed for water isotopes and the δ13C of dissolved inorganic carbon (DIC). Results suggest that groundwater in the LMRAA can be broken into two broad categories, (1) water with a molar Na/Cl ratio near 1 and/or high salinity, and (2) water with excess Na (i.e., the molar concentration of Na is greater than that of Cl) that is often higher in alkalinity (up to 616 mg/L as CaCO3), Fe (up to 21 mg/L), and sometimes As (up to 67 µg/L). Concentrations of dissolved Fe were found to correlate, at least weakly, with alkalinity and Na excess. Six of the approximately 25 wells historically sampled consistently had concentrations of As >10 µg/L. These locations generally correspond with groundwater characterized by higher Fe, alkalinity, and Na-excess. Initial results for δD and δ18O suggest that more isotopically depleted waters are sourced from the Mississippi River, whereas local precipitation recharges the aquifer farther from the river (δ18O ranged from -7.5‰ to -3.5‰). Part of the δ13C-DIC variation (-17.4‰ to -10.6‰) is consistent with pH modification (6.5-7.7) along differing horizontal and vertical flow paths in the aquifer. This geochemistry appears to be controlled in part by geology. Areas nearer to the current Mississippi River where

  18. Toxicity assessment of sediments from three European river basins using a sediment contact test battery

    NARCIS (Netherlands)

    Tuikka, A.I.; Schmitt, C.; Hoess, S.; Bandow, N; von der Ohe, P.; de Zwart, D.; de Deckere, E.; Streck, G.; Mothes, S.; van Hattum, A.G.M.; Kocan, A.; Brix, R.; Brack, W.; Barcelo, D.; Sormunen, A.; Kukkonen, J.V.K.

    2011-01-01

    The toxicity of four polluted sediments and their corresponding reference sediments from three European river basins were investigated using a battery of six sediment contact tests representing three different trophic levels. The tests included were chronic tests with the oligochaete Lumbriculus

  19. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  20. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply

    Science.gov (United States)

    Sklar, Leonard; Dietrich, William E.

    The simplicity and apparent mechanistic basis of the stream power river incision law have led to its wide use in empirical and theoretical studies. Here we identify constraints on its calibration and application, and present a mechanistic theory for the effects of sediment supply on incision rates which spotlights additional limitations on the applicability of the stream power law. On channels steeper than about 20%, incision is probably dominated by episodic debris flows, and on sufficiently gentle slopes, sediment may bury the bedrock and prevent erosion. These two limits bound the application of the stream power law and strongly constrain the possible combination of parameters in the law. In order to avoid infinite slopes at the drainage divide in numerical models of river profiles using the stream power law it is commonly assumed that the first grid cell is unchanneled. We show, however, that the size of the grid may strongly influence the calculated equilibrium relief. Analysis of slope-drainage area relationships for a river network in a Northern California watershed using digital elevation data and review of data previously reported by Hack reveal that non-equilibrium profiles may produce well defined slope-area relationships (as expected in equilibrium channels), but large differences between tributaries may point to disequilibrium conditions. To explore the role of variations in sediment supply and transport capacity in bedrock incision we introduce a mechanistic model for abrasion of bedrock by saltating bedload. The model predicts that incision rates reach a maximum at intermediate levels of sediment supply and transport capacity. Incision rates decline away from the maximum with either decreasing supply (due to a shortage of tools) or increasing supply (due to gradual bed alluviation), and with either decreasing transport capacity (due to less energetic particle movement) or increasing transport capacity (due less frequent particle impacts per unit bed

  1. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    Science.gov (United States)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  2. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    Science.gov (United States)

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  3. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Hydrological modelling of fine sediments in the Odzi River, Zimbabwe

    African Journals Online (AJOL)

    Hydrological modelling of fine sediments in the Odzi River, Zimbabwe. ... An analysis of the model structure and a comparison with the rating curve function ... model validation through split sample and proxy basin comparison was performed.

  5. Groundwater components in the alluvial aquifer of the alpine Rhone River valley, Bois de Finges area, Wallis Canton, Switzerland

    Science.gov (United States)

    Schürch, Marc; Vuataz, François-D.

    2000-09-01

    Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Résumé. Origine, type et quantité de nombreux composants d'eau de l'aquifère alluvial dans la vallée supérieure du Rhône, Bois de Finges, Valais, Suisse, ainsi que leurs variations spatiales et temporelles ont été déterminés par différentes méthodes hydrochimiques. Les méthodes utilisées sont la modélisation hydrochimique, les isotopes stables, ainsi que l'échantillonnage en période de hautes eaux et de basses eaux pour étudier la distribution spatiale de la composition chimique, alors qu'un échantillonnage mensuel pendant trois ans sert à comprendre les processus de la variabilité saisonnière. Les paramètres physico-chimiques des eaux souterraines montrent des variations spatiales et saisonnières. La composition chimique de l'aquifère alluvial du Rhône indique un mélange entre une eau peu minéralisée venant du Rhône et une eau sulfatée s

  6. Modification of Yellow River Sediment Based Stabilized Earth Bricks

    Directory of Open Access Journals (Sweden)

    Junxia Liu

    2016-12-01

    Full Text Available This paper presents an experimental study on the microstructure and performance of stabilized earth bricks prepared from the Yellow River sediment. The sediment is modified by inorganic cementitious material, polymer bonding agent, and jute fibre. The results show that the sediment is preliminarily consolidated when the mixture ratio of activated sediment/cementitious binder/sand is 65/25/10. Compressive strength and softening coefficient of stabilized earth bricks is further improved by polymer bonding agent and jute fibre. SEM images and EDS spectral analysis indicate that there is indeed synergy among inorganic hydration products, polymer network and jute fibre to strengthen the sediment.

  7. Determination of trace metals in river sediment

    International Nuclear Information System (INIS)

    Smith, R.

    1984-01-01

    This study forms part of the NIWR's series of interlaboratory comparison studies involving southern African laboratories engaged in water and wastewater analysis, and is concerned with the analysis by 21 laboratories of a standard reference sample of river sediment for arsenic, cadmium, cobalt, copper, lead, manganese, mercury, nickel and zinc. The results obtained are evaluated and discussed, along with some of the advantages and disadvantages of various sample pretreatment techniques. The mean values of the results obtained for Cu, Hg, Pb, Ni and Zn were found to be in good agreement with the certified values for the standard reference sample, but those for Cd and Mn were considerably lower than the corresponding certified values. A fairly wide range of acid extraction or digestion procedures for pretreatment of the sample was used by the participating laboratories, most of whom employed direct flame atomic absorption spectrophotometry for the measurement of Cd, Co, Cu, Pb, Mn, Ni, and Zn. The few laboratories who determined As and Hg did so mainly by means of vapour generation/atomic absorption techniques

  8. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    Science.gov (United States)

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  9. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  10. Investigation of trace element mobility in river sediments using ICP ...

    African Journals Online (AJOL)

    In this study, the column method was used to determine the leachable trace metals present in selected river sediments. In addition the sediments were investigated using a shaker method and these two methods were compared for reliability. For both these methods extract solutions associated with a sequential extraction ...

  11. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  12. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    Science.gov (United States)

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.

  13. Geospatial Characterization of Fluvial Wood Arrangement in a Semi-confined Alluvial River

    Science.gov (United States)

    Martin, D. J.; Harden, C. P.; Pavlowsky, R. T.

    2014-12-01

    Large woody debris (LWD) has become universally recognized as an integral component of fluvial systems, and as a result, has become increasingly common as a river restoration tool. However, "natural" processes of wood recruitment and the subsequent arrangement of LWD within the river network are poorly understood. This research used a suite of spatial statistics to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. First, a large-scale GPS inventory of LWD, performed on the Big River in the eastern Missouri Ozarks, resulted in over 4,000 logged positions of LWD along seven river segments that covered nearly 100 km of the 237 km river system. A global Moran's I analysis indicates that LWD density is spatially autocorrelated and displays a clustering tendency within all seven river segments (P-value range = 0.000 to 0.054). A local Moran's I analysis identified specific locations along the segments where clustering occurs and revealed that, on average, clusters of LWD density (high or low) spanned 400 m. Spectral analyses revealed that, in some segments, LWD density is spatially periodic. Two segments displayed strong periodicity, while the remaining segments displayed varying degrees of noisiness. Periodicity showed a positive association with gravel bar spacing and meander wavelength, although there were insufficient data to statistically confirm the relationship. A wavelet analysis was then performed to investigate periodicity relative to location along the segment. The wavelet analysis identified significant (α = 0.05) periodicity at discrete locations along each of the segments. Those reaches yielding strong periodicity showed stronger relationships between LWD density and the geomorphic/riparian independent variables tested. Analyses consistently identified valley width and sinuosity as being associated with LWD density. The results of these analyses contribute a new perspective on the longitudinal distribution of LWD in

  14. Suitability of river delta sediment as proppant, Missouri and Niobrara Rivers, Nebraska and South Dakota, 2015

    Science.gov (United States)

    Zelt, Ronald B.; Hobza, Christopher M.; Burton, Bethany L.; Schaepe, Nathaniel J.; Piatak, Nadine

    2017-11-16

    Sediment management is a challenge faced by reservoir managers who have several potential options, including dredging, for mitigation of storage capacity lost to sedimentation. As sediment is removed from reservoir storage, potential use of the sediment for socioeconomic or ecological benefit could potentially defray some costs of its removal. Rivers that transport a sandy sediment load will deposit the sand load along a reservoir-headwaters reach where the current of the river slackens progressively as its bed approaches and then descends below the reservoir water level. Given a rare combination of factors, a reservoir deposit of alluvial sand has potential to be suitable for use as proppant for hydraulic fracturing in unconventional oil and gas development. In 2015, the U.S. Geological Survey began a program of researching potential sources of proppant sand from reservoirs, with an initial focus on the Missouri River subbasins that receive sand loads from the Nebraska Sand Hills. This report documents the methods and results of assessments of the suitability of river delta sediment as proppant for a pilot study area in the delta headwaters of Lewis and Clark Lake, Nebraska and South Dakota. Results from surface-geophysical surveys of electrical resistivity guided borings to collect 3.7-meter long cores at 25 sites on delta sandbars using the direct-push method to recover duplicate, 3.8-centimeter-diameter cores in April 2015. In addition, the U.S. Geological Survey collected samples of upstream sand sources in the lower Niobrara River valley.At the laboratory, samples were dried, weighed, washed, dried, and weighed again. Exploratory analysis of natural sand for determining its suitability as a proppant involved application of a modified subset of the standard protocols known as American Petroleum Institute (API) Recommended Practice (RP) 19C. The RP19C methods were not intended for exploration-stage evaluation of raw materials. Results for the washed samples are

  15. Ascribing soil erosion of hillslope components to river sediment yield.

    Science.gov (United States)

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  16. The limnology of a Mississippi River alluvial plain oxbow lake following the application of conservation practices

    Science.gov (United States)

    From 1995 and 2011 Beasley Lake watershed near Indianola, MS, was subjected to a variety of conservation measures designed to reduce water velocity, erosion and discharge of sediment laden water. Water quality monitoring during the period indicated a number of long term trends and relationships bet...

  17. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  18. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    Science.gov (United States)

    Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  19. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  20. Sedimentation rates measurements in former channels of the upper Rhone river using Chernobyl 137Cs and 134Cs as tracers

    International Nuclear Information System (INIS)

    Rostan, J.C.; Juget, J.; Brun, A.M.

    1997-01-01

    Former river channels are aquatic ecosystems with a different geomorphology generated by fluvial dynamics more or less linked to the main channel. They present different ecological successions to become terrestrial ecosystems and are thus supposed to have different sedimentation rates. The aim of this paper is to assess this sedimentation rate using radioactive tracer methodology commonly used in lake studies. Chernobyl impacts, expressed in 137 Cs concentration and 137 Cs/ 134 Cs ratio, were determined in sediment cores. Sites (21) were sampled in the alluvial plain of the Upper Rhone River from 1989 to 1994. The contamination presented a high spatial heterogeneity. The maximum values encountered by site ranged between 34 and 541 Bq/kg of dry matter. The method generally gave good core profiles. Sedimentation rate ranged between 0.14 and 0.70 cm/year for the former meanders and between 0.14 and 2.86 cm/year for the braided channels. The sediment accumulation rates ranged from 0.03 to 0.25 g/cm 2 per year and 0.03 to 2.26 g/cm 2 per year, respectively. These values are similar to those found for Lake Geneva. The importance of the former channels in relation to the main channel is enhanced by the higher contamination and radionuclides retention. The sediment accumulation rate is related to the organic carbon content in the sediment. A comparison between two former channels with different productivity showed that the the allogeneous driven system presents a high organic sediment accumulation rate with a low organic content in the sediment and inversely, a low organic sediment accumulation rate with a high organic carbon content was found for the autogeneous driven system

  1. Primary sink and source of geogenic arsenic in sedimentary aquifers in the southern Choushui River alluvial fan, Taiwan

    International Nuclear Information System (INIS)

    Lu, Kuang-Liang; Liu, Chen-Wuing; Wang, Sheng-Wei; Jang, Cheng-Shin; Lin, Kao-Hung; Liao, Vivian Hsiu-Chuan; Liao, Chung-Min; Chang, Fi-John

    2010-01-01

    This work characterized the sink and source/mobility of As in the As-affected sedimentary aquifers of the southern Choushui River alluvial fan, central Taiwan. Major mineral phases and chemical components were determined by XRD and X-ray photoelectron spectroscopy (XPS). The partitioning of As and Fe among cores were determined by sequential extraction. Based on XPS results, the primary forms of Fe were hematite, goethite and magnetite. Sequential extraction data and the XRF analysis indicated that Fe oxyhydroxides and sulfides were likely to be the major sinks of As, particularly in the distal-fan. Furthermore, Fe oxyhydroxides retained higher As contents than As-bearing sulfides. The reductive dissolution of Fe oxyhydroxides, which accompanied high levels of HCO 3 - and NH 4 + concentrations, was likely the principal release mechanism of As into groundwater in this area. The dual roles of Fe oxyhydroxides which are governed by the local redox condition act as a sink and source in the aquifer. Ionic replacement by PO 4 3- and HCO 3 - along with seasonal water table fluctuation, caused by monsoons and excessive pumping, contributed specific parts of As in the groundwater. The findings can be used to account for the inconsistency between Fe and As concentrations observed in groundwater.

  2. Developing a Composite Aquifer Vulnerability Assessment Model Combining DRASTIC with Agricultural Land Use in Choushui River Alluvial Fan, Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Hsieh, Chih-Heng; Tsai, Cheng-Bin

    2017-04-01

    Aquifer vulnerability assessment is considered to be an effective tool in controlling potential pollution which is critical for groundwater management. The Choushui River alluvial fan, located in central Taiwan, is an agricultural area with complex crop patterns and various irrigation schemes, which increased the difficulties in groundwater resource management. The aim of this study is to propose an integrated methodology to assess shallow groundwater vulnerability by including land-use impact on groundwater potential pollution. The original groundwater vulnerability methodology, DRASTIC, was modified by adding a land-use parameter in order to assess groundwater vulnerability under intense agricultural activities. To examine the prediction capacity of pollution for the modified DRASTIC model, various risk categories of contamination potentials were compared with observed nitrate-N obtained from groundwater monitoring network. It was found that for the original DRASTIC vulnerability map, some areas with low nitrate-N concentrations are covered within the high vulnerability areas, especially in the northern part of mid-fan areas, where rice paddy is the main crop and planted for two crop seasons per year. The low nitrate-N contamination potential of rice paddies may be resulted from the denitrification in the reduced root zone. By reducing the rating for rice paddies, the modified model was proved to be capable of increasing the precise of prediction in study area. The results can provide a basis for groundwater monitoring network design and effective preserve measures formulation in the mixed agricultural area. Keyword:Aquifer Vulnerability, Groundwater, DRASTIC, Nitrate-N

  3. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    Science.gov (United States)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  4. River infiltration to a subtropical alluvial aquifer inferred using multiple environmental tracers

    Science.gov (United States)

    Lamontagne, S.; Taylor, A. R.; Batlle-Aguilar, J.; Suckow, A.; Cook, P. G.; Smith, S. D.; Morgenstern, U.; Stewart, M. K.

    2015-06-01

    Chloride (Cl-), stable isotope ratios of water (δ18O and δ2H), sulfur hexafluoride (SF6), tritium (3H), carbon-14 (14C), noble gases (4He, Ne, and Ar), and hydrometry were used to characterize groundwater-surface water interactions, in particular infiltration rates, for the Lower Namoi River (New South Wales, Australia). The study period (four sampling campaigns between November 2009 and November 2011) represented the end of a decade-long drought followed by several high-flow events. The hydrometry showed that the river was generally losing to the alluvium, except when storm-derived floodwaves in the river channel generated bank recharge—discharge cycles. Using 3H/14C-derived estimates of groundwater mean residence time along the transect, infiltration rates ranged from 0.6 to 5 m yr-1. However, when using the peak transition age (a more realistic estimate of travel time in highly dispersive environments), the range in infiltration rate was larger (4-270 m yr-1). Both river water (highest δ2H, δ18O, SF6, 3H, and 14C) and an older groundwater source (lowest δ2H, δ18O, SF6, 3H, 14C, and highest 4He) were found in the riparian zone. This old groundwater end-member may represent leakage from an underlying confined aquifer (Great Artesian Basin). Environmental tracers may be used to estimate infiltration rates in this riparian environment but the presence of multiple sources of water and a high dispersion induced by frequent variations in the water table complicates their interpretation.

  5. NATURE AND DYNAMIC OF SEDIMENTS AT THE MOUTH OF KOMOÉ RIVER (IVORY COAST

    Directory of Open Access Journals (Sweden)

    Laurent K. ADOPO

    2014-06-01

    Full Text Available Komoé River represents the most important freshwater resource of Ivory Coast. This study aims at identifying the alluvia material and its dynamic at the mouth. The agricultural activity within the upper basin has determined a decrease in liquid discharge and an increase in alluvia transport. Most of the water is used in agriculture. The alluvia material comprises mainly sands and it is included in the middle-coarse category. Mixed sediments are composed of muddy sands and sandy muds. Most quartz grains transported by the river are flattened and glassy (91.66%, while the rest are round and opaque (8.34%. Minerals are angular, subangular, rounded and subrounded. Among heavy minerals, it is worth mentioning as follows: quartz, mica, feldspar, pyroxene, tourmaline, amphibole, gamet, epidote etc. The high degree of alluvia deposit has reduced the depth of the lower river course and it has closed the estuary completely. In this case, the wetland was extended and the vegetation tends to cover the entire surface. Navigation has been made difficult by the alluvial and organic clogging processes.

  6. A Hydrograph-Based Sediment Availability Assessment: Implications for Mississippi River Sediment Diversion

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2014-03-01

    Full Text Available The Mississippi River Delta Plain has undergone substantial land loss caused by subsidence, relative sea-level rise, and loss of connectivity to the Mississippi River. Many restoration projects rely on diversions from the Mississippi River, but uncertainty exists about the timing and the amount of actually available sediment. This study examined long-term (1980–2010 suspended sediment yield as affected by different hydrologic regimes to determine actual suspended sediment availability and how this may affect diversion management. A stage hydrograph-based approach was employed to quantify total suspended sediment load (SSL of the lower Mississippi River at Tarbert Landing during three river flow conditions: Peak Flow Stage (stage = 16.8 m, discharge >32,000 m3 s−1, High Flow Stage (stage = 14.6 m, discharge = 25,000–32,000 m3 s−1, and Intermediate Flow Stage (Stage = 12.1 m, discharge = 18,000–25,000 m3 s−1. Suspended sediment concentration (SSC and SSL were maximized during High Flow and Intermediate Flow Stages, accounting for approximately 50% of the total annual sediment yield, even though duration of the stages accounted for only one-third of a year. Peak Flow Stage had the highest discharge, but significantly lower SSC (p < 0.05, indicating that diversion of the river at this stage would be less effective for sediment capture. The lower Mississippi River showed significantly higher SSC (p < 0.0001 and SSL (p < 0.0001 during the rising than the receding limb. When the flood pulse was rising, Intermediate Flow and High Flow Stages showed greater SSC and SSL than Peak Flow Stage. Together, Intermediate Flow and High Flow Stages on the rising limb annually discharged 28 megatonnes over approximately 42 days, identifying this to be the best period for sediment capture and diversion.

  7. Dating of artificial radioactivity in sediments of the river Yenisei

    International Nuclear Information System (INIS)

    Klemt, E.; Parliachenka, A.; Spasova, Y.; Zibold, G.; Rollin, S.; Burger, M.

    2004-01-01

    For many years the Mining and Chemical Combine was producing weapon-grade plutonium in three nuclear plants on the banks of the river Yenisei south of the city Krasnoyarsk, Siberia. Artificial radionuclides were found in sediments of the river in close distance to the plants as well as over the whole length of the river up to the icy Kara-Sea. In order to reconstruct the discharge into the river and to understand migration processes dating of the activity in undisturbed sediment cores had to be done. Due to vertical advection of water through the sediments the age of sediment layers and the age of the activity therein have to be distinguished. The following methods of dating have been analyzed: The Pb-210 gamma-spectrometric method which showed to be not applicable, the Eu-152/Eu-154 ratio, the Po-210 alpha-spectrometric method, and modelling of the vertical distribution of activity in the sediment. Furthermore, ICP-MS analyses of Np, Am and Pu isotopes have been used to perform dating analyses. The results of the different methods are compared in order to ensure a proper understanding of the history of the activity and of the processes within the sediment. (author)

  8. Degradation of the Mitchell River fluvial megafan by alluvial gully erosion increased by post-European land use change, Queensland, Australia

    Science.gov (United States)

    Shellberg, J. G.; Spencer, J.; Brooks, A. P.; Pietsch, T. J.

    2016-08-01

    Along low gradient rivers in northern Australia, there is widespread gully erosion into unconfined alluvial deposits of active and inactive floodplains. On the Mitchell River fluvial megafan in northern Queensland, river incision and fan-head trenching into Pleistocene and Holocene megafan units with sodic soils created the potential energy for a secondary cycle of erosion. In this study, rates of alluvial gully erosion into incipiently-unstable channel banks and/or pre-existing floodplain features were quantified to assess the influence of land use change following European settlement. Alluvial gully scarp retreat rates were quantified at 18 sites across the megafan using recent GPS surveys and historic air photos, demonstrating rapid increases in gully area of 1.2 to 10 times their 1949 values. Extrapolation of gully area growth trends backward in time suggested that the current widespread phase of gullying initiated between 1880 and 1950, which is post-European settlement. This is supported by young optically stimulated luminescence (OSL) dates of gully inset-floodplain deposits, LiDAR terrain analysis, historic explorer accounts of earlier gully types, and archival records of cattle numbers and land management. It is deduced that intense cattle grazing and associated disturbance concentrated in the riparian zones during the dry season promoted gully erosion in the wet season along steep banks, adjacent floodplain hollows and precursor gullies. This is a result of reduced native grass cover, increased physical disturbance of soils, and the concentration of water runoff along cattle tracks, in addition to fire regime modifications, episodic drought, and the establishment of exotic weed and grass species. Geomorphic processes operating over geologic time across the fluvial megafan predisposed the landscape to being pushed by land used change across an intrinsically close geomorphic threshold towards instability. The evolution of these alluvial gullies is discussed

  9. Selenium in Reservoir Sediment from the Republican River Basin

    Science.gov (United States)

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  10. Pantanal of Cáceres: granulometric composition of bottom sediments in the Paraguay River between the outfall of the Cabaçal River and the city of Cáceres, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo Roberto dos Santos Leandro

    2012-08-01

    Full Text Available The objective of the study was to verify the granulometric composition of bottom sediments along the longitudinal profile of the Paraguay River between the outfall of the Cabaçal River and the city of Cáceres, Mato Grosso, comprised by the geographic coordinates 15°58’00’’ and 16°50’00’’ South Latitude and 57°40’00’’ and 57°44’00’’ West Longitude. Work activity was conducted to characterize the sites and sediments collection with Van Veen sediment sampler (seven samples; textural analysis of the sediments by the pipetting and sieving method (the method uses a combination of sieving and sedimentation. The Paraguay River exhibits a meandering style with two distinct periods (periodic flooding regime and drought that associated with of bottom sediments alternate processes of erosion, transport and deposition from the discernible changes in the complex landscaping. Thus, the concentration of sand in the bed load transported in the channel (five samples is related to environmental elements and land use. The fine sediments are transferred to the features (bays and ponds and flood plain; the intense fluvial dynamics and the course (alluvial deposition areas contribute to changes in channel and morphologic features (capacity transport and sediment depositions.

  11. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  12. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  13. Studies of gamma emitters in the alluvial deposit and in water of the Bug River

    International Nuclear Information System (INIS)

    Chibowski, S.; Pawlik, M.

    1995-01-01

    Studies of the contents of gamma emitters in samples of water and deposit taken from the Bug River (in Poland only) are presented. The total γ-activity of deposits ranges from 120-650 Bq/kg and the average value is 350 Bq/kg. The elevated activity is chiefly due to the presence of natural radionuclides. The main artificial radionuclides are Cs-137 and Cs-134, whose contribution to the total activity ranges from 0.2 to 6%. The activity of waters samples is low, namely, 1.7-3.5 Bq/kg and is due to the presence of natural radionuclides. The heterogeneity of the distribution of natural and artificial radionuclides in the studies samples reveals the effect of economical and industrial activities on contamination of the Bug. (author). 7 refs, 1 fig., 4 tabs

  14. Suspended sediment measurements in the Llobregat River Mouth

    International Nuclear Information System (INIS)

    Sotillo Membibre, M.

    2011-01-01

    Sediment concentrations were measured at the Llobregat river mouth near Barcelona, using an ADCP. the ADCP backscatter intensity was corrected fro sound loss in the water column and was calibrated to sediment concentrations on the basis of water samples, that were taken in the water column. This holds for cases where particles are small compared to the acoustic were length so that the Rayleigh scattering law applies, which is true the ADCP. (Author)

  15. Environmental Benefits of Restoring Sediment Continuity to the Kansas River

    Science.gov (United States)

    2016-06-01

    quality and ecological effects of reservoir aging by sediment accumulation. The section titled “Downstream Channel Effects” cites specific ecological ...effects ( Wood and Armitage 1997; Karr and Yoder 2004). However, as noted by the National Research Council (2011), “Not all sediments and all rivers...National Research Council 2011). Dam construction , as discussed by Wohl et al. (2015), Juracek (2014), Kondolf et al. (2014), and the National Research

  16. Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation

    Science.gov (United States)

    Mamikhin, S. V.; Golosov, V. N.; Paramonova, T. A.; Shamshurina, E. N.; Ivanov, M. M.

    2016-12-01

    Profiles of vertical 137Cs distribution in alluvial meadow soils on the low and medium levels of the Lokna River floodplain (central part of the Plavsk radioactive spot in Tula oblast) 28 years after the Chernobyl fallout have been studied. A significant increase in the 137Cs pool is revealed on the low floodplain areas compared to the soils of interfluves due to the accumulation of alluvium, which hampers the reduction of the total radionuclide pool in alluvial soils because of radioactive decay. The rate of alluvium accumulation in the soil on the medium floodplain level is lower by three times on average. An imitation prognostic model has been developed, which considers the flooding and climatic conditions in the region under study. Numerical experiments have quantitatively confirmed the deciding role of low-mobile forms in the migration of maximum 137Cs content along the soil profile in the absence of manifested erosion-accumulation processes.

  17. Plutonium AMS measurements in Yangtze River estuary sediment

    International Nuclear Information System (INIS)

    Tims, S.G.; Pan, S.M.; Zhang, R.; Fifield, L.K.; Wang, Y.P.; Gao, J.H.

    2010-01-01

    The Yangtze River is the largest single source of sediment to the continental shelf of the East China Sea. The quantity of material exported by the river is expected to decrease substantially as a consequence of an extensive continuing program of dam construction within the river catchment. We report here AMS measurements of plutonium isotope concentrations and ratios for selected depth increments from a sediment core, collected from the sub-aqueous delta of the Yangtze River estuary. The Pu derives from atmospheric nuclear weapons testing in the 1950s and 1960s, and is potentially a useful tracer of sediment deposition times in the marine environment. The results show considerable structure in the depth-concentration profile, and offer an excellent opportunity to compare Pu with the more commonly used 137 Cs isotopic tracer. The AMS data show superior sensitivity and indicate that the 240 Pu/ 239 Pu ratio can provide a check on the deposition dates. The changes in the 240 Pu and 239 Pu concentrations and the 240 Pu/ 239 Pu ratios with sediment depth all indicate the possibility of using Pu as a geochronological tool for coastal sediment studies.

  18. Floodplain sedimentology and sediment accumulation assessment – Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, Kevin M. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Earth and Environmental Sciences

    2016-01-03

    The primary goal of the larger research program, of which this work is one component, is to restore the hydrodynamics and energy gradients of targeted Savannah River Site (SRS) streams to a condition comparable to local natural streams or rivers of similar order, and to stabilize sediment transport (net degradation/aggregation) with the assumption that the faunal components of these systems will quickly recover on their own (e.g., Pen Branch; Lakly and McArthur, 2000). This work is specifically focused on the identification of near-stream floodplain areas that exhibit sediment deposition or erosion, and the quantification of these processes over a historical time scale (last ~100 years).

  19. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  20. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    Science.gov (United States)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  1. Trace elements distribution in bottom sediments from Amazon River estuary

    International Nuclear Information System (INIS)

    Lara, L.B.L.S.; Nadai Fernandes, E. de; Oliveira, H. de; Bacchi, M.A.

    1994-01-01

    The Amazon River discharges into a dynamic marine environment where there have been many interactive processes affecting dissolved and particulate solids, either those settling on the shelf or reaching the ocean. Trace elemental concentration, especially of the rare earth elements, have been determined by neutron activation analysis in sixty bottom sediment samples of the Amazon River estuary, providing information for the spatial and temporal variation study of those elements. (author). 16 refs, 6 figs, 3 tabs

  2. High Recharge Areas in the Choushui River Alluvial Fan (Taiwan Assessed from Recharge Potential Analysis and Average Storage Variation Indexes

    Directory of Open Access Journals (Sweden)

    Jui-Pin Tsai

    2015-03-01

    Full Text Available High recharge areas significantly influence the groundwater quality and quantity in regional groundwater systems. Many studies have applied recharge potential analysis (RPA to estimate groundwater recharge potential (GRP and have delineated high recharge areas based on the estimated GRP. However, most of these studies define the RPA parameters with supposition, and this represents a major source of uncertainty for applying RPA. To objectively define the RPA parameter values without supposition, this study proposes a systematic method based on the theory of parameter identification. A surrogate variable, namely the average storage variation (ASV index, is developed to calibrate the RPA parameters, because of the lack of direct GRP observations. The study results show that the correlations between the ASV indexes and computed GRP values improved from 0.67 before calibration to 0.85 after calibration, thus indicating that the calibrated RPA parameters represent the recharge characteristics of the study area well; these data also highlight how defining the RPA parameters with ASV indexes can help to improve the accuracy. The calibrated RPA parameters were used to estimate the GRP distribution of the study area, and the GRP values were graded into five levels. High and excellent level areas are defined as high recharge areas, which composed 7.92% of the study area. Overall, this study demonstrates that the developed approach can objectively define the RPA parameters and high recharge areas of the Choushui River alluvial fan, and the results should serve as valuable references for the Taiwanese government in their efforts to conserve the groundwater quality and quantity of the study area.

  3. Agricultural land use doubled sediment yield of western China's rivers

    Science.gov (United States)

    Schmidt, A. H.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Rood, D. H.; Martin, J.; Hill, M.

    2017-12-01

    Land use changes, such as deforestation and agriculture, increase soil erosion rates on the scale of hillslopes and small drainage basins; however, the effects of these changes on the sediment load in larger rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary (1945-1987) fluvial sediment yield data collected daily over 4 to 26 years (median = 19 years) to long-term measures of erosion (sediment generation) based on new isotopic measurements of in situ 10Be in river sediments. We find that median sediment transport at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment yield (p measured unsupported 210Pb and 137Cs in 130 detrital samples from throughout the region. We find that only 4 samples (those from high elevation, low relief watersheds) have detectable 137Cs and 31 samples have detectable unsupported 210Pb. The lack of 137Cs in most samples suggests high rates of erosion in the 1950s-1960s when 137Cs would have been delivered to the landscape. Detectable 210Pb in 25% of the watersheds suggests that in some areas erosion rates have slowed since that time allowing 210Pb to accumulate to measurable levels. Together, these data sets demonstrate that upstream agricultural land use has significantly increased sediment supply to rivers in western China, likely increasing turbidity and decreasing ecosystem services such as fisheries.

  4. Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2015-11-01

    Full Text Available The basic geometric parameters of 236 debris flow catchments were determined by interpreting SPOT5 remote sensing images with a resolution of 2.5 m in a 209 km section along the Jinsha River in the Panxi area, China. A total of 27 large-scale debris flow catchments were selected for detailed in situ investigation. Samples were taken from two profiles in the deposition zone for each debris flow catchment. The φ value gradation method of the grain size was used to obtain 54 histograms with abscissa in a logarithmic scale. Five types of debris flows were summarized from the outline of the histogram. Four grain size parameters were calculated: mean grain size, standard deviation, coefficient of skewness, and coefficient of kurtosis. These four values were used to evaluate the features of the histogram. The grain index that reflects the transport (kinetic energy information of debris flows was defined to describe the characteristics of the debris-flow materials. Furthermore, a normalized grain index based on the catchment area was proposed to allow evaluation of the debris flow mobility. The characteristics of the debris-flow materials were well-described by the histogram of grain-size distribution and the normalized grain index.

  5. Automated remote cameras for monitoring alluvial sandbars on the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Grams, Paul E.; Tusso, Robert B.; Buscombe, Daniel

    2018-02-27

    Automated camera systems deployed at 43 remote locations along the Colorado River corridor in Grand Canyon National Park, Arizona, are used to document sandbar erosion and deposition that are associated with the operations of Glen Canyon Dam. The camera systems, which can operate independently for a year or more, consist of a digital camera triggered by a separate data controller, both of which are powered by an external battery and solar panel. Analysis of images for categorical changes in sandbar size show deposition at 50 percent or more of monitoring sites during controlled flood releases done in 2012, 2013, 2014, and 2016. The images also depict erosion of sandbars and show that erosion rates were highest in the first 3 months following each controlled flood. Erosion rates were highest in 2015, the year of highest annual dam release volume. Comparison of the categorical estimates of sandbar change agree with sandbar change (erosion or deposition) measured by topographic surveys in 76 percent of cases evaluated. A semiautomated method for quantifying changes in sandbar area from the remote-camera images by rectifying the oblique images and segmenting the sandbar from the rest of the image is presented. Calculation of sandbar area by this method agrees with sandbar area determined by topographic survey within approximately 8 percent and allows quantification of sandbar area monthly (or more frequently).

  6. Sediment Equilibrium and Diffusive Fluxes in Relation to Phosphorus Dynamics in the Turbid Minnesota River

    National Research Council Canada - National Science Library

    James, William F

    2009-01-01

    ...) concentration in large river systems. However, in-stream processes such as equilibrium P flux from suspended sediment and diffusive P flux from deposited sediment stored in river channels may also play a role in soluble P control...

  7. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    Science.gov (United States)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  8. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  9. Topographic and hydraulic controls over alluviation on a bedrock template

    Science.gov (United States)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2017-04-01

    Bedrock-alluvial anastomosed channels found in dryland rivers are characterised by an over-wide channel cut into the host rock containing a network of interconnecting bedrock sub-channels separated by bedrock influenced interfluve areas. Whilst the channels remain largely free of sediment the interfluves display varying levels of alluviation ranging from bare rock, sand sheets and silt drapes through to consolidated bedrock core bars, islands and lateral deposits. Examination of the sedimentary units associated with the bedrock anastomosed reaches of the Sabie river in the Kruger National Park, South Africa reveal a repeating sequence of coarse sand / fine gravel grading through to silt representing successive flood related depositional units. Unit development in relation to the bedrock template was investigated using pre-flood aerial imagery of bedrock core bar locations and post flood LiDAR data of bedrock anastomosed sites stripped during the 2000 and 2012 extreme flood events. This revealed a propensity for bar development associated with bedrock hollows disconnected from the principal high-energy sub-channels. 2-D morpho-dynamic modelling was used to further investigate spatial patterns of deposition over the bedrock template. Although topographic lows displayed mid-range velocities during peak flow events, these are likely to be preferential routing areas, with sediments stalling in low energy areas on the falling limb of floods. It is also likely that vegetation development plays a fundamental role in the development of alluviated zones, through increasing strength of alluvial units and capturing new sediments. With these results in mind we present a conceptual model for the development of bedrock-core bars, the fundamental unit in bedrock-alluvial anastomosed channels.

  10. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  11. Sedimentation Impacts Modeling for the Lower Elwha River

    Science.gov (United States)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some

  12. Age, distribution, and significance within a sediment budget, of in-channel depositional surfaces in the Normanby River, Queensland, Australia

    Science.gov (United States)

    Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.

    2015-06-01

    We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.

  13. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  14. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, A. B.; Hasholt, Bent; Knudsen, N. T.

    2013-01-01

    For 3 years, during a 4-year observation period (2007-2010), jokulhlaups were observed from a lake at the northern margin of Russells Gletscher. At a gauging station located on a bedrock sill near the outlet of Watson River into Sdr Stromfjord, discharge and sediment transport was monitored during...

  15. Sediment discharge division at two tidally influenced river bifurcations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.

    2013-01-01

    [1] We characterize and quantify the sediment discharge division at two tidally influenced river bifurcations in response to mean flow and secondary circulation by employing a boat-mounted acoustic Doppler current profiler (ADCP), to survey transects at bifurcating branches during a semidiurnal

  16. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  17. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  18. Climate Change on Discharge and Sedimentation of River Awara, Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa O. Idogho

    2014-07-01

    Full Text Available The dynamics of variation in effect of climate change on discharges and sedimentation mechanism of River Awara is investigated using 14-year data of rainfall (mm, discharges (m 3 /s, temperature ( 0 c and sediment load (t. Surface runoff (mm was computed using Water Balance Equation and some other empirical iteration based on the observed rainfall and temperature over a period of time. Analysis of Paired Sample reveals the relationship between tested hydrological variables: Rainfall-Runoff; Runoff-Sediment load; and DischargeSediment load are significant at 0.95 level of confidence interval. Logarithm calibration curve further illustrates that Rainfall-Runoff and Runoff-Sediment have coefficient values (R 2 of 0.996 and 0.822 respectively. Analytical iteration shows that the intensity and duration of precipitation determine the magnitude of river, generation of surface runoff and sedimentation rate. Increase in rainfall depth by 100 mm within the 14-year has resulted to serious erodobility and erositivity around River Awara. Cumulative average sediment load ratio of 0.46 has significantly reduced the reservoir capacity of the river by 10%. 78% of total annual surface runoff is lost to ocean; since reservoir capacity has been silted up which in turns reduces the volume of water that could be held for storage, treatment and distribution for its intended purposes. Comparative physics-based output indicates that temperature increase of 0.7 0 c between 1997 and 2004, due to internal processes of the Earth and some human activities. It is however projected that temperature will rise by 0.9 0 c by the end of 2015. Projected rise in temperature will adversely affect hydrological cycle and complicate already scarce-water resources due to intensive evapotranspiration, infiltration and reduction in stream flow. Holistic integration using bottom-up mechanism needs to be applied to address this constraint. Dredging of river Awara is very important to enhance

  19. Impacts of Declining Mississippi River Sediment Load on Subaqueous Delta Front Sedimentation and Geomorphology

    Science.gov (United States)

    Maloney, J. M.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-02-01

    The Mississippi River delta system is undergoing unprecedented changes due to the effects of climate change and anthropogenic alterations to the river and its delta. Since the 1950s, the suspended sediment load of the Mississippi River has decreased by approximately 50% due to the construction of >50,000 dams in the Mississippi basin. The impact of this decreased sediment load has been observed in subaerial environments, but the impact on sedimentation and geomorphology of the subaqueous delta front has yet to be examined. To identify historic trends in sedimentation patterns, we compiled bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009. Sedimentation rates are variable across the delta front, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River flow and sediment into the Gulf of Mexico. The progradation rate of Southwest Pass (measured at the 10 m depth contour) has slowed from 67 m/yr between 1764 and 1940 to 26 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre, with the 10 m contour retreating at rates >20 m/yr at both passes. Advancement of the delta front also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward 30 m/yr, but rates declined from 1979-2005. Furthermore, over the same area, the sediment accumulation rate decreased by 81% for the same period. The Mississippi River delta front appears to be entering a phase of decline, which will likely be accelerated by future upstream management practices. This decline has implications for offshore ecosystems, biogeochemical cycling, pollutant dispersal, mudflow hazard, and the continued use of the delta as an economic and population center.

  20. Agrochemical residues in rivers sediments, Poas, Costa Rica

    International Nuclear Information System (INIS)

    Masis, Federico; Valdez, Juan; Leon, Sandra; Coto, Tatiana

    2008-01-01

    The organophosphorus and organochlorine agrochemical residues distribution in sediments of 3 rivers located in an ornamental plant production area were analyzed in Poas canton, Alajuela, Costa Rica. The study comprised 8 months in order to assure 3 seasonal episodes: dry, transitional, and rainy seasons. Sediments were taken in 10 sampling stations along the rivers and characterized by a determination of their organic matter and texture. In 7 out of 10 sampling stations pesticide residues were detected in at least 1 of 4 samplings, but quantified only in 4 stations. Agrochemical residues evaluated included 21 organophosphorus and organochlorine pesticides; however, we found residues of only 3 organochlorine pesticides, due their high persistence in the sediment. Residues corresponded to PCNB (80-800 μg.kg -1 ), Endosulfan-β (40-50 μg.kg -1 ), and Endosulfan-α (90 μg.kg -1 ). Chlorothalonil was detected in only one sample. (author) [es

  1. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  2. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France

    Science.gov (United States)

    Rejiba, Fayçal; Schamper, Cyril; Chevalier, Antoine; Deleplancque, Benoit; Hovhannissian, Gaghik; Thiesson, Julien; Weill, Pierre

    2018-01-01

    The La Bassée floodplain area is a large groundwater reservoir controlling most of the water exchanged between local aquifers and hydrographic networks within the Seine River basin (France). Preferential flows depend essentially on the heterogeneity of alluvial plain infilling, whose characteristics are strongly influenced by the presence of mud plugs (paleomeander clayey infilling). These mud plugs strongly contrast with the coarse sand material that composes most of the alluvial plain, and can create permeability barriers to groundwater flows. A detailed knowledge of the global and internal geometry of such paleomeanders can thus lead to a comprehensive understanding of the long-term hydrogeological processes of the alluvial plain. A geophysical survey based on the use of electromagnetic induction was performed on a wide paleomeander, situated close to the city of Nogent-sur-Seine in France. In the present study we assess the advantages of combining several spatial offsets, together with both vertical and horizontal dipole orientations (six apparent conductivities), thereby mapping not only the spatial distribution of the paleomeander derived from lidar data but also its vertical extent and internal variability.

  3. Fertilizers mobilization in alluvial aquifer: laboratory experiments

    Science.gov (United States)

    Mastrocicco, M.; Colombani, N.; Palpacelli, S.

    2009-02-01

    In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.

  4. River Bed Sediment Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat in rivers often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein ...

  5. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  6. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  7. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  8. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  9. Predictive models applied to groundwater level forecasting: a preliminary experience on the alluvial aquifer of the Magra River (Italy).

    Science.gov (United States)

    Brozzo, Gianpiero; Doveri, Marco; Lelli, Matteo; Scozzari, Andrea

    2010-05-01

    Computer-based decision support systems are getting a growing interest for water managing authorities and water distribution companies. This work discusses a preliminary experience in the application of computational intelligence in a hydrological modeling framework, regarding the study area of the alluvial aquifer of the Magra River (Italy). Two sites in the studied area, corresponding to two distinct groups of wells (Battifollo and Fornola) are managed by the local drinkable water distribution company (ACAM Acque), which serves the area of La Spezia, on the Ligurian coast. Battifollo has 9 wells with a total extraction rate of about 240 liters per second, while Fornola has 44 wells with an extraction rate of about 900 liters per second. Objective of this work is to make use of time series coming from long-term monitoring activities in order to assess the trend of the groundwater level with respect to a set of environmental and exploitation parameters; this is accomplished by the experimentation of a suitable model, eligible to be used as a predictor. This activity moves on from the modeling of the system behavior, based on a set of Input/Output data, in order to characterize it without necessarily a prior knowledge of any deterministic mechanism (system identification). In this context, data series collected by continuous hydrological monitoring instrumentation installed in the studied sites, together with meteorological and water extraction data, have been analyzed in order to assess the applicability and performance of a predictive model of the groundwater level. A mixed approach (both data driven and process-based) has been experimented on the whole dataset relating to the last ten years of continuous monitoring activity. The system identification approach presented here is based on the integration of an adaptive technique based on Artificial Neural Networks (ANNs) and a blind deterministic identification approach. According to this concept, the behavior of

  10. Determining Sediment Sources in the Anacostia River Watershed

    Science.gov (United States)

    Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.

    2005-12-01

    Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the

  11. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  12. Runoff and leaching of metolachlor from Mississippi River alluvial soil during seasons of average and below-average rainfall.

    Science.gov (United States)

    Southwick, Lloyd M; Appelboom, Timothy W; Fouss, James L

    2009-02-25

    The movement of the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] via runoff and leaching from 0.21 ha plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a 6-year period, 1995-2000. The first three years received normal rainfall (30 year average); the second three years experienced reduced rainfall. The 4-month periods prior to application plus the following 4 months after application were characterized by 1039 +/- 148 mm of rainfall for 1995-1997 and by 674 +/- 108 mm for 1998-2000. During the normal rainfall years 216 +/- 150 mm of runoff occurred during the study seasons (4 months following herbicide application), accompanied by 76.9 +/- 38.9 mm of leachate. For the low-rainfall years these amounts were 16.2 +/- 18.2 mm of runoff (92% less than the normal years) and 45.1 +/- 25.5 mm of leachate (41% less than the normal seasons). Runoff of metolachlor during the normal-rainfall seasons was 4.5-6.1% of application, whereas leaching was 0.10-0.18%. For the below-normal periods, these losses were 0.07-0.37% of application in runoff and 0.22-0.27% in leachate. When averages over the three normal and the three less-than-normal seasons were taken, a 35% reduction in rainfall was characterized by a 97% reduction in runoff loss and a 71% increase in leachate loss of metolachlor on a percent of application basis. The data indicate an increase in preferential flow in the leaching movement of metolachlor from the surface soil layer during the reduced rainfall periods. Even with increased preferential flow through the soil during the below-average rainfall seasons, leachate loss (percent of application) of the herbicide remained below 0.3%. Compared to the average rainfall seasons of 1995-1997, the below-normal seasons of 1998-2000 were characterized by a 79% reduction in total runoff and leachate flow and by a 93% reduction in corresponding metolachlor movement via these routes

  13. Lateral convection and diffusion of sediment in straight rivers

    DEFF Research Database (Denmark)

    Christensen, Henrik Bo; Fredsøe, Jørgen

    1998-01-01

    and a higher level of turbulence at the channel centre, than in the near bank zones, which means that the ability to support suspended sediment will decrease from the channel centre. The two turbulence models give different estimates for the lateral transport, which mainly are caused by turbulence generated......The lateral transport of suspended sediment in a straight river cross section with a parabolic shaped bed is studied be use of a k-e and a full Reynolds stress turbulence model. Due to depth variations a lateral transport of suspended sediment is generated. This is mainly caused by the slopping bed...... secondary flow cells in the Reynolds stress model. The flow cells make zones with alternately high and low sediment concentration, and thereby much higher local gradients in the lateral direction. Both models found a net inward lateral transport. The transport by convection was found more dominant than...

  14. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  15. River sedimentation and channel bed characteristics in northern Ethiopia

    Science.gov (United States)

    Demissie, Biadgilgn; Billi, Paolo; Frankl, Amaury; Haile, Mitiku; Lanckriet, Sil; Nyssen, Jan

    2016-04-01

    Excessive sedimentation and flood hazard are common in ephemeral streams which are characterized by flashy floods. The purposes of this study was to investigate the temporal variability of bio-climatic factors in controlling sediment supply to downstream channel reaches and the effect of bridges on local hydro-geomorphic conditions in causing the excess sedimentation and flood hazard in ephemeral rivers of the Raya graben (northern Ethiopia). Normalized Difference Vegetation Index (NDVI) was analyzed for the study area using Landsat imageries of 1972, 1986, 2000, 2005, 2010, and 2012). Middle term, 1993-2011, daily rainfall data of three meteorological stations, namely, Alamata, Korem and Maychew, were considered to analyse the temporal trends and to calculate the return time intervals of rainfall intensity in 24 hours for 2, 5, 10 and 20 years using the log-normal and the Gumbel extreme events method. Streambed gradient and bed material grain size were measured in 22 river reaches (at bridges and upstream). In the study catchments, the maximum NDVI values were recorded in the time interval from 2000 to 2010, i.e. the decade during which the study bridges experienced the most severe excess sedimentation problems. The time series analysis for a few rainfall parameters do not show any evidence of rainfall pattern accountable for an increase in sediment delivery from the headwaters nor for the generation of higher floods with larger bedload transport capacities. Stream bed gradient and bed material grain size data were measured in order to investigate the effect of the marked decrease in width from the wide upstream channels to the narrow recently constructed bridges. The study found the narrowing of the channels due to the bridges as the main cause of the thick sedimentation that has been clogging the study bridges and increasing the frequency of overbank flows during the last 15 years. Key terms: sedimentation, ephemeral streams, sediment size, bridge clogging

  16. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    Science.gov (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  17. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    International Nuclear Information System (INIS)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  18. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    Science.gov (United States)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  19. Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants

    International Nuclear Information System (INIS)

    Morasch, B.; Hoehener, P.; Hunkeler, D.

    2007-01-01

    A microcosm study was conducted to investigate the degradation of mono- and polyaromatic hydrocarbons under in situ-like conditions using alluvial sediments from the site of a former cokery. Benzene, naphthalene, or acenaphthene were added to the sediments as 13 C-labeled substrates. Based on the evolution of 13 C-CO 2 determined by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) it was possible to prove mineralization of the compound of interest in the presence of other unknown organic substances of the sediment material. This new approach was suitable to give evidence for the intrinsic biodegradation of benzene, naphthalene, and acenaphthene under oxic and also under anoxic conditions, due to the high sensitivity and reproducibility of 13 C/ 12 C stable isotope analysis. This semi-quantitative method can be used to screen for biodegradation of any slowly degrading, strongly sorbing compound in long-term experiments. - A method based on 13 C-labeled substrates was developed to determine the intrinsic biodegradation potential of aromatic pollutants under oxic and under anoxic conditions

  20. [Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir].

    Science.gov (United States)

    Sun, Wen-Bin; Du, Bin; Zhao, Xiu-Lan; He, Bing-Hui

    2013-03-01

    The sediment, one of the key factors leading to the eutrophication of water bodies, is an important ecological component of natural water body. In order to investigate the morphological characteristics and moving-transiting rule of phosphorus in the sediments of the Pengxi River, a tributary of the Three Gorges Reservoir, the distributions of different phosphorus forms on the three cross-section in the sediments and three soil types of riparian zone were investigated using the sequential extraction method. The characteristics of phosphorus adsorption on the sediments were also investigated by batch experiments. The equilibrium phosphorus concentrations at zero adsorption (EPC0) on those sediments were estimated using the Henry linear models. The results show that the total phosphorus (TP) contents of these sediments and soils of riparian zone were 0.80-1.45 g x kg(-1) and 0.65-1.16 g x kg(-1), respectively. Phosphorus in sediments and soils were divided into inorganic phosphorus (IP) and organic phosphorus (Or-P), and the inorganic phosphorus was the dominant component of TP. Of the inorganic phosphorus fractions, the percentages of phosphorus bounded to calcium (Ca-P) and occluded phosphorus (O-P) from sediments were higher than 80%, implying that the contents of phosphorus were mainly influenced by their bedrocks and the sedimentary environmental conditions, not by the activities of human beings. The fractions of Ca-P and O-P were the dominant components of inorganic phosphorus in alluvial soil and purple soil, while the fraction of O-P was the highest in the paddy soil. The EPC0 values of the sediments from the sections of Huangshi, Shuangjiang and Gaoyang were 0.08, 0.13 and 0.11 mg x L(-1) respectively, but the EPC0 values of the alluvial soil, purple soil and paddy soil located in riparian zone were 0.08, 0.09 and 0.04 mg x L(-1), respectively. Correlation analysis shows that the values of EPC0 positively related to the contents of total phosphorus and clay

  1. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.

  2. Quaternary alluvial stratigraphy and palaeoclimatic reconstruction at the Thar margin

    DEFF Research Database (Denmark)

    Jain, M.; Tandon, S.K.

    2003-01-01

    Quaternary alluvial record at the Thar desert margin has been examined using the exposed succession along Mahudi, Sabarmati river, Western India. Different alluvial facies, their associations and granulometry have been studied for palaeoenvironmental reconstruction. Clay mineral indices smectite/...

  3. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    Science.gov (United States)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  4. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  5. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  6. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  7. Vertical distribution of radioactive particles in Ottawa River sediment near the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Lee, D.R.; Hartwig, D.S.

    2011-01-01

    Previously, we described an area of above-background levels of radioactivity in the bed of the Ottawa River near the Chalk River Laboratories. The area was about 200 m wide by 400 m long and in water 8 to 30 m deep. The source of the radioactivity was associated with the location of cooling-water discharge. Particles of radioactive material were later recovered from the upper 10-15 cm of sediment and were determined to be sand-sized grains of nuclear fuel and corrosion products. This report provides an examination of the vertical distribution of radioactive particles in the riverbed. Twenty-three dredge samples (representing 1.2 m 2 of riverbed) were collected near the Process Outfall. Each dredge sample was dissected in horizontal intervals 1-cm-thick. Each interval provided a 524 cm 3 sample of sediment that was carefully examined for particulate radioactivity. Approximately 80% of the radioactivity appeared to be associated with discrete particles. Although the natural sediment in the general area is cohesive, silty clay and contains less than 10% sand, the sediment near the Outfall was found to be rich in natural sand, presumably from sources such as winter sanding of roads at the laboratories. The radioactive particles were almost entirely contained in the top-most 10 cm of the river bed. The majority of the particles were found several centimetres beneath the sediment surface and the numbers of particles and the radioactivity of the particles peaked 3 to 7 cm below the sediment surface. Based on the sediment profile, there appeared to have been a marked decrease in the deposition of particulate radioactivity in recent decades. The vertical distribution of radioactive particles indicated that sedimentation is resulting in burial and that the deposition of most of the particulate radioactivity coincided with the operation of Chalk River's NRX reactor from 1947 to 1992. (author)

  8. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  9. Concentration Factors of Norm in Sediment of Cisadane River

    International Nuclear Information System (INIS)

    Agus Gindo S; Lubis, Erwansyah

    2008-01-01

    The Concentration factor (Cf) in sediment of Cisadane river was investigated. The surface water and sediment was sampling at Gunung Sindur area (down stream) until Teluk Naga area (up stream). The results indicated that Cf values of gross-α, gross-β, gross-th, gross-U, 40 K, 226 Ra and 228 Th were 830 ± 87, 1800 ± 290, 2150 ± 50, 1415 ± 41, 37 ± 1, 22 ± 5 and 115 ± 56 respectively. With these Cf values, the radiological impact from liquid effluent release to Cisadane river that contains NORM from industrial activities for agriculture and fishery pathways are able to predicted. This investigation still has to be continued for other radionuclides. (author)

  10. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Li He

    2018-03-01

    Full Text Available The sediment regime in the Jingjiang river reach of the middle Yangtze River has been significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three Gorges Dam (TGD. Vertical profiles of suspended sediment concentration (SSC and sediment flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively. However, the connection between the vertical concentration profiles and the hydrologic conditions of the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli are collected. Analyses show that the near-bed concentration (within 10% of water depth from the riverbed may reach up to 15 times that of the vertical average concentration. By comparing the fractions of the suspended sediment and bed material before and after TGD operation, the geomorphic condition under which the distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed. In total, remarkable large near-bed concentrations may respond to the combination of wide grading suspended particles and bed material. Finally, several future challenges caused by the anomalous vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed measurements or new measuring technologies may help us to provide accurate measurements, while a fractional dispersion equation may help us in describing. The present study aims to gain new insights into regime change of sediment suspension in the river reaches downstream of a very large reservoir.

  11. Heavy metals concentrations in coal and sediments from River ...

    African Journals Online (AJOL)

    The levels of some heavy metals such as; Mn, Cr, Cd, As, Ni, and Pb were analysed in coal and sediment samples from River Ekulu in Enugu, Coal City using Atomic Absorption Spectrophotometer (AAS) model Spectra-AA-10 variant. Mean concentrations of Mn (0.256-0.389mg/kg) and Cr (0.214-0.267 mg/kg) are high ...

  12. Kankakee River Basin: Evaluation of Sediment Management Strategies

    Science.gov (United States)

    2013-09-01

    basin, and development of a SIAM model from an existing US Army Corps of Engineers Hydrologic Engineering Center, River Analysis System ( HEC - RAS ...4 SIAM Model A SIAM model was developed from an existing calibrated HEC - RAS model provided by the Rock Island District. The limits of the HEC - RAS ...model are shown in Figure 4.1. No further effort was made to verify the calibration of the HEC - RAS model. The estimated sediment loads were used to

  13. The metal spectrum of river sediments from the Denso reservoir

    International Nuclear Information System (INIS)

    Carboo, C.; Brimah, A.K.; Debrah, C.; Serfor Armah, Y.

    1998-01-01

    The heavy metals in the sediment of the Densu reservoir was determined using instrumental neutron activation analysis. In all, about twenty nine elements were identified to be present in the river sediment. Of all the metals determined iron was found to have the the highest concentration with a maximum value of 15.090 g/kg and a minimum of 6.724 g/kg dry weight , other macro elements identified were Al, Na, K, and Ca. The concentration of most of the metals were higher before the major rains than after the rains. Though baseline data for heavy metals in sediment is not available, the values obtained for some of the metals were higher than normal , suggesting some form of heavy metal pollution in the reservoir. (author)

  14. Distribution of radionuclides and elements in Cubatao River sediments

    International Nuclear Information System (INIS)

    Silva, P.S.C.; Mazzilli, B.P.; Favaro, D.I.T.

    2006-01-01

    Cubatao River is located in Santos Basin, Sao Paulo State, Brazil. This region is characterized by the occurrence of estuaries and mangrove. Due to its location, near the coastal line, it is also an important industrial area, where phosphate fertilizer plants, petrol refineries, and chemical and steel industries are present. Such human activities contribute to the enhancement of elemental composition in sediments and, in some cases, also increase the radionuclide concentrations, the so called Technologically Enhanced Natural Occurring Radioactive Materials (TENORM). The contamination of land and sediments by TENORM is of major concern. The activity concentration of U and Th series radionuclides was determined in five sediment samples from Cubatao River. The activity concentration ratio was also determined. Equilibrium was observed for the ratio 234 U/ 238 U. The activity ratios of Th/ 238 U, 228 Ra/ 226 Ra and 210 Pb/ 226 Ra were higher than the unity. In the first two cases, the observed values are due to the higher activity of Th in the sediment and in the last case are probably due to the atmospheric deposition of 210 Pb. (author)

  15. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  16. Radiometric analyses of floodplain sediments at the Savannah River Plant

    International Nuclear Information System (INIS)

    Lower, M.W.

    1987-09-01

    A Comprehensive Cooling Water Study to assess the effects of reactor cooling water discharges and related reactor area liquid releases to onsite streams and the nearby Savannah River has been completed at the US Department of Energy's Savannah River Plant (SRP). Extensive radiometric analyses of man-made and naturally occurring gamma-emitting radionuclides were measured in floodplain sediment cores extracted from onsite surface streams at SRP and from the Savannah River. Gamma spectrometric analyses indicate that reactor operations contribute to floodplain radioactivity levels slightly higher than levels associated with global fallout. In locations historically unaffected by radioactive releases from SRP operations, Cs-137 concentrations were found at background and fallout levels of about 1 pCi/g. In onsite streams that provided a receptor for liquid radioactive releases from production reactor areas, volume-weighted Cs-137 concentrations ranged by core from background levels to 55 pCi/g. Savannah River sediments contained background and atmospheric fallout levels of Cs-137 only. 2 refs., 5 figs

  17. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    Science.gov (United States)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all

  18. Analysis of River sediments from the Tigre river (Venezuela) by radioisotope excited x-ray fluorescence

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.; Schorin, H.

    1985-01-01

    This paper describes qualitative elemental scans by both energy dispersive (radioisotope excited) and conventional wavelength dispersive x-ray fluorescence of different grain size fractions of river sediments. An internal standard thin-film technique was used. The precision of Rb, Sr, Y and Zr determination for SY-3 standard reference rock and one real sample for five independently prepared samples is demonstrated

  19. Determination of the sanitary protective zones around Stip underground water wells from the Bregalnica river alluvion by its comparison to the Zagreb underground water wells from the Sava river alluvion

    OpenAIRE

    Mircovski, Vojo

    2006-01-01

    Based on existing geological - hydrogeological data hydrogeological characteristics and hydrogeological parameters of the alluvial sediments of Stip sources of ground water from the river Bregalnica were determined. According to the granulometric analysis and data obtained pumping test of wells were determined and filtration features of water bearing alluvial sediments built of sand and gravel and their overlay sediments consisting of sands and dusty clay sands. In determination of the ...

  20. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River

    Directory of Open Access Journals (Sweden)

    W. Santini

    2015-03-01

    Full Text Available Formation of mountain ranges results from complex coupling between lithospheric deformation, mechanisms linked to subduction and surface processes: weathering, erosion, and climate. Today, erosion of the eastern Andean cordillera and sub-Andean foothills supplies over 99% of the sediment load passing through the Amazon Basin. Denudation rates in the upper Ucayali basin are rapid, favoured by a marked seasonality in this region and extreme precipitation cells above sedimentary strata, uplifted during Neogene times by a still active sub-Andean tectonic thrust. Around 40% of those sediments are trapped in the Ucayali retro-foreland basin system. Recent advances in remote sensing for Amazonian large rivers now allow us to complete the ground hydrological data. In this work, we propose a first estimation of the erosion and sedimentation budget of the Ucayali River catchment, based on spatial and conventional HYBAM Observatory network.

  1. Ill-posedness in modeling mixed sediment river morphodynamics

    Science.gov (United States)

    Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid

    2018-04-01

    In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.

  2. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    Science.gov (United States)

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The

  3. Pollutants' Release, Redistribution and Remediation of Black Smelly River Sediment Based on Re-Suspension and Deep Aeration of Sediment.

    Science.gov (United States)

    Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang

    2017-04-01

    Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.

  4. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  5. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    International Nuclear Information System (INIS)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data

  6. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    Science.gov (United States)

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the

  7. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    Directory of Open Access Journals (Sweden)

    K. Xu

    2015-03-01

    Full Text Available Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1 temporal variation under varying climatic and anthropogenic impacts, (2 delta response of the declining sediment discharge, and (3 deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers’ sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  8. Biota-sediment accumulation factors for radionuclides and sediment associated biota of the Ottawa River

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, D.; Silke, R.; Carr, J., E-mail: rowand@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    As Ottawa River contamination is historical and resides in sediment, ecological risk and trophic transfer depend on linkages between sediment and biota. One of the ways in which this linkage is quantified is through the use of the biota sediment accumulation factor (BSAF). In this study, we present the first field estimates of BSAF for a number of radionuclides. The strongest and most consistent BSAFs were those for {sup 137}Cs in deposit feeding taxa, suggesting that sediment concentrations rather than dissolved concentrations drive uptake. For crayfish and unionid bivalves that do not feed on sediment, biota radionuclide concentrations were not related to sediment concentrations, but rather reflected concentrations in water. BSAFs would not be appropriate for these non-deposit feeding biota. BSAFs for {sup 137}Cs were not significantly different among deposit feeding taxa, suggesting similar processes for ingestion, assimilation and elimination. These data also show that the concentration factor approach used for guidance would have led to spurious results in this study for deposit feeding benthic invertebrates. Concentrations of {sup 137}Cs in Hexagenia downstream of the CRL process outfall range by about 2-orders of magnitude, in comparison to relatively uniform water concentrations. The concentration factor approach would have predicted a single value downstream of CRL, underestimating exposure to Hexagenia by almost 2-orders of magnitude at sites close to the CRL process outfall. (author)

  9. Sedimentation rates measurements in former channels of the upper Rhône river using Chernobyl 137Cs and 134Cs as tracers.

    Science.gov (United States)

    Rostan, J C; Juget, J; Brun, A M

    1997-01-30

    Former river channels are aquatic ecosystems with a different geomorphology generated by fluvial dynamics more or less linked to the main channel. They present different ecological successions to become terrestrial ecosystems and are thus supposed to have different sedimentation rates. The aim of this paper is to assess this sedimentation rate using radioactive tracer methodology commonly used in lake studies. Chernobyl impacts, expressed in 137Cs concentration and 137Cs/134Cs ratio, were determined in sediment cores. Sites (21) were sampled in the alluvial plain of the Upper Rhône River from 1989 to 1994. The contamination presented a high spatial heterogeneity. The maximum values encountered by site ranged between 34 and 541 Bq/kg of dry matter. The method generally gave good core profiles. Sedimentation rate ranged between 0.14 and 0.70 cm/year for the former meanders and between 0.14 and 2.86 cm/year for the braided channels. The sediment accumulation rates ranged from 0.03 to 0.25 g/cm2 per year and 0.03 to 2.26 g/cm2 per year, respectively. These values are similar to those found for Lake Geneva. The importance of the former channels in relation to the main channel is enhanced by the higher contamination and radionuclides retention. The sediment accumulation rate is related to the organic carbon content in the sediment. A comparison between two former channels with different productivity showed that the the allogenous driven system presents a high organic sediment accumulation rate with a low organic content in the sediment and inversely, a low organic sediment accumulation rate with a high organic carbon content was found for the autogenous drive system.

  10. Numerical Coupling of River Discharge to Shelf/Slope Sedimentation Models

    National Research Council Canada - National Science Library

    Syvitski, James

    1997-01-01

    Scientific objectives of this project are: (1) Develop a nested set of models to study the interactions of sedimentation processes on the shelf, including the effects of river supply, plume transport and initial deposition of sediments; (2...

  11. Influence of land use configurations on river sediment pollution.

    Science.gov (United States)

    Liu, An; Duodu, Godfred O; Goonetilleke, Ashantha; Ayoko, Godwin A

    2017-10-01

    Land use is an influential factor in river sediment pollution. However, land use type alone is found to be inadequate to explain pollutant contributions to the aquatic environment since configurations within the same land use type such as land cover and development layout could also exert an important influence. Consequently, this paper discusses a research study, which consisted of an in-depth investigation into the relationship between land use type and river sediment pollution by introducing robust parameters that represent configurations within the primary land use types. Urban water pollutants, namely, nutrients, total carbon, polycyclic aromatic hydrocarbons and metals were investigated in the study. The outcomes show that higher patch density and more diverse land use development forms contribute relatively greater pollutant loads to receiving waters and consequently leading to higher sediment pollution. The study outcomes are expected to contribute essential knowledge for creating robust management strategies to minimise waterway pollution and thereby protect the health of aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    Science.gov (United States)

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  13. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    Science.gov (United States)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  14. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain)

    International Nuclear Information System (INIS)

    Miguel, Eduardo de; Charlesworth, Susanne; Ordonez, Almudena; Seijas, Eduardo

    2005-01-01

    The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south-east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) 'Total' digestion with HNO 3 , HClO 4 and HF; (b) 'Weak' digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically 'urban' elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca-Mg and Al-Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant

  15. Sediment accumulation rate and radiological characterisation of the sediment of Palmones River estuary (southern of Spain)

    International Nuclear Information System (INIS)

    Rubio, L.; Linares-Rueda, A.; Duenas, C.; Fernandez, M.C.; Clavero, V.; Niell, F.X.; Fernandez, J.A.

    2003-01-01

    Chemical analyses and radioecological methods were combined in order to estimate the sediment accumulation rate in the upper 20 cm depth of the Palmones River estuary. Organic matter, total carbon, C:N and 137 Cs vertical profiles showed changes at 13 cm depth. These changes could be associated with the decrease in river input since 1987 when a dam situated in the upper part of the estuary started to store water. Using 1987 as reference to date the sediment, accumulation rate was 1.2 cm yr -1 . As alternative method, two layer model of 210 Pb xs vertical distribution showed a sedimentation rate of 0.7 cm yr -1 with a surface mixing layer of 7 cm thickness. The high ammonium, potassium and sodium content in pore water and the strong correlation between 137 Cs activities and organic matter in dry sediment suggests that 137 Cs (the only anthropogenic product detected) is mainly accumulated in the estuary associated with the particulate organic material from the catchment area

  16. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Hamonts, K.; Ryngaert, A.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic,

  17. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  18. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa

    CSIR Research Space (South Africa)

    Abia, ALK

    2015-10-01

    Full Text Available This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river...

  19. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    Science.gov (United States)

    Wellman, Tristan

    2015-01-01

    The South Platte River and underlying alluvial aquifer form an important hydrologic resource in northeastern Colorado that provides water to population centers along the Front Range and to agricultural communities across the rural plains. Water is regulated based on seniority of water rights and delivered using a network of administration structures that includes ditches, reservoirs, wells, impacted river sections, and engineered recharge areas. A recent addendum to Colorado water law enacted during 2002-2003 curtailed pumping from thousands of wells that lacked authorized augmentation plans. The restrictions in pumping were hypothesized to increase water storage in the aquifer, causing groundwater to rise near the land surface at some locations. The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Water Institute, completed an assessment of 60 years (yr) of historical groundwater-level records collected from 1953 to 2012 from 1,669 wells. Relations of "high" groundwater levels, defined as depth to water from 0 to 10 feet (ft) below land surface, were compared to precipitation, river discharge, and 36 geographic and administrative attributes to identify natural and human controls in areas with shallow groundwater.

  20. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  1. The impact of river-lake flow and sediment exchange on sediment scouring and siltation in middle and lower Yangtze River

    Science.gov (United States)

    Liu, Y.; Wang, Z. L.; Zuo, L. Q.

    2017-12-01

    The operation of TGR (Three Gorges Reservoir) caused river erosion and water level decline at downstream, which affects the water and sediment exchange of river-lake (Yangtze River - Dongting lake & Poyang lake). However, the change of river-lake relationship plays a significant role in the flow and sediment process of Yangtze River. In this study, flow diversion ratios of the three outlets, Chenglingji station, Hukou station are used as indexes of river-lake exchange to study the response of river erosion to flow diversion ratios. The results show that:(1) the sediment erosion in each reach from Yichang to Datong has linear correlation with the flow diversion ratio of the three outlets; (2) the sediment erosion above Chenglingji has negative linear correlation with the flow diversion ratio of Chenglingji station. While the sediment erosion below Chenglingji station has non-linear correlation with the flow diversion ratio variation of Chenglingji station; (3) the reach above Hankou station will not be affected by the flow diversion ratio of Hukou station. On one hand, if the flow diversion ratio is less than 10%, the correlation between sediment erosion and flow diversion ratio of Hukou station will be positive in Hankou to Hukou reach, but will be negative in Hukou to Datong reach. On the other hand, if the flow diversion ratio is more than 10%, the correlation will reverse.

  2. Sediment Budget Analysis and Hazard Assessment in the Peynin, a Small Alpine Catchment (Upper Guil River, Southern Alps, France)

    Science.gov (United States)

    Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    alluvial fans and plains. Most of these forms are relict landforms, decoupled from the present geomorphic system. Notable sediment transport is limited to avalanche tracks, debris flows, and along floodplains. Sediment volumes were calculated using a combination of polynomial functions of cross sections and GIS modelling. We calculated the overall sediment volume of the valley fill deposits to be 1.05 km3. This corresponds to a mean sediment thickness of 90.2 m. Landslides appear as the major sediment storage, representing more than 35% of the sediment volume stored in the Peynin subcatchment. For some locations, the polynomial-generated cross sections resulted in overestimations of sediment thickness, therefore, these results have to be considered as an order of magnitude. Future investigations will include seismic refraction profiles that may provide bedrock depth, hence a better control on sediment thickness (estimates generated thanks to GIS). Eventually, we expect our results to be used to better model, hence prevent future debris-flow events at the confluence of Peynin stream with the Guil River.

  3. Drivers of abundance and community composition of benthic macroinvertebrates in Ottawa River sediment near Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, M.J.; Rowan, D.; Silke, R.; Carr, J., E-mail: bondm@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    The Ottawa River has received effluent from Chalk River Laboratories (CRL) for more than 60 years. Some radionuclides and contaminants released in effluents are bound rapidly to particles and deposited in bottom sediments where they may be biologically available to benthic invertebrates and other aquatic biota. As part of a larger ecological assessment, we assess the potential impact of contaminated sediments in the vicinity of CRL on local benthic community structure. Using bivariate and multivariate approaches, we demonstrate that CRL operations have had little impact on the local benthic community. Despite elevated anthropogenic radionuclide activity concentrations in sediment near CRL's process outfall, the benthic community is no less abundant or diverse than what is observed upstream at background levels. The Ottawa River benthic invertebrate community is structured predominantly by natural physical and biological conditions in the sediment, specifically sediment water content and organic content. These natural habitat conditions have a stronger influence on macroinvertebrate communities than sediment contamination. (author)

  4. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    Science.gov (United States)

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  5. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    Science.gov (United States)

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Beryllium-7 in Rainfall, River Sediment and Sewage Sludge - Beryllium-7 in rainwater, river sediment and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Helmut W.; Igbinosa, Aimuamwosa; Souti, Maria Evangelia [University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, D-28359 Bremen (Germany)

    2014-07-01

    Introduction: The cosmogenic radioisotope {sup 7}Be is one of the major contributors to natural airborne radioactivity, with fairly constant concentrations of some mBq/m{sup 3} near the Earth's surface. The isotope is assumed to be bound to aerosols. It is deposited onto the Earth's surface mainly by wet deposition. In environmental surveillance it is detected regularly in air by aerosol sampling, and in topsoil and on plant leaves after rainfall. In previous studies of this laboratory it had also been detected regularly in freshwater sediments and in wastewater treatment primary sludge. River sediment samples from an estuary showed concentrations influenced by dilution with sea water. Thus it appeared interesting to investigate the usefulness of {sup 7}Be as tracer for rainfall contribution in environmental samples. Experimental: In order to investigate possible correlations and interrelations between {sup 7}Be activity in rainfall, sediment and primary sludge, a measurement campaign was planned and conducted covering a time span of 6 months. {sup 7}Be concentrations were determined in weekly samples of rainwater and primary sludge and in monthly samples of river sediment by high resolution gamma spectroscopy. Besides, rainfall amount and intensity were recorded and weekly primary sludge production volume data were obtained from the treatment plant operators. From these numbers, total atmospheric deposition per surface area could be calculated. Results and discussion: The data show a clear correlation between weekly rainfall amount and {sup 7}Be surface deposition. This is more than plausible as wet deposition is known to be the most effective deposition process. Although washout effectivity is assumed to decrease with rainfall intensity, no correlation could be seen in the data, probably due to averaging within the weekly sampling intervals. The time series of {sup 7}Be deposition with rain and its concentration in primary sludge exhibit very similar

  7. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    Science.gov (United States)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  8. The contemporary geomorphology of the Letaba River in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    B.P. Moon

    2001-07-01

    Full Text Available The Letaba River drains part of Northern Province in north-east South Africa. Its catchment has been modified significantly by human activity which has affected the flow regime; it experiences only ephemeral flows through the Kruger National Park to its confluence with the Olifants River. Although the Letaba is similar to the other rivers in the Kruger National Park in that it displays some bedrock influenced channel features, increased sediment delivery from the degraded catchment upstream has resulted in extensive alluviation within the channel. Sections of channel flowing over bedrock with no sediment covering are rare, and the river comprises a series of channel types: mixed anastomosing, alluvial braided, mixed pool-rapid and alluvial single thread. Each is characterised by a different combination of morphological units which relate to the degree of alluviation in the channel. These channel types are described in detail and inferences are made concerning their formation and maintenance from field observation and measurement.

  9. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  10. Longitudinal sediment-connectivity in a dammed river system using fine sediment analyses - a case study in the Kaja river, Lower Austria

    Science.gov (United States)

    Bertsch, R.; Poeppl, R. E.; Glade, T.

    2012-04-01

    In the recent past the concept of connectivity gained increased significance for the understanding of the linkage between different subsystems within river channels and catchments. Based on fine sediment (reservation in this fraction.

  11. Provenance and sediment fluxes in the Irrawaddy (Ayeyarwadi) River

    Science.gov (United States)

    Garzanti, Eduardo; Wang, Jiangang; Vezzoli, Giovanni; Limonta, Mara

    2016-04-01

    .5 and 2.0 Ga (Limonta et al., 2016). Forward mixing calculations based on integrated petrographic and heavy-mineral data (Garzanti et al., 2012) indicate that 60±10% of the total sediment flux is supplied by the Chindwin River and that upper Irrawaddy sand is supplied mainly by the Nmai headwater branch but also significantly from the Mali branch and left-bank tributaries sourced in the northern Shan Plateau. CITED REFERENCES Garzanti E., Resentini A., Vezzoli G., Andò S., Malusà M., Padoan M. 2012. Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology 280:149-164. Garzanti E., Limonta M., Resentini A., Bandopadhyay P. C., Najman Y., Andò S., Vezzoli G. 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth-Science Reviews 123:113-132. Limonta M., Resentini A., Carter A., Bandopadhyay P.C., Garzanti E. 2016. Provenance of Oligocene Andaman Sandstones (Andaman-Nicobar islands): Ganga-Brahmaputra or Irrawaddy derived? In: Bandyopadhyay P., Carter A. (Eds.). The Andaman-Nicobar accretionary ridge geology, tectonics and hazards, Geological Society of London Memoir, in review. Robinson R.A.J., Bird M.I., Oo N.W., Hoey T.B., Aye M.M., Higgitt D.L., Lu X.X., Swe A., Tun T., Win S. L. 2007. The Irrawaddy River sediment flux to the Indian Ocean: the original nineteenth-century data revisited. The Journal of Geology 115:629-640. Wang J.G., Wu F.Y., Tan X.C., Liu C.Z. 2014. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612:97-105.

  12. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    Science.gov (United States)

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  13. Sedimentation

    Science.gov (United States)

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  14. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  15. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River.

  16. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  17. Human impact on erosion patterns and sediment transport in the Yangtze River

    NARCIS (Netherlands)

    Sun, Xilin; Li, Chang'an; Kuiper, K. F.; Zhang, Zengjie; Gao, Jianhua; Wijbrans, J. R.

    2016-01-01

    Sediment load in rivers is an indicator of erosional processes in the upstream river catchments. Understanding the origin and composition of the sediment load can help to assess the influence of natural processes and human activities on erosion. Tectonic uplift, precipitation and run-off, hill

  18. Surficial sediments of the wave-dominated Orange River Delta and ...

    African Journals Online (AJOL)

    The textural and compositional characteristics of the surficial shelf sediments north and south of the Orange River Delta are reviewed and compared. Sediments are fractionated and dispersed both north- and southwards of the Orange River mouth by wave action, longshore drift and subsurface currents. The mean grain ...

  19. Declining sediment loads from Redwood Creek and the Klamath River, north coastal California

    Science.gov (United States)

    Randy D. Klein; Jeffrey K. Anderson

    2012-01-01

    River basin sediment loads are affected by several factors, with flood magnitude and watershed erosional stability playing dominant and dynamic roles. Long-term average sediment loads for northern California river basins have been computed by several researchers by several methods. However, characterizing the dynamic nature of climate and watershed stability requires...

  20. Fractions and Distribution of Phosphorus in Sediments of the Yarlung Zangbo River Basin

    Science.gov (United States)

    Huang, W.; An, R.; Huang, Y.; Pu, X.; Li, R.; Li, J.

    2017-12-01

    The Yarlung Zangbo River is one of the highest rivers in the world. The ecological environment of the river basin has its specificity. It locates in the remote area of China, and the ecological environment is very fragile. The fundamental data of phosphorus content in sediments of the Yarlung Zangbo River Basin are very scarce. In order to clarify the distribution law of phosphorus in the sediments of this area and provide the fundamental data for the study of phosphorus transport in the Yarlung Zangbo River, the authors collected the sediment samples from the mainstream and its tributaries in the research area. Their particle size distributions, specific surface areas, contents of total phosphorus, organic phosphorus and different forms of inorganic phosphorus were analyzed. Then, the fractions and spatial distribution of these forms phosphorus were studied. The results showed that the fractions and distribution characteristics of phosphorus in each form are significant different in the sediments of the Yarlung Zangbo River. The phosphorus contents in the soil erosion deposits and river bed sediment samples are also different. The phosphorus content in sediment is significantly correlated with the sediment characteristics. Keywords: the Yarlung Zangbo River; sediments; fractions of phosphorus; distribution characteristics

  1. Total Suspended Load and Sediment Yield of Kayan River, Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2016-12-01

    Full Text Available This research was carried out the the drainage system of Kayan river, Bulungan District, East Kalimantan. The purpose of the research were to study the physical conditions of the Kayan catchment area, calculate the suspended sediment load, and to define the total sediment yield of Kayan River. Observation method were used in this research both of direct field observation as well as laboratory observation. Data acquired in this study were include of climatic data, geology, geomorphology, soil and land cover data. Besides also rain-fall data, temperature, river discharge and suspended sediment load. The total sediment yield were calculated by mean of mathematical and statistical analysis especially of linier regression analysis. The result of the research show that total the sediment yield of Kayan River with drainage area of 6,329.452 km² is about 236,921.25 m³/km²/year. The interesting result of the statistical analysis was that the existing negative correlation between river discharge and suspended sediment load. It is the effect of the location of discharge and suspended measurement. This condition caused by sea tide effect on river discharge at the apex delta. During high tide water river trend rising up on discharge but not on suspended sediment load. Instead, also existing setting down processes takes places of the suspended sediment load into the river bottom upper stream and the apex.

  2. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Levels of trace metals (Cd, Pb, Co, Zn Cu and Ni) were determined in water and sediment ... mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, ... Key words: trace metals, water, sediment, farmland, Tyume River

  3. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  4. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    Science.gov (United States)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  5. Assessing Anthracene and Arsenic Contamination within Buffalo River Sediments

    Directory of Open Access Journals (Sweden)

    Adrian Gawedzki

    2012-01-01

    Full Text Available Anthracene and arsenic contamination concentrations at various depths in the Buffalo River were analyzed in this study. Anthracene is known to cause damage to human skin and arsenic has been linked to lung and liver cancer. The Buffalo River is labelled as an Area of Concern defined by the Great Lakes Water Quality Agreement between Canada and the United States. It has a long history of industrial activity located in its near vicinity that has contributed to its pollution. An ordinary kriging spatial interpolation technique was used to calculate estimates between sample locations for anthracene and arsenic at various depths. The results show that both anthracene and arsenic surface sediment (0–30 cm is less contaminated than all subsurface depths. There is variability of pollution within the different subsurface levels (30–60 cm, 60–90 cm, 90–120 cm, 120–150 cm and along the river course, but major clusters are identified throughout all depths for both anthracene and arsenic.

  6. Nucleation of Waterfalls at Fault Scarps Temporarily Shielded By Alluvial Fan Aggradation.

    Science.gov (United States)

    Malatesta, L. C.; Lamb, M. P.

    2014-12-01

    Waterfalls are important components of mountain river systems and they can serve as an agent to transfer tectonic, climatic, or authigenic signals upstream through a catchment. Retreating waterfalls lower the local base level of the adjacent hillslopes, and temporarily increase sediment delivery to the fluvial system. Their creation is often attributed to seismic ruptures, lithological boundaries, or the coalescence of multiple smaller steps. We explore here a mechanism for the nucleation of waterfalls that does not rely on sudden seismic slip but on the build-up of accumulated slip during periods of fault burial by fluvial aggradation. Alluvial fans are common features at the front of mountain ranges bound by normal or thrust faults. Climate change or internal forcing in the mountain catchment modifies the equilibrium slope of alluvial fans. When alluvial fans aggrade, they shield the active fault scarp from fluvial erosion allowing the scarp to grow undisturbed. The scarp may then be exposed when the channel incises into the fan exposing a new bedrock waterfall. We explore this mechanism analytically and using a numerical model for bedrock river incision and sediment deposition. We find that the creation of waterfalls by scarp burial is limited by three distinct timescales: 1) the critical timescale for the scarp to grow to the burial height, 2) the timescale of alluvial re-grading of the fan, and 3) the timescale of the external or internal forcing, such as climate change. The height of the waterfall is controlled by i) the difference in equilibrium alluvial-fan slopes, ii) the ratio of the respective fan and catchment sizes, iii) the catchment wide denudation rate, and iv) the fault slip rate. We test whether an individual waterfall could be produced by alluvial shielding of a scarp, and identify the tectonic, climatic, or authigenic nature of waterfalls using example field sites in the southwest United States.

  7. Data Evaluation Report for the Lower Rouge River Sediment Investigation

    Science.gov (United States)

    Describes a study of contaminated sediment, analyzes results, and makes recommendations for sediment remediation. Includes aerial views of study locations, photo log, data tables of sediment analysis.

  8. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  9. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  10. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  11. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  12. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z.; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-01-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD Mn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  13. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    Science.gov (United States)

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health

  14. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  16. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    Science.gov (United States)

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  17. Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe

    International Nuclear Information System (INIS)

    Hsu, P.; Matthaei, A.; Heise, S.; Ahlf, W.

    2007-01-01

    Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation. - Significant impacts of hydrological and biological factors on the ecotoxicological quality in two European rivers (Elbe and Dommel)

  18. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    Science.gov (United States)

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distribution of the rare earth elements in the surface sediments from the lower Wuding River of China

    International Nuclear Information System (INIS)

    Longjiang, M.; Duowen, M.; Ke, H.; Jinghong, Y.

    2010-01-01

    The abundance and distribution of rare earth elements (REE) and their signatures in the Wuding River of China were studied from samples of surface sediments and related to the geological formation in its watershed. The total REE (ΣREE) average concentrations of the Wuding River sediments (144.56 μg g -1 ), is lower than that in the Yangtze River sediments (167.10 μg g -1 ), getting closer to the values of the Yellow River sediments (137.76 μg g -1 ), being equivalent to the values of the UCC (the upper continental crust) (146.37 μg g-1). The chondrite-normalized REEs indicated LREE enrichment and flat HREE depletion and also showed a slightly negative Eu-anomaly. A similar chondrite-normalized REE distribution pattern between the Wuding River sediments and Yellow River sediments demonstrated the Wuding River sediments are the important material sources of the Yellow River sediments. UCC-normalized REE patterns between the Wuding River sediments and the Yellow River sediments were almost equivalent and close to the UCC. These implied the Wuding River sediments and the Yellow River sediments are subjected mostly to physical weathering due to higher erosion rates. Consequently, they can be used to trace the UCC compositions. (author)

  20. Contaminant variability in a sedimentation area of the river Rhine = Variabiliteit van verontreinigingen in een sedimentatiegebied van de Rijn

    NARCIS (Netherlands)

    Winkels, H.J.

    1997-01-01

    Aquatic sediments in sedimentation zones of major rivers are in general sinks for pollutants. The sedimentation zone Ketelmeer/IJsselmeer is an important sink for contaminants of the river Rhine (i.e. river IJssel). Recent and historical pollution interact here. Redistribution of suspended

  1. Distribution of Linear Alkylbenzenes (LABs in Sediments of Sarawak and Sembulan Rivers, Malaysia

    Directory of Open Access Journals (Sweden)

    Sami Muhsen Magam

    2012-01-01

    Full Text Available The current study is one of the first studies evaluating the levels of linear alkylbenzenes (LABs in surface sediments of Sarawak and Sembulan rivers which are located in the east coast of Malaysia. The LABs, which are molecular tracers of sewage contamination, were measured in 15 surface sediment samples collected from these rivers. The samples were extracted, fractioned and analyzed by gas chromatography mass spectrometry (GC-MS. The findings revealed that the concentrations of ∑LABs ranged from 156.47 to 7386.19 ng/g dry weight (dw in the sediments of Sarawak River and from 643.18 to 5567.12 ng/g dw in the sediments of Sembulan River. The highest LABs levels were detected in the sediments collected from the sampling location SS9 in Sembulan River whereas the lowest levels were observed in the SS1 sampling location in Sarawak River. The I/E ratios (ratio of internal to external isomers of LABs for Sarawak River sediments ranged from 0.52 to 0.98 while for Sembulan River they fell within the range 0.87-1.79. The I/E ratio at the sampling station SS4 was much lower than the I/E ratios at the other stations, thus indicating that the wastewater discharged into Sarawak River from the areas surrounding station SS4 was poorly treated.

  2. Leaching of radiostrontium in undisturbed columns of calcareous alluvial soil as affected by level of activity applied and rate of high calcium water of Tigris river

    International Nuclear Information System (INIS)

    Fahad, A.A.; Razaq, I.B.; Ali, A.W.

    1986-01-01

    Leaching of 85 Sr in calcareous alluvial medium textured soil was undertaken for 126 days. Radiostrontium in three levels of 4.62(L1), 9.25(L2), and 18.50(L3) MBq column -1 was applied to undisturbed soil columns, 110cm long and 12cm inner diameter. Irrigation water of Tigris river was used as a leaching solution supplied automatically in 1.4, 2.0, and 3.0cm day -1 by rain simulator systems. Gamma radiation along the soil columns was scanned periodically during the course of leaching. Leaching of Sr from the surface layer was in two stages. The first stage covered the first 22 days and the second included the following 104 days. Strontium retained (y) as a function of time (x) fitted reasonably well (r>0.96) to the equations y=a+mlnx and lny=a+mx for the first and the second stage, respectively. Tigris river irrigation water was found as effective as the dilute Ca solution (proposed by some investigators) in displacing Sr. The leaching with 3.0cm day -1 for 126 days resulted in 23, 23, and 21 per cent of total Sr remaining in the upper 5 cm of soil columns under L1, L2 and L3, respectively. However, the area under the distribution curves followed the ratio 1.0:2.4:3.7 under L1, L2, and L3, respectively. The pattern of Sr distribution in calcareous alluvial soil depended not only on the rate and amount of water application but also on the level of Sr applied. Although the soil columns were leached with 378 cm of water for 126 days, the Sr front did not pass the 30 cm depth. This finding indicates the high retention of this soil for Sr and the potential hazard of radiostrontium arising from its existence in the layer of maximum root density. (author). 18 refs., 2 figures, 2 tables

  3. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    Science.gov (United States)

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  4. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    Science.gov (United States)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  5. Sediment size of surface floodplain sediments along a large lowland river

    Science.gov (United States)

    Swanson, K. M.; Day, G.; Dietrich, W. E.

    2007-12-01

    Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to

  6. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    Science.gov (United States)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  7. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Directory of Open Access Journals (Sweden)

    S. Swarnkar

    2018-04-01

    Full Text Available High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE and the sediment delivery ratio (SDR equations are used to estimate the spatial pattern of soil erosion (SE and sediment yield (SY in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1 with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1 compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1. Furthermore, the topographic steepness (LS and crop practice (CP factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD for the period 1962–2008 and Husepur gauging station (HGS for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2  ×  105 t yr−1 and 6.7 ± 1.4  ×  106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4  ×  105 t yr−1 and 7.2  ×  106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and

  8. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Science.gov (United States)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  9. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  10. Strontium and neodymium isotopic compositions in sediments from Godavari, Krishna and Pennar rivers

    International Nuclear Information System (INIS)

    Masood Ahmad, S.; Padmakumari, V.M.; Anil Babu, G.

    2009-01-01

    We report here strontium (Sr) and neodymium (Nd) isotopic compositions in bed sediments from the Godavari, Krishna and Pennar rivers, draining into the Bay of Bengal. The isotopic compositions of these sediments range from 0.7190 to 0.7610 for 87 Sr/ 86 Sr and -12.04 to -23.68 for ε Nd . This wide range in Sr and Nd isotopes is derived from variable proportions of sediments from different rock types in their drainage basins. All the three rivers have their characteristic isotopic signatures. The results display highest 87 Sr/ 86 Sr (0.7610) and most negative ε Nd values (-23.68) for the sediments of Pennar river. This is attributed to the chemical weathering of gneisses and granites in its drainage basin. The 87 Sr/ 86 Sr and ε Nd values for the Godavari river sediments range from 0.7196 to 0.7210 and -15.31 to -18.22 respectively. 87 Sr/ 86 Sr and ε Nd values in Krishna river sediments lie from 0.7217 to 0.7301 and -12.04 to -12.78 respectively. Our results show that the sedimentary load from the Godavari and Krishna rivers is primarily derived from the older rocks in their drainage basins. It is possible that the sediments transported through peninsular Indian rivers predominantly control Sr and Nd isotope sedimentary budget in the western Bay of Bengal. (author)

  11. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    Directory of Open Access Journals (Sweden)

    Iskahar

    2018-01-01

    Full Text Available Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.

  12. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  13. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary

    Directory of Open Access Journals (Sweden)

    Hai-bo Yang

    2017-10-01

    Full Text Available Implementation of the water-sediment regulation (WSR scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary. Using coastline delineation and suspended sediment concentration (SSC retrieval methods, this study investigated water and sediment changes, identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period (NP: 1986–2001, before and after the flood season and WSR period (WSRP: 2002–2013, before and after WSR. The results indicate that (1 the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward; (2 the inter-annual coastline changes could be divided into an accretion stage (1986–1996, a slow erosion stage (1996–2002, and a slow accretion stage (2002–2013; (3 an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and (4 the mean intra-annual accretion area was 0.789 km2 in the NP and 4.73 km2 in the WSRP, and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP.

  14. Evolution of a meander in a constricted reach of a dryland alluvial channel: Little Colorado River, Arizona

    Science.gov (United States)

    Block, D.

    2013-12-01

    Lateral migration of river meander systems is complex, particularly in drylands where fluvial processes are discontinuous. Analysis of aerial photography and GPS tracking of cutbank erosion can further empirical knowledge of meander development. Moreover, discharge records link landscape response to hydroclimatic variability. In the semiarid Little Colorado River valley, extreme erosive episodes typically result from snowmelt flow, or lately, rain-on-snow events. The 90-km reach of the Little Colorado River (LCR), from Winslow to Leupp, Arizona, meanders within a 5-km-wide valley. Near Winslow, however, the LCR is disconnected from its floodplain by a 12-km-long levee. The levee restricts the floodplain to only 450 m wide in one location. In this severely constricted river stretch, a flood event in January 2008 relocated a meander bend. Bend development followed a common sequence of migration phases long noted in the literature, but at a very rapid pace. During the flood event one meander limb migrated ~200 m, following the general northwesterly flow direction of the river. Movement vectors of meander inflection points, apex, and apical line characterize changes in bend morphology. Before the 2008 flood event the apical line of the meander bend had azimuth 50°; after the 2008 flood event the apical line of the meander bend had azimuth 345°. Since that event, the meander bend has migrated an additional ~200 m through a combination of translation, extension, and rotation. The data provide information on geomorphic response to bimodal precipitation patterns in a human-perturbed channel reach.

  15. Determination of elements in cisadane river sediments by neutron activation analysis

    International Nuclear Information System (INIS)

    Kamarz, H.

    1997-01-01

    Determination of elements in Cisadane river sediments by neutron activation analysis has been conducted. Samples of sediments were obtained from some location along Cisadane river, i.e. Leuranji, Karanggan, Cibigo, Cisauk, Warung Mangga Pintu Air and Estuary Teluk Naga. the elements analysed were Al, Mn, Mg, V, K, Na, Fe, Cr, Co, U and Zn, and the results were compared to the SRM of sediment sample from IAEA. Generally, the results showed that the mean concentration of elements were found in Cibogo, Cisauk, Pintu Air and Muara Teluk Naga which were higher than others. Concentration factor of elements in sediments were in between of 0,02 - 3,45, this factor indicated that Cisadane river sediments have not been contaminated. CRM sediments 2704 from IAEA used as NAA Quality Control (author)

  16. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  17. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  18. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  19. Change in Sediment Provenance Near the Current Estuary of Yellow River Since the Holocene Transgression

    Science.gov (United States)

    Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li

    2018-06-01

    Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.

  20. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  1. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    Science.gov (United States)

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  2. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  3. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China

    Science.gov (United States)

    Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan

    2018-06-01

    This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.

  4. Sediment Budget in the Taiwan Strait with High Fluvial Sediment Inputs from Mountainous Rivers: New Observations and Synthesis

    Directory of Open Access Journals (Sweden)

    Shuh-Ji Kao

    2008-01-01

    Full Text Available The shallow Taiwan Strait at the southern opening of the East China Sea (ECS receives abundant sediments from turbid mountainous rivers in Taiwan. The volume of sediment is among the highest sediment yields on the global surface. This large amount of sediment discharged from modern Taiwan (range: 175 - 380 Mt y-1 based on 50-yr data is comparable to that discharged from Changjaing (500 Mt y-1-decreasing in recent decades, underscoring the importance of sediment budget in the Taiwan Strait and sediment flux from Taiwan into the ECS.We documented fluvial mud and sand concentrations during flash flooding with our observations indicating that fluvial materials in Taiwan¡¦s rivers are chiefly composed of mud (> 70 and up to 98 . By contrast, sand fraction dominates (> 85 for most stations surface sediments in the Taiwan Strait. Super typhoon Herb alone delivered 130 Mt of sediments from Choshui, the largest river in Taiwan, yet only insignificant amounts of mud were found at the river mouth six months later. The actions of waves, tides, and currents apparently prevent the deposition of fine grained sediments. Assuming sand occupied 30 (the maximum of the 60 Mt y-1 total sediment input from major western Taiwanese rivers, our annual budget estimate shows that the amount of sand input (18 5 Mt y-1 is comparable to the burial output of sand (12 10 Mt y-1. However, mud burial (6 5 Mt y-1 in the strait is far below the estimated mud input (42 11 Mt y-1, resulting in a significant shortfall. Hydrodynamic conditions were synthesized to explain the distribution pattern of limited mud patches in the strait and to reveal potential pathways by which fine-grain sediment transportation takes place in the seas surrounding Taiwan. A significant shortfall in the mud budget in the Taiwan Strait suggests that ~85 of the fluvial mud left the strait. Alternatively, the 50-year modern sediment flux data used in this study reflects exacerbated sediment flux due to human

  5. Using 239Pu as a tracer for fine sediment sources in the Daly River, Northern Australia

    Directory of Open Access Journals (Sweden)

    Lal R.

    2015-01-01

    Full Text Available The Daly River drains a large (52500 km2 and mainly undisturbed catchment in the Australian wet–dry tropics. Clearing and cropping since 2002 have raised concerns about possible increased sediment input into the river and motivated this study of its fine sediment sources. Using 239Pu as a tracer it is shown that the fine sediments originate mainly from erosion by gullying and channel change. Although the results also indicate that the surface soil contribution to the river channel sediments from sheet erosion has increased to 5-22% for the Daly River and 7-28% for the Douglas River (a tributary of the Daly River in 2009 vs. 3-6% for the Daly River and 4-9% for the Douglas River in 2005. This excess top soil likely originates from thecleared land adjacent to the Daly River since 2005. However, channel widening largely as a result of hydrologic change is still the dominant sediment source in this catchment.

  6. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  7. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake.

    Science.gov (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian

    2017-12-01

    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  8. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J F [Florida State Univ., Tallahassee, FL (USA). Dept. of Geology; Bricker, O P [Geological Survey, Reston, VA (USA). Water Resources Div.; Olsen, C R [Oak Ridge National Lab., TN (USA)

    1989-10-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr{sup -1} in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author).

  9. Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay

    International Nuclear Information System (INIS)

    Donoghue, J.F.

    1989-01-01

    The Chesapeake Bay receives nearly 1,000,000 tonnes of sediment annually from its major tributary, the Susquehanna River. The pattern of deposition of this sediment affects the lifetime of the estuarine resource and the fate of any sediment-borne contaminants. Previous estimates of the extent to which Susquehanna River sediment is transported down the Chesapeake have differed considerably. By use of reactor-generated radionuclides adsorbed on the river sediment, a sediment budget has been compiled for the upper Chesapeake Bay and the reservoirs on the lower Susquehanna. Reservoirs impound nearly 1,400,000 tonnes of sediment annually behind the power dams on the lower Susquehanna River. Without the dams, sediment delivery to the upper bay would more than double. The uppermost Chesapeake Bay, within and above the turbidity maximum, retains virtually all of the fluvial sediment delivered to it. The result is an annual sedimentation rate of approximately 3 mm yr -1 in the upper bay, an infilling rate that is nearly equal to the regional rate of sea level rise. (author)

  10. Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River, Idaho

    Science.gov (United States)

    Berenbrock, Charles; Tranmer, Andrew W.

    2008-01-01

    A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of

  11. Human impacts on sediment in the Yangtze River: A review and new perspectives

    Science.gov (United States)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  12. Buffering of suspended sediment transport in lowland river during low water stages: quantification in river Seine using environmental radionuclides

    International Nuclear Information System (INIS)

    Bonte, P.; Le Cloarec, M.F.; Dumoulin, J.P.; Sogon, S.; Tessier, L.; Mouchel, J.M.; Thomas, A.J.

    2000-01-01

    This study was undertaken to test the application of environmental radioactive tracers for estimating sediment mass and sediment residence time in rivers. A continuous sampling of the Seine river suspended matter (SM) using sediment traps was made during two months, between Paris and the estuary, along a 120 km long river section. The hydrological regime corresponded to the low water stage, where the SM transport is reduced. The measured tracers in the SM include short-lived natural ( 7 Be, 234 Th xs ) and artificial ( 131 I) radionuclides, as well as the longer-lived natural 210 Pb xs and its descendant the 210 Po. 137 Cs was used to check grain-size effects. A simple steady state model allowed us to estimate the total sediment mass, i.e. the SM, plus the resuspendable matter (RM), and the sediment residence time. Despite their different half-lives (8 to 53 days) and their different geochemical properties, consistent results were obtained with 131 I, 7 Be and 234 Th xs . The best estimate of the sediment mass present in the river is (24-41)·10 3 tons; it is essentially composed of the RM which is 10-17 times more abundant than the SM. In these hydrological conditions, the sediment residence time is quite long (1.6-2.8 months). (author) [es

  13. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    Science.gov (United States)

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  14. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    Science.gov (United States)

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  15. Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.

    Science.gov (United States)

    Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic

    2018-03-29

    Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.

  16. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  17. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A.; Quinaglia, Gilson A., E-mail: wasoares@sp.gov.br, E-mail: gquinaglia@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (CETESB), SP (Brazil). Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/CRPq/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2013-07-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  18. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Quinaglia, Gilson A.; Favaro, Deborah I.T.

    2013-01-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  19. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  20. End-Pleistocene to Holocene paleoenvironmental record from piston corer samples and the challenge of stratigraphic correlation of playa sediment data with a connected alluvial apron from Damghan Basin, Iran

    Science.gov (United States)

    Büdel, Christian; Hoelzmann, Philipp; Wennrich, Volker; Majid Padashi, Sajed; Baumhauer, Roland

    2015-04-01

    The study yields a first characterization and correlation of the end-Pleistocene to Holocene sediment archive of playa and playa lake deposits in the Damghan Basin, northern Iran. The Basin sediments are deposited since Mio- and Pliocene, which is valid for the connected alluvial fans, too. These are covering the area between the playa and mountains and while prograding from the mountain ranges they deliver gravels and fine-sediments to the basins sink. The processes on the studied alluvial apron are described and dated already and can be explained in seven morphodynamic phases, which are linked to a general lake level high-stand in north-east Iran at about 8000-9000 years ago. If and how these phases are passed on from the alluvial record down to the playa sediment record is aim of this study. Today the salt pans margins are highly affected by salt tectonic drifting and access was suboptimal. Only here drilling could be performed through about 280 centimeters of salt-crust unfrequently intercalated with loamy layers. For yielding undisturbed playa sediment records sampling was performed with inliner-tubes deployed in a piston corer (Kullenberg type). Thus at two different drilling sites in summation seven cores could be taken, down to a maximum depth of 129 cm and 1000 cm. Back in Germany the cores had been opened and initially described, photographed and optically scanned with a core logger. Regarding future studies, the aim was a best possible comprehensive documentation of the cores. Therefore basically grainsize measurements (laser diffraction), multi element analyses (XRF, ICP-OES, titrimetry) and mineralogical measurements (XRD) had been deployed on samples taken from every single previously identified layer. Continuous elemental data was secured by use of a XRF-scanning core logger. The sedimentological description together with laboratory element analyses shows saline conditions in the first three meters coincide with general coarser grain sizes. The next

  1. What role do hurricanes play in sediment delivery to subsiding river deltas?

    Science.gov (United States)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  2. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-12-02

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  3. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  4. Characteristics of Sediments in the James River Estuary, Virginia, 1968 (NODC Accession 7001081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report presents data on the physical and chemical characteristics of bottom sediments in the James River estuary, Virgina. The data were generated as part of a...

  5. Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, S.A.; Dhaktode, S.S.; Kadam, A.N.

    The surface sediment samples were collected by van Veen grab sampler during premonsoon, monsoon and postmonsoon seasons from Bombay harbour, Dharamtar creek and Amba river estuary Moisture content of the samples ranges from 36 to 67.5...

  6. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  7. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    Science.gov (United States)

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed

    2016-04-01

    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.

  8. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  9. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  10. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    Science.gov (United States)

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    1913 at the Columbia River entrance. The inlets and inner deltas eroded and the outer deltas moved offshore and accreted. The adjacent coasts experienced accretion over alongshore distances of tens of kilometers. North of the Grays Harbor entrance along North Beach and north of the Columbia River entrance along Long Beach the shoreface and the beach-dune complex mainly prograded, whereas south of the Grays Harbor entrance along Grayland Plains and south of the Columbia River entrance along Clatsop Plains the beach-dune complex above -10 m NAVD88 prograded and the shoreface between approximately -30 m and -10 m NAVD88 eroded. In the decades following jetty construction, the rates of erosion and accretion at the entrances decreased and the centers of deposition along the adjacent coasts moved away from the entrances. The rates of change have decreased, suggesting the systems are approaching dynamic equilibrium. Exceptions to this behaviour are the accretion of the beach-dune complex of Long Beach, the erosion of Cape Shoalwater, and the northward migration of the Willapa Bay ebb-tidal delta during all intervals. The net shoreline advance of Long Beach increases from 0.28 m/yr in pre-jetty conditions to 3.78 m/yr during Interval 4. The erosion of Cape Shoalwater and the northward migration of the Willapa Bay ebb-tidal delta are related to the northern migration of the Willapa Bay North Channel. Volume changes at the Grays Harbor, Willapa Bay, and Columbia River entrances and the Columbia River estuary are balanced against losses and gains due to littoral transport and sand supply from the Columbia River. Based on these sediment balances, we infer the following pathways: sand that eroded from the inlets and inner deltas at the Grays Harbor and Columbia River entrances moved offshore and northward to accrete the outer deltas and the beaches to the north; sand from the south flank of the Grays Harbor delta and shelf along Grayland Plains moved onshore to accrete th

  11. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia

    International Nuclear Information System (INIS)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-01-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. - Highlights: • The Magdalena River has high levels of some metals such as Cd, Cu, and Ni. • Most sediment extracts affected lethality, growth, and locomotion of C. elegans. • Sediment extracts induced expression changes in mtl-2, sod-4, and gst-1. • Sediment toxicity was primarily associated with Cd and Pb. • Highest toxicity was observed for samples collected in mining and industrial areas. - In Magdalena River sediments, Cd and Pb were associated with toxicity in Caenorhabditis elegans and expression of stress response genes were related to

  12. Spatial evolution of phosphorus fractionation in the sediments of Rhumel River in the northeast Algeria

    OpenAIRE

    Azzouz , Sarah; Chellat , Smaine; Boukhalfa , Chahrazed; Amrane , Abdeltif

    2014-01-01

    International audience; The objective of the present study is the characterization of the spatial evolution of phosphorus forms in sediments of Rhumel River located in northeast Algeria during winter conditions. Sediments samples were collected along the river in Constantine city during the year 2012. The samples were subjected to physicochemical characterization and metals analysis. Phosphorus was fractionated by sequential extractions procedure in exchangeable, oxyhydroxides bound; calcium ...

  13. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume

    OpenAIRE

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lef?vre, Ir?ne; Ayrault, Sophie; Ottl?, Catherine; Bont?, Philippe

    2013-01-01

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons t...

  14. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    Science.gov (United States)

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  15. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    Science.gov (United States)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  17. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Directory of Open Access Journals (Sweden)

    W. R. Ismail

    2015-03-01

    Full Text Available The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  18. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Science.gov (United States)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  19. 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-01-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350 km sector of the river. The 210 Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess 210 Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess 210 Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the 210 Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. - Highlights: • Gold mining activities. • Madeira River basin at Amazon area. • Pb-210 chronological method. • Models for evaluating sedimentation rates

  20. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  1. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River sediment flux to the sea

    Directory of Open Access Journals (Sweden)

    Guogang Li

    2009-11-01

    Full Text Available The Three Gorges Dam (TGD on the upper Changjiang (Yangtze River, China, disrupts the continuity of Changjiang sediment delivery to downstream and coastal areas. In this study, which was based on 54 years of annual water and sediment data from the mainstream and major tributaries of Changjiang, sediment deposition induced by the TGD in 2003–2008 was quantified. Furthermore, we determined the theoretical trapping efficiency of the cascade reservoir upstream of the TGD. Its impact on Changjiang sediment flux in the coming decades is discussed. Results show that about 172 million tons (Mt of sediment was trapped annually by the TGD in 2003–2008, with an averaged trapping efficiency of 75%. Most of the total sediment deposition, as induced by the TGD (88%, accumulated within the region between the TGD site and Cuntan. However, significant siltation (12% of the total sediment deposition also occurred upstream of Cuntan as a consequence of the upstream extended backwater region of the TGD. Additionally, the Changjiang sediment flux entered a third downward step in 2001, prior to operation of the TGD. This mainly resulted from sediment reduction in the Jinshajiang tributary since the late 1990s. As the cascade reservoir is put into full operation, it could potentially trap 91% of the Jinshajiang sediment discharge and, therefore, the Jinshajiang sediment discharge would most likely further decrease to 14 Mt/yr in the coming decades. Consequently, the Changjiang sediment flux to the sea is expected to continuously decrease to below 90 Mt/yr in the near future, or only 18% of the amount observed in the 1950s. In the presence of low sediment discharge, profound impacts on the morphology of estuary, delta and coastal waters are expected.

  2. Holocene Record of Major and Trace Components in the Sediments of an Urban Impoundment on the Mississippi River: Lake Pepin, Minnesota and Wisconsin

    Science.gov (United States)

    Dean, Walter E.

    2009-01-01

    Lake Pepin is a natural impoundment formed by damming of the Mississippi River about 9,180 radiocarbon years ago (19,600 calendar years) by an alluvial fan deposited by the Chippewa River, a tributary of the Mississippi in Wisconsin. Unique among 26 Mississippi River impoundments, Lake Pepin has stratigraphically preserved Holocene materials, including pollutants, that have been transported down the Mississippi. This natural Holocene record can then be compared to changes that have occurred since European settlement (ca. AD 1830), and since enactment of clean air and water legislation. The most immediate response to settlement in the sediments of Lake Pepin was an increase in bulk-sediment accumulation rate. This was accompanied by gradual increases in concentrations of phosphorus (P), and organic carbon (OC), followed by dramatic increases in these elements beginning about 1940. The increase in P was far greater than any of the minor fluctuations in P that occurred throughout the Holocene, but the increase in OC was comparable to an increase in OC that occurred in the mid-Holocene. The concentrations of several metals (for example, cadmium [Cd], and lead [Pb]) also are elevated in recent sediments. Increased Cd concentrations lasted only about two decades during the industrial era between World War II and the enactment of clean water standards in the 1970s. Increased Pb emissions, on the other hand, occurred over more than 100 years, first from burning of coal and smelting of lead ores, and then, beginning in the 1930s, burning of leaded gasoline. Concentrations of Pb in the sediments of Lake Pepin decreased to about two times preindustrial levels within a decade of enactment of unleaded gasoline restrictions.

  3. A review of sediment quantity issues: examples from the River Ebro and adjacent basins (Northeastern Spain).

    Science.gov (United States)

    Batalla, Ramon J; Vericat, Damià

    2011-04-01

    Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers. Copyright © 2010 SETAC.

  4. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China

    International Nuclear Information System (INIS)

    Zheng Na; Wang Qichao; Liang Zhongzhu; Zheng Dongmei

    2008-01-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity. - Sediment in Wuli River, Cishan River, and Lianshan River has been contaminated by heavy metals and adverse effects would be expected frequently in Wuli River and Cishan River

  5. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    Science.gov (United States)

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  6. Fine Sediment Input and Benthic Fauna Interactions at the Confluence of Two Large Rivers

    International Nuclear Information System (INIS)

    Blettler, M. C. M.; Amsler, M. L.; Ezcurra De Drago, I.; Drago, E.; Paira, A.; Espinola, L. A.; Eberle, E.; Szupiany, R.

    2016-01-01

    Several studies suggest that invertebrate abundance and richness are disrupted and reset at confluences. Thus, junctions contribute disproportionately to the overall aquatic biodiversity of the river. In general terms, authors have reported high abundance and diversity due to the major physical heterogeneity at junctions. However, data are still scarce and uncertainties are plentiful. The impact of a great input of fine sediments on the distribution patterns of benthic invertebrates at a river confluence was quantitatively analyzed herein. The junction of the subtropical Bermejo River (high suspended sediment load) with the large Paraguay River is the selected study area to achieve this aim. While diversity increased slightly downstream the junction (from 0.21 to 0.36), density and richness of the macro invertebrate assemblage significantly diminished downstream the confluence (from 29050 to 410 ind/m2; p< 0.05) due to the input of fine sediment from the Bermejo River (mean fine sediment increased downstream from 6.3 to 10.2 mg/L), causing a negatively impact on invertebrate assemblage. This study highlights the ecological importance of the sediment input effects on benthic invertebrates, a topic still poorly explored in river ecology. It is speculated that the spatial extent of the impact would be dependent upon the hydrological and sedimentological context, highly unequal between both rivers. New hypotheses should be tested through new studies considering different hydrological stages.

  7. Competition between uplift and transverse sedimentation in an experimental delta

    Science.gov (United States)

    Grimaud, Jean-Louis; Paola, Chris; Ellis, Chris

    2017-07-01

    Mass is commonly injected into alluvial systems either laterally by transport from source regions or vertically from below via local uplift. We report results on the competition between these two fundamental processes, using an experimental basin with a deformable substrate. The lateral supply is via two alluvial fans on orthogonal walls of the basin; the uplifting region is downstream of one of the fans (axial) and opposite to the other (transverse). We show that the presence of a transverse sediment input increases the erosion rate of the uplifting region by pushing the mixing zone between the two alluvial sources against the uplifting mass. However, increase in sediment delivery to the transverse fan does not cause a proportional increase in erosion rate of the uplifting region. Instead, the system reaches a steady state balance between uplift and erosion induced by the transverse fan, such that there is no change in the total mass above the active alluvial surface—a lateral analog of the classical steady state between vertical erosion and uplift. We also show that the mixing zone is instrumental in limiting upstream aggradation and funneling sediments to the shore, resulting in limited river lateral mobility and increased shoreline progradation. Hence, the interaction between alluvial sources buffers river erosion and leads to consistent deviations from predictions of the area of influence of each fan based on simple mass-balance arguments. In the Ganges-Brahmaputra-Meghna delta, we suggest that similar dynamics help stabilize the Brahmaputra River course in the Jamuna Valley during Holocene time.

  8. Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) – a comparison between OSL, IRSL and post-IRIRSL ages

    DEFF Research Database (Denmark)

    Sohbati, Reza; Murray, Andrew S.; Buylaert, Jan-Pieter

    2012-01-01

    The ages of nine alluvial units, identified by the integration of data obtained from five trenches at the southern termination of the Alhama de Murcia Fault (AMF) (eastern Betics, Spain), are constrained using luminescence dating based on the Optically Stimulated Luminescence (OSL) from quartz...

  9. What are the contemporary sources of sediment in the Mississippi River?

    Science.gov (United States)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  10. Suspended sediment load in the tidal zone of an Indonesian river

    NARCIS (Netherlands)

    Buschman, F. A.; Hoitink, A. J. F.; de Jong, S. M.; Hoekstra, P.; Hidayat, H.; Sassi, M. G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents

  11. Suspended sediment load in the tidal zone of an Indonesian River

    NARCIS (Netherlands)

    Buschman, F.A.; Hoitink, A.J.F.; Jong, S.M. de; Hoekstra, P.; Hidayat, H.; Sassi, M. G.

    2012-01-01

    Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This

  12. Cumulative effects of logging road sediment on salmonid populations in the Clearwater River, Jefferson County, Washington

    Science.gov (United States)

    C. J. Cederholm; L. M. Reid; E. O. Salo

    1981-01-01

    Abstract - The nature of sediment production from logging roads and the effect of the resulting sediment on salmonid spawning success in the Clearwater River drainage have been studied for eight years. The study includes intensive and extensive analyses of field situations, supplemented by several controlled experiments. It was found that significant amounts (15-25...

  13. Sediment dynamics of a high gradient stream in the Oi river basin of Japan

    Science.gov (United States)

    Hideji Maita

    1991-01-01

    This paper discusses the effects of the valley width for discontinuities of sediment transport in natural stream channels. The results may be summarized as follows: 1)ln torrential rivers. deposition or erosion depend mostly on the sediment supply. not on the magnitude of the flow discharge. 2)Wide valley floors of streams are depositional spaces where the excess...

  14. Bioassessment metrics and deposited sediments in tributaries of the Chattooga river watershed

    Science.gov (United States)

    Erica Chiao; J. Bruce Wallace

    2003-01-01

    Excessive sedimentation places waters of the Chattooga River network at risk of biological impairment. Monitoring efforts could be improved by including metrics that are responsive to changes in levels of fine sediments. We sampled three habitats (riffle, depositional, bedrock outcrop) for benthic macroinvertebrates at four sites in three low-order, tributary reaches...

  15. From agricultural intensification to conservation: sediment transport in the Raccoon River, Iowa, 1916-2009.

    Science.gov (United States)

    Jones, Christopher S; Schilling, Keith E

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Survey of heavy metals in the sediments of the Swartkops River ...

    African Journals Online (AJOL)

    Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Karen Binning, Dan Baird. Abstract. Elevated levels of heavy metals in the sediment can be a good indication of man-induced pollution. Concentrations of chrome, lead, zinc, titanium, manganese, strontium, copper and tin ...

  17. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    Science.gov (United States)

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  18. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics.

    Science.gov (United States)

    Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D

    2014-06-15

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream

  19. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.

    2014-01-01

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest

  20. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  1. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    Science.gov (United States)

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  2. A study of sediment transport in the Herbert River, Australia, using plutonium AMS

    International Nuclear Information System (INIS)

    Everett, S.E.; Tims, S.G.; Fifield, L.K.; Hancock, G.J.

    2005-01-01

    The ANU and CSIRO have begun a new collaboration to study the human impacts of sediment transport into the Great Barrier Reef (GBR) lagoon. The project aims to use fallout plutonium for essentially the first time, as an isotopic tracer of soil and sediment movement. The study aims to assess how recent human activity in the river catchments that feed the GBR lagoon is influencing the distribution and quantity of sediment entering the lagoon. 2 figs

  3. Ecotoxicological Assessment of Water and Sediment Pollution of the Iskar River bellow Samokov

    Directory of Open Access Journals (Sweden)

    Ivan Diadovski

    2005-04-01

    Full Text Available A system of integral ecological indices has been worked out to assess the level of pollution of water and sediments with hazardous substances. A model for the dynamics of the integral index for water and sediments pollution is proposed. This index was applied for ecotoxicological assessment of water and sediments pollution of the Iskar river bellow Samokov. A modification method on time series analysis is applied.

  4. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    Science.gov (United States)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  5. Reassessment and comparison of natural radioactivity levels in relation to granulometric contents of recently excavated major river sediments

    International Nuclear Information System (INIS)

    Ramasamy, V.; Suresh, G.; Rajkumar, P.; Murugesan, S.; Mullainathan, S.; Meenakshisundaram, V.

    2012-01-01

    River sediment depositions on the bottom of rivers most frequently consist of sand and gravel particles, which make them particularly valuable for the building construction. Knowledge of radioactivity present in building material enables one to assess any possible radiological hazard to mankind by the use of such materials. The natural radionuclide ( 238 U, 232 Th and 40 K) contents have been analyzed for the recently excavated sediment samples of Cauvery, Vellar, Ponnaiyar and Palaru rivers with an aim of evaluating the radiation hazard nature. To know the radiological characteristics of the sediment, the different radiological parameters are calculated. Natural radioactivity level is higher in Palaru river and it is lower in Vellar river sediments. In all the rivers, concentration of 238 U is decreased, and concentrations of 232 Th and 40 K are increased towards the river mouth. Granulometric analysis shows that the sand is the main constituent in all the river sediment samples. Content of sand is gradually decreased, and contents of silt and clay are gradually increased towards the river mouth. Cluster analysis was carried out to find the similarity level between the radioactivity and granulometric measurements. The radioactivity level of all the four river sediments mainly depends upon the contents of silt and clay. Averages of the all calculated radiation hazard indices are lower than recommended level in Cauvery, Vellar and Ponnaiyar river sediments. Therefore, the sediment of the above rivers does not pose any significant radiological threat to the population when it is used as a building construction material. (author)

  6. The phosphorus content of fluvial sediment in rural and industrialized river basins.

    Science.gov (United States)

    Owens, Philip N; Walling, Desmond E

    2002-02-01

    The phosphorus content of fluvial sediment (suspended sediment and the sediment) has been examined in contrasting rural (moorland and agricultural) and industrialized catchments in Yorkshire, UK. The River Swale drains a rural catchment with no major urban and industrial areas, and the total phosphorus (TP) content of fluvial sediment is generally within the range 500-1,500 microg g(-1). There is little evidence of any major downstream increase in TP content. In contrast, fluvial sediment from the industrialized catchments of the Rivers Aire and Calder exhibits both higher levels of TP content and marked downstream increases, with values of TP content ranging from 7,000 microg g(-1) at downstream sites. These elevated levels reflect P inputs from point sources, such as sewage treatment works (STWs) and combined sewer overflows. The influence of STWs is further demonstrated by the downstream increase in the inorganic P/organic P ratio from 4 in the lower reaches. Comparison of the P content of suspended sediment with that of the sediment and both discharge and suspended sediment concentration, reflecting changes in sediment and P sources during high flow events. Spatial variations in the P contents of the sediment evidence a similar pattern as those for suspended sediment, with relatively low levels of TP in the River Swale and elevated levels in the middle and downstream reaches of the Rivers Aire and Calder. The PP concentrations associated with floodplain and channel bed sediment are, however, lower than equivalent values for suspended sediment, and this primarily reflects the differences in the particle size composition between the three types of sediments. Rates of floodplain deposition and the amounts of fine-grained sediment stored in the river channels are relatively high, and suggest that such environments may represent important sinks for PP. Based on the sediment samples collected from the study basins, a simple four-fold classification which relates the

  7. Temporal and spatial patterns of sedimentation within the batture lands of the middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Ryherd, Julia; Ruffner, Charles M.; Therrell, Matthew D.

    2018-05-01

    Sediment deposition and storage are important functions of batture lands (the land between the channel's low-water elevation and the flood mitigation levee). However, sedimentation processes within these areas are not fully understood. In this paper, we explore the spatiotemporal patterns, rates, and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio rivers) using three approaches: (1) comparison of historical to modern elevation data in order to estimate long-term (>100 yr) sedimentation rates; (2) estimation of medium- to short-term (sedimentation rates using dendrogeomorphological methods; and (3) geomorphic change detection (GCD) software to estimate short-term sedimentation rates ( 12 yr), spatial patterns of deposition, and volumes of geomorphic change within the batture lands. Comparison of long- to short-term sedimentation rates suggests up to a 300% increase in batture land sedimentation rates (from 6.2 to 25.4 mm yr-1) despite a substantial decrease in the MMR's suspended-sediment load (>70%) attributed largely to sediment trapping by dams during the second half of the twentieth century. The increase in MMR batture land sedimentation rates are attributed to at least two potential mechanisms: (1) the above average frequency and duration of low-magnitude floods (>2-yr and ≤5-yr flood) during the short-term assessment periods which allowed for more suspended sediment to be deposited within the batture lands; and (2) the construction of levees that substantially reduced the floodplain area ( 75%) available for storage of overbank deposits increasing the vertical accumulation and consequently the detectability of a given volume of sediment. The GCD estimated batture land sediment volumes were 9.0% of the suspended load at St. Louis. This substantial storage of sediment ( 8.5 Mt yr-1) along the MMR suggests batture lands are an important sink for suspended sediments.

  8. Gamma-spectrometric analysis of river sediments collected around phosphate fertilizer industries

    International Nuclear Information System (INIS)

    Gallardo, M.C.; Garcia-Leon, M.; Mundi, M.; Respaldiza, M.A.

    1993-01-01

    Gamma-ray spectrometric analysis has been carried out on sediments collected in an estuarine system formed by two major rivers in southern Spain. The results show clearly that important amounts of natural radioactivity are accumulating on the bed of both rivers. This radioactivity appears to originate from effluent from several phoshate fertilizer factories adjacent to the estuary. (author)

  9. Understanding Sediment Processes of Los Laureles Canyon in the Binational Tijuana River watershed

    Science.gov (United States)

    Tijuana River Basin originates in Mexico and drains 4465 km2 into the Tijuana River Estuary National Research Reserve, a protected coastal wetland in California that supports 400 species of birds. During storms, excessive erosion in Tijuana produces sediment loads that bury nativ...

  10. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    Science.gov (United States)

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  11. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Science.gov (United States)

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  12. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Science.gov (United States)

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  13. From gravel to sand. Downstream fining of bed sediments in the lower river Rhine

    NARCIS (Netherlands)

    Frings, R.M.

    2007-01-01

    A common characteristic of many rivers is the tendency for bed sediments to become finer in downstream direction. This phenomenon, which is generally known as downstream fining, has a strong effect on the morphologic and hydrodynamic behaviour of a river. The fundamental causes of downstream

  14. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  15. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  16. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    Science.gov (United States)

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  17. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    Science.gov (United States)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  18. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (PYangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J H; Liao, W C; Chen, W C [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Wang, Y.S., E-mail: yswang@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-06-15

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 {mu}g/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  20. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    International Nuclear Information System (INIS)

    Yen, J.H.; Liao, W.C.; Chen, W.C.; Wang, Y.S.

    2009-01-01

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 μg/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  1. Geology and ground-water conditions of Clark County Washington, with a description of a major alluvial aquifer along the Columbia River

    Science.gov (United States)

    Mundorff, Maurice John

    1964-01-01

    This report presents the results of an investigation of the ground-water resources of the populated parts of Clark County. Yields adequate for irrigation can be obtained from wells inmost farmed areas in Clark County, Wash. The total available supply is sufficient for all foreseeable irrigation developments. In a few local areas aquifers are fine-grained, and yields of individual wells are low. An enormous ground-water supply is available from a major alluvial aquifer underlying the flood plain of the Columbia River in the vicinity of Vancouver, Camas, and Washougal, where the aquifer is recharged, in part, by infiltration from the river. Yields of individual wells are large, ranging to as much as 4,000 gpm (gallons per minute). Clark County lies along the western flank of the Cascade Range. in the structural lowland (Willamette-Puget trough) between those mountains and the Coast Ranges to the west. The area covered by the report includes the urban, the suburban, and most of the agricultural lands in the county. These lands lie on a Series of nearly fiat plains and benches which rise steplike from the level of the Columbia River (a few feet above sea level) to about 800 feet above sea level. Clark County is-drained by the Columbia River (the trunk stream of the Pacific Northwest) and its tributaries. The Columbia River forms the southern and western boundaries of the county. Although the climate of the county is considered to be humid, the precipitation ranging from about 37 to more than 110 inches annually in various parts of the county, the unequal seasonal distribution (about 1.5 inches total for ;July and August in the agricultural area) makes irrigation highly desirable for most .crops and essential for some specialized crops. Consolidated rocks of Eocene to Miocene age, chiefly volcanic lava flows and pyroclastics but including some sedimentary strata, crop out in the foothills of the Cascades in the eastern part of the county and underlie the younger

  2. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    Science.gov (United States)

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  3. Regional Sediment Analysis of Mississippi River Sediment Transport and Hydrographic Survey Data

    National Research Council Canada - National Science Library

    Thorne, Colin

    2002-01-01

    ...s. Sediments generated through channel instability are carried downstream to cause sedimentation problems in flood control channels, destroy wetlands and lakes, adversely impact fish and wildlife...

  4. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    Science.gov (United States)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  5. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Higher levels of Cd (0.038 ± 0.004 to 0.044 ± 0.003 mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, which may be detrimental to the “health” of the aquatic ecosystem and the rural communities that utilise the river water for ... Key words: trace metals, water, sediment, farmland, Tyume River

  6. The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins

    Science.gov (United States)

    Koiter, A. J.; Owens, P. N.; Petticrew, E. L.; Lobb, D. A.

    2013-10-01

    Sediment fingerprinting is a technique that is increasingly being used to improve the understanding of sediment dynamics within river basins. At present, one of the main limitations of the technique is the ability to link sediment back to their sources due to the non-conservative nature of many of the sediment properties. The processes that occur between the sediment source locations and the point of collection downstream are not well understood or quantified and currently represent a black-box in the sediment fingerprinting approach. The literature on sediment fingerprinting tends to assume that there is a direct connection between sources and sinks, while much of the broader environmental sedimentology literature identifies that numerous chemical, biological and physical transformations and alterations can occur as sediment moves through the landscape. The focus of this paper is on the processes that drive particle size and organic matter selectivity and biological, geochemical and physical transformations and how understanding these processes can be used to guide sampling protocols, fingerprint selection and data interpretation. The application of statistical approaches without consideration of how unique sediment fingerprints have developed and how robust they are within the environment is a major limitation of many recent studies. This review summarises the current information, identifies areas that need further investigation and provides recommendations for sediment fingerprinting that should be considered for adoption in future studies if the full potential and utility of the approach are to be realised.

  7. Effects of heavy metals on enzyme synthesis in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, M; Duddridge, J E

    1982-01-01

    The effects of heavy metals in diverse substrate-amended river sediments were studied. Cd/sup 2 +/, Pb/sup 2 +/ and Zn/sup 2 +/ generally had a marked inhibitory effect on the synthesis of amylase, cellulase and urease, on numbers of substrate-hydrolysing bacteria, in all sediments studied. Inhibition increased with increasing metal concentration, and amylase was particularly sensitive. Pb/sup 2 +/ generally had the least effect. We conclude that enzyme synthesis measurements are useful in determining the effects of heavy metals on the degradation of organic pollutants in river sediments.

  8. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    Science.gov (United States)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  9. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  10. Fluvial sediments characterization of Hornád river in its chosen parts (preliminary study

    Directory of Open Access Journals (Sweden)

    Stela Hanigovská

    2008-12-01

    Full Text Available Knowledge of main river sedimentary characteristics is very important source of information for next study or potentialcommercial usage of fluvial sediments. In paper is shown characterization of sediment distribution in chosen part of the river Hornád.Three main facial types were studied and described – gravel, sand and clay. Model created in this study shows that Hornád is a riverwith predominant gravel transport. This model also shows a sufficient amount of gravel for commercial use in some parts of the river.

  11. Qualitative and quantitative determination of sediments phases in Chillon River by x-ray diffraction

    International Nuclear Information System (INIS)

    Miramira Tipula, Biviano; Zeballos Velasquez, Elvira; Chui Betancur, Heber; Valencia Salazar, Edilberto; Huaypar Vasquez, Yesena; Olivera de Lescano, Paula

    2008-01-01

    With this paper, we pretend to contribute with the recovery of Chillon River from a characterization of sediments. The objectives are the identification of pollution places along the bed of the Chillon River, from the Canta Province to Lima Province (Comas) and the determination of the preponderant factors of pollution. The qualitative and semi-quantitative determination of the sediments components have been carried out using the x-ray diffraction and x-ray fluorescence techniques, both of them will allow us to identify the pollute elements, for example the lead level in the Chillon River. (author)

  12. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    OpenAIRE

    Iskahar; Suripin; Isdiyana

    2018-01-01

    Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of ...

  13. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    Science.gov (United States)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  14. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    The fit was found to be better than those relating mean annual specific suspended sediment yield to basin area or runoff only. Since many stream gauging stations in the country have no records on fluvial sediment, the empirical equation can be used to obtain preliminary estimates of expected sediment load of streams for ...

  15. Initial Quantification of Suspended Sediment Loads for Three Alaska North Slope Rivers

    Directory of Open Access Journals (Sweden)

    Erica Lamb

    2016-09-01

    Full Text Available This study provides an initial assessment of suspended sediment transport in three rivers on the Alaska North Slope. From 2011 to 2013, the Anaktuvuk (69°27′51.00′′ N, 151°10′07.00′′ W, Chandler (69°17′0.30′′ N, 151°24′16.14′′ W, and Itkillik (68°51′59.46′′ N, 150°2′24.00′′ W Rivers were monitored for a variety of hydrologic, meteorologic, and sedimentologic characteristics. Watershed response to summer precipitation events was examined for each river. Bed sediment grain-size distribution was calculated using a photographic grid technique. Mean sediment diameters were 27.1 and 41.5 mm (Samples A and B for the Chandler, 35.8 mm for the Anaktuvuk, and 65.0 mm for the Itkillik. Suspended sediment rating curves were developed for each river. Suspended sediment discharge was analyzed. In 2011 and 2013, most of the total annual suspended sediment transport occurred during spring melt and widespread rainfall events, respectively. The results show that each river reacts differently to environmental inputs such as rain and basin characteristics.

  16. Sediment accumulation and mixing in the Penobscot River and estuary, Maine.

    Science.gov (United States)

    Yeager, K M; Schwehr, K A; Schindler, K J; Santschi, P H

    2018-04-16

    Mercury (Hg) was discharged in the late 1960s into the Penobscot River by the Holtra-Chem chlor-alkali production facility, which was in operation from 1967 to 2000. To assess the transport and distribution of total Hg, and recovery of the river and estuary system from Hg pollution, physical and radiochemical data were assembled from sediment cores collected from 58 of 72 coring stations sampled in 2009. These stations were located throughout the lower Penobscot River, and included four principal study regions, the Penobscot River (PBR), Mendall Marsh (MM), the Orland River (OR), and the Penobscot estuary (ES). To provide the geochronology required to evaluate sedimentary total Hg profiles, 58 of 72 sediment cores were dated using the atmospheric radionuclide tracers 137 Cs, 210 Pb, and 239,240 Pu. Sediment cores were assessed for depths of mixing, and for the determination of sediment accumulation rates using both geochemical (total Hg) and radiochemical data. At most stations, evidence for significant vertical mixing, derived from profiles of 7 Be (where possible) and porosity, was restricted to the upper ~1-3cm. Thus, historic profiles of both total Hg and radionuclides were only minimally distorted, allowing a reconstruction of their depositional history. The pulse input tracers 137 Cs and 239,240 Pu used to assess sediment accumulation rates agreed well, while the steady state tracer 210 Pb exhibited weaker agreement, likely due to irregular lateral sediment inputs. Copyright © 2018. Published by Elsevier B.V.

  17. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  18. Contamination assessment of heavy metal in surface sediments of the Wuding River, northern China

    International Nuclear Information System (INIS)

    Longjiang, M.; Qiang, F.; Duowen, M.; Ke, H.; Jinghong, Y.

    2011-01-01

    The heavy metal contents and the contamination levels of the surface sediments of the Wuding River, northern China, were investigated. Heavy metal concentration ranged in μg g -1 : 50.15 - 71.91 for Cr, 408.1 - 442.9 for Mn, 20.11 - 43.59 for Ni, 17.51 - 20.1 for Cu, 68.32 - 89.57 for Zn, 0.2 - 0.38 for Cd and 15.08 - 16.14 for Pb in the Wuding River sediments. The enrichment factor (EF) and the geo-accumulation index (Igeo) demonstrated that the sediments of the Wuding River had been polluted by Cd, Cr and Ni, which mainly originated from anthropogenic sources, whereas the sediments had not been polluted by Zn, Pb, Cu and Mn, which were derived from the crust. In addition, the assessment results of EF and Igeo suggested that the sediments of the Wuding River was 'moderately' polluted by Cd and 'unpolluted to moderately' polluted by Cr and Ni. The elevated urban sewage discharges and agriculture fertilizers usage in river basin are the anthropogenic sources of these heavy metals in river. (author)

  19. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  20. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  1. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Martinelli, L.A.

    1986-01-01

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ 13 C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.) [pt

  2. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    Science.gov (United States)

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  3. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  4. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers

    Science.gov (United States)

    Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian

    2015-01-01

    Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491

  5. Medical and Other Radioisotopes as Tracers in the Wastewater-River-Sediment Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H. W.; Ulbrich, S.; Pittauerova, D.; Hettwig, B. [Institute of Environmental Physics, University of Bremen, Bremen (Germany)

    2013-07-15

    Medical, natural and other artificial radioisotopes have been followed on their pathway to river sediment employing gamma spectroscopy. Sampling points were situated at a local wastewater treatment plant (inflow, outflow and sludge) and along 70 km of a tidal river (bank sediment). Isotope entry points are assumed to be wastewater for medical isotopes like I-131 and Tc-99m, rain for natural Be-7, and soil erosion for fission generated Cs-137. Medical isotope data reflect the short term dynamics of medical usage, wastewater transport and treatment, and the river system. Be-7 data are influenced by the amount of rainfall on a short time scale, and by the size of the river catchment area and dilution due to tidal effects in the long term. Cs-137 values appear rather constant, behaving similarly to primordial K-40. In conclusion, the investigated radioisotopes offer a variety of possibilities to assess water and sediment dynamics. (author)

  6. Screening of the persistent organic pollutants in sediments of almendares river

    International Nuclear Information System (INIS)

    Castanno, Zoila; Depauw, E.; Focant, J.; Micaela, S.; Rodriguez, A.; Heydrich, Mayra

    2006-01-01

    The Almendares river the most important river of the city, show a critic situation due to the contamination of water and sediments with non treated or inefficient treatment of the domestic and industrial residues (Y. Nunnez). Previous studies performed in Cuba investigated the contamination of this river (R. Marsan), those studies describe the determination of heavy metals in water as well as in sediments and also have been tested the nutrient content (A. Rodriguez et all), physic-chemicals properties and microbiological analysis. However, there is not available information about levels of concentration and spatial distribution of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofuran (PCDFs), and polychlorinated biphenyls (PCB). Taking into consideration these antecedents, the purpose of this work was the application of analytical methods for the detection of these organic compounds in the sediment of Almendares river

  7. Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries

    International Nuclear Information System (INIS)

    Skipperud, Lindis; Brown, Justin; Fifield, L. Keith; Oughton, Deborah H.; Salbu, Brit

    2009-01-01

    The present study applied sequential extraction techniques to investigate the binding and mobility of plutonium (Pu) in sediments from the rivers and estuaries of the Ob and Yenisey. As a study site, the Ob and Yenisey are particularly interesting as both rivers have weapons-grade Pu sources in their catchment areas, including the Russian Pu production and reprocessing plants at Mayak, Tomsk-7 and Krashnoyarsk, and the Semipalantinsk nuclear weapons testing site in Kazakhstan. Plutonium activity and 240 Pu/ 239 Pu ratios were determined using accelerator mass spectrometry (AMS). Sequential extractions showed that between 47 and 80% of the Pu in Yenisey River sediments and 35-53% of the Pu in soils around the Techa River are mobilized with weak oxidising agents, which can indicate that Pu is bound to organic material. In contrast, Pu in Ob and Yenisey Estuarine sediments was more strongly bound, with 60-100% being found in the HNO 3 -extractable fraction. This change in speciation could reflect either that Pu bound to organic material in the Techa and Yenisey River sediments becomes more fixed to the sediments with time, or that organic-bound Pu is mobilized and released to the water when the sediments encounter the more saline water of the Ob and Yenisey estuaries. In general, 240 Pu/ 239 Pu ratios were relatively consistent between different extraction fractions, although, in whole sediments, an increase in ratio was observed with distance from the source. This reflects the increased influence of weapon fallout from catchment runoff within the river systems, as compared to the weapons-grade sources close to the production and reprocessing plants. Knowledge of Pu speciation in the Ob and Yenisey Rivers, and the processes controlling its behaviour in estuarine systems, can improve predictions of its transfer and subsequent environmental impact to Arctic Seas

  8. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    Science.gov (United States)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  9. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    Science.gov (United States)

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  11. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    Science.gov (United States)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  12. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    Science.gov (United States)

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  13. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  14. Residual fluxes and suspended sediment transport in the lower reaches of Muvattupuzha River, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Balachandran, K.K.; Xavier, J.K.; Rejendran, N.C.

    Spatial and seasonal variation of different physical processes governing the transport of salt and sediment of the Muvattupuzha River, in Kerala, India are discussed. Salt and suspended sediment due to tidal pumping was directed upstream, salt...

  15. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    Science.gov (United States)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  16. (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.

    Science.gov (United States)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-05-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to M