WorldWideScience

Sample records for rival biochemical network

  1. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  2. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  3. On the Adaptive Design Rules of Biochemical Networks in Evolution

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2007-01-01

    Full Text Available Biochemical networks are the backbones of physiological systems of organisms. Therefore, a biochemical network should be sufficiently robust (not sensitive to tolerate genetic mutations and environmental changes in the evolutionary process. In this study, based on the robustness and sensitivity criteria of biochemical networks, the adaptive design rules are developed for natural selection in the evolutionary process. This will provide insights into the robust adaptive mechanism of biochemical networks in the evolutionary process. We find that if a mutated biochemical network satisfies the robustness and sensitivity criteria of natural selection, there is a high probability for the biochemical network to prevail during natural selection in the evolutionary process. Since there are various mutated biochemical networks that can satisfy these criteria but have some differences in phenotype, the biochemical networks increase their diversities in the evolutionary process. The robustness of a biochemical network enables co-option so that new phenotypes can be generated in evolution. The proposed robust adaptive design rules of natural selection gain much insight into the evolutionary mechanism and provide a systematic robust biochemical circuit design method of biochemical networks for biotechnological and therapeutic purposes in the future.

  4. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.

    Science.gov (United States)

    Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O

    2004-12-01

    As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.

  5. Characterizing multistationarity regimes in biochemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Irene Otero-Muras

    Full Text Available Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space.

  6. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  7. Jealousy at work: The role of rivals' characteristics.

    Science.gov (United States)

    Zurriaga, Rosario; González-Navarro, Pilar; Buunk, Abraham Pieter; Dijkstra, Pieternel

    2018-03-26

    The present study examined rival characteristics that may evoke jealousy in the workplace, differences between men and women in this regard, and the relationship between jealousy responses and intrasexual competitiveness and social comparison orientation. Participants were 426 male and female employees. By means of a questionnaire, participants were presented with a jealousy-evoking scenario after which jealousy responses to 24 rival characteristics were assessed. Findings showed that a rival's social communal attributes evoked highest levels of jealousy, and that, compared to men, women reported more jealousy in response to a rival's physical attractiveness. Overall, as individuals had higher scores on intrasexual competitiveness and social comparison orientation, they also experienced more jealousy in response to their rival, regardless of his or her characteristics. These findings suggest that those characteristics that are highly valued in employees may backfire when employees perceive co-workers as rivals. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  8. Selective attention in peacocks during assessment of rival males.

    Science.gov (United States)

    Yorzinski, Jessica L; Patricelli, Gail L; Bykau, Siarhei; Platt, Michael L

    2017-03-15

    Males in many species compete intensely for access to females. In order to minimize costly interactions, they can assess their rivals' competitive abilities by evaluating traits and behaviors. We know little about how males selectively direct their attention to make these assessments. Using Indian peafowl ( Pavo cristatus ) as a model system, we examined how males visually assess their competitors by continuously tracking the gaze of freely moving peacocks during the mating season. When assessing rivals, peacocks selectively gazed toward the lower display regions of their rivals, including the lower eyespot and fishtail feathers, dense feathers, body and wings. Their attention was modified based on the rivals' behavior such that they spent more time looking at rivals when rivals were shaking their wings and moving. The results indicate that peacocks selectively allocate their attention during rival assessment. The gaze patterns of males assessing rivals were largely similar to those of females evaluating mates, suggesting that some male traits serve a dual function in both intra- and intersexual selection. However, males spent more time than females looking at the upper eyespots and this could indicate that the upper eyespots function more in close-up rival assessment than mate choice. © 2017. Published by The Company of Biologists Ltd.

  9. BioNessie - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X.; Jiang, J.; Ajayi, O.; Gu, X.; Gilbert, D.; Sinnott, R.O.

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations.

  10. Deep neural networks rival the representation of primate IT cortex for core visual object recognition.

    Directory of Open Access Journals (Sweden)

    Charles F Cadieu

    2014-12-01

    Full Text Available The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition. This remarkable performance is mediated by the representation formed in inferior temporal (IT cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs. It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.

  11. 'BioNessie(G) - a grid enabled biochemical networks simulation environment

    OpenAIRE

    Liu, X; Jiang, J; Ajayi, O; Gu, X; Gilbert, D; Sinnott, R

    2008-01-01

    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scal...

  12. Sex differences in the jealousy-evoking effect of rival characteristics

    NARCIS (Netherlands)

    Dijkstra, P; Buunk, BP; Buunk, Abraham (Bram)

    2002-01-01

    Four studies examined sex differences in the jealousy-evoking nature of rival characteristics. Study 1, among 130 undergraduates, made an inventory of all relevant rival characteristics that were spontaneously mentioned when asked about a rival to whom one's partner might feel attracted. On the

  13. Conservation Laws in Biochemical Reaction Networks

    DEFF Research Database (Denmark)

    Mahdi, Adam; Ferragut, Antoni; Valls, Claudia

    2017-01-01

    We study the existence of linear and nonlinear conservation laws in biochemical reaction networks with mass-action kinetics. It is straightforward to compute the linear conservation laws as they are related to the left null-space of the stoichiometry matrix. The nonlinear conservation laws...... are difficult to identify and have rarely been considered in the context of mass-action reaction networks. Here, using the Darboux theory of integrability, we provide necessary structural (i.e., parameterindependent) conditions on a reaction network to guarantee the existence of nonlinear conservation laws...

  14. Distress about mating rivals

    NARCIS (Netherlands)

    Buss, DM; Shackelford, TK; Choe, J; Buunk, BP; Dijkstra, P

    This research tested the evolutionary psychological hypothesis that men and women would be most distressed about threats from rivals who surpass them on sex-linked components of mate value. Six predictions were tested in samples from three cultures, the United States (N = 208), the Netherlands (N =

  15. Evidence from a homosexual sample for a sex-specific rival-oriented mechanism : Jealousy as a function of a rival's physical attractiveness and dominance

    NARCIS (Netherlands)

    Buunk, BP; Dijkstra, P

    2001-01-01

    Among heterosexual women in particular. a rival's physical attractiveness evokes jealousy, whereas among heterosexual men in particular. a rival's dominance evokes feelings of jealousy. The present study conducted with gay men and lesbian women examined whether these sex-differentiated responses

  16. Sex differences in the jealousy-evoking nature of a rival's body build

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Buunk, Abraham (Bram)

    This study among 185 college students showed that potential rivals with a relatively low waist-to-hip ratio (WHR) evoked more jealousy in women than in men. In contrast, rivals with a relatively high shoulder-to-hip ratio (SHR) evoked more jealousy in men than in women, particularly when the rival

  17. Competitive Pressure: Competitive Dynamics as Reactions to Multiple Rivals

    OpenAIRE

    Zucchini, Leon; Kretschmer, Tobias

    2011-01-01

    Competitive dynamics research has focused primarily on interactions between dyads of firms. Drawing on the awareness-motivation-capability framework and strategic group theory we extend this by proposing that firms’ actions are influenced by perceived competitive pressure resulting from actions by several rivals. We predict that firms’ action magnitude is influenced by the total number of rival actions accumulating in the market, and that this effect is moderated by strategic group membership...

  18. Strategies to fight low-cost rivals.

    Science.gov (United States)

    Kumar, Nirmalya

    2006-12-01

    Companies find it challenging and yet strangely reassuring to take on opponents whose strategies, strengths, and weaknesses resemble their own. Their obsession with familiar rivals, however, has blinded them to threats from disruptive, low-cost competitors. Successful price warriors, such as the German retailer Aldi, are changing the nature of competition by employing several tactics: focusing on just one or a few consumer segments, delivering the basic product or providing one benefit better than rivals do, and backing low prices with superefficient operations. Ignoring cutprice rivals is a mistake because they eventually force companies to vacate entire market segments. Price wars are not the answer, either: Slashing prices usually lowers profits for incumbents without driving the low-cost entrants out of business. Companies take various approaches to competing against cut-price players. Some differentiate their products--a strategy that works only in certain circumstances. Others launch low-cost businesses of their own, as many airlines did in the 1990s--a so-called dual strategy that succeeds only if companies can generate synergies between the existing businesses and the new ventures, as the financial service providers HSBC and ING did. Without synergies, corporations are better off trying to transform themselves into low-cost players, a difficult feat that Ryanair accomplished in the 1990s, or into solution providers. There will always be room for both low-cost and value-added players. How much room each will have depends not only on the industry and customers' preferences, but also on the strategies traditional businesses deploy.

  19. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    Science.gov (United States)

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous

  20. A probabilistic approach to identify putative drug targets in biochemical networks.

    NARCIS (Netherlands)

    Murabito, E.; Smalbone, K.; Swinton, J.; Westerhoff, H.V.; Steuer, R.

    2011-01-01

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual

  1. Jealousy in the blink of an eye : Jealous reactions following subliminal exposure to rival characteristics

    NARCIS (Netherlands)

    Massar, Karlijn; Buunk, Abraham P.; Dechesne, Mark

    In the present experiment it was investigated whether the evaluation of rivals could be all unconscious process, engaged in automatically whenever a rival is present. To this end, participants were subliminally primed. with words relating to rival characteristics after which the), read a jealousy

  2. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Science.gov (United States)

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Do hospitals respond to rivals' quality and efficiency? A spatial panel econometric analysis.

    Science.gov (United States)

    Longo, Francesco; Siciliani, Luigi; Gravelle, Hugh; Santos, Rita

    2017-09-01

    We investigate whether hospitals in the English National Health Service change their quality or efficiency in response to changes in quality or efficiency of neighbouring hospitals. We first provide a theoretical model that predicts that a hospital will not respond to changes in the efficiency of its rivals but may change its quality or efficiency in response to changes in the quality of rivals, though the direction of the response is ambiguous. We use data on eight quality measures (including mortality, emergency readmissions, patient reported outcome, and patient satisfaction) and six efficiency measures (including bed occupancy, cancelled operations, and costs) for public hospitals between 2010/11 and 2013/14 to estimate both spatial cross-sectional and spatial fixed- and random-effects panel data models. We find that although quality and efficiency measures are unconditionally spatially correlated, the spatial regression models suggest that a hospital's quality or efficiency does not respond to its rivals' quality or efficiency, except for a hospital's overall mortality that is positively associated with that of its rivals. The results are robust to allowing for spatially correlated covariates and errors and to instrumenting rivals' quality and efficiency. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory

    Directory of Open Access Journals (Sweden)

    Qian Hong

    2008-05-01

    Full Text Available Abstract Background: Several approaches, including metabolic control analysis (MCA, flux balance analysis (FBA, correlation metric construction (CMC, and biochemical circuit theory (BCT, have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results: In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RT BS and ST BS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion: One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA.

  5. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  6. Scalable rule-based modelling of allosteric proteins and biochemical networks.

    Directory of Open Access Journals (Sweden)

    Julien F Ollivier

    2010-11-01

    Full Text Available Much of the complexity of biochemical networks comes from the information-processing abilities of allosteric proteins, be they receptors, ion-channels, signalling molecules or transcription factors. An allosteric protein can be uniquely regulated by each combination of input molecules that it binds. This "regulatory complexity" causes a combinatorial increase in the number of parameters required to fit experimental data as the number of protein interactions increases. It therefore challenges the creation, updating, and re-use of biochemical models. Here, we propose a rule-based modelling framework that exploits the intrinsic modularity of protein structure to address regulatory complexity. Rather than treating proteins as "black boxes", we model their hierarchical structure and, as conformational changes, internal dynamics. By modelling the regulation of allosteric proteins through these conformational changes, we often decrease the number of parameters required to fit data, and so reduce over-fitting and improve the predictive power of a model. Our method is thermodynamically grounded, imposes detailed balance, and also includes molecular cross-talk and the background activity of enzymes. We use our Allosteric Network Compiler to examine how allostery can facilitate macromolecular assembly and how competitive ligands can change the observed cooperativity of an allosteric protein. We also develop a parsimonious model of G protein-coupled receptors that explains functional selectivity and can predict the rank order of potency of agonists acting through a receptor. Our methodology should provide a basis for scalable, modular and executable modelling of biochemical networks in systems and synthetic biology.

  7. Efficient Parallel Statistical Model Checking of Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Paolo Ballarini

    2009-12-01

    Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.

  8. Rival male relatedness does not affect ejaculate allocation as predicted by sperm competition theory.

    Directory of Open Access Journals (Sweden)

    Melissa L Thomas

    Full Text Available When females are sexually promiscuous, the intensity of sperm competition for males depends on how many partners females mate with. To maximize fitness, males should adjust their copulatory investment in relation to this intensity. However, fitness costs associated with sperm competition may not only depend on how many males a female has mated with, but also how related rival males are. According to theoretical predictions, males should adjust their copulatory investment in response to the relatedness of their male rival, and transfer more sperm to females that have first mated with a non-sibling male than females that have mated to a related male. Here, for the first time, we empirically test this theory using the Australian field cricket Teleogryllus oceanicus. We expose male crickets to sperm competition from either a full sibling or non-sibling male, by using both the presence of a rival male and the rival male's actual competing ejaculate as cues. Contrary to predictions, we find that males do not adjust ejaculates in response to the relatedness of their male rival. Instead, males with both full-sibling and non-sibling rivals allocate sperm of similar quality to females. This lack of kin biased behaviour is independent of any potentially confounding effect of strong competition between close relatives; kin biased behaviour was absent irrespective of whether males were raised in full sibling or mixed relatedness groups.

  9. Experience of mating rivals causes males to modulate sperm transfer in the fly Drosophila pseudoobscura.

    Science.gov (United States)

    Price, Tom A R; Lizé, Anne; Marcello, Marco; Bretman, Amanda

    2012-12-01

    Male responses to risk of sperm competition play an important role in sexual selection, sexual conflict, and the evolution of mating systems. Such responses can combine behavioural and physiological processes, and can be mediated through different components of the ejaculate such as sperm numbers and seminal proteins. An additional level of ejaculate complexity is sperm heteromorphism, with the inclusion of non-fertilising parasperm in the ejaculate. We now test the response to rivals in a sperm heteromorphic species, Drosophila pseudoobscura, measuring the behavioural response and sperm transfer and, crucially, relating these to short-term fitness. Males respond to exposure to conspecific rivals by increasing mating duration, but do not respond to heterospecific rivals. In addition, after exposure to a conspecific rival, males increased the transfer of fertilising eusperm, but not non-fertilising parasperm. Males exposed to a conspecific rival also achieve higher offspring production. This suggests that the evolution of parasperm in flies was not driven by sperm competition and adds to the increasing evidence that males can make extremely sophisticated responses to mating competition. Copyright © 2012. Published by Elsevier Ltd.

  10. Depositional model for Rival and Midale subintervals (Mississippian), north-central Burke County, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Harris, T.L.

    1988-07-01

    The Rival and Midale subintervals (Charles Formation, Upper Mississippian), north-central Burke County, North Dakota, represent two relative sea level fluctuations. Updip (northeast), the Rival subinterval contains fine to medium-bedded and chicken-wire anhydrite with interbedded algal bindstone that was deposited on supratidal flats. Basinward (southwest), the lithology changes to oncolitic, peloidal, intraclastic grainstone/packstone that was deposited in intertidal and subtidal restricted lagoonal environments. Evaporites precipitated in the sediment of the intertidal to shallow subtidal restricted lagoonal environment. Overlying the Rival subinterval is skeletal wackestone and packstone of the lower Midale subinterval. The presence of normal-marine fauna (crinoids, brachiopods, trilobites, rugose and tabulate coral) indicates a significant relative sea level transgression occurred following deposition of the Rival. The middle and upper Midale subinterval consists of intensely burrowed dolowackestone and dolomudstone that contain a less diversified faunal assemblage. Overlying the Midale carbonates is a transitional zone of calcareous shale and dolomite that grades upward into mottled (burrowed.) and finely laminated microgranular dolomite and anhydrite. The upper Midale section represents a relative sea level regression (shoreline progradation). Updip (northeast) reservoirs produce from the Midale carbonates, which are sealed laterally and vertically by calcarous shale and microgranular dolomitic anhydrite of the Midale Evaporite. Downdip (southwest), the Rival produces from porous grainstone, which is sealed laterally by intertidal/supratidal carbonates and evaporites, resulting in a stratigraphic trap. Vuggy and intergranular porosity are the major porosity types in the Rival grainstone, and moldic and intercrystalline porosity are dominant in the Midale dolowackestone.

  11. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  12. A narrow waist versus broad shoulders : Sex and age differences in the jealousy-evoking characteristics of a rival's body build

    NARCIS (Netherlands)

    Buunk, BP; Dijkstra, P; Buunk, Abraham (Bram)

    This study examined the role of waist-to-hip ratio (WHR) and shoulder-to-hip ratio (SHR) of the rival in evoking jealousy in an adult sample of 70 men and 69 women. Women paid more attention to the rivals' waist, hips, and hair, and men paid more attention to the rivals' shoulders. Potential rivals

  13. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+

    Science.gov (United States)

    Herath, Narmada; Del Vecchio, Domitilla

    2018-03-01

    Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.

  14. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.

    Science.gov (United States)

    Bowsher, Clive G

    2011-02-15

    Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach. Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML). The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.

  15. Gender differences in rival characteristics that evoke jealousy in response to emotional versus sexual infidelity

    NARCIS (Netherlands)

    Buunk, Abraham (Bram); Dijkstra, Pieternel

    2004-01-01

    Previous research has shown that in men jealousy is evoked more by a rival's status-related characteristics than in women, whereas in women jealousy is evoked more by a rival's physical attractiveness than in men. The present study examined whether the occurrence of this gender difference depends

  16. Northern Elephant Seals Memorize the Rhythm and Timbre of Their Rivals' Voices.

    Science.gov (United States)

    Mathevon, Nicolas; Casey, Caroline; Reichmuth, Colleen; Charrier, Isabelle

    2017-08-07

    The evolutionary origin of rhythm perception, a cognitive ability essential to musicality, remains unresolved [1-5]. The ability to perceive and memorize rhythmic sounds is widely shared among humans [6] but seems rare among other mammals [7, 8]. Although the perception of temporal metrical patterns has been found in a few species, this ability has only been demonstrated through behavioral training [9] (but see [10] for an example of spontaneous tempo coordination in a bonobo), and there is no experimental evidence to indicate its biological function. Furthermore, there is no example of a non-human mammal able to remember and recognize auditory rhythmic patterns among a wide range of tempi. In the northern elephant seal Mirounga angustirostris, the calls of mature males comprise a rhythmic series of pulses, with the call of each individual characterized by its tempo and timbre; these individual vocal signatures are stable over years and across contexts [11]. Here, we report that northern elephant seal males routinely memorize and recognize the unique tempo and timbre of their rivals' voices and use this rhythmic information to individually identify competitors, which facilitates navigation within the social network of the rookery. By performing playbacks with natural and modified vocalizations, we show that males are sensitive to call rhythm disruption independently of modification of spectral features and that they use both temporal and spectral cues to identify familiar rivals. While spectral features of calls typically encode individual identity in mammalian vocalizations [12], this is the first example of this phenomenon involving sound rhythm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Directory of Open Access Journals (Sweden)

    Heslop-Harrison Pat

    2007-01-01

    Full Text Available Abstract Background We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS. The Total Least Squares (TLS technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. Results The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and mdm2 messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL-6 and (IL-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL-6 and (IL-12b by ATF3. Conclusion The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable

  18. Emergence of switch-like behavior in a large family of simple biochemical networks.

    Directory of Open Access Journals (Sweden)

    Dan Siegal-Gaskins

    2011-05-01

    Full Text Available Bistability plays a central role in the gene regulatory networks (GRNs controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes. We find that there exist reaction rate constants leading to bistability in ∼90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork. The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.

  19. Assessment of rival males through the use of multiple sensory cues in the fruitfly Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Chris P Maguire

    Full Text Available Environments vary stochastically, and animals need to behave in ways that best fit the conditions in which they find themselves. The social environment is particularly variable, and responding appropriately to it can be vital for an animal's success. However, cues of social environment are not always reliable, and animals may need to balance accuracy against the risk of failing to respond if local conditions or interfering signals prevent them detecting a cue. Recent work has shown that many male Drosophila fruit flies respond to the presence of rival males, and that these responses increase their success in acquiring mates and fathering offspring. In Drosophila melanogaster males detect rivals using auditory, tactile and olfactory cues. However, males fail to respond to rivals if any two of these senses are not functioning: a single cue is not enough to produce a response. Here we examined cue use in the detection of rival males in a distantly related Drosophila species, D. pseudoobscura, where auditory, olfactory, tactile and visual cues were manipulated to assess the importance of each sensory cue singly and in combination. In contrast to D. melanogaster, male D. pseudoobscura require intact olfactory and tactile cues to respond to rivals. Visual cues were not important for detecting rival D. pseudoobscura, while results on auditory cues appeared puzzling. This difference in cue use in two species in the same genus suggests that cue use is evolutionarily labile, and may evolve in response to ecological or life history differences between species.

  20. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  1. Modularization of biochemical networks based on classification of Petri net t-invariants.

    Science.gov (United States)

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-02-08

    Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find

  2. Modularization of biochemical networks based on classification of Petri net t-invariants

    Directory of Open Access Journals (Sweden)

    Grunwald Stefanie

    2008-02-01

    Full Text Available Abstract Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t

  3. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  4. Intrasexual competition at work : Sex differences in the jealousy-evoking effect of rival characteristics in work settings

    NARCIS (Netherlands)

    Buunk, Abraham P.; 't Goor, Joel Aan; Solano, Alejandro C.

    Sex differences in jealousy-evoking rival characteristics in the relationship with a supervisor at work were examined in a community sample of 188 individuals from Argentina. Among men, the rivals' social dominance and communal attributes evoked the most jealousy, followed by physical dominance.

  5. Changing me to keep you: state jealousy promotes perceiving similarity between the self and a romantic rival.

    Science.gov (United States)

    Slotter, Erica B; Lucas, Gale M; Jakubiak, Brittany; Lasslett, Heather

    2013-10-01

    Individuals sometimes alter their self-views to be more similar to others--traditionally romantic partners--because they are motivated to do so. A common motivating force is the desire to affiliate with a partner. The current research examined whether a different motivation--romantic jealousy--might promote individuals to alter their self-views to be more similar to a romantic rival, rather than a partner. Romantic jealousy occurs when individuals perceive a rival as a threat to their relationship and motivates individuals to defend their relationship. We proposed that one novel way that individuals might defend their relationship is by seeing themselves as more similar to a perceived romantic rival. We predicted individuals would alter their self-views to be more similar to a rival that they believed their partner found attractive. Importantly, we predicted that state romantic jealousy would motivate these self-alterations. Three studies confirmed these hypotheses.

  6. Individual Differences in Preventive Jealousy Determine Men's Jealousy after Subliminal Exposure to Rivals Wearing High- or Low-Status Clothes.

    Science.gov (United States)

    Massar, Karlijn; Buunk, Abraham Bram P

    2016-02-01

    This study investigated sex differences in jealousy after subliminal exposure to rivals wearing high-status or low-status clothes. It was expected that individual differences in preventive jealousy would moderate the relationship between a rival's characteristics and jealousy. Participants (Men: n = 54, M age = 21.6 yr., SD = 3.5; women: n = 71, M age = 20.7 yr., SD = 1.9) completed a parafoveal subliminal priming paradigm as well as questionnaires about jealousy and preventive jealousy. As predicted, women were not affected by their rival's status, but women high in preventive jealousy reported more jealousy than women low in preventive jealousy. However, whereas men low in preventive jealousy reported equal amounts of jealousy after exposure to a high-status and a low-status rival, surprisingly, and contrary to the expectations, men high in preventive jealousy reported most jealousy after exposure to a low-status rival. To explain these unexpected results, threats to self-esteem were discussed.

  7. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  8. Sport fans: evaluating the consistency between implicit and explicit attitudes toward favorite and rival teams.

    Science.gov (United States)

    Wenger, Jay L; Brown, Roderick O

    2014-04-01

    Sport fans often foster very positive attitudes for their favorite teams and less favorable attitudes for opponents. The current research was designed to evaluate the consistency that might exist between implicit and explicit measures of those attitudes. College students (24 women, 16 men) performed a version of the Implicit Association Test related to their favorite and rival teams. Participants also reported their attitudes for these teams explicitly, via self-report instruments. When responding to the IAT, participants' responses were faster when they paired positive words with concepts related to favorite teams and negative words with rival teams, indicating implicit favorability for favorite teams and implicit negativity for rival teams. This pattern of implicit favorability and negativity was consistent with what participants reported explicitly via self-report. The importance of evaluating implicit attitudes and the corresponding consistency with explicit attitudes are discussed.

  9. The Effect of Simultaneous Sponsorship of Rival Football Teams

    Directory of Open Access Journals (Sweden)

    João Guilherme Barbosa de Amorim

    2015-01-01

    Full Text Available The present study investigated the impact of team identification and team-sponsor fit on the sponsor’s brand equity. The study’s main theoretical references are (a the Social Identity Theory (Tajfel & Turner, 1979; (b the Schema Theory (Singer, 1968 and (c the Associative Network Theories (Collins & Loftus, 1975, both about the functioning of the human memory; and (d customer-based brand equity (Keller, 1993. Research was conducted in Porto Alegre, RS, a Brazilian city where rival football (soccer teams Grêmio and Internacional share their main sponsors, Banrisul and Unimed, since 2001 and 2002, respectively, a rare context that was previously studied only once before (Davies, Veloutsou, & Costa, 2006. The valid sample comprised 2,000 fans of both teams. The sample was non-probabilistic with equal gender and team quotas. Data analysis was performed using Exploratory Factor Analysis (EFA and Confirmatory Factor Analysis (CFA; and the reliability, convergent, discriminant and nomological validity of the constructs were verified. To test the substantive hypotheses, Structural Equation Modeling (SEM using the ADF technique was applied. The empirical results suggest that, in the studied context, the sponsor’s brand equity is more influenced by teamsponsor fit than by team identification, which is different from a non-rivalry sponsorship context.

  10. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  11. CADLIVE toolbox for MATLAB: automatic dynamic modeling of biochemical networks with comprehensive system analysis.

    Science.gov (United States)

    Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki

    2014-09-01

    Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.

  12. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    Science.gov (United States)

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  13. A moment-convergence method for stochastic analysis of biochemical reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiajun [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Nie, Qing [Department of Mathematics, University of California at Irvine, Irvine, California 92697 (United States); Zhou, Tianshou, E-mail: mcszhtsh@mail.sysu.edu.cn [School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Province Key Laboratory of Computational Science and School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  14. Free-ranging male koalas use size-related variation in formant frequencies to assess rival males.

    Directory of Open Access Journals (Sweden)

    Benjamin D Charlton

    Full Text Available Although the use of formant frequencies in nonhuman animal vocal communication systems has received considerable recent interest, only a few studies have examined the importance of these acoustic cues to body size during intra-sexual competition between males. Here we used playback experiments to present free-ranging male koalas with re-synthesised bellow vocalisations in which the formants were shifted to simulate either a large or a small adult male. We found that male looking responses did not differ according to the size variant condition played back. In contrast, male koalas produced longer bellows and spent more time bellowing when they were presented with playbacks simulating larger rivals. In addition, males were significantly slower to respond to this class of playback stimuli than they were to bellows simulating small males. Our results indicate that male koalas invest more effort into their vocal responses when they are presented with bellows that have lower formants indicative of larger rivals, but also show that males are slower to engage in vocal exchanges with larger males that represent more dangerous rivals. By demonstrating that male koalas use formants to assess rivals during the breeding season we have provided evidence that male-male competition constitutes an important selection pressure for broadcasting and attending to size-related formant information in this species. Further empirical studies should investigate the extent to which the use of formants during intra-sexual competition is widespread throughout mammals.

  15. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  16. Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model

    Science.gov (United States)

    Hou, Rui; Wu, Jiawen; Du, Helen S.

    2017-03-01

    To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.

  17. Adaptive rival penalized competitive learning and combined linear predictor model for financial forecast and investment.

    Science.gov (United States)

    Cheung, Y M; Leung, W M; Xu, L

    1997-01-01

    We propose a prediction model called Rival Penalized Competitive Learning (RPCL) and Combined Linear Predictor method (CLP), which involves a set of local linear predictors such that a prediction is made by the combination of some activated predictors through a gating network (Xu et al., 1994). Furthermore, we present its improved variant named Adaptive RPCL-CLP that includes an adaptive learning mechanism as well as a data pre-and-post processing scheme. We compare them with some existing models by demonstrating their performance on two real-world financial time series--a China stock price and an exchange-rate series of US Dollar (USD) versus Deutschmark (DEM). Experiments have shown that Adaptive RPCL-CLP not only outperforms the other approaches with the smallest prediction error and training costs, but also brings in considerable high profits in the trading simulation of foreign exchange market.

  18. Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory.

    Science.gov (United States)

    Pantazis, Yannis; Katsoulakis, Markos A; Vlachos, Dionisios G

    2013-10-22

    Stochastic modeling and simulation provide powerful predictive methods for the intrinsic understanding of fundamental mechanisms in complex biochemical networks. Typically, such mathematical models involve networks of coupled jump stochastic processes with a large number of parameters that need to be suitably calibrated against experimental data. In this direction, the parameter sensitivity analysis of reaction networks is an essential mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, existing sensitivity analysis approaches such as variants of the finite difference method can have an overwhelming computational cost in models with a high-dimensional parameter space. We develop a sensitivity analysis methodology suitable for complex stochastic reaction networks with a large number of parameters. The proposed approach is based on Information Theory methods and relies on the quantification of information loss due to parameter perturbations between time-series distributions. For this reason, we need to work on path-space, i.e., the set consisting of all stochastic trajectories, hence the proposed approach is referred to as "pathwise". The pathwise sensitivity analysis method is realized by employing the rigorously-derived Relative Entropy Rate, which is directly computable from the propensity functions. A key aspect of the method is that an associated pathwise Fisher Information Matrix (FIM) is defined, which in turn constitutes a gradient-free approach to quantifying parameter sensitivities. The structure of the FIM turns out to be block-diagonal, revealing hidden parameter dependencies and sensitivities in reaction networks. As a gradient-free method, the proposed sensitivity analysis provides a significant advantage when dealing with complex stochastic systems with a large number of parameters. In addition, the knowledge of the structure of the FIM can allow to efficiently address

  19. Shape, size, and robustness: feasible regions in the parameter space of biochemical networks.

    Directory of Open Access Journals (Sweden)

    Adel Dayarian

    2009-01-01

    Full Text Available The concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important consequences for the robustness and the fragility of a network. We develop an approximation within which we could algebraically specify the feasible region. We analyze the segment polarity gene network to illustrate our approach. The study of random walks in the parameter space and how they exit the feasible region provide us with a rich perspective on the different modes of failure of this network model. In particular, we found that, between two alternative ways of activating Wingless, one is more robust than the other. Our method provides a more complete measure of robustness to parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of biochemical networks.

  20. Jealousy and the Characteristics of One's Rival: A Self-Evaluation Maintenance Perspective.

    Science.gov (United States)

    DeSteno, David A.; Salovey, Peter

    1996-01-01

    Two studies provide support for a model of jealousy based on self-evaluation maintenance theory. Greater jealousy was reported when the domain of a rival's achievements was also a domain of high self-relevance to the participant. Notes sex differences in the impact of relationship partners on domains of self-definition. (LSR)

  1. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  2. Network Unfolding Map by Vertex-Edge Dynamics Modeling.

    Science.gov (United States)

    Verri, Filipe Alves Neto; Urio, Paulo Roberto; Zhao, Liang

    2018-02-01

    The emergence of collective dynamics in neural networks is a mechanism of the animal and human brain for information processing. In this paper, we develop a computational technique using distributed processing elements in a complex network, which are called particles, to solve semisupervised learning problems. Three actions govern the particles' dynamics: generation, walking, and absorption. Labeled vertices generate new particles that compete against rival particles for edge domination. Active particles randomly walk in the network until they are absorbed by either a rival vertex or an edge currently dominated by rival particles. The result from the model evolution consists of sets of edges arranged by the label dominance. Each set tends to form a connected subnetwork to represent a data class. Although the intrinsic dynamics of the model is a stochastic one, we prove that there exists a deterministic version with largely reduced computational complexity; specifically, with linear growth. Furthermore, the edge domination process corresponds to an unfolding map in such way that edges "stretch" and "shrink" according to the vertex-edge dynamics. Consequently, the unfolding effect summarizes the relevant relationships between vertices and the uncovered data classes. The proposed model captures important details of connectivity patterns over the vertex-edge dynamics evolution, in contrast to the previous approaches, which focused on only vertex or only edge dynamics. Computer simulations reveal that the new model can identify nonlinear features in both real and artificial data, including boundaries between distinct classes and overlapping structures of data.

  3. Rival ecologies of global commerce: Adam Smith and the natural historians.

    Science.gov (United States)

    Jonsson, Fredrik Albritton

    2010-01-01

    This essay explores how the defense of global commerce pioneered in the Enlightenment was tied to the improvement of the natural order. Two rival ecologies, one made by natural historians and the other developed by Adam Smith and his liberal successors, vied for intellectual precedence as well as for practical application in the metropole and the colonies. Together they constitute the beginnings of an ongoing quarrel over the environmental foundation of capitalism.

  4. Network Effects Versus Strategic Discounting

    DEFF Research Database (Denmark)

    Zucchini, Leon; Claussen, Jörg; Trüg, Moritiz

    . Alternatively, research on strategic discounting suggests small operators use on-net discounts to advertise with low on-net prices. We test the relative strength of these effects using data on tariff setting in German mobile telecommunications between 2001 and 2009. We find that large operators are more likely......Mobile telecommunication operators routinely charge subscribers lower prices for calls on their own network than for calls to other networks (on-net discounts). Studies on tariff-mediated network effects suggest this is due to large operators using on-net discounts to damage smaller rivals...

  5. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    Directory of Open Access Journals (Sweden)

    St Laurent Georges

    2010-03-01

    Full Text Available Abstract Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4

  6. Mate Choice and Copulation Frequency in the Burying Beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae: Effect of Male Body Size and Presence of a Rival

    Directory of Open Access Journals (Sweden)

    Seizi Suzuki

    2009-01-01

    Full Text Available It is widely assumed that there exists a competition between males for mating and that females prefer males with elaborate male traits. Further, such traits are considered to be synonymous with high quality in terms of benefits to females. The number and duration of copulations and the frequency of mate refusal between large and small Nicrophorus quadripunctatus males were examined both for single males and for two males competing. The number of copulations was not affected by the size of the male or by the presence of a rival, but there was a significant interaction such that large males increased their number of copulations when a small rival was present. Copulation duration was not affected by male size but was shortened by a rival male. Females rejected copulation attempts of small males more often than of large males, whether the males were alone or paired with a rival. These results suggest that large males have two advantages: they win contests between males and are preferred by females.

  7. Teaching Metaphorical Extensions of Private Events through Rival-Model Observation to Children with Autism

    Science.gov (United States)

    Dixon, Mark R.; Belisle, Jordan; Munoz, Bridget E.; Stanley, Caleb R.; Rowsey, Kyle E.

    2017-01-01

    The study evaluated the efficacy of observational learning using the rival-model technique in teaching three children with autism to state metaphorical statements about emotions when provided a picture, as well as to intraverbally state an appropriate emotion when provided a scenario and corresponding metaphorical emotion. The results provide a…

  8. Exposure to odors of rivals enhances sexual motivation in male giant pandas.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Bian

    Full Text Available Males will alter their mating behavior to cope with the presence of their competitors. Even exposure to odors from potential competitors can greatly increase male ejaculate expenditure in a variety of animals including insects, fishes, birds and rodents. Major efforts have been made to examine males' plastic responses to sperm competition and its fitness benefits. However, the effects of competitor absence on male's sexual motivation and behaviors remain unclear, which has been proposed to be one of the causes for the poor sexual performance of some captive mammals. This study revealed that sexual motivation can be greatly enhanced in captive male giant pandas (Ailuropoda melanoleuca by exposure to chemosensory cues from either one or three conspecifics males. It had been shown that potential rivals' odors increased males' chemosensory investigation behavior, as well as their observing, following and sniffing behaviors towards estrous females. Behaviors changed regardless of the number of rivals (one or three. Our results demonstrate the effects of potential competition on male giant pandas' sexual motivation and behavioral coping strategy. We anticipate that our research will provide a fresh insight into the mechanisms underlying poor sexual performance in male captive mammals, and valuable information for the practical management and ex situ conservation of endangered species.

  9. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  10. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  11. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  12. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    International Nuclear Information System (INIS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-01-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  13. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy); University of Trento, Department of Mathematics (Italy); Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068 Rovereto (Italy)

    2016-07-15

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  14. Adversaries and Allies: Rival National Suffrage Groups and the 1882 Nebraska Woman Suffrage Campaign

    Science.gov (United States)

    Heider, Carmen

    2005-01-01

    In September 1882, Nebraska was the setting for a significant moment in the history of the United States women's rights movement: the two rival suffrage organizations, the American Woman Suffrage Association (AWSA) and the National Woman Suffrage Association (NWSA), both held their annual conventions in Omaha. The alliance of the AWSA and the NWSA…

  15. Tariff-Mediated Network Effects Versus Strategic Disounting

    DEFF Research Database (Denmark)

    Zucchini, Leon; Claussen, Jörg; Trüg, Moritz

    2013-01-01

    . Alternatively, research on strategic discounting suggests that small operators use on-net discounts to advertise with low on-net prices. We test the relative strength of these effects using data on tariff setting in German mobile telecommunications between 2001 and 2009. We find that large operators are more......Mobile telecommunication operators routinely charge subscribers lower prices for calls on their own network than for calls to other networks (on-net discounts). Studies on tariff-mediated network effects suggest this is due to large operators using on-net discounts to damage smaller rivals...

  16. Cognitive ability rivals the effect of political sophistication on ideological voting

    DEFF Research Database (Denmark)

    Hebbelstrup Rye Rasmussen, Stig

    2016-01-01

    This article examines the impact of cognitive ability on ideological voting. We find, using a US sample and a Danish sample, that the effect of cognitive ability rivals the effect of the traditionally strongest predicter of ideological voting political sophistication. Furthermore, the results...... are consistent with the effect of cognitive ability being partly mediated by political sophistication. Much of the effect of cognitive ability remains however and is not explained by differences in education or Openness to experience either. The implications of these results for democratic theory are discussed....

  17. Multidimensional biochemical information processing of dynamical patterns.

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  18. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  19. SABIO-RK: A data warehouse for biochemical reactions and their kinetics

    Directory of Open Access Journals (Sweden)

    Krebs Olga

    2007-03-01

    Full Text Available Systems biology is an emerging field that aims at obtaining a system-level understanding of biological processes. The modelling and simulation of networks of biochemical reactions have great and promising application potential but require reliable kinetic data. In order to support the systems biology community with such data we have developed SABIO-RK (System for the Analysis of Biochemical Pathways - Reaction Kinetics, a curated database with information about biochemical reactions and their kinetic properties, which allows researchers to obtain and compare kinetic data and to integrate them into models of biochemical networks. SABIO-RK is freely available for academic use at http://sabio.villa-bosch.de/SABIORK/.

  20. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.

    Science.gov (United States)

    Kügler, Philipp; Yang, Wei

    2014-06-01

    Model building of biochemical reaction networks typically involves experiments in which changes in the behavior due to natural or experimental perturbations are observed. Computational models of reaction networks are also used in a systems biology approach to study how transitions from a healthy to a diseased state result from changes in genetic or environmental conditions. In this paper we consider the nonlinear inverse problem of inferring information about the Jacobian of a Langevin type network model from covariance data of steady state concentrations associated to two different experimental conditions. Under idealized assumptions on the Langevin fluctuation matrices we prove that relative alterations in the network Jacobian can be uniquely identified when comparing the two data sets. Based on this result and the premise that alteration is locally confined to separable parts due to network modularity we suggest a computational approach using hybrid stochastic-deterministic optimization for the detection of perturbations in the network Jacobian using the sparsity promoting effect of [Formula: see text]-penalization. Our approach is illustrated by means of published metabolomic and signaling reaction networks.

  1. Gender differences in the jealousy-evoking effect of rival characteristics : A study in Spain and Argentina

    NARCIS (Netherlands)

    Buunk, Abraham P.; Castro Solano, Alejandro; Zurriaga, Rosario; Gonzalez, Pilar

    This study examines gender differences in the jealousy-evoking nature of rival characteristics in two Spanish-speaking countries (Argentina and Spain). A total of 388 Spanish students and 444 Argentinean students participated in the study. First, the cross-cultural validity of a Dutch scale

  2. Tariff-Mediated Network Effects versus Strategic Discounting: Evidence from German Mobile Telecommunications

    OpenAIRE

    Zucchini, Leon; Claussen, Jörg; Trüg, Moritz

    2013-01-01

    Mobile telecommunication operators routinely charge subscribers lower prices for calls on their own network than for calls to other networks (on-net discounts). Studies on tariff-mediated network effects suggest this is due to large operators using on-net discounts to damage smaller rivals. Alternatively, research on strategic discounting suggests small operators use on-net discounts to advertise with low on-net prices. We test the relative strength of these effects using data on tariff setti...

  3. Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-Sik; Eichinger, William

    2013-01-01

    This paper is concerned with the identification of nuclides from weak and poorly resolved spectra in the presence of unknown radiation shielding materials such as carbon, water, concrete and lead. Since a shield will attenuate lower energies more so than higher ones, isotope sub-spectra must be introduced into models and into detection algorithms. We propose a new algorithm for detection, called group positive RIVAL, that encourages the selection of groups of sub-spectra rather than the selection of individual sub-spectra that may be from the same parent isotope. Indeed, the proposed algorithm incorporates group positive LASSO, and, as such, we supply the consistency results of group positive LASSO and adaptive group positive LASSO. In an example employing various shielding materials and material thicknesses, group positive RIVAL is shown to perform well in all scenarios with the exception of ones in which the shielding material is lead. - Highlights: ► Identification of nuclides from weak and poorly resolved spectra. ► Shielding materials such as carbon, water, concrete, and lead are considered. ► Isotope spectra are decomposed into their sub-spectra. ► A variable selection algorithm is proposed that encourages group selection. ► Simulations demonstrate the proposed method's performance when nuclides have been shielded

  4. Threatening Men's Mate Value Influences Aggression Toward an Intrasexual Rival: The Moderating Role of Narcissism.

    Science.gov (United States)

    Bird, Brian M; Carré, Justin M; Knack, Jennifer M; Arnocky, Steven

    2016-01-01

    Correlational research has linked low mate value (MV)--one's worth as a mating partner to members of the opposite sex--with aggression in men. In 2 experiments, we examined the effects of self-perceived MV on men's reported willingness to aggress directly toward a hypothetical mate poacher (Experiment 1, N = 60) and observable aggression toward a same-sex rival in a laboratory paradigm (Experiment 2, N = 54). In both experiments, the roles of narcissism in moderating the effect of MV condition on subsequent aggression were examined. Results of Experiment 1 indicated that men randomly assigned to the low MV condition were significantly more willing to report aggressive intention than men in the high MV condition. This relationship was moderated by narcissism such that men in the low MV condition who were also high in narcissism were the most likely to aggress. Results of Experiment 2 similarly showed that men in the low MV condition relative to the high MV condition aggressed more toward a same-sex rival when they were high in narcissism. These findings support evolutionary hypotheses surrounding the importance of self-perceived MV in directing aggressive mating efforts, as situated in the framework of threatened egotism.

  5. Patterns of technology transfer between parent companies and subsidiaries rivals. its effect on competition; Patrones de transferencia de tecnologia entre empresas matrices filiares y rivales. su efecto sobre la competencia

    Energy Technology Data Exchange (ETDEWEB)

    Mendi, P.; Moner-colonques, R.; Sempere-Monerris, J. J.

    2012-07-01

    This paper provides a quantitative view of the international market for technology, in which most of the transfers happen within multinational firms by means of royalty based contracts. We develop a competition model where one of the firms, partially owned by a multinational firm that holds a process innovation, has been transferred the technology. When the affiliated firm is the most efficient one in the market, a higher share implies the rival of the affiliated firm paying positive and greater royalties in more cases and so the multinational can control the intensity of competition. (Author)

  6. Rival framings: A framework for discovering how problem formulation uncertainties shape risk management trade-offs in water resources systems

    Science.gov (United States)

    Quinn, J. D.; Reed, P. M.; Giuliani, M.; Castelletti, A.

    2017-08-01

    Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min-max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.

  7. Comparison of indicators of the team game performance between the U.S. team and teams of his rivals at the World Championship Men 2010

    OpenAIRE

    Rédli, Tomáš

    2011-01-01

    Title of thesis: Comparison of indicators of the team game performance between the U.S. team and teams of his rivals at the Wprld Championship Men 2010 Aim of the thesis: The aim of the thesis is to compare indicators of the team game performance of Team USA and its rivals. On the basis of this comparison will be a confrontation of both teams after the match and find differences in their game performance. Methods of the thesis: The main method of the thesis is quantitative analysis of 6 selec...

  8. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  9. From rivals to partners; nuclear cooperation process between Argentina and Brazil

    International Nuclear Information System (INIS)

    Carasales, J.C.

    1997-01-01

    The process of rapprochement and integration with Brazil is probably the most important event of the Argentine foreign policy in the last quarter of the 20th. century. In the framework of this broad undertaking, the gradual development of a new relationship in the nuclear field has showed special and unprecedented characteristic which have aroused the international interest. This publication relates the origin and the evolution of the growing nuclear cooperation process between the two countries which until then had been rivals. The sensitive matter involved makes unexpected the speed and the success of the transition from an attempt to generate confidence and transparency in the nuclear programs of both countries to a whole complex of mandatory legal instruments and to the creation of an agency of mutual safeguard that has no precedent [es

  10. Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Simon Rosenfeld

    2009-01-01

    Full Text Available The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh- Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression.

  11. DEPENDENCE OF VITAMIN CONTENT IN THE GEUM URBANUM AND GEUM RIVALE (GEUM, ROSACEAE ORGANS ON THE RHYTHM OF SEASONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    T. V. Burchenko

    2017-01-01

    Full Text Available The aim of the research is to determine the optimal terms of the accumulation of vitamins by the organs of Geum depending on the rhythms of their seasonal development.Methods. The method for determining the vitamin C is based on the ability of ascorbic acid to change the color to blue in the acidic medium - 2,6 - dichlorophenolindophenol - to the leucoform, while ascorbic acid is oxidized to dehydroascorbic acid. Determination of vitamins A and E was carried out by reversed-phase high-performance liquid chromatography.Results. It was found that the highest indices of vitamin A and E in the leaves of G. urbanum and G. rivale are observed in July. In the rhizomes of avens, the maximum concentration of vitamins A and E is observed in March during their intensive growth, vitamin C in January. Decrease in the supply of rhizomes of plants with vitamins A and E continues in the autumn period, while for the vitamin C it is observed in the early spring. In the inflorescences, at the beginning of flowering, G. rivale L. and G. urbanum L. are characterized by the greatest content of vitamin A; by the end of flowering, vitamins E and C are accumulated more intensively.Conclusion. The leaves of wintering plants of G. urbanum L. and G. rivale L. continue to contain vitamins A, E, C despite low temperatures under snow cover and are not subject to significant destruction. During the winter rest period, the content of vitamin C in the roots reaches a maximum. 

  12. Strategies for managing rival bacterial communities: Lessons from burying beetles.

    Science.gov (United States)

    Duarte, Ana; Welch, Martin; Swannack, Chris; Wagner, Josef; Kilner, Rebecca M

    2018-03-01

    The role of bacteria in animal development, ecology and evolution is increasingly well understood, yet little is known of how animal behaviour affects bacterial communities. Animals that benefit from defending a key resource from microbial competitors are likely to evolve behaviours to control or manipulate the animal's associated external microbiota. We describe four possible mechanisms by which animals could gain a competitive edge by disrupting a rival bacterial community: "weeding," "seeding," "replanting" and "preserving." By combining detailed behavioural observations with molecular and bioinformatic analyses, we then test which of these mechanisms best explains how burying beetles, Nicrophorus vespilloides, manipulate the bacterial communities on their carcass breeding resource. Burying beetles are a suitable species to study how animals manage external microbiota because reproduction revolves around a small vertebrate carcass. Parents shave a carcass and apply antimicrobial exudates on its surface, shaping it into an edible nest for their offspring. We compared bacterial communities in mice carcasses that were either fresh, prepared by beetles or unprepared but buried underground for the same length of time. We also analysed bacterial communities in the burying beetle's gut, during and after breeding, to understand whether beetles could be "seeding" the carcass with particular microbes. We show that burying beetles do not "preserve" the carcass by reducing bacterial load, as is commonly supposed. Instead, our results suggest they "seed" the carcass with bacterial groups which are part of the Nicrophorus core microbiome. They may also "replant" other bacteria from the carcass gut onto the surface of their carrion nest. Both these processes may lead to the observed increase in bacterial load on the carcass surface in the presence of beetles. Beetles may also "weed" the bacterial community by eliminating some groups of bacteria on the carcass, perhaps through

  13. Simulation studies in biochemical signaling and enzyme reactions

    Science.gov (United States)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  14. Bistable responses in bacterial genetic networks: Designs and dynamical consequences

    Science.gov (United States)

    Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.

    2011-01-01

    A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588

  15. Strategic and Tactical Design of Competing Decentralized Supply Chain Networks with Risk-Averse Participants for Markets with Uncertain Demand

    OpenAIRE

    Hafezalkotob, Ashkan; Makui, Ahmad; Sadjadi, Seyed Jafar

    2011-01-01

    An integrated equilibrium model for tactical decisions in network design is developed. We consider a decentralized supply chain network operating in markets under uncertain demands when there is a rival decentralized chain. The primary assumption is that two chains provide partial substitutable products to the markets, and markets' demands are affected by tactical decisions such as price, service level, and advertising expenditure. Each chain consists of one risk-averse manufacturer and a set...

  16. A Simple Approach to Study Designs in Complex Biochemical ...

    Indian Academy of Sciences (India)

    Somdatta Sinha

    Protein sequences. • Biochemical & Genetic information. REVERSE ENGINEERING. LARGE NETWORKS. FORWARD ENGINEERING. All designs that are not physically forbidden are realizable, but not all realizable designs are functionally effective. (in relation to context and constraints of the system and environment).

  17. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Science.gov (United States)

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  18. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Directory of Open Access Journals (Sweden)

    Kentaro Inoue

    Full Text Available BACKGROUND: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. RESULTS: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. CONCLUSIONS: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  19. Rivaling paradigms in psychiatric neurosurgery: adjustability versus quick fix versus minimal-invasiveness.

    Science.gov (United States)

    Müller, Sabine; Riedmüller, Rita; van Oosterhout, Ansel

    2015-01-01

    In the wake of deep brain stimulation (DBS) development, ablative neurosurgical procedures are seeing a comeback, although they had been discredited and nearly completely abandoned in the 1970s because of their unethical practice. Modern stereotactic ablative procedures as thermal or radiofrequency ablation, and particularly radiosurgery (e.g., Gamma Knife) are much safer than the historical procedures, so that a re-evaluation of this technique is required. The different approaches of modern psychiatric neurosurgery refer to different paradigms: microsurgical ablative procedures is based on the paradigm 'quick fix,' radiosurgery on the paradigm 'minimal-invasiveness,' and DBS on the paradigm 'adjustability.' From a mere medical perspective, none of the procedures is absolutely superior; rather, they have different profiles of advantages and disadvantages. Therefore, individual factors are crucial in decision-making, particularly the patients' social situation, individual preferences, and individual attitudes. The different approaches are not only rivals, but also enriching mutually. DBS is preferable for exploring new targets, which may become candidates for ablative microsurgery or radiosurgery.

  20. Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.

    Science.gov (United States)

    Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf

    2010-05-25

    Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.

  1. How Emerging Market Resource-poor Firms Compete and Outcompete Advanced Country Resource-Rich Rivals

    DEFF Research Database (Denmark)

    Li, Xin

    2018-01-01

    Purpose: The purpose of this paper is to comment on Professor Ming-Jer Chen’s recent publication titled “Competitive dynamics: Eastern roots, Western growth” and present an asymmetry reversing perspective on the competitive dynamics between two nonobvious, invisible or indirect competitors, namely......, how emerging market resource-poor firms compete and outcompete advanced country resource-rich rivals. Design/methodology/approach: The author first identifies an important neglect in Professor Chen’s scholarship on competitive dynamics, i.e., the neglect of the ubiquity of the less visible competition...... position, and try to avoid any direct competition with the strong incumbents. They often tactically appear to pursue different paths of development from those of the strong incumbents by focusing on particular product categories and market segments. Doing so allows the resource-poor firms to win times...

  2. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  3. Rivaling Paradigms in Psychiatric Neurosurgery: Adjustability versus Quick Fix versus Minimal-Invasiveness

    Directory of Open Access Journals (Sweden)

    Müller eSabine

    2015-04-01

    Full Text Available In the wake of deep brain stimulation (DBS development, ablative neurosurgical procedures are seeing a comeback, although they had been discredited and nearly completely abandoned in the 1970ies because of their unethical practice. Modern stereotactic ablative procedures as thermal or radiofrequency ablation, and particularly radiosurgery (e.g., Gamma Knife are much safer than the historical procedures, so that a re-evaluation of this technique is required. The different approaches of modern psychiatric neurosurgery refer to different paradigms: Microsurgical ablative procedures is based on the paradigm ‘quick fix’, radiosurgery on the paradigm ‘minimal-invasiveness’, and DBS on the paradigm ‘adjustability’.From a mere medical perspective, none of the procedures is absolutely superior; rather, they have different profiles of advantages and disadvantages. Therefore, individual factors are crucial in decision-making, particularly the patients’ social situation, individual preferences, and individual attitudes.The different approaches are not only rivals, but also enriching mutually. DBS is preferable for exploring new targets, which may become candidates for ablative microsurgery or radiosurgery.

  4. Estimating Biochemical Parameters of Tea (camellia Sinensis (L.)) Using Hyperspectral Techniques

    Science.gov (United States)

    Bian, M.; Skidmore, A. K.; Schlerf, M.; Liu, Y.; Wang, T.

    2012-07-01

    Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly.

  5. Pet dogs’ behavior when the owner and an unfamiliar person attend to a faux rival

    Science.gov (United States)

    Nicotra, Velia; Pelosi, Annalisa; Valsecchi, Paola

    2018-01-01

    While dog owners ascribe different emotions to their pets, including jealousy, research on secondary emotions in nonhuman animals is very limited and, so far, only one study has investigated jealousy in dogs (Canis familiaris). This work explores jealousy in dogs one step further. We conducted two studies adapting a procedure devised to assess jealousy in human infants. In each study 36 adult dogs were exposed to a situation in which their owner and a stranger ignored them while directing positive attention towards three different objects: a book, a puppet and a fake dog (Study 1: furry; Study 2: plastic). Overall, the results of both studies do not provide evidence that the behavioral responses of our dogs were triggered by jealousy: we did not find a clear indication that the fake dogs were perceived as real social rivals, neither the furry nor the plastic one. Indeed, dogs exhibited a higher interest (i.e. look at, interact with) towards the fake dogs, but differences in the behavior towards the fake dog and the puppet only emerged in Study 2. In addition, many of the behaviors (protest, stress, attention seeking, aggression) that are considered distinctive features of jealousy were not expressed or were expressed to a limited extent, revealing that dogs did not actively try to regain their owner’s attention or interfere with the interaction between the owner and the faux rival. Finally, a differentiated response towards the attachment figure (the owner) and the unfamiliar person (the stranger) did not emerge. Differently from what reported in human infants, dogs’ behavior towards the attachment figure and the stranger interacting with the potential competitor (in this case, the fake dog) did not significantly differ: in both studies dogs paid attention to the owner and the stranger manipulating the fake dog to the same extent. In conclusion, we do not exclude that dogs could possess a rudimentary form of jealousy, but we suggest that research on this topic

  6. Systems biology and the origins of life? part II. Are biochemical networks possible ancestors of living systems? networks of catalysed chemical reactions: non-equilibrium, self-organization and evolution.

    Science.gov (United States)

    Ricard, Jacques

    2010-01-01

    The present article discusses the possibility that catalysed chemical networks can evolve. Even simple enzyme-catalysed chemical reactions can display this property. The example studied is that of a two-substrate proteinoid, or enzyme, reaction displaying random binding of its substrates A and B. The fundamental property of such a system is to display either emergence or integration depending on the respective values of the probabilities that the enzyme has bound one of its substrate regardless it has bound the other substrate, or, specifically, after it has bound the other substrate. There is emergence of information if p(A)>p(AB) and p(B)>p(BA). Conversely, if p(A)equilibrium. Moreover, in such systems, emergence results in an increase of the energy level of the ternary EAB complex that becomes closer to the transition state of the reaction, thus leading to the enhancement of catalysis. Hence a drift from quasi-equilibrium is, to a large extent, responsible for the production of information and enhancement of catalysis. Non-equilibrium of these simple systems must be an important aspect that leads to both self-organization and evolutionary processes. These conclusions can be extended to networks of catalysed chemical reactions. Such networks are, in fact, networks of networks, viz. meta-networks. In this formal representation, nodes are chemical reactions catalysed by poorly specific proteinoids, and links can be identified to the transport of metabolites from proteinoid to proteinoid. The concepts of integration and emergence can be applied to such situations and can be used to define the identity of these networks and therefore their evolution. Defined as open non-equilibrium structures, such biochemical networks possess two remarkable properties: (1) the probability of occurrence of their nodes is dependant upon the input and output of matter in, and from, the system and (2) the probability of occurrence of the nodes is strictly linked to their degree of

  7. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  8. Complexity of generic biochemical circuits: topology versus strength of interactions

    Science.gov (United States)

    Tikhonov, Mikhail; Bialek, William

    2016-12-01

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  9. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2011-01-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits

  10. Networks and RegionalCompetitiveness: Towards a Transaction Cost Approach of Small-Scale Cooperation

    Directory of Open Access Journals (Sweden)

    Daniel Friel

    2005-06-01

    Full Text Available A preoccupation with competition often dominates the study of governance. A focus on competition often unnecessarily precludes the possibility that regional institutions can suspend competition in certain areas and facilitate cooperation among potential rivals, thereby potentially contributing to their mutual success. In many ways companies cooperating through these types of networks have a greater degree of flexibility than firms which are forced to rely solely on hierarchies or markets for solutions to their problems. In order to fully understand how such networks work, this article first parses out differences in definitions of networks in order to understand how the type of network mentioned above actually differs from other uses of this term. Then it develops a theory of governance that goes beyond hierarchies and markets by demonstrating how this type of network can lead to reductions in transaction costs. This claim is illustrated on hand from examples of alternative forms of organization in Germany and Italy.

  11. The rival wears Prada: luxury consumption as a female competition strategy.

    Science.gov (United States)

    Hudders, Liselot; De Backer, Charlotte; Fisher, Maryanne; Vyncke, Patrick

    2014-06-04

    Previous studies on luxury consumption demonstrated that men spend large sums of money on luxury brands to signal their mate value to women and, thus, increase their reproductive success. Although women also spend copious amounts of money on luxuries, research focusing on women's motives for luxury consumption is rather scarce. Relying on costly signaling and intrasexual competition theory, the goal of the current study was to test whether female intrasexual competition in a mate attraction context triggers women's spending on luxuries. The results of the first experiment reveal that an intrasexual competition context enhances women's preferences for attractiveness enhancing, but not for non-attractiveness related luxuries such as a smartphone. This finding indicates that women may use luxury consumption as a self-promotion strategy during within-sex competitions, as these luxuries improve their advantages against same-sex rivals for mates. A follow-up study shows that compared to women who do not consume luxuries, women who do so are perceived as more attractive, flirty, young, ambitious, sexy, and less loyal, mature and smart by other women. These results suggest that luxury consumption may provide information about a women's willingness to engage in sex, as well as her views about other women, and consequently, her success in intrasexual competitions.

  12. The Rival Wears Prada: Luxury Consumption as a Female Competition Strategy

    Directory of Open Access Journals (Sweden)

    Liselot Hudders

    2014-07-01

    Full Text Available Previous studies on luxury consumption demonstrated that men spend large sums of money on luxury brands to signal their mate value to women and, thus, increase their reproductive success. Although women also spend copious amounts of money on luxuries, research focusing on women's motives for luxury consumption is rather scarce. Relying on costly signaling and intrasexual competition theory, the goal of the current study was to test whether female intrasexual competition in a mate attraction context triggers women's spending on luxuries. The results of the first experiment reveal that an intrasexual competition context enhances women's preferences for attractiveness enhancing, but not for non-attractiveness related luxuries such as a smartphone. This finding indicates that women may use luxury consumption as a self-promotion strategy during within-sex competitions, as these luxuries improve their advantages against same-sex rivals for mates. A follow-up study shows that compared to women who do not consume luxuries, women who do so are perceived as more attractive, flirty, young, ambitious, sexy, and less loyal, mature and smart by other women. These results suggest that luxury consumption may provide information about a women's willingness to engage in sex, as well as her views about other women, and consequently, her success in intrasexual competitions.

  13. Computing molecular fluctuations in biochemical reaction systems based on a mechanistic, statistical theory of irreversible processes.

    Science.gov (United States)

    Kulasiri, Don

    2011-01-01

    We discuss the quantification of molecular fluctuations in the biochemical reaction systems within the context of intracellular processes associated with gene expression. We take the molecular reactions pertaining to circadian rhythms to develop models of molecular fluctuations in this chapter. There are a significant number of studies on stochastic fluctuations in intracellular genetic regulatory networks based on single cell-level experiments. In order to understand the fluctuations associated with the gene expression in circadian rhythm networks, it is important to model the interactions of transcriptional factors with the E-boxes in the promoter regions of some of the genes. The pertinent aspects of a near-equilibrium theory that would integrate the thermodynamical and particle dynamic characteristics of intracellular molecular fluctuations would be discussed, and the theory is extended by using the theory of stochastic differential equations. We then model the fluctuations associated with the promoter regions using general mathematical settings. We implemented ubiquitous Gillespie's algorithms, which are used to simulate stochasticity in biochemical networks, for each of the motifs. Both the theory and the Gillespie's algorithms gave the same results in terms of the time evolution of means and variances of molecular numbers. As biochemical reactions occur far away from equilibrium-hence the use of the Gillespie algorithm-these results suggest that the near-equilibrium theory should be a good approximation for some of the biochemical reactions. © 2011 Elsevier Inc. All rights reserved.

  14. Network-based stochastic competitive learning approach to disambiguation in collaborative networks

    Science.gov (United States)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  15. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    Science.gov (United States)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  16. Mean field interaction in biochemical reaction networks

    KAUST Repository

    Tembine, Hamidou

    2011-09-01

    In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.

  17. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    Science.gov (United States)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  18. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    Science.gov (United States)

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  19. Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies

    Directory of Open Access Journals (Sweden)

    Azarnoush Ansari

    2016-06-01

    Full Text Available The purpose of this study is to investigate the customer–service provider relationship in the insurance industry using artificial neural networks and linear regression. Using a sample of 389 customers from 10 different startup insurance companies, it was found that artificial neural networks are an efficient way to evaluate the factors affecting customer loyalty. The results indicated that customer satisfaction and perceived value are significant predictors of customer loyalty. Additionally, it was found that trust, perceived quality, and empathy have a significant impact on both customer satisfaction and perceived value. The results also showed that customer commitment to service provider is positively associated with customer satisfaction and loyalty. After comparing the performance of linear regression models with artificial neural networks, it was found that the use of neural networks is a better approach for analyzing the customer loyalty, satisfaction, and perceived value. The use of new techniques such as artificial neural networks for analyzing the customer behavior can be particularly beneficial for startup companies who aspire to gain competitive advantage over their strong and well-established rivals.

  20. Commercial and Business Networks in Colonial Guadalajara: Market, Commercial Elite and Institutions

    Directory of Open Access Journals (Sweden)

    Antonio Ibarra

    2007-01-01

    Full Text Available This text studies the correspondence between the circulatory flows of goods and the business networks established by the Merchants’ Guild of Guadalajara. It shows how, in a time of corporate struggles caused by the opposition of the Merchants’ Guild of Mexico City to its upstart rivals, these networks nevertheless kept their business among their members in spite of all antagonisms. This in turn configured spatial business networks that reorganized the markets of New Spain. With an analysis of tax records, we can see how ties were strengthened between small groups of merchants belonging to the merchants’ guilds of Guadalajara, Veracruz and Mexico City, with other groups of merchants from the countryside supplying local consumption in Guadalajara. This text observes how merchants who had occupied positions in the guild and those close to them concentrated their activities in import/export firms based in the city of Guadalajara and specialized themselves in terms of branch of trade and origin of merchandise, a phenomenon that may have favored trust as a crucial element in the development of business networks.

  1. Quantity and biochemical composition of particulate organic matter in a highly trawled area (Thermaikos Gulf, Eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Antonio Pusceddu

    2015-11-01

    Full Text Available Bottom trawling represents nowadays one of the most severe anthropogenic disturbances at sea, and determines large impacts on benthic communities and processes. Bottom trawling determines also local sediment resuspension and the effects of the injection of large amounts of surface sediments into the water column have been repeatedly investigated. Few studies have assessed the consequences of sediment resuspension caused by bottom trawling on the quantity, biochemical composition and bioavailability of suspended organic particles and how these eventually rival those exerted by natural storms. To provide insights on this poorly addressed issue, we investigated concentrations and biochemical composition of total and enzymatically digestible pools of particulate organic matter (POM in the Thermaikos Gulf (Mediterranean Sea under calm sea conditions, during intensive trawling activities, and after a severe storm. We show here that sediment resuspension caused by trawling can cause large effects on POM quantity, biochemical composition and bioavailability. Both during trawling and after the storm, the relative importance of the carbohydrate pools increased (in the upper water column and the total lipid concentrations decreased (in the intermediate and bottom layers when compared to values measured during calm conditions. These results would suggest that bottom trawling could inject in the upper water column POM pools more refractory in nature (e.g., carbohydrates than those present in calm or after-storm conditions. By contrast, we show also that the bioavailable fraction of biopolymeric C increased significantly during trawling in the upper water column of the shallowest stations and in the bottom water column layer of the deepest ones. These results provide evidence that bottom trawling can influence the overall trophic status of coastal waters, exerting effects similar or stronger than those caused by natural storms, though of variable amplitude

  2. A case study of evolutionary computation of biochemical adaptation

    International Nuclear Information System (INIS)

    François, Paul; Siggia, Eric D

    2008-01-01

    Simulations of evolution have a long history, but their relation to biology is questioned because of the perceived contingency of evolution. Here we provide an example of a biological process, adaptation, where simulations are argued to approach closer to biology. Adaptation is a common feature of sensory systems, and a plausible component of other biochemical networks because it rescales upstream signals to facilitate downstream processing. We create random gene networks numerically, by linking genes with interactions that model transcription, phosphorylation and protein–protein association. We define a fitness function for adaptation in terms of two functional metrics, and show that any reasonable combination of them will yield the same adaptive networks after repeated rounds of mutation and selection. Convergence to these networks is driven by positive selection and thus fast. There is always a path in parameter space of continuously improving fitness that leads to perfect adaptation, implying that the actual mutation rates we use in the simulation do not bias the results. Our results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned quickly from the random examples supplied by mutation. This formulation allows for deductive predictions of the networks realized in nature

  3. Autocatalytic sets in a partitioned biochemical network.

    Science.gov (United States)

    Smith, Joshua I; Steel, Mike; Hordijk, Wim

    2014-01-01

    In previous work, RAF theory has been developed as a tool for making theoretical progress on the origin of life question, providing insight into the structure and occurrence of self-sustaining and collectively autocatalytic sets within catalytic polymer networks. We present here an extension in which there are two "independent" polymer sets, where catalysis occurs within and between the sets, but there are no reactions combining polymers from both sets. Such an extension reflects the interaction between nucleic acids and peptides observed in modern cells and proposed forms of early life. We present theoretical work and simulations which suggest that the occurrence of autocatalytic sets is robust to the partitioned structure of the network. We also show that autocatalytic sets remain likely even when the molecules in the system are not polymers, and a low level of inhibition is present. Finally, we present a kinetic extension which assigns a rate to each reaction in the system, and show that identifying autocatalytic sets within such a system is an NP-complete problem. Recent experimental work has challenged the necessity of an RNA world by suggesting that peptide-nucleic acid interactions occurred early in chemical evolution. The present work indicates that such a peptide-RNA world could support the spontaneous development of autocatalytic sets and is thus a feasible alternative worthy of investigation.

  4. Computing with competition in biochemical networks.

    Science.gov (United States)

    Genot, Anthony J; Fujii, Teruo; Rondelez, Yannick

    2012-11-16

    Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

  5. Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic.

    Science.gov (United States)

    Khan, Faiz M; Schmitz, Ulf; Nikolov, Svetoslav; Engelmann, David; Pützer, Brigitte M; Wolkenhauer, Olaf; Vera, Julio

    2014-01-01

    A decade of successful results indicates that systems biology is the appropriate approach to investigate the regulation of complex biochemical networks involving transcriptional and post-transcriptional regulations. It becomes mandatory when dealing with highly interconnected biochemical networks, composed of hundreds of compounds, or when networks are enriched in non-linear motifs like feedback and feedforward loops. An emerging dilemma is to conciliate models of massive networks and the adequate description of non-linear dynamics in a suitable modeling framework. Boolean networks are an ideal representation of massive networks that are humble in terms of computational complexity and data demand. However, they are inappropriate when dealing with nested feedback/feedforward loops, structural motifs common in biochemical networks. On the other hand, models of ordinary differential equations (ODEs) cope well with these loops, but they require enormous amounts of quantitative data for a full characterization of the model. Here we propose hybrid models, composed of ODE and logical sub-modules, as a strategy to handle large scale, non-linear biochemical networks that include transcriptional and post-transcriptional regulations. We illustrate the construction of this kind of models using as example a regulatory network centered on E2F1, a transcription factor involved in cancer. The hybrid modeling approach proposed is a good compromise between quantitative/qualitative accuracy and scalability when considering large biochemical networks with a small highly interconnected core, and module of transcriptionally regulated genes that are not part of critical regulatory loops. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Strategic and Tactical Design of Competing Decentralized Supply Chain Networks with Risk-Averse Participants for Markets with Uncertain Demand

    Directory of Open Access Journals (Sweden)

    Ashkan Hafezalkotob

    2011-01-01

    Full Text Available An integrated equilibrium model for tactical decisions in network design is developed. We consider a decentralized supply chain network operating in markets under uncertain demands when there is a rival decentralized chain. The primary assumption is that two chains provide partial substitutable products to the markets, and markets' demands are affected by tactical decisions such as price, service level, and advertising expenditure. Each chain consists of one risk-averse manufacturer and a set of risk-averse retailers. The strategic decisions are frequently taking precedence over tactical ones. Therefore, we first find equilibrium of tactical decisions for each possible scenario of supply chain network. Afterwards, we find optimal distribution network of the new supply chain by the scenario evaluation method. Numerical example, including sensitivity analysis will illustrate how the conservative behaviors of chains' members affect expected demand, profit, and utility of each distribution scenario.

  7. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  8. El caso Ossorio durante el primer franquismo : secuestro y manipulación de la memoria rival como estrategia de control social

    Directory of Open Access Journals (Sweden)

    Rafael Caballero Ruano

    1997-01-01

    Full Text Available En el presente artículo abordaremos una de las estrategias más comunes del nuevo régimen franquista para consolidar el control sobre la sociedad española durante sus primeros años de existencia (1936-1955: el secuestro y/o la manipulación de la memoria de los vencidos a fin de hacerla desaparecer de la memoria colectiva. Para ello, recurriremos a la campaña de descrédito que sufre una figura representativa del bando republicano —el político democristiano Ossorio y Gallardo—, centrándonos en las razones y procedimientos más usuales del Estado para neutralizar a dicho rival. Como colofón, presentamos ciertas claves para la recuperación de la memoria individual, con especial atención a la localización de fuentes y a los obstáculos políticos de la actual coyuntura histórica.In this article we will deal with one of the most common strategies of the new Franquista regime in order to consolídate the control of spanish society during the first years of existence (1936-1953: the kidnapping and/or the manipulation of the defeated's memory to make her disappear from the collective memory. For this we will analyse to the discredit compaign of a representative figure of the republican band —the demochristian politician Ossorio y Gallardo— and the more usual state's reasons and procedures to neutralize the aforementioned rival. Finally we will present some keys for the individual memory's recuperation, especially the source's location and the politician obstacles of the present historical context.

  9. Network of vascular diseases, death and biochemical characteristics in a set of 4,197 patients with type 1 diabetes (The FinnDiane Study

    Directory of Open Access Journals (Sweden)

    Wadén Johan

    2009-10-01

    Full Text Available Background Cardiovascular disease is the main cause of premature death in patients with type 1 diabetes. Patients with diabetic kidney disease have an increased risk of heart attack or stroke. Accurate knowledge of the complex inter-dependencies between the risk factors is critical for pinpointing the best targets for research and treatment. Therefore, the aim of this study was to describe the association patterns between clinical and biochemical features of diabetic complications. Methods Medical records and serum and urine samples of 4,197 patients with type 1 diabetes were collected from health care centers in Finland. At baseline, the mean diabetes duration was 22 years, 52% were male, 23% had kidney disease (urine albumin excretion over 300 mg/24 h or end-stage renal disease and 8% had a history of macrovascular events. All-cause mortality was evaluated after an average of 6.5 years of follow-up (25,714 patient years. The dataset comprised 28 clinical and 25 biochemical variables that were regarded as the nodes of a network to assess their mutual relationships. Results The networks contained cliques that were densely inter-connected (r > 0.6, including cliques for high-density lipoprotein (HDL markers, for triglycerides and cholesterol, for urinary excretion and for indices of body mass. The links between the cliques showed biologically relevant interactions: an inverse relationship between HDL cholesterol and the triglyceride clique (r P -16, a connection between triglycerides and body mass via C-reactive protein (r > 0.3, P -16 and intermediate-density cholesterol as the connector between lipoprotein metabolism and albuminuria (r > 0.3, P -16. Aging and macrovascular disease were linked to death via working ability and retinopathy. Diabetic kidney disease, serum creatinine and potassium, retinopathy and blood pressure were inter-connected. Blood pressure correlations indicated accelerated vascular aging in individuals with kidney disease

  10. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis.

    Science.gov (United States)

    Zhang, Douglas; Lee, Junmin; Kilian, Kristopher A

    2017-10-01

    Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved methods for the mathematically controlled comparison of biochemical systems

    Directory of Open Access Journals (Sweden)

    Schwacke John H

    2004-06-01

    Full Text Available Abstract The method of mathematically controlled comparison provides a structured approach for the comparison of alternative biochemical pathways with respect to selected functional effectiveness measures. Under this approach, alternative implementations of a biochemical pathway are modeled mathematically, forced to be equivalent through the application of selected constraints, and compared with respect to selected functional effectiveness measures. While the method has been applied successfully in a variety of studies, we offer recommendations for improvements to the method that (1 relax requirements for definition of constraints sufficient to remove all degrees of freedom in forming the equivalent alternative, (2 facilitate generalization of the results thus avoiding the need to condition those findings on the selected constraints, and (3 provide additional insights into the effect of selected constraints on the functional effectiveness measures. We present improvements to the method and related statistical models, apply the method to a previously conducted comparison of network regulation in the immune system, and compare our results to those previously reported.

  12. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity

    Science.gov (United States)

    Sonubi, A.; Arcagni, A.; Stefani, S.; Ausloos, M.

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  13. Effects of competition and cooperation interaction between agents on networks in the presence of a market capacity.

    Science.gov (United States)

    Sonubi, A; Arcagni, A; Stefani, S; Ausloos, M

    2016-08-01

    A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.

  14. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  15. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Science.gov (United States)

    2015-03-03

    based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but

  16. Identification of neutral biochemical network models from time series data.

    Science.gov (United States)

    Vilela, Marco; Vinga, Susana; Maia, Marco A Grivet Mattoso; Voit, Eberhard O; Almeida, Jonas S

    2009-05-05

    The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  17. Biochemical Control With Radiotherapy Improves Overall Survival in Intermediate and High-Risk Prostate Cancer Patients Who Have an Estimated 10-Year Overall Survival of >90%

    International Nuclear Information System (INIS)

    Herbert, Christopher; Liu, Mitchell; Tyldesley, Scott; Morris, W. James; Joffres, Michel; Khaira, Mandip; Kwan, Winkle; Moiseenko, Vitali; Pickles, Thomas

    2012-01-01

    Purpose: To identify subgroups of patients with carcinoma of the prostate treated with radical radiotherapy that have improved overall survival when disease is biochemically controlled. Methods and Materials: A cohort of 1,060 prostate cancer patients treated with radical radiotherapy was divided into nine subgroups based on National Comprehensive Cancer Network risk category and estimated 10-year overall survival (eOS 10y) derived from the age adjusted Charlson Comorbidity Index. Patients with and without biochemical control were compared with respect to overall survival. Actuarial estimates of overall survival were calculated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards models were used for analysis of overall survival. Results: Median follow-up was 125 months (range, 51–176 months). Only the subgroups with high or intermediate risk disease and an eOS 10y of >90% had a statistically significantly improved overall survival when prostate cancer was biochemically controlled. In all other groups, biochemical control made no significant difference to overall survival. In the subgroup with high-risk disease and eOS 10y >90%, actuarial overall survival was 86.3% (95% confidence interval [CI] 78.5%–94.1%) and 62.1% (95% CI 52.9%–71.3%) for patients with biochemical control and biochemical relapse respectively (p = 0.002). In the intermediate risk group with eOS >90%, actuarial overall survival was 95.3% (95% CI 89.0%–100%) and 79.8% (95% CI 68.0%–91.6%) for biochemically controlled and biochemically relapsed patients (p = 0.033). On multivariate analysis, National Comprehensive Cancer Network risk group (p = 0.005), biochemical control (p = 0.033) and eOS 10y (p 90%.

  18. BISEN: Biochemical simulation environment

    NARCIS (Netherlands)

    Vanlier, J.; Wu, F.; Qi, F.; Vinnakota, K.C.; Han, Y.; Dash, R.K.; Yang, F.; Beard, D.A.

    2009-01-01

    The Biochemical Simulation Environment (BISEN) is a suite of tools for generating equations and associated computer programs for simulating biochemical systems in the MATLAB® computing environment. This is the first package that can generate appropriate systems of differential equations for

  19. Efficient simulation of intrinsic, extrinsic and external noise in biochemical systems

    Science.gov (United States)

    Pischel, Dennis; Sundmacher, Kai; Flassig, Robert J.

    2017-01-01

    Abstract Motivation: Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most biochemical systems, approximate methods are used to obtain a solution. Results: In this study, a method to efficiently simulate the various sources of noise simultaneously is proposed and benchmarked on several examples. The method relies on the combination of the sigma point approach to describe extrinsic and external variability and the τ-leaping algorithm to account for the stochasticity due to probabilistic reactions. The comparison of our method to extensive Monte Carlo calculations demonstrates an immense computational advantage while losing an acceptable amount of accuracy. Additionally, the application to parameter optimization problems in stochastic biochemical reaction networks is shown, which is rarely applied due to its huge computational burden. To give further insight, a MATLAB script is provided including the proposed method applied to a simple toy example of gene expression. Availability and implementation: MATLAB code is available at Bioinformatics online. Contact: flassig@mpi-magdeburg.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881987

  20. A recurrent neural network for classification of unevenly sampled variable stars

    Science.gov (United States)

    Naul, Brett; Bloom, Joshua S.; Pérez, Fernando; van der Walt, Stéfan

    2018-02-01

    Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time (`light curves'). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints1-5. With nightly observations of millions of variable stars and transients from upcoming surveys4,6, efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data (`features')7. Here, we present a novel unsupervised autoencoding recurrent neural network8 that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogues, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned in one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabelled observations and may be used in other unsupervised tasks, such as forecasting and anomaly detection.

  1. Identification of neutral biochemical network models from time series data

    Directory of Open Access Journals (Sweden)

    Maia Marco

    2009-05-01

    Full Text Available Abstract Background The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. Results In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. Conclusion The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.

  2. Color encoding in biologically-inspired convolutional neural networks.

    Science.gov (United States)

    Rafegas, Ivet; Vanrell, Maria

    2018-05-11

    Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

    International Nuclear Information System (INIS)

    Guidry, M W; Hix, W R; Billings, J J

    2013-01-01

    In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

  4. Multistate Model Builder (MSMB): a flexible editor for compact biochemical models.

    Science.gov (United States)

    Palmisano, Alida; Hoops, Stefan; Watson, Layne T; Jones, Thomas C; Tyson, John J; Shaffer, Clifford A

    2014-04-04

    Building models of molecular regulatory networks is challenging not just because of the intrinsic difficulty of describing complex biological processes. Writing a model is a creative effort that calls for more flexibility and interactive support than offered by many of today's biochemical model editors. Our model editor MSMB - Multistate Model Builder - supports multistate models created using different modeling styles. MSMB provides two separate advances on existing network model editors. (1) A simple but powerful syntax is used to describe multistate species. This reduces the number of reactions needed to represent certain molecular systems, thereby reducing the complexity of model creation. (2) Extensive feedback is given during all stages of the model creation process on the existing state of the model. Users may activate error notifications of varying stringency on the fly, and use these messages as a guide toward a consistent, syntactically correct model. MSMB default values and behavior during model manipulation (e.g., when renaming or deleting an element) can be adapted to suit the modeler, thus supporting creativity rather than interfering with it. MSMB's internal model representation allows saving a model with errors and inconsistencies (e.g., an undefined function argument; a syntactically malformed reaction). A consistent model can be exported to SBML or COPASI formats. We show the effectiveness of MSMB's multistate syntax through models of the cell cycle and mRNA transcription. Using multistate reactions reduces the number of reactions need to encode many biochemical network models. This reduces the cognitive load for a given model, thereby making it easier for modelers to build more complex models. The many interactive editing support features provided by MSMB make it easier for modelers to create syntactically valid models, thus speeding model creation. Complete information and the installation package can be found at http

  5. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  6. Propagating semantic information in biochemical network models

    Directory of Open Access Journals (Sweden)

    Schulz Marvin

    2012-01-01

    Full Text Available Abstract Background To enable automatic searches, alignments, and model combination, the elements of systems biology models need to be compared and matched across models. Elements can be identified by machine-readable biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and calls for automation. Results A new method called "semantic propagation" allows the comparison of model elements based not only on their own annotations, but also on annotations of surrounding elements in the network. One may either propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between elements from different models. Based on semantic propagation, we align partially annotated models and find annotations for non-annotated model elements. Conclusions Semantic propagation and model alignment are included in the open-source library semanticSBML, available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://www.semanticsbml.org.

  7. Thermodynamically based constraints for rate coefficients of large biochemical networks.

    Science.gov (United States)

    Vlad, Marcel O; Ross, John

    2009-01-01

    Wegscheider cyclicity conditions are relationships among the rate coefficients of a complex reaction network, which ensure the compatibility of kinetic equations with the conditions for thermodynamic equilibrium. The detailed balance at equilibrium, that is the equilibration of forward and backward rates for each elementary reaction, leads to compatibility between the conditions of kinetic and thermodynamic equilibrium. Therefore, Wegscheider cyclicity conditions can be derived by eliminating the equilibrium concentrations from the conditions of detailed balance. We develop matrix algebra tools needed to carry out this elimination, reexamine an old derivation of the general form of Wegscheider cyclicity condition, and develop new derivations which lead to more compact and easier-to-use formulas. We derive scaling laws for the nonequilibrium rates of a complex reaction network, which include Wegscheider conditions as a particular case. The scaling laws for the rates are used for clarifying the kinetic and thermodynamic meaning of Wegscheider cyclicity conditions. Finally, we discuss different ways of using Wegscheider cyclicity conditions for kinetic computations in systems biology.

  8. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-01

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a

  9. Chemical networks with inflows and outflows: a positive linear differential inclusions approach.

    Science.gov (United States)

    Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D

    2009-01-01

    Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers

  10. Evolving phenotypic networks in silico.

    Science.gov (United States)

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  11. LeishCyc: a biochemical pathways database for Leishmania major

    Directory of Open Access Journals (Sweden)

    Doyle Maria A

    2009-06-01

    Full Text Available Abstract Background Leishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages. While data mining and annotation of the genomes of three Leishmania species has provided an initial inventory of predicted metabolic components and associated pathways, resources for integrating this information into metabolic networks and incorporating data from transcript, protein, and metabolite profiling studies is currently lacking. The development of a reliable, expertly curated, and widely available model of Leishmania metabolic networks is required to facilitate systems analysis, as well as discovery and prioritization of new drug targets for this important human pathogen. Description The LeishCyc database was initially built from the genome sequence of Leishmania major (v5.2, based on the annotation published by the Wellcome Trust Sanger Institute. LeishCyc was manually curated to remove errors, correct automated predictions, and add information from the literature. The ongoing curation is based on public sources, literature searches, and our own experimental and bioinformatics studies. In a number of instances we have improved on the original genome annotation, and, in some ambiguous cases, collected relevant information from the literature in order to help clarify gene or protein annotation in the future. All genes in LeishCyc are linked to the corresponding entry in GeneDB (Wellcome Trust Sanger Institute. Conclusion The LeishCyc database describes Leishmania major genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways. LeishCyc provides a systematic approach to organizing the evolving information about Leishmania

  12. Statistical physics approaches to subnetwork dynamics in biochemical systems

    Science.gov (United States)

    Bravi, B.; Sollich, P.

    2017-08-01

    We apply a Gaussian variational approximation to model reduction in large biochemical networks of unary and binary reactions. We focus on a small subset of variables (subnetwork) of interest, e.g. because they are accessible experimentally, embedded in a larger network (bulk). The key goal is to write dynamical equations reduced to the subnetwork but still retaining the effects of the bulk. As a result, the subnetwork-reduced dynamics contains a memory term and an extrinsic noise term with non-trivial temporal correlations. We first derive expressions for this memory and noise in the linearized (Gaussian) dynamics and then use a perturbative power expansion to obtain first order nonlinear corrections. For the case of vanishing intrinsic noise, our description is explicitly shown to be equivalent to projection methods up to quadratic terms, but it is applicable also in the presence of stochastic fluctuations in the original dynamics. An example from the epidermal growth factor receptor signalling pathway is provided to probe the increased prediction accuracy and computational efficiency of our method.

  13. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  14. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  15. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    Science.gov (United States)

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  16. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    Science.gov (United States)

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  17. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. [Rumex acetosa; Geum rivale; Lamium galeobdolon; Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, O; Holmgren, P

    1966-01-01

    Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner in a similar mode as sun and shade species. 1 reference, 1 figure, 2 tables.

  18. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.

    Science.gov (United States)

    Weitz, Maximilian; Kim, Jongmin; Kapsner, Korbinian; Winfree, Erik; Franco, Elisa; Simmel, Friedrich C

    2014-04-01

    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

  19. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  20. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-06-28

    Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

  1. Tales of two cities: political capitals and economic centres in the world city network.

    Directory of Open Access Journals (Sweden)

    Peter J. Taylor

    2014-12-01

    Full Text Available The majority of major cities in the world city network are capital cities. Between primacy and political specialization there are examples of countries where the capital city and a second city remain as major rival cities in contemporary globalization. In this paper we focus upon situations where the capital city is less important in global economic capacity: Rome and Milan, Berlin and Frankfurt, Abu Dhabi and Dubai, Delhi and Mumbai, Islamabad and Karachi. This is an exercise in double comparisons: between cities in each pairing and between the pairings. Despite the massive differences – economic, cultural and political – amongst our chosen pairs of cities we have found communalities relating to the specific circumstance we are investigating. First, there is some evidence that economic centres are more global and less local than their capital cities. Second, more particularly, we have shown that in terms of global economic connections there is a very consistent pattern: economic centres have a much more coherent and telling integration into the world city network.

  2. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  3. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  5. Improving Marine Ecosystem Models with Biochemical Tracers

    Science.gov (United States)

    Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.

    2018-01-01

    Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.

  6. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  7. Recepción temprana de la teoría de la deriva continental y su competencia con las teorías rivales

    Directory of Open Access Journals (Sweden)

    Pérez-Malváez, Carlos

    2003-06-01

    Full Text Available In 1912 Alfred Lothar Wegener proposed the theory of the continental drift. Wegener thought that the displacement explained more paleontological and geophysical data than any other rival program. The great virtue of the drift theory resided in their great capacity of synthesis. Wegener appealed to the information provided by the Geology, Paleontology and Paleoclimatology.

    Alfred Lothar Wegener propuso la teoría de la deriva continental en 1912. Wegener ciertamente pensó que el desplazamiento explicaba mas datos paleontológicos y geofísicos que cualquiera de los programas de investigación establecidos. Desde luego, la gran virtud de la teoría de la deriva fue su gran capacidad de síntesis. Wegener recurrió a la información que provenía de la Geología, Geofísica, Paleontología y Paleoclimatología.

  8. Atmospheric benzenoid emissions from plants rival those from fossil fuels.

    Science.gov (United States)

    Misztal, P K; Hewitt, C N; Wildt, J; Blande, J D; Eller, A S D; Fares, S; Gentner, D R; Gilman, J B; Graus, M; Greenberg, J; Guenther, A B; Hansel, A; Harley, P; Huang, M; Jardine, K; Karl, T; Kaser, L; Keutsch, F N; Kiendler-Scharr, A; Kleist, E; Lerner, B M; Li, T; Mak, J; Nölscher, A C; Schnitzhofer, R; Sinha, V; Thornton, B; Warneke, C; Wegener, F; Werner, C; Williams, J; Worton, D R; Yassaa, N; Goldstein, A H

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  9. DMPD: Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation inrespiratory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031251 Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation inrespiratory...l) (.csml) Show Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation inrespiratory dis...utrophilic inflammation inrespiratory disease. Authors Sabroe I, Whyte MK. Publication Biochem Soc Trans. 20

  10. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.

    Directory of Open Access Journals (Sweden)

    Melody K Morris

    2011-03-01

    Full Text Available Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL, converts a prior knowledge network (obtained from literature or interactome databases into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a generating experimentally testable biological hypotheses concerning pathway crosstalk, (b establishing capability for quantitative prediction of protein activity, and (c prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.

  11. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  12. Rational design of functional and tunable oscillating enzymatic networks

    Science.gov (United States)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  13. GKIN: a tool for drawing genetic networks

    Directory of Open Access Journals (Sweden)

    Jonathan Arnold

    2012-03-01

    Full Text Available We present GKIN, a simulator and a comprehensive graphical interface where one can draw the model specification of reactions between hypothesized molecular participants in a gene regulatory and biochemical reaction network (or genetic network for short. The solver is written in C++ in a nearly platform independentmanner to simulate large ensembles of models, which can run on PCs, Macintoshes, and UNIX machines, and its graphical user interface is written in Java which can run as a standalone or WebStart application. The drawing capability for rendering a network significantly enhances the ease of use of other reaction network simulators, such as KINSOLVER (Aleman-Meza et al., 2009 and enforces a correct semantic specification of the network. In a usability study with novice users, drawing the network with GKIN was preferred and faster in comparison with entry with a dialog-box guided interface in COPASI (Hoops, et al., 2006 with no difference in error rates between GKIN and COPASI in specifying the network. GKIN is freely available at http://faculty.cs.wit.edu/~ldeligia/PROJECTS/GKIN/.

  14. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  15. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  16. Information transmission in genetic regulatory networks: a review

    International Nuclear Information System (INIS)

    Tkacik, Gasper; Walczak, Aleksandra M

    2011-01-01

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'. (topical review)

  17. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  18. Biochemical basis for the action of radioprotective drugs

    International Nuclear Information System (INIS)

    Romantsev, E.F.; Blokhina, V.D.; Zhulanova, Z.I.; Koshcheenko, N.N.; Filippovich, I.V.

    1977-01-01

    The hypothesis of complex biochemical mechanism of action of radioprotective drugs is described. Shortly after injection of radioprotective aminothiols into animals the inhibition of radiosensitive biochemical processes: DNA and RNA synthesis, protein synthesis and oxidative phosphorylation has been observed. The molecular mechanism of these phenomena consists of radioprotectors ability to form adsorption, thioester, amide, and disulphide bonds with appropriate enzymes. The curve reflecting the formation and breakdown of mixed disulphides between radioprotectors and proteins coincides well with that reflecting the radioprotective effect dependence on time. The radiobiological significance of molecular interactions observed may be interpreted as the diminution in ''spoiled'' molecules formation (inhibition of replication) and elevation in repartion rate. The inhibition of biochemical processes has the reversible nature and last for short time. The drugs acting according to so-called oxygen effect protect also by means of biochemical mechanisms. The molecular mechanism is mediated through their ability to bind to receptors, and biologically important molecules and macromolecules. As a result the inhibition of radiosensitive processes occurs, the ''spoiled'' molecules number is diminished and reparation takes place more easily. The idea on the complex biochemical mechanism of action of radioprotectors correlates with the proposal on complex biochemical mechanism responsible for interphase death occured after irradiation

  19. Biochemical reactions of the organism

    International Nuclear Information System (INIS)

    Fedorova, A.V.

    1984-01-01

    Effects of mercury, strontium chloride, GMDA, trichlorfon as well as some radionuclides ( 89 Sr, 137 Cs, 203 Hg) were studied on rats. Changes in biochemical parameters (histamine content, activity of cholinesterase and histaminase) are noted. Most noticeable changes were observed in enzymatic activity. Distortion of enzymatic systems and accumulation of intermediate exchange and decay products of tissues in excess quantities affecting other systems can be the reason for changes in the organism. The observed changes in biochemical parameters should be necessarily taken into account at hygienic regulations of harmful effects of enviroment

  20. Industry Consolidation and Future Airline Network Structures in Europe

    Science.gov (United States)

    Dennis, Nigel

    2003-01-01

    In the current downturn in demand for air travel, major airlines are revising and rationalizing their networks in an attempt to improve financial performance and strengthen their defences against both new entrants and traditional rivals. Expansion of commercial agreements or alliances with other airlines has become a key reaction to the increasingly competitive marketplace. In the absence, for regulatory reasons, of cross-border mergers these are the principal means by which the industry can consolidate internationally. This paper analyzes the developments which have been taking place and attempts to itentify the implications for airline network structures and the function of different hub airports. The range of services available to passengers in long-haul markets to/from Europe is evaluated before and after recent industry reorganization. Hubs are crucial to interlink the route networks of parmers in an alliance. However, duplication between nearby hub airports that find themselves within the same airline alliance can lead to loss of service at the weaker locations. The extent to which the alliance hubs in Europe duplicate or complement each other in terms of network coverage is assessed and this methodology also enables the optimal partnerships for "unattached" airlines to be identified. The future role of the various European hubs is considered under different scenarios of global alliance development. The paper concludes by considering possible longer-term developments. In an environment where the low-cost carriers will provide a major element of customer choice, it is suggested that the traditional airlines will retrench around their hubs, surrendering many secondary cities to the low-cost sector. Further reduction in the number of alliances could threaten more of the European hubs. For both regulatory and commercial reasons, the end result may be just one airline alliance - so recreating in the deregulated market the historic rule of IATA.

  1. An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Bellifemine, F.L.; Fortino, G.; Galzarano, S.; Gravina, R.

    2011-01-01

    Nowadays wireless body sensor networks (WBSNs) have great potential to enable a broad variety of assisted living applications such as human biophysical/biochemical control and activity monitoring for health care, e-fitness, emergency detection, emotional recognition for social networking, security,

  2. Diamond network: template-free fabrication and properties.

    Science.gov (United States)

    Zhuang, Hao; Yang, Nianjun; Fu, Haiyuan; Zhang, Lei; Wang, Chun; Huang, Nan; Jiang, Xin

    2015-03-11

    A porous diamond network with three-dimensionally interconnected pores is of technical importance but difficult to be produced. In this contribution, we demonstrate a simple, controllable, and "template-free" approach to fabricate diamond networks. It combines the deposition of diamond/β-SiC nanocomposite film with a wet-chemical selective etching of the β-SiC phase. The porosity of these networks was tuned from 15 to 68%, determined by the ratio of the β-SiC phase in the composite films. The electrochemical working potential and the reactivity of redox probes on the diamond networks are similar to those of a flat nanocrystalline diamond film, while their surface areas are hundreds of times larger than that of a flat diamond film (e.g., 490-fold enhancement for a 3 μm thick diamond network). The marriage of the unprecedented physical/chemical features of diamond with inherent advantages of the porous structure makes the diamond network a potential candidate for various applications such as water treatment, energy conversion (batteries or fuel cells), and storage (capacitors), as well as electrochemical and biochemical sensing.

  3. Prevalence of biochemical and immunological abnormalities in ...

    African Journals Online (AJOL)

    Tile prevalence of biochemical and immunological abnormalities was studied in a group of 256 patients with rheumatoid arthritis (104 coloureds, 100 whites and 52 blacks). The most common biochemical abnormalities detected were a reduction in the serum creatinine value (43,4%), raised globulins (39,7%), raised serum ...

  4. [Biochemical diagnostics of fatal opium intoxication].

    Science.gov (United States)

    Papyshev, I P; Astashkina, O G; Tuchik, E S; Nikolaev, B S; Cherniaev, A L

    2013-01-01

    Biochemical diagnostics of fatal opium intoxication remains a topical problem in forensic medical science and practice. We investigated materials obtained in the course of forensic medical expertise of the cases of fatal opium intoxication. The study revealed significant differences between myoglobin levels in blood, urine, myocardium, and skeletal muscles. The proposed approach to biochemical diagnostics of fatal opium intoxication enhances the accuracy and the level of evidence of expert conclusions.

  5. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions

  6. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  7. Markovian dynamics on complex reaction networks

    International Nuclear Information System (INIS)

    Goutsias, J.; Jenkinson, G.

    2013-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples

  8. Using chemistry and microfluidics to understand the spatial dynamics of complex biological networks.

    Science.gov (United States)

    Kastrup, Christian J; Runyon, Matthew K; Lucchetta, Elena M; Price, Jessica M; Ismagilov, Rustem F

    2008-04-01

    Understanding the spatial dynamics of biochemical networks is both fundamentally important for understanding life at the systems level and also has practical implications for medicine, engineering, biology, and chemistry. Studies at the level of individual reactions provide essential information about the function, interactions, and localization of individual molecular species and reactions in a network. However, analyzing the spatial dynamics of complex biochemical networks at this level is difficult. Biochemical networks are nonequilibrium systems containing dozens to hundreds of reactions with nonlinear and time-dependent interactions, and these interactions are influenced by diffusion, flow, and the relative values of state-dependent kinetic parameters. To achieve an overall understanding of the spatial dynamics of a network and the global mechanisms that drive its function, networks must be analyzed as a whole, where all of the components and influential parameters of a network are simultaneously considered. Here, we describe chemical concepts and microfluidic tools developed for network-level investigations of the spatial dynamics of these networks. Modular approaches can be used to simplify these networks by separating them into modules, and simple experimental or computational models can be created by replacing each module with a single reaction. Microfluidics can be used to implement these models as well as to analyze and perturb the complex network itself with spatial control on the micrometer scale. We also describe the application of these network-level approaches to elucidate the mechanisms governing the spatial dynamics of two networkshemostasis (blood clotting) and early patterning of the Drosophila embryo. To investigate the dynamics of the complex network of hemostasis, we simplified the network by using a modular mechanism and created a chemical model based on this mechanism by using microfluidics. Then, we used the mechanism and the model to

  9. Biochemical and toxicological studies of aqueous extract of ...

    African Journals Online (AJOL)

    Biochemical and toxicological studies of aqueous extract of Syzigium ... tract diseases and also used as food spices), on some biochemical indices, such as ... liver functions and blood parameters were studied in adult albino rats of both sexes.

  10. eQuilibrator--the biochemical thermodynamics calculator.

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.

  11. eQuilibrator—the biochemical thermodynamics calculator

    Science.gov (United States)

    Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron

    2012-01-01

    The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like ‘how much Gibbs energy is released by ATP hydrolysis at pH 5?’ are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use. PMID:22064852

  12. Dynamics in steady state in vitro acto-myosin networks

    International Nuclear Information System (INIS)

    Sonn-Segev, Adar; Roichman, Yael; Bernheim-Groswasser, Anne

    2017-01-01

    It is well known that many biochemical processes in the cell such as gene regulation, growth signals and activation of ion channels, rely on mechanical stimuli. However, the mechanism by which mechanical signals propagate through cells is not as well understood. In this review we focus on stress propagation in a minimal model for cell elasticity, actomyosin networks, which are comprised of a sub-family of cytoskeleton proteins. After giving an overview of th actomyosin network components, structure and evolution we review stress propagation in these materials as measured through the correlated motion of tracer beads. We also discuss the possibility to extract structural features of these networks from the same experiments. We show that stress transmission through these networks has two pathways, a quickly dissipative one through the bulk, and a long ranged weakly dissipative one through the pre-stressed actin network. (topical review)

  13. Possible Biochemical Markers in Protein-Energy Malnutrition and ...

    African Journals Online (AJOL)

    This study was carried out to determine possible biochemical markers in children suffering from Plasmodium falciparum malaria and Protein-Energy Malnutrition in a Hospital setting in Western Kenya. Spectrophotometric assays of selected biochemical parameters namely, albumin, total proteins, glucose, glutamate ...

  14. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  15. Possibilities and methods for biochemical assessment of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1986-01-01

    An extensitive review (77 references) is made of the application of biochemical diagnostic methods for assessment of radiation diseases. A brief characteristics of several biochemical indicators is given: deoxycytidine, thymidine, rho-aminoisocarboxylic acid, DNA-ase, nucleic acids. Influence of such factors as age, sex, season etc. is studied by means of functional biochemical indicators as: creatine, triptophanic metabolites, 5-hydroxy-indolacetic acid, biogenic amines, serum proteins, enzymes, etc.

  16. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  17. Haematological and blood biochemical indices of West African ...

    African Journals Online (AJOL)

    Haematological and blood biochemical indices of West African dwarf goats vaccinated against Pestes des petit ruminants (PPR) ... blood biochemical indices of forty randomly selected West African dwarf (WAD) goats were studied. Packed cell volume ... neutrophil/lymphocyte ratio and white blood cells (WBC) than females.

  18. Definitions of biochemical failure in prostate cancer following radiation therapy

    International Nuclear Information System (INIS)

    Taylor, Jeremy M.G.; Griffith, Kent A.; Sandler, Howard M.

    2001-01-01

    Purpose: The American Society for Therapeutic Radiology and Oncology (ASTRO) published a consensus panel definition of biochemical failure following radiation therapy for prostate cancer. In this paper, we develop a series of alternative definitions of biochemical failure. Using data from 688 patients, we evaluated the sensitivity and specificity of the various definitions, with respect to a defined 'clinically meaningful' outcome. Methods and Materials: The ASTRO definition of biochemical failure requires 3 consecutive rises in prostate-specific antigen (PSA). We considered several modifications to the standard definition: to require PSA rises of a certain magnitude, to consider 2 instead of 3 rises, to require the final PSA value to be greater than a fixed cutoff level, and to define biochemical failure based on the slope of PSA over 1, 1.5, or 2 years. A clinically meaningful failure is defined as local recurrence, distant metastases, initiation of unplanned hormonal therapy, unplanned radical prostatectomy, or a PSA>25 later than 6 months after radiation. Results: Requiring the final PSA in a series of consecutive rises to be larger than 1.5 ng/mL increased the specificity of biochemical failure. For a fixed specificity, defining biochemical failure based on 2 consecutive rises, or the slope over the last year, could increase the sensitivity by up to approximately 20%, compared to the ASTRO definition. Using a rule based on the slope over the previous year or 2 rises leads to a slightly earlier detection of biochemical failure than does the ASTRO definition. Even with the best rule, only approximately 20% of true failures are biochemically detected more than 1 year before the clinically meaningful event time. Conclusion: There is potential for improvement in the ASTRO consensus definition of biochemical failure. Further research is needed, in studies with long follow-up times, to evaluate the relationship between various definitions of biochemical failure and

  19. The effects of rival seminal plasma on sperm velocity in the alternative reproductive tactics of Chinook salmon.

    Science.gov (United States)

    Lewis, Jason A; Pitcher, Trevor E

    2017-04-01

    Sperm competition is prevalent and intense in many animal mating systems, and is a major force driving evolution of such mating systems. The objective of this study was to determine the effect of seminal plasma on sperm velocity of male Chinook salmon (Onchorhynchus tshawytscha), which possesses a mating system with male alternative reproductive tactics and intense sperm competition. Male Chinook salmon either adopt a small, precocious sneaking tactic (jack) or a large, dominant tactic (hooknose). To test whether the seminal plasma can effect sperm velocity amongst sperm competitors, two experiments were done whereby males were paired based upon the alternative tactic each male adopted, with the first experiment consisting of jack-hooknose pairs (N = 16) and the second experiment consisting of jack-jack and hooknose-hooknose pairs (N = 12 and 14, respectively). Within each pair, milt of each male was manipulated such that seminal plasma was removed and swapped between the males in each pair and sperm velocity was measured. Jack seminal plasma caused a significant decrease (∼11.9%) in hooknose sperm velocity while causing a significant increase in jack sperm velocity (∼7%), while alternatively, hooknose seminal plasma had no affect on sperm velocity of jack or other hooknose males. This study shows that rival seminal plasma may affect the outcome of sperm competition between males; males adopting a sneaking tactic, that spawn in a disadvantageous mating position, may be able to compensate for this deficit by being more competitive through the effects of their seminal plasma on their competitor's sperm velocity. Copyright © 2016. Published by Elsevier Inc.

  20. 40 CFR 158.2080 - Experimental use permit data requirements-biochemical pesticides.

    Science.gov (United States)

    2010-07-01

    ... requirements-biochemical pesticides. 158.2080 Section 158.2080 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2080 Experimental use permit data requirements—biochemical pesticides. (a) Sections 158.2081...

  1. Noise transmission and delay-induced stochasticoscillations in biochemical network motifs

    Institute of Scientific and Technical Information of China (English)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Fumihiko Sakata

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations,we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation.We systematically analyse the effects of time delays,the feedback mechanism,and biological stochasticity on the power spectra.It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator.Delay-induced stochastic resonance can be expected,which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations.Through the analysis of the power spectrum,a new approach is proposed to estimate the oscillation period.

  2. Quantifying the dynamics of coupled networks of switches and oscillators.

    Directory of Open Access Journals (Sweden)

    Matthew R Francis

    Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.

  3. Sex-specific responses to territorial intrusions in a communication network

    NARCIS (Netherlands)

    Snijders, Lysanne; Oers, van Kees; Naguib, Marc

    2017-01-01

    Signals play a key role in the ecology and evolution of animal populations, influencing processes such as sexual selection and conflict resolution. In many species, sexually selected signals have a dual function: attracting mates and repelling rivals. Yet, to what extent males and females under

  4. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  5. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  6. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  7. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  8. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  9. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  10. A comparison of approximation techniques for variance-based sensitivity analysis of biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-05-01

    Full Text Available Abstract Background Sensitivity analysis is an indispensable tool for the analysis of complex systems. In a recent paper, we have introduced a thermodynamically consistent variance-based sensitivity analysis approach for studying the robustness and fragility properties of biochemical reaction systems under uncertainty in the standard chemical potentials of the activated complexes of the reactions and the standard chemical potentials of the molecular species. In that approach, key sensitivity indices were estimated by Monte Carlo sampling, which is computationally very demanding and impractical for large biochemical reaction systems. Computationally efficient algorithms are needed to make variance-based sensitivity analysis applicable to realistic cellular networks, modeled by biochemical reaction systems that consist of a large number of reactions and molecular species. Results We present four techniques, derivative approximation (DA, polynomial approximation (PA, Gauss-Hermite integration (GHI, and orthonormal Hermite approximation (OHA, for analytically approximating the variance-based sensitivity indices associated with a biochemical reaction system. By using a well-known model of the mitogen-activated protein kinase signaling cascade as a case study, we numerically compare the approximation quality of these techniques against traditional Monte Carlo sampling. Our results indicate that, although DA is computationally the most attractive technique, special care should be exercised when using it for sensitivity analysis, since it may only be accurate at low levels of uncertainty. On the other hand, PA, GHI, and OHA are computationally more demanding than DA but can work well at high levels of uncertainty. GHI results in a slightly better accuracy than PA, but it is more difficult to implement. OHA produces the most accurate approximation results and can be implemented in a straightforward manner. It turns out that the computational cost of the

  11. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    Science.gov (United States)

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  12. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.

    Science.gov (United States)

    Zeng, Yining; Zhao, Shuai; Yang, Shihui; Ding, Shi-You

    2014-06-01

    A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed. Copyright © 2013. Published by Elsevier Ltd.

  13. Selecting Molecular Recognition. What Can Existing Aptamers Tell Us about Their Inherent Recognition Capabilities and Modes of Interaction?

    Directory of Open Access Journals (Sweden)

    Ralf Landgraf

    2012-05-01

    Full Text Available The use of nucleic acid derived aptamers has rapidly expanded since the introduction of SELEX in 1990. Nucleic acid aptamers have demonstrated their ability to target a broad range of molecules in ways that rival antibodies, but advances have been very uneven for different biochemical classes of targets, and clinical applications have been slow to emerge. What sets different aptamers apart from each other and from rivaling molecular recognition platforms, specifically proteins? What advantages do aptamers as a reagent class offer, and how do the chemical properties and selection procedures of aptamers influence their function? Do the building blocks of nucleic acid aptamers dictate inherent limitations in the nature of molecular targets, and do existing aptamers give us insight in how these challenges might be overcome? This review is written as an introduction for potential endusers of aptamer technology who are evaluating the advantages of aptamers as a versatile, affordable, yet highly expandable platform to target a broad range of biological processes or interactions.

  14. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  15. Developments in commercially produced microbials at Biochem Products

    Science.gov (United States)

    John Lublinkhof; Douglas H. Ross

    1985-01-01

    Biochem Products is part of a large industrial and scientific family - the Solvay Group. Solvay, headquartered in Brussels, Belgium is a multinational company with 46,000 employees worldwide. In the U.S., our working partners include a large polymer manufacturer, a peroxygen producer and a leading poultry and animal health products company. Biochem Products is a...

  16. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  17. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  18. Measures of Biochemical Sociology

    Science.gov (United States)

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  19. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    Science.gov (United States)

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  20. Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Afaq, Asim; Akin, Oguz; Pei Xin; Kollmeier, Marisa A.; Cox, Brett; Hricak, Hedvig; Zelefsky, Michael J.

    2012-01-01

    Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes. The median follow-up was 49 months (range, 1–13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.

  1. It pays to cheat: tactical deception in a cephalopod social signalling system.

    Science.gov (United States)

    Brown, Culum; Garwood, Martin P; Williamson, Jane E

    2012-10-23

    Signals in intraspecific communication should be inherently honest; otherwise the system is prone to collapse. Theory predicts, however, that honest signalling systems are susceptible to invasion by cheats, the extent of which is largely mediated by fear of reprisal. Cuttlefish facultatively change their shape and colour, an ability that evolved to avoid predators and capture prey. Here, we show that this ability is tactically employed by male mourning cuttlefish (Sepia plangon) to mislead conspecifics during courtship in a specific social context amenable to cheating 39 per cent of the time, while it was never employed in other social contexts. Males deceive rival males by displaying male courtship patterns to receptive females on one side of the body, and simultaneously displaying female patterns to a single rival male on the other, thus preventing the rival from disrupting courtship. The use of tactical deception in such a complex communication network indicates that sociality has played a key role in the cognitive evolution of cephalopods.

  2. Exploring basic biochemical constituents in the body tissues of ...

    African Journals Online (AJOL)

    Feeding regime did not influence susceptibility to mass loss during export. Animal age influenced the biochemical composition and export performance of abalone. Keywords: abalone; aquaculture; feeds; Haliotis midae; live export; mass loss; tissue biochemical constituents. African Journal of Marine Science 2010, 32(1): ...

  3. The role of networks and artificial intelligence in nanotechnology design and analysis.

    Science.gov (United States)

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  4. Accessible methods for the dynamic time-scale decomposition of biochemical systems.

    Science.gov (United States)

    Surovtsova, Irina; Simus, Natalia; Lorenz, Thomas; König, Artjom; Sahle, Sven; Kummer, Ursula

    2009-11-01

    The growing complexity of biochemical models asks for means to rationally dissect the networks into meaningful and rather independent subnetworks. Such foregoing should ensure an understanding of the system without any heuristics employed. Important for the success of such an approach is its accessibility and the clarity of the presentation of the results. In order to achieve this goal, we developed a method which is a modification of the classical approach of time-scale separation. This modified method as well as the more classical approach have been implemented for time-dependent application within the widely used software COPASI. The implementation includes different possibilities for the representation of the results including 3D-visualization. The methods are included in COPASI which is free for academic use and available at www.copasi.org. irina.surovtsova@bioquant.uni-heidelberg.de Supplementary data are available at Bioinformatics online.

  5. How Third-Party CSR Evaluation Matters: Keeping Up with Rivals in CSR Performance Ratings of Korean Firms, 2011–2015

    Directory of Open Access Journals (Sweden)

    Eunjung Hyun

    2017-11-01

    Full Text Available Does corporate social responsibility (CSR evaluation by third-party entities (i.e., external agencies, including civic organizations affect the CSR performance of firms? This article explores the question of whether and how third-party CSR ratings change the subsequent CSR behavior and hence performance of rated firms. Combining insights from the research on ratings/rankings and a behavioral theory of firms, we hypothesize that firms with large negative CSR rating gaps—i.e., CSR ratings below the industry average—are more prone to improving their subsequent CSR behavior, and hence performance ratings, than those with small negative gaps, because of the desire to avoid being viewed as CSR laggards relative to their industry rivals. As a result, efforts are directed at enhancing CSR performance. Empirical support for this conjecture is found through random effect regression analyses of publicly listed firms in Korea that were rated by the KEJI (Korean Economic Justice Institute during 2011–2015 with respect to multiple dimensions of CSR. Further results show that the positive effect of negative CSR rating gaps on subsequent CSR ratings appears only in the firms without well-established reputations, suggesting the possibility that firms with weak reputations have stronger incentives to keep up with other industry incumbents in CSR performance ratings than their counterparts.

  6. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  7. Thermodynamically consistent Bayesian analysis of closed biochemical reaction systems

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2010-11-01

    Full Text Available Abstract Background Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy time series measurements of molecular concentrations is an important step for building predictive models of cellular function. Inference techniques currently available in the literature may produce rate constant values that defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore, development of a thermodynamically consistent approach for estimating the rate constants of a biochemical reaction system is highly desirable. Results We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our method employs an appropriately designed prior probability density function that effectively integrates fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into account experimental strategies for collecting informative observations of molecular concentrations through perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides thermodynamically feasible estimates of the rate constant values and computes appropriate measures of estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis techniques discussed in this paper, is available free of charge at http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.html. Conclusions Our approach provides an attractive statistical methodology for

  8. Synthesis and Design of Biorefinery Processing Networks with Uncertainty and Sustainability analysis

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    combinations of processing networks. The optimization of the network is formulated as a mixed integer nonlinear programming type of problem and solved in GAMS. The methodology was applied for designing optimal biorefinery networks considering biochemical routes. Furthermore, the methodology has also been...... for processing renewable feedstocks, with the aim of bridging the gap for fuel, chemical and material production. This project is focusing on biorefinery network design, in particular for early stage design and development studies. Optimal biorefinery design is a challenging problem. It is a multi......-objective decision-making problem not only with respect to technical and economic feasibility but also with respect to environmental impacts, sustainability constraints and limited availability & uncertainties of input data at the early design stage. It is therefore useful to develop a systematic methodology...

  9. Biochemical toxicology of environmental agents

    International Nuclear Information System (INIS)

    Bruin, A. de

    1976-01-01

    A thorough and up-to-date account of the molecular-biological aspects of harmful agents - both chemical and physical - is given. This current treatise is principally intended to serve as an informative reference work for researchers in various areas of the field. In the pursuit of this aim, a devision of the entire field into 42 chapters has been made. Each chapter starts with a short introductory account dealing with the biochemical essentials of the particular subject. Radiation effects are discussed briefly at the end of each treatise. In order to make the treatise useful as a source book, a substantial collection of pertinent literature references is provided which are numbered in order of citation in the text. Initial chapters are devoted to the metabolic fate of the major classes of xenobiotic compounds. Peripheral topics, closely related to metabolism and dealing with modification of xenobiotic-metabolizing ability, as well as interaction phenomena follow (chs. 5-8). Subjects that draw heavily on the practical field of occupational hygiene are dealt with in chapters 9 and 10. The systematic treatment of how chemical and physical agents interact with the various biochemical and enzymatic systems they encounter during their passage through the organism occupies quantitatively the main part of the book (chs. 11-36). Finally, radiation biochemistry is discussed from the viewpoint of its high degree of scientific advancement, and secondly because the type of biochemical changes produced in vivo by X-rays closely parallel those evoked by chemical agents

  10. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  11. Non-consensus Opinion Models on Complex Networks

    Science.gov (United States)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not

  12. Probabilistic sensitivity analysis of biochemical reaction systems.

    Science.gov (United States)

    Zhang, Hong-Xuan; Dempsey, William P; Goutsias, John

    2009-09-07

    Sensitivity analysis is an indispensable tool for studying the robustness and fragility properties of biochemical reaction systems as well as for designing optimal approaches for selective perturbation and intervention. Deterministic sensitivity analysis techniques, using derivatives of the system response, have been extensively used in the literature. However, these techniques suffer from several drawbacks, which must be carefully considered before using them in problems of systems biology. We develop here a probabilistic approach to sensitivity analysis of biochemical reaction systems. The proposed technique employs a biophysically derived model for parameter fluctuations and, by using a recently suggested variance-based approach to sensitivity analysis [Saltelli et al., Chem. Rev. (Washington, D.C.) 105, 2811 (2005)], it leads to a powerful sensitivity analysis methodology for biochemical reaction systems. The approach presented in this paper addresses many problems associated with derivative-based sensitivity analysis techniques. Most importantly, it produces thermodynamically consistent sensitivity analysis results, can easily accommodate appreciable parameter variations, and allows for systematic investigation of high-order interaction effects. By employing a computational model of the mitogen-activated protein kinase signaling cascade, we demonstrate that our approach is well suited for sensitivity analysis of biochemical reaction systems and can produce a wealth of information about the sensitivity properties of such systems. The price to be paid, however, is a substantial increase in computational complexity over derivative-based techniques, which must be effectively addressed in order to make the proposed approach to sensitivity analysis more practical.

  13. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  14. Pin count-aware biochemical application compilation for mVLSI biochips

    DEFF Research Database (Denmark)

    Lander Raagaard, Michael; Pop, Paul

    2015-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the fluidic flow manipulated using integrated microvalves, which are cont...... a biochemical application. We focus on the compilation task, where the strategy is to delay operations, without missing their deadlines, such that the sharing of control signals is maximized. The evaluation shows a significant reduction in the number of control pins required....

  15. Development of a new first-aid biochemical detector

    Science.gov (United States)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  16. Biochemical failure after radical external beam radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Nomoto, Satoshi; Imada, Hajime; Kato, Fumio; Yahara, Katsuya; Morioka, Tomoaki; Ohguri, Takayuki; Nakano, Keita; Korogi, Yukunori

    2005-01-01

    The purpose of this study was to evaluate biochemical failures after radical external beam radiotherapy for prostate cancer. A total of 143 patients with prostate cancer (5 cases in stage A2, 95 in stage B and 43 in stage C; 18 in low risk group, 37 in intermediate risk group, 67 in high risk group and 21 in unknown group) were included in this study. Patients of stage A2 and B underwent external irradiation of 46 Gy to the prostate gland and seminal vesicle and additional 20 Gy to the prostate gland, while patients of stage C underwent external irradiation of 66 Gy to the prostate gland and seminal vesicle including 46 Gy to the pelvis. Neoadjuvant hormonal therapy was done in 66 cases, and long-term hormonal therapy in 75 cases; two cases were treated with radiation therapy alone. The 3-year relapse free survival rates by stage A2, B and C were 100%, 96.7% and 88.1%, respectively. The 3-year relapse free survival rates by low, intermediate and high risk groups were 100%, 92.3% and 89.7%, respectively. Biochemical failure was noted in nine cases during the average observation term of 32.2 months; in this group the median of prostate specific antigen (PSA) value was 2.6 ng/ml, the doubling time was 8.6 months, and the term of biochemical failure was 33.2 months. Six of eight cases with biochemical failure were the neoadjuvant hormonal therapy group, but biochemical no evidence of disease (bNED) curve showed no significant difference between neoadjuvant and long-term hormonal groups. It is supposed that unnecessary hormonal therapies were performed based on the nonspecific diagnosis of biochemical failure after radical radiotherapy in our group of patients. A precise criterion of biochemical failure after radical radiotherapy for prostate cancer is necessary. (author)

  17. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multiple network alignment on quantum computers

    Science.gov (United States)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  19. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  20. Biochemical markers in the follow-up of medullary thyroid cancer

    NARCIS (Netherlands)

    de Groot, Jan Willem B.; Kema, Ido P.; Breukelman, Henk; van der Veer, Eveline; Wiggers, Theo; Plukker, John T. M.; Wolffenbuttel, Bruce H. R.; Links, Thera P.

    2006-01-01

    Medullary thyroid cancer (MTC) shares biochemical features with other neuroendocrine tumors but the particular characteristics are largely unexplored. We investigated the biochemical neuroendocrine profile of MTC and whether specific markers could be useful in follow-up. In addition to the standard

  1. Biochemical evaluation of phenylketonuria (PKU: from diagnosis to treatment

    Directory of Open Access Journals (Sweden)

    Leticia Belmont-Martínez

    2014-07-01

    Besides periodical Phe and Tyr testing, biochemical follow-up includes the measurement of necessary elements that guarantee normal physical and intellectual development such as selenium, zinc, B12 vitamin, folates, iron and long chain fatty acids. Clinical context is as important as biochemical status so periodic evaluation of nutritional, medical, social and psychological aspects should be included.

  2. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki; Umarov, Ramzan; Almasri, Islam; Gao, Xin

    2017-01-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  3. ACRE: Absolute concentration robustness exploration in module-based combinatorial networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2017-03-01

    To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.

  4. An improved solution of first order kinetics for biochemical oxygen ...

    African Journals Online (AJOL)

    This paper evaluated selected Biochemical Oxygen Demand first order kinetics methods. Domesticinstitutional wastewaters were collected twice in a month for three months from the Obafemi Awolowo University, Ile-Ife waste stabilization ponds. Biochemical Oxygen Demand concentrations at different days were determined ...

  5. The effects of Islamic fasting on blood hematological-biochemical parameters

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Sedaghat

    2017-06-01

    Conclusion:This study on healthy subjects suggests that fasting could affect some hematological-biochemical parameters but not all of them. Also, these changes in hematological-biochemical parameters were within the normal range and Ramadan fasting seems to be safe for healthy subjects.

  6. Salvage conformal radiotherapy for biochemical recurrent prostate cancer after radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Carlos R. Monti

    2006-08-01

    Full Text Available OBJECTIVE: Assess the results of salvage conformal radiotherapy in patients with biochemical failure after radical prostatectomy and identify prognostic factors for biochemical recurrence and toxicity of the treatment. MATERIALS AND METHODS: From June 1998 to November 2001, 35 patients were submitted to conformal radiotherapy for PSA > 0.2 ng/mL in progression after radical prostatectomy and were retrospectively analyzed. The mean dose of radiation in prostatic bed was of 77.4 Gy (68-81. Variables related to the treatment and to tumor were assessed to identify prognostic factors for biochemical recurrence after salvage radiotherapy. RESULTS: The median follow-up was of 55 months (17-83. The actuarial survival rates free of biochemical recurrence and free of metastasis at a distance of 5 years were 79.7% e 84.7%, respectively. The actuarial global survival rate in 5 years was 96.1%.The actuarial survival rate free of biochemical recurrence in 5 years was 83.3% with PSA pre-radiotherapy 1 and 2 (p = 0.023. Dose > 70 Gy in 30% of the bladder volume implied in more acute urinary toxicity (p = 0.035. The mean time for the development of late urinary toxicity was 21 months (12-51. Dose > 55 Gy in 50% bladder volume implied in more late urinary toxicity (p = 0.018. A patient presented late rectal toxicity of 2nd grade. CONCLUSIONS: Conformal radiotherapy showed to be effective for the control of biochemical recurrence after radical prostatectomy. Patients with pre-therapy PSA < 2 ng/mL have more biochemical control.

  7. Canalization and control in automata networks: body segmentation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Manuel Marques-Pita

    Full Text Available We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level, which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level. This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks, identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought, the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.

  8. Canalization and control in automata networks: body segmentation in Drosophila melanogaster.

    Science.gov (United States)

    Marques-Pita, Manuel; Rocha, Luis M

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.

  9. Circadian Clocks: Unexpected Biochemical Cogs

    OpenAIRE

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-01-01

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ~24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes.

  10. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, U.; Qvortrup, Klaus

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy....... The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts....

  11. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Giulio Caravagna

    Full Text Available After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii a model of enzymatic futile cycle and (iii a genetic toggle switch. In (ii and (iii we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  12. The interplay of intrinsic and extrinsic bounded noises in biomolecular networks.

    Science.gov (United States)

    Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2013-01-01

    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a biomolecular network. The influence of intrinsic and extrinsic noises on biomolecular networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii) a model of enzymatic futile cycle and (iii) a genetic toggle switch. In (ii) and (iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possible functional role of bounded noises.

  13. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  14. Noise transmission and delay-induced stochastic oscillations in biochemical network motifs

    International Nuclear Information System (INIS)

    Liu Sheng-Jun; Wang Qi; Liu Bo; Yan Shi-Wei; Sakata Fumihiko

    2011-01-01

    With the aid of stochastic delayed-feedback differential equations, we derive an analytic expression for the power spectra of reacting molecules included in a generic biological network motif that is incorporated with a feedback mechanism and time delays in gene regulation. We systematically analyse the effects of time delays, the feedback mechanism, and biological stochasticity on the power spectra. It has been clarified that the time delays together with the feedback mechanism can induce stochastic oscillations at the molecular level and invalidate the noise addition rule for a modular description of the noise propagator. Delay-induced stochastic resonance can be expected, which is related to the stability loss of the reaction systems and Hopf bifurcation occurring for solutions of the corresponding deterministic reaction equations. Through the analysis of the power spectrum, a new approach is proposed to estimate the oscillation period. (interdisciplinary physics and related areas of science and technology)

  15. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  16. Clinical and pathologic factors predictive of biochemical control following post-prostatectomy irradiation

    International Nuclear Information System (INIS)

    Stromberg, Jannifer S.; Ziaja, Ellen L.; Horwitz, Eric M.; Vicini, Frank A.; Brabbins, Donald S.; Dmuchowski, Carl F.; Gonzalez, Jose; Martinez, Alvaro A.

    1996-01-01

    Purpose/Objective: Indications for post-prostatectomy radiation therapy are not well defined. We reviewed our experience treating post-prostatectomy patients with external beam irradiation to assess clinical and pathologic factors predictive of biochemical control. Materials and Methods: Between 1/87 and 3/93, 61 patients received post-operative tumor bed irradiation with a median dose of 59.4 Gy (50.4 - 68 Gy). Median follow-up was 4.1 years (7.6 months - 8.3 years) from irradiation. Patients were treated for the following reasons: 1) adjuvantly, within 6 months of surgery for extracapsular extension, seminal vesicle involvement, or positive surgical margins (n=38); 2) persistently elevated PSA post-operatively (n=2); 3) rising PSA >6 months after surgery (n=9); and 4) biopsy proven local recurrence (n=12). No patients had known nodal or metastatic disease. All patients had post-radiation PSA data available. Biochemical control was the endpoint studied using Kaplan-Meier life table analysis. Biochemical control was defined as the ability to maintain an undetectable PSA ( 4 and ≤1 0, >10 and ≤20, and > 20 ng/ml. The 3 year actuarial rates of biochemical control were 100% for group 1, 66.7% for group 2, 61.5% for group 3, and 28.6% for group 4. Pre-RT PSA values were also evaluated. Univariate Cox models indicated lower presurgical and pre-RT PSA values were predictive of biochemical control (p=0.017, p 6 months after surgery (group 3), the 3 year actuarial rate of biochemical control was 55.6%. The 3 year actuarial rate of biochemical control for patients treated for a biopsy proven recurrence (group 4) was 8.3%. By pair-wise log rank test, the rates of biochemical control were significantly different between groups 1 and 3 (p=0.036), groups 1 and 4 (p<0.001), and groups 3 and 4 (p=0.009). Conclusion: Biochemical control was achieved in approximately half of the patients treated with post-operative prostatic fossa irradiation. Elevated presurgical and pre

  17. Biochemical studies on some zooplankton off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Rao, T.S.S.; Matondkar, S.G.P.

    Proximate biochemical analyses on twelve zooplankton species showed that protein was the predominant biochemical component followed by lipid. Carbohydrate content was very low especially in species with high water content or calcareous shell...

  18. Salvage conformal radiotherapy for biochemical recurrent prostate cancer after radical prostatectomy

    International Nuclear Information System (INIS)

    Monti, Carlos R.; Nakamura, Ricardo A.; Ferrigno, Robson; Rossi Junior, Aristides; Kawakami, Neusa S.; Trevisan, Felipe A.

    2006-01-01

    Objective: Assess the results of salvage conformal radiotherapy in patients with biochemical failure after radical prostatectomy and identify prognostic factors for biochemical recurrence and toxicity of the treatment. Materials and methods: From June 1998 to November 2001, 35 patients were submitted to conformal radiotherapy for PSA ≥ 0.2 ng/mL in progression after radical prostatectomy and were retrospectively analyzed. The mean dose of radiation in prostatic bed was of 77.4 Gy (68-81). Variables related to the treatment and to tumor were assessed to identify prognostic factors for biochemical recurrence after salvage radiotherapy. Results: The median follow-up was of 55 months (17-83). The actuarial survival rates free of biochemical recurrence and free of metastasis at a distance of 5 years were 79.7% e 84.7%, respectively. The actuarial global survival rate in 5 years was 96.1%.The actuarial survival rate free of biochemical recurrence in 5 years was 83.3% with PSA pre-radiotherapy ≤ 1, 100% when > 1 and ≤ 2, and 57.1% when > 2 (p = 0.023). Dose > 70 Gy in 30% of the bladder volume implied in more acute urinary toxicity (p = 0.035). The mean time for the development of late urinary toxicity was 21 months (12-51). Dose > 55 Gy in 50% bladder volume implied in more late urinary toxicity (p = 0.018). A patient presented late rectal toxicity of second grade. Conclusions: Conformal radiotherapy showed to be effective for the control of biochemical recurrence after radical prostatectomy. Patients with pre-therapy PSA < 2 ng/mL have more biochemical control. (author)

  19. Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Elizabeth D Hilborn

    Full Text Available Cyanobacteria are commonly-occurring contaminants of surface waters worldwide. Microcystins, potent hepatotoxins, are among the best characterized cyanotoxins. During November, 2001, a group of 44 hemodialysis patients were exposed to microcystins via contaminated dialysate. Serum microcystin concentrations were quantified with enzyme-linked immunosorbent assay which measures free serum microcystin LR equivalents (ME. We describe serum ME concentrations and biochemical outcomes among a subset of patients during 8 weeks following exposure. Thirteen patients were included; 6 were males, patients' median age was 45 years (range 16-80, one was seropositive for hepatitis B surface antigen. The median serum ME concentration was 0.33 ng/mL (range: <0.16-0.96. One hundred thirty nine blood samples were collected following exposure. Patients' biochemical outcomes varied, but overall indicated a mixed liver injury. Linear regression evaluated each patient's weekly mean biochemical outcome with their maximum serum ME concentration; a measure of the extrinsic pathway of clotting function, prothrombin time, was negatively and significantly associated with serum ME concentrations. This group of exposed patients' biochemical outcomes display evidence of a mixed liver injury temporally associated with microcystin exposure. Interpretation of biochemical outcomes are complicated by the study population's underlying chronic disease status. It is clear that dialysis patients are a distinct 'at risk' group for cyanotoxin exposures due to direct intravenous exposure to dialysate prepared from surface drinking water supplies. Careful monitoring and treatment of water supplies used to prepare dialysate is required to prevent future cyanotoxin exposure events.

  20. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  1. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  2. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  3. A characterization of scale invariant responses in enzymatic networks.

    Directory of Open Access Journals (Sweden)

    Maja Skataric

    Full Text Available An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO, whose validity we show is both necessary and sufficient for scale invariance of three-node enzymatic networks (and sufficient for any number of nodes. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions.

  4. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    Science.gov (United States)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  5. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  6. Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix

    Science.gov (United States)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu

    2018-02-01

    The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.

  7. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  8. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  9. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.

    Science.gov (United States)

    Sen, Dilara; Keung, Albert J

    2018-01-01

    The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus specificity by considering concentration, affinity, avidity, and sequestration effects.

  10. Soft Measurement Modeling Based on Chaos Theory for Biochemical Oxygen Demand (BOD

    Directory of Open Access Journals (Sweden)

    Junfei Qiao

    2016-12-01

    Full Text Available The precision of soft measurement for biochemical oxygen demand (BOD is always restricted due to various factors in the wastewater treatment plant (WWTP. To solve this problem, a new soft measurement modeling method based on chaos theory is proposed and is applied to BOD measurement in this paper. Phase space reconstruction (PSR based on Takens embedding theorem is used to extract more information from the limited datasets of the chaotic system. The WWTP is first testified as a chaotic system by the correlation dimension (D, the largest Lyapunov exponents (λ1, the Kolmogorov entropy (K of the BOD and other water quality parameters time series. Multivariate chaotic time series modeling method with principal component analysis (PCA and artificial neural network (ANN is then adopted to estimate the value of the effluent BOD. Simulation results show that the proposed approach has higher accuracy and better prediction ability than the corresponding modeling approaches not based on chaos theory.

  11. Biochem-Env, a plateform of environmental biochemistry for research

    OpenAIRE

    GRONDIN, VIRGINIE; Nelieu, Sylvie; Crouzet, Olivier; Hedde, Mickaël; Mougin, Christian

    2016-01-01

    As a service of the research infrastructure AnaEE-France (http://www.anaee-france.fr/fr/), the platform Biochem-Env (http://www.biochemenv.fr) offers skills and innovative analytical tools for biochemical characterizations of soils, sediments, and micro-macro-organisms living in terrestrial and aquatic ecosystems. The platform provides methods validated according to Quality Guidelines, i.e. to measure global soil enzymatic activities. Our robot-supported protocols allow great number of enzyme...

  12. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  13. The race for a new internet rival academics are competing to create a new, faster internet.

    CERN Multimedia

    Dodson, S

    2001-01-01

    From Dec 1, Europe's research communities will be able to hook up to the fastest network in the world, serving more than 3000 academic and research institutions and operating in 32 countries. When the LHC becomes operational in 2005, terabytes of data will be generated. The idea is that computers held on the networks could be connected to share processing power and hard disc space. They will be locked in to a grid to imitate one super computer. Apart from the computing advantages, this new network will actively promote collaboration between institutions enabling them to work on projects on scales too large for individual groups to manage alone.

  14. Circadian Clocks: Unexpected Biochemical Cogs.

    Science.gov (United States)

    Mori, Tetsuya; Mchaourab, Hassane; Johnson, Carl Hirschie

    2015-10-05

    A circadian oscillation can be reconstituted in vitro from three proteins that cycles with a period of ∼ 24 h. Two recent studies provide surprising biochemical answers to why this remarkable oscillator has such a long time constant and how it can switch effortlessly between alternating enzymatic modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. News Magazine and Network Television News Coverage of the Munich Olympic Crisis, 1972

    Science.gov (United States)

    1989-05-01

    cafes on the Leopoldstrasse a spirit of happy-go-lucky internationalism permeated the tables. As part of the conscious exercise to expiate thoughts...in view of the fact that "because of its exclusive Olympic franchise , ABC had its rivals badly outgunned. To counter the well equipped ABC forces, CBS

  16. Summary of the mechanism of U-induced renal damage and its biochemical studies

    International Nuclear Information System (INIS)

    Chen Rusong

    1994-05-01

    In China studies on the toxicology of uranium were systematically conducted from the 1960's. Among them the studies of the change of biochemical indicators of U-induced renal damage were involved. On the basis of summarizing the relevant information of our country and the study progress of biochemical methods in recent years, the mechanism of U-induced renal damage and its biochemical basis, the behavior of uranium in kidney and the recent progress to detect renal damage with several biochemical indexes (such as α 1 -or β 2 -microglobulin, N-acetyl-β-D-glucosaminidase and alanine aminopeptidase etc.) are introduced respectively. Finally, the evaluation on the biochemical basis for acquired tolerance to U in kidney is performed. It should be noted that from the clinical viewpoint the tolerance cannot be considered as a practical measure of protection

  17. Effect of Modifying Factors on Radiosensitive Biochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Romantsev, E. F.; Filippovich, I. V.; Zhulanova, Z. I.; Blokhina, V. D.; Trebenok, Z. A.; Kolesnikov, E. E.; Sheremetyevskaya, T. N.; Nikolsky, A. V.; Zymaleva, O. G. [Institute of Biophysics, USSR Ministry of Health, Moscow, USSR (Russian Federation)

    1971-03-15

    Some of the radioprotective aminothiols are now routine pharmacopoeial drugs and are used in clinics to decrease the radiation reaction which appears as a side effect during the radiotherapy of cancer. The action of effective modifying agents on radiosensitive biochemical reactions in the organisms of mammals, in principle, cannot be different from the same effects of the protectors on biochemical systems of the human organism. The effect of modifying agents is mediated by biochemical systems. The administration of radioprotective doses of MEA to rats before irradiation results in a significant normalization of the excretion in urine of degradation products of nucleic acids (so-called Dische-positive compounds), the excretion of which sharply rises after irradiation. The curve of the radioprotective effect of MEA (survival rate after administration of radioprotectors at different intervals of time) completely corresponds to curves of the accumulation of MEA which is bound (by mixed disulphide links) to the proteins of liver mitochondria, to proteins of the nuclear-sap, to the hyaloplasm of rat thymus and to the nuclear ribosomes of the spleen. After MEA administration the curve of the biosynthesis of deoxycytidine represents a mirror reflection of the curve of MEA bound to proteins of the thymus hyaloplasm by means of mixed disulphide links. The mechanism of action of such modifying factors as MEA in experiments on mammals is mediated to a great degree through the temporary formation of mixed disulphide links between the aminothiol and the protein component of enzymes in different biochemical systems. (author)

  18. 2009 Biochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  19. Biochemical characterization of Tunisian grapevine varieties

    Directory of Open Access Journals (Sweden)

    Ferjani Ben Abdallah

    1998-03-01

    The study of GPI, PGM, AAT and peroxydase isozyme banding patterns in combination with berry colour has led to establish a classification of the 61 autochton varieties into 37 groups including 26 varieties definitely differentiated through the results of this biochemical study.

  20. Diagnosis Of Inherited Neurometabolic Disorders : A Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Christopher R

    1999-01-01

    Full Text Available The past two decades have witnessed a rapid increase in the knowledge of the inherited neurometabolic disorders. The precise diagnosis of these disorders which is a challenge to the physician can be best accomplished by biochemical methods. Screening of clinically selected patients with simple chemical urine tests and routine blood chemistry investigations followed by measurement of specific metabolites and assay of the relevant enzymes confirms the diagnosis in most cases. Biochemical diagnosis of inherited neurometabolic disorders although expensive is rapid and confirmatory and therefore aids in treatment and further prevention of these rare disorders.

  1. Changes in Biochemical Properties of the Blood in Winter Swimmers.

    Science.gov (United States)

    Teleglow, Aneta; Marchewka, Jakub; Marchewka, Anna; Kulpa, Jan

    The aim of the study was to investigate the effects of winter swimming on biochemical indicators of the blood. The subjects - winter swimmers - belonged to the Krakow Walrus Club "Kaloryfer" - "The Heater". The study group consisted of 11 men, aged 30-50 years, 'walrusing' throughout the whole season from November to March. Statistically significant changes throughout the 'walrusing' season were observed for the following biochemical parameters: a decrease in sodium (mmol/1), chloride (mmol/1), alpha-2 globulin(g/1), gamma globulin (g/1), IgG (g/1), and an increase in albumin (g/1), indicator A/G, IgA (g/l ), Herpes simplex virus IgM. Seasonal effort of winter swimmers has a positive influence on biochemical blood parameters.

  2. Estimation of parameter sensitivities for stochastic reaction networks

    KAUST Repository

    Gupta, Ankit

    2016-01-07

    Quantification of the effects of parameter uncertainty is an important and challenging problem in Systems Biology. We consider this problem in the context of stochastic models of biochemical reaction networks where the dynamics is described as a continuous-time Markov chain whose states represent the molecular counts of various species. For such models, effects of parameter uncertainty are often quantified by estimating the infinitesimal sensitivities of some observables with respect to model parameters. The aim of this talk is to present a holistic approach towards this problem of estimating parameter sensitivities for stochastic reaction networks. Our approach is based on a generic formula which allows us to construct efficient estimators for parameter sensitivity using simulations of the underlying model. We will discuss how novel simulation techniques, such as tau-leaping approximations, multi-level methods etc. can be easily integrated with our approach and how one can deal with stiff reaction networks where reactions span multiple time-scales. We will demonstrate the efficiency and applicability of our approach using many examples from the biological literature.

  3. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  4. Knowledge transference in the international corporation network context

    OpenAIRE

    García Vázquez, Carlos

    2016-01-01

    Knowledge is one of the main assets for corporations as it provides competitive advantage over the rivals. On the other hand, owning the knowledge is not enough and companies need to distribute their cutting-edge technology or meth-odology through all their production units in order to keep the distance with their competitors. However it still being a relatively unexplored field because most of scholars and studies have traditionally focused on the tangible flows within the companies rather t...

  5. Biochemical Hypermedia: Galactose Metabolism.

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2013-05-01

    Full Text Available Introduction: Animations of biochemical processes and virtual laboratory environments lead to true molecular simulations. The use of interactive software’s in education can improve cognitive capacity, better learning and, mainly, it makes information acquisition easier. Material and Methods: This work presents the development of a biochemical hypermedia to understanding of the galactose metabolism. It was developed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program. Results and Discussion: A step by step animation process shows the enzymatic reactions of galactose conversion to glucose-1-phosphate (to glycogen synthesis, glucose-6-phosphate (glycolysis intermediary, UDP-galactose (substrate to mucopolysaccharides synthesis and collagen’s glycosylation. There are navigation guide that allow scrolling the mouse over the names of the components of enzymatic reactions of via the metabolism of galactose. Thus, explanatory text box, chemical structures and animation of the actions of enzymes appear to navigator. Upon completion of the module, the user’s response to the proposed exercise can be checked immediately through text box with interactive content of the answer. Conclusion: This hypermedia was presented for undergraduate students (UFSC who revealed that it was extremely effective in promoting the understanding of the theme.

  6. The Evolution of Biochemical Indices After Basal Cell Epithelioma Removal - Case Report

    Directory of Open Access Journals (Sweden)

    Gurgas L.

    2017-05-01

    Full Text Available The paper proposes new exposure data on etiopathogenesis basal cell epithelioma and present a clinical case investigated dermatoscopic, biochemically, treated surgically and guided to avoid relapses. The case presented is part of typical cases of pigmented basal cell carcinoma. Biochemical and haematological investigations performed one day before the excisional intervention (results 1 and 30 days (results 2 after the intervention: It is recommended to monitor biochemical investigations in which alterations were found, and ways for raising the immunological status.

  7. Comparison of two biochemical methods for identifying Corynebacterium pseudotuberculosis isolated from sheep and goats.

    Science.gov (United States)

    Huerta, Belén; Gómez-Gascón, Lidia; Vela, Ana I; Fernández-Garayzábal, José F; Casamayor, Almudena; Tarradas, Carmen; Maldonado, Alfonso

    2013-06-01

    The biochemical pattern of Cowan and Steel (BPCS) was compared with a commercial biochemical strip for the identification of Corynebacterium pseudotuberculosis isolated from small ruminants. On 16S rRNA gene sequencing, 40/78 coryneform isolates from the lymph nodes of sheep and goats with lesions resembling caseous lymphadenitis were identified as C. pseudotuberculosis. The sensitivities of the BPCS and the commercial biochemical strip relative to 16S rRNA sequencing were 80% and 85%, and their specificities were 92.1% and 94.7%, respectively; the level of agreement between the BPCS and the commercial biochemical strip was high (κ=0.82). Likelihood ratios for positive and negative results were 10.0 and 0.22 for the BPCS, and 16.0 and 0.16 for the commercial biochemical strip, respectively. These results indicate that the BPCS and the commercial biochemical strip are both useful for identifying C. pseudotuberculosis in veterinary microbiology laboratories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  9. From chemical or biochemical microsensors to fast detection systems

    International Nuclear Information System (INIS)

    Pistre, J.; Dejous, C.; Rebiere, D.

    2011-01-01

    The market of chemical and biochemical sensors is increasing and represents a large opportunity. The problem of chemical and biochemicaldetection involves the use of one/several transducing layer/interface. Several types of detection exist. Among them, acoustic wave devices present many advantages. The paper deals with surface acoustic waves devices and their implementation. The role and properties of the sensing layer are discussed for chemical sensors and biochemical sensors as well. Examples of realizations are presented taking into account the microfluidic approach.

  10. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  11. A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Tseng, Kai-Han; You, Sheng-Chi; Minhass, Wajid Hassan

    2013-01-01

    -flow based resource binding algorithm based on breadth-first search (BFS) and minimum cost maximum flow (MCMF) in architectural-level synthesis. The experimental results show that our methodology not only makes significant reduction of valve-switching activities but also diminishes the application completion......Designs of flow-based microfluidic biochips are receiving much attention recently because they replace conventional biological automation paradigm and are able to integrate different biochemical analysis functions on a chip. However, as the design complexity increases, a flow-based microfluidic...... biochip needs more chip-integrated micro-valves, i.e., the basic unit of fluid-handling functionality, to manipulate the fluid flow for biochemical applications. Moreover, frequent switching of micro-valves results in decreased reliability. To minimize the valve-switching activities, we develop a network...

  12. Explorations into Chemical Reactions and Biochemical Pathways.

    Science.gov (United States)

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  14. Morphological, physiological and biochemical studies on Pyricularia ...

    African Journals Online (AJOL)

    SARAH

    2014-02-28

    Feb 28, 2014 ... compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates .... solutions for imaging and microscopy, soft image system .... characteristics among 12 P. grisea isolates from rice were.

  15. Short Report Biochemical derangements prior to emergency ...

    African Journals Online (AJOL)

    MMJ VOL 29 (1): March 2017. Biochemical derangements prior to emergency laparotomy at QECH 55. Malawi Medical Journal 29 (1): March 2017 ... Venepuncture was performed preoperatively for urgent cases, defined as those requiring.

  16. Sharing the cost of risky projects

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moulin, Hervé

    2018-01-01

    Users share the cost of unreliable non-rival projects (items). For instance, industry partners pay today for R&D that may or may not deliver a cure to some viruses, agents pay for the edges of a network that will cover their connectivity needs, but the edges may fail, etc. Each user has a binary...

  17. The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods.

    Science.gov (United States)

    Xiang, Zheng; Sun, Hao; Cai, Xiaojun; Chen, Dahui

    2016-04-01

    Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."

  18. Reconstructing biochemical pathways from time course data.

    Science.gov (United States)

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  19. A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems.

    NARCIS (Netherlands)

    F.J. Bruggeman (Frank); H. Burchard; B. Kooi; B.P. Sommeijer (Ben)

    2006-01-01

    textabstractBiochemical systems are bound by two mathematically-relevant restrictions. First, state variables in such systems represent non-negative quantities, such as concentrations of chemical compounds. Second, biochemical systems conserve mass and energy. Both properties must be reflected in

  20. Gene network inference and biochemical assessment delineates GPCR pathways and CREB targets in small intestinal neuroendocrine neoplasia.

    Directory of Open Access Journals (Sweden)

    Ignat Drozdov

    Full Text Available Small intestinal (SI neuroendocrine tumors (NET are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including 'Nervous system development', 'Immune response', and 'Cell-cycle'. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations. All were up-regulated (p<0.035 with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10(-5 M significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10(-5 M stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D(2 and Serotonin [5-HT(2] receptor agonist, 10(-6 M stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8-2-fold for isoproterenol and forskolin. Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional

  1. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  2. Biochemical System Analysis of Lutein Production by Heterotrophic Chlorella pyrenoidosa in a Fermentor

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2009-01-01

    Full Text Available Chlorella is a promising alternative source of lutein, as it can be cultivated heterotrophically with high efficiency. In this study, the carotenoids in Chlorella pyrenoidosa heterotrophically cultivated in a 19-litre fermentor have been analyzed and determined by using HPLC and HPLC-MS. A biochemical system theory (BST model was developed for understanding the regulatory features of carotenoid metabolism during the batch cultivation. Factors that influence lutein production by C. pyrenoidosa were discussed based on the model. It shows that low flux for lycopene formation is the major bottleneck for lutein production, while by-product syntheses and inhibitions affect the cellular lutein content much less. However, with further increase of the cellular lutein content, the inhibition on lycopene formation by lutein may become a limiting factor. Although speculative, these results may provide useful information for further elucidation of the regulatory mechanisms of carotenoid biosynthesis in Chlorella and modifying its metabolic network to enhance lutein production.

  3. Biochemical and kinetic characterization of geranylgeraniol 18 ...

    African Journals Online (AJOL)

    Suchart

    2015-07-22

    Jul 22, 2015 ... biochemical characterization of GGOH 18-hydroxylase activity in the microsomal fraction from C. .... method as previously described (Chanama et al., 2009). Briefly, 30 g of frozen ..... Catalytic properties of the plant cytochrome.

  4. Biochemical Changes in the Serum and Liver of albino rats exposed ...

    African Journals Online (AJOL)

    Biochemical changes in the serum and liver of albino rats chronically exposed to rats administered 5gk-1 , 7.5gk-1 and 15gk-1 of gasoline , kerosine and crude petroleum(bonny light) respectively were studied. The petroleum samples were administered intraperitoneally and the biochemical changes in the rat serum and the ...

  5. Particulate matter effect on biometric and biochemical attributes of fruiting plants

    Directory of Open Access Journals (Sweden)

    U. Younis

    2015-04-01

    Full Text Available Dust accumulation capacity of Ficus carica L. and Psidium guajava L. was investigated from eight different sites of Multan, Pakistan.  Leaves of both plants were used for analyzing biometric (leaf area, fresh and dry weights and biochemical attributes (chlorophyll contents, carotenoids and ascorbic acid.  Maximum dust accumulation was occurred in the plants growing near road sites, while, minimum dust accumulation occurred in the plants of Bahauddin Zakariya University.  Most of the biometric and biochemical attributes of F. carica showed significant response towards dust but it had not significant influence on some attributes of P. guajava.  Biochemical traits of P. guajava appeared to be more prone than foliage ones. A positive correlation was foundbetween dust accumulation and foliage attributes in F. carica. On the other hand,in P. guajava opposite was observed, however, the reverse was true for leaf biomass.Biochemical contents had shown an inconsistency as chlorophylls (a, b & total, carotenoid contents declined but ascorbic acid increased with an increase in dust accumulation in both species.

  6. Hypothermia for neonatal hypoxic-ischemic encephalopathy: NICHD Neonatal Research Network contribution to the field.

    Science.gov (United States)

    Shankaran, Seetha; Natarajan, Girija; Chalak, Lina; Pappas, Athina; McDonald, Scott A; Laptook, Abbot R

    2016-10-01

    In this article, we summarize the NICHD Neonatal Research Network (NRN) trial of whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy in relation to other randomized controlled trials (RCTs) of hypothermia neuroprotection. We describe the NRN secondary studies that have been published in the past 10 years evaluating clinical, genetic, biochemical, and imaging biomarkers of outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Growth and Biochemical performance of Cassava-Manihot ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    the crude oil polluted soil improved the growth and biochemical performance of cassava. For the qualitative .... delay in the rate of soil recovery and a decrease in crop yield ... enhances biodegradation of polluted soil presumably by removing ...

  9. Biochemical changes in blood caused by radioisotopes

    International Nuclear Information System (INIS)

    Zapol'skaya, N.A.; Fedorova, A.V.

    1975-01-01

    The changes were studied occurring in some biochemical indicators in blood at chronic peroral administration of strontium-90, cesium-137 and iodine-131 in amounts resulting in accumulation of commensurable doses in critical organs corresponding to each isotope

  10. Synthesis of Biochemical Applications on Flow-Based Microfluidic Biochips using Constraint Programming

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. In this paper we are interested in flow-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combin...

  11. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  12. [Circulating miR-152 helps early prediction of postoperative biochemical recurrence of prostate cancer].

    Science.gov (United States)

    Chen, Jun-Feng; Liao, Yu-Feng; Ma, Jian-Bo; Mao, Qi-Feng; Jia, Guang-Cheng; Dong, Xue-Jun

    2017-07-01

    To investigate the value of circulating miR-152 in the early prediction of postoperative biochemical recurrence of prostate cancer. Sixty-six cases of prostate cancer were included in this study, 35 with and 31 without biochemical recurrence within two years postoperatively, and another 31 healthy individuals were enrolled as normal controls. The relative expression levels of circulating miR-152 in the serum of the subjects were detected by qRT-PCR, its value in the early diagnosis of postoperative biochemical recurrence of prostate cancer was assessed by ROC curve analysis, and the correlation of its expression level with the clinicopathological parameters of the patients were analyzed. The expression of circulating miR-152 was significantly lower in the serum of the prostate cancer patients than in the normal controls (t = -5.212, P = 0.001), and so was it in the patients with than in those without postoperative biochemical recurrence (t = -5.727, P = 0.001). The ROC curve for the value of miR-152 in the early prediction of postoperative biochemical recurrence of prostate cancer showed the area under the curve (AUC) to be 0.906 (95% CI: 0.809-0.964), with a sensitivity of 91.4% and a specificity of 80.6%. The expression level of miR-152 was correlated with the Gleason score, clinical stage of prostate cancer, biochemical recurrence, and bone metastasis (P 0.05). The expression level of circulating miR-152 is significantly reduced in prostate cancer patients with biochemical recurrence after prostatectomy and could be a biomarker in the early prediction of postoperative biochemical recurrence of the malignancy.

  13. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase.

    Science.gov (United States)

    Foda, Zachariah H; Shan, Yibing; Kim, Eric T; Shaw, David E; Seeliger, Markus A

    2015-01-20

    Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity.

  14. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  15. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  16. Biochemical Markers for Assessing Aquatic Contamination

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    2007-11-01

    Full Text Available Biochemical markers, specifically enzymes of the first phase of xenobiotic transformation - cytochrome P450 and ethoxyresorufin-O-deethylase (EROD - were used to determine the quantities of persistent organic pollutants (POPs in fish muscle (PCB, HCB, HCH, OCS, DDT. Eight rivers were monitored (Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina; and the River Blanice was used as a control. The indicator species selected was the chub (Leuciscus cephalus L.. There were no significant differences in cytochrome P450 content between the locations monitored. The highest concentration of cytochrome P450 in fish liver was in the Vltava (0.241 nmol mg-1 protein, and the lowest was in the Orlice (0.120 nmol mg-1 protein. Analysis of EROD activity showed a significant difference between the Blanice and the Vltava (P< 0.05, and also between the Orlice and the Vltava (P< 0.01, the Orlice and the Bílina (P< 0.01, and the Orlice and the Ohře (P< 0.05. The highest EROD activity in fish liver was in the Vltava (576.4 pmol min-1 mg-1 protein, and the lowest was in the Orlice (63.05 pmol min-1 mg-1 protein. In individual locations, results of chemical monitoring and values of biochemical markers were compared. A significant correlation (P< 0.05 was found between biochemical markers and OCS, and PCB. Among the tributaries studied those that contaminated the Elbe most were the Vltava and the Bílina. These tributaries should not be considered the main sources of industrial contamination of the River Elbe, because the most important contamination sources were along the river Elbe itself.

  17. Opium and heroin alter biochemical parameters of human's serum.

    Science.gov (United States)

    Kouros, Divsalar; Tahereh, Haghpanah; Mohammadreza, Afarinesh; Minoo, Mahmoudi Zarandi

    2010-05-01

    Iran is a significant consumer of opium, and, generally, of opioids, in the world. Addiction is one of the important issues of the 21st century and is an imperative issue in Iran. Long-term consumption of opioids affects homeostasis. To determine the effects of opium and heroin consumption on serum biochemical parameters. In a cross-sectional study, subjects who had consumed heroin (n = 35) or opium (n = 42) for more than two years and 35 nonaddict volunteers as the control group were compared in regard to various biochemical parameters such as fasting blood sugar (FBS), Na(+), K(+), Ca(2+), blood urea nitrogen (BUN), uric acid (UA), triglyceride (TG), cholesterol, creatinine, and total protein. Chromatography was used to confirm opioid consumption, and the concentration of biochemical parameters was determined by laboratory diagnostic tests on serum. No significant differences were found in Na(+), Ca(2+), BUN, UA, TG, creatinine, and total protein concentrations among the three groups. FBS, K(+), and UA levels were significantly lower in opium addicts compared to the control group. Serum Ca(2+) concentration of heroin addicts showed a significant decrease compared to that of the control group. Both addict groups showed a significant decrease in serum cholesterol levels. Chronic use of opium and heroin can change serum FBS, K(+), Ca(2+), UA, and cholesterol. This study, one of few on the effects of opium on serum biochemical parameters in human subjects, has the potential to contribute to the investigation of new approaches for further basic studies.

  18. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  19. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Carl-Henrik Nordström

    2017-06-01

    Full Text Available Neurocritical care (NCC is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP and cerebral blood flow (CBF and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood–brain barrier (BBB and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2 and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance

  20. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and.

  1. Biochemical Manifestation of HIV Lipodystrophy Syndrome.

    Science.gov (United States)

    Ihenetu, Kenneth; Mason, Darius

    2012-01-01

    Highly active anti-retroviral therapy (HAART), including protease inhibitors (PI) have led to dramatic improvements in the quality and quantity of life in patients with acquired immunodeficiency syndrome (AIDS). However, a significant number of AIDS patients on HAART develop characteristic changes in body fat redistribution referred to as lipodystrophy syndrome (LDS). Features of LDS include hypertrophy in the neck fat pad (buffalo hump), increased fat in the abdominal region (protease paunch), gynecomastia and loss of fat in the mid-face and extremities. The aim of this paper is to review the current knowledge regarding this syndrome. This article reviews the published investigations on biochemical manifestation of HIV lipodystrophy syndrome. It is estimated that approximately 64% of patients treated with PI will experience this syndrome. Biochemically, these patients have increased triglycerides (Trig), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and extremely low high-density lipoprotein-cholesterol (HDL-C). It is hoped that awareness of this syndrome would aid in early diagnosis and better patient management, possibly leading to a lower incidence of cardiovascular complications among these patients.

  2. Metabolite coupling in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  3. Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.

    Science.gov (United States)

    Ramadan Suleiman, Ahmed; Nehdi, Moncef L

    2017-02-07

    This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.

  4. Variations in biochemical values for common laboratory tests: a comparison among multi-ethnic Israeli women cohort.

    Science.gov (United States)

    Birk, Ruth; Heifetz, Eliyahu M

    2018-04-28

    Biochemical laboratory values are an essential tool in medical diagnosis, treatment, and follow-up; however, they are known to vary between populations. Establishment of ethnicity-adjusted reference values is recommended by health organizations. To investigate the ethnicity element in biochemical lab values studying women of different ethnic groups. Biochemical lab values (n = 27) of 503 adult Israeli women of three ethnicities (Jewish Ashkenazi, Jewish Sephardic, and Bedouin Arab) attending a single medical center were analyzed. Biochemical data were extracted from medical center records. Ethnic differences of laboratory biochemicals were studied using ANCOVA to analyze the center of the distribution as well as quartile regression analysis to analyze the upper and lower limits, both done with an adjustment for age. Significant ethnic differences were found in almost half (n = 12) of the biochemical laboratory tests. Ashkenazi Jews exhibited significantly higher mean values compared to Bedouins in most of the biochemical tests, including albumin, alkaline phosphatase, calcium, cholesterol, cholesterol LDL and HDL, cholesterol LDL calc., folic acid, globulin, and iron saturation, while the Bedouins exhibited the highest mean values in the creatinine and triglycerides. For most of these tests, Sephardic Jews exhibited biochemical mean levels in between the two other groups. Compared to Ashkenazi Jews, Sephardic Jews had a significant shift to lower values in cholesterol LDL. Ethnic subpopulations have distinct distributions in biochemical laboratory test values, which should be taken into consideration in medical practice enabling precision medicine.

  5. Catching the ’Network Science’ Bug: Insight and Opportunity for the Operations Researcher

    Science.gov (United States)

    2008-01-21

    publication: Operations Research agents often interface in a decentralized and asynchronous manner, and where the interaction of “ selfish ” agents...interaction of the two. For example, in a metabolic network, the activation of a gene may alter the biochemical pathways that in turn can alter other genes , and...people, computers, vehicles, cells, or genes . In these systems, all configurations are not feasible, simply because survival for these systems means

  6. Responses of physiological and biochemical components in Gossypium hirsutum L. to mutagens

    International Nuclear Information System (INIS)

    Muthusamy, A.; Vasanth, K.; Jayabalan, N.

    2003-01-01

    The two tetraploid varieties of cotton were exposed to gamma rays, EMS and SA. Chlorophyll, carotenoids, sugar, starch, free amino acids, protein, lipids, DNA and RNA were estimated quantitatively. All the physiological and biochemical components were increased in lower dose/concentration of the mutagenic treatments and they were decreased in higher dose/concentrations. The stimulation of the biochemical contents was a dose/concentration dependent response. Among the two varieties, MCU 11 was found to be responsive to mutagens than MCU 5. Based on the study the lower dose/concentration of the mutagenic treatments could enhance the biochemical components which is used for improved economic characters of cotton. (author)

  7. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    Science.gov (United States)

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  8. Some hematological and biochemical parameters in smokeless ...

    African Journals Online (AJOL)

    The effect of Jharda powder (smokeless tobacco) on some hematological and biochemical parameters in consumers was investigated. Hematological parameters including hemoglobin content and white blood cell and leukocyte counts were higher in jharda powder consumers, while monocytes and basophiles counts were ...

  9. Evaluation of Haematological and Biochemical Parameters of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Evaluation of Haematological and Biochemical Parameters of Juvenile Oreochromis niloticus after Exposure to Water Soluble Fractions of ... niloticus were evaluated. After a preliminary determination of the 96 h-LC50 of ... evaporation, dissolution, emulsion, photolysis and biodegradation which generate a water soluble.

  10. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  11. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    Science.gov (United States)

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  12. Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy)

    2016-06-14

    Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.

  13. Considerations on the biochemical composition of some freshwater zooplankton species.

    Directory of Open Access Journals (Sweden)

    Nicoletta RICCARDI

    1999-02-01

    Full Text Available The mean elemental (C, H, N and biochemical composition (lipids, carbohydrates and proteins of some abundant crustacean zooplankton species of Italian insubric lakes has been estimated by the analysis of samples collected at different seasons from various environments (Lake Maggiore, Lake Varese, Lake Comabbio, Lake Monate. From each sample an adequate number of specimens of each abundant species was sorted and analyzed by a CHN elemental analyzer. The percentage of lipids, carbohydrates and proteins and the calorific content were calculated from the elemental composition according to Gnaiger & Bitterlich (1984. Inter- and intraspecific variability of biochemical composition was quite high, while elemental composition and calorific content were less variable. An estimate of the mean elemental and biochemical composition of each species was obtained by pooling the data. These mean values have been used to estimate the pools of elements and compounds in the crustacean zooplankton of Lake Comabbio to provide an example of the importance of a multiple approach in zooplankton studies.

  14. Identification of biochemical features of defective Coffea arabica L. beans.

    Science.gov (United States)

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  15. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Science.gov (United States)

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  16. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions.

    Science.gov (United States)

    Nikel, Pablo I; Chavarría, Max; Danchin, Antoine; de Lorenzo, Víctor

    2016-10-01

    The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The impact of atrazine on several biochemical properties of chernozem soil

    Directory of Open Access Journals (Sweden)

    LJ. RADIVOJEVIC

    2008-10-01

    Full Text Available The impact of the pesticide atrazine on biochemical processes in soil was investigated. Atrazine loadings of 8.0, 40.0 and 80.0 mg/kg soil were laboratory tested in an experiment set up on a clay loam soil. Dehydrogenase activity, change in biomass carbon, soil respiration and metabolic coefficient were examined. The samples were collected for analysis 1, 7, 14, 21, 30 and 60 days after atrazine application. The acquired data indicated that the effect of atrazine on the biochemical activity of the soil depended on its application rate and duration of activity, and the effect was either stimulating or inhibiting. However, the detected changes were found to be transient, indicating that there is no real risk of the compound disrupting the balance of biochemical processes in soil.

  18. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pezzullo, Leslie [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  19. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy ... Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, ..... technical review on the epidemiology, diagnosis, and.

  20. MetExploreViz: web component for interactive metabolic network visualization.

    Science.gov (United States)

    Chazalviel, Maxime; Frainay, Clément; Poupin, Nathalie; Vinson, Florence; Merlet, Benjamin; Gloaguen, Yoann; Cottret, Ludovic; Jourdan, Fabien

    2017-09-15

    MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyze omics data in a biochemical context. Documentation and link to GIT code repository (GPL 3.0 license)are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc /. Tutorial is available at this URL. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Slot-waveguide biochemical sensor.

    Science.gov (United States)

    Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R

    2007-11-01

    We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.

  2. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  3. Geometric universality of currents in an open network of interacting particles

    International Nuclear Information System (INIS)

    Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.; Chertkov, Michael

    2010-01-01

    We discuss a non-equilibrium statistical system on a graph or network. Identical particles are injected, interact with each other, traverse, and leave the graph in a stochastic manner described in terms of Poisson rates, possibly dependent on time and instantaneous occupation numbers at the nodes of the graph. We show that under the assumption of the relative rates constancy, the system demonstrates a profound statistical symmetry, resulting in geometric universality of the particle currents statistics. The phenomenon applies broadly to many man-made and natural open stochastic systems, such as queuing of packages over internet, transport of electrons and quasi-particles in mesoscopic systems, and chains of reactions in bio-chemical networks. We illustrate the utility of the general approach using two enabling examples from the two latter disciplines.

  4. Biochemical and secondary metabolites changes under moisture ...

    African Journals Online (AJOL)

    The study showed the importance of carbohydrate and nitrogen cycle related metabolites in mediating tolerance in cassava by affecting their phenotypic expression in the plant. Keywords: Hydrothermal stress, bio-chemicals, pigments, secondary metabolites, cassava. African Journal of Biotechnology, Vol 13(31) 3173-3186 ...

  5. Efficacy of topical honey therapy against silver sulphadiazine treatment in burns: A biochemical study

    OpenAIRE

    Nagane, N. S.; Ganu, J. V.; Bhagwat, V. R.; Subramanium, M.

    2004-01-01

    Thermal injury is associated with biochemical changes. The present study was undertaken to investigate relation of oxidative free radical generation and related biochemical parameters in burn trauma. The specific aim was to compare the levels of serum lipid peroxide, Ceruloplasmin and Uric Acid in burn patients during treatment with Silver Sulfadiazine Cream and honey therapy. It is a single blind prospective controlled study involving comparison of biochemical changes after treatment with si...

  6. haematological parameters and serum biochemical indices of pre

    African Journals Online (AJOL)

    mrmrsolayiwola

    2012-05-01

    BWSFM) on haematological and serum biochemical parameters in rabbit were studied. Thirty-two (32) cross-bred. (New Zealand-white X Chinchilla) male weaner rabbits aged between 6 and 9 weeks were randomly.

  7. Biochemical recurrence after radical prostatectomy: what does it mean?

    Science.gov (United States)

    Tourinho-Barbosa, Rafael; Srougi, Victor; Nunes-Silva, Igor; Baghdadi, Mohammed; Rembeyo, Gregory; Eiffel, Sophie S.; Barret, Eric; Rozet, Francois; Galiano, Marc; Cathelineau, Xavier; Sanchez-Salas, Rafael

    2018-01-01

    ABSTRACT Background Radical prostatectomy (RP) has been used as the main primary treatment for prostate cancer (PCa) for many years with excellent oncologic results. However, approximately 20-40% of those patients has failed to RP and presented biochemical recurrence (BCR). Prostatic specific antigen (PSA) has been the pivotal tool for recurrence diagnosis, but there is no consensus about the best PSA threshold to define BCR until this moment. The natural history of BCR after surgical procedure is highly variable, but it is important to distinguish biochemical and clinical recurrence and to find the correct timing to start multimodal treatment strategy. Also, it is important to understand the role of each clinical and pathological feature of prostate cancer in BCR, progression to metastatic disease and cancer specific mortality (CSM). Review design A simple review was made in Medline for articles written in English language about biochemical recurrence after radical prostatectomy. Objective To provide an updated assessment of BCR definition, its meaning, PCa natural history after BCR and the weight of each clinical/pathological feature and risk group classifications in BCR, metastatic disease and CSM. PMID:29039897

  8. Improved biochemical preservation of lung slices during cold storage.

    Science.gov (United States)

    Bull, D A; Connors, R C; Reid, B B; Albanil, A; Stringham, J C; Karwande, S V

    2000-05-15

    Development of lung preservation solutions typically requires whole-organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that lung slices could be used to assess preservation of biochemical function during cold storage. Whole rat lungs were precision cut into slices with a thickness of 500 microm and preserved at 4 degrees C in the following solutions: University of Wisconsin (UW), Euro-Collins (EC), low-potassium-dextran (LPD), Kyoto (K), normal saline (NS), or a novel lung preservation solution (NPS) developed using this model. Lung biochemical function was assessed by ATP content (etamol ATP/mg wet wt) and capacity for protein synthesis (cpm/mg protein) immediately following slicing (0 h) and at 6, 12, 18, and 24 h of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as means +/- SD. ATP content was significantly higher in the lung slices stored in NPS compared with all other solutions at each time point (P cold storage. Copyright 2000 Academic Press.

  9. Biochemical comparison of osteoarthritic knees with and without effusion

    Science.gov (United States)

    2011-01-01

    Background Several symptom-relieving interventions have been shown to be efficacious among osteoarthritis (OA) patients with knee effusion; however, not every symptomatic knee OA patient has clinical effusion. Results may be over-generalized since it is unclear if effused knees represent a unique pathological condition or subset compared to knees without effusion. The primary purpose of this study was to determine if biochemical differences existed between OA knees with and without effusion. Methods The present cross-sectional study consisted of 22 volunteers (11 with knee effusion, 11 without knee effusion) with confirmed late-stage radiographic knee OA (Kellgren-Lawrence score ≥ 3). Synovial fluid samples were collected and analyzed using a custom multiplex enzyme-linked immunosorbent assay to determine eight specific biomarker concentrations (e.g., catabolic, anabolic). Results Matrix metalloproteinase (MMP)-3, tissue inhibitor of MMPs (TIMP)-1, TIMP-2, and interleukin-10 were significantly higher in the knees with effusion than in the knees without effusion. Conclusions The biochemical differences that existed between knees with and without effusion provide support that OA subsets may exist, characterized by distinct biochemical characteristics and clinical findings (e.g., effusion). PMID:22122951

  10. Biochemical and Cellular Assessment of Acetabular Chondral Flaps Identified During Hip Arthroscopy.

    Science.gov (United States)

    Hariri, Sanaz; Truntzer, Jeremy; Smith, Robert Lane; Safran, Marc R

    2015-06-01

    To analyze chondral flaps debrided during hip arthroscopy to determine their biochemical and cellular composition. Thirty-one full-thickness acetabular chondral flaps were collected during hip arthroscopy. Biochemical analysis was undertaken in 21 flaps from 20 patients, and cellular viability was determined in 10 flaps from 10 patients. Biochemical analysis included concentrations of (1) DNA (an indicator of chondrocyte content), (2) hydroxyproline (an indicator of collagen content), and (3) glycosaminoglycan (an indicator of chondrocyte biosynthesis). Higher values for these parameters indicated more healthy tissue. The flaps were examined to determine the percentage of viable chondrocytes. The percentage of acetabular chondral flap specimens that had concentrations within 1 SD of the mean values reported in previous normal cartilage studies was 38% for DNA, 0% for glycosaminoglycan, and 43% for hydroxyproline. The average cellular viability of our acetabular chondral flap specimens was 39% (SD, 14%). Only 2 of the 10 specimens had more than half the cells still viable. There was no correlation between (1) the gross examination of the joint or knowledge of the patient's demographic characteristics and symptoms and (2) biochemical properties and cell viability of the flap, with one exception: a degenerative appearance of the surrounding cartilage correlated with a higher hydroxyproline concentration. Although full-thickness acetabular chondral flaps can appear normal grossly, the biochemical properties and percentage of live chondrocytes in full-thickness chondral flaps encountered in hip arthroscopy show that this tissue is not normal. There has been recent interest in repairing chondral flaps encountered during hip arthroscopy. These data suggest that acetabular chondral flaps are not biochemically and cellularly normal. Although these flaps may still be valuable mechanically and/or as a scaffold in some conductive or inductive capacity, further study is

  11. An attempt to understand glioma stem cell biology through centrality analysis of a protein interaction network.

    Science.gov (United States)

    Mallik, Mrinmay Kumar

    2018-02-07

    Biological networks can be analyzed using "Centrality Analysis" to identify the more influential nodes and interactions in the network. This study was undertaken to create and visualize a biological network comprising of protein-protein interactions (PPIs) amongst proteins which are preferentially over-expressed in glioma cancer stem cell component (GCSC) of glioblastomas as compared to the glioma non-stem cancer cell (GNSC) component and then to analyze this network through centrality analyses (CA) in order to identify the essential proteins in this network and their interactions. In addition, this study proposes a new centrality analysis method pertaining exclusively to transcription factors (TFs) and interactions amongst them. Moreover the relevant molecular functions, biological processes and biochemical pathways amongst these proteins were sought through enrichment analysis. A protein interaction network was created using a list of proteins which have been shown to be preferentially expressed or over-expressed in GCSCs isolated from glioblastomas as compared to the GNSCs. This list comprising of 38 proteins, created using manual literature mining, was submitted to the Reactome FIViz tool, a web based application integrated into Cytoscape, an open source software platform for visualizing and analyzing molecular interaction networks and biological pathways to produce the network. This network was subjected to centrality analyses utilizing ranked lists of six centrality measures using the FIViz application and (for the first time) a dedicated centrality analysis plug-in ; CytoNCA. The interactions exclusively amongst the transcription factors were nalyzed through a newly proposed centrality analysis method called "Gene Expression Associated Degree Centrality Analysis (GEADCA)". Enrichment analysis was performed using the "network function analysis" tool on Reactome. The CA was able to identify a small set of proteins with consistently high centrality ranks that

  12. Environmental versatility promotes modularity in genome-scale metabolic networks.

    Science.gov (United States)

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  13. Environmental versatility promotes modularity in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2011-08-01

    Full Text Available Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional

  14. Evaluation of biochemical changes in unstimulated salivary, calcium ...

    African Journals Online (AJOL)

    TORNADO

    2012-01-26

    Jan 26, 2012 ... salivary, calcium, phosphorous and total protein during ... teins in saliva are important components and any chan- ... Sialochemical analysis .... quantities of protein utilizing the principal of protein-dye binding. Anal biochem.

  15. Biochemical composition of muscle tissue of penaeid prawns

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.; Parulekar, A.H.

    Biochemical composition of muscle tissue of females belonging to four species of penaeid prawns, viz. Metapenaeus affinis, M. dobsoni, Penaeus merguiensis and Parapenaeopsis stylifera, inhabiting the coastal waters of Goa, India, was estimated...

  16. Psoriatic arthritis: An assessment of clinical, biochemical and ...

    African Journals Online (AJOL)

    , epidemiological, clinical and radiological studies of South African (SA) patients are scarce. Objectives. To assess clinical, biochemical and radiological features in a single-centre SA cohort. Methods. We conducted a prospective assessment ...

  17. Metabonomics and medicine: the Biochemical Oracle.

    Science.gov (United States)

    Mitchell, Steve; Holmes, Elaine; Carmichael, Paul

    2002-10-01

    Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.

  18. Biochemical and microstructural characteristics of meat samples ...

    African Journals Online (AJOL)

    This study was conducted to compare the efficiency of different plant proteases for changing biochemical and microstructural characteristics in muscle foods. The meat samples from chicken, giant catfish, pork and beef were treated with four types of proteolytic enzymes: Calotropis procera latex proteases, papaya latex ...

  19. Feasibility of biochemical verification in a web-based smoking cessation study.

    Science.gov (United States)

    Cha, Sarah; Ganz, Ollie; Cohn, Amy M; Ehlke, Sarah J; Graham, Amanda L

    2017-10-01

    Cogent arguments have been made against the need for biochemical verification in population-based studies with low-demand characteristics. Despite this fact, studies involving digital interventions (low-demand) are often required in peer review to report biochemically verified abstinence. To address this discrepancy, we examined the feasibility and costs of biochemical verification in a web-based study conducted with a national sample. Participants were 600U.S. adult current smokers who registered on a web-based smoking cessation program and completed surveys at baseline and 3months. Saliva sampling kits were sent to participants who reported 7-day abstinence at 3months, and analyzed for cotinine. The response rate at 3-months was 41.2% (n=247): 93 participants reported 7-day abstinence (38%) and were mailed a saliva kit (71% returned). The discordance rate was 36.4%. Participants with discordant responses were more likely to report 3-month use of nicotine replacement therapy or e-cigarettes than those with concordant responses (79.2% vs. 45.2%, p=0.007). The total cost of saliva sampling was $8280 ($125/sample). Biochemical verification was both time- and cost-intensive, and yielded a relatively small number of samples due to low response rates and use of other nicotine products during the follow-up period. There was a high rate of discordance of self-reported abstinence and saliva testing. Costs for data collection may be prohibitive for studies with large sample sizes or limited budgets. Our findings echo previous statements that biochemical verification is not necessary in population-based studies, and add evidence specific to technology-based studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biochemical alterations in inflammatory reactive chondrocytes: evidence for intercellular network communication

    Directory of Open Access Journals (Sweden)

    Eva Skiöldebrand

    2018-01-01

    Full Text Available Chondrocytes are effectively involved in the pathophysiological processes of inflammation in joints. They form cellular processes in the superficial layer of the articular cartilage and form gap junction coupled syncytium to facilitate cell-to-cell communication. However, very little is known about their physiological cellular identity and communication. The aim with the present work is to evaluate the physiological behavior after stimulation with the inflammatory inducers interleukin-1β and lipopolysaccharide. The cytoskeleton integrity and intracellular Ca2+ release were assessed as indicators of inflammatory state. Cytoskeleton integrity was analyzed through cartilage oligomeric matrix protein and actin labeling with an Alexa 488-conjugated phalloidin probe. Ca2+ responses were assessed through the Ca2+ sensitive fluorophore Fura-2/AM. Western blot analyses of several inflammatory markers were performed. The results show reorganization of the actin filaments. Glutamate, 5-hydoxytryptamine, and ATP evoked intracellular Ca2+ release changed from single peaks to oscillations after inflammatory induction in the chondrocytes. The expression of toll-like receptor 4, the glutamate transporters GLAST and GLT-1, and the matrix metalloproteinase-13 increased. This work demonstrates that chondrocytes are a key part in conditions that lead to inflammation in the cartilage. The inflammatory inducers modulate the cytoskeleton, the Ca2+ signaling, and several inflammatory parameters. In conclusion, our data show that the cellular responses to inflammatory insults from healthy and inflammatory chondrocytes resemble those previously observed in astrocyte and cardiac fibroblasts networks.

  1. Network effects, Customer Satisfaction and Recommendation on the Mobile Phone Market

    OpenAIRE

    Thomas Cadet; Sophie Larribeau; Thierry Pénard

    2012-01-01

    On mobile phone markets that have reached the maturity stage, customer recommendation becomes a critical focus for operators to attract subscribers from rival operators. Referral propensity is also an indicator of subscriber satisfaction and loyalty. The aim of this paper is to examine the factors that influence customer recommendation. Precisely, we want to know whether referral propensity is more driven by supply-side effects (i.e. characteristics of mobile services) or demand-side effects ...

  2. Deriving Prostate Alpha-Beta Ratio Using Carefully Matched Groups, Long Follow-Up and the Phoenix Definition of Biochemical Failure

    International Nuclear Information System (INIS)

    Shaffer, Richard; Pickles, Tom; Lee, Richard; Moiseenko, Vitali

    2011-01-01

    Purpose: Prior studies have derived low values of alpha-beta ratio (a/ss) for prostate cancer of approximately 1-2 Gy. These studies used poorly matched groups, differing definitions of biochemical failure, and insufficient follow-up. Methods and Materials: National Comprehensive Cancer Network low- or low-intermediate risk prostate cancer patients, treated with external beam radiotherapy or permanent prostate brachytherapy, were matched for prostate-specific antigen, Gleason score, T-stage, percentage of positive cores, androgen deprivation therapy, and era, yielding 118 patient pairs. The Phoenix definition of biochemical failure was used. The best-fitting value for a/ss was found for up to 90-month follow-up using maximum likelihood analysis, and the 95% confidence interval using the profile likelihood method. Linear quadratic formalism was applied with the radiobiological parameters of relative biological effectiveness = 1.0, potential doubling time = 45 days, and repair half-time = 1 hour. Bootstrap analysis was performed to estimate uncertainties in outcomes, and hence in a/ss. Sensitivity analysis was performed by varying the values of the radiobiological parameters to extreme values. Results: The value of a/ss best fitting the outcomes data was >30 Gy, with lower 95% confidence limit of 5.2 Gy. This was confirmed on bootstrap analysis. Varying parameters to extreme values still yielded best-fit a/ss of >30 Gy, although the lower 95% confidence interval limit was reduced to 0.6 Gy. Conclusions: Using carefully matched groups, long follow-up, the Phoenix definition of biochemical failure, and well-established statistical methods, the best estimate of a/ss for low and low-tier intermediate-risk prostate cancer is likely to be higher than that of normal tissues, although a low value cannot be excluded.

  3. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  4. Classification and fingerprinting of different berries based on biochemical profiling and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Jasminka Milivojević

    2013-09-01

    Full Text Available The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010. Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC analysis, while total phenolics (TPC and total antioxidant capacity (TAC, by using spectrophotometry. Principal component analysis (PCA and hierarchical cluster analysis (CA were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.

  5. BioCluster: Tool for Identification and Clustering of Enterobacteriaceae Based on Biochemical Data

    Directory of Open Access Journals (Sweden)

    Ahmed Abdullah

    2015-06-01

    Full Text Available Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC and the Improved Hierarchical Clustering (IHC, a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/.

  6. [Biochemical principles of early saturnism recognition].

    Science.gov (United States)

    Tsimakuridze, M P; Mansuradze, E A; Zurashvili, D G; Tsimakuridze, M P

    2009-03-01

    The aim of the work is to determine the major sensitive criteria of biochemical indicators that allow timely discovery of negative influence of lead on organism and assist in early diagnosis of primary stages of saturnism. The workers of Georgian typographies, performing technological processes of letterpress printing were observed. Professional groups having contact with lead aerosols (main group of 66 people) and the workers of the same typography not being in touch with the poison (control group of 24 people) were studied. It was distinguished that, protracted professional contact with lead causes moderate increase of lead, coproporphyrin and DALA in daily urine in most cases; it is more clearly evidenced in the professional groups of lead smelters and lino operators and less clearly among typesetter and printers. Upon the checkup of people, having a direct contact with lead, biochemical analysis of urine should be given a preference, especially the determination of quantitative content of lead and coproporphyrin in urine with the aim of revealing the lead carrier, which is one of the first signals for occupational lookout and medical monitoring of the similar contingent.

  7. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  8. The topology and dynamics of complex networks

    Science.gov (United States)

    Dezso, Zoltan

    We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.

  9. Family history and biochemical diagnosis in 1948 kidney stone formers

    Directory of Open Access Journals (Sweden)

    Francisco R. Spivacow

    2016-12-01

    Full Text Available Introduction: The presence of family history of nephrolithiasis is associated with an increased risk of renal lithiasis. Different epidemiological studies have shown a family component in the incidence of it, which is independent of dietary and environmental factors. The role of heredity is evident in monogenic diseases such as cystinuria, Dent’s disease or primary hyperoxaluria, while a polygenic inheritance has been proposed to explain the tendency to form calcium oxalate stones. Objective: Our objective was to evaluate the family history of patients with renal lithiasis and the correlation of family history with its corresponding biochemical alteration, considering only those with a single metabolic alteration. Methods: a prospective and retrospective observational and analytical study that included 1948 adults over 17 years of age and a normal control group of 165 individuals, all evaluated according to an ambulatory protocol to obtain a biochemical diagnosis. They were asked about their family history of nephrolithiasis and classified into five groups according to the degree of kinship and the number of people affected in the family. Results: a positive family history of nephrolithiasis was found in 27.4% of renal stone formers, predominantly in women, compared to 15.2% of normal controls. The family history of nephrolithiasis was observed especially in 31.4% of patients with hypomagnesuria and in 29.6% of hypercalciuric patients. The rest of the biochemical alterations had a positive family history between 28.6% in hyperoxaluria and 21.9% in hypocitraturia. The highest percentage of family history of nephrolithiasis was found in cystinuria (75% although there were few patients with this diagnosis. Conclusions: the inheritance has a clear impact on urolithiasis independently of the present biochemical alteration. Family history of nephrolithiasis of the first and second degree was observed between 21 and 32% of patients with renal

  10. Survey of Biochemical Education in Japanese Universities.

    Science.gov (United States)

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  11. Discordant results between biochemical and molecular transthyretin

    Indian Academy of Sciences (India)

    Discordant results between biochemical and molecular transthyretin assays: lessons learned from a unique testing algorithm at the Mayo Clinic. Honey V. Reddi Brittany C. Thomas Kurt S. Willkomm Matthew J. Ferber Kandelaria M. Rumilla Kimiyo M. Raymond John F. O'Brien W. Edward Highsmith. Research Note Volume ...

  12. Optimal river monitoring network using optimal partition analysis: a case study of Hun River, Northeast China.

    Science.gov (United States)

    Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao

    2018-01-09

    River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.

  13. The Comparison of Biochemical and Sequencing 16S rDNA Gene Methods to Identify Nontuberculous Mycobacteria

    Directory of Open Access Journals (Sweden)

    Shafipour1, M.

    2014-11-01

    Full Text Available The identification of Mycobacteria in the species level has great medical importance. Biochemical tests are laborious and time-consuming, so new techniques could be used to identify the species. This research aimed to the comparison of biochemical and sequencing 16S rDNA gene methods to identify nontuberculous Mycobacteria in patients suspected to tuberculosis in Golestan province which is the most prevalent region of tuberculosis in Iran. Among 3336 patients suspected to tuberculosis referred to hospitals and health care centres in Golestan province during 2010-2011, 319 (9.56% culture positive cases were collected. Identification of species by using biochemical tests was done. On the samples recognized as nontuberculous Mycobacteria, after DNA extraction by boiling, 16S rDNA PCR was done and their sequencing were identified by NCBI BLAST. Of the 319 positive samples in Golestan Province, 300 cases were M.tuberculosis and 19 cases (5.01% were identified as nontuberculous Mycobacteria by biochemical tests. 15 out of 19 nontuberculous Mycobacteria were identified by PCR and sequencing method as similar by biochemical methods (similarity rate: 78.9%. But after PCR, 1 case known as M.simiae by biochemical test was identified as M. lentiflavum and 3 other cases were identified as Nocardia. Biochemical methods corresponded to the 16S rDNA PCR and sequencing in 78.9% of cases. However, in identification of M. lentiflavum and Nocaria sp. the molecular method is better than biochemical methods.

  14. Biochemical constituents of seaweeds along the Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Jagtap, T.G.; Untawale, A.G.

    Protein, carbohydrate and organic carbon were estimated in 43 marine algal species from different stations along the Maharashtra Coast in India These species showed variation in their biochemical contents Protein varied from 10 to 33% Chlorophyceae...

  15. Anthropometric and Biochemical Profiles of Black South African ...

    African Journals Online (AJOL)

    Rev Dr Olaleye

    Anthropometric and biochemical profiles were determined according to standard methods. From the ... Email: bejufemi@yahoo.co.uk ... 995 plots, Pahameng 1 711, Joe Slovo 1 359, and. Botchabela 2 ...... York: John Wiley & Sons, Inc. Steyn K ...

  16. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  17. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    Science.gov (United States)

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By

  18. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  19. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  20. Haematological And Biochemical Effects Of Sulphadimidine In ...

    African Journals Online (AJOL)

    Haematological and biochemical efects of sulphadmidine were studied in Nigerian mongrel dogs. Five Nigerian mongrel dogs of either sex weighing between 7 and 12 kg were used for the study. The pretreatment blood and serum samples were collected and the weight of animals taken before the administraton of 100 ...

  1. Haematological and biochemical responses of starter broiler ...

    African Journals Online (AJOL)

    A study was conducted to investigate the haematological and biochemical responses of starter broiler chickens fed copper and probiotics supplemented diets. A total of 180-day old Marshal broiler chicks were randomly allotted to six treatment groups of 30 birds each. The treatments were divided into three replicates of ten ...

  2. Biochemical and Kinetic Characterization of Geranylgeraniol 18 ...

    African Journals Online (AJOL)

    This enzyme and its gene are an attractive target for development of plaunotol production and its detailed biochemical properties need to be understood. Recently, even though the gene (CYP97C27) coding for GGOH 18-hydroxylase has been identified, cloned, and expressed in Escherichia coli system, the enzyme activity ...

  3. Complement Levels and Haemate-Biochemical Parameters as ...

    African Journals Online (AJOL)

    Complement levels and haemato-biochemical parameters in West African Dwarf (WAD) and Borno White (BW) goats experimentally infected with Trypanosoma congolense were investigated. Parasitaemia was established in both breeds of goats by day 7 post-infection. Peak parasitaemia of 7.5 x 103/µL for WAD goats was ...

  4. Clinico-haematological and serum biochemical alterations in ...

    African Journals Online (AJOL)

    An increase in serum CRE and BUN values were recorded in all cases of pyometra which reduced to lower levels during both treatments in follow-ups. All the haemato-biochemical parameters were comparable to their respective reference values after either medicinal treatment or ovariohysterectomy of dogs. Thus the dogs ...

  5. MATLAB-Based Teaching Modules in Biochemical Engineering

    Science.gov (United States)

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  6. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  7. Seroprevalence of brucellosis and associated hemato-biochemical changes in pakistani horses

    International Nuclear Information System (INIS)

    Gul, S.T.; Khan, A.; Ahmad, M.

    2013-01-01

    The aim of this study was to determine the seroprevalence and hemato-biochemical manifestations of brucellosis in horses. Serum samples were screened for Brucella antibodies by Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Blood samples were evaluated for hemato-biochemical parameters following standard procedures. Results indicated seroprevalence of brucellosis 20.13 and 16.23% in horses by RBPT and SAT, respectively. Brucellosis does not lead to any significant change in hematological and biochemical parameters in relation to age, sex, body condition and lactation except few parameters. The values of erythrocyte sedimentation rate, neutrophil, basophil and alkaline phosphatase significantly decreased in brucellosis positive animals as compared to healthy animals whereas lymphocytes and alanine aminotransferase were in opposite order. It was concluded from the results that prevalence of brucellosis in horse population is of concern; therefore, control measures should be opted so that its zoonotic threat is curtailed. (author)

  8. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    Science.gov (United States)

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  9. Haematological and serum biochemical profiles of broiler chickens ...

    African Journals Online (AJOL)

    MOLM) on the haematological and serum biochemical profile of broiler chickens. Fresh Moringa leaves (FML) were shade-dried for four days and milled into meal. A total of two hundred broilers unsexed chickens (Anak strain) were randomly ...

  10. I could never take the place of your man

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Munksgaard, Kristin B.

    We explore the dynamic tensions between the strategic change intentions by business actors and the rigidities of routines in business networks. We capture strategic change acts using the recent advances in the literature on network pictures as way to understand the value creation logics of managers...... and we coin the term network picturing to describe this process. We develop a theoretical framework that links network pictures and the patterned processes of interaction in business network routines. Here, we argue that the resistance managers' meet in their change efforts is likely, even if the change...... efforts do not directly rival or contradict that of other actors in the exchange party in a resource-dependency sense, but may be caused simply by disrupting the existing business network. We use three case studies to illustrate and further explore the tensions between network picturing and network...

  11. Clinical, biochemical and ultrasonographic features of infertile women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Haq, F.; Rizvi, J.

    2007-01-01

    To evaluate and compare the clinical, biochemical and ultrasonic features of infertile women with PCOS from the two infertility centers of Karachi, The Aga Khan University Hospital and Concept Fertility Centre. Patients attending the Infertility Clinics of Aga Khan University Hospital, Karachi and Concept Fertility Centre, Karachi, were evaluated for their clinical features. Complete biochemical evaluation was performed by day 2 FSH, LH, serum prolactin, serum testosterone and fasting serum insulin determination. These results were recorded on the data collection form. Ultrasonic evaluation was performed with transvaginal ultrasound to check the morphological appearance of ovaries. A total of 508 patients were evaluated for epidemiological features of PCOS. Frequency of PCOS in the infertility clinic was 17.6% with high rate of obesity (68.5%) and hyperinsulinemia (59%). The highest rate of abnormal clinical, biochemical features were seen above BMI of 30. High rates of obesity, hyperinsulinemia and impaired glycemic control were seen in this series. It was demonstrated that high BMI had an association and correlation with abnormal clinical and biochemical features. Obese women with PCOS need more attention for their appropriate management. (author)

  12. Relationship between obesity and biochemical markers in Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Alexandre Romero

    2014-03-01

    The aim of this study was to describe the prevalence of biochemical markers and associate with obesity in Brazilian adolescents enrolled in public schools in a rural area. The sample consisted of 199 adolescents between 10 to 14 years old from Piracicaba, Brazil. The obesity was measured by body mass index (BMI and according to the World Health Organization curves. We collected blood for biochemical markers analysis (total cholesterol, high density lipoprotein, low density lipoprotein, triacylglycerol, insulin and glycemia. Mann Whitney test was used to compare continuous variables between sexes. Chi-square test was used to compare proportions. To investigate the association between the independent variables and biochemical markers a multiple logistic regression model was performed. Among 199 adolescents, 23.1% was obese and 65.8% were insufficiently active. A high prevalence of dyslipidemia (71.4% was observed, whereas the low levels of high density lipoprotein (40.7% were the most prevalent. An association between obesity and undesirable values for high density lipoprotein, triacylglycerol and insulin resistance was found. Obese adolescents were less likely to present a desirable value for high density lipoprotein. It is understood that obesity is detrimental to metabolic profile and should be prevented and treated even in adolescence.

  13. Improved biochemical preservation of heart slices during cold storage.

    Science.gov (United States)

    Bull, D A; Reid, B B; Connors, R C; Albanil, A; Stringham, J C; Karwande, S V

    2000-01-01

    Development of myocardial preservation solutions requires the use of whole organ models which are animal and labor intensive. These models rely on physiologic rather than biochemical endpoints, making accurate comparison of the relative efficacy of individual solution components difficult. We hypothesized that myocardial slices could be used to assess preservation of biochemical function during cold storage. Whole rat hearts were precision cut into slices with a thickness of 200 microm and preserved at 4 degrees C in one of the following solutions: Columbia University (CU), University of Wisconsin (UW), D5 0.2% normal saline with 20 meq/l KCL (QNS), normal saline (NS), or a novel cardiac preservation solution (NPS) developed using this model. Myocardial biochemical function was assessed by ATP content (etamoles ATP/mg wet weight) and capacity for protein synthesis (counts per minute (cpm)/mg protein) immediately following slicing (0 hours), and at 6, 12, 18, and 24 hours of cold storage. Six slices were assayed at each time point for each solution. The data were analyzed using analysis of variance and are presented as the mean +/- standard deviation. ATP content was higher in the heart slices stored in the NPS compared to all other solutions at 6, 12, 18 and 24 hours of cold storage (p cold storage (p cold storage.

  14. Studies on some biochemical parameters in viral hepatitis patients

    International Nuclear Information System (INIS)

    El-Sherbiny, E.M.

    2002-01-01

    The present investigation deals with studying liver amino transferases (ALT. AST). Cholesterol and triglycerides. As well as testosterone and protection hormones in blood of Egyptian men infected with hepatitis C virus.hepatitis B virus and mixed B and C viruses. These biochemical parameters were evaluated to be used in diagnosis and prognosis of viral hepatitis. Which considered the most important health problem in Egypt and developing countries. Biochemical analysis were performed using spectrophotometric and radioimmunoassay techniques. All data will be subjected to statistical analysis in order to detect the most suitable biochemical analysis that can be used as specific tests for early diagnosis of viral hepatitis and to detect the parameters that show abnormalities among the different groups of infected patients. The data revealed that AST and ALT levels were increased in all patient groups. Concerning the level of triglycerides, it was increased only in the group of mixed viral hepatitis B and C, while cholesterol showed non-significant changes in all viral hepatitis groups. The sex hormone testosterone was decreased in all infected patients while the prolactin level was increased only in case of patients infected with mixed B and C viruses. However, these abnormal values in such sex hormones play a serious role in male sterility

  15. Study on color difference estimation method of medicine biochemical analysis

    Science.gov (United States)

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun

    2006-01-01

    The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.

  16. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    Energy Technology Data Exchange (ETDEWEB)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G. (LNLS)

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  17. Biochemical and serological characterization of Escherichia coli ...

    African Journals Online (AJOL)

    This study was designed to determine the isolation rate, serotypes and biochemical profiles of E. coli from colibacillosis and dead-in-shell embryos in Zaria, Northern-Nigeria. The isolation rate of E. coli from hatcheries studied were 4.67% and 7.50% from farms of Simtu Agricultural Company and National Animal Production ...

  18. ENZYMOCHEMICAL AND BIOCHEMICAL CHANGES IN THE LIVER OF RATS INDUCED BY FURFURAL

    Directory of Open Access Journals (Sweden)

    Dragana Veličković

    2011-06-01

    Full Text Available In today's industrial expansion of the chemical products, the liver is becoming increasingly important. Furfural (C4C3OCHO is a colorless liquid with pleasant aroma and it is partially soluble in water (8, 3% of weight. The elimination of furfural is done slowly through the kidneys and lungs, while the liver oxidizes it into pyromucic acid (C4C3OCOOH. Glucose-6-phosphate dehydrogenase (G6PD is a multi-component system of gluconeogenesis. Biochemical parameters (AST, ALT, glucose, γ-GT and alkaline phosphatase are important markers of liver damage.The aim of our study was to analyze the function of hepatocytes using biochemical parameters and to show the dynamics and topography in the development of changes in enzyme activity.The experiment was conducted on Wistar rats aged 6 weeks. The animals were divided into three groups. The control group received pure drinking water, the second group received a 50 mg/kg body weight (BW dose of furfural for seven days and in the third group the dose was progressively increased after which the animals were sacrificed. Biochemical methods were used to determine the parameters of liver damage. Enzyme-histochemical tests were performed on 8nm WKF 1150 cryostat cross sections which were stained according to Pearse (1968. The results are presented tables and graphs.The amount of enzymes and biochemical parameters in the control group were normal. In the group treated for 7 days, the activity of the enzymes was diffusely decreased while the biochemical parameters were increased. In the group of rats treated for 90 days, the periportal G6PD was constantly preserved. Biochemical parameters were different. The differences in all parameters were statistically significant (p<0.05 both in the group treated for 7 days and the group treated for 90 days. The same goes for the control group and the group treated for 7 days.Acute treatment with furfural causes damage to liver functions. The synthetic liver function is

  19. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  20. Some biochemical studies on thyroid immunity

    International Nuclear Information System (INIS)

    Shoush, M.A.M.

    1980-01-01

    The present study was carried out to investigate the effect of induced immunological environment on: a - Carbohydrate metabolism as reflected by immunoreactive insulin and blood sugar levels. b - Biochemical parameters, namely total protein, albumin, globulin, alkaline phosphatase and transaminases, reflecting liver function. c - Radioimmunological tests reflecting thyroid function. The study comprised 36 male rabbits, boscate strain of six months age assigned randomly to : control, albumin immunized and thyroglobulin immunized groups

  1. Haematological and Serum Bio-Chemical Parameters of West ...

    African Journals Online (AJOL)

    Haematological and Serum Bio-Chemical Parameters of West African Dwarf and Kalahari Red Goats in the Humid Tropics. ... Haematological results showed that white blood cell count, haemoglobin concentration, haematocrit, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin ...

  2. Biochemical and Heamatological Indices of Broiler Chickens fed ...

    African Journals Online (AJOL)

    SH

    investigate the implications of feeding broiler chickens with mucuna bean processed by simple domestic methods on performance, haematological and biochemical parameters. Materials and Methods. Sample preparation: The raw Mucuna pruriens beans used in this study were purchased from International Institute of.

  3. Biochemical methane potential (BMP) of solid organic materials

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    2010-01-01

    This paper describes the results obtained for different participating research groups in an interlaboratory study related to the biochemical methane potential (BMP). In this research work, the full experimental conditions influencing the test such as inoculum, substrate characteristics and experi...

  4. Chemical and biochemical tools to assess pollution exposure in cultured fish

    International Nuclear Information System (INIS)

    Fernandes, Denise; Zanuy, Silvia; Bebianno, Maria Joao; Porte, Cinta

    2008-01-01

    There is little information regarding pollutant levels in farmed fish, and the risks associated to consumption. This study was designed to assess levels of exposure to metals, organochlorinated compounds, polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APEs) in farmed sea bass Dicentrarchus labrax from five aquacultures located in Southern Europe. Additionally, several biochemical responses (metallothionein, 7-ethoxyresorufin O-deethylase, vitellogenin) were determined as complementary tools. The obtained data indicate that pollutants exposure in farmed fish is similar to the levels reported in wild specimens from the area. Nonetheless, some biochemical responses were observed in the studied organisms, viz. metallothionein induction in Cu exposed organisms, and 7-ethoxyresorufin O-deethylase (EROD) and vitellogenin induction in PAHs and APEs exposed ones. The study further supports the usefulness of the biomarker approach as a first screening method to discriminate between basal and high levels of exposure in cultured fish. - Pollution assessment in cultured fish: chemical and biochemical tools

  5. Assessing the variability of outcome for patients treated with localized prostate irradiation using different definitions of biochemical control

    International Nuclear Information System (INIS)

    Horwitz, Eric; Ziaja, Ellen; Vicini, Frank; Dmuchowski, Carl; Gonzalez, Jose; Stromberg, Jannifer; Brabbins, Donald; Hollander, Jay; Chen, Peter; Martinez, Alvaro

    1995-01-01

    Purpose: Biochemical control is rapidly becoming the standard to assess treatment outcome of clinically localized prostate cancer. However, no standardized definition of biochemical control has been established. We reviewed our experience treating patients with localized prostate cancer and applied 3 different commonly used definitions to estimate the variability in rates of biochemical control. Materials and Methods: Between (1(87)) and (12(91)), 480 patients with clinically localized prostate cancer received uniform treatment with external beam irradiation (RT) using localized prostate fields at William Beaumont Hospital. The median dose to the prostate was 66.6 Gy (range 58 to 70.4 Gy) through a 4 field technique. A total of 14 patients received pelvic nodal RT (median dose 45 Gy). Four hundred seventy patients had post-treatment (posttx) PSA values and 414 patients had pre-treatment (pretx) PSA values. Three different definitions of biochemical control were used: 1) Biochemical control was defined as posttx PSA nadir < 1 ng/ml within 1 year. After achieving nadir, if there were 2 consecutive increases, the patient was scored a failure at the time of the first increase; 2) Biochemical control was defined as posttx PSA nadir < 1.5 ng/ml within 1 year. After achieving nadir, if there were 2 consecutive increases, the patient was scored a failure at the time of the first increase; 3) Posttx PSA nadir < 4 ng/ml without a time limit. Once the nadir was achieved, and it did not rise above normal, the patient was considered controlled. Clinical local control was defined as no palpable prostate nodularity beyond 18 months, no new prostate nodularity, or a negative biopsy. If hormonal therapy was started, the patient was censored for biochemical failure at that time. Results: Median follow-up is 48 months (range 3 to 112 months). Pre-treatment PSA values were correlated with biochemical response using the 3 definitions of biochemical control as well as clinical local

  6. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  7. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

    Science.gov (United States)

    Thomas, Robert James; Kenfield, Stacey A; Jimenez, Alfonso

    2017-01-01

    Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways. Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance. Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance. Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits. PMID:27993842

  8. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  9. Homocystein: A new biochemical marker in livestock sector

    Directory of Open Access Journals (Sweden)

    Suleyman Kozat

    2017-12-01

    Full Text Available The livestock sector is making great contributions to the world economy. Many different diseases, such as cardiovascular diseases, kidney and mineral substance insufficiency, cause huge losses in yield and production in the livestock sector. Early diagnosis is essential to combat these diseases. Today, homocysteine levels are used as biochemical markers in the diagnosis of the functions and diseases of many different organs in human medicine. Homocysteine is an amino acid that occurs in the process of methionine metabolism and does not enter the primary structure of proteins. Homocysteine is a biochemical marker used in the assessment of cardiovascular and renal diseases as well as other organ functions. In this review, homocysteine determination methods and detailed information about which organ and system diseases can be used in livestock sector will be given. [J Adv Vet Anim Res 2017; 4(4.000: 319-332

  10. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  11. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice.

    Science.gov (United States)

    Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew

    2017-03-10

    We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.

  12. Seasonal changes in meat weight and biochemical composition in the Black Clam Villorita cyprinoides (Grey)

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Parulekar, A.H.; Matondkar, S.G.P.

    Seasonal changes in meat weight and biochemical composition are associated with reproduction, storage and utilization of reserves. The main period of increase in biochemical constituents corresponds to gametogenesis and maturation of gonads just...

  13. Biochemical Indicators of Radiation Injury in Man. Proceedings of a Scientific Meeting

    International Nuclear Information System (INIS)

    1971-01-01

    After an organism has suffered a radiation insult, knowledge of the dose and localization of the exposure is of the greatest importance for the treatment of any radiation damage. Supplementary to the information obtained from physical dosimetry, data obtained by biochemical indicators can, on the basis of metabolic changes in the irradiated organism, help in making early diagnosis, in assessing the extent of the radiation injury, and making a prognosis. Biochemical tests under optimal conditions would not depend on the quality and distribution of the dose in the body and would also reflect the sensitivity of the individual organisms. The International Atomic Energy Agency and the World Health Organization convened a joint scientific meeting on Biochemical Indicators of Radiation Injury in Man in Paris-Le Vésinet, France, from 22 to 26 June 1970. The main purpose of the meeting was to discuss recent problems in determining which biochemical and metabolic changes occurring in irradiated organisms could be used as indicators of radiation injury and its extent, and could thus be of help in planning the proper treatment of the injured persons. During the meeting the results obtained with various biochemical indicators, and experimental techniques and laboratory methods used in this field, were evaluated and compared. Both research workers and clinicians were invited to participate at the meeting. They discussed the possible value of several tests, used successfully in experimental animals, for clinical application; ways of standardizing suitable tests; and mutual collaboration between laboratories and clinics. The outcome of their discussions is summarized in the conclusions and recommendations which are included in these Proceedings together with the papers presented

  14. The Effect of Tumor-Prostate Ratio on Biochemical Recurrence after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Sung Yong Cho

    2016-08-01

    Full Text Available Purpose: Prostate tumor volume calculated after surgery using pathologic tissue has been shown to be an independent risk factor for biochemical recurrence. Nonetheless, prostate size varies among individuals, regardless of the presence or absence of cancer. We assumed to be lower margin positive rate in the surgical operation, when the prostate volume is larger and the tumor lesion is same. Thus, we defined the tumor-prostate ratio in the ratio of tumor volume to prostate volume. In order to compensate the prostate tumor volume, the effect of tumor-prostate ratio on biochemical recurrence was examined. Materials and Methods: This study included 251 patients who underwent open retropubic radical prostatectomy for prostate cancer in a single hospital. We analyzed the effects of tumor volume and tumor-prostate ratio, as well as the effects of known risk factors for biochemical recurrence, on the duration of disease-free survival. Results: In the univariate analysis, the risk factors that significantly impacted disease-free survival time were found to be a prostate-specific antigen level ≥10 ng/mL, a tumor volume ≥5 mL, tumor-prostate ratio ≥10%, tumor capsular invasion, lymph node invasion, positive surgical margins, and seminal vesicle invasion. In the multivariate analysis performed to evaluate the risk factors found to be significant in the univariate analysis, positive surgical margins (hazard ratio=3.066 and a tumor density ≥10% (hazard ratio=1.991 were shown to be significant risk factors for biochemical recurrence. Conclusions: Tumor-prostate ratio, rather than tumor volume, should be regarded as a significant risk factor for biochemical recurrence.

  15. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2013-08-01

    Full Text Available Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.

  16. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  17. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing

    Directory of Open Access Journals (Sweden)

    Yunfeng Zuo

    2018-04-01

    Full Text Available Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.

  18. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Directory of Open Access Journals (Sweden)

    Massobrio Marco

    2009-05-01

    Full Text Available Abstract The assessment of oocyte quality in human in vitro fertilization (IVF is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomics

  19. Network Biology (http://www.iaees.org/publications/journals/nb/online-version.asp

    Directory of Open Access Journals (Sweden)

    networkbiology@iaees.org

    Full Text Available Network Biology ISSN 2220-8879 URL: http://www.iaees.org/publications/journals/nb/online-version.asp RSS: http://www.iaees.org/publications/journals/nb/rss.xml E-mail: networkbiology@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope NETWORK BIOLOGY (ISSN 2220-8879; CODEN NBEICS is an open access, peer-reviewed international journal that considers scientific articles in all different areas of network biology. It is the transactions of the International Society of Network Biology. It dedicates to the latest advances in network biology. The goal of this journal is to keep a record of the state-of-the-art research and promote the research work in these fast moving areas. The topics to be covered by Network Biology include, but are not limited to: •Theories, algorithms and programs of network analysis •Innovations and applications of biological networks •Ecological networks, food webs and natural equilibrium •Co-evolution, co-extinction, biodiversity conservation •Metabolic networks, protein-protein interaction networks, biochemical reaction networks, gene networks, transcriptional regulatory networks, cell cycle networks, phylogenetic networks, network motifs •Physiological networksNetwork regulation of metabolic processes, human diseases and ecological systems •Social networks, epidemiological networks •System complexity, self-organized systems, emergence of biological systems, agent-based modeling, individual-based modeling, neural network modeling, and other network-based modeling, etc. We are also interested in short communications that clearly address a specific issue or completely present a new ecological network, food web, or metabolic or gene network, etc. Authors can submit their works to the email box of this journal, networkbiology@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal

  20. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  1. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  2. Characterization of some Brucella species from Zimbabwe by biochemical profiling and AMOS-PCR

    Directory of Open Access Journals (Sweden)

    Skjerve Eystein

    2009-12-01

    Full Text Available Abstract Background Bovine brucellosis caused by Brucella abortus is endemic in most large commercial and smallholder cattle farms of Zimbabwe, while brucellosis in other domestic animals is rare. The diagnosis of brucellosis is mainly accomplished using serological tests. However, some Brucella spp. have been isolated from clinical cases in the field and kept in culture collection but their biochemical profiles were not documented. We report biochemical profiling and AMOS-PCR characterization of some of these field isolates of Brucella originating from both commercial and smallholder cattle farming sectors of Zimbabwe. Findings Fourteen isolates of Brucella from culture collection were typed using biochemical profiles, agglutination by monospecific antisera, susceptibility to Brucella-specific bacteriophages and by AMOS-PCR that amplifies species- specific IS711. The results of the biochemical profiles for B. abortus biovar 1 (11 isolates and biovar 2 (2 isolates were consistent with those of reference strains. A single isolate from a goat originating from a smallholder mixed animal farm was identified as B. melitensis biovar 1. The AMOS-PCR produced DNA products of sizes 498 bp and 731 bp for B. abortus (biovar 1 and 2 and B. melitensis biovar 1, respectively. Conclusion We concluded that the biochemical profiles and AMOS-PCR characterization were consistent with their respective species and biovars. B. abortus biovar 1 is likely to be the predominant cause of brucellosis in both commercial and smallholder cattle farms in Zimbabwe.

  3. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model...... was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine...... yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate...

  4. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Axel von Kamp

    2014-01-01

    Full Text Available One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions in genome-scale metabolic network models. For this we combine two approaches, namely (i the mapping of MCSs to EMs in a dual network, and (ii a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth than reported previously. The strength of the presented approach is that smallest intervention strategies can be

  5. Organizations as Cognitive Systems: is Knowledge AN Emergent Property of Information Networks?

    Science.gov (United States)

    Biggiero, Lucio

    The substitution of knowledge to information as the entity that organizations process and deliver raises a number of questions concerning the nature of knowledge. The dispute on the codifiability of tacit knowledge and that juxtaposing the epistemology of practice vs. the epistemology of possession can be better faced by revisiting two crucial debates. One concerns the nature of cognition and the other the famous mind-body problem. Cognition can be associated with the capability of manipulating symbols, like in the traditional computational view of organizations, interpreting facts or symbols, like in the narrative approach to organization theory, or developing mental states (events), like argued by the growing field of organizational cognition. Applied to the study of organizations, the mind-body problem concerns the possibility (if any) and the forms in which organizational mental events, like trust, identity, cultures, etc., can be derived from the structural aspects (technological, cognitive or communication networks) of organizations. By siding in extreme opposite positions, the two epistemologies appear irreducible one another and pay its own inner consistency with remarkable difficulties in describing and explaining some empirical phenomena. Conversely, by legitimating the existence of both tacit and explicit knowledge, by emphasizing the space of human interactions, and by assuming that mental events can be explained with the structural aspects of organizations, Nonaka's SECI model seems an interesting middle way between the two rival epistemologies.

  6. Article Neurotransmitters – A biochemical view | Shalayel | Sudan ...

    African Journals Online (AJOL)

    The neurotransmission at most if not all synapses is chemical and is of great biochemical, physiological and pharmacological importance. Neurons communicate with each other at synapses by a process called synaptic transmission in which the release of small quantities of chemical messengers, called neurotransmitters ...

  7. Some Biochemical and Haematological Studies on the Prevalence ...

    African Journals Online (AJOL)

    Dr J. T. Ekanem

    Printed in Nigeria. Some Biochemical and Haematological Studies on the Prevalence of Congenital Malaria in. Ilorin, Nigeria. Olatunji M. KOLAWOLE. 1 ... appropriate information filled such as maternal age, parity, past clinical history of malaria, anti malaria drug (such as chloroquine, amodiaquine in combination with.

  8. Evaluation of haematological and plasma biochemical effects of ...

    African Journals Online (AJOL)

    TAYO AJIBADE

    2012-11-01

    Nov 1, 2012 ... African Journal of Biotechnology Vol. 11(88), pp. ... biochemical values revealed significant increase in total protein, albumin and aspartate amino transferase. However ... functions and damages to cellular membrane normally leads to the .... way analysis of variance (ANOVA) for statistical significance was.

  9. Polycystic ovaries and associated clinical and biochemical features ...

    African Journals Online (AJOL)

    The aim of this study was to determine prevalence of polycystic ovaries (PCO) and associated clinical and biochemical features among women with infertility attending gynaecological outpatient department (GOPD) at Muhimbili National Hospital (MNH) in Dar es Salaam, Tanzania. All women with infertility attending the ...

  10. Applications of a formal approach to decipher discrete genetic networks.

    Science.gov (United States)

    Corblin, Fabien; Fanchon, Eric; Trilling, Laurent

    2010-07-20

    A growing demand for tools to assist the building and analysis of biological networks exists in systems biology. We argue that the use of a formal approach is relevant and applicable to address questions raised by biologists about such networks. The behaviour of these systems being complex, it is essential to exploit efficiently every bit of experimental information. In our approach, both the evolution rules and the partial knowledge about the structure and the behaviour of the network are formalized using a common constraint-based language. In this article our formal and declarative approach is applied to three biological applications. The software environment that we developed allows to specifically address each application through a new class of biologically relevant queries. We show that we can describe easily and in a formal manner the partial knowledge about a genetic network. Moreover we show that this environment, based on a constraint algorithmic approach, offers a wide variety of functionalities, going beyond simple simulations, such as proof of consistency, model revision, prediction of properties, search for minimal models relatively to specified criteria. The formal approach proposed here deeply changes the way to proceed in the exploration of genetic and biochemical networks, first by avoiding the usual trial-and-error procedure, and second by placing the emphasis on sets of solutions, rather than a single solution arbitrarily chosen among many others. Last, the constraint approach promotes an integration of model and experimental data in a single framework.

  11. Anthropometric and biochemical profiles of black south african women

    African Journals Online (AJOL)

    ... with the urban diet composed of more refined carbohydrates and fatty food. ... A significant association was found between insulin sensitivity and BMI and ... anthropometric indicators, biochemical parameters, obesity, type 2 diabetes mellitus ...

  12. Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract

    Directory of Open Access Journals (Sweden)

    L. Brim

    2011-09-01

    Full Text Available In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.

  13. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  14. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Fourty, T. [INRA, Avignon (France); Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J.

    1996-05-15

    This study presents a methodology to estimate the leaf biochemical compounds specific absorption coefficients and to use them to predict leaf biochemistry. A wide range of leaves was collected including variations in species and leaf status. All the leaves were dried out. The biochemical composition was measured using classical wet chemistry techniques to determine lignin, cellulose, hemicellulose, starch, and protein contents. Concurrently, leaf reflectance and transmittance were measured with a high spectral resolution spectrophotometer in the 800–2500 nm range with approximately 1 nm spectral resolution and sampling interval. In addition, infinite reflectance achieved by stacking leaves was also measured. The PROSPECT leaf optical properties model was first inverted over a selection of wavebands in the 800–2400 nm domain to provide estimates of the scattering characteristics using leaf reflectance, transmittance, and infinite reflectance data. Then, the model was inverted again over all the wavelengths to estimate the global absorption coefficient, using the previously estimated scattering properties. The global absorption coefficient was eventually explained using the measured biochemical composition by fitting the corresponding specific absorption coefficients after substraction of the measured contribution of the residual structural water absorption. Results show that the derived specific absorption coefficients are quite robustly estimated. Further, they are in good agreement with known absorption features of each biochemical compound. The average contribution of each biochemical compound to leaf absorption feature is also evaluated. Sugar, cellulose, and hemicellulose are the main compounds that contribute to absorption. Results demonstrate the possibility of modeling leaf optical properties of dry leaves with explicit description of leaf biochemistry. Estimates of the detailed biochemical composition obtained by model inversion over the 1300–2400 nm

  15. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  16. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  17. Haemato-biochemical and endocrine profiling of north western ...

    African Journals Online (AJOL)

    The study was aimed to provide baseline data regarding haemato-biochemical and endocrine profiling of Gaddi sheep found in north western Himalayan region of Himachal Pradesh, India. Each random sample was collected from 45 Gaddi sheep reared in government sheep breeding farm Tal, Hamirpur, India, during ...

  18. Haematological and serum biochemical parameters of West African ...

    African Journals Online (AJOL)

    The study was conducted to evaluate the haematological and serum biochemical parameters of West African dwarf goats fed ensiled cassava leaves with molasses and caged layer waste. Eighteen West African dwarf goats were randomly assigned to three experimental diets consisting of cassava leaves ensiled alone ...

  19. Biological and biochemical evaluation of some prepared high ...

    African Journals Online (AJOL)

    Biological and biochemical evaluation of some prepared high antioxidant fruit beverages as functional foods. W A El-Malky ... The beverage which contain mango, red grape, carrot and tomato was the best prepared beverages according to the sensory evaluation, chemical composition and antioxidant activity. The high ...

  20. A coupled mechano-biochemical model for bone adaptation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Pérez, M. A.; García-Aznar, J. M.; Maršík, F.; Doblaré, M.

    2014-01-01

    Roč. 69, 6-7 (2014), s. 1383-1429 ISSN 0303-6812 Institutional support: RVO:61388998 Keywords : mechano-biochemical model * bone remodelling * BMU Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2014 http://link.springer.com/article/10.1007%2Fs00285-013-0736-9

  1. Diagnostic utility of clinical and biochemical parameters in ...

    African Journals Online (AJOL)

    Diagnostic utility of clinical and biochemical parameters in pancreatic head malignancy patients with normal carbohydrate antigen 19-9 levels. Xiaoli Jin1, Yulian Wu2. 1. Department of Surgery, Sir Run Run Shaw Hospital College of Medicine, Zhejiang University, 3 Qingchun. Road East, Hangzhou, Zhejiang Province ...

  2. Biomphalaria prona (Gastropoda: Planorbidae: a morphological and biochemical study

    Directory of Open Access Journals (Sweden)

    W. Lobato Paraense

    1992-06-01

    Full Text Available Two samples of Biomphalaria prona (Martens, 1873 from Lake Valencia (type locality and seven from other Venezuelan localities were studied morphologically (shell and reproductive system and biochemically (allozyme electrophoresis. In spite of marked differences in shell characters, all of them proved indistinguishable under the anatomic and biochemical criteria. So far B. prona has been considered an endemic species, restricted to Lake Valencia. It is now demonstrated that the extralacustrine populations refered to Biomphalaria havanensis (Pfeiffer, 1839 by several authors correspond in shell characters to an extreme variant of B. prona from the Lake and really belong to the last*mentioned species. They may be regarded as the result of a process of directional selection favoring a shell phenotype other than those making up the modal class in the Lake.

  3. Seasonal changes in biochemical composition of Holothuria leucospilota (Echinodermata)

    Digital Repository Service at National Institute of Oceanography (India)

    Jayasree, V.; Parulekar, A.H.; Wahidullah, S.; Kamat, S.Y.

    Biochemical composition of body wall and gonads of Holothuria leucospilota was analysed for protein, carbohydrate, lipid, ash, dry weight and calorific values and was discussed in relation to its spawning activities. Lipids constituted the major...

  4. Biochemical and Haematological Indices of Weanly Albino Rats Fed ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: Malnutrition is a public health problem in Nigeria accounting for more than 50% of ... weanly albino rats using nutritional, biochemical ... groundnut (16%), soy beans (16%), crayfish ... consumption was observed in rats on PC and.

  5. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    International Nuclear Information System (INIS)

    Polettini, Matteo; Esposito, Massimiliano

    2014-01-01

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s Y between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s Y . We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction

  6. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  7. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  8. Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with Porgy

    OpenAIRE

    Andrei , Oana; Fernández , Maribel; Kirchner , Hélène; Pinaud , Bruno

    2016-01-01

    This paper presents Porgy – an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by Porgy. These features faci...

  9. Effect of Resveratrol on Hematological and Biochemical Alterations in Rats Exposed to Fluoride

    Directory of Open Access Journals (Sweden)

    Nurgül Atmaca

    2014-01-01

    Full Text Available We investigated the protective effects of resveratrol on hematological and biochemical changes induced by fluoride in rats. A total of 28 rats were divided into 4 groups: control, resveratrol, fluoride, and fluoride/resveratrol (n=7 each, for a total of 21 days of treatment. Blood samples were taken and hematological and biochemical parameters were measured. Compared to the control group, the fluoride-treated group showed significant differences in several hematological parameters, including decreases in WBC, RBC, and PLT counts and neutrophil ratio. The group that received resveratrol alone showed a decrease in WBC count compared to the control group. Furthermore, in comparison to the control group, the fluoride group showed significantly increased ALT enzyme activity and decreased inorganic phosphorus level. The hematological and biochemical parameters in the fluoride + resveratrol treated group were similar to control group. In the fluoride + resveratrol group, resveratrol restored the changes observed following fluoride treatment, including decreased counts of WBC, RBC, and PLT, decreased neutrophil ratio and inorganic phosphorus levels, and elevated ALT enzyme activity. The present study showed that fluoride caused adverse effects in rats and that resveratrol reduced hematological and biochemical alterations produced by fluoride exposure.

  10. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  11. A comparative biochemical profile of some cyprinids fish in Dukan Lake, Kurdistan-Iraq

    Science.gov (United States)

    Azeez, Darya Mohammed; Mohammed, Sarbaz Ibrahim

    2017-09-01

    The present study was carried out to demonstrate the baseline values for some serum biochemical parameters for 64 adult freshwater fish including seven species belong to family Cyprinidae, have been collected in Dukan Lake, Kurdistan region-Iraq. Fishes were weighed, measured, and collect blood for blood chemistry. Serum biochemical analyses were determined using (Cobas C 311) full automatic chemical analyzer. The result of comparative study of serum biochemical parameters of all Cyprinidae species showed that serum glucose was (459.10±106.99 mg/dl) and direct bilirubin was (0.056±0.021mg/dl) in Barbus grypus, serum total protein (3.511± 0.0484gm/dl) and HDL (133.11±0.4231mg/dl) in Cyprinus carpio, serum cholesterol (338.33±43.923 mg/dl) and LDL (86.11±11.871mg/dl) in Carassius carassius, serum triglyceride (420.0±28.8mg/dl) and ALK (113.93±20.65U/L) in Chondrostoma regium, serum AST and serum ALT in Capoeta trutta, were significantly higher when compared to other species. In a conclusion there is variation in biochemical values among species of same family.

  12. Biochemical and Haematological Blood Parameters at Different Stages of Lactation in Cows

    Directory of Open Access Journals (Sweden)

    Cristian Ovidiu COROIAN

    2017-05-01

    Full Text Available The health status of cows is evaluated and depending on haematological and biochemical profile of blood. Nutrition is the main technological factor that can produce profound changes in the metabolic profile in animals (Dhiman et al., 1991; Khaled et al., 1999; Ingvartsen, 2006. Blood parameters analyze can lead to identify if there are errors in nutrition of lactating cows (Payne et al., 1970. The aim of this study was the evaluation of metabolic and biochemical changes that occur during colostrum period and in terms of number of lactations in cows. The biological material was represented by a total of 60 heads of dairy cows from a family farm from Sălaj County, Romania. The cows are all from Holstein breed and presented no clinical signs of any specific pathology. Blood samples were collected from the jugular vein of each cow and analyzed. 10 individuals from each of the six lactations have been randomly selected. Haematological and biochemical parameters showed variations depending on factors analyzed here. In lactation 1 Hb was 7.55±3.05 (g/dl, while in lactation 6 the value was 12.5±2.10 (g/dl. RBC ranged as follows: in lactation 1 - 28.50±2.05 and in lactation 6 - 30.02±2.05. Lymphocytes varied within very wide limits under the influence of lactation: in lactation 1 - 2.8±1.56 and in lactation 6 - 7.55±1.80. The number of lactations and lactation rank have influenced blood biochemical and hematological parameters in dairy cows. Biochemical parameters are influenced by post-partum day, showing the lowest values in the early days of colostral period and the highest in the last few days of the same period.

  13. Biochemical changes in diabetic retinopathy triggered by hyperglycaemia: A review

    Directory of Open Access Journals (Sweden)

    Solani D. Mathebula

    2018-04-01

    Full Text Available Background: Diabetes mellitus (DM is now a global health problem which will lead to increasing incidence of macrovascular and microvascular complications that contribute to morbidity, mortality and premature deaths. Diabetic retinopathy (DR is a serious complication of DM, and its prevalence is increasing worldwide. Diabetes mellitus is one of the fastest growing causes of visual impairment and blindness in the working-age population. Aim: The aim of this paper was to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in how the diabetic eye loses vision. Method: An extensive literature search was performed using the Medline database from 1970 to present. The search subjects included diabetes and eye, diabetic retinopathy and diabetic complications in the eye. The search was limited to the literature pertaining to humans and to English language. Preference was given to recent published papers. Results: Results were limited to human participants with publications in English. References of all included papers were also scrutinized to identify additional studies. Studies were selected for inclusion in the review if they met the following criteria: subjects with diabetes, pathophysiology of diabetic retinopathy. Conclusion: Although the biochemical pathways involved in DR have been researched, to date the exact mechanism involved in the onset and progression of the disease is uncertain, which makes therapeutic interventions challenging. The aim of this review is to discuss the possible biochemical pathways and clinical and anatomical changes that occur during the onset and progression of DR that link hyperglycaemia with retinal tissue damage. An understanding of the biochemical and molecular changes may lead to health care practitioners advising patients with DR on events that lead to possible complications of the diseases.

  14. Outcome after PSMA PET/CT based radiotherapy in patients with biochemical persistence or recurrence after radical prostatectomy.

    Science.gov (United States)

    Schmidt-Hegemann, Nina-Sophie; Fendler, Wolfgang Peter; Ilhan, Harun; Herlemann, Annika; Buchner, Alexander; Stief, Christian; Eze, Chukwuka; Rogowski, Paul; Li, Minglun; Bartenstein, Peter; Ganswindt, Ute; Belka, Claus

    2018-03-02

    PSMA PET/CT visualises prostate cancer residual disease or recurrence at lower PSA levels compared to conventional imaging and results in a change of treatment in a remarkable high number of patients. Radiotherapy with dose escalation to the former prostate bed has been associated with improved biochemical recurrence-free survival. Thus, it can be hypothesised that PSMA PET/CT-based radiotherapy might improve the prognosis of these patients. One hundred twenty-nine patients underwent PSMA PET/CT due to biochemical persistence (52%) or recurrence (48%) after radical prostatectomy without evidence of distant metastases (February 2014-May 2017) and received PSMA PET/CT-based radiotherapy. Biochemical recurrence free survival (PSA ≤ 0.2 ng/ml) was defined as the study endpoint. Patients with biochemical persistence were significantly more often high-risk patients with significantly shorter time interval before PSMA PET/CT than patients with biochemical recurrence. Patients with biochemical recurrence had significantly more often no evidence of disease or local recurrence only in PSMA PET/CT, whereas patients with biochemical persistence had significantly more often lymph node involvement. Seventy-three patients were started on antiandrogen therapy prior to radiotherapy due to macroscopic disease in PSMA PET/CT. Cumulatively, 70 (66-70.6) Gy was delivered to local macroscopic tumor, 66 (63-66) Gy to the prostate fossa, 61.6 (53.2-66) Gy to PET-positive lymph nodes and 50.4 (45-52.3) Gy to lymphatic pathways. Median PSA after radiotherapy was 0.07 ng/ml with 74% of patients having a PSA ≤ 0.1 ng/ml. After a median follow-up of 20 months, median PSA was 0.07 ng/ml with ongoing antiandrogen therapy in 30 patients. PET-positive patients without antiandrogen therapy at last follow-up (45 patients) had a median PSA of 0.05 ng/ml with 89% of all patients, 94% of patients with biochemical recurrence and 82% of patients with biochemical persistence having a

  15. Biochemical and pathological studies in rats following dietary ...

    African Journals Online (AJOL)

    Biochemical and pathological studies in rats following dietary supplementation with high levels of polyunsaturated fatty acids and vitamin E. ... Furthermore, high dietary supplementation of vitamin E showed no deleterious effects on rats and no pathological changes in the liver, kidney and heart tissues were observed in the ...

  16. Pattern Of Biochemical Derangements Seen In Chronic Renal ...

    African Journals Online (AJOL)

    Objective: To study the pattern of biochemical derangements in advanced renal failure patients. Subjects and Methods: Ninety adult patients [54 males and 36 females] were recruited from the renal clinic of the University of Nigeria Teaching Hospital (UNTH) Enugu over a period of one year. History and physical ...

  17. Toxicological Effects of Cigarette Smoke on Some Biochemical ...

    African Journals Online (AJOL)

    It is believed that while normal people may suffer complications of active and passive cigarette smoking, diabetes patients may suffer more. This study therefore aimed at investigating the toxicological effects of cigarette smoke on some biochemical parameters of alloxan-induced diabetic rats. Adult male Wistar rats (n ...

  18. Molecular and biochemical diagnosis of Salmonella in wastewater ...

    African Journals Online (AJOL)

    This study aimed to employ biochemical and molecular assays to detect and diagnose Salmonella in wastewater. For this reason, two water samples were collected from Alexandria wastewater treatment plant (S1) and septic tank of a hospital at Alexandria governorate (S2). Selective culture media specific for Salmonella ...

  19. Fragrance analysis using molecular and biochemical methods in ...

    African Journals Online (AJOL)

    For molecular and biochemical analysis of aroma, a mapping population comprising 208 recombinant inbred lines (RILs) derived from a diverse cross between CSR10 and Taraori Basmati through Single seed descent (SSD) method was used. RILs are among the best mapping populations, which provide a novel material ...

  20. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    Science.gov (United States)

    Coyle, Scott M

    2016-07-02

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  1. Biochemical research elucidating metabolic pathways in Pneumocystis*

    Directory of Open Access Journals (Sweden)

    Kaneshiro E.S.

    2010-12-01

    Full Text Available Advances in sequencing the Pneumocystis carinii genome have helped identify potential metabolic pathways operative in the organism. Also, data from characterizing the biochemical and physiological nature of these organisms now allow elucidation of metabolic pathways as well as pose new challenges and questions that require additional experiments. These experiments are being performed despite the difficulty in doing experiments directly on this pathogen that has yet to be subcultured indefinitely and produce mass numbers of cells in vitro. This article reviews biochemical approaches that have provided insights into several Pneumocystis metabolic pathways. It focuses on 1 S-adenosyl-L-methionine (AdoMet; SAM, which is a ubiquitous participant in numerous cellular reactions; 2 sterols: focusing on oxidosqualene cyclase that forms lanosterol in P. carinii; SAM:sterol C-24 methyltransferase that adds methyl groups at the C-24 position of the sterol side chain; and sterol 14α-demethylase that removes a methyl group at the C-14 position of the sterol nucleus; and 3 synthesis of ubiquinone homologs, which play a pivotal role in mitochondrial inner membrane and other cellular membrane electron transport.

  2. Electrocardiographic and hemato-biochemical effects of two balanced anesthetic protocols in dogs

    Directory of Open Access Journals (Sweden)

    Anubhav Khurana

    2014-10-01

    Full Text Available Aim: The purpose of this study was to compare the electrocardiographic (ECG, hematological and clinico-biochemical effects of two balanced anesthetic protocols in dogs. Materials and Methods: A total of 20 clinical cases of dogs, randomly divided into two groups of 10 animals each were made part of study. All dogs were premedicated with injection atropine sulfate @ 0.04 mg/kg body weight (b. wt. subcutaneously followed 15 min later with injection butorphanol tartarate @ 0.2 mg/kg b. wt. intravenous (IV. Subsequently after 10 min premedicated with injection diazepam @ 0.5 mg/kg b. wt. IV (Group DP or injection acepromazine maleate @ 0.015 mg/kg b. wt. IV (Group AP followed by injection propofol “till effect” IV for induction of surgical anesthesia. The animals were immediately transferred to halothane in oxygen. Observations recorded in dogs included ECG recordings, hematological and clinico-biochemical observations at various time intervals. Results: No arrhythmia was observed in any animal pre-operatively and intra-operatively in any of the groups. Significant fall in packed cell volume (PCV and total erythrocyte count occurred in DP group in early phase, whereas only PCV decreased significantly in AP group. Biochemical parameters were non-significant in both the groups. Conclusion: Both diazepam-butorphanol-propofol-halothane and acepromazine-butorphanol-propofol-halothane are safe with respect to their ECG, hematological and biochemical effects in clinical cases.

  3. Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2010-03-01

    We present a mathematical treatment of the kinetic equations that describe isotopologue and isotopomer speciation and fractionation during enzyme-catalyzed biochemical reactions. These equations, presented here with the name GEBIK (general equations for biochemical isotope kinetics) and GEBIF (general equations for biochemical isotope fractionation), take into account microbial biomass and enzyme dynamics, reaction stoichiometry, isotope substitution number, and isotope location within each isotopologue and isotopomer. In addition to solving the complete GEBIK and GEBIF, we also present and discuss two approximations to the full solutions under the assumption of biomass-free and enzyme steady-state, and under the quasi-steady-state assumption as applied to the complexation rate. The complete and approximate approaches are applied to observations of biological denitrification in soils. Our analysis highlights that the full GEBIK and GEBIF provide a more accurate description of concentrations and isotopic compositions of substrates and products throughout the reaction than do the approximate forms. We demonstrate that the isotopic effects of a biochemical reaction depend, in the most general case, on substrate and complex concentrations and, therefore, the fractionation factor is a function of time. We also demonstrate that inverse isotopic effects can occur for values of the fractionation factor smaller than 1, and that reactions that do not discriminate isotopes do not necessarily imply a fractionation factor equal to 1.

  4. Biochemical and Histological effects of Aqueous extract of Cyperus ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Biochemical and Histological effects of Triton Wr-1339 and Aqueous extract. 674. INNIH, SO; UBHENIN, AE; ... fatty liver, chronic hepatitis, and cirrhosis is not giving much ..... Alcoholic Fatty Liver Disease in Southern Iran: A Population Based ...

  5. Appraisal of biochemical and genetic diversity of mango cultivars ...

    African Journals Online (AJOL)

    Appraisal of biochemical and genetic diversity of mango cultivars using molecular markers. ... Mango (Mangifera indica L.) is one of the oldest fruit crops and is broadly cultivated worldwide. To determine the level of ... HOW TO USE AJOL.

  6. Synthesis of Biochemical Applications on Digital Microfluidic Biochips with Operation Execution Time Variability

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2015-01-01

    that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcetswcets, resulting in unexploited slack...... in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy...... approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed...

  7. Prediction of bakery products nutritive value based on mathematical modeling of biochemical reactions

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2013-01-01

    Full Text Available Researches are devoted to identifying changes in the chemical composition of whole-grain wheat bread during baking and to forecasting of food value of bakery products by mathematical modeling of biochemical transformations. The received model represents the invariant composition, considering speed of biochemical reactions at a batch of bakery products, and allowing conduct virtual experiments to develop new types of bread for various categories of the population, including athletes. The offered way of modeling of biochemical transformations at a stage of heat treatment allows to predict food value of bakery products, without spending funds for raw materials and large volume of experiment that will provide possibility of economy of material resources at a stage of development of new types of bakery products and possibility of production efficiency increase.

  8. Systematic methods for synthesis and design of sustainable chemical and biochemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Chemical and biochemical process design consists of designing the process that can sustainably manufacture an identified chemical product through a chemical or biochemical route. The chemical product tree is potentially very large; starting from a set of basic raw materials (such as petroleum...... for process intensification, sustainable process design, identification of optimal biorefinery models as well as integrated process-control design, and chemical product design. The lecture will present the main concepts, the decomposition based solution approach, the developed methods and tools together...

  9. Laying performance, haematology and serum biochemical profile of ...

    African Journals Online (AJOL)

    The study was carried out to compare the effects of unfermented and fermented African locust bean on laying performance, haematology and serum biochemical profile of hens in a twelve week feeding trial. The unfermented African locust bean (UALB) contained seeds that were dehulled and boiled in water, without going ...

  10. Biochemical characterization of blood plasma of coronary artery ...

    Indian Academy of Sciences (India)

    This study aimed to investigate the biochemical profile of blood plasma of patients with coronary artery disease (CAD) and angiographically normal subjects (controls) to determine biomarkers for their differentiation. In this double blind study, 5 mL venous blood was drawn before angiography from CAD patients (n=60) and ...

  11. haematological parameters and serum biochemical indices of pre

    African Journals Online (AJOL)

    mrmrsolayiwola

    2012-05-01

    May 1, 2012 ... pubertal male rabbits fed with graded level of blood- ... The effects of feeding graded levels of blood wild sunflower forage meal ... and serum biochemical parameters in rabbit were studied. ... (Cheeke et al., 1986), high in protein, low in cholesterol ..... assay of nutritional anaemia (dietary deficiency of iron,.

  12. Perineural invasion on prostate needle biopsy does not predict biochemical failure following brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Weight, Christopher J.; Ciezki, Jay P.; Reddy, Chandana A.; Zhou Ming; Klein, Eric A.

    2006-01-01

    Purpose: To determine if the presence of perineural invasion (PNI) predicts biochemical recurrence in patients who underwent low-dose-rate brachytherapy for the treatment of localized prostate cancer. Methods and Materials: A retrospective case control matching study was performed. The records of 651 patients treated with brachytherapy between 1996 and 2003 were reviewed. Sixty-three of these patients developed biochemical failure. These sixty-three patients were then matched in a one-to-one ratio to patients without biochemical failure, controlling for biopsy Gleason score, clinical stage, initial prostate-specific antigen, age, and the use of androgen deprivation. The pathology of the entire cohort was then reviewed for evidence of perineural invasion on initial prostate biopsy specimens. The biochemical relapse free survival rates for these two groups were compared. Results: Cases and controls were well matched, and there were no significant differences between the two groups in age, Gleason grade, clinical stage, initial prostate-specific antigen, and the use of androgen deprivation. PNI was found in 19 (17%) patients. There was no significant difference in the rates of PNI between cases and controls, 19.6% and 14.3% respectively (p 0.45). PNI did not correlate with biochemical relapse free survival (p 0.40). Conclusion: Perineural invasion is not a significant predictor of biochemical recurrence in patients undergoing brachytherapy for prostate cancer

  13. Decoupling of Growth from Production of Biochemicals and Proteins

    DEFF Research Database (Denmark)

    Li, Songyuan

    With increasing awareness of sustainability in our current society, alternative approaches to produce fuels and petro-derived chemicals are required. Biofuels and biochemicals produced from microbial cell factories provide an alternative to current fossil based chemicals. Meanwhile, microbial cell...

  14. Cerebral energy metabolism and the brain's functional network architecture: an integrative review.

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-09-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.

  15. Fragrance analysis using molecular and biochemical methods in ...

    African Journals Online (AJOL)

    admin

    Biochemical analysis of aroma was performed with the 1.7% KOH solution and molecular analysis of aroma was carried out with microsatellite markers present on chromosome 8 (BAD2, BADEX7-5, SCUSSR1) to determine the extent of association between trait, marker and chromosome 8. Among these markers, BAD2 ...

  16. Haematological profile and serum biochemical indices of weaned ...

    African Journals Online (AJOL)

    This study was carried out to determine the haematological profile and serum biochemical indices of rabbits fed pawpaw (Carica papaya) leaves as feed supplement to a corn – soybean mealbasal diet. The study involved thirty six (36) cross bred (New Zealand White X Chinchilla) mixed sex weaned rabbits of five - six ...

  17. Serum Biochemical Changes Associated With The Digestibility Of ...

    African Journals Online (AJOL)

    Serum Biochemical Changes Associated With The Digestibility Of Raw And Heat Processed Cajanus cajan Seeds In Rats. ... The level of anti-nutritive food toxicants in exotic breed of Cajanus cajan L. (pigeon pea) was evaluated in this study using an animal model experiment in which animals were fed with raw and heat ...

  18. Molecular and biochemical studies of some yeast strains

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... Kluyveromyces lactis (Y.9) and Pichia jadinii (Y.10) contained almost double the amount of total amino ... Differences between ... biochemical analysis (total protein profile and total amino acids) were used as tools to select the best yeast strains in Saudi Arabia and Egypt as a rich source of animal protein.

  19. Effect of genotype on haematology and biochemical parameters of ...

    African Journals Online (AJOL)

    Frizzle n = 33, Naked neck, n= 33 and Normal n = 33) were generated from 36 matured local chickens and used for the study to determine the effect of genotype on hematological and biochemical parameters of local chicken in the humid ...

  20. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    Science.gov (United States)

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  1. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy

    KAUST Repository

    Hansen, Benjamin J.; Liu, Ying; Yang, Rusen; Wang, Zhong Lin

    2010-01-01

    the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby

  2. Biochemical and hematological profile of different breeds of goat ...

    African Journals Online (AJOL)

    shthomas

    index of transportation stress (Ambore et al., 2009). The biochemical ... conditions were typical of the Arabian desert, temperature was high. (up to 52°C) ..... Int. J. Food Agric. Vet. Sci. .... Statistical Package for the Social Sciences, release 10.0.

  3. Biochemical Post-Irradiation Changes and Radiation Indicators: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, G. [Radiologisches Institut, University of Freiburg, Freiburg im Breisgau, Federal Republic of Germany (Germany)

    1971-03-15

    In a number of mammalian tissues a breakdown of the biological macromolecules, as nucleic acids and proteins, is observed after irradiation. This degradation appears in lymphatic tissues even after a radiation exposure less than 100 R and proceeds with increasing exposure to about 600 R. On the other hand, other biochemical effects are found after the whole-body irradiation of mammals which seem to have some relation to the functional status of the organs and the organisms. It appears therefore useful to classify the biochemical effects of radiation into two groups: (1) Observations which are a consequence of the degradation processes; (2) observations which are a consequence of functional changes. Most investigations in the field of biochemical indicators after irradiation have been concerned with the first class of reactions. The excretion of deoxycytidine, thymidine and pseudouridine have been extensively investigated in animals during recent years. However, in humans the normal deoxycytidine excretion is very low, as this substance is metabolized to a higher degree in humans than in other species. {beta}-aminoisobutyric acid (BAIBA), a metabolite of thymine, was also investigated in this connection. Besides nucleic acids, proteins are broken down in these radiosensitive organs. This leads to an increased content of amino acids for instance in the lymphatic tissues and to an increase in urinary excretion of amino acids. There are two amino acids which play a special role for this discussion: cysteine and tryptophan. Taurine, a metabolite of cysteine, is excreted in the urine to an increased extent after the irradiation of mice, rats and man. Again the enhancement is proportional to the radiation exposure between 100 and 300 R. Another substance which has been extensively studied is creatine. It has been shown that there is a good relationship between radiation exposure (up to about 600 R) and the increased excretion of creatine/creatinine in the urine of rats

  4. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R

    1978-01-05

    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  5. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights

    Science.gov (United States)

    Markin, Andrei; Strogonova, Lubov; Balashov, Oleg; Polyakov, Valery; Tigner, Timoty

    Most of the previously obtained data on cosmonauts' metabolic state concerned certain stages of the postflight period. In this connection, all conclusions, as to metabolism peculiarities during the space flight, were to a large extent probabilistic. The purpose of this work was study of metabolism characteristics in cosmonauts directly during long-term space flights. In the capillary blood samples taken from a finger, by "Reflotron IV" biochemical analyzer, "Boehringer Mannheim" GmbH, Germany, adapted to weightlessness environments, the activity of GOT, GPT, CK, gamma-GT, total and pancreatic amylase, as well as concentration of hemoglobin, glucose, total bilirubin, uric acid, urea, creatinine, total, HDL- and LDL cholesterol, triglycerides had been determined. HDL/LDL-cholesterol ratio also was computed. The crewmembers of 6 main missions to the "Mir" orbital station, a total of 17 cosmonauts, were examined. Biochemical tests were carryed out 30-60 days before lounch, and in the flights different stages between the 25-th and the 423-rd days of flights. In cosmonauts during space flight had been found tendency to increase, in compare with basal level, GOT, GPT, total amylase activity, glucose and total cholesterol concentration, and tendency to decrease of CK activity, hemoglobin, HDL-cholesterol concentration, and HDL/LDL — cholesterol ratio. Some definite trends in variations of other determined biochemical parameters had not been found. The same trends of mentioned biochemical parameters alterations observed in majority of tested cosmonauts, allows to suppose existence of connection between noted metabolic alterations with influence of space flight conditions upon cosmonaut's body. Variations of other studied blood biochemical parameters depends on, probably, pure individual causes.

  6. Effect of Probiotics on Serum Biochemical and Blood Constituents in ...

    African Journals Online (AJOL)

    Department of Animal Production, College of Food and Agriculture Sciences, King ... enzyme activities, and hematological and biochemical indices of broiler chickens challenged with ..... Brancaster and Enteritidis from humans and broiler.

  7. Biochemical Abnormalities in Batten's Syndrome

    DEFF Research Database (Denmark)

    Clausen, Jytte Lene; Nielsen, Gunnar Gissel; Jensen, Gunde Egeskov

    1978-01-01

    The present data indicate that a group of ten patients with Batten's syndrome showed reduced activity of erythrocyte glutathione (GSH) peroxidase (Px) (glutathione: H2O2 oxidoreductase, EC 1.1.1.9.) using H2O2 as peroxide donor. Assay of erythrocyte GSHPx using H2O2, cumene hydroperoxide and t......-butyl hydroperoxide as donors also makes it possible biochemically to divide Batten's syndrome into two types: (1) one type with decreased values when H2O2 and cumene hydroperoxide are used, and (2) one type with increased values when t-butyl hydroperoxide is used. Furthermore an increased content of palmitic, oleic...

  8. The NREL Biochemical and Thermochemical Ethanol Conversion Processes: Financial and Environmental Analysis Comparison

    Directory of Open Access Journals (Sweden)

    Jesse Sky Daystar

    2015-07-01

    Full Text Available The financial and environmental performance of the National Renewable Energy Lab’s (NREL thermochemical and biochemical biofuel conversion processes are examined herein with pine, eucalyptus, unmanaged hardwood, switchgrass, and sweet sorghum. The environmental impacts of the process scenarios were determined by quantifying greenhouse gas (GHG emissions and TRACI impacts. Integrated financial and environmental performance metrics were introduced and used to examine the biofuel production scenarios. The thermochemical and biochemical conversion processes produced the highest financial performance and lowest environmental impacts when paired with pine and sweet sorghum, respectively. The high ash content of switchgrass and high lignin content of loblolly pine lowered conversion yields, resulting in the highest environmental impacts and lowest financial performance for the thermochemical and biochemical conversion processes, respectively. Biofuel produced using the thermochemical conversion process resulted in lower TRACI single score impacts and somewhat lower GHG emissions per megajoule (MJ of fuel than using the biochemical conversion pathway. The cost of carbon mitigation resulting from biofuel production and corresponding government subsidies was determined to be higher than the expected market carbon price. In some scenarios, the cost of carbon mitigation was several times higher than the market carbon price, indicating that there may be other more cost-effective methods of reducing carbon emissions.

  9. TVA and its rivals

    International Nuclear Information System (INIS)

    Feine, P.

    1997-01-01

    The long running opposition of a group of investor-owned electric utilities to the success of the federally-owned and subsidised Tennessee Valley Authority (TVA) is described. The TVA provides plentiful, affordable electric power to the many economically deprived residents of the southeastern United States, but there have been continued calls, most vocally by those electric utilities who would benefit financially from its demise, for reform of the power production giant, including withdrawal of its federal subsidies. In the manner of much US political manoevering claims and counter-claims are being pursued through the courts and via television advertising in an effort to sway public opinion against the publicly accountable TVA and towards privately owned utilities in the name of ''fair'' competition. (UK)

  10. Ariane: NASA's European rival

    Science.gov (United States)

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  11. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning

    Science.gov (United States)

    Srinivasan, Gopalakrishnan; Sengupta, Abhronil; Roy, Kaushik

    2016-07-01

    Spiking Neural Networks (SNNs) have emerged as a powerful neuromorphic computing paradigm to carry out classification and recognition tasks. Nevertheless, the general purpose computing platforms and the custom hardware architectures implemented using standard CMOS technology, have been unable to rival the power efficiency of the human brain. Hence, there is a need for novel nanoelectronic devices that can efficiently model the neurons and synapses constituting an SNN. In this work, we propose a heterostructure composed of a Magnetic Tunnel Junction (MTJ) and a heavy metal as a stochastic binary synapse. Synaptic plasticity is achieved by the stochastic switching of the MTJ conductance states, based on the temporal correlation between the spiking activities of the interconnecting neurons. Additionally, we present a significance driven long-term short-term stochastic synapse comprising two unique binary synaptic elements, in order to improve the synaptic learning efficiency. We demonstrate the efficacy of the proposed synaptic configurations and the stochastic learning algorithm on an SNN trained to classify handwritten digits from the MNIST dataset, using a device to system-level simulation framework. The power efficiency of the proposed neuromorphic system stems from the ultra-low programming energy of the spintronic synapses.

  12. Biochemical changes in ginger after gamma irradiation

    International Nuclear Information System (INIS)

    Kausar, T.; Salahuddin; Pervaiz, K.; Niazi, A.H.K.

    2001-01-01

    Ginger (Zingiber officinate) was irradiated with gamma rays (0.1Kgy, 1.0Kgy). Biochemical changes during storage at room temperature (23-28 degree centigrade), in sand (23-28 degree centigrade) and at cold (8 degree centigrade) temperature were observed. Changes in starch, soluble protein, fixed oil and volatile oil contents showed that treatment of ginger at 0.1Kgy radiation level was most appropriate for storage upto 45 days

  13. Biochemical disease-free survival following I-125 prostate implantation

    International Nuclear Information System (INIS)

    Beyer, David C.; Priestley, Joseph B.

    1995-01-01

    Purpose/Objective: To assess the five-year clinical and biochemical results of ultrasound-guided permanent I-125 brachytherapy in early prostate cancer. Biochemical disease-free survival (BDFS) is reported, using PSA follow-up and is compared to the surgical and radiation therapy literature. Materials and Methods: From 12/88 through 12/93, ultrasound-guided brachytherapy was preplanned with I-125 and delivered 16,000 cGy as the sole treatment in 499 patients. All were clinically staged as T1 or T2 - N0M0 adenocarcinoma of the prostate. Within the first year, 19 patients were lost to follow-up and have been excluded from further study. The remaining 480 patients form the basis of this report. Clinical status and PSA values were systematically recorded before and after treatment. Results: With a median follow-up of 35 months (3-70) the actuarial clinical local control is 83%. Both stage and grade are shown to predict for this endpoint. Actuarial BDFS is also correlated with stage, grade, and PSA at presentation. Biochemical disease-free survival at five years is 94% for T1, 70% for unilateral T2, and 34% for T2c tumors. Grade is also predictive, ranging from 85% in low-grade tumors to 30% in high-grade tumors. In a multivariate analysis, the pretreatment PSA is most highly correlated (p 10 had a BDFS of 40%. Complications have been few, with severe urinary urgency or dysuria in 4% and both incontinence and proctitis seen in 1%. Conclusion: While biochemical disease-free survival reports in the literature are immature and have short follow-up, our data compares favorably with studies following radical prostatectomy or radiation therapy. Further follow-up of this cohort is required. The complication rate is low and patient acceptance excellent. Permanent implantation of I-125 as the sole treatment for early prostate cancer is a viable alternative for patients with early stage and low- to moderate-grade cancers. The PSA provides significant prognostic information and

  14. Biochemical disease-free survival following I-125 prostate implantation

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, David C; Priestley, Joseph B

    1995-07-01

    Purpose/Objective: To assess the five-year clinical and biochemical results of ultrasound-guided permanent I-125 brachytherapy in early prostate cancer. Biochemical disease-free survival (BDFS) is reported, using PSA follow-up and is compared to the surgical and radiation therapy literature. Materials and Methods: From 12/88 through 12/93, ultrasound-guided brachytherapy was preplanned with I-125 and delivered 16,000 cGy as the sole treatment in 499 patients. All were clinically staged as T1 or T2 - N0M0 adenocarcinoma of the prostate. Within the first year, 19 patients were lost to follow-up and have been excluded from further study. The remaining 480 patients form the basis of this report. Clinical status and PSA values were systematically recorded before and after treatment. Results: With a median follow-up of 35 months (3-70) the actuarial clinical local control is 83%. Both stage and grade are shown to predict for this endpoint. Actuarial BDFS is also correlated with stage, grade, and PSA at presentation. Biochemical disease-free survival at five years is 94% for T1, 70% for unilateral T2, and 34% for T2c tumors. Grade is also predictive, ranging from 85% in low-grade tumors to 30% in high-grade tumors. In a multivariate analysis, the pretreatment PSA is most highly correlated (p < 0.0001). Patients with a normal pretreatment PSA enjoyed 93% BDFS, while those presenting with PSA > 10 had a BDFS of 40%. Complications have been few, with severe urinary urgency or dysuria in 4% and both incontinence and proctitis seen in 1%. Conclusion: While biochemical disease-free survival reports in the literature are immature and have short follow-up, our data compares favorably with studies following radical prostatectomy or radiation therapy. Further follow-up of this cohort is required. The complication rate is low and patient acceptance excellent. Permanent implantation of I-125 as the sole treatment for early prostate cancer is a viable alternative for patients with

  15. Effect Of Chromium- Picolinat On Biochemical And Histopathological ...

    African Journals Online (AJOL)

    Chromium III tris (picolinate) [Cr(pic)3]is a popular nutritional supplement; however its safety has been questioned, especially with regard to its ability to act as a clastogen. The aim of the present work was to evaluate the biochemical and morphological changes in the liver following oral administration of Cr-picolinate and ...

  16. Physiological and biochemical responses to low temperature stress ...

    African Journals Online (AJOL)

    Cuttings of three hybrid clones of P. ussuriensis × P. deltoides were exposed to different low temperatures (cold and freezing) for 24 h, or consecutive low temperatures (5°C, 0 to 120 h), to determine physiological and biochemical responses to cold stress in these woody plants. Soluble sugar and protein contents increased ...

  17. Recent Advances on the Use of Biochemical Extracts as Filaricidal Agents

    Directory of Open Access Journals (Sweden)

    Nazeh M. Al-Abd

    2013-01-01

    Full Text Available Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.

  18. Clinical, haematological and biochemical responses of sheep undergoing autologous blood transfusion

    Directory of Open Access Journals (Sweden)

    Sousa Rejane

    2012-05-01

    Full Text Available Abstract Background This study aimed to evaluate the clinical, haematological and biochemical responses to autologous blood transfusion and the feasibility of this practice in sheep. Thus, we used eight male, 8 months old sheep, weighing on average 30 kg, from which 15 mL/kg of whole blood was collected and stored in CPDA-1 bags. Blood samples were refrigerated for 8 days and subsequently re-infused. The clinical, haematological and biochemical parameters were evaluated before blood collection and reinfusion, after 10 minutes of collection and reinfusion, after 3, 6, 12, 24, 48, 96 and 192 hours after collection and reinfusion. Results With respect to clinical parameters, we observed a decrease in heart rate after 24, 48 and 196 hours from reinfusion compared to basal values (p p p p  Conclusion Autologous transfusion in sheep slightly altered the physiological, biochemical and haematological responses of sheep, indicating that the technique proposed is safe and can be applied in the clinical practice of this species. The 8 d period was not sufficient for complete recovery of the haematological parameters after blood collection.

  19. biochemical and haematological findings in alcohol consumers in Ile

    African Journals Online (AJOL)

    Administrator

    Effect of drinking patterns on biochemical and haematological parameters was conducted on ... disease depends on a variety of factors, including genetic ... by cirrhosis, cancer and violent deaths. .... (1985) stated that the marked influence of alcohol ... The relationship between alcohol consumption, health indicators and.

  20. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    Science.gov (United States)

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...