WorldWideScience

Sample records for risoe reactor code

  1. Pilot plant production at Riso of LEU silicide fuel for the Danish reactor DR3

    International Nuclear Information System (INIS)

    Toft, P.; Borring, J.; Adolph, E.

    1988-01-01

    A pilot plant for fabricating LEU silicide fuel elements has been established at Riso National Laboratory. Three test elements for the Danish reactor DR3 have been fabricated, based on 19.88% enriched U 3 Si 2 powder that has been purchased elsewhere. The pilot plant has been set up and 3 test elements fabricated without any major difficulties

  2. Risoe annual report 1981

    International Nuclear Information System (INIS)

    1982-08-01

    Brief notes on several activities of Risoe National Laboratory are given: frozen pellets for fusion reactors, reduction of nitrogen fertilizers, surplus heat, energy-economy computer models, environmental chemsitry. Furthermore a summary is presented of current projects at Risoe, and a list of selected publications is given. (LN)

  3. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1999-01-01

    The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)

  4. Risoe Research Establishment, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    On the poetic Roskilde Fjord, 40 kilometers from Copenhagen, and near Roskilde, capital of Denmark in the 12th century, stands the Risoe Research Establishment of the Danish Atomic Energy Commission. ere 700 men and women are engaged in searching for ways in which atomic energy can be used to make the world a better and healthier place. The work at Risoe comprises fundamental research, reactor technology and other technological studies, agricultural research and health and safety studies. Nuclear power stations are scheduled to be operative in Denmark some time between 1975 and 1980, and the planning of these stations and development of the many processes this will involve has become a major task at Risoe. Special conditions have to be fulfilled in selecting the site of an atomic research station, and the barren Risoe peninsula had them all: safety, because the site was free from buildings to permit continuous control; closeness to the scientific institutions of the capital, Copenhagen; social amenities in Roskilde; finally, access to an a adequate water supply. his special series of photos covering some aspects of the work and safety conditions at Risoe was commissioned by WHO. (author)

  5. Risoe Research Establishment, Denmark

    International Nuclear Information System (INIS)

    1973-01-01

    On the poetic Roskilde Fjord, 40 kilometers from Copenhagen, and near Roskilde, capital of Denmark in the 12th century, stands the Risoe Research Establishment of the Danish Atomic Energy Commission. ere 700 men and women are engaged in searching for ways in which atomic energy can be used to make the world a better and healthier place. The work at Risoe comprises fundamental research, reactor technology and other technological studies, agricultural research and health and safety studies. Nuclear power stations are scheduled to be operative in Denmark some time between 1975 and 1980, and the planning of these stations and development of the many processes this will involve has become a major task at Risoe. Special conditions have to be fulfilled in selecting the site of an atomic research station, and the barren Risoe peninsula had them all: safety, because the site was free from buildings to permit continuous control; closeness to the scientific institutions of the capital, Copenhagen; social amenities in Roskilde; finally, access to an a adequate water supply. his special series of photos covering some aspects of the work and safety conditions at Risoe was commissioned by WHO. (author)

  6. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  7. Risoe 1976/77

    International Nuclear Information System (INIS)

    1977-01-01

    A summary of the chief activities of the Risoe National Laboratory is given. The material is presented in a revised sequence following upon changes in the organization of the work at Risoe. These changes partly reflect the widened scope of activities, which now include non-nuclear energy research, that resulted from the Act on Energy Policy Measures from April 1976. The sequence is: reactor technology and safety, nuclear fuel cycle, environmental and safety research, materials research, radiation technology, agricultural research, other energy research, research facilities and auxiliary services. For more detailed descriptions of the work in progress, readers are referred to the annual reports of the various departments, and to the two series of research reports as well as to articles appearing in scientific journals. A list of these publications is given. Design data on research facilities are presented. (BP)

  8. Computer codes for the operational control of the research reactors

    International Nuclear Information System (INIS)

    Kalker, K.J.; Nabbi, R.; Bormann, H.J.

    1986-01-01

    Four small computer codes developed by ZFR are presented, which have been used for several years during operation of the research reactors FRJ-1, FRJ-2, AVR (all in Juelich) and DR-2 (Riso, Denmark). Because of interest coming from the other reactor stations the codes are documented within the frame work of the IAEA Research Contract No. 3634/FG. The zero-dimensional burnup program CREMAT is used for reactor cores in which flux measurements at each individual fuel element are carried out during operation. The program yields burnup data for each fuel element and for the whole core. On the basis of these data, fuel reloading is prepared for the next operational period under consideration of the permitted minimum shut down reactivity of the system. The program BURNY calculates burnup for fuel elements inaccessible for flux measurements, but for which 'position weighting factors' have been measured/calculated during zero power operation of the core, and which are assumed to be constant in all operational situations. The code CURIAX calculates post-irradiation data for discharged fuel elements needed in their manipulation and transport. These three programs have been written for highly enriched fuel and take into account U-235 only. The modification of CREMAT for LEU Cores and its combiantion with ORIGEN is in preparation. KINIK is an inverse kinetic code and widely used for absorber rod calibration at the abovementioned research reactors. It includes a special polynomial subroutine which can easily be used in other codes. (orig.) [de

  9. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  10. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  11. Verification of reactor safety codes

    International Nuclear Information System (INIS)

    Murley, T.E.

    1978-01-01

    The safety evaluation of nuclear power plants requires the investigation of wide range of potential accidents that could be postulated to occur. Many of these accidents deal with phenomena that are outside the range of normal engineering experience. Because of the expense and difficulty of full scale tests covering the complete range of accident conditions, it is necessary to rely on complex computer codes to assess these accidents. The central role that computer codes play in safety analyses requires that the codes be verified, or tested, by comparing the code predictions with a wide range of experimental data chosen to span the physical phenomena expected under potential accident conditions. This paper discusses the plans of the Nuclear Regulatory Commission for verifying the reactor safety codes being developed by NRC to assess the safety of light water reactors and fast breeder reactors. (author)

  12. Risoe annual report 1977/78

    International Nuclear Information System (INIS)

    1978-11-01

    Brief notes on several activities of Risoe National Laboratory is given : reactor safety, uranium in Greenland, radioactive waste, radioactive contamination, windmills, meteorology, new knowledge about selenium, improved barley yield, fusion, behaviour of atoms and molecules, Denmark's energy requirements, gas storage in salt domes. Furthermore a summary is presented of current projects at Risoe, a list of selected publications is given, and design data on research facilities are presented. (BP)

  13. Risoe annual report 1978

    International Nuclear Information System (INIS)

    1979-07-01

    Brief notes on several activities of Risoe National Laboratory is given: battery for the electric car, storage of waste heat, development of fuel elements, reliability, the effect of cooling water temperature in the sea, radioactive chemistry, analysis of different substances in environment and medicine, Risoe library, calibration of thermometers. Furthermore a summary is presented of current projects at Risoe and a list of selected publications is given. (L.N.)

  14. Risoe annual report 1980

    International Nuclear Information System (INIS)

    1981-09-01

    Brief notes on several activities of Risoe National Laboratory are given: uranium extraction from Kvanefjeld in Greenland, better utilization of uranium as fuel, hydrogen in metals, wind power, lasers, radioactive medicaments, plasma, plant breeding. Furthermore a summary is presented of current projects at Risoe, and a list of selected publications is given. (LN)

  15. Riso na epilepsia

    Directory of Open Access Journals (Sweden)

    Edymar Jardim

    1967-06-01

    Full Text Available São estudados três casos de síndrome convulsiva temporal, com manifestações concomitantes de riso na sua fase inicial. As características principais foram a imotivação e á incoercibilidade do riso. Esses sintomas desapareceram com o uso de anticonvulsivantes.

  16. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  17. Reports issued by the Risoe National Laboratory in the series: RISO-R reports and RISO-M reports

    International Nuclear Information System (INIS)

    1982-08-01

    This list includes all scientific and technical reports issued from 1957 - May 1982 by Risoe National Laboratory, former Research Establishment Risoe. The list covers Riso-R and Risoe-M reports, and is arranged according to report numbers. (author)

  18. Calibration of the enigma code for Finnish reactor fuel with support from experimental irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Kelppe, S; Ranta-Puska, K [VTT Energy, Jyvaeskylae (Finland)

    1997-08-01

    Assessment by VTT of the ENIGMA fuel performance code, the original version by Nuclear Electric plc of the UK amended by a set of WWER specific materials correlations, is described. The given examples of results include analyses for BWR 9 x 9 fuel, BWR fuel irradiated in the reinstrumented test of an international Riso project, pre-characterized commercial WWER fuel irradiated in Loviisa reactor in Finland, and instrumented WWER test fuel irradiations in the MR reactor in Russia. The effects of power uncertainty and some model parameters are discussed. Considering the fact that the described cases all mean prototypic application of the code, the results are well encouraging. The importance of the accuracy in temperature calculations is emphasized. (author). 2 refs, 12 figs, 1 tab.

  19. Risoe annual report 1987

    International Nuclear Information System (INIS)

    1988-06-01

    An explanation of Risoe National Laboratory's function within the Danish research system is followed by brief accounts of research activities at Risoe during 1987. Energy resources, technology and policy are discussed, the annual accounts are presented, a guide to the National Laboratory and a list of its publications are given. Some of the research activities that took place in 1987 described in more detail are within the fields of chemistry and the environment, superconductivity, new aspects of powdery mildew, polymers and robotics. (AB)

  20. Risoe Publication Activities in 1997; Risoes publikationsvirksomhed i 1997

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, Hanne; Bennov, Solvejg

    1998-08-01

    Risoe`s publication and lecture activities in the last decades are presented through data of total number of publications, distribution of types of publications, number of citations to the international scientific journal articles, and institutions with which Risoe has published the largest number of articles. The data are derived from Risoe`s in-house Publications Database and from the Risoe Institutional Citation Report database produced by the Institute for Scientific Information. The largest part of the report contains a list of references to the scientific and technical journal articles, books, reports, lectures, and to publications for a broader readership authored by researchers at Risoe National Laboratory during the year 1997. The references are organised according to the programme areas of Risoe. (au)

  1. Risoe annual report 1979

    International Nuclear Information System (INIS)

    1980-09-01

    Brief notes on several activities of Risoe National Laboratory is given: the effects of radioactive fallout, irradiation of cells, neutron activation analysis, the utilization of nitrogenous fertilizer in cereals, dispersion of hazardous substances through ground water,positron-annihilation, fatigue of metals, neutron-radiography used on fuel elements, analysis of meat consumption and requirement in Den- mark, reliability analysis of oil plat forms and installations for natural gas. Furthermore a summary is presented of current projects at Risoe and a list of selected publications is given. (L.N.)

  2. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  3. Risoe publication activities in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bennov, Solvejg [ed.

    1999-04-01

    The report contains a list of references to the scientific and technical journal articles, books, reports, lectures published in full text, and to publications for a broader readership authored by researchers at Risoe National Laboratory and published in 1998. If the publication mentioned in the reference is electronically available the link to the web-address is added. The references are organised according to the programme areas of Risoe. The text is introduced by total number of publications, distribution of types of publications, number of citations to the international scientific journal articles, institutions with which Risoe has published the largest number of articles, and journals in which Risoe has published most articles. The data are derived from Risoe`s in-house Publications Database and from the Risoe Institutional Citation Report database produced by the Institute for Scientific Information. (au)

  4. The Risoe National Laboratory, Denmark

    International Nuclear Information System (INIS)

    Majborn, B.

    2001-01-01

    The Risoe National Laboratory of Denmark started as a nuclear research centre, under the Atomic Energy Commission in 1955, with research reactors, an accelerator and related facilities. The research component, aimed at the introduction of nuclear power plants in Denmark, was wound up in 1985 with the country deciding to forego nuclear power in its energy planning. From 1993 the centre is under the jurisdiction of the Ministry of Research with three main areas of work: i) research on high international level; ii) train researchers; and iii) provide service to industry. The centre is funded up to 53% by the Danish Government and 47% by contract earnings. Some areas of current research include: i) materials science; ii) optics and sensor systems; iii) plant production and ecology; and iv) systems analysis. The nuclear component of the research centre is related to the operation of the nuclear facilities and for maintaining national expertise in nuclear safety and radiation protection. (author)

  5. Validation of the reactor dynamics code TRAB

    International Nuclear Information System (INIS)

    Raety, H.; Kyrki-Rajamaeki, R.; Rajamaeki, M.

    1991-05-01

    The one-dimensional reactor dynamics code TRAB (Transient Analysis code for BWRs) developed at VTT was originally designed for BWR analyses, but it can in its present version be used for various modelling purposes. The core model of TRAB can be used separately for LWR calculations. For PWR modelling the core model of TRAB has been coupled to circuit model SMABRE to form the SMATRA code. The versatile modelling capabilities of TRAB have been utilized also in analyses of e.g. the heating reactor SECURE and the RBMK-type reactor (Chernobyl). The report summarizes the extensive validation of TRAB. TRAB has been validated with benchmark problems, comparative calculations against independent analyses, analyses of start-up experiments of nuclear power plants and real plant transients. Comparative RBMES type reactor calculations have been made against Soviet simulations and the initial power excursion of the Chernobyl reactor accident has also been calculated with TRAB

  6. Risoe publication activities in 1998

    International Nuclear Information System (INIS)

    Bennov, Solvejg

    1999-04-01

    The report contains a list of references to the scientific and technical journal articles, books, reports, lectures published in full text, and to publications for a broader readership authored by researchers at Risoe National Laboratory and published in 1998. If the publication mentioned in the reference is electronically available the link to the web-address is added. The references are organised according to the programme areas of Risoe. The text is introduced by total number of publications, distribution of types of publications, number of citations to the international scientific journal articles, institutions with which Risoe has published the largest number of articles, and journals in which Risoe has published most articles. The data are derived from Risoe's in-house Publications Database and from the Risoe Institutional Citation Report database produced by the Institute for Scientific Information. (au)

  7. Risoe Publication Activities in 1997

    International Nuclear Information System (INIS)

    Alvi, Hanne; Bennov, Solvejg

    1998-08-01

    Risoe's publication and lecture activities in the last decades are presented through data of total number of publications, distribution of types of publications, number of citations to the international scientific journal articles, and institutions with which Risoe has published the largest number of articles. The data are derived from Risoe's in-house Publications Database and from the Risoe Institutional Citation Report database produced by the Institute for Scientific Information. The largest part of the report contains a list of references to the scientific and technical journal articles, books, reports, lectures, and to publications for a broader readership authored by researchers at Risoe National Laboratory during the year 1997. The references are organised according to the programme areas of Risoe. (au)

  8. HETERO code, heterogeneous procedure for reactor calculation

    International Nuclear Information System (INIS)

    Jovanovic, S.M.; Raisic, N.M.

    1966-11-01

    This report describes the procedure for calculating the parameters of heterogeneous reactor system taking into account the interaction between fuel elements related to established geometry. First part contains the analysis of single fuel element in a diffusion medium, and criticality condition of the reactor system described by superposition of elements interactions. the possibility of performing such analysis by determination of heterogeneous system lattice is described in the second part. Computer code HETERO with the code KETAP (calculation of criticality factor η n and flux distribution) is part of this report together with the example of RB reactor square lattice

  9. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  10. Fuel management codes for fast reactors

    International Nuclear Information System (INIS)

    Sicard, B.; Coulon, P.; Mougniot, J.C.; Gouriou, A.; Pontier, M.; Skok, J.; Carnoy, M.; Martin, J.

    The CAPHE code is used for managing and following up fuel subassemblies in the Phenix fast neutron reactor; the principal experimental results obtained since this reactor was commissioned are analyzed with this code. They are mainly concerned with following up fuel subassembly powers and core reactivity variations observed up to the beginning of the fifth Phenix working cycle (3/75). Characteristics of Phenix irradiated fuel subassemblies calculated by the CAPHE code are detailed as at April 1, 1975 (burn-up steel damage)

  11. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2010-01-01

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  12. Operational reactor physics analysis codes (ORPAC)

    International Nuclear Information System (INIS)

    Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi

    2007-07-01

    For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)

  13. Validation of the reactor dynamics code HEXTRAN

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1994-05-01

    HEXTRAN is a new three-dimensional, hexagonal reactor dynamics code developed in the Technical Research Centre of Finland (VTT) for VVER type reactors. This report describes the validation work of HEXTRAN. The work has been made with the financing of the Finnish Centre for Radiation and Nuclear Safety (STUK). HEXTRAN is particularly intended for calculation of such accidents, in which radially asymmetric phenomena are included and both good neutron dynamics and two-phase thermal hydraulics are important. HEXTRAN is based on already validated codes. The models of these codes have been shown to function correctly also within the HEXTRAN code. The main new model of HEXTRAN, the spatial neutron kinetics model has been successfully validated against LR-0 test reactor and Loviisa plant measurements. Connected with SMABRE, HEXTRAN can be reliably used for calculation of transients including effects of the whole cooling system of VVERs. Further validation plans are also introduced in the report. (orig.). (23 refs., 16 figs., 2 tabs.)

  14. Risoe National Laboratory. List of selected publications 1979

    International Nuclear Information System (INIS)

    1980-11-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1979. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  15. Risoe National Laboratory. List of selected publications 1980

    International Nuclear Information System (INIS)

    1981-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1980. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, and Radiation Technology, Agricultural Research, Non-Nuclear Research, General. (author)

  16. List of selected publications 1978 Risoe National Laboratory

    International Nuclear Information System (INIS)

    1979-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1978. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  17. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  18. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  19. SPQR: a Monte Carlo reactor kinetics code

    International Nuclear Information System (INIS)

    Cramer, S.N.; Dodds, H.L.

    1980-02-01

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  20. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  1. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  2. Design codes for gas cooled reactor components

    International Nuclear Information System (INIS)

    1990-12-01

    High-temperature gas-cooled reactor (HTGR) plants have been under development for about 30 years and experimental and prototype plants have been operated. The main line of development has been electricity generation based on the steam cycle. In addition the potential for high primary coolant temperature has resulted in research and development programmes for advanced applications including the direct cycle gas turbine and process heat applications. In order to compare results of the design techniques of various countries for high temperature reactor components, the IAEA established a Co-ordinated Research Programme (CRP) on Design Codes for Gas-Cooled Reactor Components. The Federal Republic of Germany, Japan, Switzerland and the USSR participated in this Co-ordinated Research Programme. Within the frame of this CRP a benchmark problem was established for the design of the hot steam header of the steam generator of an HTGR for electricity generation. This report presents the results of that effort. The publication also contains 5 reports presented by the participants. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  3. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Martin, W.R.

    1989-01-01

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  4. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  5. Thermal-hydraulic interfacing code modules for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Gold, M.; Sills, H. [Ontario Hydro Nuclear, Toronto (Canada)] [and others

    1997-07-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis.

  6. Thermal-hydraulic interfacing code modules for CANDU reactors

    International Nuclear Information System (INIS)

    Liu, W.S.; Gold, M.; Sills, H.

    1997-01-01

    The approach for CANDU reactor safety analysis in Ontario Hydro Nuclear (OHN) and Atomic Energy of Canada Limited (AECL) is presented. Reflecting the unique characteristics of CANDU reactors, the procedure of coupling the thermal-hydraulics, reactor physics and fuel channel/element codes in the safety analysis is described. The experience generated in the Canadian nuclear industry may be useful to other types of reactors in the areas of reactor safety analysis

  7. Pellet refueling program at Risoe

    International Nuclear Information System (INIS)

    Andersen, V.; Chang, C.T.; Joergensen, L.W.; Nielsen, P.; Sillesen, A.H.

    1978-01-01

    The pellet refueling work at Riso has up to now been concentrated at studying the ablation rate of hydrogen pellets in hydrogen and deuterium plasmas in the Puffatron device. The main results of these studies are well known and we shall only give a brief summary including some more recent results relating to the ablation process. The work on the Puffatron device has been completed and we are presently preparing to start ablation studies in a small Tokamak, Dante. This tokamak has only been constructed this summer and ablation studies are expected to begin in the beginning of 1978. We shall give the expected parameters of the tokamak plasma and indicate some of the planned work. In this presentation we shall also report on the theoretical work on refueling taking place at Riso. We have particularly been interested in the effect of α-particles which could significantly alter the conclusions made from present experiments

  8. Paracantor: A two group, two region reactor code

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Stuart

    1956-07-01

    Paracantor I a two energy group, two region, time independent reactor code, which obtains a closed solution for a critical reactor assembly. The code deals with cylindrical reactors of finite length and with a radial reflector of finite thickness. It is programmed for the 1.B.M: Magnetic Drum Data-Processing Machine, Type 650. The limited memory space available does not permit a flux solution to be included in the basic Paracantor code. A supplementary code, Paracantor 11, has been programmed which computes fluxes, .including adjoint fluxes, from the .output of Paracamtor I.

  9. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-06-01

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60 Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60 Co, 137 Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  10. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  11. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  12. User's guide for Reactor Incident Root Cause Coding Tree

    International Nuclear Information System (INIS)

    Busch, D.A.; Paradies, M.W.

    1986-01-01

    The Reactor Incident (RI) Cause Coding Tree is designed to allow identification of root causes of RI's, thereby leading to trending of useful information and developing of corrective actions to prevent recurrence. This guide explains the terminology of the RI Cause Coding Tree and how to use the tree. Using this guide for cause coding is stressed to allow consistency of coding among all RI investigators. 8 figs

  13. Reactor safety computer code development at INEL

    International Nuclear Information System (INIS)

    Johnsen, G.W.

    1985-01-01

    This report provides a brief overview of the computer code development programs being conducted at EG and G Idaho, Inc. on behalf of US Nuclear Regulatory Commission and the Department of Energy, Idaho Operations Office. Included are descriptions of the codes being developed, their development status as of the date of this report, and resident code development expertise

  14. Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    2006-09-01

    The Board of Governors of the International Atomic Energy Agency (IAEA) adopted the Code of Conduct on the Safety of Research Reactors on 8 March 2004. The Board's action was the culmination of several years of work to develop the Code and obtain a consensus on its provisions. The process leading to the Code began in 1998, when the International Nuclear Safety Advisory Group (INSAG) informed the Director General of concerns about the safety of research reactors. In 2000, INSAG recommended that the Secretariat begin developing an international protocol or a similar legal instrument to address those concerns. In September 2000, in resolution GC(44)/RES/14, the General Conference requested the Secretariat ''within its available resources, to continue work on exploring options to strengthen the international nuclear safety arrangements for civil research reactors, taking due account of input from INSAG and the views of other relevant bodies''. A working group convened by the Secretariat pursuant to that request recommended that ''the Agency consider establishing an international action plan for research reactors'' and that the action plan include preparation of a Code of Conduct ''that would clearly establish the desirable attributes for management of research reactor safety''. In September 2001, the Board requested that the Secretariat develop and implement, in conjunction with Member States, an international research reactor safety enhancement plan which included preparation of a Code of Conduct on the Safety of Research Reactors. Subsequently, in resolution GC(45)/RES/10.A, the General Conference endorsed the Board's request. Pursuant to that request, a Code of Conduct on the Safety of Research Reactors was drafted at two meetings of an Open-ended Working Group of Legal and Technical Experts. This draft Code of Conduct was circulated to all Member States for comment. On the basis of the responses received, a revised draft of the Code was prepared by the Secretariat

  15. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  16. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  17. Design codes for fast reactor steam generators

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1978-01-01

    The paper reviews the design methods and design criteria which are available for fast reactor structures, and discusses the materials data which are required to demonstrate the integrity of the plant components. (author)

  18. Application of fuel management calculation codes for CANDU reactor

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun

    2003-01-01

    Qinshan Phase III Nuclear Power Plant adopts CANDU-6 reactors. It is the first time for China to introduce this heavy water pressure tube reactor. In order to meet the demands of the fuel management calculation, DRAGON/DONJON code is developed in this paper. Some initial fuel management calculations about CANDU-6 reactor of Qinshan Phase III are carried out using DRAGON/DONJON code. The results indicate that DRAGON/DONJON can be used for the fuel management calculation for Qinshan Phase III

  19. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.; Michigan Univ., Ann Arbor, MI

    1991-01-01

    In order to use efficiently the new features of supercomputers, production codes, usually written 10 -20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedup in the execution times was obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize the parallel/vector architecture of a multiprocessor IBM 3090. (author)

  20. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.

    1991-01-01

    In order to efficiently use new features of supercomputers, production codes, usually written 10 - 20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedups in the execution times were obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a multiprocessor IBM 3090. (author)

  1. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  2. OPAL reactor calculations using the Monte Carlo code serpent

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Diego; Villarino, Eduardo [Nuclear Engineering Dept., INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    In the present work the Monte Carlo cell code developed by VTT Serpent v1.1.14 is used to model the MTR fuel assemblies (FA) and control rods (CR) from OPAL (Open Pool Australian Light-water) reactor in order to obtain few-group constants with burnup dependence to be used in the already developed reactor core models. These core calculations are performed using CITVAP 3-D diffusion code, which is well-known reactor code based on CITATION. Subsequently the results are compared with those obtained by the deterministic calculation line used by INVAP, which uses the Collision Probability Condor cell-code to obtain few-group constants. Finally the results are compared with the experimental data obtained from the reactor information for several operation cycles. As a result several evaluations are performed, including a code to code cell comparison at cell and core level and calculation-experiment comparison at core level in order to evaluate the Serpent code actual capabilities. (author)

  3. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  4. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.)

  5. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  6. CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide

    International Nuclear Information System (INIS)

    Thompson, W.I.

    1980-10-01

    CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels

  7. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  8. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  9. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  10. Association Euratom - Risoe National Laboratory annual progress report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1997-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetized plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1996. (au) 5 tabs., 25 ills., 11 refs.

  11. Association Euratom - Risoe National Laboratory annual progress report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N. (eds.)

    2006-11-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  12. Association Euratom - Risoe National Laboratory annual progress report 1995

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1996-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within studies of nonlinear dynamical processes in magnetized plasmas, and development of pellet injectors for fusion experiments. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step and the Long-term Technology programme. A summary is presented of the results obtained in the Research Unit during 1995. (au) 5 tabs., 32 ills., 33 refs

  13. Association Euratom - Risoe National Laboratory annual progress report 1994

    International Nuclear Information System (INIS)

    Lynov, J.P.; Michelsen, P.; Singh, B.N.

    1995-06-01

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs

  14. Association Euratom - Risoe National Laboratory annual progress report 1996

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1997-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetized plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1996. (au) 5 tabs., 25 ills., 11 refs

  15. Association Euratom - Risoe National Laboratory annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Singh, B N

    2004-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  16. Association Euratom - Risoe National Laboratory annual progress report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N (eds.)

    2005-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  17. Association Euratom - Risoe National Laboratory annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J P; Michelsen, P; Singh, B N [eds.

    1995-06-01

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs.

  18. Association Euratom - Risoe National Laboratory. Annual progress report 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2003-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. (au)

  19. Association Euratom - Risoe National Laboratory annual progress report 1999

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  20. Association Euratom - Risoe National Laboratory annual progress report 2005

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2006-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  1. Association Euratom - Risoe National Laboratory. Annual progress report 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2002-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001. (au)

  2. Building a dynamic code to simulate new reactor concepts

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.

    2012-01-01

    Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.

  3. Neutron radiography at the Risoe National Laboratory

    International Nuclear Information System (INIS)

    Domanus, J.C.; Gade-Nielsen, P.; Knudsen, P.; Olsen, J.

    1981-11-01

    In this report six papers are collected which will be presented at the First World Conference on Neutron Radiography in San Diego, U.S.A., 7 - 10 December 1981. They are preceded by a short description of the activities of Risoe National Laboratory in the field of post-irradiation examination of nuclear fuel. One of the nondestructive methods used for this examination is neutron radiography. In the six conference papers different aspects of neutron radiography performed at Risoe are presented. (author)

  4. MODIF-a code for completely reflected cylindrical reactors

    International Nuclear Information System (INIS)

    Gaafar, M.; Mechail, I.; Tadrus, S.

    1981-01-01

    MODIF-Code is a computer program for calculating the reflector saving, material buckling, and effective multiplication constant of completely reflected cylindrical reactors. The calculational method is based on a modified iterative algorithm which has been deduced from the general analytical solution of the two group diffusion equations. The code has been written in FORTRAN language suited for the ICL-1906 computer facility at Cairo University. The computer time required to solve a problem of actual reactor is less than 1 minute. The problem converges within five iteration steps. The accuracy in determining the effective multiplication constant lies within +-10 -5 . The code has been applied to the case of UA-RR-1 reactor, the results confirm the validity and accuracy of the calculational method

  5. Reactor physics computer code development for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1989-01-01

    This report discusses various reactor physics codes developed for neutronic design, fuel-management, reactor operation and safety analysis of PHWRs. These code packages have been utilized for nuclear design of 500 MWe and new 235 MWe PHWRs. (author)

  6. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  7. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  8. Notes on nuclear reactor core analysis code: CITATION

    International Nuclear Information System (INIS)

    Cepraga, D.G.

    1980-01-01

    The method which has evolved over the years for making power reactor calculations is the multigroup diffusion method. The CITATION code is designed to solve multigroup neutronics problems with application of the finite-difference diffusion theory approximation to neutron transport in up to three-dimensional geometry. The first part of this paper presents information about the mathematical equations programmed along with background material and certain displays to convey the nature of some of the formulations. The results obtained with the CITATION code regarding the neutron and burnup core analysis for a typical PWR reactor are presented in the second part of this paper. (author)

  9. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  10. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  11. Reactor Simulations for Safeguards with the MCNP Utility for Reactor Evolution Code

    International Nuclear Information System (INIS)

    Shiba, T.; Fallot, M.

    2015-01-01

    To tackle nuclear material proliferation, we conducted several proliferation scenarios using the MURE (MCNP Utility for Reactor Evolution) code. The MURE code, developed by CNRS laboratories, is a precision, open-source code written in C++ that automates the preparation and computation of successive MCNP (Monte Carlo N-Particle) calculations and solves the Bateman equations in between, for burnup or thermal-hydraulics purposes. In addition, MURE has been completed recently with a module for the CHaracterization of Radioactive Sources, called CHARS, which computes the emitted gamma, beta and alpha rays associated to any fuel composition. Reactor simulations could allow knowing how plutonium or other material generation evolves inside reactors in terms of time and amount. The MURE code is appropriate for this purpose and can also provide knowledge on associated particle emissions. Using MURE, we have both developed a cell simulation of a typical CANDU reactor and a detailed model of light water PWR core, which could be used to analyze the composition of fuel assemblies as a function of time or burnup. MURE is also able to provide, thanks to its extension MURE-CHARTS, the emitted gamma rays from fuel assemblies unloaded from the core at any burnup. Diversion cases of Generation IV reactors have been also developed; a design of Very High Temperature Reactor (a Pebble Bed Reactor (PBR), loaded with UOx, PuOx and ThUOx fuels), and a Na-cooled Fast Breeder Reactor (FBR) (with depleted Uranium or Minor Actinides in the blanket). The loading of Protected Plutonium Production (P3) in the FBR was simulated. The simulations of various reactor designs taking into account reactor physics constraints may bring valuable information to inspectors. At this symposium, we propose to show the results of these reactor simulations as examples of the potentiality of reactor simulations for safeguards. (author)

  12. Development of thermal hydraulic evaluation code for CANDU reactors

    International Nuclear Information System (INIS)

    Kim, Man Woong; Yu, Seon Oh; Choi, Yong Seog; Shin, Chull; Hwang, Soo Hyun

    2004-02-01

    To enhance the safety of operating CANDU reactors, the establishment of the safety analysis codes system for CANDU reactors is in progress. As for the development of thermal-hydraulic analysis code for CANDU system, the studies for improvement of evaluation model inside RELAP/CANDU code and the development of safety assessment methodology for GSI (Generic Safety Issues) are in progress as a part of establishment of CANDU safety assessment system. To develop the 3-D thermal-hydraulic analysis code for moderator system, the CFD models for analyzing the CANDU-6 moderator circulation are developed. One model uses a structured grid system with the porous media approach for the 380 Calandria tubes in the core region. The other uses a unstructured grid system on the real geometry of 380 Calandria tubes, so that the detailed fluid flow between the Calandria tubes can be observed. As to the development of thermal-hydraulic analysis code for containment, the study on the applicability of CONTAIN 2.0 code to a CANDU containment was conducted and a simulation of the thermal-hydraulic phenomena during the accident was performed. Besides, the model comparison of ESFs (Engineered Safety Features) inside CONTAIN 2.0 code and PRESCON code has also conducted

  13. Code development for nuclear reactor simulation

    International Nuclear Information System (INIS)

    Chauliac, C.; Verwaerde, D.; Pavageau, O.

    2006-01-01

    Full text of publication follows: Since several years, CEA, EDF and FANP have developed several numerical codes which are currently used for nuclear industry applications and will be remain in use for the coming years. Complementary to this set of codes and in order to better meet the present and future needs, a new system is being developed through a joint venture between CEA, EDF and FANP, with a ten year prospect and strong intermediate milestones. The focus is put on a multi-scale and multi-physics approach enabling to take into account phenomena from microscopic to macroscopic scale, and to describe interactions between various physical fields such as neutronics (DESCARTES), thermal-hydraulics (NEPTUNE) and fuel behaviour (PLEIADES). This approach is based on a more rational design of the softwares and uses a common integration platform providing pre-processing, supervision of computation and post-processing. This paper will describe the overall system under development and present the first results obtained. (authors)

  14. Computer codes used during upgrading activities at MINT TRIGA reactor

    International Nuclear Information System (INIS)

    Mohammad Suhaimi Kassim; Adnan Bokhari; Mohd Idris Taib

    1999-01-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear research reactor commissioned in 1982. In 1993, a project was initiated to upgrade the thermal power to 2 MW. The IAEA assistance was sought to assist the various activities relevant to an upgrading exercise. For neutronics calculations, the IAEA has provided expert assistance to introduce the WIMS code, TRIGAP, and EXTERMINATOR2. For thermal-hydraulics calculations, PARET and RELAP5 were introduced. Shielding codes include ANISN and MERCURE. However, in the middle of 1997, MINT has decided to change the scope of the project to safety upgrading of the MINT Reactor. This paper describes some of the activities carried out during the upgrading process. (author)

  15. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  16. ANDREA: Advanced nodal diffusion code for reactor analysis

    International Nuclear Information System (INIS)

    Belac, J.; Josek, R.; Klecka, L.; Stary, V.; Vocka, R.

    2005-01-01

    A new macro code is being developed at NRI which will allow coupling of the advanced thermal-hydraulics model with neutronics calculations as well as efficient use in core loading pattern optimization process. This paper describes the current stage of the macro code development. The core simulator is based on the nodal expansion method, Helios lattice code is used for few group libraries preparation. Standard features such as pin wise power reconstruction and feedback iterations on critical control rod position, boron concentration and reactor power are implemented. A special attention is paid to the system and code modularity in order to enable flexible and easy implementation of new features in future. Precision of the methods used in the macro code has been verified on available benchmarks. Testing against Temelin PWR operational data is under way (Authors)

  17. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  18. The WINCON programme - validation of fast reactor primary containment codes

    International Nuclear Information System (INIS)

    Sidoli, J.E.A.; Kendall, K.C.

    1988-01-01

    In the United Kingdom safety studies for the Commercial Demonstration Fast Reactor (CDFR) include an assessment of the capability of the primary containment in providing an adequate containment for defence against the hazards resulting from a hypothetical Whole Core Accident (WCA). The assessment is based on calculational estimates using computer codes supported by measured evidence from small-scale experiments. The hydrodynamic containment code SEURBNUK-EURDYN is capable of representing a prescribed energy release, the sodium coolant and cover gas, and the main containment and safety related internal structures. Containment loadings estimated using SEURBNUK-EURDYN are used in the structural dynamic code EURDYN-03 for the prediction of the containment response. The experiments serve two purposes, they demonstrate the response of the CDFR containment to accident loadings and provide data for the validation of the codes. This paper summarises the recently completed WINfrith CONtainment (WINCON) experiments that studied the response of specific features of current CDFR design options to WCA loadings. The codes have been applied to some of the experiments and a satisfactory prediction of the global response of the model containment is obtained. This provides confidence in the use of the codes in reactor assessments. (author)

  19. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  20. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2009-08-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  1. Risoe DTU annual report 2008. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H. (eds.)

    2009-08-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2008 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  2. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Birgit; Bindslev, H [eds.

    2010-06-15

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  3. Risoe DTU annual report 2009. Highlights from Risoe National Laboratory for Sustainable Energy, DTU

    International Nuclear Information System (INIS)

    Pedersen, Birgit; Bindslev, H.

    2010-06-01

    Risoe DTU is the National Laboratory for Sustainable Energy at the Technical University of Denmark. The research focuses on development of energy technologies and systems with minimal effect on climate, and contributes to innovation, education and policy. Risoe has large experimental facilities and interdisciplinary research environments, and includes the national centre for nuclear technologies. The 2009 annual report gives highlights on Risoe's research in the following areas: wind energy, bioenergy, solar energy, fusion energy, fuel cells and hydrogen, energy systems and climate change, and nuclear technologies. It also includes information on Education and training, Innovation and business, Research facilities, and Management, Personnel and Operating statements. (LN)

  4. Introduction to reactor lattice calculations by the WIMSD code

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1998-01-01

    The present report is based on lectures delivered at the Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety hold in International Centre of Theoretical Physics, Trieste, in March 1998. The main goal of the set of lectures was to give the basis of reactor physics calculations for participants working on nuclear data.The last lectures, devoted to WIMS including the WIMSD code users. Following this general line the material is divided into three parts: The first part includes a short description of neutron transport phenomena limited to those definitions that are necessary to understand the approach to practical solution of the problem given in the second part on reactor lattice transport calculations. The detailed discussion of the neutron cross sections has been skipped as this subject has been treated in detail by other lectures. In the third part those versions of the well-known WIMSD code which are distributed by NEA Data Bank are described. The general structure of the code is given supplied in a more detailed description of aspects being the most common points of misunderstanding for the code users. (author)

  5. On the automated assessment of nuclear reactor systems code accuracy

    International Nuclear Information System (INIS)

    Kunz, Robert F.; Kasmala, Gerald F.; Mahaffy, John H.; Murray, Christopher J.

    2002-01-01

    An automated code assessment program (ACAP) has been developed to provide quantitative comparisons between nuclear reactor systems (NRS) code results and experimental measurements. The tool provides a suite of metrics for quality of fit to specific data sets, and the means to produce one or more figures of merit (FOM) for a code, based on weighted averages of results from the batch execution of a large number of code-experiment and code-code data comparisons. Accordingly, this tool has the potential to significantly streamline the verification and validation (V and V) processes in NRS code development environments which are characterized by rapidly evolving software, many contributing developers and a large and growing body of validation data. In this paper, a survey of data conditioning and analysis techniques is summarized which focuses on their relevance to NRS code accuracy assessment. A number of methods are considered for their applicability to the automated assessment of the accuracy of NRS code simulations. A variety of data types and computational modeling methods are considered from a spectrum of mathematical and engineering disciplines. The goal of the survey was to identify needs, issues and techniques to be considered in the development of an automated code assessment procedure, to be used in United States Nuclear Regulatory Commission (NRC) advanced thermal-hydraulic T/H code consolidation efforts. The ACAP software was designed based in large measure on the findings of this survey. An overview of this tool is summarized and several NRS data applications are provided. The paper is organized as follows: The motivation for this work is first provided by background discussion that summarizes the relevance of this subject matter to the nuclear reactor industry. Next, the spectrum of NRS data types are classified into categories, in order to provide a basis for assessing individual comparison methods. Then, a summary of the survey is provided, where each

  6. Computer code qualification program for the Advanced CANDU Reactor

    International Nuclear Information System (INIS)

    Popov, N.K.; Wren, D.J.; Snell, V.G.; White, A.J.; Boczar, P.G.

    2003-01-01

    Atomic Energy of Canada Ltd (AECL) has developed and implemented a Software Quality Assurance program (SQA) to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. This paper provides an overview of the computer programs used in Advanced CANDU Reactor (ACR) safety analysis, and assessment of their applicability in the safety analyses of the ACR design. An outline of the incremental validation program, and an overview of the experimental program in support of the code validation are also presented. An outline of the SQA program used to qualify these computer codes is also briefly presented. To provide context to the differences in the SQA with respect to current CANDUs, the paper also provides an overview of the ACR design features that have an impact on the computer code qualification. (author)

  7. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  8. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  9. Current Status of the LIFE Fast Reactors Fuel Performance Codes

    International Nuclear Information System (INIS)

    Yacout, A.M.; Billone, M.C.

    2013-01-01

    The LIFE-4 (Rev. 1) code was calibrated and validated using data from (U,Pu)O2 mixed-oxide fuel pins and UO2 blanket rods which were irradiation tested under steady-state and transient conditions. – It integrates a broad material and fuel-pin irradiation database into a consistent framework for use and extrapolation of the database to reactor design applications. – The code is available and running on different computer platforms (UNIX & PC) – Detailed documentations of the code’s models, routines, calibration and validation data sets are available. LIFE-METAL code is based on LIFE4 with modifications to include key phenomena applicable to metallic fuel, and metallic fuel properties – Calibrated with large database from irradiations in EBR-II – Further effort for calibration and detailed documentation. Recent activities with the codes are related to reactor design studies and support of licensing efforts for 4S and KAERI SFR designs. Future activities are related to re-assessment of the codes calibration and validation and inclusion of models for advanced fuels (transmutation fuels)

  10. Liquid metal reactor applications of the CONTAIN code

    International Nuclear Information System (INIS)

    Carroll, D.E.; Bergeron, K.D.; Gido, R.; Valdez, G.D.; Scholtyssek, W.

    1988-01-01

    The CONTAIN code is the NRC's best-estimate code for the evaluation of the conditions that may exist inside a reactor containment building during a severe accident. Included in the phenomena modeled are thermal-hydraulics, radiant and convective heat transfer, aerosol loading and transient response, fission product transport and heating effects, and interactions of sodium and corium with the containment atmosphere and structures. CONTAIN has been used by groups in Japan and West Germany to assess its ability to analyze accident consequences for liquid metal reactor (LMR) plants. In conjunction with this use, collaborative efforts to improve the modeling have been pursued. This paper summarizes the current state of the version of CONTAIN that has been enhanced with extra capabilities for LMR applications. A description of physical models is presented, followed by a review of validation exercises performed with CONTAIN. Some demonstration calculations of an integrated LMR application are presented

  11. Spent reactor fuel benchmark composition data for code validation

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1991-09-01

    To establish criticality safety margins utilizing burnup credit in the storage and transport of spent reactor fuels requires a knowledge of the uncertainty in the calculated fuel composition used in making the reactivity assessment. To provide data for validating such calculated burnup fuel compositions, radiochemical assays are being obtained as part of the United States Department of Energy From-Reactor Cask Development Program. Destructive assay data are being obtained from representative reactor fuels having experienced irradiation exposures up to about 55 GWD/MTM. Assay results and associated operating histories on the initial three samples analyzed in this effort are presented. The three samples were taken from different axial regions of the same fuel rod and represent radiation exposures of about 27, 37, and 44 GWD/MTM. The data are presented in a benchmark type format to facilitate identification/referencing and computer code input

  12. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    1966-01-01

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  13. Description of the CAREM Reactor Neutronic Calculation Codes

    International Nuclear Information System (INIS)

    Villarino, Eduardo; Hergenreder, Daniel

    2000-01-01

    In this work is described the neutronic calculation line used to design the CAREM reactor.A description of the codes used and the interfaces between the different programs are presented.Both, the normal calculation line and the alternative or verification calculation line are included.The calculation line used to obtain the kinetics parameters (effective delayed-neutron fraction and prompt-neutron lifetime) is also included

  14. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  15. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  16. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  17. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  18. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    International Nuclear Information System (INIS)

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  19. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  20. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  1. Validation of containment thermal hydraulic computer codes for VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiri Macek; Lubomir Denk [Nuclear Research Institute Rez plc Thermal-Hydraulic Analyses Department CZ 250 68 Husinec-Rez (Czech Republic)

    2005-07-01

    Full text of publication follows: The Czech Republic operates 4 VVER-440 units, two VVER-1000 units are being finalized (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppression system are modelled with COCOSYS and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems.An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. One of the important components of the VVER 440/213 NPP is its containment with pressure suppression system (bubble condenser). For safety analyses of this system, computer codes of the type MELCOR and COCOSYS are used in the Czech Republic. These codes were developed for containments of classic PWRs or BWRs. In order to apply these codes for VVER 440 systems, their validation on experimental facilities must be performed.The paper provides concise information on these activities of the NRI and its Thermal-hydraulics Department. The containment system of the VVER 440/213, its functions and approaches to solution of its safety is described with definition of acceptance criteria. A detailed example of the containment code validation on EREC Test facility (LOCA and MSLB) and the consequent utilisation of the results for a real NPP purposes is included. An approach to

  2. Development of a safety analysis code for molten salt reactors

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui

    2009-01-01

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  3. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  4. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  5. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  6. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  7. Development of the versatile reactor analysis code system, MARBLE2

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Jin, Tomoyuki; Hazama, Taira; Hirai, Yasushi

    2015-07-01

    The second version of the versatile reactor analysis code system, MARBLE2, has been developed. A lot of new functions have been added in MARBLE2 by using the base technology developed in the first version (MARBLE1). Introducing the remaining functions of the conventional code system (JOINT-FR and SAGEP-FR), MARBLE2 enables one to execute almost all analysis functions of the conventional code system with the unified user interfaces of its subsystem, SCHEME. In particular, the sensitivity analysis functionality is available in MARBLE2. On the other hand, new built-in solvers have been developed, and existing ones have been upgraded. Furthermore, some other analysis codes and libraries developed in JAEA have been consolidated and prepared in SCHEME. In addition, several analysis codes developed in the other institutes have been additionally introduced as plug-in solvers. Consequently, gamma-ray transport calculation and heating evaluation become available. As for another subsystem, ORPHEUS, various functionality updates and speed-up techniques have been applied based on user experience of MARBLE1 to enhance its usability. (author)

  8. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  9. Application of software to development of reactor-safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1980-09-01

    Over the past two-and-a-half decades, the application of new techniques has reduced hardware cost for digital computer systems and increased computational speed by several orders of magnitude. A corresponding cost reduction in business and scientific software development has not occurred. The same situation is seen for software developed to model the thermohydraulic behavior of nuclear systems under hypothetical accident situations. For all cases this is particularly noted when costs over the total software life cycle are considered. A solution to this dilemma for reactor safety code systems has been demonstrated by applying the software engineering techniques which have been developed over the course of the last few years in the aerospace and business communities. These techniques have been applied recently with a great deal of success in four major projects at the Hanford Engineering Development Laboratory (HEDL): 1) a rewrite of a major safety code (MELT); 2) development of a new code system (CONACS) for description of the response of LMFBR containment to hypothetical accidents, and 3) development of two new modules for reactor safety analysis

  10. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au)

  11. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au) 27 ills., 18 refs.

  12. Association Euratom - Risoe National Laboratory annual progress report 1997

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au)

  13. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  14. Association Euratom - Risoe National Laboratory annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au) 5 tabs., 30 ills., 12 refs.

  15. Association Euratom - Risoe National Laboratory annual progress report 2006

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Singh, B.N.

    2007-09-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  16. New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny [Ecole Polytechnique Federale de Lausanne (Switzerland); Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Fridman, Emil; Bilodid, Yuri; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2017-07-15

    The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

  17. Computer codes for simulation of Angra 1 reactor steam generator

    International Nuclear Information System (INIS)

    Pinto, A.C.

    1978-01-01

    A digital computer code is developed for the simulation of the steady-state operation of a u-tube steam generator with natural recirculation used in Pressurized Water Reactors. The steam generator is simulated with two flow channel separated by a metallic wall, with a preheating section with counter flow and a vaporizing section with parallel flow. The program permits the changes in flow patterns and heat transfer correlations, in accordance with the local conditions along the vaporizing section. Various sub-routines are developed for the determination of steam and water properties and a mathematical model is established for the simulation of transients in the same steam generator. The steady state operating conditions in one of the steam generators of ANGRA 1 reactor are determined utilizing this programme. Global results obtained agree with published values [pt

  18. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  19. Validation of thermal hydraulic codes for fusion reactors safety

    International Nuclear Information System (INIS)

    Sardain, P.; Gulden, W.; Massaut, V.; Takase, K.; Merill, B.; Caruso, G.

    2006-01-01

    A significant effort has been done worldwide on the validation of thermal hydraulic codes, which can be used for the safety assessment of fusion reactors. This work is an item of an implementing agreement under the umbrella of the International Energy Agency. The European part is supported by EFDA. Several programmes related to transient analysis in water-cooled fusion reactors were run in order to assess the capabilities of the codes to treat the main physical phenomena governing the accidental sequences related to water/steam discharge into the vacuum vessel or the cryostat. The typical phenomena are namely the pressurization of a volume at low initial pressure, the critical flow, the flashing, the relief into an expansion volume, the condensation of vapor in a pressure suppression system, the formation of ice on a cryogenic structure, the heat transfer between walls and fluid in various thermodynamic conditions. · A benchmark exercise has been done involving different types of codes, from homogeneous equilibrium to six equations non-equilibrium models. Several cases were defined, each one focusing on a particular phenomenon. · The ICE (Ingress of Coolant Event) facility has been operated in Japan. It has simulated an in-vessel LOCA and the discharge of steam into a pressure suppression system. · The EVITA (European Vacuum Impingement Test Apparatus) facility has been operated in France. It has simulated ingress of coolant into the cryostat, i.e. into a volume at low initial pressure containing surfaces at cryogenic temperature. This paper gives the main lessons gained from these programs, in particular the possibilities for the improvement of the computer codes, extending their capabilities. For example, the water properties have been extended below the triple point. Ice formation models have been implemented. Work has also been done on condensation models. The remaining needs for R-and-D are also highlighted. (author)

  20. Safe operation of research reactors and critical assemblies. Code of practice and annexes. 1984 ed

    International Nuclear Information System (INIS)

    1984-01-01

    The safe operation of research reactors and critical assemblies (hereafter termed 'reactors') requires proper design, construction, management and supervision. This Code of Practice deals mainly with management and supervision. The provisions of the Code apply to the whole life of the reactor, including modification, updating and upgrading. The Code may be subject to revision in the light of experience and the state of technology. The Code is aimed at defining minimum requirements for the safe operation of reactors. Emphasis is placed on which safety requirements should be met rather than on specifying how these requirements may be met. The Code also provides guidance and information to persons and authorities responsible for the operation of reactors. The Code recommends that documents dealing with the operation of reactors and including safety analyses be prepared and submitted for review and approval to a regulatory body. Operation would be authorized on the understanding that it would comply with limits and conditions designed to ensure safety. The Code covers a wide range of reactor types, which gives rise to a variety of safety issues. Safety issues applicable to specific reactor types only (e.g. fast reactors) are not necessarily covered in this Code. Some of the recommendations in the Code are not directly applicable to critical assemblies. A recommendation may therefore be interpreted according to the type of reactor concerned. In such cases the words 'adequate' and 'appropriate' are used to mean 'adequate' or 'appropriate' for the type of reactor under consideration.

  1. Assessment of dose measurement uncertainty using RisoScan

    International Nuclear Information System (INIS)

    Helt-Hansen, Jakob; Miller, Arne

    2006-01-01

    The dose measurement uncertainty of the dosimeter system RisoScan, office scanner and Riso B3 dosimeters has been assessed by comparison with spectrophotometer measurements of the same dosimeters. The reproducibility and the combined uncertainty were found to be approximately 2% and 4%, respectively, at one standard deviation. The subroutine in RisoScan for electron energy measurement is shown to give results that are equivalent to the measurements with a scanning spectrophotometer

  2. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-02-01

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  3. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-08-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, removal and decontamination of large cell internals, and of large equipment such as glove boxes and steel boxes, in addition to dose commitments, are explained. Tables illustrating the analysis of smear tests, constants for contamination level examination, contamination and radiation levels after cleaning and total contamination versus measured radiation are included. (AB)

  4. A two dimensional code (R,Z) for nuclear reactor analysis and its application to the UAR-RI reactor

    International Nuclear Information System (INIS)

    Bishay, S.T.; Mikhail, I.F.I.; Gaafar, M.A.; Michaiel, M.L.; Nassar, S.F.

    1988-01-01

    A detailed study is given of fuel consumption in completely reflected cylindrical reactors. A two group, two dimensional (r,z) code is developed to carry out the required procedure. The code is applied to the UAR-RI reactor and the results are found to be in complete agreement with the experimental observations and with the theoretical interpretations. 7 fig., 12 tab

  5. CONIFERS: a neutronics code for reactors with channels

    International Nuclear Information System (INIS)

    Davis, R.S.

    1977-04-01

    CONIFERS is a neutronics code for nuclear reactors whose fuel is in channels that are separated from each other by several neutron mean-free-path lengths of moderator. It can treat accurately situations in which the usual homogenized-cell diffusion equation becomes inaccurate, but is more economical than other advanced methods such as response-matrix and source-sink formalisms. CONIFERS uses exact solutions of the neutron diffusion equation within each cell. It allows for the breakdown of this equation near a channel by means of data that almost any cell code can supply. It uses the results of these cell analyses in a reactor equations set that is as readily solvable as the familiar finite-difference equations set. CONIFERS can model almost any configuration of channels and other structures in two or three dimensions. It can use any number of energy groups and any reactivity scales, including scales based on control operations. It is also flexible from a programming point of view, and has convenient input and output provisions. (author)

  6. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  7. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  8. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  9. Shipments of irradiated DIDO fuel from Risoe National Laboratory to the Savannah River Site - Challenges and achievements

    International Nuclear Information System (INIS)

    Anne, C.; Patterson, J.

    2003-01-01

    On September 28, 2000, the Board of Governors of Risoe National Laboratory decided to shut down the Danish research reactor DR3 due to technical problems (corrosion on the reactor aluminum tank). Shortly thereafter, the Danish Government asked the National Laboratory to empty the reactor and its storage pools containing a total of 255 DIDO irradiated elements and ship them to Savannah River Site in the USA as soon as possible. Risoe National Laboratory had previously contracted with Cogema Logistics to ship DR3 DIDO fuel elements to SRS through the end of the return program. The quantity of fuel was less than originally intended but the schedule was significantly shorter. It was agreed in June 2001 that a combination of Cogema Logistics' and NAC casks would be preferable, as it would allow Risoe to ship all the irradiated fuel in two shipments and complete the shipments by June 2002. Risoe National Laboratory, Cogema Logistics and NAC International had twelve months to perform the shipments including licensing, basket fabrication for the NAC-LWT casks and actual transport. The paper describes the challenging work that was accomplished to meet the date of June 2002. (author)

  10. Development and verifications of fast reactor fuel design code ''Ceptar''

    International Nuclear Information System (INIS)

    Ozawa, T.; Nakazawa, H.; Abe, T.

    2001-01-01

    The annular fuel is very beneficial for fast reactors, because it is available for both high power and high burn-up. Concerning the irradiation behavior of the annular fuel, most of annular pellets irradiated up to high burn-up showed shrinkage of the central hole due to deformation and restructuring of the pellets. It is needed to predict precisely the shrinkage of the central hole during irradiation, because it has a great influence on power-to-melt. In this paper, outline of CEPTAR code (Calculation code to Evaluate fuel pin stability for annular fuel design) developed to meet this need is presented. In this code, the radial profile of fuel density can be computed by using the void migration model, and law of conservation of mass defines the inner diameter. For the mechanical analysis, the fuel and cladding deformation caused by the thermal expansion, swelling and creep is computed by the stress-strain analysis using the approximation of plane-strain. In addition, CEPTAR can also take into account the effect of Joint-Oxide-Gain (JOG) which is observed in fuel-cladding gap of high burn-up fuel. JOG has an effect to decrease the fuel swelling and to improve the gap conductance due to deposition of solid fission product. Based on post-irradiation data on PFR annular fuel, we developed an empirical model for JOG. For code verifications, the thermal and mechanical data obtained from various irradiation tests and post-irradiation examinations were compared with the predictions of this code. In this study, INTA (instrumented test assembly) test in JOYO, PTM (power-to-melt) test in JOYO, EBR-II, FFTF and MTR in Harwell laboratory, and post-irradiation examinations on a number of PFR fuels, were used as verification data. (author)

  11. Development of essential system technologies for advanced reactor - Development of natural circulation analysis code for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Park, Ik Gyu; Kim, Jae Hak; Lee, Sang Min; Kim, Tae Wan [Seoul National University, Seoul (Korea)

    1999-04-01

    The objective of this study is to understand the natural circulation characteristics of integral type reactors and to develope the natural circulation analysis code for integral type reactors. This study is focused on the asymmetric 3-dimensional flow during natural circulation such as 1/4 steam generator section isolation and the inclination of the reactor systems. Natural circulation experiments were done using small-scale facilities of integral reactor SMART (System-Integrated Modular Advanced ReacTor). CFX4 code was used to investigate the flow patterns and thermal mixing phenomena in upper pressure header and downcomer. Differences between normal operation of all steam generators and the 1/4 section isolation conditions were observed and the results were used as the data 1/4 section isolation conditions were observed and the results were used as the data for RETRAN-03/INT code validation. RETRAN-03 code was modified for the development of natural circulation analysis code for integral type reactors, which was development of natural circulation analysis code for integral type reactors, which was named as RETRAN-03/INT. 3-dimensional analysis models for asymmetric flow in integral type reactors were developed using vector momentum equations in RETRAN-03. Analysis results using RETRAN-03/INT were compared with experimental and CFX4 analysis results and showed good agreements. The natural circulation characteristics obtained in this study will provide the important and fundamental design features for the future small and medium integral reactors. (author). 29 refs., 75 figs., 18 tabs.

  12. THYDE-NEU: Nuclear reactor system analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2002-03-01

    THYDE-NEU is applicable not only to transient analyses, but also to steady state analyses of nuclear reactor systems (NRSs). In a steady state analysis, the code generates a solution satisfying the transient equations without external disturbances. In a transient analysis, the code calculates temporal NRS behaviors in response to various external disturbances in such a way that mass and energy of the coolant as well as the number of neutrons conserve. The first half of the report is the description of the methods and models for use in the THYDE-NEU code, i.e., (1) the thermal-hydraulic network model, (2) the spatial kinetics model, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the users' mannual containing the items; (1) the program control, (2) the input requirements, (3) the execution of THYDE-NEU jobs, (4) the output specifications and (5) the sample calculation. (author)

  13. TMRBAR power balance code for tandem mirror reactors

    International Nuclear Information System (INIS)

    Blackkfield, D.T.; Campbell, R.; Fenstermacher, M.; Bulmer, R.; Perkins, L.; Peng, Y.K.M.; Reid, R.L.; Wu, K.F.

    1984-01-01

    A revised version of the tandem mirror multi-point code TMRBAR developed at LLNL has been used to examine various reactor designs using MARS-like ''c'' coils. We solve 14 to 16 non-linear equations to obtain the densities, temperatures, plasma potential and magnetic field on axis at the cardinal points. Since ICRH, ECRH, and neutral beams may be used to stabilize the central cell, various combinations of rf and neutral beam powers may satisfy the physics. To select a desired set of physics parameters, we use nonlinear optimization techniques. Whit these routines, we minimize or maximize a physics variable subject to the physics constraints being satisfied. For example, for a given fusion power we may find the minimum length needed to have an ignited central cell or the maximum fusion Q. Finally, we have coupled this physics model to the LLNL magnetics-MHD code. This code runs the EFFI magnetic field generator and uses TEBASCO to calculate 1-D MHD equilibria and stability

  14. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  15. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  16. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  17. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  18. Computer code for simulating pressurized water reactor core

    International Nuclear Information System (INIS)

    Serrano, A.M.B.

    1978-01-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)

  19. Code for the core simulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Serrano, M.A.B.

    1978-08-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numericaly. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistence added to the film coeficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (Author) [pt

  20. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  1. Risoe's activities in 1999; Risoes virksomhedsregnskab 1999. Opfoelgning paa planerne for aaret 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    This report contains an overview of the results obtained at Risoe National Laboratory in 1999. A performance management contract was agreed with the Ministry of Research. The Board of Governors has the obligation to report the annual progress in obtaining specific goals. (au)

  2. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigni, Marco T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  3. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  4. Research Establishment Risoe 1975/76

    International Nuclear Information System (INIS)

    1976-11-01

    A summary of the chief activities of the research establishment Risoe is given. These are roughly divided into sections dealing with nuclear technology, applied research, basic research, and research facilities and auxiliary services. For more detailed descriptions of the work in progress, readers are referred to the annual reports published in the two report series, as well as to articles appearing in scientific journals. A selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  5. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  6. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  7. 40 Years of research at Risoe: A platform for the future - interacting with industry and society

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Lis; Lading, Lars [eds.

    1998-08-01

    Risoe`s 40th anniversary was celebrated June 3, 1998 by a symposium held at Risoe. The interaction of research at Risoe with academia and industry was presented in both national and international perspective. Most of the presentations are in English, a few in Danish. (au)

  8. Experimental assessment of computer codes used for safety analysis of integral reactors

    Energy Technology Data Exchange (ETDEWEB)

    Falkov, A.A.; Kuul, V.S.; Samoilov, O.B. [OKB Mechanical Engineering, Nizhny Novgorod (Russian Federation)

    1995-09-01

    Peculiarities of integral reactor thermohydraulics in accidents are associated with presence of noncondensable gas in built-in pressurizer, absence of pumped ECCS, use of guard vessel for LOCAs localisation and passive RHRS through in-reactor HX`s. These features defined the main trends in experimental investigations and verification efforts for computer codes applied. The paper reviews briefly the performed experimental investigation of thermohydraulics of AST-500, VPBER600-type integral reactors. The characteristic of UROVEN/MB-3 code for LOCAs analysis in integral reactors and results of its verification are given. The assessment of RELAP5/mod3 applicability for accident analysis in integral reactor is presented.

  9. Once-through CANDU reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.

    1980-11-01

    Reactor physics calculations have led to the development of two CANDU reactor models for the ORIGEN2 computer code. The model CANDUs are based on (1) the existing once-through fuel cycle with feed comprised of natural uranium and (2) a projected slightly enriched (1.2 wt % 235 U) fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models, as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST, are given

  10. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  11. Validation of computer codes used in the safety analysis of Canadian research reactors

    International Nuclear Information System (INIS)

    Bishop, W.E.; Lee, A.G.

    1998-01-01

    AECL has embarked on a validation program for the suite of computer codes that it uses in performing the safety analyses for its research reactors. Current focus is on codes used for the analysis of the two MAPLE reactors under construction at Chalk River but the program will be extended to include additional codes that will be used for the Irradiation Research Facility. The program structure is similar to that used for the validation of codes used in the safety analyses for CANDU power reactors. (author)

  12. Studies on the liquid fluoride thorium reactor: Comparative neutronics analysis of MCNP6 code with SRAC95 reactor analysis code based on FUJI-U3-(0)

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, S.Q., E-mail: sqjxv3@mst.edu; Alajo, A.B., E-mail: alajoa@mst.edu

    2017-04-01

    Highlights: • The verification for FUJI-U3-(0)—a molten salt reactor—was performed. • The MCNP6 was used to study the reactor physics characteristics for FUJI-U3 type. • The results from the MCNP6 were comparable with the ones obtained from literature. - Abstract: The verification for FUJI-U3-(0)—a molten salt reactor—was performed. The reactor used LiF-BeF2-ThF4-UF4 as the mixed liquid fuel salt, and the core was graphite moderated. The MCNP6 code was used to study the reactor physics characteristics for the FUJI-U3-(0) reactor. Results for reactor physics characteristic of the FUJI-U3-(0) exist in literature, which were used as reference. The reference results were obtained using SRAC95 (a reactor analysis code) coupled with ORIGEN2 (a depletion code). Some modifications were made in the reconstruction of the FUJI-U3-(0) reactor in MCNP due to unavailability of more detailed description of the reactor core. The assumptions resulted in two representative models of the reactor. The results from the MCNP6 models were compared with the reference results obtained from literature. The results were comparable with each other, but with some notable differences. The differences are because of the approximations that were done on the SRAC95 model of the FUJI-U3 to simplify the simulation. Based on the results, it is concluded that MCNP6 code predicts well the overall simulation of neutronics analysis to the previous simulation works using SRAC95 code.

  13. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  14. Development of a computer code for Dalat research reactor transient analysis

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong

    2003-01-01

    DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)

  15. Transient analysis of ABWR reactor using a best estimate code

    International Nuclear Information System (INIS)

    Mizokami, S.; Kitamura, H.; Mototani, A.; Ono, H.

    2004-01-01

    Since the recirculation pumps are mounted internally within the ABWR, core flow will decrease rapidly in the event of a loss of their driving force. A rapid reduction in core flow may cause the onset of boiling transition (BT). Therefore, in order to prevent the onset of BT, a motor-generator (MG) set is added to the power supply system of the reactor internal pump (RIP). Recent studies, however, have shown that dryout within a fuel assembly over a short time period will result in only a small rise in fuel cladding temperature and thus does not pose a threat to fuel integrity. In response to this finding, the standards committee of the Atomic Energy Society of Japan (AESJ) has proposed a post-BT standard which incorporates a cladding temperature criterion. If it is assumed that the MG-set is not added to the RIP power supply system, the result of the safety analysis shows the onset of BT with a subsequent rise in fuel cladding temperature. Although BT occurs under the conservative assumptions of this safety analysis, a possibility exists that BT will not occur under actual operating conditions. The best estimate code TRACG was used to show that BT does not occur and that fuel integrity can be sufficiently maintained under actual conditions. (author)

  16. KAMCCO, a reactor physics Monte Carlo neutron transport code

    International Nuclear Information System (INIS)

    Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.

    1976-06-01

    KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de

  17. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  18. Fast neutron fluence evaluation of the smart reactor pressure vessel by using the GEOSHIELD code

    International Nuclear Information System (INIS)

    Kim, K.Y.; Kim, K.S.; Kim, H.Y.; Lee, C.C.; Zee, S.Q.

    2007-01-01

    In Korea, the design of an advanced integral reactor system called SMART has been developed by KAERI to supply energy for seawater desalination as well as an electricity generation. A fast neutron fluence distribution at the SMART reactor pressure vessel was evaluated to confirm the integrity of the vessel by using the GEOSHIELD code. The GEOSHIELD code was developed by KAERI in order to prepare an input list including a geometry modeling of the DORT code and to process results from the DORT code output list. Results by a GEOSHIELD code processing and by a manual processing of the DORT show a good agreement. (author)

  19. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  20. Input/output manual of light water reactor fuel performance code FEMAXI-7 and its related codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Saitou, Hiroaki [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-07-15

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which has been fully disclosed in the code model description published recently as JAEA-Data/Code 2010-035. The present manual, which is the counterpart of this description, gives detailed explanations of operation method of FEMAXI-7 code and its related codes, methods of Input/Output, methods of source code modification, features of subroutine modules, and internal variables in a specific manner in order to facilitate users to perform a fuel analysis with FEMAXI-7. This report includes some descriptions which are modified from the original contents of JAEA-Data/Code 2010-035. A CD-ROM is attached as an appendix. (author)

  1. Input/output manual of light water reactor fuel performance code FEMAXI-7 and its related codes

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2012-07-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which has been fully disclosed in the code model description published recently as JAEA-Data/Code 2010-035. The present manual, which is the counterpart of this description, gives detailed explanations of operation method of FEMAXI-7 code and its related codes, methods of Input/Output, methods of source code modification, features of subroutine modules, and internal variables in a specific manner in order to facilitate users to perform a fuel analysis with FEMAXI-7. This report includes some descriptions which are modified from the original contents of JAEA-Data/Code 2010-035. A CD-ROM is attached as an appendix. (author)

  2. Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Ustun, G.; Durmayaz, A.

    2002-01-01

    Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor

  3. The automated Risoe TL dating reader system

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.

    1988-01-01

    The features of the new modified Riso TL dating reader system are described. A vacuum chamber that accommodates the entire 24-position sample changer unit has been designed. The vacuum and N 2 -gas functions are software-controlled. A newly designed heater system is capable of repeated heating cycles to 700 0 C. The sample changer system accommodates fine-grain discs as well as planchettes for coarse grains. Two software-controlled beta irradiators can be attached to the reader, e.g. for predose measurement. The software allows a user without programming expertise to create any desired measuring sequence, and to store and recall data and glow curves for making analyses. (author)

  4. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1992-02-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  5. European synchrotron radiation facility at Risoe

    International Nuclear Information System (INIS)

    1981-07-01

    The results of the feasibility study on a potential European Synchrotron Radiation Facility site at Risoe, Denmark, can be summarized as follows: The site is located in a geologically stable area. The ground is fairly flat, free from vibrations and earth movements, and the foundation properties are considered generally good. The study is based upon the machine concept and main geometry as presented in the ESF feasibility study of May 1979. However, the proposed site could accomodate a larger machine (e.g. 900 m of circumference) or a multi-facility centre. The site is located in the vicinity of Risoe National Laboratory, a R and D establishment with 850 employees and a well-developed technical and scientific infrastructure, which can provide support to the ESRF during the plant construction and operation. In particular the possible combination of synchrotron radiation with the existing neutron scattering facilities in DR 3 is emphasized. The site is located 35 km west of Copenhagen with easy access to the scientific, technological and industrial organizations in the metropolitan area. The regional infrastructure ensures easy and fast communication between the ESRF and locations in the host country as well as abroad. The site is located 35 minutes drive from Copenhagen International Airport and on a main communication route out of Copenhagen. The estimated time duration for the design, construction and commissioning of ESRF phase 1 - taking into account national regulatory procedures - is consistent with that of the ESF feasibility study, i.e. approx. 6 years. The estimated captal costs associated with site-specific structures are consistent with those of the ESF feasibility study, taking into account price increase between 1979 and 1981. It should be emphasized that the study is based upon technical and scientific assessments only, and does not reflect any official position or approval from appropriate authorities. (author)

  6. Procedures of ASME code case N-201 for KALIMER. Reactor internal structures

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Yoo, B.

    2001-02-01

    The main objective of this report is to describe the design procedure of ASME Boiler and Pressure Vessel Code, Code Case N-201-4, which is an elevated temperature structural design code of the Nuclear reactor internal structures, checking the criteria of stress limit, accumulated inelastic strain and deformation, creep-fatigue damage, and buckling limit. As one of examples, the creep-fatigue damage evaluations are carried out for the KALIMER reactor internal structures of baffle annulus. This report is expected to be very useful in evaluating the structural integrity of the liquid metal reactor operating under an elevated temperature

  7. Status of computer codes available in AEOI for reactor physics analysis

    International Nuclear Information System (INIS)

    Karbassiafshar, M.

    1986-01-01

    Many of the nuclear computer codes available in Atomic Energy Organization of Iran AEOI can be used for physics analysis of an operating reactor or design purposes. Grasp of the various methods involved and practical experience with these codes would be the starting point for interesting design studies or analysis of operating conditions of presently existing and future reactors. A review of the objectives and flowchart of commonly practiced procedures in reactor physics analysis of LWRs and related computer codes was made, extrapolating to the nationally and internationally available resources. Finally, effective utilization of the existing facilities is discussed and called upon

  8. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  9. Some neutronics and thermal-hydraulics codes for reactor analysis using personal computers

    International Nuclear Information System (INIS)

    Woodruff, W.L.

    1990-01-01

    Some neutronics and thermal-hydraulics codes formerly available only for main frame computers may now be run on personal computers. Brief descriptions of the codes are provided. Running times for some of the codes are compared for an assortment of personal and main frame computers. With some limitations in detail, personal computer versions of the codes can be used to solve many problems of interest in reactor analyses at very modest costs. 11 refs., 4 tabs

  10. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, G., E-mail: giacomino.bandini@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Polidori, M. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Gerschenfeld, A.; Pialla, D.; Li, S. [Commissariat à l’Energie Atomique (CEA) (France); Ma, W.M.; Kudinov, P.; Jeltsov, M.; Kööp, K. [Royal Institute of Technology (KTH) (Sweden); Huber, K.; Cheng, X.; Bruzzese, C.; Class, A.G.; Prill, D.P. [Karlsruhe Institute of Technology (KIT) (Germany); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Geffray, C.; Macian-Juan, R. [Technische Universität München (TUM) (Germany); Maas, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2015-01-15

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes.

  11. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Saitou, Hiroaki [ITOCHU Techno-Solutions Corporation, Tokyo (Japan)

    2013-10-15

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  12. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2013-10-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  13. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  14. Reactor physics calculations in the Nordic countries

    International Nuclear Information System (INIS)

    Hoeglund, R.

    1995-01-01

    The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented

  15. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  16. Recent Developments of JAEA's Monte Carlo Code MVP for Reactor Physics Applications

    Science.gov (United States)

    Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa

    2014-06-01

    This paper describes the recent development status of a Monte Carlo code MVP developed at Japan Atomic Energy Agency. The basic features and capabilities of MVP are overviewed. In addition, new capabilities useful for reactor analysis are also described.

  17. Failed fuel diagnosis during WWER reactor operation using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Afanasieva, E.; Sorokin, A.; Evdokimov, I.; Kanukova, V.; Khromov, A.

    2006-01-01

    The mechanistic code RTOP-CA is developed for objectives of failed fuel diagnosis during WWER reactor operation. The RTOP-CA code enables to solve a direct problem: modelling the failed fuel behavior and prediction of primary coolant activity if characteristics of failures in the reactor core are known. Results of verification of the RTOP-CA code are presented. Separate physical models were verified on small-scale in-pile and out-of-pile experiments. Integral verification cases included data obtained at research reactors and at nuclear power plants. The RTOP-CA code is used for development of a neural-network approach to the inverse problem: detection of failure characteristics on the base of data on primary coolant activity during reactor operation. Preliminary results of application of the neural-network approach for evaluation of fuel failure characteristics are presented. (authors)

  18. Analyses for MARIA Research Reactor with RELAP/MOD3 code

    International Nuclear Information System (INIS)

    Szczurek, J.; Czerski, P.

    2004-01-01

    This paper deals with the application of the RELAP5/MOD3 code to the transient analyses for MARIA research reactor. Poland's MARIA Research Reactor is water and beryllium moderated, water-cooled reactor of a pool type with pressurized fuel channels containing concentric multi-tube assemblies of highly enriched uranium clad in aluminium. The RELAP5/MOD3 input data model includes the whole primary cooling circuit of the MARIA reactor. The model was qualified against the reactor data at steady state conditions and additionally against the existing reliable experimental data for a transient initiated by the reactor scram. The RELAP transient simulation was performed for loss of forced flow accidents including two scenarios with protected and unprotected (no scram) reactor core. Calculations allow estimating time margin for reactor scram initiation and reactivity feedbacks contribution to the results. (author)

  19. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  20. Recent developments of JAEA’s Monte Carlo code MVP for reactor physics applications

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu; Okumura, Keisuke; Mori, Takamasa

    2015-01-01

    Highlights: • This paper describes the recent development status of the Monte Carlo code MVP. • The basic features and capabilities of MVP are briefly described. • New capabilities useful for reactor analysis are also described. - Abstract: This paper describes the recent development status of a Monte Carlo code MVP developed at Japan Atomic Energy Agency. The basic features and capabilities of MVP are overviewed. In addition, new capabilities useful for reactor analysis are also described

  1. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  2. Determination of the NPP Krsko reactor core safety limits using the COBRA-III-C code

    International Nuclear Information System (INIS)

    Lajtman, S.; Feretic, D.; Debrecin, N.

    1989-01-01

    This paper presents the NPP Krsko reactor core safety limits determined by the COBRA-III-C code, along with the methodology used. The reactor core safety limits determination is a part of reactor protection limits procedure. The results obtained were compared to safety limits presented in NPP Krsko FSAR. The COBRA-III-C NPP Krsko design core steady state thermal hydraulics calculation, used as the basis for the safety limits calculation, is presented as well. (author)

  3. Code on the safety of nuclear research reactors: Operation

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this publication is to provide the essential requirements and recommendations for the safe operation of research reactors, with emphasis on the supervisory and managerial aspects. However, the publication also provides some guidance and information on topics concerning all the organizations involved in operation. These objectives are expressed in terms of requirements and recommendations for the safe operation of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on the ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop regulations and safety criteria for its research reactor programme.

  4. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  5. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  6. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  7. Software coding for reliable data communication in a reactor safety system

    International Nuclear Information System (INIS)

    Maghsoodi, R.

    1978-01-01

    A software coding method is proposed to improve the communication reliability of a microprocessor based fast-reactor safety system. This method which replaces the conventional coding circuitry, applies a program to code the data which is communicated between the processors via their data memories. The system requirements are studied and the suitable codes are suggested. The problems associated with hardware coders, and the advantages of software coding methods are discussed. The product code which proves a faster coding time over the cyclic code is chosen as the final code. Then the improvement of the communication reliability is derived for a processor and its data memory. The result is used to calculate the reliability improvement of the processing channel as the basic unit for the safety system. (author)

  8. Calculation of static harmonics of a nuclear reactor using CITATION code

    International Nuclear Information System (INIS)

    Belchior Junior, A.; Moreira, J.M.L.

    1989-01-01

    The CITATION code, which solves the multigroup diffusion equation by the finite difference method, calculates the fundamental λ-mode (harmonic) for nuclear reactors. In this work, two fission source correction methods are attempted to obtain higher λ-modes through the CITATION code. The two methods are compared, their advantages and disadvantages analysed and verified against analytical solutions. Two dimensional harmonic modes are calculated for the IEA-R1 research reactor and for the ANGRA-I power reactor. The results are shown in graphics and tables. (author) [pt

  9. HETERO code, heterogeneous procedure for reactor calculation; Program Hetero, heterogeni postupak proracuna reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S M; Raisic, N M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1966-11-15

    This report describes the procedure for calculating the parameters of heterogeneous reactor system taking into account the interaction between fuel elements related to established geometry. First part contains the analysis of single fuel element in a diffusion medium, and criticality condition of the reactor system described by superposition of elements interactions. the possibility of performing such analysis by determination of heterogeneous system lattice is described in the second part. Computer code HETERO with the code KETAP (calculation of criticality factor {eta}{sub n} and flux distribution) is part of this report together with the example of RB reactor square lattice.

  10. Development of M3C code for Monte Carlo reactor physics criticality calculations

    International Nuclear Information System (INIS)

    Kumar, Anek; Kannan, Umasankari; Krishanani, P.D.

    2015-06-01

    The development of Monte Carlo code (M3C) for reactor design entails use of continuous energy nuclear data and Monte Carlo simulations for each of the neutron interaction processes. BARC has started a concentrated effort for developing a new general geometry continuous energy Monte Carlo code for reactor physics calculation indigenously. The code development required a comprehensive understanding of the basic continuous energy cross section sets. The important features of this code are treatment of heterogeneous lattices by general geometry, use of point cross sections along with unionized energy grid approach, thermal scattering model for low energy treatment, capability of handling the microscopic fuel particles dispersed randomly. The capability of handling the randomly dispersed microscopic fuel particles which is very useful for the modeling of High-Temperature Gas-Cooled reactor fuels which are composed of thousands of microscopic fuel particle (TRISO fuel particle), randomly dispersed in a graphite matrix. The Monte Carlo code for criticality calculation is a pioneering effort and has been used to study several types of lattices including cluster geometries. The code has been verified for its accuracy against more than 60 sample problems covering a wide range from simple (like spherical) to complex geometry (like PHWR lattice). Benchmark results show that the code performs quite well for the criticality calculation of the system. In this report, the current status of the code, features of the code, some of the benchmark results for the testing of the code and input preparation etc. are discussed. (author)

  11. Boron concentration evolution in the temporary curtains of a BWR reactor. Burcur code

    International Nuclear Information System (INIS)

    Cano Aguado, M.; Perlado Martin, J.M.; Minguez Torres, E.

    1977-01-01

    The theoretical model and the user's guide of the code Burcur is included. This code analyzes the burnable poison concentration of the temporary curtains as a function of time, for BWR reactors of the 7 x 7 design. The computing time being reasonably short, the number of burnup steps is as high as necessary.(author) [es

  12. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Seo, K. W

    2006-01-15

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.

  13. Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Seo, K. W.

    2006-01-01

    A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC

  14. Standard interface files and procedures for reactor physics codes. Version IV

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1977-09-01

    Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included

  15. Modelling of the RA-1 reactor using a Monte Carlo code

    International Nuclear Information System (INIS)

    Quinteiro, Guillermo F.; Calabrese, Carlos R.

    2000-01-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  16. The use of the codes from MCU family for calculations of WWER type reactors

    International Nuclear Information System (INIS)

    Abagijan, L.P.; Alexeyev, N.I.; Bryzgalov, V.I.; Gomin, E.A.; Glushkov, A.E.; Gorodkov, S.S.; Gurevich, M.I.; Kalugin, M.A.; Marin, S.V.; Shkarovsky, D.A.; Yudkevich, M.S.

    2000-01-01

    The MCU-RFFI/A and MCU-REA codes developed within the framework of the long term MCU project are widely used for calculations of neutron physic characteristics of WWER type reactors. Complete descriptions of the codes are available in both Russian and English. The codes are verified and validated by means of the comparison of calculated results with experimental data and mathematical benchmarks. The codes are licensed by Russian Nuclear and Criticality Safety Regulatory Body (Gosatomnadzor RF) (Code Passports: N 61 of 17.10.1966 and N 115 of 02.03.2000 accordingly)). The report gives examples of WWER reactor physic tasks important for practice solved using the codes from the MCU family. Some calculational results are given too. (Authors)

  17. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    Science.gov (United States)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  18. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-02-01

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  19. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-10-01

    A concise description of the current status of the decommissioning of the hot cell capacity at Risoe National Laboratory is given in this 6th periodic report covering January 1st to June 30th, 1993. All registered and safeguarded fissile material has been removed and the task of cutting and packing scrap material and experimental equipment from the concrete cell line has been completed. Concrete cells 5 and 6 have been finally cleaned and the master slave manipulators removed from them. The major part of the contamination on the shutters and shutter houses were on their horizontal planes and the main contaminant was 137 Cs. Here the surfaces were cleaned by wiping with wet cloths. The method is described. Tables illustrating the resulting contamination levels are included, the density is now low on the shutters. The method of final inn-cell cleaning is explained, and here again tables represent the resulting contamination levels. The work on ''hot spot'' removal and remote cleaning by vacuuming continues on the remaining cells. A collective dose of ca. 16.3 man-mSv was ascribed to 18 persons in the first half of 1993, arising mainly from in-cell work and waste handling. To sum up, the main results from this period are successful removal of last waste from the cells, remote cleaning of cells 2 and 3, final condition for all shutters and shutter housings and final condition for cells 5 and 6. Tables illustrate measured dose rates in detail. (AB)

  20. Recent developments of JAEA's Monte Carlo Code MVP for reactor physics applications

    International Nuclear Information System (INIS)

    Nagaya, Y.; Okumura, K.; Mori, T.

    2013-01-01

    MVP is a general-purpose continuous-energy Monte Carlo code for neutron and photon transport calculations that has been developed since the late 1980's at Japan Atomic Energy Agency (JAEA, formerly JAERI). The MVP code is designed for nuclear reactor applications such as reactor core design/analysis, criticality safety and reactor shielding. This paper describes the MVP code and present its latest developments. Among the new capabilities of MVP we find: -) the perturbation method has been implemented for the change in k(eff); -) the eigenvalue calculations can be performed with an explicit treatment of delayed neutrons in which their fission spectra are taken into account; -) the capability of tallying the scattering matrix (group-to-group scattering cross sections); -) the implementation of an exact model for resonance elastic scattering; and -) a Monte Carlo perturbation technique is used to calculate reactor kinetics parameters

  1. Calculation Of Fuel Burnup And Radionuclide Inventory In The Syrian Miniature Neutron Source Reactor Using The GETERA Code

    International Nuclear Information System (INIS)

    Khattab, K.; Dawahra, S.

    2011-01-01

    Calculations of the fuel burnup and radionuclide inventory in the Syrian Miniature Neutron Source Reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer and has a bigger library of isotopes and more accurate. (author)

  2. Verification of a neutronic code for transient analysis in reactors with Hex-z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Pintor, S.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmark and with the results provided by PARCS code. (authors)

  3. Calculations of reactor-accident consequences, Version 2. CRAC2: computer code user's guide

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Johnson, J.D.; Blond, R.M.

    1983-02-01

    The CRAC2 computer code is a revision of the Calculation of Reactor Accident Consequences computer code, CRAC, developed for the Reactor Safety Study. The CRAC2 computer code incorporates significant modeling improvements in the areas of weather sequence sampling and emergency response, and refinements to the plume rise, atmospheric dispersion, and wet deposition models. New output capabilities have also been added. This guide is to facilitate the informed and intelligent use of CRAC2. It includes descriptions of the input data, the output results, the file structures, control information, and five sample problems

  4. SAFIRE: A systems analysis code for ICF [inertial confinement fusion] reactor economics

    International Nuclear Information System (INIS)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-01

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants

  5. Coupled CFD - system-code simulation of a gas cooled reactor

    International Nuclear Information System (INIS)

    Yan, Yizhou; Rizwan-uddin

    2011-01-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  6. About the application of MCNP4 code in nuclear reactor core design calculations

    International Nuclear Information System (INIS)

    Svarny, J.

    2000-01-01

    This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)

  7. LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.

    1976-04-01

    The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented

  8. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  9. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    International Nuclear Information System (INIS)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo

    2005-01-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code

  10. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  11. Development of time dependent safety analysis code for plasma anomaly events in fusion reactors

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    A safety analysis code SAFALY has been developed to analyze plasma anomaly events in fusion reactors, e.g., a loss of plasma control. The code is a hybrid code comprising a zero-dimensional plasma dynamics and a one-dimensional thermal analysis of in-vessel components. The code evaluates the time evolution of plasma parameters and temperature distributions of in-vessel components. As the plasma-safety interface model, we proposed a robust plasma physics model taking into account updated data for safety assessment. For example, physics safety guidelines for beta limit, density limit and H-L mode confinement transition threshold power, etc. are provided in the model. The model of the in-vessel components are divided into twenty temperature regions in the poloidal direction taking account of radiative heat transfer between each surface of each region. This code can also describe the coolant behavior under hydraulic accidents with the results by hydraulics code and treat vaporization (sublimation) from plasma facing components (PFCs). Furthermore, the code includes the model of impurity transport form PFCs by using a transport probability and a time delay. Quantitative analysis based on the model is possible for a scenario of plasma passive shutdown. We examined the possibility of the code as a safety analysis code for plasma anomaly events in fusion reactors and had a prospect that it would contribute to the safety analysis of the International Thermonuclear Experimental Reactor (ITER). (author)

  12. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.

    2009-01-01

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  13. VIPRE-01: A thermal-hydraulic code for reactor cores

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.; Nomura, K.K.

    1989-08-01

    The VIPRE-01 thermal hydraulics code for PWR and BWR analysis has undergone significant modifications and error correction. This manual for the updated code, designated as VIPRE-01 Mod-02, describes improvements that eliminate problems of slow convergence with the drift flux model in transient simulation. To update the VIPRE-01 code and its documentation the drift flux model of two-phase flow was implemented and error corrections developed during VIPRE-01 application were included. The project team modified the existing VIPRE-01 equations into drift flux model equations by developing additional terms. They also developed and implemented corrections for the errors identified during the last four years. They then validated the modified code against standard test data using selected test cases. The project team prepared documentation revisions reflecting code improvements and corrections to replace the corresponding sections in the original VIPRE documents. The revised VIPRE code, designated VIPRE-01 Mod-02, incorporates improvements that eliminate many shortcomings of the previous version. During the validation, the code produced satisfactory output compared with test data. The revised documentation is in the form of binder pages to replace existing pages in three of the original manuals

  14. Adaptation of GRS calculation codes for Soviet reactors

    International Nuclear Information System (INIS)

    Langenbuch, S.; Petri, A.; Steinborn, J.; Stenbok, I.A.; Suslow, A.I.

    1994-01-01

    The use of ATHLET for incident calculation of WWER has been tested and verified in numerous calculations. Further adaptation may be needed for the WWER 1000 plants. Coupling ATHLET with the 3D nuclear model BIPR-8 for WWER cores clearly improves studies of the influence of neutron kinetics. In the case of FBMK reactors ATHLET calculations show that typical incidents in the complex RMBK reactors can be calculated even though verification still has to be worked on. Results of the 3D-core model QUABOX/CUBBOX-HYCA show good correlation of calculated and measured values in reactor plants. Calculations carried out to date were used to check essential parameters influencing RBMK core behaviour especially dependence of effective voidre activity on the number of control rods. (orig./HP) [de

  15. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  16. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  17. Development of safety analysis codes for light water reactor

    International Nuclear Information System (INIS)

    Akimoto, Masayuki

    1985-01-01

    An overview is presented of currently used major codes for the prediction of thermohydraulic transients in nuclear power plants. The overview centers on the two-phase fluid dynamics of the coolant system and the assessment of the codes. Some of two-phase phenomena such as phase separation are not still predicted with engineering accuracy. MINCS-PIPE are briefly introduced. The MINCS-PIPE code is to assess constitutive relations and to aid development of various experimental correlations for 1V1T model to 2V2T model. (author)

  18. Energy for the future - with Risoe from nuclear power to sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Jastrup, M. (ed.)

    2008-07-01

    The title of the book is inspired by Risoe's mission which, at the time of its 50th anniversary, remains uncannily close to that given to Risoe when it was inaugurated in 1958. First and foremost, then as now, Risoe is engaged in the development of tomorrow's energy technologies. In 1958, it was nuclear power. On the occasion of its 50th anniversary, Risoe is working with a palette of sustainable energy sources. (author)

  19. List of selected publications from Risoe's Health Physics Department 1957-1989

    International Nuclear Information System (INIS)

    Heikel Vinther, F.

    1991-01-01

    This list includes scientific and technical papers written by staff members of the former Health Physics Department at Risoe National Laboratory. The first part includes papers in periodicals, proceedings etc. in order of chronology while the second and third part include Riso-R and Riso-M reports respectively arranged according to report numbers. (author)

  20. Calculation of fuel and moderator temperature coefficients in APR1400 nuclear reactor by MVP code

    International Nuclear Information System (INIS)

    Pham Tuan Nam; Le Thi Thu; Nguyen Huu Tiep; Tran Viet Phu

    2014-01-01

    In this project, these fuel and moderator temperature coefficients were calculated in APR1400 nuclear reactor by MVP code. APR1400 is an advanced water pressurized reactor, that was researched and developed by Korea Experts, its electric power is 1400 MW. The neutronics calculations of full core is very important to analysis and assess a reactor. Results of these calculation is input data for thermal-hydraulics calculations, such as fuel and moderator temperature coefficients. These factors describe the self-safety characteristics of nuclear reactor. After obtaining these reactivity parameters, they were used to re-run the thermal hydraulics calculations in LOCA and RIA accidents. These thermal-hydraulics results were used to analysis effects of reactor physics parameters to thermal hydraulics situation in nuclear reactors. (author)

  1. Application of Code Of Conduct on the Safety of Research Reactor (RTP)

    International Nuclear Information System (INIS)

    Ligam, A.S.; Ahmad Nabil Abd Rahim; Zarina Masood

    2014-01-01

    The implementation and the practices of the effective safety system at research reactors are important to ensure that the worker, public and environment do not receive any abnormal causes. Many international safety related support agencies for research reactor such as International Atomic Energy Agency (IAEA) providing guidelines that can be applied to enhance and strengthen the enforcement of safety namely Code of Conduct on the Safety of Research Reactor (IAEA/CODEOC/RR/2006). The excellent safety management, reliability, and maintainability of RTP reactor structures, coupled with personnel numerous lessons and experiences learned, Reactor TRIGA PUSPATI research reactor providing Nuclear Malaysia personnel and visitor the very safe working and visiting environment. This paper will discuss the status, practices and improvement strategies over the past few years. (author)

  2. G4-STORK: A Geant4-based Monte Carlo reactor kinetics simulation code

    International Nuclear Information System (INIS)

    Russell, Liam; Buijs, Adriaan; Jonkmans, Guy

    2014-01-01

    Highlights: • G4-STORK is a new, time-dependent, Monte Carlo code for reactor physics applications. • G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. • G4-STORK was designed to simulate short-term fluctuations in reactor cores. • G4-STORK is well suited for simulating sub- and supercritical assemblies. • G4-STORK was verified through comparisons with DRAGON and MCNP. - Abstract: In this paper we introduce G4-STORK (Geant4 STOchastic Reactor Kinetics), a new, time-dependent, Monte Carlo particle tracking code for reactor physics applications. G4-STORK was built by adapting and expanding on the Geant4 Monte Carlo toolkit. The toolkit provides the fundamental physics models and particle tracking algorithms that track each particle in space and time. It is a framework for further development (e.g. for projects such as G4-STORK). G4-STORK derives reactor physics parameters (e.g. k eff ) from the continuous evolution of a population of neutrons in space and time in the given simulation geometry. In this paper we detail the major additions to the Geant4 toolkit that were necessary to create G4-STORK. These include a renormalization process that maintains a manageable number of neutrons in the simulation even in very sub- or supercritical systems, scoring processes (e.g. recording fission locations, total neutrons produced and lost, etc.) that allow G4-STORK to calculate the reactor physics parameters, and dynamic simulation geometries that can change over the course of simulation to illicit reactor kinetics responses (e.g. fuel temperature reactivity feedback). The additions are verified through simple simulations and code-to-code comparisons with established reactor physics codes such as DRAGON and MCNP. Additionally, G4-STORK was developed to run a single simulation in parallel over many processors using MPI (Message Passing Interface) pipes

  3. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  4. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  5. Thermal-hydraulic analysis code development and application to passive safety reactor at JAERI

    International Nuclear Information System (INIS)

    Araya, F.

    1995-01-01

    After a brief overview of safety assessment process, the author describes the LOCA analysis code system developed in JAERI. It comprises audit calculation code (WREM, WREM-J2, Japanese own code and BE codes (2D/3D, ICAP, ROSA). The codes are applied to development of Japanese passive safety reactor concept JPSR. Special attention is paid to the passive heat removal system and phenomena considered to occur under loss of heat sink event. Examples of LOCA analysis based on operation of JPSR for the cases of heat removal by upper RHR and heat removal from core to atmosphere are given. Experiments for multi-dimensional flow field in RPV and steam condensation in water pool are used for understanding the phenomena in passive safety reactors. The report is in a poster form only. 1 tab., 13 figs

  6. RELAP5-3D code validation of RBMK-1500 reactor reactivity measurement transients

    International Nuclear Information System (INIS)

    Kaliatka, Algirdas; Bubelis, Evaldas; Uspuras, Eugenijus

    2003-01-01

    This paper deals with the modeling of transients taking place during the measurements of the void and fast power reactivity coefficients performed at Ignalina NPP. The simulation of these transients was performed using RELAP5-3D code model of RBMK-1500 reactor. At the Ignalina NPP void and fast power reactivity coefficients are measured on a regular basis and, based on the total reactor power, reactivity, control and protection system control rods positions and the main circulation circuit parameter changes during the experiments, the actual values of these reactivity coefficients are determined. Following the simulation of the two above mentioned transients with RELAP5-3D code, a conclusion was made that the obtained calculation results demonstrate reasonable agreement with Ignalina NPP measured data. Behaviors of the separate MCC thermal-hydraulic parameters as well as physical processes are predicted reasonably well to the real processes, occurring in the primary circuit of RBMK-1500 reactor. The calculated reactivity and the total reactor core power behavior in time are also in reasonable agreement with the measured plant data. Despite of the small differences, RELAP5-3D code predicts reactivity and the total reactor core power behavior during the transients in a reasonable manner. Reasonable agreement of the measured and the calculated total reactor power change in time demonstrates the correct modeling of the neutronic processes taking place in RBMK-1500 reactor core

  7. Assessment and Application of the ROSE Code for Reactor Outage Thermal-Hydraulic and Safety Analysis

    International Nuclear Information System (INIS)

    Liang, Thomas K.S.; Ko, F.-K.; Dai, L.-C.

    2001-01-01

    The currently available tools, such as RELAP5, RETRAN, and others, cannot easily and correctly perform the task of analyzing the system behavior during plant outages. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as midloop operation (MLO) with loss of residual heat removal (RHR), has been developed. Important thermal-hydraulic processes involved during MLO with loss of RHR can be properly simulated by the newly developed reactor outage simulation and evaluation (ROSE) code. The two-region approach with a modified two-fluid model has been adopted to be the theoretical basis of the ROSE code.To verify the analytical model in the first step, posttest calculations against the integral midloop experiments with loss of RHR have been performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility test data is demonstrated. To further mature the ROSE code in simulating a full-sized pressurized water reactor, assessment against the WGOTHIC code and the Maanshan momentary-loss-of-RHR event has been undertaken. The successfully assessed ROSE code is then applied to evaluate the abnormal operation procedure (AOP) with loss of RHR during MLO (AOP 537.4) for the Maanshan plant. The ROSE code also has been successfully transplanted into the Maanshan training simulator to support operator training. How the simulator was upgraded by the ROSE code for MLO will be presented in the future

  8. Progress on RMC: a Monte Carlo neutron transport code for reactor analysis

    International Nuclear Information System (INIS)

    Wang, Kan; Li, Zeguang; She, Ding; Liu, Yuxuan; Xu, Qi; Shen, Huayun; Yu, Ganglin

    2011-01-01

    This paper presents a new 3-D Monte Carlo neutron transport code named RMC (Reactor Monte Carlo code), specifically intended for reactor physics analysis. This code is being developed by Department of Engineering Physics in Tsinghua University and written in C++ and Fortran 90 language with the latest version of RMC 2.5.0. The RMC code uses the method known as the delta-tracking method to simulate neutron transport, the advantages of which include fast simulation in complex geometries and relatively simple handling of complicated geometrical objects. Some other techniques such as computational-expense oriented method and hash-table method have been developed and implemented in RMC to speedup the calculation. To meet the requirements of reactor analysis, the RMC code has the calculational functions including criticality calculation, burnup calculation and also kinetics simulation. In this paper, comparison calculations of criticality problems, burnup problems and transient problems are carried out using RMC code and other Monte Carlo codes, and the results show that RMC performs quite well in these kinds of problems. Based on MPI, RMC succeeds in parallel computation and represents a high speed-up. This code is still under intensive development and the further work directions are mentioned at the end of this paper. (author)

  9. Development of an advanced code system for fast-reactor transient analysis

    International Nuclear Information System (INIS)

    Konstantin Mikityuk; Sandro Pelloni; Paul Coddington

    2005-01-01

    FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)

  10. Development of the containment transient analysis code for the passive reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Bae, Yoon Young; Chang, Moon Hi [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-05-01

    This study was performed to develop the analysis tools for the passively cooled steel containment and to construct the integrated code system which can analyze a thermal hydraulic behavior of the containment and reactor system during a loss of coolant accident. The computer code CONTEMPT4/MOD5/PCCS was developed by incorporating the passive containment cooling models to the containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5. The integrated reactor thermal hydraulic analysis code system for passive reactor was constructed by coupling the best estimate thermal hydraulic system analysis code RELAP5/MOD3 and CONTEMPT4/MOD5/PCCS through the process control method. In addition, to evaluate the applicability of the code the CONTEMPT4/MOD5/PCCS was applied to the SMART(System-Integrated Modular Advanced Reactor). The pressure and temperature transient following the small break LOCA of SMART was analysed by modeling the safeguard vessel using both the newly added passive containment cooling model and existing pool model. (author). 16 refs., 22 figs., 7 tabs.

  11. GRIMH3: A new reactor calculation code at Savannah River Site

    International Nuclear Information System (INIS)

    Le, T.T.; Pevey, R.E.

    1993-01-01

    The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex. The GRIMHX reactor code currently in use at the Savannah River Site (SRS) was written at a time when computer processing speed and memory storage were very limited. Recently, a new reactor code (GRIMH3) was written to take advantage of the hardware improvements (vectorization and higher memory capacities) as well as the range of available computers at SRS (workstations and supercomputers). The GRIMH3 code computes the solution of the static multigroup neutron diffusion equation in one-, two-, and three-dimensional hexagonal geometry. Either direct or adjoint solutions can be computed for k eff searches, buckling searches, external neutron sources, power flattening searches, or power normalization factor calculations with 1, 6, 24, 54, or 96 points per hex

  12. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  13. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  14. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    International Nuclear Information System (INIS)

    Wan, C.; Cao, L.; Wu, H.; Zu, T.; Shen, W.

    2015-01-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  15. Code development of total sensitivity and uncertainty analysis for reactor physics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, C.; Cao, L.; Wu, H.; Zu, T., E-mail: chenghuiwan@stu.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: tiejun@mail.xjtu.edu.cn [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Shen, W., E-mail: Wei.Shen@cnsc-ccsn.gc.ca [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)

  16. Code for calculation of spreading of radioactivity in reactor containment systems

    International Nuclear Information System (INIS)

    Vertes, P.

    1992-09-01

    A detailed description of the new version of TIBSO code is given, with applications for accident analysis in a reactor containment system. The TIBSO code can follow the nuclear transition and the spatial migration of radioactive materials. The modelling of such processes is established in a very flexible way enabling the user to investigate a wide range of problems. The TIBSO code system is described in detail, taking into account the new developments since 1983. Most changes improve the capabilities of the code. The new version of TIBSO system is written in FORTRAN-77 and can be operated both under VAX VMS and PC DOS. (author) 5 refs.; 3 figs.; 21 tabs

  17. Application of CFD Codes in Nuclear Reactor Safety Analysis

    Directory of Open Access Journals (Sweden)

    T. Höhne

    2010-01-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly being used in nuclear reactor safety (NRS analyses as a tool that enables safety relevant phenomena occurring in the reactor coolant system to be described in more detail. Numerical investigations on single phase coolant mixing in Pressurised Water Reactors (PWR have been performed at the FZD for almost a decade. The work is aimed at describing the mixing phenomena relevant for both safety analysis, particularly in steam line break and boron dilution scenarios, and mixing phenomena of interest for economical operation and the structural integrity. For the experimental investigation of horizontal two phase flows, different non pressurized channels and the TOPFLOW Hot Leg model in a pressure chamber was build and simulated with ANSYS CFX. In a common project between the University of Applied Sciences Zittau/Görlitz and FZD the behaviour of insulation material released by a LOCA released into the containment and might compromise the long term emergency cooling systems is investigated. Moreover, the actual capability of CFD is shown to contribute to fuel rod bundle design with a good CHF performance.

  18. V.S.O.P.-computer code system for reactor physics and fuel cycle simulation

    International Nuclear Information System (INIS)

    Teuchert, E.; Hansen, U.; Haas, K.A.

    1980-03-01

    V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de

  19. Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA

    International Nuclear Information System (INIS)

    William K. Terry; Soon Sam Kim; Leland M. Montierth; Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-01-01

    The HTR-10 is a small (10 MWt) pebble-bed research reactor intended to develop pebble-bed reactor (PBR) technology in China. It will be used to test and develop fuel, verify PBR safety features, demonstrate combined electricity production and co-generation of heat, and provide experience in PBR design, operation, and construction. As the only currently operating PBR in the world, the HTR-10 can provide data of great interest to everyone involved in PBR technology. In particular, if it yields data of sufficient quality, it can be used as a benchmark for assessing the accuracy of computer codes proposed for use in PBR analysis. This paper summarizes the evaluation for the International Reactor Physics Experiment Evaluation Project (IRPhEP) of data obtained in measurements of the HTR-10's initial criticality experiment for use as benchmarks for reactor physics codes

  20. Development of Monte Carlo-based pebble bed reactor fuel management code

    International Nuclear Information System (INIS)

    Setiadipura, Topan; Obara, Toru

    2014-01-01

    Highlights: • A new Monte Carlo-based fuel management code for OTTO cycle pebble bed reactor was developed. • The double-heterogeneity was modeled using statistical method in MVP-BURN code. • The code can perform analysis of equilibrium and non-equilibrium phase. • Code-to-code comparisons for Once-Through-Then-Out case were investigated. • Ability of the code to accommodate the void cavity was confirmed. - Abstract: A fuel management code for pebble bed reactors (PBRs) based on the Monte Carlo method has been developed in this study. The code, named Monte Carlo burnup analysis code for PBR (MCPBR), enables a simulation of the Once-Through-Then-Out (OTTO) cycle of a PBR from the running-in phase to the equilibrium condition. In MCPBR, a burnup calculation based on a continuous-energy Monte Carlo code, MVP-BURN, is coupled with an additional utility code to be able to simulate the OTTO cycle of PBR. MCPBR has several advantages in modeling PBRs, namely its Monte Carlo neutron transport modeling, its capability of explicitly modeling the double heterogeneity of the PBR core, and its ability to model different axial fuel speeds in the PBR core. Analysis at the equilibrium condition of the simplified PBR was used as the validation test of MCPBR. The calculation results of the code were compared with the results of diffusion-based fuel management PBR codes, namely the VSOP and PEBBED codes. Using JENDL-4.0 nuclide library, MCPBR gave a 4.15% and 3.32% lower k eff value compared to VSOP and PEBBED, respectively. While using JENDL-3.3, MCPBR gave a 2.22% and 3.11% higher k eff value compared to VSOP and PEBBED, respectively. The ability of MCPBR to analyze neutron transport in the top void of the PBR core and its effects was also confirmed

  1. Parameter definition for reactor physics calculation of Obrigheim KWO PWR type reactor using the Gels and Erebus codes

    International Nuclear Information System (INIS)

    Faya, A.G.; Nakata, H.; Rodrigues, V.G.; Oosterkamp, W.J.

    1974-01-01

    The main variables for Obrigheim Reactor - KWO diffusion theory calculations, using the EREBUS code were defined. The variables under consideration were: mesh spacing for reactor description, time-step in burn-up calculation, and the temperature in both the moderator and the fuel. The best mesh spacing and time-step were defined considering the relative deviations and the computer time expended in each case. It has been verified that the error involved in the mean fuel temperature calculation (1317 0 K as given by SIEMENS and 1028 0 K as calculated by Dr. Penndorf) does not change substancially the calculation results

  2. Development of a computer code for transients simulation in PWR type reactors

    International Nuclear Information System (INIS)

    Alvim, A.C.M.; Botelho, D.A.; Oliveira Barroso, A.C. de

    1981-01-01

    A computer code for the simulation of operacional-transients and accidents in PWR type reactors is being developed at IEN (Instituto de Engenharia Nuclear). Accidents will be considered in which variations in thermohydraulics parameters of fuel and coolant don't cause nucleate boiling in the reactor core, but, otherwise are sufficiently strong to justify a more detailed simulation than that used in linearized models. (E.G.) [pt

  3. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined

  4. PREMOR: a point reactor exposure model computer code for survey analysis of power plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1979-10-01

    The PREMOR computer code was written to exploit a simple, two-group point nuclear reactor power plant model for survey analysis. Up to thirteen actinides, fourteen fission products, and one lumped absorber nuclide density are followed over a reactor history. Successive feed batches are accounted for with provision for from one to twenty batches resident. The effect of exposure of each of the batches to the same neutron flux is determined.

  5. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm{sup 2}s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  6. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm 2 s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  7. IFPE/RISOE-II, Fuel Performance Data from Transient Fission Gas Release

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    1995-01-01

    Description: The RISO National Laboratory in Denmark have carried out three irradiation programs of slow ramp and hold tests, so called 'bump tests' to investigate fission gas release and fuel microstructural changes. The second project took place between 1982 and 1986 and was called 'The RISO Transient Fission Gas Project'. The fuel used in the project was from: IFA-161 irradiated in the Halden BWR (27 to 42 MWd/kgUO 2 ) and GE BWR fuel irradiated in the Millstone 1 reactor 14 to 29 MWd/kgUO 2 . Using the re-fabrication technique, it was possible to back fill the test segment with a choice of gas and gas pressure and to measure the time dependence of fission gas release by continuous monitoring of the plenum pressure. The short length of the test segment was an advantage because, depending on where along the original rod the section was taken, burnup could be chosen variable, and during the test the fuel experienced a single power

  8. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs

  9. Verification of codes used for the nuclear safety assessment of the small space heterogeneous reactors with zirconium hydride moderator

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Gomin, E.A.; Kompaniets, G.V.

    1994-01-01

    Computer codes used for assessment of nuclear safety for space NPP are compared taking as an example small-sized heterogeneous reactor with zirconium hydride moderator of the Topaz-2 facility. The code verifications are made for five different variants

  10. Application of software engineering to development of reactor safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1981-01-01

    Software Engineering, which is a systematic methodology by which a large scale software development project is partitioned into manageable pieces, has been applied to the development of LMFBR safety codes. The techniques have been applied extensively in the business and aerospace communities and have provided an answer to the drastically increasing cost of developing and maintaining software. The five phases of software engineering (Survey, Analysis, Design, Implementation, and Testing) were applied in turn to development of these codes, along with Walkthroughs (peer review) at each stage. The application of these techniques has resulted in SUPERIOR SOFTWARE which is well documented, thoroughly tested, easy to modify, easier to use and maintain. The development projects have resulted in lower overall cost. (orig.) [de

  11. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  12. Installation and testing of the ERANOS computer code for fast reactor calculations

    International Nuclear Information System (INIS)

    Gren, Milan

    2010-12-01

    The French ERANOS computer code was acquired and tested by solving benchmark problems. Five problems were calculated: 1D XZ Model, 1D RZ Model, 3D HEX SNR 300 reactor, 2S HEX and 3D HEX VVER 440 reactor. The multi-group diffuse approximation was used. The multiplication coefficients were compared within the first problem, neutron flux density in the calculation points was obtained within the second problem, and powers in the various reactor areas and in the assemblies were calculated within the remaining problems. (P.A.)

  13. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  14. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S; Lewis, B.J.; Bonin, H.W.

    2013-01-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k eff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k eff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k eff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  15. Numerical verification/validation of the theory of coupled reactors for deuterium critical assembly, using MCNP5 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S, E-mail: mohamed.hussein@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada); Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)

    2013-07-01

    The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors k{sub eff} calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors k{sub eff} calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors k{sub eff} calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)

  16. Studies on the molten salt reactor. Code development and neutronics analysis of MSRE-type design

    International Nuclear Information System (INIS)

    Zhuang Kun; Cao Liangzhi; Zheng Youqi; Wu Hongchun

    2015-01-01

    The molten salt reactor is characterized by its use of the fluid-fuel, which serves both as a fuel and as a coolant simultaneously. The position of delayed neutron precursors continuously changes both in the core and in the external loop due to the fuel circulation, and the fission products are extracted by an online fuel reprocessing unit, which all lead to the modeling methods for the conventional reactors using solid fuel not applicable. This study establishes suitable calculation models for the neutronics analysis of the molten salt reactor and develops a new code named MOREL based on the three-dimensional diffusion steady and transient calculations. Some numerical tests are chosen to verify the code and the numerical results indicate that MOREL can be used for the analysis of the molten salt reactor. After verification, it is applied to analyze the characteristics of a typical molten salt reactor, including the steady characteristics, the influence of fuel circulation on the kinetic behaviors. Besides, the influence of online fuel reprocessing simulation is also examined. The results show that inherent safety is the character of the molten salt reactor from the aspect of reactivity feedback and the fuel circulation has great influence on the kinetic characteristics of molten salt reactor. (author)

  17. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  18. PROMETHEUS - a code system for dynamic 3-D analysis of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Khotylev, V.A.; Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-09-01

    The paper presents a multidimensional, general-purpose neutronics code system. It solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three-dimensional geometry. Due to a number of specialized features such as cavity treatment, automated convergence control, burnup treatment using the full isotopic transition matrix, the code system can be applied for the analysis of fast and slow transients in small, large, and innovative reactor cores. (author)

  19. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  20. Model of nuclear reactor type VVER-1000/V-320 built by computer code ATHLET-CD

    International Nuclear Information System (INIS)

    Georgiev, Yoto; Filipov, Kalin; Velev, Vladimir

    2014-01-01

    A model of nuclear reactor type VVER-1000 V-320 developed for computer code ATHLET-CD2.1A is presented. Validation of the has been made, in the analysis of the station blackout scenario with LOCA on fourth cold leg is shown. As the calculation has been completed, the results are checked through comparison with the results from the computer codes ATHLET-2.1A, ASTEC-2.1 and RELAP5mod3.2

  1. Development of the computer code for transient analysis in experimental fast reactor

    International Nuclear Information System (INIS)

    Moreira, M.L.; Sato, E.F.

    1989-01-01

    A calculational model of heat transfer and fluid coolant dynamics, for thermal-hydraulic simulation of the primary system components of a pool type experimental fast breeder reactor, has developed. Programmed in FORTRAN, the SORES code was used to simulate transients as loss of pumping and loss of secondary sodium flow in the EBRII. The SORES results compared with measured data and NATDEMO code results was found to be good. (author) [pt

  2. Calculation of criticality of the AP600 reactor with KENO V.a code

    Energy Technology Data Exchange (ETDEWEB)

    Krumbein, A; Caner, M; Shapira, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The Westinghouse AP600 PWR has been modeled using the KENO V.a three dimensional Monte Carlo criticality program of the SCALE-PC code system. These calculations and the use of a Monte Carlo neutron transport code such as KENO will provide us with an independent check on our WIMS/CITATION calculations for the AP600 as well as for other reactors. It will also enable us to model more complicated geometries. (authors).

  3. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig.

  4. Multi keno-VAX a modified version of the reactor computer code Multi keno-2

    International Nuclear Information System (INIS)

    Imam, M.

    1995-01-01

    The reactor computer code Multi keno-2 is developed in Japan from the original Monte Carlo Keno-IV. By applications of this code on some real problems, fatal errors were detected. These errors are related to the restart option in the code. The restart option is essential for solving time-consuming problems on mini-computer like VAX-6320. These errors were corrected and other modifications were carried out in the code. Because of these modifications new input data description was written for the code. Thus a new VAX/VMS version for the program was developed which is also adaptable for mini-mainframes. This new developed program, called Multi keno-VAX is accepted in the Nea-IAEA data bank and is added to its international computer codes library. 1 fig

  5. Comprehensive safety analysis code system for nuclear fusion reactors II: Thermal analysis during plasma disruptions for international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Honda, T.; Maki, K.; Okazaki, T.

    1994-01-01

    Thermal characteristics of a fusion reactor [International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity] during plasma disruptions have been analyzed by using a comprehensive safety analysis code for nuclear fusion reactors. The erosion depth due to disruptions for the armor of the first wall depends on the current quench time of disruptions occurring in normal operation. If it is possible to extend the time up to ∼50 ms, the erosion depth is considerably reduced. On the other hand, the erosion depth of the divertor is ∼570 μm for only one disruption, which is determined only by the thermal flux during the thermal quench. This means that the divertor plate should be exchanged after about nine disruptions. Counter-measures are necessary for the divertor to relieve disruption influences. As other scenarios of disruptions, beta-limit disruptions and vertical displacement events were also investigated quantitatively. 13 refs., 5 figs

  6. Study on severe accidents and countermeasures for WWER-1000 reactors using the integral code ASTEC

    International Nuclear Information System (INIS)

    Tusheva, P.; Schaefer, F.; Altstadt, E.; Kliem, S.; Reinke, N.

    2011-01-01

    The research field focussing on the investigations and the analyses of severe accidents is an important part of the nuclear safety. To maintain the safety barriers as long as possible and to retain the radioactivity within the airtight premises or the containment, to avoid or mitigate the consequences of such events and to assess the risk, thorough studies are needed. On the one side, it is the aim of the severe accident research to understand the complex phenomena during the in- and ex-vessel phase, involving reactor-physics, thermal-hydraulics, physicochemical and mechanical processes. On the other side the investigations strive for effective severe accident management measures. This paper is focused on the possibilities for accident management measures in case of severe accidents. The reactor pressure vessel is the last barrier to keep the molten materials inside the reactor, and thus to prevent higher loads to the containment. To assess the behaviour of a nuclear power plant during transient or accident conditions, computer codes are widely used, which have to be validated against experiments or benchmarked against other codes. The analyses performed with the integral code ASTEC cover two accident sequences which could lead to a severe accident: a small break loss of coolant accident and a station blackout. The results have shown that in case of unavailability of major active safety systems the reactor pressure vessel would ultimately fail. The discussed issues concern the main phenomena during the early and late in-vessel phase of the accident, the time to core heat-up, the hydrogen production, the mass of corium in the reactor pressure vessel lower plenum and the failure of the reactor pressure vessel. Additionally, possible operator's actions and countermeasures in the preventive or mitigative domain are addressed. The presented investigations contribute to the validation of the European integral severe accidents code ASTEC for WWER-1000 type of reactors

  7. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo codes for transient reactor analysis

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    2013-01-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branch-less collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires the coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3*3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3*3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail. (authors)

  8. Current status of the reactor physics code WIMS and recent developments

    International Nuclear Information System (INIS)

    Lindley, B.A.; Hosking, J.G.; Smith, P.J.; Powney, D.J.; Tollit, B.S.; Newton, T.D.; Perry, R.; Ware, T.C.; Smith, P.N.

    2017-01-01

    Highlights: • The current status of the WIMS reactor physics code is presented. • Applications range from 2D lattice calculations up to 3D whole core geometries. • Gamma transport and thermal-hydraulic feedback models added. • Calculations methodologies described for several Gen II, III and IV reactor types. - Abstract: The WIMS modular reactor physics code has been under continuous development for over fifty years. This paper discusses the current status of WIMS and recent developments, in particular developments to the resonance shielding methodology and 3D transport solvers. Traditionally, WIMS is used to perform 2D lattice calculations, typically to generate homogenized reactor physics parameters for a whole core code such as PANTHER. However, with increasing computational resources there has been a growing trend for performing transport calculations on larger problems, up to and including 3D full core models. To this end, a number of the WIMS modules have been parallelised to allow efficient performance for whole core calculations, and WIMS includes a 3D method of characteristics solver with reflective and once-through tracking methods, which can be used to analyse problems of varying size and complexity. A time-dependent flux solver has been incorporated and thermal-hydraulic modelling capability is also being added to allow steady-state and transient coupled calculations to be performed. WIMS has been validated against a range of experimental data and other codes, in particular for water and graphite moderated thermal reactors. Future developments will include improved parallelization, enhancing the thermal-hydraulic feedback models and validating the WIMS/PANTHER code system for BWRs and fast reactors.

  9. Development of a PC code package for the analysis of research and power reactors

    International Nuclear Information System (INIS)

    Urli, N.

    1992-06-01

    Computer codes available for performing reactor physics calculations for nuclear research reactors and power reactors are normally suited for running on mainframe computers. With the fast development in speed and memory of the PCs and affordable prices it became feasible to develop PC versions of commonly used codes. The present work performed under an IAEA sponsored research contract has successfully developed a code package for running on a PC. This package includes a cross-section generating code PSU-LEOPARD and 2D and 1D spatial diffusion codes, MCRAC and MCYC 1D. For adapting PSU-LEOPARD for a PC, the binary library has been reorganized to decimal form, upgraded to FORTRAN-77 standard and arrays and subroutines reorganized to conform to PC compiler. Similarly PC version of MCRAC for FORTRAN-77 and 1D code MCYC 1D have been developed. Tests, verification and bench mark results show excellent agreement with the results obtained from mainframe calculations. The execution speeds are also very satisfactory. 12 refs, 4 figs, 3 tabs

  10. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  11. List of selected publications 1981. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1982-07-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1981. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply, Environmental and Safety Reseach, Materials Research, Biotechnology and Radiation Research,Experimental Methods and Analyses, Major Research Facilities, General. (author)

  12. List of selected publications 1982. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1983-12-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1982. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical and Administrative Services, General. (author)

  13. List of selected publications 1983. Risoe National Laboratory

    International Nuclear Information System (INIS)

    1985-09-01

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Tradiation Research, Technical Support, General. (author)

  14. Radioactivities evaluation code system for high temperature gas cooled reactors during normal operation

    International Nuclear Information System (INIS)

    Ogura, Kenji; Morimoto, Toshio; Suzuki, Katsuo.

    1979-01-01

    A radioactivity evaluation code system for high temperature gas-cooled reactors during normal operation was developed to study the behavior of fission products (FP) in the plants. The system consists of a code for the calculation of diffusion of FPs in fuel (FIPERX), a code for the deposition of FPs in primary cooling system (PLATO), a code for the transfer and emission of FPs in nuclear power plants (FIPPI-2), and a code for the exposure dose due to emitted FPs (FEDOSE). The FIPERX code can calculate the changes in the course of time FP of the distribution of FP concentration, the distribution of FP flow, the distribution of FP partial pressure, and the emission rate of FP into coolant. The amount of deposition of FPs and their distribution in primary cooling system can be evaluated by the PLATO code. The FIPPI-2 code can be used for the estimation of the amount of FPs in nuclear power plants and the amount of emitted FPs from the plants. The exposure dose of residents around nuclear power plants in case of the operation of the plants is calculated by the FEDOSE code. This code evaluates the dose due to the external exposure in the normal operation and in the accident, and the internal dose by the inhalation of radioactive plume and foods. Further studies of this code system by the comparison with the experimental data are considered. (Kato, T.)

  15. Application of RELAP5-3D code for thermal analysis of the ADS reactor core

    International Nuclear Information System (INIS)

    Fernandes, Gustavo Henrique Nazareno

    2018-01-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  16. Validation of physics and thermalhydraulic computer codes for advanced Candu reactor applications

    International Nuclear Information System (INIS)

    Wren, D.J.; Popov, N.; Snell, V.G.

    2004-01-01

    Atomic Energy of Canada Ltd. (AECL) is developing an Advanced Candu Reactor (ACR) that is an evolutionary advancement of the currently operating Candu 6 reactors. The ACR is being designed to produce electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular Candu concept of horizontal fuel channels surrounded by a heavy water moderator. However, ACR uses slightly enriched uranium fuel compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (via large reductions in the heavy water moderator volume and replacement of the heavy water coolant with light water coolant) and improved safety. AECL has developed and implemented a software quality assurance program to ensure that its analytical, scientific and design computer codes meet the required standards for software used in safety analyses. Since the basic design of the ACR is equivalent to that of the Candu 6, most of the key phenomena associated with the safety analyses of ACR are common, and the Candu industry standard tool-set of safety analysis codes can be applied to the analysis of the ACR. A systematic assessment of computer code applicability addressing the unique features of the ACR design was performed covering the important aspects of the computer code structure, models, constitutive correlations, and validation database. Arising from this assessment, limited additional requirements for code modifications and extensions to the validation databases have been identified. This paper provides an outline of the AECL software quality assurance program process for the validation of computer codes used to perform physics and thermal-hydraulics safety analyses of the ACR. It describes the additional validation work that has been identified for these codes and the planned, and ongoing, experimental programs to extend the code validation as required to address specific ACR design

  17. Simulation of a gas cooled reactor with the system code CATHARE

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Ruby, Alain; Geffraye, Genevieve; Messie, Anne; Saez, Manuel; Tauveron, Nicolas; Widlund, Ola

    2006-01-01

    In recent years the CEA has commissioned a wide range of feasibility studies of future advanced nuclear reactors, in particular gas-cooled reactors (GCR). This paper presents an overview of the use of the thermohydraulics code CATHARE in these activities. Extensively validated and qualified for pressurized water reactors, CATHARE has been adapted to deal also with gas-cooled reactor applications. Rather than branching off a separate GCR version of CATHARE, new features have been integrated as independent options in the standard version of the code, respecting the same stringent procedures for documentation and maintenance. CATHARE has evolved into an efficient tool for GCR applications, with first results in good agreement with existing experimental data and other codes. The paper give an example among the studies already carried out with CATHARE with the case of the Very High Temperature Reactor (VHTR) concepts. Current and future activities for experimental validation of CATHARE for GCR applications are also discussed. Short-term validation activities are also included with the assessment of the German utility Oberhausen II. For the long term, CEA has initiated an ambitious experimental program ranging from small scale loops for physical correlations to component technology and system demonstration loops. (authors)

  18. Analysis code for pressure in reactor containment vessel of ATR. CONPOL

    International Nuclear Information System (INIS)

    1997-08-01

    For the evaluation of the pressure and temperature in containment vessels in the events which are classified in the abnormal change of pressure, atmosphere and others in reactor containment vessels in accident among the safety evaluation events of the ATR, the analysis code for the pressure in reactor containment vessels CONPOL is used. In this report, the functions of the analysis code and the analysis model are shown. By using this analysis code, the rise of the pressure and temperature in a containment vessel is evaluated when loss of coolant accident occurs, and high temperature, high pressure coolant flows into it. This code possesses the functions of computing blow-down quantity and heat dissipation from reactor cooling facility, steam condensing heat transfer to containment vessel walls, and the cooling effect by containment vessel spray system. As for the analysis techniques, the models of reactor cooling system, containment vessel and steam discharge pool, and the computation models for the pressure and temperature in containment vessels, wall surface temperature, condensing heat transfer, spray condensation and blow-down are explained. The experimental analysis of the evaluation of the pressure and temperature in containment vessels at the time of loss of coolant accident is reported. (K.I.)

  19. Development and application of computer codes for multidimensional thermalhydraulic analyses of nuclear reactor components

    International Nuclear Information System (INIS)

    Carver, M.B.

    1983-01-01

    Components of reactor systems and related equipment are identified in which multidimensional computational thermal hydraulics can be used to advantage to assess and improve design. Models of single- and two-phase flow are reviewed, and the governing equations for multidimensional analysis are discussed. Suitable computational algorithms are introduced, and sample results from the application of particular multidimensional computer codes are given

  20. CENTAR code for extended nonlinear transient analysis of extraterrestrial reactor systems

    International Nuclear Information System (INIS)

    Nassersharif, B.; Peer, J.S.; DeHart, M.D.

    1987-01-01

    Current interest in the application of nuclear reactor-driven power systems to space missions has generated a need for a systems simulation code to model and analyze space reactor systems; such a code has been initiated at Texas A and M, and the first version is nearing completion; release was anticipated in the fall of 1987. This code, named CENTAR (Code for Extended Nonlinear Transient Analysis of Extraterrestrial Reactor Systems), is designed specifically for space systems and is highly vectorizable. CENTAR is composed of several specialized modules. A fluids module is used to model fluid behavior throughout the system. A wall heat transfer module models the heat transfer characteristics of all walls, insulation, and structure around the system. A fuel element thermal analysis module is used to predict the temperature behavior and heat transfer characteristics of the reactor fuel rods. A kinetics module uses a six-group point kinetics formulation to model reactivity feedback and control and the ANS 5.1 decay-heat curve to model shutdown decay-heat production. A pump module models the behavior of thermoelectric-electromagnetic pumps, and a heat exchanger module models not only thermal effects in thermoelectric heat exchangers, but also predicts electrical power production for a given configuration. Finally, an accumulator module models coolant expansion/contraction accumulators

  1. RAP-IA code for calculus thermodinamic of the fast reactors

    International Nuclear Information System (INIS)

    Popescu, C.; Turcu, I.; Boeriu, S.; Biro, L.

    1975-01-01

    The RAP-IA code is developed in order to perform a complete calculation for a thermal channel of a Na-cooled fast reactor. Calculation may be effected for both stationary state and dynamic regime following modification of some in-put data: total thermal power, multiplication coefficient, flow-rate and in-put temperature of the thermal agent, pressure level

  2. SACRD: a data base for fast reactor safety computer codes, general description

    International Nuclear Information System (INIS)

    Greene, N.M.; Forsberg, V.M.; Raiford, G.B.; Arwood, J.W.; Simpson, D.B.; Flanagan, G.F.

    1979-01-01

    SACRD is a data base of material properties and other handbook data needed in computer codes used for fast reactor safety studies. Data are available in the thermodynamics, heat transfer, fluid mechanics, structural mechanics, aerosol transport, meteorology, neutronics, and dosimetry areas. Tabular, graphical and parameterized data are provided in many cases. A general description of the SACRD system is presented in the report

  3. BCG: a code for calculating pointwise neutron spectra and criticality in fast reactor cells

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-02-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is presented. The code solves the unidimensional neutron transport equation together with interface current relations at each energy in an unionized grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstructed total microscopic cross sections of the atomic species in the cell. Results for a defined sample problem illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  4. BCG: a computer code for calculating neutron spectra and criticality in cells of fast reactors

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-01-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is discussed. The code solves the unidimensional neutron transport equation together with interface current relations at each energy point in an unionized energy grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstruced total microscopic cross sections of the atomic species in the cell. Results for a simplified fuel cell illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  5. Development of Coupled Interface System between the FADAS Code and a Source-term Evaluation Code XSOR for CANDU Reactors

    International Nuclear Information System (INIS)

    Son, Han Seong; Song, Deok Yong; Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon

    2006-01-01

    An accident prevention system is essential to the industrial security of nuclear industry. Thus, the more effective accident prevention system will be helpful to promote safety culture as well as to acquire public acceptance for nuclear power industry. The FADAS(Following Accident Dose Assessment System) which is a part of the Computerized Advisory System for a Radiological Emergency (CARE) system in KINS is used for the prevention against nuclear accident. In order to enhance the FADAS system more effective for CANDU reactors, it is necessary to develop the various accident scenarios and reliable database of source terms. This study introduces the construction of the coupled interface system between the FADAS and the source-term evaluation code aimed to improve the applicability of the CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors

  6. Verification of using SABINE-3.1 code for calculations of radioactive inventory in reactor shield

    International Nuclear Information System (INIS)

    Moukhamadeev, R.; Suvorov, A.

    2000-01-01

    This report presents the results of calculations of radioactive inventory and doses of activation radiation for the International Benchmark Calculations of Radioactive Inventory for Fission Reactor Decommissioning, IAEA, and measurements of activation doses in shield of WWER-440 (Armenian NPP), using one-dimension modified code SABINE-3.1. For decommissioning of NPP it is very important to evaluate in correct manner radioactive inventory in reactor construction and shield materials. One-dimension code SABINE-3.1 (removing-diffusion method for neutron calculation) was modified to perform calculation of radioactive inventory in reactor shield materials and dose from activation photons behind them. These calculations are carried out on the base of nuclear constant system ABBN-78 and new library of activation data for a number of long-lived isotopes, prepared by authors on the base of [9], which present at shield materials as microimpurities and manage radiation situation under the decay more than 1 year. (Authors)

  7. 1DB, a one-dimensional diffusion code for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Little, W.W. Jr.

    1991-09-01

    1DB is a multipurpose, one-dimensional (plane, cylinder, sphere) diffusion theory code for use in reactor analysis. The code is designed to do the following: To compute k eff and perform criticality searches on time absorption, reactor composition, reactor dimensions, and buckling by means of either a flux or an adjoint model; to compute collapsed microscopic and macroscopic cross sections averaged over the spectrum in any specified zone; to compute resonance-shielded cross sections using data in the shielding factor formnd to compute isotopic burnup using decay chains specified by the user. All programming is in FORTRAN. Because variable dimensioning is employed, no simple restrictions on problem complexity can be stated. The number of spatial mesh points, energy groups, upscattering terms, etc. is limited only by the available memory. The source file contains about 3000 cards. 4 refs

  8. CEDNBR: a computer code for transient thermal margin analysis of a reactor core

    International Nuclear Information System (INIS)

    Shesler, A.T.; Lehmann, C.R.

    1976-09-01

    The report describes the CEDNBR computer code. This code was developed for the transient thermal analysis of a pressurized water reactor core or a critical heat flux test. Included are the code structure, conservation equations, and correlations utilized by CEDNBR. The methods of modelling a reactor core and hot channel and a CHF test are presented. Comparisons of CEDNBR calculations are made with both empirical pressure loss data and simulated loss of flow test data. The code solves the one-dimensional conservation of mass, energy, and momentum equations and the equation of state for the fluid for either steady-state or transient conditions. Tabular time dependent functions of inlet temperatures, pressure, mass velocity, axial heat flux distributions, normalized heat flux, radial peaking factors, and incremental mixing factors are required input to the code. Transient effects are included in the calculation of enthalpy rise and fluid properties. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by applying a Critical Heat Flux (CHF) correlation to the computed local fluid properties. A code user's guide is provided for preparing input to the code. In addition, descriptions of the sub-routines used by CEDNBR are given

  9. SIMIFR: A code to simulate material movement in the Integral Fast Reactor

    International Nuclear Information System (INIS)

    White, A.M.; Orechwa, Yuri.

    1991-01-01

    The SIMIFR code has been written to simulate the movement of material through a process. This code can be used to investigate inventory differences in material balances, assist in process design, and to produce operational scheduling. The particular process that is of concern to the authors is that centered around Argonne National Laboratory's Integral Fast Reactor. This is a process which involves the irradiation of fissile material for power production, and the recycling of the irradiated reactor fuel pins into fresh fuel elements. To adequately simulate this process it is necessary to allow for locations which can contain either discrete items or homogeneous mixtures. It is also necessary to allow for a very flexible process control algorithm. Further, the code must have the capability of transmuting isotopic compositions and computing internally the fraction of material from a process ending up in a given location. The SIMIFR code has been developed to perform all of these tasks. In addition to simulating the process, the code is capable of generating random measurement values and sampling errors for all locations, and of producing a restart deck so that terminated problems may be continued. In this paper the authors first familiarize the reader with the IFR fuel cycle. The different capabilities of the SIMIFR code are described. Finally, the simulation of the IFR fuel cycle using the SIMIFR code is discussed. 4 figs

  10. Validation of the AZTRAN 1.1 code with problems Benchmark of LWR reactors

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Bastida O, G. E.; Francois L, J. L.; Xolocostli M, J. V.; Gomez T, A. M.

    2016-09-01

    The AZTRAN module is a computational program that is part of the AZTLAN platform (Mexican modeling platform for the analysis and design of nuclear reactors) and that solves the neutron transport equation in 3-dimensional using the discrete ordinates method S_N, steady state and Cartesian geometry. As part of the activities of Working Group 4 (users group) of the AZTLAN project, this work validates the AZTRAN code using the 2002 Yamamoto Benchmark for LWR reactors. For comparison, the commercial code CASMO-4 and the free code Serpent-2 are used; in addition, the results are compared with the data obtained from an article of the PHYSOR 2002 conference. The Benchmark consists of a fuel pin, two UO_2 cells and two other of MOX cells; there is a problem of each cell for each type of reactor PWR and BWR. Although the AZTRAN code is at an early stage of development, the results obtained are encouraging and close to those reported with other internationally accepted codes and methodologies. (Author)

  11. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR

  12. Gas-cooled reactor thermal-hydraulics using CAST3M and CRONOS2 codes

    International Nuclear Information System (INIS)

    Studer, E.; Coulon, N.; Stietel, A.; Damian, F.; Golfier, H.; Raepsaet, X.

    2003-01-01

    The CEA R and D program on advanced Gas Cooled Reactors (GCR) relies on different concepts: modular High Temperature Reactor (HTR), its evolution dedicated to hydrogen production (Very High Temperature Reactor) and Gas Cooled Fast Reactors (GCFR). Some key safety questions are related to decay heat removal during potential accident. This is strongly connected to passive natural convection (including gas injection of Helium, CO 2 , Nitrogen or Argon) or forced convection using active safety systems (gas blowers, heat exchangers). To support this effort, thermal-hydraulics computer codes will be necessary tools to design, enhance the performance and ensure a high safety level of the different reactors. Accurate and efficient modeling of heat transfer by conduction, convection or thermal radiation as well as energy storage are necessary requirements to obtain a high level of confidence in the thermal-hydraulic simulations. To achieve that goal a thorough validation process has to ve conducted. CEA's CAST3M code dedicated to GCR thermal-hydraulics has been validated against different test cases: academic interaction between natural convection and thermal radiation, small scale in-house THERCE experiments and large scale High Temperature Test Reactor benchmarks such as HTTR-VC benchmark. Coupling with neutronics is also an important modeling aspect for the determination of neutronic parameters such as neutronic coefficient (Doppler, moderator,...), critical position of control rods...CEA's CAST3M and CRONOS2 computer codes allow this coupling and a first example of coupled thermal-hydraulics/neutronics calculations has been performed. Comparison with experimental data will be the next step with High Temperature Test Reactor experimental results at nominal power

  13. Light water reactor fuel analysis code FEMAXI-7; model and structure

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Saitou, Hiroaki

    2011-03-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report describes in detail the design, basic theory and structure, models and numerical method, and improvements and extensions. (author)

  14. Light water reactor fuel analysis code FEMAXI-7. Model and structure

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2013-07-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report describes in detail the design, basic theory and structure, models and numerical method of FEMAXI-7, and its improvements and extensions. (author)

  15. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  16. International assessment of application of the Code of Conduct on the Safety of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shokr, A.M. [Atomic Energy Authority, Abouzabal (Egypt). Egypt Second Research Reactor

    2015-11-15

    The self-assessments performed by thirty-eight countries on application of the Code of Conduct on the Safety of Research Reactors were analyzed and discussed. The results of this analysis were used to identify areas of satisfactory application of the Code and area needing improvements, and therefore require more attention worldwide. The results showed improvement in application of the Code provisions; notably in aging management, regulatory supervision, and consideration of human factors. However, there is a continuing need for further improvement in these areas, as well as in operational radiation protection, emergency preparedness and decommissioning planning. Additionally, increased attention needs to be given to periodic safety reviews, evaluation of site-specific hazards, and assessment of extreme external events. The results showed consistency with the feedback from other sources of information on generic safety issues for research reactors.

  17. TRAC-BD1: transient reactor analysis code for boiling-water systems

    International Nuclear Information System (INIS)

    Spore, J.W.; Weaver, W.L.; Shumway, R.W.; Giles, M.M.; Phillips, R.E.; Mohr, C.M.; Singer, G.L.; Aguilar, F.; Fischer, S.R.

    1981-01-01

    The Boiling Water Reactor (BWR) version of the Transient Reactor Analysis Code (TRAC) is being developed at the Idaho National Engineering Laboratory (INEL) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in BWRs. The TRAC-BD1 program provides the Loss of Coolant Accident (LOCA) analysis capability for BWRs and for many BWR related thermal hydraulic experimental facilities. This code features a three-dimensional treatment of the BWR pressure vessel; a detailed model of a BWR fuel bundle including multirod, multibundle, radiation heat transfer, leakage path modeling capability, flow-regime-dependent constitutive equation treatment, reflood tracking capability for both falling films and bottom flood quench fronts, and consistent treatment of the entire accident sequence. The BWR component models in TRAC-BD1 are described and comparisons with data presented. Application of the code to a BWR6 LOCA is also presented

  18. DABIE: a data banking system of integral experiments for reactor core characteristics computer codes

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Naito, Yoshitaka; Ohkubo, Shuji; Aoyanagi, Hideo.

    1987-05-01

    A data banking system of integral experiments for reactor core characteristics computer codes, DABIE, has been developed to lighten the burden on searching so many documents to obtain experiment data required for verification of reactor core characteristics computer code. This data banking system, DABIE, has capabilities of systematic classification, registration and easy retrieval of experiment data. DABIE consists of data bank and supporting programs. Supporting programs are data registration program, data reference program and maintenance program. The system is designed so that user can easily register information of experiment systems including figures as well as geometry data and measured data or obtain those data through TSS terminal interactively. This manual describes the system structure, how-to-use and sample uses of this code system. (author)

  19. International assessment of application of the Code of Conduct on the Safety of Research Reactors

    International Nuclear Information System (INIS)

    Shokr, A.M.

    2015-01-01

    The self-assessments performed by thirty-eight countries on application of the Code of Conduct on the Safety of Research Reactors were analyzed and discussed. The results of this analysis were used to identify areas of satisfactory application of the Code and area needing improvements, and therefore require more attention worldwide. The results showed improvement in application of the Code provisions; notably in aging management, regulatory supervision, and consideration of human factors. However, there is a continuing need for further improvement in these areas, as well as in operational radiation protection, emergency preparedness and decommissioning planning. Additionally, increased attention needs to be given to periodic safety reviews, evaluation of site-specific hazards, and assessment of extreme external events. The results showed consistency with the feedback from other sources of information on generic safety issues for research reactors.

  20. Neutronics analysis of Dalat Nuclear Research Reactor by MVP/GMVP code

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Toru Obara

    2008-01-01

    The paper presents neutronics calculation for Dalat Nuclear Research Reactor (DNRR) to validate MVP/GMVP Code. Beside fresh core calculation, burnt core and burn up distribution were also carried out and compared with experimental data or result obtained from other codes. With complex geometry and operating history like DNRR, burn up calculation by Monte Carlo Method is the better choice owing to the use of exact geometry description and continuous neutron energy in calculation. The discrepancy between calculated data and experimental data is good to compare. By using Monte Carlo method, continuous neutron energy from JENDL3.3 library and combined with burn up calculation, MVP/GMVP Code is a very useful tool for reactor calculation. (author)

  1. Theory and code development for evaluation of tritium retention and exhaust in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, Kaoru; Inai, Kensuke [Univ. of Tokushima, Institute of Technology and Science, Tokushima, Tokushima (Japan); Shimizu, Katsuhiro; Takizuka, Tomonori; Kawashima, Hisato; Hoshino, Kazuo [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki (Japan); Hatayama, Akiyoshi; Toma, Mitsunori [Keio Univ., Faculty of Science and Technology, Yokohama, Kanagawa (Japan); Tomita, Yukihiro; Kawamura, Gakushi; Ashikawa, Naoko; Nakamura, Hiroaki; Ito, Atsushi; Kato, Daiji [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Yasunori [Kanazawa Univ., College of Science and Engineering, Kanazawa, Ishikawa (Japan); Ono, Tadayoshi; Muramoto, Tetsuya [Okayama Univ. of Science, Faculty of Informatics, Okayama, Okayama (Japan); Kenmotsu, Takahiro [Doshisha Univ., Faculty of Life and Medical Science, Kiyotanabe, Kyoto (Japan)

    2009-10-15

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated three research programs on the theory and code development for evaluation of tritium retention and exhaust in fusion reactor have been conducted by the A02 team. They include: (1) Tritium transport in fusion plasmas and the adsorption and desorption property of tritium in plasma-facing components. (2) Behavior of dusts in fusion plasmas and their adsorption property of tritium. (3) Development of computer codes to simulate tritium retention in and release from plasma-facing materials. In order to study these issues, considerable effort has been paid to the development of computer codes and the database system. (J.P.N.)

  2. Theory and code development for evaluation of tritium retention and exhaust in fusion reactor

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Inai, Kensuke; Shimizu, Katsuhiro; Takizuka, Tomonori; Kawashima, Hisato; Hoshino, Kazuo; Hatayama, Akiyoshi; Toma, Mitsunori; Tomita, Yukihiro; Kawamura, Gakushi; Ashikawa, Naoko; Nakamura, Hiroaki; Ito, Atsushi; Kato, Daiji; Tanaka, Yasunori; Ono, Tadayoshi; Muramoto, Tetsuya; Kenmotsu, Takahiro

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated three research programs on the theory and code development for evaluation of tritium retention and exhaust in fusion reactor have been conducted by the A02 team. They include: (1) Tritium transport in fusion plasmas and the adsorption and desorption property of tritium in plasma-facing components. (2) Behavior of dusts in fusion plasmas and their adsorption property of tritium. (3) Development of computer codes to simulate tritium retention in and release from plasma-facing materials. In order to study these issues, considerable effort has been paid to the development of computer codes and the database system. (J.P.N.)

  3. Research on V and V strategy of reactor physics code of COSINE

    International Nuclear Information System (INIS)

    Liu Zhanquan; Chen Yixue; Yang Chao; Dang Halei

    2013-01-01

    Verification and validation (V and V) is very important for the software quality assurance. Reasonable and efficient V and V strategy can achieve twice the result with half the effort. Core and system integrated engine for design and analysis (COSINE) software package contains three reactor physics codes, the lattice code (LATC), the core simulator (CORE) and the kinetics code (KIND), which is called the reactor physics subsystem. The V and V strategy for the physics subsystem was researched based on the foundation of scientific software's V and V method. The module based verification method and the function based validation method were proposed, composing the physical subsystem V and V strategy of COSINE software package. (authors)

  4. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    International Nuclear Information System (INIS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Dařílek, Petr; Zajac, Radoslav; Nečas, Vladimír; Haščik, Ján

    2014-01-01

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice

  5. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J.

    2008-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  6. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  7. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J. (eds.)

    2008-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  8. COUPLED SIMULATION OF GAS COOLED FAST REACTOR FUEL ASSEMBLY WITH NESTLE CODE SYSTEM

    Directory of Open Access Journals (Sweden)

    Filip Osusky

    2018-05-01

    Full Text Available The paper is focused on coupled calculation of the Gas Cooled Fast Reactor. The proper modelling of coupled neutronics and thermal-hydraulics is the corner stone for future safety assessment of the control and emergency systems. Nowadays, the system and channel thermal-hydraulic codes are accepted by the national regulatory authorities in European Union for license purposes, therefore the code NESTLE was used for the simulation. The NESTLE code is a coupled multigroup neutron diffusion code with thermal-hydraulic sub-channel code. In the paper, the validation of NESTLE code 5.2.1 installation is presented. The processing of fuel assembly homogeneous parametric cross-section library for NESTLE code simulation is made by the sequence TRITON of SCALE code package system. The simulated case in the NESTLE code is one fuel assembly of GFR2400 concept with reflective boundary condition in radial direction and zero flux boundary condition in axial direction. The results of coupled calculation are presented and are consistent with the GFR2400 study of the GoFastR project.

  9. Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de

    1997-01-01

    The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)

  10. Analyses and computer code developments for accident-induced thermohydraulic transients in water-cooled nuclear reactor systems

    International Nuclear Information System (INIS)

    Wulff, W.

    1977-01-01

    A review is presented on the development of analyses and computer codes for the prediction of thermohydraulic transients in nuclear reactor systems. Models for the dynamics of two-phase mixtures are summarized. Principles of process, reactor component and reactor system modeling are presented, as well as the verification of these models by comparing predicted results with experimental data. Codes of major importance are described, which have recently been developed or are presently under development. The characteristics of these codes are presented in terms of governing equations, solution techniques and code structure. Current efforts and problems of code verification are discussed. A summary is presented of advances which are necessary for reducing the conservatism currently implied in reactor hydraulics codes for safety assessment

  11. Recent development and application of a new safety analysis code for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J., E-mail: Brad.Merrill@inl.gov; Humrickhouse, Paul W.; Shimada, Masashi

    2016-11-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  12. Recent development and application of a new safety analysis code for fusion reactors

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Humrickhouse, Paul W.; Shimada, Masashi

    2016-01-01

    Highlights: • This paper presents recent code development activities for the MELCOR for fusion and Tritium Migration Analysis Program computer codes at the Idaho National Engineering Laboratory. • The capabilities of these computer codes are being merged into a single safety analysis tool for fusion reactor accidents. • The result of benchmarking these codes against previous code versions is presented by the authors of this paper. • This new capability is applied to study the tritium inventory and permeation rate for a water cold tungsten divertor that has neutron damage at 0.3 dpa. - Abstract: This paper describes the recent progress made in the development of two codes for fusion reactor safety assessments at the Idaho National Laboratory (INL): MELCOR for fusion and the Tritium Migration Analysis Program (TMAP). During the ITER engineering design activity (EDA), the INL Fusion Safety Program (FSP) modified the MELCOR 1.8.2 code for fusion applications to perform ITER thermal hydraulic safety analyses. Because MELCOR has undergone many improvements at SNL-NM since version 1.8.2 was released, the INL FSP recently imported these same fusion modifications into the MELCOR 1.8.6 code, along with the multiple fluids modifications of MELCOR 1.8.5 for fusion used in US advanced fusion reactor design studies. TMAP has also been under development for several decades at the INL by the FSP. TMAP treats multi-specie surface absorption and diffusion in composite materials with dislocation traps, plus the movement of these species from room to room by fluid flow within a given facility. Recently, TMAP was updated to consider multiple trap site types to allow the simulation of experimental data from neutron irradiated tungsten. The natural development path for both of these codes is to merge their capabilities into one computer code to provide a more comprehensive safety tool for analyzing accidents in fusion reactors. In this paper we detail recent developments in this

  13. Method of neutronic calculations for a spherical cell equivalent to cylindrical one for using computer codes in light water reactors in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Borges, V.; Sefidvash, F.; Rastogi, E.P.; Huria, H.C.; Krishnani, P.D.

    1989-01-01

    In order to use the existing light water reactor cell calculation codes for fluidized bed nuclear reactor having spherical fuel cells, an equivalence method has been developed. This method is shown to be adequate in calculation of the Dancoff factor. This method also was applicable in LEOPARD code and the results obtained in calculation of K ∞ was compared with the obtained using the DTF IV code, the results showed that the method is adequate for the calculations neutronics of the fluidized bed nuclear reactor. (author) [pt

  14. Development and Verification of the Computer Codes for the Fast Reactors Nuclear Safety Justification

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Mosunova, N.A.; Strizhov, V.F.

    2015-01-01

    The information on the status of the work on development of the system of the nuclear safety codes for fast liquid metal reactors is presented in paper. The purpose of the work is to create an instrument for NPP neutronic, thermohydraulic and strength justification including human and environment radiation safety. The main task that is to be solved by the system of codes developed is the analysis of the broad spectrum of phenomena taking place on the NPP (including reactor itself, NPP components, containment rooms, industrial site and surrounding area) and analysis of the impact of the regular and accidental releases on the environment. The code system is oriented on the ability of fully integrated modeling of the NPP behavior in the coupled definition accounting for the wide range of significant phenomena taking place on the NPP under normal and accident conditions. It is based on the models that meet the state-of-the-art knowledge level. The codes incorporate advanced numerical methods and modern programming technologies oriented on the high-performance computing systems. The information on the status of the work on verification of the separate codes of the system of codes is also presented. (author)

  15. Validation of thermal hydraulic computer codes for advanced light water reactor

    International Nuclear Information System (INIS)

    Macek, J.

    2001-01-01

    The Czech Republic operates 4 WWER-440 units, two WWER-1000 units are being finalised (one of them is undergoing commissioning). Thermal-hydraulics Department of the Nuclear Research Institute Rez performs accident analyses for these plants using a number of computer codes. To model the primary and secondary circuits behaviour the system codes ATHLET, CATHARE, RELAP, TRAC are applied. Containment and pressure-suppressure system are modelled with RALOC and MELCOR codes, the reactor power calculations (point and space-neutron kinetics) are made with DYN3D, NESTLE and CDF codes (FLUENT, TRIO) are used for some specific problems. An integral part of the current Czech project 'New Energy Sources' is selection of a new nuclear source. Within this and the preceding projects financed by the Czech Ministry of Industry and Trade and the EU PHARE, the Department carries and has carried out the systematic validation of thermal-hydraulic and reactor physics computer codes applying data obtained on several experimental facilities as well as the real operational data. The paper provides a concise information on these activities of the NRI and its Thermal-hydraulics Department. A detailed example of the system code validation and the consequent utilisation of the results for a real NPP purposes is included. (author)

  16. An improved thermal-hydraulic modeling of the Jules Horowitz Reactor using the CATHARE2 system code

    Energy Technology Data Exchange (ETDEWEB)

    Pegonen, R., E-mail: pegonen@kth.se [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Bourdon, S.; Gonnier, C. [CEA, DEN, DER, SRJH, CEA Cadarache, 13108 Saint-Paul-lez-Durance Cedex (France); Anglart, H. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2017-01-15

    Highlights: • An improved thermal-hydraulic modeling of the JHR reactor is described. • Thermal-hydraulics of the JHR is analyzed during loss of flow accident. • The heat exchanger approach gives more realistic and less conservative results. - Abstract: The newest European high performance material testing reactor, the Jules Horowitz Reactor, will support current and future nuclear reactor designs. The reactor is under construction at the CEA Cadarache research center in southern France and is expected to achieve first criticality at the end of this decade. This paper presents an improved thermal-hydraulic modeling of the reactor using solely CATHARE2 system code. Up to now, the CATHARE2 code was simulating the full reactor with a simplified approach for the core and the boundary conditions were transferred into the three-dimensional FLICA4 core simulation. A new more realistic methodology is utilized to analyze the thermal-hydraulic simulation of the reactor during a loss of flow accident.

  17. Civil plutonium in the world: an estimate by the code REACTOR

    International Nuclear Information System (INIS)

    Braet, J.; Carchon, R.; Van der Meer, K.

    1996-11-01

    The computer code REACTOR that was developed by the Belgian Nuclear Research Centre SCK/CEN to study the built-up of plutonium stockpiles in the world is described. The code consists of a central database, containing general information about most commercial civil nuclear facilities. Using this code, an overview is given of the evolution of the nuclear energy production in the world, in the past and the medium term future. The nuclear energy production results in the accumulation of spent fuel stocks, containing vast amounts of energy enclosed in the plutonium. The presence and built-up of large stockpiles of spent fuel and separated plutonium originating from the civil fuel cycle is estimated. In this report several possible scenarios are considered for the use of that plutonium, with the aim of minimizing those stocks. According to the different national policies, scenarios such as open fuel cycle, thermal reactors or fast reactor cycle with the burning of plutonium in fast reactors are envisaged

  18. LOCA Analysis of KAIST-Micro Modular Reactor with Modified GAMMA+ code

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Bong Seong; Ahn, Yoon Han; Kim, Seong Gu; Bae, Seong Jun; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The supercritical carbon dioxide (S-CO{sub 2}) power cycle is being seriously investigated around the world due to its simple layout, quite high efficiency around 500 .deg. C turbine inlet temperature, etc. By combining these two ideas, the KAIST research team developed a S-CO{sub 2} cooled SMR, called KAIST-Micro Modular reactor (MMR), which is targeting transportability and electricity supply for remote region. Therefore, requirements of MMR design are factory fabrication of the total system including power conversion system to be transported and air cooling to be independent from the site selection. Until now, steady performances and sizes of components were evaluated. Thus, in this paper a transient performance of the MMR are simulated with special focus on the loss of coolant accident (LOCA) at cold leg pipe. The MMR is a newly suggested innovative small modular reactor concept by the KAIST research team. Since the MMR is cooled by supercritical CO{sub 2}, general safety codes for conventional reactors have limitations. Thus, GAMMA+ code for the transient analysis of a gas-cooled reactor was selected and modified for the S-CO{sub 2} power system. After the modification of GAMMA+ code, LOCA is simulated, which is considered as one of the most limiting accidents in terms of safety of nuclear power plant.

  19. Loss of coolant acident analyses on Osiris research reactor using the RELAP5 code

    International Nuclear Information System (INIS)

    Soares, Humberto Vitor; Costa, Antonella Lombardi; Lima, Claubia Pereira Bezerra; Veloso, Maria Auxiliadora Fortini

    2011-01-01

    RELAP5/MOD 3.3 code is widely used for thermal hydraulic studies of commercial nuclear power plants. However, several current investigations have shown that RELAP5 code can also be applied for thermal hydraulic analysis of nuclear research systems with good predictions. In this paper, a nodalization of the core and the most important components of the primary cooling system of the OSIRIS reactor developed for RELAP5 thermal hydraulic code are presented as well as results of steady state and transient simulations. OSIRIS has thermal power of 70 MW and it is an open pool type research reactor moderated and cooled by water. The OSIRIS reactor characteristics have been used as a base for the development of a model for the Multipurpose Brazilian Reactor (RMB). The aim of the present work is to investigate the behavior of the core during a loss of coolant accident and the possible damage of the fuel elements due an inadequate heat removal. Although the core coolant reached the saturation point due the large break, the fuel element conditions were out of the damage zone. (author)

  20. Verification of the LWRARC code for light-water-reactor afterheat rate calculations

    International Nuclear Information System (INIS)

    Murphy, B.D.

    1998-02-01

    This report describes verification studies carried out on the LWRARC (Light-Water-Reactor Afterheat Rate Calculations) computer code. The LWRARC code is proposed for automating the implementation of procedures specified in Draft Revision 1 of the U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide 3.54, open-quotes Spent-Fuel Heat Generation in an Independent Spent-Fuel Storage Installation,close quotes which gives guidelines on the calculation of decay heat for spent nuclear fuel. Draft Regulatory Guide 3.54 allows one to estimate decay-heat values by means of a table lookup procedure with interpolation performed between table-entry values. The tabulated values of the relevant parameters span ranges that are appropriate for spent fuel from a boiling-water reactor (BWR) or a pressurized-water reactor (PWR), as the case may be, and decay-heat rates are obtained for spent fuel whose properties are within those parameter limits. In some instances, where these limits are either exceeded or where they approach critical regions, adjustments are invoked following table lookup. The LWRARC computer code is intended to replicate the manual process just described. In the code, the table lookup is done by entering a database and carrying out interpolations. The code then determines if adjustments apply, and, if this is the case, adjustment factors are calculated separately. The manual procedures in the Draft Regulatory Guide have been validated (i.e., they produce results that are good estimates of reality). The work reported in this document verifies that the LWRARC code replicates the manual procedures of the Draft Regulatory Guide, and that the code, taken together with the Draft Regulatory Guide, can support both verification and validation processes

  1. Development of a general coupling interface for the fuel performance code TRANSURANUS – Tested with the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.; Macián-Juan, R.

    2015-01-01

    Highlights: • A general coupling interface was developed for couplings of the TRANSURANUS code. • With this new tool simplified fuel behavior models in codes can be replaced. • Applicable e.g. for several reactor types and from normal operation up to DBA. • The general coupling interface was applied to the reactor dynamics code DYN3D. • The new coupled code system DYN3D–TRANSURANUS was successfully tested for RIA. - Abstract: A general interface is presented for coupling the TRANSURANUS fuel performance code with thermal hydraulics system, sub-channel thermal hydraulics, computational fluid dynamics (CFD) or reactor dynamics codes. As first application the reactor dynamics code DYN3D was coupled at assembly level in order to describe the fuel behavior in more detail. In the coupling, DYN3D provides process time, time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, which in case of the two-way coupling approach transfers parameters like fuel temperature and cladding temperature back to DYN3D. Results of the coupled code system are presented for the reactivity transient scenario, initiated by control rod ejection. More precisely, the two-way coupling approach systematically calculates higher maximum values for the node fuel enthalpy. These differences can be explained thanks to the greater detail in fuel behavior modeling. The numerical performance for DYN3D–TRANSURANUS was proved to be fast and stable. The coupled code system can therefore improve the assessment of safety criteria, at a reasonable computational cost

  2. The concerted calculation of the BN-600 reactor for the deterministic and stochastic codes

    Science.gov (United States)

    Bogdanova, E. V.; Kuznetsov, A. N.

    2017-01-01

    The solution of the problem of increasing the safety of nuclear power plants implies the existence of complete and reliable information about the processes occurring in the core of a working reactor. Nowadays the Monte-Carlo method is the most general-purpose method used to calculate the neutron-physical characteristic of the reactor. But it is characterized by large time of calculation. Therefore, it may be useful to carry out coupled calculations with stochastic and deterministic codes. This article presents the results of research for possibility of combining stochastic and deterministic algorithms in calculation the reactor BN-600. This is only one part of the work, which was carried out in the framework of the graduation project at the NRC “Kurchatov Institute” in cooperation with S. S. Gorodkov and M. A. Kalugin. It is considering the 2-D layer of the BN-600 reactor core from the international benchmark test, published in the report IAEA-TECDOC-1623. Calculations of the reactor were performed with MCU code and then with a standard operative diffusion algorithm with constants taken from the Monte - Carlo computation. Macro cross-section, diffusion coefficients, the effective multiplication factor and the distribution of neutron flux and power were obtained in 15 energy groups. The reasonable agreement between stochastic and deterministic calculations of the BN-600 is observed.

  3. The reactor kinetics code tank: a validation against selected SPERT-1b experiments

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-01-01

    The two-dimensional space-time analysis code TANK is being developed for the simulation of transient behaviour in the MAPLE class of research reactors. MAPLE research reactor cores are compact, light-water-cooled and -moderated, with a high degree of forced subcooling. The SPERT-1B(24/32) reactor core had many similarities to MAPLE-X10, and the results of the SPERT transient experiments are well documented. As a validation of TANK, a series of simulations of certain SPERT reactor transients was undertaken. Special features were added to the TANK code to model reactors with plate-type fuel and to allow for the simulation of rapid void production. The results of a series of super-prompt-critical reactivity step-insertion transient simulations are presented. The selected SPERT transients were all initiated from low power, at ambient temperatures, and with negligible coolant flow. Th results of the TANK simulations are in good agreement with the trends in the experimental SPERT data

  4. DISA- a computer code for accident analysis of fast reactor during disassembly phase

    International Nuclear Information System (INIS)

    Yadav, R.D.S.; Gupta, H.P.

    2005-01-01

    Analysis of the hypothetical transients in fast rectors that result in the disassembly of the reactor generally consists of three phases. In the phase-l, some initiating event like control rod ejection, coolant pump failure etc. is assumed to have taken place which leads the reactor to prompt critical state where fuel melting, sodium voiding etc. take place. In fast reactor normally the fuel is not in the optimum shape and further positive reactivity may be introduced into the system due to fuel melting. Fuel slumping is assumed to take place in this phase. If prompt criticality is reached as a result of the first phase, then disassembly phase is assumed to start. In this phase the neutron transient is followed till it is terminated by the disassembly of the core which takes place due to generation of high pressure gradients and which lead the core material to move from more worth region to less worth region. Doppler feed back is taken into account and reactivity feedback due to material movement is calculated by solving the hydrodynamics equations. The third phase will calculate the effect of this transient on the reactor vessel and containment. A computer code DISA for fast reactor DISAssembly phase, which is similar to the well known code VENUS has been developed. (author)

  5. Evaluation of Advanced Thermohydraulic System Codes for Design and Safety Analysis of Integral Type Reactors

    International Nuclear Information System (INIS)

    2014-02-01

    The integral pressurized water reactor (PWR) concept, which incorporates the nuclear steam supply systems within the reactor vessel, is one of the innovative reactor types with high potential for near term deployment. An International Collaborative Standard Problem (ICSP) on Integral PWR Design, Natural Circulation Flow Stability and Thermohydraulic Coupling of Primary System and Containment during Accidents was established in 2010. Oregon State University, which made available the use of its experimental facility built to demonstrate the feasibility of the Multi-application Small Light Water Reactor (MASLWR) design, and sixteen institutes from seven Member States participated in this ICSP. The objective of the ICSP is to assess computer codes for reactor system design and safety analysis. This objective is achieved through the production of experimental data and computer code simulation of experiments. A loss of feedwater transient with subsequent automatic depressurization system blowdown and long term cooling was selected as the reference event since many different modes of natural circulation phenomena, including the coupling of primary system, high pressure containment and cooling pool are expected to occur during this transient. The power maneuvering transient is also tested to examine the stability of natural circulation during the single and two phase conditions. The ICSP was conducted in three phases: pre-test (with designed initial and boundary conditions established before the experiment was conducted), blind (with real initial and boundary conditions after the experiment was conducted) and open simulation (after the observation of real experimental data). Most advanced thermohydraulic system analysis codes such as TRACE, RELAPS and MARS have been assessed against experiments conducted at the MASLWR test facility. The ICSP has provided all participants with the opportunity to evaluate the strengths and weaknesses of their system codes in the transient

  6. Release of WIMS10: a versatile reactor physics code for thermal and fast systems - 15467

    International Nuclear Information System (INIS)

    Lindley, B.A.; Newton, T.D.; Hosking, J.G.; Smith, P.N.; Powney, D.J.; Tollit, B.; Smith, P.J.

    2015-01-01

    the WIMS code provides a versatile software package for neutronic calculations, which can be applied to all thermal reactor types including mixed moderator systems. It can provide lattice cell and supercell calculations using a range of flux solutions methods to produce the neutronic libraries for use in PANTHER or other whole core analysis codes. With the release of WIMS10, the range of problems which WIMS can solve has been greatly extended. A WIMS/PANTHER calculation route has been developed and validated for part MOX-fuelled PWRs, with calculations showing excellent agreement with 2D core deterministic and Monte Carlo transport solutions. A flexible geometry 3D method of characteristics transport solver, CACTUS3D has been added to the code. CACTUS3D has been benchmarked for a 3D BWR assembly model, and was in good agreement with a direct 172-group solution in the Monte Carlo code MONK. Fast reactor calculations using the ECCO deterministic calculation route have been validated using experimental data from the ZEBRA reactor. Power deposition can be treated through following neutrons and/or photons to their point of interaction. The improved methodology is shown to give more accurate calculation of heat deposition and improve agreement between calculated and measured detector responses for part MOX-fuelled cores. (authors)

  7. A 3D transport-based core analysis code for research reactors with unstructured geometry

    International Nuclear Information System (INIS)

    Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao

    2013-01-01

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  8. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code

  9. An analysis of water reactor burnup data with the METHUSELAH II code

    International Nuclear Information System (INIS)

    Floyd, M.; Hicks, D.

    1964-10-01

    The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)

  10. Methods and codes for neutronic calculations of the MARIA research reactor

    International Nuclear Information System (INIS)

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M.M.; Hanan, N.A.; Matos, J.E.

    1998-01-01

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6x8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminium. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with RERTR program. At IAE the package of programs was developed to help its operator in optimization of fuel utilization. (author)

  11. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1996-01-01

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  12. Application of best estimate thermalhydraulic codes for the safety analysis of research reactors

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.

    2006-01-01

    An established international expertise in relation to computational tools, procedures for their application including Best Estimate (BE) methods supported by uncertainty evaluation, and comprehensive experimental database exists within the safety technology of Nuclear Power Plant (NPP). The importance of transferring NPP safety technology tools and methods to RR safety technology has been noted in recent IAEA activities. However, the ranges of parameters of interest to RR are different from those for NPP: this is namely true for fuel composition, system pressure, adopted materials and overall system geometric configuration. The large variety of research reactors prevented so far the achievement of systematic and detailed lists of initiating events based upon qualified Probabilistic Safety Assessment (PSA) studies with results endorsed by the international community. However, bounding and generalized lists of events are available from IAEA documents and can be considered for deeper studies in the area. In the area of acceptance criteria, established standards accepted by the international community are available. Therefore no major effort is needed, but an effort appears worthwhile to check that those standards are adopted and that the related thresholds are fulfilled. The importance of suitable experimental assessment is recognized. A large amount of data exists as the kinetic dynamic core behaviour form SPERT reactors tests. However, not all data are accessible to all institutions and the relationship between the range of parameters of experiments and the range of parameters relevant to RR technology is not always established. However, code-assessment through relevant set of experimental data are recorded and properly stored. An established technology exists for development, qualification and application of system thermal-hydraulics codes suitable to be adopted for accident analysis in research reactors. This derives from NPP technology. The applicability of

  13. Implementation of reactor safety analysis code CATHARE and its use on FACOM M-380

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Shinozawa, Naohisa; Tomiyama, Mineyoshi; Fujisaki, Masahide

    1986-05-01

    CATHARE is an advanced safety analysis code developed at the Nuclear Research Center of Grenoble in France. The code simulates thermohydraulic phenomena involved in loss of coolant accidents in pressurized water reactors. The code has been introduced into JAERI as a part of the technical exchange between the JAERI ROSA-IV Program and the French BETHSY-CATHARE Program. The code was delivered in the form of 23 files containing 115,000 statements in total. A large part of CATHARE code has been written in an extended Fortran language 'Esope' which is mainly used for managing dynamic memory allocation. The JAERI version is created from the IBM version which has been used on Amdhal computer at ISPRA. Some modifications are required in order to implement the CATHARE code at JAERI because of difference in softwares. In this report, the overview of the code structure, the JAERI usage, the implementation method, the error correction method, the problems special to install the code in JAERI, and the distribution of computing time are described. (author)

  14. Adoption of ASME Code Section XI for ISI to Research Reactors

    International Nuclear Information System (INIS)

    Tawfik, Y.E.; El-sesy, I.A.; Shaban, H.I.; Ibrahim, M.M.

    2002-01-01

    ETRR-2 (Second Egyptian thermal research reactor) is a multi-purpose, pool- type reactor with an open water surface and variable core arrangement. The core power is 22 MWth, cooled and moderated by light water and with beryllium reflectors. It contains plate- type fuel elements (MTR type, 19.7% enriched uranium) with aluminum clad. The ETRR-2 reactor consist of 57 systems and around 200 subsystems. These systems contain many mechanical components such as tanks, pipes, valves, pumps, heat exchangers, cooling tower, air compressors, and supports. In this present work, a trial was made to adopt the general requirements of ASME code, section XI to ETRR-2 research reactor. ASME (American Society of Mechanical Engineers) boiler and pressure vessel Code, section XI, provides requirements for in-service inspection (ISI) and in-service testing (IST) of components and systems, and repair/replacement activities in a nuclear power plant. Also, IAEA (International Atomic Energy Authority) has published some recommendations for ISI for research reactors similar to that rules and requirements specified in ASME. The complete ISI program requires several steps that have to be performed in sequence. These steps are described in many logic flow charts (LFC's). These logic flow charts include; the general LFC's for all steps required to complete ISI program, the LFC's for examination requirements, the LFC's for flaw evaluation modules, and the LFC's for acceptability of welds for class 1 components. This program includes, also, the inspection program for welded parts of the reactor components during its lifetime. This inspection program is applied for each system and subsystem of ETRR-2 reactor. It includes the examination area type, the component type, the part to be examined, the weld type, the examination method, the inspection program schedule, and the detailed figures of the welded components. (authors)

  15. Risoe National Laboratory - Forty years of research in a changing society

    International Nuclear Information System (INIS)

    Nielsen, H.; Nielsen, K.; Petersen, F.; Siggaard Jensen, H.

    1998-01-01

    The creation of Risoe forty years ago was one of the largest, single investments in Danish research. The intention was to realise Niels Bohr's visions of the peaceful use in Denmark og nuclear energy for electricity production and other purposes. Risoe decided to take the opportunity of its 40th anniversary in 1998 to have its history written in a form that would contribute to the history of modern Denmark. The result was a book in Danish entitled Til samfundets tarv - Forskningscenter Risoes historie. The present text is a slightly reworked translation of the last chapter of that book. It contains a summary of Risoe's history and some reflections on forty years of change. Change in Danish society at large, in research policy, in energy policy, in technological expectations. Changes at Risoe, in leadership, in organisational structure, in strategy and in fields of research. Some of Risoe's largest projects are briefly characterised. (LN)

  16. THYDE-P2 code: RCS (reactor-coolant system) analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro; Hirano, Masashi; Sato, Kazuo

    1986-12-01

    THYDE-P2, being characterized by the new thermal-hydraulic network model, is applicable to analysis of RCS behaviors in response to various disturbances including LB (large break)-LOCA(loss-of-coolant accident). In LB-LOCA analysis, THYDE-P2 is capable of through calculation from its initiation to complete reflooding of the core without an artificial change in the methods and models. The first half of the report is the description of the methods and models for use in the THYDE-P2 code, i.e., (1) the thermal-hydraulic network model, (2) the various RCS components models, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the user's mannual for the THYDE-P2 code (version SV04L08A) containing items; (1) the program control (2) the input requirements, (3) the execution of THYDE-P2 job, (4) the output specifications and (5) the sample problem to demonstrate capability of the thermal-hydraulic network model, among other things. (author)

  17. Development of a thermal–hydraulic system code, TAPINS, for 10 MW regional energy reactor

    International Nuclear Information System (INIS)

    Lee, Yeon-Gun; Kim, Jong-Won; Park, Goon-Cherl

    2012-01-01

    Highlights: ► A thermal–hydraulic system code named TAPINS is developed for simulations of an integral reactor. ► The TAPINS is based on the one-dimensional momentum integral model. ► A dynamic model for the steam–gas pressurizer with non-condensable gas present is proposed. ► A series of pressurizer insurge test and natural circulation test are simulated by the TAPINS. ► It is proved that the TAPINS can provide reliable prediction of an integral reactor system on natural circulation. - Abstract: Small modular reactors (SMRs) with integral system layout have been drawing a great deal of attention as alternative options to branch out the utilization of nuclear energy as well as to offer the inherent safety features. Serving to confirm the design basis and analyze the transient behavior of an integral reactor such as REX-10, a thermal–hydraulic system code named TAPINS (Thermal–hydraulic Analysis Program for INtegral reactor System) is developed in this study. The TAPINS supports the simple pre-processing to build up the frameworks of node diagram for the typical integral reactor configuration. The TAPINS basically consists of mathematical models for the reactor coolant system, the core, the once-through helical-coil steam generator, and the built-in steam–gas pressurizer. The hydrodynamic model of the TAPINS is formulated using the one-dimensional momentum integral model, which is based on the analytical integration of the momentum equation around the closed loop in the system. As a key contribution of the study, a dynamic model for the steam–gas pressurizer with non-condensable gas present is newly proposed and incorporated into the code. The TAPINS is validated by comparing against the experimental data from the pressurizer insurge tests conducted at MIT (Massachusetts Institute of Technology) and natural circulation tests in the RTF (REX-10 Test Facility) at RERI (Regional Energy Reactor Institute). From the comparison results, it is

  18. Cassandre : a two-dimensional multigroup diffusion code for reactor transient analysis

    International Nuclear Information System (INIS)

    Arien, B.; Daniels, J.

    1986-12-01

    CASSANDRE is a two-dimensional (x-y or r-z) finite element neutronics code with thermohydraulics feedback for reactor dynamics prior to the disassembly phase. It uses the multigroup neutron diffusion theory. Its main characteristics are the use of a generalized quasistatic model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching and the use of a finite element description. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In steady state criticality search is possible either by control rod insertion or by homogeneous poisoning of the coolant. This report describes the main characterstics of the code structure and provides all the information needed to use the code. (Author)

  19. Application of data analysis techniques to nuclear reactor systems code to accuracy assessment

    International Nuclear Information System (INIS)

    Kunz, R.F.; Kasmala, G.F.; Murray, C.J.; Mahaffy, J.H.

    2000-01-01

    An automated code assessment program (ACAP) has been developed by the authors to provide quantitative comparisons between nuclear reactor systems (NRS) code results and experimental measurements. This software was developed under subcontract to the United States Nuclear Regulatory Commission for use in its NRS code consolidation efforts. In this paper, background on the topic of NRS accuracy and uncertainty assessment is provided which motivates the development of and defines basic software requirements for ACAP. A survey of data analysis techniques was performed, focusing on the applicability of methods in the construction of NRS code-data comparison measures. The results of this review process, which further defined the scope, user interface and process for using ACAP are also summarized. A description of the software package and several sample applications to NRS data sets are provided. Its functionality and ability to provide objective accuracy assessment figures are demonstrated. (author)

  20. Extension of the reactor dynamics code MGT-3D for pebblebed and blocktype high-temperature-reactors

    International Nuclear Information System (INIS)

    Shi, Dunfu

    2015-01-01

    The High Temperature Gas cooled Reactor (HTGR) is an improved, gas cooled nuclear reactor. It was chosen as one of the candidates of generation IV nuclear plants [1]. The reactor can be shut down automatically because of the negative reactivity feedback due to the temperature's increasing in designed accidents. It is graphite moderated and Helium cooled. The residual heat can be transferred out of the reactor core by inactive ways as conduction, convection, and thermal radiation during the accident. In such a way, a fuel temperature does not go beyond a limit at which major fission product release begins. In this thesis, the coupled neutronics and fluid mechanics code MGT-3D used for the steady state and time-dependent simulation of HTGRs, is enhanced and validated [2]. The fluid mechanics part is validated by SANA experiments in steady state cases as well as transient cases. The fuel temperature calculation is optimized by solving the heat conduction equation of the coated particles. It is applied in the steady state and transient simulation of PBMR, and the results are compared to the simulation with the old overheating model. New approaches to calculate the temperature profile of the fuel element of block-type HTGRs, and the calculation of the homogeneous conductivity of composite materials are introduced. With these new developments, MGT-3D is able to simulate block-type HTGRs as well. This extended MGT-3D is used to simulate a cuboid ceramic block heating experiment in the NACOK-II facility. The extended MGT-3D is also applied to LOFC and DLOFC simulation of GT-MHR. It is a fluid mechanics calculation with a given heat source. This calculation result of MGT-3D is verified with the calculation results of other codes. The design of the Japanese HTTR is introduced. The deterministic simulation of the LOFC experiment of HTTR is conducted with the Monte-Carlo code Serpent and MGT-3D, which is the LOFC Project organized by OECD/NEA [3]. With Serpent the burnup

  1. Wind tunel tests of Risoe-B1-18 and Risoe-B1-24

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Bak, C.; Gaunaa, M.; Antoniou, I.

    2003-01-01

    This report contains 2D measurements of the Risoe-B1-18 and Risoe-B1-24 airfoils. The aerodynamic properties were derived from pressure measurements on the airfoil surface and in the wake. The measurements were conducted in the VELUX open jet wind tunnel, which has a background turbulence intensity of 1%, and an inlet flow velocity of 42 m/s. The airfoil sections had a chord of 0.600 m giving a Reynolds number of 1.6Oe106. The span was 1.9 m and end plates were used to minimize 3D flow effects. The measurements comprised both static and dynamic inflow. Static inflow covered angles of attack from 5o to 30 deg. Dynamic inflow was obtained by pitching the airfoil in a harmonic motion around various mean angles of attack. The test matrix involved smooth flow, various kinds of leading edge roughness, stall strips, vortex generators and Gurney flaps in different combinations. The quality of the measurements was good and the agreement between measurements and numerical CFD predictions with EllipSys2D was good. For both airfoils predictions with turbulent flow captured very well the shapes of lift and drag curves as well as the magnitude of maximum lift. Measurements of Risoe-B1-18 showed that the maximum lift coefficient was 1.64 at an angle of attack of approximately 13 deg. The airfoil was not very sensitive to leading edge roughness despite its high maximum lift. Measurements with stall strips showed that stall strips could control the level of maximum lift. The Risoe-B1-24 measurements showed that the maximum lift coefficient was 1.62 at an angle of attack of approximately 14 deg. The airfoil was only little sensitive to leading edge roughness despite its high relative thickness and high maximum lift. Measurements with delta wing shaped vortex generators increased the maximum lift coefficient to 2.02 and measurements with Gurney flaps increased the maximum lift coefficient to 1.85. Measurements with combination of vortex generators and Gurney flaps showed a maximum

  2. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  3. Current algorithms used in reactor safety codes and the impact of future computer development on these algorithms

    International Nuclear Information System (INIS)

    Mahaffy, J.H.; Liles, D.R.; Woodruff, S.B.

    1985-01-01

    Computational methods and solution procedures used in the US Nuclear Regulatory Commission's reactor safety systems codes, Transient Reactor Analysis Code (TRAC) and Reactor Leak and Power Safety Excursion Code (RELAP), are reviewed. Methods used in TRAC-PF1/MOD1, including the stability-enhancing two-step (SETS) technique, which permits fast computations by allowing time steps larger than the material Courant stability limit, are described in detail, and the differences from RELAP5/MOD2 are noted. Developments in computing, including parallel and vector processing, and their applicability to nuclear reactor safety codes are described. These developments, coupled with appropriate numerical methods, make detailed faster-than-real-time reactor safety analysis a realistic near-term possibility

  4. Fuel Management Study for a CANDU reactor Using New Physics Codes Suite

    International Nuclear Information System (INIS)

    Kim, Won Young; Kim, Bong Ghi; Park, Joo Hwan

    2008-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. The primary reactivity control in a CANDU reactor is the on-power refueling on a daily basis and an additional reactivity control is provided through an individual reactivity device movement, which includes 21 adjusters, 6 liquid zone controllers, 4 mechanical control absorbers and 2 shutdown systems. The refueling in CANDU is carried out on power and this makes the in-core fuel management different from that in a reactor refueled during shutdowns. The objective of a fuel management is to determine a fuel loading and fuel replacement procedure which will result in a minimum total unit energy cost in a safe and reliable operation. In this article, the in-core fuel management for the CANDU reactor was studied by using the new physics code suite of WIMS-IST/DRAGON-IST/RFSP-IST with the model of Wolsong-1 NPP

  5. Windows user-friendly code package development for operation of research reactors

    International Nuclear Information System (INIS)

    Hoang Anh Tuan

    1998-01-01

    The content of the project was to developed: 1. MS Windows interface to spectral codes like THERMOS, PEACO-COLLIS, GRACE and burn-up code. 2. MS Windows C-language burn-up diffusion hexagonal lattice code. The overall scope of the project was to develop a PC-based MS Windows code package for operation of Dalat research reactor. Various problems relating to neutronic physics like thermalization, resonance treatment, fast spectral treatment, change of isotopic concentration during burn-up time as well as burn-up distribution in the reactor core are considered in parallel to application of informatics technique. The developing process is a subject of the concept of user-friendly interface between end-users and the code package. High level input features through system of icon, menu, dialog box with regard to Common User Access (CUA) convention and sophisticated graphical output in MS Windows environment was used. The user-computer interface is also enhanced by using both keyboard and mouse, which creates a very natural manner for end-user. (author)

  6. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C

    2006-10-15

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions.

  7. Improvements and validation of the transient analysis code MOREL for molten salt reactors

    International Nuclear Information System (INIS)

    Zhuang Kun; Zheng Youqi; Cao Liangzhi; Hu Tianliang; Wu Hongchun

    2017-01-01

    The liquid fuel salt used in the molten salt reactors (MSRs) serves as the fuel and coolant simultaneously. On the one hand, the delayed neutron precursors circulate in the whole primary loop and part of them decay outside the core. On the other hand, the fission heat is carried off directly by the fuel flow. These two features require new analysis method with the coupling of fluid flow, heat transfer and neutronics. In this paper, the recent update of MOREL code is presented. The update includes: (1) the improved quasi-static method for the kinetics equation with convection term is developed. (2) The multi-channel thermal hydraulic model is developed based on the geometric feature of MSR. (3) The Variational Nodal Method is used to solve the neutron diffusion equation instead of the original analytic basis functions expansion nodal method. The update brings significant improvement on the efficiency of MOREL code. And, the capability of MOREL code is extended for the real core simulation with feedback. The numerical results and experiment data gained from molten salt reactor experiment (MSRE) are used to verify and validate the updated MOREL code. The results agree well with the experimental data, which prove the new development of MOREL code is correct and effective. (author)

  8. Validation Calculations for the Application of MARS Code to the Safety Analysis of Research Reactors

    International Nuclear Information System (INIS)

    Park, Cheol; Kim, H.; Chae, H. T.; Lim, I. C.

    2006-10-01

    In order to investigate the applicability of MARS code to the accident analysis of the HANARO and other RRs, the following test data were simulated. Test data of the HANARO design and operation, Test data of flow instability and void fraction from published documents, IAEA RR transient data in TECDOC-643, Brazilian IEA-R1 experimental data. For the simulation of the HANARO data with finned rod type fuels at low pressure and low temperature conditions, MARS code, developed for the transient analysis of power reactors, was modified. Its prediction capability was assessed against the experimental data for the HANARO. From the assessment results, it can be said that the modified MARS code could be used for analyzing the thermal hydraulic transient of the HANARO. Some other simulations such as flow instability test and reactor transients were also done for the application of MARS code to RRs with plate type fuels. In the simulation for these cases, no modification was made. The results of simulated cases show that the MARS code can be used to the transient analysis of RRs with careful considerations. In particular, it seems that an improvement on a void model may be necessary for dealing with the phenomena in high void conditions

  9. Flica: a code for the thermodynamic study of a reactor or a test loop

    International Nuclear Information System (INIS)

    Fajeau, M.

    1969-01-01

    This code handles the thermal problems of water loops or reactor cores under the following conditions: High or low pressure, steady state or transient behavior, one or two phases - Three-dimensional thermodynamic study of the flow in cylindrical geometry - Unidimensional study of heat transfer in heating elements - Neutronic studies can be coupled and a schematic representation of the safety rod behavior is given. The number of cells described in a flow cross-section is presently less than 20. This code is the logical following of FLID and CACTUS of which it constitutes a synthesis. (author) [fr

  10. Decay Heat Calculations for Reactors: Development of a Computer Code ADWITA

    International Nuclear Information System (INIS)

    Raj, Devesh

    2015-01-01

    Estimation of release of energy (decay heat) over an extended period of time after termination of neutron induced fission is necessary for determining the heat removal requirements when the reactor is shutdown, and for fuel storage and transport facilities as well as for accident studies. A Fuel Cycle Analysis Code, ADWITA (Activation, Decay, Waste Incineration and Transmutation Analysis) which can generate inventory based on irradiation history and calculate radioactivity and decay heat for extended period of cooling, has been written. The method and data involved in Fuel Cycle Analysis Code ADWITA and some results obtained shall also be presented. (author)

  11. Utilization of the Nelkin model in a Hammer computer code for calculation the reactor parameters

    International Nuclear Information System (INIS)

    Leal, L.C.

    1980-07-01

    The possibility of modifying the HAMMER code, in the thermal part, by changing the thermal neutron scattering Kernel of its library for another one calculated in a subprogramm which can be incorporated to the code, is studied. This subprogramm uses the original version of the Nelkin model instead of its approximation which is used in the HAMMER. It has the advantage of giving the values of the Kernel for any temperature of the reactor for the approximations P 0 , P 1 , P 2 and P 3 . (Author) [pt

  12. Modeling the reactor core of MNSR to simulate its dynamic behavior using the code PARET

    International Nuclear Information System (INIS)

    Hainoun, A.; Alhabet, F.

    2004-02-01

    Using the computer code PARET the core of the MNSR reactor was modelled and the neutronics and thermal hydraulic behaviour of the reactor core for the steady state and selected transients, that deal with step change of reactivity including control rod withdraw starting from steady state at various low power level, were simulated. For this purpose a PARET input model for the core of MNSR reactor has been developed enabling the simulation of neutron kinetic and thermal hydraulic of reactor core including reactivity feedback effects. The neutron kinetic model depends on the point kinetic with 15 groups delayed neutrons including photo neutrons of beryllium reflector. In this regard the effect of photo neutron on the dynamic behaviour has been analysed through two additional calculation. In the first the yield of photo neutrons was neglected completely and in the second its share was added to the sixth group of delayed neutrons. In the thermal hydraulic model the fuel elements with their cooling channels were distributed to 4 different groups with various radial power factors. The pressure lose factors for friction, flow direction change, expansion and contraction were estimated using suitable approaches. The post calculations of the relative neutron flux change and core average temperature were found to be consistent with the experimental measurements. Furthermore, the simulation has indicated the influence of photo neutrons of the Beryllium reflector on the neutron flux behaviour. For the reliability of the results sensitivity analysis was carried out to consider the uncertainty in some important parameters like temperature feedback coefficient and flow velocity. On the other hand the application of PARET in simulation of void formation in the subcooled boiling regime were tested. The calculation indicates the capability of PARET in modelling this phenomenon. However, big discrepancy between calculation results and measurement of axial void distribution were observed

  13. Risoe energy report 6. Future options for energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L [eds.

    2007-11-15

    Fossil fuels provide about 80% of the global energy demand, and this will continue to be the situation for decades to come. In the European Community we are facing two major energy challenges. The first is sustainability, and the second is security of supply, since Europe is becoming more dependent on imported fuels. These challenges are the starting point for the present Risoe Energy Report 6. It gives an overview of the energy scene together with trends and emerging energy technologies. The report presents status and trends for energy technologies seen from a Danish and European perspective from three points of view: security of supply, climate change and industrial perspectives. The report addresses energy supply technologies, efficiency improvements and transport. The report is volume 6 in a series of reports covering energy issues at global, regional and national levels. The individual chapters of the report have been written by staff members from the Technical University of Denmark and Risoe National Laboratory together with leading Danish and international experts. The report is based on the latest research results from Risoe National Laboratory, Technical University of Denmark, together with available internationally recognized scientific material, and is fully referenced and refereed by renowned experts. Information on current developments is taken from the most up-to-date and authoritative sources available. Our target groups are colleagues, collaborating partners, customers, funding organizations, the Danish government and international organizations including the European Union, the International Energy Agency and the United Nations. (au)

  14. Write-up for the diffractometer D1 at Risoe

    International Nuclear Information System (INIS)

    Bundgaard, J.; Krebs Larsen, F.; Lebech, B.; Nielsen, M.H.; Skaarup, P.

    1982-05-01

    Manual for the crystallographic program system used to control the 4-circle neutron diffractometer D1/TASII at DR3, Risoe. The mechanical part of the diffractometer consists of a monochromator part which allows an easy change of incident neutron wavelenght and a four-circle HUBER goniostate consisting of an Euler cradle (HUBER 512) and two horizontal goniometers (HUBER 440 and HUBER 430). The goniostate is computer controlled by a PDP-11/34 interfaced via CAMAC modules. The PDP-11/34 computer has a 128 k byte memory, two hard magnetic disc stations, a fast DEC-writer terminal and a screen terminal. The diffractometer can be operated remotely via modem and telephone line connections from remote stations such as the University of Aarhus and ILL, Grenoble. Minor parts of the software used to control the diffractometer were developed at Risoe while the major parts were a generous gift to Risoe from College 5, the diffraction group, at the Institute Laue-Langevin, Grenoble, France. (editors)

  15. Transient Analyses for a Molten Salt Transmutation Reactor Using the Extended SIMMER-III Code

    International Nuclear Information System (INIS)

    Wang, Shisheng; Rineiski, Andrei; Maschek, Werner; Ignatiev, Victor

    2006-01-01

    Recent developments extending the capabilities of the SIMMER-III code for the dealing with transient and accidents in Molten Salt Reactors (MSRs) are presented. These extensions refer to the movable precursor modeling within the space-time dependent neutronics framework of SIMMER-III, to the molten salt flow modeling, and to new equations of state for various salts. An important new SIMMER-III feature is that the space-time distribution of the various precursor families with different decay constants can be computed and took into account in neutron/reactivity balance calculations and, if necessary, visualized. The system is coded and tested for a molten salt transmuter. This new feature is also of interest in core disruptive accidents of fast reactors when the core melts and the molten fuel is redistributed. (authors)

  16. Benchmark of physics design of a proposed 30 MW Multi Purpose Research Reactor using a Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.

    2009-01-01

    At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)

  17. Analysis of some antecipated transients without scram for PWR type reactors by coupling of the CORAN code to the ALMOD code system

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author) [pt

  18. Simulation of the preliminary General Electric SP-100 space reactor concept using the ATHENA computer code

    International Nuclear Information System (INIS)

    Fletcher, C.D.

    1986-01-01

    The capability to perform thermal-hydraulic analyses of a space reactor using the ATHENA computer code is demonstrated. The fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of the preliminary General electric SP-100 design were modeled with ATHENA. Two demonstration transient calculations were performed simulating accident conditions. Calculated results are available for display using the Nuclear Plant Analyzer color graphics analysis tool in addition to traditional plots. ATHENA-calculated results appear reasonable, both for steady state full power conditions, and for the two transients. This analysis represents the first known transient thermal-hydraulic simulation using an integral space reactor system model incorporating heat pipes. 6 refs., 17 figs., 1 tab

  19. Steady-state and transient simulations of gas cooled reactor with the computer code CATHARE

    International Nuclear Information System (INIS)

    Tauveron, N.; Saez, M.; Marchand, M.; Chataing, T.; Geffraye, G.; Cherel, J. M.

    2003-01-01

    This work concerns the design and safety analysis of Gas Cooled Reactors. The CATHARE code is used to test the design and safety of two different concepts, a High Temperature Gas Reactor concept (HTGR) and a Gas Fast Reactor concept (GFR). Relative to the HTGR concept, three transient simulations are performed and described in this paper: loss of electrical load without turbomachine trip, 10 inch cold duct break, 10 inch cold duct break combined with a tube rupture of a cooling exchanger. A second step consists in modelling a GFR concept. A nominal steady state situation at a power of 600 MW is obtained and first transient simulations are carried out to study decay heat removal situations after primary loop depressurisation

  20. MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    2015-10-01

    MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)

  1. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    International Nuclear Information System (INIS)

    Lee, Y. G.; Kim, J. W.; Yoon, S. J.; Park, G. C.

    2010-10-01

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  2. Development of system analysis code for thermal-hydraulic simulation of integral reactor, Rex-10

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Rex-10 is an environment-friendly and economical small-scale nuclear reactor to provide the energy for district heating as well as the electric power in micro-grid. This integral reactor comprises several innovative concepts supported by advanced primary circuit components, low coolant parameters and natural circulation cooling. To evaluate the system performance and thermal-hydraulic behavior of the reactor, a system analysis code is being developed so that the new designs and technologies adopted in Rex-10 can be reflected. The research efforts are absorbed in programming the simple and fast-running thermal-hydraulic analysis software. The details of hydrodynamic governing equations component models and numerical solution scheme used in this code are presented in this paper. On the basis of one-dimensional momentum integral model, the models of point reactor neutron kinetics for thorium-fueled core, physical processes in the steam-gas pressurizer, and heat transfers in helically coiled steam generator are implemented to the system code. Implicit numerical scheme is employed to momentum and energy equations to assure the numerical stability. The accuracy of simulation is validated by applying the solution method to the Rex-10 test facility. Calculated natural circulation flow rate and coolant temperature at steady-state are compared to the experimental data. The validation is also carried out for the transients in which the sudden reduction in the core power or the feedwater flow takes place. The code's capability to predict the steady-state flow by natural convection and the qualitative behaviour of the primary system in the transients is confirmed. (Author)

  3. Power transients of Ghana research reactor-1 using PARET/ANL thermal hydraulic code

    International Nuclear Information System (INIS)

    Ampomah-Amoaka, E.; Akaho, E.H.K.; Anim-Sampong, S.; Nyarko, B.J.B.

    2010-01-01

    PARET/ANL(Version 7.3 of 2007) thermal-hydraulic code was used to perform transient analysis of the Ghana Research Reactor-1.The reactivities inserted were 2.1mk and 4mk.The peak power of 5.81kW was obtained for 2.1 mk insertion whereas the peak power for 4mk insertion of reactivity was 92.32kW.These results compare closely with experiments and theoretical studies conducted previously.

  4. Application of software engineering to development of reactor-safety codes

    International Nuclear Information System (INIS)

    Wilburn, N.P.; Niccoli, L.G.

    1980-11-01

    As a result of the drastically increasing cost of software and the lack of an engineering approach, the technology of Software Engineering is being developed. Software Engineering provides an answer to the increasing cost of developing and maintaining software. It has been applied extensively in the business and aerospace communities and is just now being applied to the development of scientific software and, in particular, to the development of reactor safety codes at HEDL

  5. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  6. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  7. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  8. Modeling a TRIGA Mark II reactor using the Attila three-dimensional deterministic transport code

    International Nuclear Information System (INIS)

    Keller, S.T.; Palmer, T.S.; Wareing, T.A.

    2005-01-01

    A benchmark model of a TRIGA reactor constructed using materials and dimensions similar to existing TRIGA reactors was analyzed using MCNP and the recently developed deterministic transport code Attila TM . The benchmark reactor requires no MCNP modeling approximations, yet is sufficiently complex to validate the new modeling techniques. Geometric properties of the benchmark reactor are specified for use by Attila TM with CAD software. Materials are treated individually in MCNP. Materials used in Attila TM that are clad are homogenized. Attila TM uses multigroup energy discretization. Two cross section libraries were constructed for comparison. A 16 group library collapsed from the SCALE 4.4.a 238 group library provided better results than a seven group library calculated with WIMS-ANL. Values of the k-effective eigenvalue and scalar flux as a function of location and energy were calculated by the two codes. The calculated values for k-effective and spatially averaged neutron flux were found to be in good agreement. Flux distribution by space and energy also agreed well. Attila TM results could be improved with increased spatial and angular resolution and revised energy group structure. (authors)

  9. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  10. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  11. Preliminary Development of the MARS/FREK Spatial Kinetics Coupled System Code for Square Fueled Fast Reactor Applications

    International Nuclear Information System (INIS)

    Bae, Moo Hoon; Joo, Han Gyu

    2009-01-01

    Incorporation of a three-dimensional (3-D) reactor kinetics model into a system thermal-hydraulic (T/H) code enhances the capability to perform realistic analyses of the core neutronic behavior and the plant system dynamics which are coupled each other. For this advantage, several coupled system T/H and spatial kinetics codes, such as RELAP/PARCS, RELAP5/ PANBOX, and MARS/MASTER have been developed. These codes, however, so far limited to LWR applications. The objective of this work is to develop such a coupled code for fast reactor applications. Particularly, applications to lead-bismuth eutectic (LBE) cooled fast reactor are of interest which employ open square lattices. A fast reactor kinetics code applicable to square fueled cores called FREK is coupled the LBE version of the MARS code. The MARS/MASTER coupled code is used as the reference for the integration. The coupled code MARS/FREK is examined for a conceptual reactor called P-DEMO which is being developed by NUTRECK. In order to check the validity of the coupled code, however, the OECD MSLB benchmark exercise III calculation is solved first

  12. Development of a nuclear data uncertainties propagation code on the residual power in fast neutron reactors

    International Nuclear Information System (INIS)

    Benoit, J.-C.

    2012-01-01

    This PhD study is in the field of nuclear energy, the back end of nuclear fuel cycle and uncertainty calculations. The CEA must design the prototype ASTRID, a sodium cooled fast reactor (SFR) and one of the selected concepts of the Generation IV forum, for which the calculation of the value and the uncertainty of the decay heat have a significant impact. In this study is developed a code of propagation of uncertainties of nuclear data on the decay heat in SFR. The process took place in three stages. The first step has limited the number of parameters involved in the calculation of the decay heat. For this, an experiment on decay heat on the reactor PHENIX (PUIREX 2008) was studied to validate experimentally the DARWIN package for SFR and quantify the source terms of the decay heat. The second step was aimed to develop a code of propagation of uncertainties: CyRUS (Cycle Reactor Uncertainty and Sensitivity). A deterministic propagation method was chosen because calculations are fast and reliable. Assumptions of linearity and normality have been validated theoretically. The code has also been successfully compared with a stochastic code on the example of the thermal burst fission curve of 235 U. The last part was an application of the code on several experiments: decay heat of a reactor, isotopic composition of a fuel pin and the burst fission curve of 235 U. The code has demonstrated the possibility of feedback on nuclear data impacting the uncertainty of this problem. Two main results were highlighted. Firstly, the simplifying assumptions of deterministic codes are compatible with a precise calculation of the uncertainty of the decay heat. Secondly, the developed method is intrusive and allows feedback on nuclear data from experiments on the back end of nuclear fuel cycle. In particular, this study showed how important it is to measure precisely independent fission yields along with their covariance matrices in order to improve the accuracy of the calculation of

  13. Benchmark of the CASMO-3G/MICROBURN-B codes for Commonwealth Edison boiling water reactors

    International Nuclear Information System (INIS)

    Wheeler, J.K.; Pallotta, A.S.

    1992-01-01

    The Commonwealth Edison Company has performed an extensive benchmark against measured data from three boiling water reactors using the Studsvik lattice physics code CASMO-3G and the Siemens Nuclear Power three-dimensional simulator code MICROBURN-B. The measured data of interest for this benchmark are the hot and cold reactivity, and the core power distributions as measured by the traversing incore probe system and gamma scan data for fuel pins and assemblies. A total of nineteen unit-cycles were evaluated. The database included fuel product lines manufactured by General Electric and Siemens Nuclear Power, wit assemblies containing 7 x 7 to 9 x 9 pin configurations, several water rod designs, various enrichments and gadolina loadings, and axially varying lattice designs throughout the enriched portion of the bundle. The results of the benchmark present evidence that the CASMO-3G/MICROBURN-B code package can adequately model the range of fuel and core types in the benchmark, and the codes are acceptable for performing neutronic analyses of Commonwealth Edison's boiling water reactors

  14. Applicability of Coupled Thermalhydraulic Codes for Safety Analysis of Nuclear Reactors

    International Nuclear Information System (INIS)

    Gairola, A.; Bhowmik, P. K.; Shamim, J. A.; Suh, K. Y.

    2014-01-01

    To this end computational codes like RELAP and TRACE are used to model thermal-hydraulic response of nuclear power plant during an accident. By careful modeling and significant user experience these system codes are able to simulate the behavior of primary system and the containment to a reasonable extent. Comparatively decoupled simulation is simple but might not produce reality and the physics involved in an accurate manner. Thus simulation using two different system codes is interesting as the whole system is coupled through the pressure in the containment and flow through the break. Using this methodology it might be possible to get new insight about the primary and containment behavior by the precise simulation of the accident both in the current reactors and future Gen-III/III+ reactors. Couple thermalhydraulic code methodology is still new and require further investigations. Applicability of such methodology to the GEN-II plants have met with limited success, however a number of situations in which this methodology could be applied are still unexplored and thus provides a room for improvement and modifications

  15. Applicability of Coupled Thermalhydraulic Codes for Safety Analysis of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gairola, A.; Bhowmik, P. K.; Shamim, J. A.; Suh, K. Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    To this end computational codes like RELAP and TRACE are used to model thermal-hydraulic response of nuclear power plant during an accident. By careful modeling and significant user experience these system codes are able to simulate the behavior of primary system and the containment to a reasonable extent. Comparatively decoupled simulation is simple but might not produce reality and the physics involved in an accurate manner. Thus simulation using two different system codes is interesting as the whole system is coupled through the pressure in the containment and flow through the break. Using this methodology it might be possible to get new insight about the primary and containment behavior by the precise simulation of the accident both in the current reactors and future Gen-III/III+ reactors. Couple thermalhydraulic code methodology is still new and require further investigations. Applicability of such methodology to the GEN-II plants have met with limited success, however a number of situations in which this methodology could be applied are still unexplored and thus provides a room for improvement and modifications.

  16. The MCU-RFFI Monte Carlo code for reactor design applications

    International Nuclear Information System (INIS)

    Gomin, E.A.; Maiorov, L.V.

    1995-01-01

    MCU-RFFI is a general-purpose, continuous-energy, general geometry Monte Carlo code for solving external source or criticality problems for neutron transport in the energy range of 20 MeV to 10 -5 eV. The main fields of MCU-RFFI applications are as follows: (a) nuclear data validation; (b) design calculations (space reactors and other); (c) verification of design codes. MCU-RFFI is also supplied with tools to check the accuracy of design codes. These tools permit the user to calculate: the few group parameters of reactor cells, including the diffusion coefficients defined in a variety of ways, reaction rates for various nuclei, energy and space bins, and the kinetic parameters of systems, taking into account delayed neutrons. Boundary conditions include vacuum, white and specular reflection, and the condition of translational symmetry. The criticals with the neutron leakage given by the buckling vector may be calculated by solving Benoist's problem. The curve of criticality coefficient dependence on buckling may be determined during the single code run and critical buckling may be determined. Double heterogeneous systems with fuel elements containing many thousands of spherical microcells can be solved

  17. Criticality calculation in TRIGA MARK II PUSPATI Reactor using Monte Carlo code

    International Nuclear Information System (INIS)

    Rafhayudi Jamro; Redzuwan Yahaya; Abdul Aziz Mohamed; Eid Abdel-Munem; Megat Harun Al-Rashid; Julia Abdul Karim; Ikki Kurniawan; Hafizal Yazid; Azraf Azman; Shukri Mohd

    2008-01-01

    A Monte Carlo simulation of the Malaysian nuclear reactor has been performed using MCNP Version 5 code. The purpose of the work is the determination of the multiplication factor (k e ff) for the TRIGA Mark II research reactor in Malaysia based on Monte Carlo method. This work has been performed to calculate the value of k e ff for two cases, which are the control rod either fully withdrawn or fully inserted to construct a complete model of the TRIGA Mark II PUSPATI Reactor (RTP). The RTP core was modeled as close as possible to the real core and the results of k e ff from MCNP5 were obtained when the control fuel rods were fully inserted, the k e ff value indicates the RTP reactor was in the subcritical condition with a value of 0.98370±0.00054. When the control fuel rods were fully withdrawn the value of k e ff value indicates the RTP reactor is in the supercritical condition, that is 1.10773±0.00083. (Author)

  18. Evaluation of Tehran research reactor (TRR) control rod worth using MCNP4C computer code

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser; Hosseini, Seyed Abolfazl

    2010-01-01

    The main objective of reactor control system is to provide a safe reactor starting up, operation and shutting down. Calculation or measurement of precise values of control rod worth is of great importance in Tehran Research Reactor (TRR), considering the fact that they are the only controlling tools in the reactor. In present paper, simulation of TRR in First Operation Cycle (FOC) and in cold and clean core for the calculation of total and integral worth of control nods is reported. MCNP4C computer code has been used for all simulation process. Two method have been used for control rods worth calculation in this paper, namely the direct approach and perturbation method. It is shown that while the direct approach is appropriate for worth calculation of both the shim and the regulating control rods, the perturbation method is just suitable for tiny reactivity changes, i.e. for small initial part of regulating rods. Results of simulation are compared with the reported data in Safety Analysis Report (SAR) of Tehran research reactor and showed satisfactory agreement. (author)

  19. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    Science.gov (United States)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  20. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    2014-08-01

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  1. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  2. Modelling of the RA-1 reactor using a Monte Carlo code; Modelado del reactor RA-1 utilizando un codigo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Quinteiro, Guillermo F; Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Reactores y Centrales Nucleares

    2000-07-01

    It was carried out for the first time, a model of the Argentine RA-1 reactor using the MCNP Monte Carlo code. This model was validated using data for experimental neutron and gamma measurements at different energy ranges and locations. In addition, the resulting fluxes were compared with the data obtained using a 3D diffusion code. (author)

  3. SCDAP: a light water reactor computer code for severe core damage analysis

    International Nuclear Information System (INIS)

    Marino, G.P.; Allison, C.M.; Majumdar, D.

    1982-01-01

    Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis

  4. Application of an accurate thermal hydraulics solver in VTT's reactor dynamics codes

    International Nuclear Information System (INIS)

    Rajamaeki, M.; Raety, H.; Kyrki-Rajamaeki, R.; Eskola, M.

    1998-01-01

    VTT's reactor dynamics codes are developed further and new more detailed models are created for tasks related to increased safety requirements. For thermal hydraulics calculations an accurate general flow model based on a new solution method PLIM has been developed. It has been applied in VTT's one-dimensional TRAB and three-dimensional HEXTRAN codes. Results of a demanding international boron dilution benchmark defined by VTT are given and compared against results of other codes with original or improved boron tracking. The new PLIM method not only allows the accurate modelling of a propagating boron dilution front, but also the tracking of a temperature front, which is missed by the special boron tracking models. (orig.)

  5. Development of Transient-Reactor Analysis Code (TRAC) for real-time applications

    International Nuclear Information System (INIS)

    Niederauer, G.F.; Giguere, P.T.; Lime, J.F.; Knight, T.D.; Ashy, O.; Fakory, R.

    1997-01-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Nuclear-plant training simulators employ simplified one-dimensional thermal-hydraulics codes because of the demands to run in real time and with limited computing power. The objective of this project was to investigate the feasibility of using the advanced Transient-Reactor Analysis Code (TRAC) in a simulator to increase the fidelity of a simulator. Many issues need to be addressed to take such a complex code from a batch engineering environment to a real-time environment. Working with simulator vendor, GSE, the authors investigated the technical issues relating to integrating TRAC into a real-time environment. They also modified a nuclear power plant model for simulator purposes and investigated its performance in real time

  6. Development of dynamic simulation code for fuel cycle of fusion reactor

    International Nuclear Information System (INIS)

    Aoki, Isao; Seki, Yasushi; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  7. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  8. RAP-2A Computer code for transients analysis in fast reactors

    International Nuclear Information System (INIS)

    Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.

    1975-10-01

    The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  9. U.S. Sodium Fast Reactor Codes and Methods: Current Capabilities and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J.; Fanning, T. H.

    2017-06-26

    The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such as SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.

  10. Description and user's manual of light water reactor fuel analysis code FEMAXI-IV (Ver.2)

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-03-01

    FEMAXI-IV is an advanced version of FEMAXI-III, the analysis code of light water reactor fuel behavior in which various functions and improvements have been incorporated. The present report describes in detail the basic theories and structure, the models and numerical solutions applied, and the material properties adopted in the version 2 which is an improved version of the first version of FEMAXI-IV. In FEMAXI-IV (Ver.2), bugs have been fixed, pellet thermal conductivity properties have been updated, and thermal-stress-induced FP gas release model have been incorporated. In order to facilitate effective and wide-ranging application of the code, types and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  11. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  12. Studies of fast reactor disassembly using a Bethe-Tait computer code

    International Nuclear Information System (INIS)

    Ludwig, J.C.

    1978-10-01

    The advantages of the fast reactor are given and the general design outlined. Loss of Flow and Transient Overpower faults are possible; the potential consequences of such incidents are analysed using a deterministic approach. The course of an incident is split into several stages; of these only predisassembly and disassembly are considered. Predisassembly computer codes are described in general, and several particular codes are examined in more detail, based on a literature survey. The results and implications of disassembly calculations using the code EXTRA are presented. Here, the effects of several factors, such as the presence of retained fission gases and possible restraints on fuel motion, are investigated. Some comparisons are made with published results from the VENUS-II disassembly code. A general conclusion is that under some circumstances, the yield predicted during disassembly is relatively insensitive to modelling assumptions, and a simple code such as EXTRA may prove adequate if explicit core displacements are not required. A major factor in determining the yield of the disassembly phase is confirmed as being the rate of reactivity insertion during disassembly, as predicted by a predisassembly code. (U.K.)

  13. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  14. Safe operation of critical assemblies and research reactors. Code of practice and Technical appendix. 1971 ed

    International Nuclear Information System (INIS)

    Cox, J.

    1971-01-01

    This book is in two parts. The first is a Code of Practice for the Safe Operation of Critical Assemblies and Research Reactors, prepared as a result of a meeting of experts which took place in Vienna on 20-24 May 1968. The Code has been prepared by the International Atomic Energy Agency in co-operation with the World Health Organization, and its publication is sponsored by both organizations. In addition, the Code was approved by the Board of Governors of the International Atomic Energy Agency on 16 December 1968 as part of the Agency's safety standards, which are applied to operations undertaken by Member States with the assistance of the Agency. The Board, in approving the publication of the present book, also recommended Member States to take the Code into account in the formulation of national regulations and recommendations. The second part of the book is a Technical Appendix to give information and illustrative samples that would be helpful in implementing the Code of Practice. This second part, although published under the same cover, is not part of the Code. An extensive Bibliography, amplifying the Technical Appendix, is included at the end.

  15. Light water reactor fuel analysis code FEMAXI-7. Model and structure [Revised edition

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Amaya, Masaki; Saitou, Hiroaki

    2014-03-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report is the revised edition of the first one which describes in detail the design, basic theory and structure, models and numerical method, and improvements and extensions. The first edition, JAEA-Data/Code 2010-035, was published in 2010. The first edition was extended by orderly addition and disposition of explanations of models and organized as the revised edition after three years interval. (author)

  16. Light water reactor fuel analysis code. FEMAXI-6 (Ver.1). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki

    2006-02-01

    A light water reactor fuel analysis code FEMAXI-6 is an advanced version which has been produced by integrating the former version FEMAXI-V with numerous functional improvements and extensions. In particular, the FEMAXI-6 code has attained a complete coupled solution of thermal analysis and mechanical analysis, enabling an accurate prediction of pellet-clad gap size and PCMI in high burnup fuel rods. Also, such new models have been implemented as pellet-clad bonding and fission gas bubble swelling, and linkage function with detailed burning analysis code has been enhanced. Furthermore, a number of new materials properties and parameters have been introduced. With these advancements, the FEMAXI-6 code has been upgraded to a versatile analytical tool for high burnup fuel behavior not only in the normal operation but also in anticipated transient conditions. This report describes in detail the design, basic theory and structure, models and numerical method, improvements and extensions, and method of model modification. In order to facilitate effective and wide-ranging application of the code, formats and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  17. On the implementation of new technology modules for fusion reactor systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Franza, F., E-mail: fabrizio.franza@kit.edu [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Boccaccini, L.V.; Fisher, U. [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany); Gade, P.V.; Heller, R. [Institute for Technical Physics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344 (Germany)

    2015-10-15

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  18. On the implementation of new technology modules for fusion reactor systems codes

    International Nuclear Information System (INIS)

    Franza, F.; Boccaccini, L.V.; Fisher, U.; Gade, P.V.; Heller, R.

    2015-01-01

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  19. Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes

    Energy Technology Data Exchange (ETDEWEB)

    Unal, C., E-mail: cu@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Williams, B.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Yacout, A. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Higdon, D.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-10-15

    Highlights: ► The application of advanced validation techniques (sensitivity, calibration and prediction) to nuclear performance codes FRAPCON and LIFE-4 is the focus of the paper. ► A sensitivity ranking methodology narrows down the number of selected modeling parameters from 61 to 24 for FRAPCON and from 69 to 35 for LIFE-4. ► Fuel creep, fuel thermal conductivity, fission gas transport/release, crack/boundary, and fuel gap conductivity models of LIFE-4 are identified for improvements. ► FRAPCON sensitivity results indicated the importance of the fuel thermal conduction and the fission gas release models. -- Abstract: Evolving nuclear energy programs expect to use enhanced modeling and simulation (M and S) capabilities, using multiscale, multiphysics modeling approaches, to reduce both cost and time from the design through the licensing phases. Interest in the development of the multiscale, multiphysics approach has increased in the last decade because of the need for predictive tools for complex interacting processes as a means of eliminating the limited use of empirically based model development. Complex interacting processes cannot be predicted by analyzing each individual component in isolation. In most cases, the mathematical models of complex processes and their boundary conditions are nonlinear. As a result, the solutions of these mathematical models often require high-performance computing capabilities and resources. The use of multiscale, multiphysics (MS/MP) models in conjunction with high-performance computational software and hardware introduces challenges in validating these predictive tools—traditional methodologies will have to be modified to address these challenges. The advanced MS/MP codes for nuclear fuels and reactors are being developed within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the US Department of Energy (DOE) – Nuclear Energy (NE). This paper does not directly address challenges in calibration

  20. Study of reactor analysis codes available at IPEN and their application to problems involving the diffusion theory

    International Nuclear Information System (INIS)

    Mendonca, A.G.

    1980-01-01

    Two computer codes that are available at IPEN for analyses of static neutron diffusion problems are studied and applied. The CITATION code is animed at analyses of criticality, fuel burnup, flux and power distributions etc, in one, two, and three spatial dimensions in multigroup. The EXTERMINATOR code can be used for the same purposes as for CITATION with a limitation to one or two spatial dimensions. Basic theories and numerical techniques used in the codes are studied and summarized. Benchmark problems have been solved using the codes. Comparisons of the results show that both codes can be used with confidence in the analyses of nuclear reactor problems. (author) [pt

  1. On the Evaluation of Pebble Bead Reactor Critical Experiments Using the Pebbed Code

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Sen, R. Sonat

    2014-01-01

    Critical experiments pose a particular but necessary challenge to validating pebble bed reactor design codes. Fuel and core heterogeneities, impurities in graphite, variable packing of pebbles, and moderately strong neutronic coupling are among the factors that inject uncertainty into the results obtained with lower fidelity core physics models. Some of these are addressed in this study. The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling

  2. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  3. POST: a postprocessor computer code for producing three-dimensional movies of two-phase flow in a reactor vessel

    International Nuclear Information System (INIS)

    Taggart, K.A.; Liles, D.R.

    1977-08-01

    The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC

  4. Review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Araki, Masaaki; Ohba, Toshinobu; Torii, Yoshiya [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Takeuchi, Masaki [Nuclear Safety Commission (Japan)

    2012-03-15

    JRR-3(Japan Research Reactor No.3) with the thermal power of 20MW is a light water moderated and cooled, swimming pool type research reactor. JRR-3 has been operated without major troubles. This paper presents about review on the seismic safety of JRR-3 according to the revised regulatory code on seismic design for nuclear reactors. In addition, some topics concerning damages in JRR-3 due to the Great East Japan Earthquake are presented. (author)

  5. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    International Nuclear Information System (INIS)

    Chvetsov, I.; Kouznetsov, I.; Volkov, A.

    2000-01-01

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  6. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    Behrooz, A.

    2008-01-01

    The two-phase flow instability is of interest for the design and operation of many industrial systems such as boiling water reactors (BWRs), chemical reactors, and steam generators. In case of BWRs, the flow instabilities are coupled to the power instabilities via neutronic-thermal hydraulic feedbacks. Since these instabilities produce also local pressure oscillations, the coolant flashing plays a very important role at low pressure. Many frequency-domain codes have been used for two-phase flow stability analysis of thermal hydraulic industrial systems with particular emphasis to BWRs. Some were ignoring the effect of the local pressure, or the effect of 3D power oscillations, and many were not able to deal with the neutronics-thermal hydraulics problems considering the entire core and all its fuel assemblies. The new frequency domain tool uses the best available nuclear, thermal hydraulic, algebraic and control theory methods for simulating BWRs and analyzing their stability in either off-line or on-line fashion. The novel code takes all necessary information from plant files via an interface, solves and integrates, for all reactor fuel assemblies divided into a number of segments, the thermal-hydraulic non-homogenous non-equilibrium coupled linear differential equations, and solves the 3D, two-energy-group diffusion equations for the entire core (with spatial expansion of the neutron fluxes in Legendre polynomials).It is important to note that the neutronics equations written in terms of flux harmonics for a discretized system (nodal-modal equations) generate a set of large sparse matrices. The eigenvalue problem associated to the discretized core statics equations is solved by the implementation of the implicit restarted Arnoldi method (IRAM) with implicit shifted QR mechanism. The results of the steady state are then used for the calculation of the local transfer functions and system transfer matrices. The later are large-dense and complex matrices, (their size

  7. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    Science.gov (United States)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  8. Development of a computer code for dynamic analysis of the primary circuit of advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussie Soares da; Lira, Carlos A.B.O.; Magalhaes, Mardson A. de Sa, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Currently, advanced reactors are being developed, seeking for enhanced safety, better performance and low environmental impacts. Reactor designs must follow several steps and numerous tests before a conceptual project could be certified. In this sense, computational tools become indispensable in the preparation of such projects. Thus, this study aimed at the development of a computational tool for thermal-hydraulic analysis by coupling two computer codes to evaluate the influence of transients caused by pressure variations and flow surges in the region of the primary circuit of IRIS reactor between the core and the pressurizer. For the simulation, it was used a situation of 'insurge', characterized by the entry of water in the pressurizer, due to the expansion of the refrigerant in the primary circuit. This expansion was represented by a pressure disturbance in step form, through the block 'step' of SIMULINK, thus enabling the transient startup. The results showed that the dynamic tool, obtained through the coupling of the codes, generated very satisfactory responses within model limitations, preserving the most important phenomena in the process. (author)

  9. CSAU (code scaling, applicability and uncertainty), a tool to prioritize advanced reactor research

    International Nuclear Information System (INIS)

    Wilson, G.E.; Boyack, B.E.

    1990-01-01

    Best Estimate computer codes have been accepted by the US Nuclear Regulatory Commission as an optional tool for performing safety analysis related to the licensing and regulation of current nuclear reactors producing commercial electrical power, providing their uncertainty is quantified. In support of this policy change, the NRC and its contractors and consultants have developed and demonstrated an uncertainty quantification methodology called CSAU. At the process level, the method is generic to any application which relies on best estimate computer code simulations to determine safe operating margins. The primary use of the CSAU methodology is to quantify safety margins for existing designs; however, the methodology can also serve an equally important role in advanced reactor research for plants not yet built. Applied early, during the period when alternate designs are being evaluated, the methodology can identify the relative importance of the sources of uncertainty in the knowledge of each plant behavior and, thereby, help prioritize the research needed to bring the new designs to fruition. This paper describes the CSAU methodology, at the generic process level, and provides the general principles whereby it may be applied to evaluations of advanced reactor designs. 9 refs., 1 fig., 1 tab

  10. Development of a computer code for dynamic analysis of the primary circuit of advanced reactors

    International Nuclear Information System (INIS)

    Rocha, Jussie Soares da; Lira, Carlos A.B.O.; Magalhaes, Mardson A. de Sa

    2011-01-01

    Currently, advanced reactors are being developed, seeking for enhanced safety, better performance and low environmental impacts. Reactor designs must follow several steps and numerous tests before a conceptual project could be certified. In this sense, computational tools become indispensable in the preparation of such projects. Thus, this study aimed at the development of a computational tool for thermal-hydraulic analysis by coupling two computer codes to evaluate the influence of transients caused by pressure variations and flow surges in the region of the primary circuit of IRIS reactor between the core and the pressurizer. For the simulation, it was used a situation of 'insurge', characterized by the entry of water in the pressurizer, due to the expansion of the refrigerant in the primary circuit. This expansion was represented by a pressure disturbance in step form, through the block 'step' of SIMULINK, thus enabling the transient startup. The results showed that the dynamic tool, obtained through the coupling of the codes, generated very satisfactory responses within model limitations, preserving the most important phenomena in the process. (author)

  11. RisoeScan 1.0 - User manual and toolset for retrospective validation

    Energy Technology Data Exchange (ETDEWEB)

    Helt-Hansen, J

    2004-12-01

    The RisoeScan software is used for dose measurements with radiochromic films that color visibly. This report consists of two documents for use with the RisoeScan software. The User Manual tells how to use the program and the Toolset for Retrospective Validation describes how to perform a retrospective validation of the software. (au)

  12. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-01

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  13. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  14. Optimization of reload of nuclear power plants using ACO together with the GENES reactor physics code

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto, E-mail: alan@lmp.ufrj.br, E-mail: andressa@lmp.ufrj.br, E-mail: schirru@lmp.ufrj.br, E-mail: ffreire@eletronuclear.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10{sup 13} combinations and 10{sup 11} great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)

  15. Optimization of reload of nuclear power plants using ACO together with the GENES reactor physics code

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto

    2017-01-01

    The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10"1"3 combinations and 10"1"1 great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)

  16. Uncertainties in source term calculations generated by the ORIGEN2 computer code for Hanford Production Reactors

    International Nuclear Information System (INIS)

    Heeb, C.M.

    1991-03-01

    The ORIGEN2 computer code is the primary calculational tool for computing isotopic source terms for the Hanford Environmental Dose Reconstruction (HEDR) Project. The ORIGEN2 code computes the amounts of radionuclides that are created or remain in spent nuclear fuel after neutron irradiation and radioactive decay have occurred as a result of nuclear reactor operation. ORIGEN2 was chosen as the primary code for these calculations because it is widely used and accepted by the nuclear industry, both in the United States and the rest of the world. Its comprehensive library of over 1,600 nuclides includes any possible isotope of interest to the HEDR Project. It is important to evaluate the uncertainties expected from use of ORIGEN2 in the HEDR Project because these uncertainties may have a pivotal impact on the final accuracy and credibility of the results of the project. There are three primary sources of uncertainty in an ORIGEN2 calculation: basic nuclear data uncertainty in neutron cross sections, radioactive decay constants, energy per fission, and fission product yields; calculational uncertainty due to input data; and code uncertainties (i.e., numerical approximations, and neutron spectrum-averaged cross-section values from the code library). 15 refs., 5 figs., 5 tabs

  17. Importance sampling implemented in the code PRIZMA for deep penetration and detection problems in reactor physics

    International Nuclear Information System (INIS)

    Kandiev, Y.Z.; Zatsepin, O.V.

    2013-01-01

    At RFNC-VNIITF, the PRIZMA code which has been developed for more than 30 years, is used to model radiation transport by the Monte Carlo method. The code implements individual and coupled tracking of neutrons, photons, electrons, positrons and ions in one dimensional (1D), 2D or 3D geometry. Attendance estimators are used for tallying, i.e., the estimators whose scores are only nonzero from particles which cross a region or surface of interest. Importance sampling is used to make deep penetration and detection calculations more effective. However, its application to reactor analysis appeared peculiar and required further development. The paper reviews methods used for deep penetration and detection calculations by PRIZMA. It describes in what these calculations differ when applied to reactor analysis and how we compute approximated importance functions and parameters for biased distributions. Methods to control the statistical weight of particles are also discussed. A number of test and applied calculations which were done for the purpose of verification are provided. They are shown to agree either with asymptotic solutions if exist, or with results of analog calculations or predictions by other codes. The applied calculations include the estimation of ex-core detector response from neutron sources arranged in the core, and the estimation of in-core detector response. (authors)

  18. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  19. Code structure for U-Mo fuel performance analysis in high performance research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Cho, Tae Won; Lee, Chul Min; Sohn, Dong Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A performance analysis modeling applicable to research reactor fuel is being developed with available models describing fuel performance phenomena observed from in-pile tests. We established the calculation algorithm and scheme to best predict fuel performance using radio-thermo-mechanically coupled system to consider fuel swelling, interaction layer growth, pore formation in the fuel meat, and creep fuel deformation and mass relocation, etc. In this paper, we present a general structure of the performance analysis code for typical research reactor fuel and advanced features such as a model to predict fuel failure induced by combination of breakaway swelling and pore growth in the fuel meat. Thermo-mechanical code dedicated to the modeling of U-Mo dispersion fuel plates is being under development in Korea to satisfy a demand for advanced performance analysis and safe assessment of the plates. The major physical phenomena during irradiation are considered in the code such that interaction layer formation by fuel-matrix interdiffusion, fission induced swelling of fuel particle, mass relocation by fission induced stress, and pore formation at the interface between the reaction product and Al matrix.

  20. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  1. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  2. In the interest of society - The history of Risoe National Laboratory

    International Nuclear Information System (INIS)

    Nielsen, H.; Nielsen, K.; Petersen, F.; Siggaard Jensen, H.

    1998-01-01

    The creation of Risoe forty years ago was one of the largest, single investments in Danish research. The intention was to realise Niels Bohr's visions of the peaceful use in Denmark of nuclear energy for electricity production and other purposes. Risoe decided to take the opportunity of its 40th anniversary in 1998 to have its history written in a form that would contribute to the history of modern Denmark. Four historians of science and technology were asked to carry out this task, and for almost two years they studied records and publications and interviewed present and former staff members of Risoe. The book recounts Risoe's history of the political and administrative level and presents selected and characteristic aspects of the comprehensive research that has been carried out at Risoe. (LN)

  3. PASC-1, Petten AMPX-II/SCALE-3 Code System for Reactor Neutronics Calculation

    International Nuclear Information System (INIS)

    Yaoqing, W.; Oppe, J.; Haas, J.B.M. de; Gruppelaar, H.; Slobben, J.

    1995-01-01

    1 - Description of program or function: The Petten AMPX-II/SCALE-3 Code System PASC-1 is a reactor neutronics calculation programme system consisting of well known IBM-oriented codes, that have been translated into FORTRAN-77, for calculations on a CDC-CYBER computer. Thus, the portability of these codes has been increased. In this system, some AMPX-II and SCALE-3 modules, the one-dimensional transport code ANISN and the 1 to 3-dimensional diffusion code CITATION are linked together on the CDC-CYBER/855 computer. The new cell code XSDRNPM-S and the old XSDRN code are included in the system. Starting from an AMPX fine group library up to CITATION, calculations can be performed for each individual module. Existing AMPX master interface format libraries, such as CSRL-IV, JEF-1, IRI and SCALE-45, and the old XSDRN-formatted libraries such as the COBB library can be used for the calculations. The code system contains the following modules and codes at present: AIM, AJAX, MALOCS, NITAWL-S, REVERT-I, ICE-2, CONVERT, JUAN, OCTAGN, XSDRNPM-S, XSDRN, ANISN and CITATION. The system will be extended with other SCALE modules and transport codes. 2 - Method of solution: The PASC-1 system is based on AMPX-II/SCALE-3 modules. Except for some SCALE-3 modules taken from the SCALIAS package, the original AMPX-II modules were IBM versions written in FORTRAN IV. These modules have been translated into CDC FORTRAN V. In order to test these modules and link them with some codes, some of the sample problem calculations have been performed for the whole PASC-1 system. During these calculations, some FORTRAN-77 errors were found in MALOCS, REVERT, CONVERT and some subroutines of SUBLIB (FORTRAN-77 subroutine library). These errors have been corrected. Because many corrections were made for the REVERT module, it is renamed as REVERT-I (improved version of REVERT). After these corrections, the whole system is running on a CDC-CYBER Computer (NOS-BE operating system). 3 - Restrictions on the

  4. Software Project Management Plan for the Integrated Systems Code (ISC) of New Production Reactor -- Modular High Temperature Gas Reactor

    International Nuclear Information System (INIS)

    Taylor, D.

    1990-11-01

    The United States Department of Energy (DOE) has selected the Modular High Temperature Gas-Cooled Reactor (MHTGR) as one of the concepts for the New Production Reactor (NPR). DOE has also established several Technical Working Groups (TWG's) at the national laboratories to provide independent design confirmation of the NPR-MHTGR design. One of those TWG's is concerned with Thermal Fluid Flow (TFF) and analysis methods to provide independent design confirmation of the NPR-MHTGR. Analysis methods are also needed for operational safety evaluations, performance monitoring, sensitivity studies, and operator training. The TFF Program Plan includes, as one of its principal tasks, the development of a computer program (called the Integrated Systems Code, or ISC). This program will provide the needed long-term analysis capabilities for the MHTGR and its subsystems. This document presents the project management plan for development of the ISC. It includes the associated quality assurance tasks, and the schedule and resource requirements to complete these activities. The document conforms to the format of ANSI/IEEE Std. 1058.1-1987. 2 figs

  5. An Order Coding Genetic Algorithm to Optimize Fuel Reloads in a Nuclear Boiling Water Reactor

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico

  6. SACI - O: A code for the analysis of transients in a pressurized water reactor core

    International Nuclear Information System (INIS)

    Resende Lobo, A.A. de; Soares, P.A.

    1979-03-01

    The SACI-O digital computer code consists basically of a pressurized water reactor core model. It is useful in the analysis of fast reactivity transients shorter than the loop transit time. The program can also be used for evaluating the core behaviour, during other transients, when the inlet coolant conditions are known. SACI-O uses point model neutron kinetics taking into account moderator and fuel reactivity effects, and fission products decay. The neutronic and thermal-hydraulic equations are solved for an average fuel pin described by a single axial node. To perform a more detailed calculation, the modeling of another cooling channel, which can be divided into axial segments, is included in the program. The reactor trip system is also partially simulated. (Author) [pt

  7. Development of steady thermal-hydraulic analysis code for China advanced research reactor

    International Nuclear Information System (INIS)

    Tian Wenxi; Qiu Suizheng; Guo Yun; Su Guanghui; Jia Dounan; Liu Tiancai; Zhang Jianwei

    2006-01-01

    A multi-channel model steady-state thermal-hydraulic analysis code was developed for China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed flow distribution in the core was obtained. The result shows that the structure size plays the most important role in flow distribution and the influence of core power could be neglected under single-phase flow. The temperature field of fuel element under unsymmetrical cooling condition was also obtained, which is necessary for the further study such as stress analysis etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of hot channel was carried out and it is proved that all thermal-hydraulic parameters accord with the Safety Regulation of CARR. (authors)

  8. Code development incorporating environmental, safety and economic aspects of fusion reactors

    International Nuclear Information System (INIS)

    Fowler, T.K.; Greenspan, E.; Holdren, J.P.

    1993-01-01

    This document is a proposal to continue the authors work on the Environmental, Safety and Economic (ESE) aspects of fusion reactors under DOE contract DE-FR03-89ER52514. The grant objectives continue those from the previous grant: (1) completion of first-generation Environmental, Safety and Economic (ESE) computer modules suitable as integral components of tokamak systems codes. (2) continuation of work on special topics, in support of the above and in response to OFE requests. The proposal also highlights progress on the contract in the twelve months since April, 1992. This has included work with the ARIES and ITER design teams, work on tritium management, studies on materials activation, and calculation of radioactive inventories in fusion reactors

  9. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  10. Contribution to the validation of the Apollo code library for thermal neutron reactors

    International Nuclear Information System (INIS)

    Tellier, H.; Van der Gucht, C.; Vanuxeem, J.

    1988-03-01

    The neutron nuclear data which are needed by reactor physicists to perform core calculation are brought together in the evaluated files. The files are processed to provide multigroup cross sections. The accuracy of the core calculations depends on the initial data which are sometimes not accurate enough. Therefore the reactor physicists carry out integral experiments. We show in this paper, how the use of these integral experiments and the application of the tendency research method can improve the accuracy of the neutron data. This technique was applied to the validation of the Apollo code library. For this purpose 60 buckling measurements (34 for uranium fuel multiplying media and 26 for plutonium fuel multiplying media) and 42 spent fuel analysis were used. Small modifications of the initial data are proposed. The final values are compared which recent recommended values of microscopic data and the agreement is good [fr

  11. Numerical simulation of the RISOe1-airfoil dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)

  12. Association Euratom - Risoe National Laboratory annual progress report 2000

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    2001-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion rector materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2000. (au)

  13. Verification calculations for the WWER version of the TRANSURANUS code

    International Nuclear Information System (INIS)

    Elenkov, D.; Boneva, S.; Georgieva, M.; Georgiev, S.; Schubert, A.; Van Uffelen, P.

    2006-01-01

    The paper presents part of the work performed in the study project 'Research and Development for Licensing of Nuclear Fuel in Bulgaria'. The main objective of the project is to provide assistance for solving technical questions of the fuel licensing process in Bulgaria. One important issue is the extension of the predictive capabilities of fuel performance codes for Russian-type WWER reactors. In the last decade, a series of international projects has been based on the TRANSURANUS fuel performance code: Specific models for WWER fuel have been developed and implemented in the code in the late 90's. In 2000-2003, basic verification work was done by using experimental data of nuclear fuel irradiated in WWER-440 reactors. While the present paper focuses on the analysis of WWER-1000 standard fuel under normal operating conditions, the above study project covers additional tasks: 1) Post-irradiation calculations of ramp tests performed in the DR3 test reactor of the Risoe National Laboratory (five instrumented fuel rods of the Risoe 3 dataset contained in the IFPE database) using the TRANSURANUS code; 2) Compilation of cross-section libraries for isotope evolution calculations in WWER-440 and WWER-1000 fuel assemblies using the ORIGEN-S code; 3) Analysis of current situation and needs for an extension of the curriculum in Nuclear Engineering at the Technical University of Sofia. In this paper the post-irradiation calculations of steady-state irradiation experiments with nuclear fuel for Russian-type WWER-1000 reactors, using the latest release of the TRANSURANUS code (v1m1j03)are presented. Regarding a comprehensive verification of modern fuel performance codes, the burn-up region above 40 MWd/kgU is of increasing importance. A number of new phenomena emerge at high fuel burn-up, implying the need for enlarged databases of postirradiation examinations (PIE). For one fuel assembly irradiated in a WWER-1000 reactor with a rod discharge burn-up between 50 and 55 MWd

  14. Development of RETRAN-03/MOV code for thermal-hydraulic analysis of nuclear reactor under moving conditions

    International Nuclear Information System (INIS)

    Kim, Hak Jae; Park, Goon Cherl

    1996-01-01

    Nuclear ship reactors have several; features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been performed under rolling,heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removed to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions. 7 refs., 11 figs. (author)

  15. VALIDATION OF SIMBAT-PWR USING STANDARD CODE OF COBRA-EN ON REACTOR TRANSIENT CONDITION

    Directory of Open Access Journals (Sweden)

    Muhammad Darwis Isnaini

    2016-03-01

    Full Text Available The validation of Pressurized Water Reactor typed Nuclear Power Plant simulator developed by BATAN (SIMBAT-PWR using standard code of COBRA-EN on reactor transient condition has been done. The development of SIMBAT-PWR has accomplished several neutronics and thermal-hydraulic calculation modules. Therefore, the validation of the simulator is needed, especially in transient reactor operation condition. The research purpose is for characterizing the thermal-hydraulic parameters of PWR1000 core, which be able to be applied or as a comparison in developing the SIMBAT-PWR. The validation involves the calculation of the thermal-hydraulic parameters using COBRA-EN code. Furthermore, the calculation schemes are based on COBRA-EN with fixed material properties and dynamic properties that calculated by MATPRO subroutine (COBRA-EN+MATPRO for reactor condition of startup, power rise and power fluctuation from nominal to over power. The comparison of the temperature distribution at nominal 100% power shows that the fuel centerline temperature calculated by SIMBAT-PWR has 8.76% higher result than COBRA-EN result and 7.70% lower result than COBRA-EN+MATPRO. In general, SIMBAT-PWR calculation results on fuel temperature distribution are mostly between COBRA-EN and COBRA-EN+MATPRO results. The deviations of the fuel centerline, fuel surface, inner and outer cladding as well as coolant bulk temperature in the SIMBAT-PWR and the COBRA-EN calculation, are due to the value difference of the gap heat transfer coefficient and the cladding thermal conductivity.

  16. Outlines and verifications of the codes used in the safety analysis of High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki; Kunitomi, Kazuhiko; Maruyama, Soh; Fujita, Shigeki; Nakagawa, Shigeaki; Iyoku, Tatsuo; Shindoh, Masami; Sudo, Yukio; Hirano, Masashi.

    1990-03-01

    This paper presents brief description of the computer codes used in the safety analysis of High Temperature Engineering Test Reactor. The list of the codes is: 1. BLOOST-J2 2. THYDE-HTGR 3. TAC-NC 4. RATSAM6 5. COMPARE-MOD1 6. GRACE 7. OXIDE-3F 8. FLOWNET/TRUMP. Of described above, 1, 3, 4, 5, 6 and 7 were developed for the multi-hole type gas cooled reactor and improved for HTTR and 2 was originated by THYDE-codes which were developed to treat the transient thermo-hydraulics during LOCA of LWR. Each code adopted the models and properties which yield conservative analytical results. Adequacy of each code was verified by the comparison with the experimental results and/or the analytical results obtained from the other codes which were already proven. (author)

  17. Status of SACRD: a data base for fast reactor safety computer codes

    International Nuclear Information System (INIS)

    Greene, N.M.; Flanagan, G.F.; Alter, H.

    1982-01-01

    In 1975 work was initiated to provide a central computerized data collection of evaluated data for use in fast reactor safety computer codes. This data base is called SACRD and is intended to encompass handbook and other nonproblem-dependent data related to LMFBR's, especially at extreme conditions where little or no experimental data are available. Version 1 of the data base was released in the latter part of 1978 and remained the standard version until Version 81, which was released in October 1981

  18. Analysis of ASTEC code adaptability to severe accident simulation for CANDU type reactors

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2008-01-01

    In order to prepare the adaptation of the ASTEC code to CANDU NPP severe accident analysis two kinds of activities were performed: - analyses of the ASTEC modules from the point of view of models and options, followed by CANDU exploratory calculation for the appropriate modules/models; - preparing the specifications for ASTEC adaptation for CANDU NPP. The paper is structured in three parts: - a comparison of PWR and CANDU concepts (from the point of view of severe accident phenomena); - exploratory calculations with some ASTEC modules- SOPHAEROS, CPA, IODE, CESAR, DIVA - for CANDU type reactors specific problems; - development needs analysis - algorithms, methods, modules. (authors)

  19. Improved SAFARI-1 research reactor irradiation position modeling in OSCAR-3 code system

    International Nuclear Information System (INIS)

    Moloko, L. E.; Belal, M. G. A. H.

    2009-01-01

    The demand on the availability of irradiation positions in the SAFARI-1 reactor is continuously increasing due to the commercial pressure to produce isotopes more efficiently. This calls for calculational techniques and modeling methods to be improved regularly to optimize irradiation services. The irradiation position models are improved using the OSCAR-3 code system, and results are compared to experimental measurements. It is concluded that the irradiation position models are essential if realistic core follow and reload studies are to be performed and most importantly, for the realization of improved agreement between experimental data and calculated results. (authors)

  20. Modeling of hydrogen stratification in a pressurized water reactor containment with the contain computer code

    International Nuclear Information System (INIS)

    Kljenak, I.; Skerlavaj, A.; Parzer, I.

    1999-01-01

    Hydrogen distribution during a severe accident in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN computer code. The accidents is initiated by a large-break loss-of-coolant accident which is nit successfully mitigated by the action of the emergency core cooling system. Cases with and without successful actuation of spray systems and fan coolers were considered. The simulations predicted hydrogen stratification within the containment main compartment with intensive hydrogen mixing in the containment dome region. Pressure and temperature responses were analyzed as well.(author)

  1. Modifications made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    International Nuclear Information System (INIS)

    Merrill, B.J.

    2000-01-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report

  2. Evaluation of Computational Fluids Dynamics (CFD) code Open FOAM in the study of the pressurized thermal stress of PWR reactors. Comparison with the commercial code Ansys-CFX

    International Nuclear Information System (INIS)

    Martinez, M.; Barrachina, T.; Miro, R.; Verdu Martin, G.; Chiva, S.

    2012-01-01

    In this work is proposed to evaluate the potential of the OpenFOAM code for the simulation of typical fluid flows in reactors PWR, in particular for the study of pressurized thermal stress. Test T1-1 has been simulated , within the OECD ROSA project, with the objective of evaluating the performance of the code OpenFOAM and models of turbulence that has implemented to capture the effect of the thrust forces in the case study.

  3. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  4. Validation study of the reactor physics lattice transport code WIMSD-5B by TRX and BAPL critical experiments of light water reactors

    International Nuclear Information System (INIS)

    Khan, M.J.H.; Alam, A.B.M.K.; Ahsan, M.H.; Mamun, K.A.A.; Islam, S.M.A.

    2015-01-01

    Highlights: • To validate the reactor physics lattice code WIMSD-5B by this analysis. • To model TRX and BAPL critical experiments using WIMSD-5B. • To compare the calculated results with experiment and MCNP results. • To rely on WIMSD-5B code for TRIGA calculations. - Abstract: The aim of this analysis is to validate the reactor physics lattice transport code WIMSD-5B by TRX (thermal reactor-one region lattice) and BAPL (Bettis Atomic Power Laboratory-one region lattice) critical experiments of light water reactors for neutronics analysis of 3 MW TRIGA Mark-II research reactor at AERE, Dhaka, Bangladesh. This analysis is achieved through the analysis of integral parameters of five light water reactor critical experiments TRX-1, TRX-2, BAPL-UO 2 -1, BAPL-UO 2 -2 and BAPL-UO 2 -3 based on evaluated nuclear data libraries JEFF-3.1 and ENDF/B-VII.1. In integral measurements, these experiments are considered as standard benchmark lattices for validating the reactor physics lattice transport code WIMSD-5B as well as evaluated nuclear data libraries. The integral parameters of the said critical experiments are calculated using the reactor physics lattice transport code WIMSD-5B. The calculated integral parameters are compared to the measured values as well as the earlier published MCNP results based on the Chinese evaluated nuclear data library CENDL-3.0 for assessment of deterministic calculation. It was found that the calculated integral parameters give mostly reasonable and globally consistent results with the experiment and the MCNP results. Besides, the group constants in WIMS format for the isotopes U-235 and U-238 between two data files have been compared using WIMS library utility code WILLIE and it was found that the group constants are well consistent with each other. Therefore, this analysis reveals the validation study of the reactor physics lattice transport code WIMSD-5B based on JEFF-3.1 and ENDF/B-VII.1 libraries and can also be essential to

  5. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  6. TRANPZ - A computer code for the simulation of reactors with axial dependence

    International Nuclear Information System (INIS)

    Sampaio, L.C.M.

    1980-12-01

    A computer code was developed to simulate a PWR reactor in steady state and during transients. The solution of one speed diffusion equation in the axial direction is obtained numerically dividing the core in various axial segments and the axial power distribution is obtained there from. A method was developed to determine the transient solution. The external reactivity effects are caused by the motion of the control rods, starting from the steady condition with the control rods in any position. The heat conduction equation in the fuel is numerically solved in the radial direction. Various tests were performed in steady state and transient conditions and the validity of the present model was verified. Results were compared in steady state condition with the code CITATION and a reasonable agreement was found. (E.G.) [pt

  7. Application of MCNP code in shielding calculation of minitype fast reactor

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2008-01-01

    An accurate shielding calculation model has been set up for the minitype sodium-cooled fast reactor (MFR) based on MCNP code and particular calculation of its primary shielding parameters has been carried out. The results indicate that the photon and neutron flux density of MFR has rapidly fallen to a low-level. The material for the shielding layer outside of main container is primarily of carbon steel, which can be design as a shielding structure satisfying the safety code. The sodium activation in primary circuit is extremely limited and it is simple to shield from. Both the output of helium in reflector and burn up of boron-10 in control rod are very small. These materials can be used for several cycle lives. (authors)

  8. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  9. Thermal-hydraulic calculations for a fuel assembly in a European Pressurized Reactor using the RELAP5 code

    Directory of Open Access Journals (Sweden)

    Skrzypek Maciej

    2015-09-01

    Full Text Available The main object of interest was a typical fuel assembly, which constitutes a core of the nuclear reactor. The aim of the paper is to describe the phenomena and calculate thermal-hydraulic characteristic parameters in the fuel assembly for a European Pressurized Reactor (EPR. To perform thermal-hydraulic calculations, the RELAP5 code was used. This code allows to simulate steady and transient states for reactor applications. It is also an appropriate calculation tool in the event of a loss-of-coolant accident in light water reactors. The fuel assembly model with nodalization in the RELAP5 (Reactor Excursion and Leak Analysis Program code was presented. The calculations of two steady states for the fuel assembly were performed: the nominal steady-state conditions and the coolant flow rate decreased to 60% of the nominal EPR flow rate. The calculation for one transient state for a linearly decreasing flow rate of coolant was simulated until a new level was stabilized and SCRAM occurred. To check the correctness of the obtained results, the authors compared them against the reactor technical documentation available in the bibliography. The obtained results concerning steady states nearly match the design data. The hypothetical transient showed the importance of the need for correct cooling in the reactor during occurrences exceeding normal operation. The performed analysis indicated consequences of the coolant flow rate limitations during the reactor operation.

  10. Four energy group neutron flux distribution in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION code

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2009-01-01

    A 3-D (R, θ , Z) neutronic model for the Miniature Neutron Source Reactor (MNSR) was developed earlier to conduct the reactor neutronic analysis. The group constants for all the reactor components were generated using the WIMSD4 code. The reactor excess reactivity and the four group neutron flux distributions were calculated using the CITATION code. This model is used in this paper to calculate the point wise four energy group neutron flux distributions in the MNSR versus the radius, angle and reactor axial directions. Good agreement is noticed between the measured and the calculated thermal neutron flux in the inner and the outer irradiation site with relative difference less than 7% and 5% respectively. (author)

  11. MIF-SCD computer code for thermal hydraulic calculation of supercritical water cooled reactor core

    International Nuclear Information System (INIS)

    Galina P Bogoslovskaia; Alexander A Karpenko; Pavel L Kirillov; Alexander P Sorokin

    2005-01-01

    Full text of publication follows: Supercritical pressure power plants constitute the basis of heat power engineering in many countries to day. Starting from a long-standing experience of their operation, it is proposed to develop a new type of fast breeder reactor cooled by supercritical water, which enables the economical indices of NPP to be substantially improved. In the Thermophysical Department of SSC RF-IPPE, an attempt is made to provide thermal-hydraulic validation of the reactor under discussion. The paper presents the results of analysis of the thermal-hydraulic characteristics of fuel subassemblies cooled by supercritical water based on subchannel analysis. Modification of subchannel code MIF - MIF-SCD Code - developed in the SSC RF IPPE is designed as block code and permits one to calculate the coolant temperature and velocity distributions in fuel subassembly channels, the temperature of fuel pin claddings and fuel subassembly wrapper under conditions of irregular geometry and non-uniform axial and radial power generation. The thermal hydraulics under supercritical pressure of water exhibits such peculiarities as abrupt variation of the thermal physical properties in the range of pseudo-critical temperature, the absence of such phenomenon as the critical heat flux which can lead to fuel element burnout in WWERs. As compared with subchannel code for light water, in order to take account of the variation of the coolant properties versus temperature in more detail, a block for evaluating the thermal physical properties of supercritical water versus the local coolant temperature in the fuel subassembly channels was added. The peculiarities of the geometry and power generation in the fuel subassembly of the supercritical reactor are considered as well in special blocks. The results of calculations have shown that considerable preheating of supercritical coolant (several hundreds degrees) can occur in the fuel subassembly. The test calculations according to

  12. The analysis with the code TANK of a postulated reactivity-insertion transient in a 10-MW MAPLE research reactor

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-10-01

    This report discusses the analysis of a postulated loss-of-regulation (LOR) accident in a metal-fuelled MAPLE Research Reactor. The selected transient scenario involves a slow LOR from low reactor power; the control rods are assumed to withdraw slowly until a trip at 12 MW halts the withdrawal. The simulation was performed using the space-time reactor kinetics computer code TANK, and modelling the reactor in detail in two dimensions and in two neutron-energy groups. Emphasis in this report is placed on the modelling techniques used in TANK and the physics considerations of the analysis

  13. Evaluation of the integrity of reactor vessels designed to ASME Code, Sections I and/or VIII

    International Nuclear Information System (INIS)

    Hoge, K.G.

    1976-01-01

    A documented review of nuclear reactor pressure vessels designed to ASME Code, Sections I and/or VIII is made. The review is primarily concerned with the design specifications and quality assurance programs utilized for the reactor vessel construction and the status of power plant material surveillance programs, pressure-temperature operating limits, and inservice inspection programs. The following ten reactor vessels for light-water power reactors are covered in the report: Indian Point Unit No. 1, Dresden Unit No. 1, Yankee Rowe, Humboldt Bay Unit No. 3, Big Rock Point, San Onofre Unit No. 1, Connecticut Yankee, Oyster Creek, Nine Mile Point Unit No. 1, and La Crosse

  14. Reactor physics modelling of accident tolerant fuel for LWRs using ANSWERS codes

    International Nuclear Information System (INIS)

    Lindley, B.A.; Lillington, J.N.; Kotlyar, D.; Parks, G.T.; Petrovic, B.

    2016-01-01

    The majority of nuclear reactors operating in the world today and similarly the majority of near-term new build reactors will be LWRs. These currently accommodate traditional Zr clad UO_2/PuO_2 fuel designs which have an excellent performance record for normal operation. However, the events at Fukushima culminated in significant hydrogen production and hydrogen explosions, resulting from high temperature Zr/steam interaction following core uncovering for an extended period. These events have resulted in increased emphasis towards developing more accident tolerant fuels (ATFs)-clad systems, particularly for current and near-term build LWRs. R and D programmes are underway in the US and elsewhere to develop ATFs and the UK is engaging in these international programmes. Candidate advanced fuel materials include uranium nitride (UN) and uranium silicide (U_3Si_2). Candidate cladding materials include advanced stainless steel (FeCrAl) and silicon carbide. The UK has a long history in industrial fuel manufacture and fabrication for a wide range of reactor systems including LWRs. This is supported by a national infrastructure to perform experimental and theoretical R and D in fuel performance, fuel transient behaviour and reactor physics. In this paper, an analysis of the Integral Inherently Safe LWR design (I"2S-LWR), a reactor concept developed by an international collaboration led by the Georgia Institute of Technology, within a US DOE Nuclear Energy University Program (NEUP) Integrated Research Project (IRP) is considered. The analysis is performed using the ANSWERS reactor physics code WIMS and the EDF Energy core simulator PANTHER by researchers at the University of Cambridge. The I"2S-LWR is an advanced 2850 MWt integral PWR with inherent safety features. In order to enhance the safety features, the baseline fuel and cladding materials that were chosen for the I"2S-LWR design are U_3Si_2 and advanced stainless steel respectively. In addition, the I"2S-LWR design

  15. Intercomparison and validation of computer codes for thermalhydraulic safety analysis of heavy water reactors

    International Nuclear Information System (INIS)

    2004-08-01

    Activities within the frame of the IAEA's Technical Working Group on Advanced Technologies for HWRs (TWG-HWR) are conducted in a project within the IAEA's subprogramme on nuclear power reactor technology development. The objective of the activities on HWRs is to foster, within the frame of the TWG-HWR, information exchange and co-operative research on technology development for current and future HWRs, with an emphasis on safety, economics and fuel resource sustainability. One of the activities recommended by the TWG-HWR was an international standard problem exercise entitled: Intercomparison and validation of computer codes for thermalhydraulics safety analyses. Intercomparison and validation of computer codes used in different countries for thermalhydraulics safety analyses will enhance the confidence in the predictions made by these codes. However, the intercomparison and validation exercise needs a set of reliable experimental data. The RD-14M Large-Loss Of Coolant Accident (LOCA) test B9401 simulating HWR LOCA behaviour that was conducted by Atomic Energy of Canada Ltd (AECL) was selected for this validation project. This report provides a comparison of the results obtained from six participating countries, utilizing four different computer codes. General conclusions are reached and recommendations made

  16. EPRI-LATTICE: a multigroup neutron transport code for light water reactor lattice physics calculations

    International Nuclear Information System (INIS)

    Jones, D.B.

    1986-01-01

    EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated

  17. Evaluation of wrapper tube temperatures of fast neutron reactors using the TRANSCOEUR-2 code

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, B.; Brun P. [CEA/DRN/DEC/SECA/LHC CEN, St Paul Lez Durance (France); Chaigne, G. [FRAMATOME/NOVATOME, Lyon (France)

    1995-09-01

    This paper deals with the thermal loading estimation of wrapper tubes using the TRANSCOEUR-2 code. This estimation requires a knowledge of two temperature fields: the first involves the peripheral sub-channel temperatures of each sub-assembly calculated by the design code CADET, and the second, outside the sub-assemblies, is the inter-wrapper flow temperature field calculated by the thermal-hydraulic code TRIO-VF with boundary conditions taken from CADET. Theoretical models of the three codes are presented as well as the first TRANSCOEUR-2 wrapper tube temperature calculation performed on the European Fast Reactor (EFR) Core Design 6/91 (CD 6/91) under nominal power conditions. The results show a temperature variation of 115{degrees}C between the bottom of the lower blanket and the top of the upper blanket fuel sub-assemblies in the center of the core and 95{degrees}C at the core periphery. The wrapper tube temperatures are higher in the center than in the external core.

  18. MC2-3: Multigroup Cross Section Generation Code for Fast Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-08

    The MC2-3 code is a Multigroup Cross section generation Code for fast reactor analysis, developed by improving the resonance self-shielding and spectrum calculation methods of MC2-2 and integrating the one-dimensional cell calculation capabilities of SDX. The code solves the consistent P1 multigroup transport equation using basic neutron data from ENDF/B data files to determine the fundamental mode spectra for use in generating multigroup neutron cross sections. A homogeneous medium or a heterogeneous slab or cylindrical unit cell problem is solved in ultrafine (~2000) or hyperfine (~400,000) group levels. In the resolved resonance range, pointwise cross sections are reconstructed with Doppler broadening at specified isotopic temperatures. The pointwise cross sections are directly used in the hyperfine group calculation whereas for the ultrafine group calculation, self-shielded cross sections are prepared by numerical integration of the pointwise cross sections based upon the narrow resonance approximation. For both the hyperfine and ultrafine group calculations, unresolved resonances are self-shielded using the analytic resonance integral method. The ultrafine group calculation can also be performed for two-dimensional whole-core problems to generate region-dependent broad-group cross sections. Multigroup cross sections are written in the ISOTXS format for a user-specified group structure. The code is executable on UNIX, Linux, and PC Windows systems, and its library includes all isotopes of the ENDF/BVII. 0 data.

  19. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  20. Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data

    International Nuclear Information System (INIS)

    2012-08-01

    Activities within the frame of the IAEA's Technical Working Group on Advanced Technologies for HWRs (TWG-HWR) are conducted in a project within the IAEA's subprogramme on nuclear power reactor technology development. The objective of the activities on HWRs is to foster, within the frame of the TWG-HWR, information exchange and cooperative research on technology development for current and future HWRs, with an emphasis on safety, economics and fuel resource sustainability. One of the activities recommended by the TWG-HWR was an international standard problem exercise entitled Intercomparison and Validation of Computer Codes for Thermalhydraulics Safety Analyses. Intercomparison and validation of computer codes used in different countries for thermalhydraulics safety analyses will enhance the confidence in the predictions made by these codes. However, the intercomparison and validation exercise needs a set of reliable experimental data. Two RD-14M small break loss of coolant accident (SBLOCA) tests, simulating HWR LOCA behaviour, conducted by Atomic Energy of Canada Ltd (AECL), were selected for this validation project. This report provides a comparison of the results obtained from eight participating organizations from six countries (Argentina, Canada, China, India, Republic of Korea, and Romania), utilizing four different computer codes (ATMIKA, CATHENA, MARS-KS, and RELAP5). General conclusions are reached and recommendations made.

  1. Neutronic study of nuclear reactors. Complete calculation of TRIGA MARKII reactor and calculations of fuel temperature coefficients. (Qualification of WIMS code)

    International Nuclear Information System (INIS)

    Benmansour, L.

    1992-01-01

    The present work shows a group of results, obtained by a neutronic study, concerning the TRIGA MARK II reactor and LIGHT WATER reactors. These studies aim to make cell and diffusion calculations. WIMS D-4 with extended library and DIXY programs are used and tested for those purposes. We also have proceeded to a qualification of WIMS code based on the fuel temperature coefficient calculations. 33 refs.; 23 figs.; 30 tabs. (author)

  2. Overview of results from 2D airfoil testing at Risoe

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1997-12-31

    This paper gives an overview of the results from two dimensional airfoil testing at Risoe. A two dimensional testing method was recently developed where a test rig is inserted into an open jet flow in a wind tunnel of the close return loop type with an open test section. Pressure measurements provide the lift and drag forces. Both stationary flow and dynamic inflow from pitch motion are possible. The wind tunnel static pressure and total dynamic pressures were calibrated and wind tunnel boundary corrections were found. So far, the testing method was verified by comparison of NACA 63-215 airfoil measurements to numerical predictions and to measurements. Furthermore, the Risoe-1, FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils were measured. Different types of leading edge roughness and vortex generators were investigated. For all airfoils, good agreements with predictions were obtained on both pressure distribution and on lift coefficient. The drag coefficients were slightly higher than predicted. (eg) 10 refs.

  3. Comparison of the ENIGMA code with experimental data on thermal performance, stable fission gas and iodine release at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    The predictions of the ENIGMA code have been compared with data from high burn-up fuel experiments from the Halden and RISO reactors. The experiments modelled were IFA-504 and IFA-558 from Halden and the test II-5 from the RISO power burnup test series. The code has well modelled the fuel thermal performance and has provided a good measure of iodine release from pre-interlinked fuel. After interlinkage the iodine predictions remain a good fit for one experiment, but there is significant overprediction for a second experiment (IFA-558). Stable fission gas release is also well modelled and the predictions are within the expected uncertainly band throughout the burn-up range. This report presents code predictions for stable fission gas release to 40GWd/tU, iodine release measurements to 50GWd/tU and thermal performance (fuel centre temperature) to 55GWd/tU. Fuel ratings of up to 38kW/m were modelled at the high burn-up levels. The code is shown to accurately or conservatively predict all these parameters. (author). 1 ref., 6 figs.

  4. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  5. Spectral history modeling in the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Yurii

    2014-01-01

    A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history. A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry. The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters.

  6. Development of a general coupling interface for the fuel performance code transuranus tested with the reactor dynamic code DYN3D

    International Nuclear Information System (INIS)

    Holt, L.; Rohde, U.; Seidl, M.; Schubert, A.; Van Uffelen, P.

    2013-01-01

    Several institutions plan to couple the fuel performance code TRANSURANUS developed by the European Institute for Transuranium Elements with their own codes. One of these codes is the reactor dynamic code DYN3D maintained by the Helmholtz-Zentrum Dresden - Rossendorf. DYN3D was developed originally for VVER type reactors and was extended later to western type reactors. Usually, the fuel rod behavior is modeled in thermal hydraulics and neutronic codes in a simplified manner. The main idea of this coupling is to describe the fuel rod behavior in the frame of core safety analysis in a more detailed way, e.g. including the influence of the high burn-up structure, geometry changes and fission gas release. It allows to take benefit from the improved computational power and software achieved over the last two decades. The coupling interface was developed in a general way from the beginning. Thence it can be easily used also by other codes for a coupling with TRANSURANUS. The user can choose between a one-way as well as a two-way online coupling option. For a one-way online coupling, DYN3D provides only the time-dependent rod power and thermal hydraulics conditions to TRANSURANUS, but the fuel performance code doesn’t transfer any variable back to DYN3D. In a two-way online coupling, TRANSURANUS in addition transfers parameters like fuel temperature and cladding temperature back to DYN3D. This list of variables can be extended easily by geometric and further variables of interest. First results of the code system DYN3D-TRANSURANUS will be presented for a control rod ejection transient in a modern western type reactor. Pre-analyses show already that a detailed fuel rod behavior modeling will influence the thermal hydraulics and thence also the neutronics due to the Doppler reactivity effect of the fuel temperature. The coupled code system has therefore a potential to improve the assessment of safety criteria. The developed code system DYN3D-TRANSURANUS can be used also

  7. Development and validation of a model TRIGA Mark III reactor with code MCNP5

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Aguilar H, F.

    2015-09-01

    The main purpose of this paper is to obtain a model of the reactor core TRIGA Mark III that accurately represents the real operating conditions to 1 M Wth, using the Monte Carlo code MCNP5. To provide a more detailed analysis, different models of the reactor core were realized by simulating the control rods extracted and inserted in conditions in cold (293 K) also including an analysis for shutdown margin, so that satisfied the Operation Technical Specifications. The position they must have the control rods to reach a power equal to 1 M Wth, were obtained from practice entitled Operation in Manual Mode performed at Instituto Nacional de Investigaciones Nucleares (ININ). Later, the behavior of the K eff was analyzed considering different temperatures in the fuel elements, achieving calculate subsequently the values that best represent the actual reactor operation. Finally, the calculations in the developed model for to obtain the distribution of average flow of thermal, epithermal and fast neutrons in the six new experimental facilities are presented. (Author)

  8. PERIGEE computer codes for reactor simulation in 3 dimensions, using 1 or 2 neutron velocity groups

    International Nuclear Information System (INIS)

    Olson, A.P.

    1964-02-01

    PERIGEE is a code written in SNAP for the G-20 computer. It solves the one- or two-group neutron diffusion equations by finite-difference methods on a three-dimensional, uniform mesh having a common spacing in the two directions normal to the fuel channels. The positions of mesh points along a fuel channel, relative to points in adjacent channels, may correspond to either NPD or CANDU fuel bundle positions. The extrapolated flux boundary may be specified in sufficient detail to represent a tapered or stepped circumferential reflector, a variable axial length and, for a reactor with axis horizontal, a variable moderator level and a variable plane bottom surface equivalent to the CANDU dump structure. The neutron flux may be normalized to give a specified power output from the hottest fuel bundle or hottest channel, or to give a total thermal power limited by the turbine and generator. Reactor operation may be simulated in finite time steps, taking into account any fuel shifts, any changes in moderator level and the change in nuclear properties of the fuel with increasing irradiation. The appropriate properties are obtained by interpolation from tables supplied for as many as 8 types of fuel bundle. The mean fuel exit burnup can be calculated at equilibrium for a reactor in which the exit burnups for two zones may be adjusted to give radial power flattening and the fuelling schedules may be designed to give axial power flattening in one or both zones. (author)

  9. Constitutive model development needs for reactor safety thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Kelly, J.M.

    1998-01-01

    This paper discusses the constitutive model development needs for our current and future generation of reactor safety thermal-hydraulic analysis codes. Rather than provide a simple 'shopping list' of models to be improved, a detailed description is given of how a constitutive model works within the computational framework of a current reactor safety code employing the two-fluid model of two-phase flow. The intent is to promote a better understanding of both the types of experiments and the instrumentation needs that will be required in the USNRCs code improvement program. First, a summary is given of the modeling considerations that need to be taken into account when developing constitutive models for use in reactor safety thermal-hydraulic codes. Specifically, the two-phase flow model should be applicable to a control volume formulation employing computational volumes with dimensions on the order of meters but containing embedded structure with a dimension on the order of a centimeter. The closure relations are then required to be suitable when averaged over such large volumes containing millions or even tens of millions of discrete fluid particles (bubbles/drops). This implies a space and time averaging procedure that neglects the intermittency observed in slug and chum turbulent two-phase flows. Furthermore, the geometries encountered in reactor systems are complex, the constitutive relations should therefore be component specific (e.g., interfacial shear in a tube does not represent that in a rod bundle nor in the downcomer). When practicable, future modeling efforts should be directed towards resolving the spatial evolution of two-phase flow patterns through the introduction of interfacial area transport equations and by modeling the individual physical processes responsible for the creation or destruction of interfacial area. Then the example of the implementation and assessment of a subcooled boiling model in a two-fluid code is given. The primary parameter

  10. Self-assessment of application of the Code of Conduct on the safety of research reactors - Mexico

    International Nuclear Information System (INIS)

    Mamani-Alegria, Y.R.; Salgado-Gonzalez, J.R.; Miranda-Aldaco, J.

    2009-01-01

    In Mexico, the nuclear regulatory body is the National Commission on Nuclear Safety and Safeguards (CNSNS), and there is one research reactor, a TRIGA MARK III, operated by the National Institute for Nuclear Research (ININ). The main aspects of the Self-assessment of application of The Code of Conduct on the Safety of Research Reactor are given for the case of the TRIGA reactor. Furthermore, in this paper we give a brief description of the legal framework of the licensing process, for nuclear activities in a research reactor, there are also highlights of the major reactor features, the uses of the reactor for isotope production, the management and verification of safety, the radiation protection management program, the emergency planning and the training and qualification of the operation personnel. (author)

  11. Verification and validation of the PLTEMP/ANL code for thermal hydraulic analysis of experimental and test reactors

    International Nuclear Information System (INIS)

    Kalimullah, M.; Olson, A.O.; Feldman, E.E.; Hanan, N.; Dionne, B.

    2012-01-01

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  12. Verification and Validation of the PLTEMP/ANL Code for Thermal-Hydraulic Analysis of Experimental and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, Arne P. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanan, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-07

    The document compiles in a single volume several verification and validation works done for the PLTEMP/ANL code during the years of its development and improvement. Some works that are available in the open literature are simply referenced at the outset, and are not included in the document. PLTEMP has been used in conversion safety analysis reports of several US and foreign research reactors that have been licensed and converted. A list of such reactors is given. Each chapter of the document deals with the verification or validation of a specific model. The model verification is usually done by comparing the code with hand calculation, Microsoft spreadsheet calculation, or Mathematica calculation. The model validation is done by comparing the code with experimental data or a more validated code like the RELAP5 code.

  13. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  14. Simulation of natural convection cooling phenomena for research reactors using the code PARET

    International Nuclear Information System (INIS)

    Hainoun, A.; Al-Habit, E.

    2006-01-01

    This study deals with testing the capacity of the code PARET to simulate natural circulation phenomena under different boundary conditions in addition to assessment of some new options related to simulation of control rod movement and the reactivity effect of thermal expansion fuel elements. the experiments of the simple thermal hydraulic loop of Missouri University about natural circulation phenomena in narrow parallel channel were used to validate the code. The results indicate good agreements regarding the evolution of coolant velocity and clad temperature. In particular the heat transfer coefficient of natural convection has been calculated in good agreement with the experiment. On the other hand, the core of MNSR reactor has been modelled to stimulate the reactor dynamic behaviour under natural circulation condition for different initial power level. The observed oscillations during the initial phase vanish gradually with passing time. In this context three experiment of step reactivity insertion were calculated using two different options of boundary conditions, either using initial velocity or pressure drop along the core. The results indicate good agreement with the experiments regarding the evolution of relative power. The validations included also sensitivity analysis against some important parameters like initial velocity and radial distance of fuel rod. The new option for simulation of control rod movement was also tested. For this purpose the MNSR experiment of all control rod withdraw was selected. This means control rod velocity was estimated using experimental measurement. The simulation result of relative power evolution shows good agreement with the experiment during the first phase of the transient. However, an increased deviation is observed in the following phase due to the effect of closed hydrodynamics loop, which can be modelled with the code PARET. (Authors)

  15. Application of software quality assurance methods in validation and maintenance of reactor analysis computer codes

    International Nuclear Information System (INIS)

    Reznik, L.

    1994-01-01

    Various computer codes employed at Israel Electricity Company for preliminary reactor design analysis and fuel cycle scoping calculations have been often subject to program source modifications. Although most changes were due to computer or operating system compatibility problems, a number of significant modifications were due to model improvement and enhancements of algorithm efficiency and accuracy. With growing acceptance of software quality assurance requirements and methods, a program of implementing extensive testing of modified software has been adopted within the regular maintenance activities. In this work survey has been performed of various software quality assurance methods of software testing which belong mainly to the two major categories of implementation ('white box') and specification-based ('black box') testing. The results of this survey exhibits a clear preference of specification-based testing. In particular the equivalence class partitioning method and the boundary value method have been selected as especially suitable functional methods for testing reactor analysis codes.A separate study of software quality assurance methods and techniques has been performed in this work objective to establish appropriate pre-test software specification methods. Two methods of software analysis and specification have been selected as the most suitable for this purpose: The method of data flow diagrams has been shown to be particularly valuable for performing the functional/procedural software specification while the entities - relationship diagrams has been approved to be efficient for specifying software data/information domain. Feasibility of these two methods has been analyzed in particular for software uncertainty analysis and overall code accuracy estimation. (author). 14 refs

  16. Transient behavior during reactivity insertion in the Moroccan TRIGA Mark II reactor using the PARET/ANL code

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Boukhal, H.; Chakir, E.; El Bakkari, B.; El Younoussi, C.

    2015-01-01

    Highlights: • PARET model for the Moroccan TRIGA MARK II reactor has been developed. • Transient behavior under reactivity insertion has been studied based on PARET code. • Power factors required by PARET code have been calculated by using MCNP5 code. • The dependence on time of the main thermal-hydraulic parameters was calculated. • Results are largely far to compromise the thermal design limits. - Abstract: A three dimensional model for the Moroccan 2 MW TRIGA MARK II reactor has been developed for thermal-hydraulic and safety analysis by using the PARET/ANL and MCNP5 codes. This reactor is located at the nuclear studies center of Mâamora (CENM), Morocco. The model has been validated through temperature measurements inside two instrumented fuel elements located near the center of the core, at various power levels, and also through the power and fuel temperature evolution after the reactor shutdown (SCRAM). The axial distributions of power factors required by the PARET code have been calculated in each fuel element rod by using MCNP5 code. Based on this thermal-hydraulic model, a safety analysis under the reactivity insertion phenomenon has been carried out and the dependence on time of the main thermal-hydraulic parameters was calculated. Results were compared to the thermal design limits imposed to maintain the integrity of the clad

  17. Advanced methodology to simulate boiling water reactor transient using coupled thermal-hydraulic/neutron-kinetic codes

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph Oliver

    2016-06-13

    Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools. The generation of cross-section (XS) libraries, depending on the individual thermal-hydraulic state parameters, is of paramount importance for coupled simulations. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running commercial and user-friendly lattice codes such as CASMO and HELIOS. In this dissertation a computational route, based on the lattice code SCALE6/TRITON, the cross-section interface GenPMAXS, the best-estimate thermal-hydraulic system code TRACE and the core simulator PARCS, for best-estimate simulations of Boiling Water (BWR) transients has been developed and validated. The computational route has been supplemented by a subsequent uncertainty and sensitivity study based on Monte Carlo sampling and propagation of the uncertainties of input parameters to the output (SUSA code). The analysis of a single BWR fuel assembly depletion problem with PARCS using SCALE/TRITON cross-sections has been shown a good agreement with the results obtained with CASMO cross-section sets. However, to compensate the deficiencies of the interface program GenPMAXS, PYTHON scripts had to be developed to incorporate missing data, as the yields of Iodine, Xenon and Promethium, into the cross-section-data sets (PMAXS-format) generated by GenPMAXS from the SCALE/TRITON output. The results of the depletion analysis of a full BWR core with PARCS have indicated the importance of considering history effects, adequate modeling of the reflector region and the control rods, as the PARCS simulations for depleted fuel and all control rods inserted (ARI) differs significantly at the fuel assembly top and bottom. Systematic investigations with the coupled codes TRACE/PARCS have been performed to analyse the core behaviour at different thermal conditions using nuclear data (XS

  18. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung S.

    2009-01-01

    A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electrolyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen

  19. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    Science.gov (United States)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  20. Selection and benchmarking of computer codes for research reactor core conversions

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emin [School of Aerospace, Mechanical and Nuclear Engineering, University of Oklahoma, Norman, OK (United States); Jones, Barclay G [Nuclear Engineering Program, University of IL at Urbana-Champaign, Urbana, IL (United States)

    1983-09-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC{sup 2}, COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k{sub eff} is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)