WorldWideScience

Sample records for risks safety analysis

  1. Safety analysis, risk assessment, and risk acceptance criteria

    International Nuclear Information System (INIS)

    Jamali, K.

    1997-01-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities and that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, 'ensuring' plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is 'safe.' Use of RACs requires quantitative estimates of consequence frequency and magnitude

  2. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  3. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  4. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  5. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  6. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  7. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  8. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  9. HANFORD SAFETY ANALYSIS and RISK ASSESSMENT HANDBOOK (SARAH)

    International Nuclear Information System (INIS)

    EVANS, C.B.

    2004-01-01

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S and M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard

  10. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  11. Risk prediction, safety analysis and quantitative probability methods - a caveat

    International Nuclear Information System (INIS)

    Critchley, O.H.

    1976-01-01

    Views are expressed on the use of quantitative techniques for the determination of value judgements in nuclear safety assessments, hazard evaluation, and risk prediction. Caution is urged when attempts are made to quantify value judgements in the field of nuclear safety. Criteria are given the meaningful application of reliability methods but doubts are expressed about their application to safety analysis, risk prediction and design guidances for experimental or prototype plant. Doubts are also expressed about some concomitant methods of population dose evaluation. The complexities of new designs of nuclear power plants make the problem of safety assessment more difficult but some possible approaches are suggested as alternatives to the quantitative techniques criticized. (U.K.)

  12. Hazard Identification and Risk Assessment of Health and Safety Approach JSA (Job Safety Analysis) in Plantation Company

    Science.gov (United States)

    Sugarindra, Muchamad; Ragil Suryoputro, Muhammad; Tiya Novitasari, Adi

    2017-06-01

    Plantation company needed to identify hazard and perform risk assessment as an Identification of Hazard and Risk Assessment Crime and Safety which was approached by using JSA (Job Safety Analysis). The identification was aimed to identify the potential hazards that might be the risk of workplace accidents so that preventive action could be taken to minimize the accidents. The data was collected by direct observation to the workers concerned and the results were recorded on a Job Safety Analysis form. The data were as forklift operator, macerator worker, worker’s creeper, shredder worker, workers’ workshop, mechanical line worker, trolley cleaning workers and workers’ crepe decline. The result showed that shredder worker value was 30 and had the working level with extreme risk with the risk value range was above 20. So to minimize the accidents could provide Personal Protective Equipment (PPE) which were appropriate, information about health and safety, the company should have watched the activities of workers, and rewards for the workers who obey the rules that applied in the plantation.

  13. Proposal for the improvement of IRD safety culture based on risk analysis

    International Nuclear Information System (INIS)

    Aguiar, L.A.; Ferreira, P.R.R.; Silveira, C.S.

    2017-01-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  14. Proposal for the improvement of IRD safety culture based on risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.A.; Ferreira, P.R.R. [Instituto de Radioproteção e Dosimetria (DIRAD/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silveira, C.S., E-mail: laguiar@ird.gov.br [Comissão Nacional de Energia Nuclear (DRS/CGMI/CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  15. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  16. Big Data Risk Analysis for Rail Safety?

    OpenAIRE

    Van Gulijk, Coen; Hughes, Peter; Figueres-Esteban, Miguel; Dacre, Marcus; Harrison, Chris; HUD; RSSB

    2015-01-01

    Computer scientists believe that the enormous amounts of data in the internet will unchain a management revolution of uncanny proportions. Yet, to date, the potential benefit of this revolution is scantily investigated for safety and risk management. This paper gives a brief overview of a research programme that investigates how the new internet-driven data-revolution could benefit safety and risk management for railway safety in the UK. The paper gives a brief overview the current activities...

  17. Knowledge and perceived implementation of food safety risk analysis framework in Latin America and the Caribbean region.

    Science.gov (United States)

    Cherry, C; Mohr, A Hofelich; Lindsay, T; Diez-Gonzalez, F; Hueston, W; Sampedro, F

    2014-12-01

    Risk analysis is increasingly promoted as a tool to support science-based decisions regarding food safety. An online survey comprising 45 questions was used to gather information on the implementation of food safety risk analysis within the Latin American and Caribbean regions. Professionals working in food safety in academia, government, and private sectors in Latin American and Caribbean countries were contacted by email and surveyed to assess their individual knowledge of risk analysis and perceptions of its implementation in the region. From a total of 279 participants, 97% reported a familiarity with risk analysis concepts; however, fewer than 25% were able to correctly identify its key principles. The reported implementation of risk analysis among the different professional sectors was relatively low (46%). Participants from industries in countries with a long history of trade with the United States and the European Union, such as Mexico, Brazil, and Chile, reported perceptions of a higher degree of risk analysis implementation (56, 50, and 20%, respectively) than those from the rest of the countries, suggesting that commerce may be a driver for achieving higher food safety standards. Disagreement among respondents on the extent of the use of risk analysis in national food safety regulations was common, illustrating a systematic lack of understanding of the current regulatory status of the country. The results of this survey can be used to target further risk analysis training on selected sectors and countries.

  18. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  19. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  20. Freight-train derailment rates for railroad safety and risk analysis.

    Science.gov (United States)

    Liu, Xiang; Rapik Saat, M; Barkan, Christopher P L

    2017-01-01

    Derailments are the most common type of train accident in the United States. They cause damage to infrastructure, rolling stock and lading, disrupt service, and have the potential to cause casualties, and harm the environment. Train safety and risk analysis relies on accurate assessment of derailment likelihood. Derailment rate - the number of derailments normalized by traffic exposure - is a useful statistic to estimate the likelihood of a derailment. Despite its importance, derailment rate analysis using multiple factors has not been previously developed. In this paper, we present an analysis of derailment rates on Class I railroad mainlines based on data from the U.S. Federal Railroad Administration and the major freight railroads. The point estimator and confidence interval of train and car derailment rates are developed by FRA track class, method of operation and annual traffic density. The analysis shows that signaled track with higher FRA track class and higher traffic density is associated with a lower derailment rate. The new accident rates have important implications for safety and risk management decisions, such as the routing of hazardous materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Do we see how they perceive risk? An integrated analysis of risk perception and its effect on workplace safety behavior.

    Science.gov (United States)

    Xia, Nini; Wang, Xueqing; Griffin, Mark A; Wu, Chunlin; Liu, Bingsheng

    2017-09-01

    While risk perception is a key factor influencing safety behavior, the academia lacks specific attention to the ways that workers perceive risk, and thus little is known about the mechanisms through which different risk perceptions influence safety behavior. Most previous research in the workplace safety domain argues that people tend to perceive risk based on rational formulations of risk criticality. However, individuals' emotions can be also useful in understanding their perceptions. Therefore, this research employs an integrated analysis concerning the rational and emotional perspectives. Specifically, it was expected that the identified three rational ways of perceiving risk, i.e., perceived probability, severity, and negative utility, would influence the direct emotional risk perception. Furthermore, these four risk perceptions were all expected to positively but differently influence safety behavior. The hypotheses were tested using a sample of 120 construction workers. It was found that all the three rational risk perceptions significantly influenced workers' direct perception of risk that is mainly based on emotions. Furthermore, safety behavior among workers relied mainly on emotional perception but not rational calculations of risk. This research contributes to workplace safety research by highlighting the importance of integrating the emotional assessment of risk, especially when workers' risk perception and behavior are concerned. Suggested avenues for improving safety behavior through improvement in risk perception include being aware of the possibility of different ways of perceiving risk, promoting experience sharing and accident simulation, and uncovering risk information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. HSE assessment of explosion risk analysis in offshore safety cases

    Energy Technology Data Exchange (ETDEWEB)

    Brighton, P.W.M.; Fearnley, P.J.; Brearley, I.G. [Health and Safety Executive, Bootle (United Kingdom). Offshore Safety Div.

    1995-12-31

    In the past two years HSE has assessed around 250 Safety Cases for offshore oil and gas installations, building up a unique overview of the current state of the art on fire and explosion risk assessment. This paper reviews the explosion risk methods employed, focusing on the aspects causing most difficulty for assessment and acceptance of Safety Cases. Prediction of overpressures in offshore explosions has been intensively researched in recent years but the justification of the means of prevention, control and mitigation of explosions often depends on much additional analysis of the frequency and damage potential of explosions. This involves a number of factors, the five usually considered being: leak sizes; gas dispersion; ignition probabilities; the frequency distribution of explosion strength; and the prediction of explosion damage. Sources of major uncertainty in these factors and their implications for practical risk management decisions are discussed. (author)

  3. Issues regarding Risk Effect Analysis of Digitalized Safety Systems and Main Risk Contributors

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2008-01-01

    Risk factors of safety-critical digital systems affect overall plant risk. In order to assess this risk effect, a risk model of a digitalized safety system is required. This article aims to provide an overview of the issues when developing a risk model and demonstrate their effect on plant risk quantitatively. Research activities in Korea for addressing these various issues, such as the software failure probability and the fault coverage of self monitoring mechanism are also described. The main risk contributors related to the digitalized safety system were determined in a quantitative manner. Reactor protection system and engineered safety feature component control system designed as part of the Korean Nuclear I and C System project are used as example systems. Fault-tree models were developed to assess the failure probability of a system function which is designed to generate an automated signal for actuating both of the reactor trip and the complicated accident-mitigation actions. The developed fault trees were combined with a plant risk model to evaluate the effect of a digitalized system's failure on the plant risk. (authors)

  4. Stockholm Safety Conference. Analysis of the sessions on radiological protection, licensing and risk assessment

    International Nuclear Information System (INIS)

    Gea, A.

    1981-01-01

    A summary of the sessions on radiological protection, licensing and risk assessment in the safety conference of Stockholm is presented. It is considered the new point of view of the nuclear safety, probabilistic analysis, components failures probability and accident analysis. They are included conclusions applicable in many cases to development countries. (author)

  5. From mutual recognition to mutual scientific opinion? Constitutional framework for risk analysis in EU food safety law

    NARCIS (Netherlands)

    Szajkowska, A.

    2009-01-01

    Regulation 178/2002 (the so-called General Food Law – GFL) codifies risk analysis as the core principle of the modern food safety policy. This article places the GFL in EU multi-level food safety governance and analyses the impact of risk analysis, the precautionary principle and mechanisms of

  6. Legal basis for risk analysis methodology while ensuring food safety in the Eurasian Economic union and the Republic of Belarus

    Directory of Open Access Journals (Sweden)

    E.V. Fedorenko

    2015-09-01

    Full Text Available Health risk analysis methodology is an internationally recognized tool for ensuring food safety. Three main elements of risk analysis are risk assessment, risk management and risk communication to inform the interested parties on the risk, are legislated and implemented in the Eurasian Economic Union and the Republic of Belarus. There is a corresponding organizational and functional framework for the application of risk analysis methodology as in the justification of production safety indicators and the implementation of public health surveillance. Common methodological approaches and criteria for evaluating public health risk are determined, which are used in the development and application of food safety requirements. Risk assessment can be used in justifying the indicators of safety (contaminants, food additives, and evaluating the effectiveness of programs on enrichment of food with micronutrients.

  7. Safety analysis and risk assessment of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; McLouth, L.; Odell, B.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF and the methodology used to study them. It provides a summary of the methodology, an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  8. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    International Nuclear Information System (INIS)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A.

    1990-01-01

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG ampersand G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort

  9. Comparative risk analysis

    International Nuclear Information System (INIS)

    Niehaus, F.

    1988-01-01

    In this paper, the risks of various energy systems are discussed considering severe accidents analysis, particularly the probabilistic safety analysis, and probabilistic safety criteria, and the applications of these criteria and analysis. The comparative risk analysis has demonstrated that the largest source of risk in every society is from daily small accidents. Nevertheless, we have to be more concerned about severe accidents. The comparative risk analysis of five different energy systems (coal, oil, gas, LWR and STEC (Solar)) for the public has shown that the main sources of risks are coal and oil. The latest comparative risk study of various energy has been conducted in the USA and has revealed that the number of victims from coal is 42 as many than victims from nuclear. A study for severe accidents from hydro-dams in United States has estimated the probability of dam failures at 1 in 10,000 years and the number of victims between 11,000 and 260,000. The average occupational risk from coal is one fatal accident in 1,000 workers/year. The probabilistic safety analysis is a method that can be used to assess nuclear energy risks, and to analyze the severe accidents, and to model all possible accident sequences and consequences. The 'Fault tree' analysis is used to know the probability of failure of the different systems at each point of accident sequences and to calculate the probability of risks. After calculating the probability of failure, the criteria for judging the numerical results have to be developed, that is the quantitative and qualitative goals. To achieve these goals, several systems have been devised by various countries members of AIEA. The probabilistic safety ana-lysis method has been developed by establishing a computer program permit-ting to know different categories of safety related information. 19 tabs. (author)

  10. Road Safety Risk Assessment: An Analysis of Transport Policy and Management for Low-, Middle-, and High-Income Asian Countries

    Directory of Open Access Journals (Sweden)

    Syyed Adnan Raheel Shah

    2018-02-01

    Full Text Available Road safety assessment has played a crucial role in the theory and practice of transport management systems. This paper focuses on risk evaluation in the Asian region by exploring the interaction between road safety risk and influencing factors. In the first stage, a data envelopment analysis (DEA method is applied to calculate and rank the road safety risk levels of Asian countries. In the second stage, a structural equation model (SEM with latent variables is applied to analyze the interaction between the road safety risk level and the latent variables, measured by six observed performance indicators, i.e., financial impact, institutional framework, infrastructure and mobility, legislation and policy, vehicular road users, and trauma management. Finally, this paper illustrates the applicability of this DEA-SEM approach for road safety performance analysis.

  11. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  12. Application of classification algorithms for analysis of road safety risk factor dependencies.

    Science.gov (United States)

    Kwon, Oh Hoon; Rhee, Wonjong; Yoon, Yoonjin

    2015-02-01

    Transportation continues to be an integral part of modern life, and the importance of road traffic safety cannot be overstated. Consequently, recent road traffic safety studies have focused on analysis of risk factors that impact fatality and injury level (severity) of traffic accidents. While some of the risk factors, such as drug use and drinking, are widely known to affect severity, an accurate modeling of their influences is still an open research topic. Furthermore, there are innumerable risk factors that are waiting to be discovered or analyzed. A promising approach is to investigate historical traffic accident data that have been collected in the past decades. This study inspects traffic accident reports that have been accumulated by the California Highway Patrol (CHP) since 1973 for which each accident report contains around 100 data fields. Among them, we investigate 25 fields between 2004 and 2010 that are most relevant to car accidents. Using two classification methods, the Naive Bayes classifier and the decision tree classifier, the relative importance of the data fields, i.e., risk factors, is revealed with respect to the resulting severity level. Performances of the classifiers are compared to each other and a binary logistic regression model is used as the basis for the comparisons. Some of the high-ranking risk factors are found to be strongly dependent on each other, and their incremental gains on estimating or modeling severity level are evaluated quantitatively. The analysis shows that only a handful of the risk factors in the data dominate the severity level and that dependency among the top risk factors is an imperative trait to consider for an accurate analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    Science.gov (United States)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  14. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  15. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  16. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  17. Development of reliability and probabilistic safety assessment program RiskA

    International Nuclear Information System (INIS)

    Wu, Yican

    2015-01-01

    Highlights: • There are four parts in the structure of RiskA. User input part lets users input the PSA model and some necessary data by GUI or model transformation tool. In calculation engine part, fault tree analysis, event tree analysis, uncertainty analysis, sensitivity analysis, importance analysis and failure mode and effects analysis are supplied. User output part outputs the analysis results, user customized reports and some other data. The last part includes reliability database, some other common tools and help documents. • RiskA has several advanced features. Extensible framework makes it easy to add any new functions, making RiskA to be a large platform of reliability and probabilistic safety assessment. It is very fast to analysis fault tree in RiskA because many advanced algorithm improvement were made. Many model formats can be imported and exported, which made the PSA model in the commercial software can be easily transformed to adapt RiskA platform. Web-based co-modeling let several users in different places work together whenever they are online. • The comparison between RiskA and other mature PSA codes (e.g. CAFTA, RiskSpectrum, XFTA) has demonstrated that the calculation and analysis of RiskA is correct and efficient. Based on the development of this code package, many applications of safety and reliability analysis of some research reactors and nuclear power plants were performed. The development of RiskA appears to be of realistic and potential value for academic research and practical operation safety management of nuclear power plants in China and abroad. - Abstract: PSA (probabilistic safety assessment) software, the indispensable tool in nuclear safety assessment, has been widely used. An integrated reliability and PSA program named RiskA has been developed by FDS Team. RiskA supplies several standard PSA modules including fault tree analysis, event tree analysis, uncertainty analysis, failure mode and effect analysis and reliability

  18. Mitigating construction safety risks using prevention through design.

    Science.gov (United States)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Roca, Xavier; Fuertes, Alba

    2010-04-01

    Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD). This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs. Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction. The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Safety analysis in the high risk industry: Similarities and differences with the nuclear approach

    International Nuclear Information System (INIS)

    Vilaragut LLanes, Juan Jose; Castillo Alvarez, Jorge Patricio

    2001-01-01

    In this article shows a conceptual aspects to the risk safety analysis, comparing them with the focus to the nuclear industry that has been characterized to be the pioneers in their systematized application

  20. Does a reactor need a safety backfit. Case study on communicating decision and risk analysis information to managers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.V.; Ulvila, J.W.

    1988-06-01

    An approach to communicating decision and risk analysis findings to managers is illustrated in a real case context. This article consists essentially of a report prepared for senior managers of the Nuclear Regulatory Commission to help them make a reactor safety decision. It illustrates the communication of decision analysis findings relating to technical risks, costs, and benefits in support of a major risk management decision: whether or not to require a safety backfit. Its focus is on the needs of decision makers, and it introduces some novel communication devices.

  1. A Review and Comparative Analysis of Security Risks and Safety Measures of Mobile Health Apps

    Directory of Open Access Journals (Sweden)

    Karen Scott

    2015-11-01

    Full Text Available In line with a patient-centred model of healthcare, Mobile Health applications (mhealth apps provide convenient and equitable access to health and well-being resources and programs that can enable consumers to monitor their health related problems, understand specific medical conditions and attain personal fitness goals. This increase in access and control comes with an increase in risk and responsibility to identify and manage the associated risks, such as the privacy and security of consumers’ personal and health information. Based on a review of the literature, this paper identifies a set of risk and safety features for evaluating mHealth apps and uses those features to conduct a comparative analysis of the 20 most popular mHealth apps. The comparative analysis reveals that current mHealth apps do pose a risk to consumers. To address the safety and privacy concerns, recommendations to consumers and app developers are offered together with consideration of mHealth app future trends.

  2. Constructing definitions of safety risks while nurses care for hospitalised older people: Secondary analysis of qualitative data.

    Science.gov (United States)

    Dahlke, Sherry; Hall, Wendy A; Baumbusch, Jennifer

    2017-09-01

    The aim of this secondary qualitative descriptive analysis was to examine how nurses construct a definition of older peoples' safety risks and provide care while working within organisational contexts that are focused on diminishing patient risks. Numbers of older patients are increasing in acute hospital contexts-contexts that place their focus on patient safety. Nurses need to manage tensions between older peoples' risks, evidence-informed practice decisions, limited resources and organisational emphases on patient falls. To date, their practice dilemmas have not been well examined. A secondary qualitative descriptive analysis was conducted using data that were collected between June 2010 and May 2011 to examine nursing practice with hospitalised older people. All field notes and transcribed data were reviewed to generate themes representing 18 Registered Nurses' perceptions about safe care for hospitalised older people. The first author generated categories that described how nurses construct definitions of safety risks for older people. All authors engaged in an iterative analytic process that resulted in themes capturing nurses' efforts to provide care in limited resource environments while considering older peoples' safety risks. Nurses constructed definitions of patient safety risks in the context of institutional directives. Nurses provided care using available resources as efficiently as possible and accessing co-worker support. They also minimised the importance of older people's functional abilities by setting priorities for medically delegated tasks and immobilising their patients to reduce their risks. Nurses' definitions of patient risk, which were shaped by impoverished institutional resources and nurses' lack of valuing of functional abilities, contributed to suboptimal care for older adults. Nurses' definitions of risk as physical injury reduced their attention to patients' functional abilities, which nurses reported suffered declines as a result

  3. Occupational health and safety: Designing and building with MACBETH a value risk-matrix for evaluating health and safety risks

    Science.gov (United States)

    Lopes, D. F.; Oliveira, M. D.; Costa, C. A. Bana e.

    2015-05-01

    Risk matrices (RMs) are commonly used to evaluate health and safety risks. Nonetheless, they violate some theoretical principles that compromise their feasibility and use. This study describes how multiple criteria decision analysis methods have been used to improve the design and the deployment of RMs to evaluate health and safety risks at the Occupational Health and Safety Unit (OHSU) of the Regional Health Administration of Lisbon and Tagus Valley. ‘Value risk-matrices’ (VRMs) are built with the MACBETH approach in four modelling steps: a) structuring risk impacts, involving the construction of descriptors of impact that link risk events with health impacts and are informed by scientific evidence; b) generating a value measurement scale of risk impacts, by applying the MACBETH-Choquet procedure; c) building a system for eliciting subjective probabilities that makes use of a numerical probability scale that was constructed with MACBETH qualitative judgments on likelihood; d) and defining a classification colouring scheme for the VRM. A VRM built with OHSU members was implemented in a decision support system which will be used by OHSU members to evaluate health and safety risks and to identify risk mitigation actions.

  4. EFFICIENT QUANTITATIVE RISK ASSESSMENT OF JUMP PROCESSES: IMPLICATIONS FOR FOOD SAFETY

    OpenAIRE

    Nganje, William E.

    1999-01-01

    This paper develops a dynamic framework for efficient quantitative risk assessment from the simplest general risk, combining three parameters (contamination, exposure, and dose response) in a Kataoka safety-first model and a Poisson probability representing the uncertainty effect or jump processes associated with food safety. Analysis indicates that incorporating jump processes in food safety risk assessment provides more efficient cost/risk tradeoffs. Nevertheless, increased margin of safety...

  5. Status of Ignalina's safety analysis reports

    International Nuclear Information System (INIS)

    Uspuras, E.

    1999-01-01

    Ignalina NPP is unique among RBMK type reactors in the scope and comprehensiveness of international studies which have been performed to verify its design parameters and analyze risk levels. International assistance took several forms, a very valuable mod of assistance utilized the knowledge of international experts in extensive international studies whose purpose was: collection, systematization and verification of plant design data; analysis of risk levels; recommendations leading to improvements in the safety lave; transfer of state of the art analytical methodology to Lithuanian specialists. The major large scale international studies include: probabilistic risk analysis; extensive international study meant to provide comprehensive overview of plant status with special emphasis on safety aspects; an extensive review of the Safety Analysis Report by an independent group of international experts. In spite of the safety improvements and analyses which have been performed at the Ignalina NPP, much remains to be done in the nearest future

  6. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  7. Mastery of risks and operating safety, risks and efficiencies

    International Nuclear Information System (INIS)

    2006-01-01

    A proper management of ones risks consists in acting to exert prevention and protection capacities against the negative consequences of an event, but also by committing oneself into an offensive approach allowing to improve efficiency, quality and availability. Safety and efficiencies are mutual reinforcing goals aiming at ensuring the perenniality of industries and services. The implementation of a risk management approach in an industrial environment allows to reach a better reactiveness and to increase the efficiency of a system by the mastery of organization and processes. The activities in concern are those of industries and services: transports, energy and environment, automotive industry, petrochemistry, chemistry, food, space, health, defense industries, telecommunication, mining industry, information systems, textile industry, finances.. The topics approached during this meeting treat of: the relevance of risk-abatement resources with respect to risks criticality; the consistent management of uncertainties with respect to stakes; the mastery of components aging and the expression of aging-dependent availability, maintenance and safety policies; the expression of obsolescence-related renewing policies; the operating safety tools and methods applied to complex and computerized-controlled systems; the integration of social, organizational and human factors in technical decisions and companies management; transverse and global risk analysis and decision-aid approaches; the vigilance culture; crisis anticipation and management; the experience feedback on technical and organisational aspects; efficiency and risk mastery indicators; cost/benefit approach in risk management, and economic intelligence approaches. Nineteen presentations have been selected which deal with the mastery of risks and the operating safety at nuclear facilities. (J.S.)

  8. Discussion on the safety production risk managmeent of uranium mines

    International Nuclear Information System (INIS)

    Liu Bin; Luo Yun; Hu Penghua; Zhu Disi

    2009-01-01

    Based on the modern safety risk management theories and according to the actual situation, risk management for work safety in uranium mines is discussed from three aspects: risk identification,risk analysis and evaluation, and risk control. Referring to the '4M(Men,Machine,Medium,Management) factors' and 'Three types of hazards' theory, the classification of uranium mine accidents and risk factors are analyzed. In addition, the types and evaluation indexes of major risks of uranium mines as well as the 'spot, line, area' model of risk identification and analysis and the 'hierarchical' risk control mechanism are also studied. (authors)

  9. SafetyBarrierManager, a software tool to perform risk analysis using ARAMIS's principles

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2017-01-01

    of the ARAMIS project, Risø National Laboratory started developing a tool that could implement these methodologies, leading to SafetyBarrierManager. The tool is based on the principles of “safety‐barrier diagrams”, which are very similar to “bowties”, with the possibility of performing quantitative analysis......The ARAMIS project resulted in a number of methodologies, dealing with among others: the development of standard fault trees and “bowties”; the identification and classification of safety barriers; and including the quality of safety management into the quantified risk assessment. After conclusion....... The tool allows constructing comprehensive fault trees, event trees and safety‐barrier diagrams. The tool implements the ARAMIS idea of a set of safety barrier types, to which a number of safety management issues can be linked. By rating the quality of these management issues, the operational probability...

  10. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The objectives of the risk-based indicator programme. The characteristics of the risk-based indicators. The objectives of risk-based safety indicators - in monitoring safety; in PSA applications. What indicators? How to produce the risk based indicators? PSA requirements

  11. Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Blom, Henk A.P.; Bakker, G.J.

    2013-01-01

    In the safety literature it has been argued, that in a complex socio-technical system safety cannot be well analysed by event sequence based approaches, but requires to capture the complex interactions and performance variability of the socio-technical system. In order to evaluate the quantitative and practical consequences of these arguments, this study compares two approaches to assess accident risk of an example safety critical sociotechnical system. It contrasts an event sequence based assessment with a multi-agent dynamic risk model (MA-DRM) based assessment, both of which are performed for a particular runway incursion scenario. The event sequence analysis uses the well-known event tree modelling formalism and the MA-DRM based approach combines agent based modelling, hybrid Petri nets and rare event Monte Carlo simulation. The comparison addresses qualitative and quantitative differences in the methods, attained risk levels, and in the prime factors influencing the safety of the operation. The assessments show considerable differences in the accident risk implications of the performance of human operators and technical systems in the runway incursion scenario. In contrast with the event sequence based results, the MA-DRM based results show that the accident risk is not manifest from the performance of and relations between individual human operators and technical systems. Instead, the safety risk emerges from the totality of the performance and interactions in the agent based model of the safety critical operation considered, which coincides very well with the argumentation in the safety literature.

  12. Risk based limits for Operational Safety Requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  13. Risk based maintenance to increase safety and decrease costs

    International Nuclear Information System (INIS)

    Phillips, J.H.

    2000-01-01

    Risk-Based techniques have been developed for commercial nuclear power plants for the last eight years by a team working through the ASME Center for Research and Technology Development (CRTD). System boundaries and success criteria is defined using the Probabilistic Risk Analysis or Probabilistic Safety Analysis developed to meet the Individual Plant Evaluation. Final ranking of components is by a plant expert panel similar to the one developed for the Maintenance Rule. Components are identified as being high risk-significant or low risk-significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of plants. Results from the first risk-based inspection pilot plant indicates safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. Pilot studies on risk-based testing indicate that about 60% of pumps and 25 to 30% of valves in plants are high safety-significant The reduction in inspection and testing reduces the person-rem exposure and resulting in further increases in safety. These techniques have been documented in publications by the ASME CRTD which are referenced. (author)

  14. Uncertainty analysis for Ulysses safety evaluation report

    International Nuclear Information System (INIS)

    Frank, M.V.

    1991-01-01

    As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low

  15. DESIGN PACKAGE 1E SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    M. Salem

    1995-06-23

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1E, Surface Facilities, (for a list of design items included in the package 1E system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1E structures/systems/components(S/S/Cs) in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions.

  16. Road safety risk evaluation and target setting using data envelopment analysis and its extensions.

    Science.gov (United States)

    Shen, Yongjun; Hermans, Elke; Brijs, Tom; Wets, Geert; Vanhoof, Koen

    2012-09-01

    Currently, comparison between countries in terms of their road safety performance is widely conducted in order to better understand one's own safety situation and to learn from those best-performing countries by indicating practical targets and formulating action programmes. In this respect, crash data such as the number of road fatalities and casualties are mostly investigated. However, the absolute numbers are not directly comparable between countries. Therefore, the concept of risk, which is defined as the ratio of road safety outcomes and some measure of exposure (e.g., the population size, the number of registered vehicles, or distance travelled), is often used in the context of benchmarking. Nevertheless, these risk indicators are not consistent in most cases. In other words, countries may have different evaluation results or ranking positions using different exposure information. In this study, data envelopment analysis (DEA) as a performance measurement technique is investigated to provide an overall perspective on a country's road safety situation, and further assess whether the road safety outcomes registered in a country correspond to the numbers that can be expected based on the level of exposure. In doing so, three model extensions are considered, which are the DEA based road safety model (DEA-RS), the cross-efficiency method, and the categorical DEA model. Using the measures of exposure to risk as the model's input and the number of road fatalities as output, an overall road safety efficiency score is computed for the 27 European Union (EU) countries based on the DEA-RS model, and the ranking of countries in accordance with their cross-efficiency scores is evaluated. Furthermore, after applying clustering analysis to group countries with inherent similarity in their practices, the categorical DEA-RS model is adopted to identify best-performing and underperforming countries in each cluster, as well as the reference sets or benchmarks for those

  17. Expressing best practices in (risk) analysis and testing of safety-critical systems using patterns

    DEFF Research Database (Denmark)

    Herzner, Wolfgang; Sieverding, Sven; Kacimi, Omar

    2014-01-01

    The continuing pervasion of our society with safety-critical cyber-physical systems not only demands for adequate (risk) analysis, testing and verification techniques, it also generates growing experience on their use, which can be considered as important as the tools themselves for their efficient...

  18. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Sedlak, J.

    2001-12-01

    The report is structured as follows: 1. Risk-based safety indicators: Typology of risk-based indicators (RBIs); Tools for defining RBIs; Requirements for the PSA model; Data sources for RBIs; Types of risks monitored; RBIs and operational safety indicators; Feedback from operating experience; PSO model modification for RBIs; RBI categorization; RBI assessment; RBI applications; Suitable RBI applications. 2. Proposal for risk-based indicators: Acquiring information from operational experience; Method of acquiring safety relevance coefficients for the systems from a PSA model; Indicator definitions; On-line indicators. 3. Annex: Application of RBIs worldwide. (P.A.)

  19. The Cold War legacy of regulatory risk analysis: The Atomic Energy Commission and radiation safety

    Science.gov (United States)

    Boland, Joseph B.

    From its inception in 1946 the Atomic Energy Commission pioneered the use of risk analysis as a mode of regulatory rationality and political rhetoric, yet historical treatments of risk analysis nearly always overlook the important role it played in the administration of atomic energy during the early Cold War. How this absence from history has been achieved and why it characterizes most historical accounts are the subjects of Chapter II. From there, this study goes on to develop the thesis that the advent of the atomic bomb was a world-shattering event that forced the Truman administration to choose between two novel alternatives: (1) movement towards global governance based initially on cooperative control of atomic energy or (2) unsparing pursuit of nuclear superiority. I refer to these as nuclear internationalism and nuclear nationalism, respectively. Each defined a social risk hierarchy. With the triumph of nuclear nationalism, nuclear annihilation was designated the greatest risk and a strong nuclear defense the primary means of prevention. The AEC's mission in the 1950s consisted of the rapid development of a nuclear arsenal, continual improvements in weapons technologies, and the promotion of nuclear power. The agency developed a risk-based regulatory framework through its dominant position within the National Committee on Radiation Protection. It embraced a technocratic model of risk analysis whose articulation and application it controlled, largely in secret. It used this to undergird a public rhetoric of reassurance and risk minimization. In practice, safety officials adjusted exposure levels within often wide parameters and with considerable fluidity in order to prevent safety concerns from interfering with operations. Secrecy, the political climate of the time, and a lack of accountability enabled the agency to meld technical assessments with social value judgments in a manner reflective of nuclear nationalism's risk hierarchy. In the late fifties

  20. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  1. Geotechnical approach for occupational safety risk analysis of critical slope in open pit mining as implication for earthquake hazard

    Science.gov (United States)

    Munirwansyah; Irsyam, Masyhur; Munirwan, Reza P.; Yunita, Halida; Zulfan Usrina, M.

    2018-05-01

    Occupational safety and health (OSH) is a planned effort to prevent accidents and diseases caused by work. In conducting mining activities often occur work accidents caused by unsafe field conditions. In open mine area, there is often a slump due to unstable slopes, which can disrupt the activities and productivity of mining companies. Based on research on stability of open pit slopes conducted by Febrianti [8], the Meureubo coal mine located in Aceh Barat district, on the slope of mine was indicated unsafe slope conditions, it will be continued research on OSH for landslide which is to understand the stability of the excavation slope and the shape of the slope collapse. Plaxis software was used for this research. After analyzing the slope stability and the effect of landslide on OSH with Job Safety Analysis (JSA) method, to identify the hazard to work safety, risk management analysis will be conducted to classified hazard level and its handling technique. This research aim is to know the level of risk of work accident at the company and its prevention effort. The result of risk analysis research is very high-risk value that is > 350 then the activity must be stopped until the risk can be reduced to reach the risk value limit < 20 which is allowed or accepted.

  2. Generalized indices for radiation risk analysis

    International Nuclear Information System (INIS)

    Bykov, A.A.; Demin, V.F.

    1989-01-01

    A new approach to ensuring nuclear safety has begun forming since the early eighties. The approach based on the probabilistic safety analysis, the principles of acceptable risk, the optimization of safety measures, etc. has forced a complex of adequate quantitative methods of assessment, safety analysis and risk management to be developed. The method of radiation risk assessment and analysis hold a prominent place in the complex. National and international research and regulatory organizations ICRP, IAEA, WHO, UNSCEAR, OECD/NEA have given much attention to the development of the conceptual and methodological basis of those methods. Some resolutions of the National Commission of Radiological Protection (NCRP) and the Problem Commission on Radiation Hygiene of the USSR Ministry of Health should be also noted. Both CBA (cost benefit analysis) and other methods of radiation risk analysis and safety management use a system of natural and socio-economic indices characterizing the radiation risk or damage. There exist a number of problems associated with the introduction, justification and use of these indices. For example, the price, a, of radiation damage, or collective dose unit, is a noteworthy index. The difficulties in its qualitative and quantitative determination are still an obstacle for a wide application of CBA to the radiation risk analysis and management. During recent 10-15 years these problems have been a subject of consideration for many authors. The present paper also considers the issues of the qualitative and quantitative justification of the indices of radiation risk analysis

  3. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  4. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  5. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  6. Economic aspects of risk assessment in chemical safety

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, M F; Shannon, H S

    1986-05-01

    This paper considers how the economic aspects of risk assessment in chemical safety can be strengthened. Its main focus is on how economic appraisal techniques, such as cost-benefit and cost-effectiveness analysis, can be adapted to the requirements of the risk-assessment process. Following a discussion of the main methodological issues raised by the use of economic appraisal, illustrated by examples from the health and safety field, a number of practical issues are discussed. These include the consideration of the distribution of costs, effects and benefits, taking account of uncertainty, risk probabilities and public perception, making the appraisal techniques useful to the early stages of the risk-assessment process and structuring the appraisal to permit continuous feedback to the participants in the risk-assessment process. It is concluded that while the way of thinking embodied in economic appraisal is highly relevant to the consideration of choices in chemical safety, the application of these principles in formal analysis of risk reduction procedures presents a more mixed picture. The main suggestions for improvement in the analyses performed are the undertaking of sensitivity analyses of study results to changes in the key assumptions, the presentation of the distribution of costs and benefits by viewpoint, the comparison of health and safety measures in terms of their incremental cost per life-year (or quality-adjusted life-year) gained and the more frequent retrospective review and revision of the economic analyses that are undertaken.

  7. Systems engineered health and safety criteria for safety analysis reports

    International Nuclear Information System (INIS)

    Beitel, G.A.; Morcos, N.

    1993-01-01

    The world of safety analysis is filled with ambiguous words: codes and standards, consequences and risks, hazard and accident, and health and safety. These words have been subject to disparate interpretations by safety analysis report (SAR) writers, readers, and users. open-quotes Principal health and safety criteriaclose quotes has been one of the most frequently misused phrases; rarely is it used consistently or effectively. This paper offers an easily understood definition for open-quotes principal health and safety criteriaclose quotes and uses systems engineering to convert an otherwise mysterious topic into the primary means of producing an integrated SAR. This paper is based on SARs being written for environmental restoration and waste management activities for the U.S. Department of Energy (DOE). Requirements for these SARs are prescribed in DOE Order 5480-23, open-quotes Nuclear Safety Analysis Reports.close quotes

  8. Risk monitor - a tool for operational safety assessment risk monitor - user's manual

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.

    2006-06-01

    Probabilistic Safety Assessment has become a key tool as on today to identify and understand Nuclear Power Plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk Monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk Monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear Power plant. Operation of Risk Monitor is based on PSA methods for assisting in day to day applications. Risk Monitoring programs can assess the risk profile and are used to optimize the operation of Nuclear Power Plants with respect to a minimum risk level over the operating time. This report presents the background activities of Risk Monitor, its application areas and the step by step procedure for the user.to interact with the software. This software can be used with the PSA model of any Nuclear Power Plant. (author)

  9. Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.; Parisi, Carlo; Cogliati, Joshua J.; Talbot, Paul W.; Smith, Curtis L.; Rabiti, Cristian; Picoco, Claudia

    2016-01-01

    In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually called Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, ''extracting information'' means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.

  10. Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Picoco, Claudia [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually called Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.

  11. Safety control and risk management

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1987-01-01

    The acceptable probability of major accidents in nuclear power is very small, and can not be determined from direct empirical evidence. Therefore, control of the level of safety is a complex problem. The difficulty is related to the fact that a variable, 'safety', which is not accessible to direct measurement, is to be tightly controlled. Control, therefore, depends on a systematic, analytical prediction of the target state, i.e., the level of safety, from indirect evidence. From a control theoretic point of view this means that safety is controlled by a system which includes openloop as well as closed loop control paths. The aim of the paper is to take a general systems view on the complex mechanisms involved in the control of safety of industrial installations like nuclear power. From this, the role of probabilistic risk analysis is evaluated and needs for further development discussed. (author)

  12. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  13. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Systems Analysis of NASA Aviation Safety Program: Final Report

    Science.gov (United States)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  15. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  16. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  17. The role of risk analysis in control of complex plants' safety operation

    International Nuclear Information System (INIS)

    Dumitrescu, Maria; Preda, Irina Aida; Lazar, Roxana Elena; Carcadea, Elena

    1999-01-01

    The problem of risk estimation, assessment and control is necessary to be discussed at every decision level of an activity. In this way the performances of a system, action or technology are qualitatively assessed by indicating the possible consequences on environmental, people or property. The paper presents methodologies of risk assessment successfully applied on isotopic separation plants. The quantitative methodologies presented use fault tree and event tree to determine the accident states frequency and physical models to analyse the dispersion in atmosphere of dangerous substances. The qualitative methodologies use fuzzy models for the multi-criteria decision making, models based on risk matrix built on the basis of a combination between severity and probability of maximum admissible consequence. These methodologies present the following steps for applying: familiarising with the activity in study, establishing the adequate method of risk assessment, realising of the model of risk assessment for the activity or objective in study, developing of application of the proposed model. Applying this methodology to isotopic separation plants has led to: analysis of operation events and establishing of principal types of events potentially dangerous, analysis of human error in these plants operation and operating experience assessment, technical specifications optimisation by probabilistic safety assessment, reliability analysis and development of reliability and exploitation events database, post accident events analysis (releases, fires, explosions) and mathematical modelling of dispersion in atmosphere of dangerous substances. The risk concept being complex and with multiple implications, it is not the case of a rigid approaching neither of existence of some methods universally valid. Because of these reasons choosing of the most appropriate method for the risk assessment of an activity, leads to solution in due time, of some problems with economic, social

  18. Methods for Risk Analysis

    International Nuclear Information System (INIS)

    Alverbro, Karin

    2010-01-01

    Many decision-making situations today affect humans and the environment. In practice, many such decisions are made without an overall view and prioritise one or other of the two areas. Now and then these two areas of regulation come into conflict, e.g. the best alternative as regards environmental considerations is not always the best from a human safety perspective and vice versa. This report was prepared within a major project with the aim of developing a framework in which both the environmental aspects and the human safety aspects are integrated, and decisions can be made taking both fields into consideration. The safety risks have to be analysed in order to be successfully avoided and one way of doing this is to use different kinds of risk analysis methods. There is an abundance of existing methods to choose from and new methods are constantly being developed. This report describes some of the risk analysis methods currently available for analysing safety and examines the relationships between them. The focus here is mainly on human safety aspects

  19. Comparison of Country Risk, Sustainability and Economic Safety Indices

    Directory of Open Access Journals (Sweden)

    Jelena Stankeviciene

    2014-03-01

    Full Text Available Country risk, sustainability an economic safety are becoming more important in the contemporary economic world. The aim of this paper is to present the importance of comparison formalisation of country risk, sustainability, and economic safety indices for strategic alignment. The work provides an analysis on the relationship between country risk, sustainability an economic safety in EU countries, based on statistical data. Investigations and calculations of rankings provided by Euromoney Country Risk Index, European Economic Sustainability Index as well as for Economic Security Index were made and the results of EU country ranking based on three criteria were provided. Furthermore, the data for the Baltic States was summarised and the corresponding index of consistency for random judgments was evaluated.

  20. National Waste Repository Novi Han operational safety analysis report. Safety assessment methodology

    International Nuclear Information System (INIS)

    2003-01-01

    The scope of the safety assessment (SA), presented includes: waste management functions (acceptance, conditioning, storage, disposal), inventory (current and expected in the future), hazards (radiological and non-radiological) and normal and accidental modes. The stages in the development of the SA are: criteria selection, information collection, safety analysis and safety assessment documentation. After the review the facilities functions and the national and international requirements, the criteria for safety level assessment are set. As a result from the 2nd stage actual parameters of the facility, necessary for safety analysis are obtained.The methodology is selected on the base of the comparability of the results with the results of previous safety assessments and existing standards and requirements. The procedure and requirements for scenarios selection are described. A radiological hazard categorisation of the facilities is presented. Qualitative hazards and operability analysis is applied. The resulting list of events are subjected to procedure for prioritization by method of 'criticality analysis', so the estimation of the risk is given for each event. The events that fall into category of risk on the boundary of acceptability or are unacceptable are subjected to the next steps of the analysis. As a result the lists with scenarios for PSA and possible design scenarios are established. PSA logical modeling and quantitative calculations of accident sequences are presented

  1. Mastery of risks and operational safety, risks and opportunities

    International Nuclear Information System (INIS)

    2004-01-01

    Creating socially useful richness is certainly the prime reason for companies to exist. Reaching this always moving target leads to seize opportunities and to take risks at the same time. For companies, risks and opportunities are two indissociable factors. Any decision making has to deal with an uncertain environment with random events of technological, economical, biological, human, environmental or natural origin. Because of the fear of uncertainty, risk acts as a brake to initiatives. In front of this problem, companies have to adopt a prevention policy based on a global and systemic approach, by identifying, evaluating, quantifying, sorting, mastering and managing unwanted events and by communicating about the way to treat them. In front of uncertainties, the operational safety, thanks to its methods and tools, supplies an incomparable contribution in the form of an help to any decision made with uncertainties. Operational safety contributes to the evaluation of costs and makes more realistic the economical estimations by taking into account the foreseeable and unforeseeable risks. The mastery of unwanted events, of their stakes and uncertainties, allows companies to carry out their projects in non-determined contexts and in a competitive environment. This colloquium concerns all socio-economical actors: industrialists, investors, decision makers, university and laboratory staffs, etc., who need a better evaluation of risks for a better mastery of their decisions in all sectors of activity. Seventeen papers of this conference, dealing with safety analysis and risk assessment at nuclear facilities and at other energy-related facilities, have been selected for Inis. (J.S.)

  2. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    1991-05-01

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  3. Ensuring the quality of occupational safety risk assessment.

    Science.gov (United States)

    Pinto, Abel; Ribeiro, Rita A; Nunes, Isabel L

    2013-03-01

    In work environments, the main aim of occupational safety risk assessment (OSRA) is to improve the safety level of an installation or site by either preventing accidents and injuries or minimizing their consequences. To this end, it is of paramount importance to identify all sources of hazards and assess their potential to cause problems in the respective context. If the OSRA process is inadequate and/or not applied effectively, it results in an ineffective safety prevention program and inefficient use of resources. An appropriate OSRA is an essential component of the occupational safety risk management process in industries. In this article, we performed a survey to elicit the relative importance for identified OSRA tasks to enable an in-depth evaluation of the quality of risk assessments related to occupational safety aspects on industrial sites. The survey involved defining a questionnaire with the most important elements (tasks) for OSRA quality assessment, which was then presented to safety experts in the mining, electrical power production, transportation, and petrochemical industries. With this work, we expect to contribute to the main question of OSRA in industries: "What constitutes a good occupational safety risk assessment?" The results obtained from the questionnaire showed that experts agree with the proposed OSRA process decomposition in steps and tasks (taxonomy) and also with the importance of assigning weights to obtain knowledge about OSRA task relevance. The knowledge gained will enable us, in the near future, to build a framework to evaluate OSRA quality for industrial sites. © 2012 Society for Risk Analysis.

  4. Analysis of safety impacts from external flooding using the risk-informed safety margin characterization (RISMC) Toolkit

    International Nuclear Information System (INIS)

    Smith, Curtis L.; Mandelli, Diego; Prescott, Steve

    2015-01-01

    The existing fleet of U.S. nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper demonstrates how Idaho National Laboratory (INL) researchers use the RISMC Toolkit to investigate complex nuclear plant phenomena using RAVEN and RELAP-7. The analysis focused on a highly relevant topic currently facing some nuclear power plants – specifically flooding issues. This research and development looked at challenges to a hypothetical pressurized water reactor, including: (1) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (2) earthquake induced station-blackout, and (3) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at INL. Using RAVEN, we were able to perform multiple RELAP-7 simulation runs by changing specific parts of the model in order to reflect specific aspects of different scenarios, including both the failure and recovery of critical components. The simulation employed traditional statistical tools (such as Monte-Carlo sampling) and more advanced machine-learning based algorithms to perform uncertainty quantification in order to understand changes in system performance and limitations as a consequence of power uprate. Qualitative and quantitative results obtained gave a detailed picture of the issues associated with potential accident scenarios. These types of

  5. Risk reduction category (RRC-A) accident studies in the safety analysis report of the EPR trademark reactor

    International Nuclear Information System (INIS)

    Poehlmann, M.; Bleher, G.; Ismaier, A.; Knoll, A.; Levi, P.; Garcia, E. Vera; Schels, A.; Seitz, H.; Lima Campos, L.

    2013-01-01

    The Risk Reduction Category (RRC-A) is considered in the safety demonstration of nuclear reactors in addition to design basis operating conditions (Plant Condition Category, PCC), in order to analyze with a risk reduction approach any operating conditions with multiple failures. As extending the operating conditions of the plant 'beyond design basis', the Risk Reduction Category (RRC-A) is also denoted as Design Extension Condition (DEC-A). In the German licensing framework, the RRCA (or DEC-A) transients correspond to safety assessment level '4b' of the 'Sicherheitsanforderungen an Kernkraftwerke' (Safety Requirements for Nuclear Power Plants), Az. RS I 5 - 13303/01 of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. These RRC-A (or DEC-A) operating conditions require specific design provisions (implemented by manual or automatic action), known as RRC-A measures, intended to render consequences of accumulated failures admissible. In contrast, RRC-B constitute severe accidents that lead to core melt. Identification of RRC-A operating conditions and corresponding RRC-A measures is based on the use of results of probabilistic safety assessments. After the Fukushima accident the RRC-A accidents like Station Black Out (SBO) or Loss of Ultimate Heat Sink (LUHS) are of particular interest in the safety assessment of nuclear new builds. In several chapters of the Safety Analysis Report it is demonstrated that the AREVA EPRTM design is resistant at RRC-A accident conditions. (orig.)

  6. Use of the Safety probabilistic analysis for the risk monitor before maintenance

    International Nuclear Information System (INIS)

    Gonzalez C, M.

    2004-01-01

    In this work the use of the Safety Probabilistic Analysis (APS) of the Laguna Verde Power plant to quantify the risk before maintenance is presented. Beginning to describe the nature of the Rule of Maintenance and their risk evaluations, it is planned about the paper of the APS for that purpose, and a systematic form to establish the reaches for this use open of the model is delineated. The work provides some technique details of the implantation methods of the APS like risk monitor, including the form of introducing the systems, trains and components to the user, as well as the fitness to the models and improvements to the used platform. There are covered some of the measures taken to achieve the objectives of preserving the base model approved, to facilitate the periodic realize, and to achieve acceptable times of execution for their efficient use. (Author)

  7. Risk management for industrial safety

    International Nuclear Information System (INIS)

    Novogno, A.

    1989-01-01

    The catastrophic accidents which have occurred in the last decade, in both developed and developing countries, have drawn the attention of decision-makers in the safety area to the urgent necessity to assess and manage risks from hazardous industrial activities which are concentrated in large industrialized areas. The aim of this paper is to review experience gained in conducting studies in the area of 'comparisons of risks in energy systems' and on the practical application of 'cost effectiveness of risk reduction analysis among different energy systems' (case studies). It is also the aim of the paper to discuss and propose a general framework for defining an 'integrated approach' to risk assessment and management in highly industrialized regions within a country. (author)

  8. Risk analysis: opening the process

    International Nuclear Information System (INIS)

    Hubert, Ph.; Mays, C.

    1998-01-01

    This conference on risk analysis took place in Paris, 11-14 october 1999. Over 200 paper where presented in the seven following sessions: perception; environment and health; persuasive risks; objects and products; personal and collective involvement; assessment and valuation; management. A rational approach to risk analysis has been developed in the three last decades. Techniques for risk assessment have been thoroughly enhanced, risk management approaches have been developed, decision making processes have been clarified, the social dimensions of risk perception and management have been investigated. Nevertheless this construction is being challenged by recent events which reveal how deficits in stakeholder involvement, openness and democratic procedures can undermine risk management actions. Indeed, the global process most components of risk analysis may be radically called into question. Food safety has lately been a prominent issue, but now debates appear, or old debates are revisited in the domains of public health, consumer products safety, waste management, environmental risks, nuclear installations, automobile safety and pollution. To meet the growing pressures for efficiency, openness, accountability, and multi-partner communication in risk analysis, institutional changes are underway in many European countries. However, the need for stakeholders to develop better insight into the process may lead to an evolution of all the components of risks analysis, even in its most (technical' steps. For stakeholders of different professional background, political projects, and responsibilities, risk identification procedures must be rendered understandable, quantitative risk assessment must be intelligible and accommodated in action proposals, ranging from countermeasures to educational programs to insurance mechanisms. Management formats must be open to local and political input and other types of operational feedback. (authors)

  9. Utilization of a risk matrix based on Probabilistic Safety Analysis to improve nuclear safety in NPP

    International Nuclear Information System (INIS)

    Stubbe, Gerald

    2010-01-01

    The Probabilistic Safety Analysis (PSA) is a systematic and comprehensive methodology to evaluate risks associated with a complex engineered technological entity. Risk in a PSA is defined as a feasible detrimental outcome of an initiator. Those initiators can be 'classical' transient as the loss of main feedwater, loss of the secondary heat sink, etc.. or accident (LOCA - Loss Of Coolant Accident, SGTR - Steam Generator Tube Rupture, LOOP - Loss Of Offsite Power, etc..) In a PSA, risk is characterized by two quantities: the magnitude (severity) of the possible adverse consequence, the likelihood (probability) of occurrence of each consequence. Consequences are expressed numerically (for this purpose: the core damage) and their likelihoods of occurrence are expressed as probabilities or frequencies (i.e., the number of occurrences or the probability of occurrence per unit time). The total risk is the expected loss: the sum of the products of the consequences multiplied by their probabilities. This lead to the parameter CDF: The Core Damage Frequency, which is expressed by unit of time. The main advantage of this risk calculation is to have a global, integrated, overview of the plants and their systems. This allows to have an objective and quantitative point of view on the importance of the equipments, human action, or common cause failures that can challenge the plant's safety. A total PSA model is divided in three levels: Level one, which consider the core damage; Level two, which consider the robustness of the containment; Level three, which consider the impact of the radiological release on the public. For the purpose of the risk matrix, a level one PSA is needed. The scope of a PSA model is important to have a good characterization of the plant's risk. The matrix makes more sense if you have a full scope level one model, containing, furthermore the internal events, the fire and flooding, but also seismic event (if relevant). Asymmetries are also classical in the

  10. 2005 dossier: granite. Tome: safety analysis of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  11. Risk management and safety culture

    International Nuclear Information System (INIS)

    Takano, K.

    2007-01-01

    Paper informs on the efforts to elaborate a feedback system for risk comprehensive evaluation and a system to improve structure safety foreseeing the possibility to control the latent risk, ensuring the qualitative evaluation of the safety level and improvement of safety culture in various branches of industry, first and foremost, in the electricity producing sector including the nuclear power industry [ru

  12. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  13. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    Energy Technology Data Exchange (ETDEWEB)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  14. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  15. Removing unreasonable conservatisms in DOE safety analysis

    International Nuclear Information System (INIS)

    BISHOP, G.E.

    1999-01-01

    While nuclear safety analyses must always be conservative, invoking excessive conservatisms does not provide additional margins of safety. Rather, beyond a fairly narrow point, conservatisms skew a facility's true safety envelope by exaggerating risks and creating unreasonable bounds on what is required for safety. The conservatism has itself become unreasonable. A thorough review of the assumptions and methodologies contained in a facility's safety analysis can provide substantial reward, reducing both construction and operational costs without compromising actual safety

  16. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  17. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  18. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  19. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the regulatory

  20. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    An updated assessment of the long-term safety of SKB's final repository for radioactive operational waste, SFR 1, is presented in this report. The report is included in the safety analysis report for SFR 1. The most recent account of long-term safety was submitted to the regulatory authorities in 2001. The present report has been compiled on SKB's initiative to address the regulatory authorities' viewpoints regarding the preceding account of long-term safety. Besides the new mode of working with safety functions there is another important difference between the 2001 safety assessment and the current assessment: The time horizon in the current assessment has been extended to 100,000 years in order to include the effect of future climate changes. The purpose of this renewed assessment of the long-term safety of SFR 1 is to show with improved data that the repository is capable of protecting human health and the environment against ionizing radiation in a long-term perspective. This is done by showing that calculated risks lie below the risk criteria stipulated by the regulatory authorities. SFR 1 is built to receive, and after closure serve as a passive repository for, low. and intermediate-level radioactive waste. The disposal chambers are situated in rock beneath the sea floor, covered by about 60 metres of rock. The underground part of the facility is reached via two tunnels whose entrances are near the harbour. The repository has been designed so that it can be abandoned after closure without further measures needing to be taken to maintain its function. The waste in SFR 1 is short-lived low- and intermediate-level waste. After 100 years the activity is less than half, and after 1,000 years only about 2% of the original activity remains. The report on long-term safety comprises eleven chapters. Chapter 1 Introduction. The chapter describes the purpose, background, format and contents of SAR-08, applicable regulations and injunctions, and the

  1. Problems of making decisions with account of risk and safety factors

    Energy Technology Data Exchange (ETDEWEB)

    Larichev, O I

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis.

  2. Problems of making decisions with account of risk and safety factors

    International Nuclear Information System (INIS)

    Larichev, O.I.

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis

  3. Applicability of trends in nuclear safety analysis to space nuclear power systems

    International Nuclear Information System (INIS)

    Bari, R.A.

    1992-01-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication

  4. The spread model of food safety risk under the supply-demand disturbance.

    Science.gov (United States)

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.

  5. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  6. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    International Nuclear Information System (INIS)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.

    2017-01-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  7. [A systemic risk analysis of hospital management processes by medical employees--an effective basis for improving patient safety].

    Science.gov (United States)

    Sobottka, Stephan B; Eberlein-Gonska, Maria; Schackert, Gabriele; Töpfer, Armin

    2009-01-01

    Due to the knowledge gap that exists between patients and health care staff the quality of medical treatment usually cannot be assessed securely by patients. For an optimization of safety in treatment-related processes of medical care, the medical staff needs to be actively involved in preventive and proactive quality management. Using voluntary, confidential and non-punitive systematic employee surveys, vulnerable topics and areas in patient care revealing preventable risks can be identified at an early stage. Preventive measures to continuously optimize treatment quality can be defined by creating a risk portfolio and a priority list of vulnerable topics. Whereas critical incident reporting systems are suitable for continuous risk assessment by detecting safety-relevant single events, employee surveys permit to conduct a systematic risk analysis of all treatment-related processes of patient care at any given point in time.

  8. Meeting on risk and monitoring analysis techniques for food safety - RLA/5/060/ARCAL Project (ARCAL CXXVIII): sampling plans and introduction to chemical risk assessment in food innocuousness

    International Nuclear Information System (INIS)

    2013-03-01

    Some of the Latinoamerican countries such us Bolivia, Colombia, Uruguay and Venezuela participant in the meeting gave an exposition about the risk analysis and monitoring techniques in food safety in their countyries. With the aim to study components of risk analysis, food innocuousness, evaluation and chemical dangers, toxicity, exposure, change of paradigms in the global food system, data sources, study in animals and in vitro, sensitivity analysis, risk assessment in health it carried out the meeting

  9. Unsharpness-risk analysis

    International Nuclear Information System (INIS)

    Preyssl, C.

    1986-01-01

    Safety analysis provides the only tool for evaluation and quantification of rare or hypothetical events leading to system failure. So far probability theory has been used for the fault- and event-tree methodology. The phenomenon of uncertainties constitutes an important aspect in risk analysis. Uncertainties can be classified as originating from 'randomness' or 'fuzziness'. Probability theory addresses randomness only. The use of 'fuzzy set theory' makes it possible to include both types of uncertainty in the mathematical model of risk analysis. Thus the 'fuzzy fault tree' is expressed in 'possibilistic' terms implying a range of simplifications and improvements. 'Human failure' and 'conditionality' can be treated correctly. Only minimum-maximum relations are used to combine the possibility distributions of events. Various event-classifications facilitate the interpretation of the results. The method is demonstrated by application to a TRIGA-research reactor. Uncertainty as an implicit part of 'fuzzy risk' can be quantified explicitly using an 'uncertainty measure'. Based on this the 'degree of relative compliance' with a quantizative safety goal can be defined for a particular risk. The introduction of 'weighting functionals' guarantees the consideration of the importances attached to different parts of the risk exceeding or complying with the standard. The comparison of two reference systems is demonstrated in a case study. It is concluded that any application of the 'fuzzy risk analysis' has to be free of any hypostatization when reducing subjective to objective information. (Author)

  10. Risk-based evaluation tool for safety-related maintenance involving scaffolding

    International Nuclear Information System (INIS)

    Stevens, C.; Azizi, M.; Massman, M.

    1988-01-01

    The US Nuclear Regulatory Commission (NRC) has expressed a general concern that transient materials in and around safety systems at nuclear power plants represent a seismic safety hazard to the plant, in particular, the uncontrolled use of scaffolding during maintenance activities. Currently, most plants perform a seismic safety analysis for all uses of scaffolding near safety-related equipment to determine appropriate tie-down locations, scaffolding reinforcements, etc. This is both time-consuming and, for the most part, unnecessary. A workable engineering solution based on risk analysis techniques has been developed and is being used at the Palo Verde nuclear generating station (PVNGS)

  11. Advanced uncertainty modelling for container port risk analysis.

    Science.gov (United States)

    Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin

    2016-08-13

    Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Risk analysis methods: their importance for safety assessment of practices using radiation

    International Nuclear Information System (INIS)

    Dumenigo, C; Vilaragut, J.J.; Ferro, R.; Guillen, A.; Ramirez, M.L.; Ortiz Lopez, P.; Rodriguez, M.; McDonnell, J.D.; Papadopulos, S.; Pereira, P.P.; Goncalvez, M.; Morales, J.; Larrinaga, E.; Lopez Morones, R.; Sanchez, R.; Delgado, J.M.; Sanchez, C.; Somoano, F.

    2008-01-01

    Radiation safety has been based for many years on verification of compliance with regulatory requirements, codes of practice and international standards, which can be considered prescriptive methods. Accident analyses have been published, lessons have been learned and safety assessments have incorporated the need to check whether a facility is ready to avoid accidents similar to the reported ones. These approaches can be also called 'reactive methods'. They have in common the fundamental limitation of being restricted to reported experience, but do not take into account other potential events, which were never published or never happened, i.e. latent risks. Moreover, they focus on accident sequences with major consequences and low probability but may not pay enough attention to other sequences leading to lower, but still significant consequences with higher probability. More proactive approaches are, therefore, needed, to assess risk in radiation facilities. They aim at identifying all potential equipment faults and human error, which can lead to predefined unwanted consequences and are based on the general risk equation: Risk = Probability of occurrence of an accidental sequence * magnitude of the consequences. In this work, a review is given of the experience obtained by the countries of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, by applying proactive methods to radiotherapy practice. In particular, probabilistic safety assessment (PSA) used for external beam treatments with linear electron accelerators and two studies, on cobalt 60 therapy and brachytherapy using the risk-matrix approach are presented. The work has identified event sequences, their likelihood of occurrence, the consequences, the efficiency of interlocks and control checks and the global importance in terms of overall risk, to facilitate decision making and implementation of preventive measures. A comparison is presented of advantages and limitations of

  13. Gas-cooled reactor safety and accident analysis

    International Nuclear Information System (INIS)

    1985-12-01

    The Specialists' Meeting on Gas-Cooled Reactor Safety and Accident Analysis was convened by the International Atomic Energy Agency in Oak Ridge on the invitation of the Department of Energy in Washington, USA. The meeting was hosted by the Oak Ridge National Laboratory. The purpose of the meeting was to provide an opportunity to compare and discuss results of safety and accident analysis of gas-cooled reactors under development, construction or in operation, to review their lay-out, design, and their operational performance, and to identify areas in which additional research and development are needed. The meeting emphasized the high safety margins of gas-cooled reactors and gave particular attention to the inherent safety features of small reactor units. The meeting was subdivided into four technical sessions: Safety and Related Experience with Operating Gas-Cooled Reactors (4 papers); Risk and Safety Analysis (11 papers); Accident Analysis (9 papers); Miscellaneous Related Topics (5 papers). A separate abstract was prepared for each of these papers

  14. Perception of risk from automobile safety defects.

    Science.gov (United States)

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.

  15. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  16. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  17. Proactive safety management in health care : towards a broader view of risk analysis, error recovery, and safety culture

    NARCIS (Netherlands)

    Habraken, M.M.P.

    2010-01-01

    Medical errors occur frequently. The harm and additional costs associated with those errors ask for effective safety management. According to the objective of minimal patient harm, safety management in health care should be proactive; that is, risks should be anticipated and reduced before patients

  18. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  19. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  20. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  1. Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

    International Nuclear Information System (INIS)

    Youngblood, R.W.

    2010-01-01

    The concept of 'margin' has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of 'margin' have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out with in a systematically conservative fashion. This means that the effectiveness of the application of the margin concept is determined in part by the original choice of surrogates, and is limited in any case by the degree of conservatism imposed on the evaluation. In the RISMC project, which is part of the Department of Energy's 'Light Water Reactor Sustainability Program' (LWRSP), we are developing a risk-informed characterization of safety margin. Beginning with the traditional discussion of 'margin' in terms of a 'load' (a physical challenge to system or component function) and a 'capacity' (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system response. For example, the probabilistic load spectrum will reflect the frequency of challenges of a particular severity. Such a characterization is required if decision-making is to be informed optimally. However, in order to enable the quantification of probabilistic load spectra, existing analysis capability needs to be extended. Accordingly, the INL is working on a next-generation safety analysis capability whose design will allow for much more efficient parameter uncertainty analysis, and will enable a much better integration of reliability-related and phenomenology-related aspects of margin.

  2. Estimating and controlling workplace risk: an approach for occupational hygiene and safety professionals.

    Science.gov (United States)

    Toffel, Michael W; Birkner, Lawrence R

    2002-07-01

    The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.

  3. Safety balance: Analysis of safety systems

    International Nuclear Information System (INIS)

    Delage, M.; Giroux, C.

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses

  4. Physicians' and nurses' perceptions of patient safety risks in the emergency department.

    Science.gov (United States)

    Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E

    2017-07-01

    The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hazard Analysis and Safety Requirements for Small Drone Operations: To What Extent Do Popular Drones Embed Safety?

    Science.gov (United States)

    Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela

    2018-03-01

    Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.

  6. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  7. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  8. Risk management and safety

    International Nuclear Information System (INIS)

    Niehaus, F.; Novegno, A.

    1985-01-01

    Risk assessment, including probabilistic analyses, has made great progress over the past decade. In spite of the inherent uncertainties it has now become possible to utilize methods and results for decision making at various levels. This paper will, therefore, review risk management in industrial installations, risk management for energy safety policy and prospects of risk management in highly industrialized areas. (orig.) [de

  9. The Concepts of Risk, Safety, and Security: Applications in Everyday Language.

    Science.gov (United States)

    Boholm, Max; Möller, Niklas; Hansson, Sven Ove

    2016-02-01

    The concepts of risk, safety, and security have received substantial academic interest. Several assumptions exist about their nature and relation. Besides academic use, the words risk, safety, and security are frequent in ordinary language, for example, in media reporting. In this article, we analyze the concepts of risk, safety, and security, and their relation, based on empirical observation of their actual everyday use. The "behavioral profiles" of the nouns risk, safety, and security and the adjectives risky, safe, and secure are coded and compared regarding lexical and grammatical contexts. The main findings are: (1) the three nouns risk, safety, and security, and the two adjectives safe and secure, have widespread use in different senses, which will make any attempt to define them in a single unified manner extremely difficult; (2) the relationship between the central risk terms is complex and only partially confirms the distinctions commonly made between the terms in specialized terminology; (3) whereas most attempts to define risk in specialized terminology have taken the term to have a quantitative meaning, nonquantitative meanings dominate in everyday language, and numerical meanings are rare; and (4) the three adjectives safe, secure, and risky are frequently used in comparative form. This speaks against interpretations that would take them as absolute, all-or-nothing concepts. © 2015 Society for Risk Analysis.

  10. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  11. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  12. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  13. Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions

    Science.gov (United States)

    Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.

    2014-01-01

    Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.

  14. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  15. Thermonuclear generation program: risks and safety

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de Araujo

    1999-01-01

    This work deals with the fundamental concepts of risk and safety related to nuclear power generation. In the first chapter, a general evaluation of the various systems for energy generation and their environmental impacts is made. Some definitions for safety and risk are suggested, based on the already existing regulatory processes and also on the current tendencies of risk management. Aspects regarding the safety culture are commented. The International Nuclear Event Scale (INES), a coherent and clear mechanism of communication between nuclear specialists and the general public, is analyzed. The second chapter examines the thermonuclear generation program in Brazil and the role of the National Nuclear Energy Commission. The third chapter presents national and international scenarios in terms of safety and risks, available policies and the main obstacles for future development of nuclear energy and nuclear engineering, and strategies are proposed. In the last chapter, comments about possible trends and recommendations related to practical risk management procedures, taking into account rational criteria for resources distribution and risk reduction are made, envisaging a closer integration between nuclear specialists and the society as a whole, thus decreasing the conflicts in a democratic decision-making process

  16. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  17. Probabilistic Causal Analysis for System Safety Risk Assessments in Commercial Air Transport

    Science.gov (United States)

    Luxhoj, James T.

    2003-01-01

    Aviation is one of the critical modes of our national transportation system. As such, it is essential that new technologies be continually developed to ensure that a safe mode of transportation becomes even safer in the future. The NASA Aviation Safety Program (AvSP) is managing the development of new technologies and interventions aimed at reducing the fatal aviation accident rate by a factor of 5 by year 2007 and by a factor of 10 by year 2022. A portfolio assessment is currently being conducted to determine the projected impact that the new technologies and/or interventions may have on reducing aviation safety system risk. This paper reports on advanced risk analytics that combine the use of a human error taxonomy, probabilistic Bayesian Belief Networks, and case-based scenarios to assess a relative risk intensity metric. A sample case is used for illustrative purposes.

  18. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  19. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  20. Assessment of Health, Safety and Environmental Risks of Zahedan City Gasoline Stations

    Directory of Open Access Journals (Sweden)

    S. Y. Far

    2018-04-01

    Full Text Available The purpose of this study was to assess the risk and determine the health, safety and environmental status of fuel stations in Zahedan. In this study, failure mode and effects analysis (FMEA method was used for risk assessment in accordance with the HSE guidelines, national and international standards and laws. In this cross-sectional study, 2 governmental stations and 6 active private stations were evaluated after the necessary coordination with the relevant units. As a result of risk assessment, 27 health risks, 55 safety risks and 22 environmental risks were identified. From among all the identified risks, 67 risks had a Risk Priority Number (RPN of less than 91, 31 risks had an RPN ranging between 91 and 201, and 6 risks had an RPN of over 201. The findings of the study indicated that compliance with the HSE requirements was 51.85%, in the area of health, 47.57% in the area of safety and 27.45% in the environmental area. Overall compliance with the HSE requirements was 42.54%. In order to distribute fuel considering health, reducing risk and increasing compliance with the requirements for safety improvement, health and environmental conditions of fuel supplies are essential.

  1. Preclosure Safety Analysis Guide

    International Nuclear Information System (INIS)

    D.D. Orvis

    2003-01-01

    A preclosure safety analysis (PSA) is a required element of the License Application (LA) for the high- level radioactive waste repository at Yucca Mountain. This guide provides analysts and other Yucca Mountain Repository Project (the Project) personnel with standardized methods for developing and documenting the PSA. The definition of the PSA is provided in 10 CFR 63.2, while more specific requirements for the PSA are provided in 10 CFR 63.112, as described in Sections 1.2 and 2. The PSA requirements described in 10 CFR Part 63 were developed as risk-informed performance-based regulations. These requirements must be met for the LA. The PSA addresses the safety of the Geologic Repository Operations Area (GROA) for the preclosure period (the time up to permanent closure) in accordance with the radiological performance objectives of 10 CFR 63.111. Performance objectives for the repository after permanent closure (described in 10 CFR 63.113) are not mentioned in the requirements for the PSA and they are not considered in this guide. The LA will be comprised of two phases: the LA for construction authorization (CA) and the LA amendment to receive and possess (R and P) high-level radioactive waste (HLW). PSA methods must support the safety analyses that will be based on the differing degrees of design detail in the two phases. The methods described herein combine elements of probabilistic risk assessment (PRA) and deterministic analyses that comprise a risk-informed performance-based safety analysis. This revision to the PSA guide was prepared for the following objectives: (1) To correct factual and typographical errors. (2) To provide additional material suggested from reviews by the Project, the U.S. Department of Energy (DOE), and U.S. Nuclear Regulatory Commission (NRC) Staffs. (3) To update material in accordance with approaches and/or strategies adopted by the Project. In addition, a principal objective for the planned revision was to ensure that the methods and

  2. Use of risk information to safety regulation. Fabrication facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    A procedure of ISA (Integrated Safety Analysis) for uranium fuel fabrication/enrichment facilities has been under the development aiming to utilize risk information for safety regulations in this project. Activities in the fiscal year 2012 are summarized in the paper. There are two major activities in the year. First one is a study on ISA procedure for external events such as earthquakes. Second one is that for chemical consequences such as UF6 and HF. Other than the activities a fundamental study on a policy of utilizing risk information was conducted. The outline and results are provided in the chapter 1 and 2 respectively. (author)

  3. A Bayesian Network methodology for railway risk, safety and decision support

    OpenAIRE

    Mahboob, Qamar

    2014-01-01

    For railways, risk analysis is carried out to identify hazardous situations and their consequences. Until recently, classical methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) were applied in modelling the linear and logically deterministic aspects of railway risks, safety and reliability. However, it has been proven that modern railway systems are rather complex, involving multi-dependencies between system variables and uncertainties about these dependencies. For train ...

  4. Decision support systems and expert systems for risk and safety analysis

    International Nuclear Information System (INIS)

    Baybutt, P.

    1986-01-01

    During the last 1-2 years, rapid developments have occurred in the development of decision support systems and expert systems to aid in decision making related to risk and safety of industrial plants. These activities are most noteworthy in the nuclear industry where numerous systems are under development with implementation often being made on personal computers. An overview of some of these developments is provided, and an example of one recently developed decision support system is given. This example deals with CADET, a system developed to aid the U.S. Nuclear Regulatory Commission in making decisions related to the topical issue of source terms resulting from degraded core accidents in light water reactors. The paper concludes with some comments on the likely directions of future developments in decision support systems and expert systems to aid in the management of risk and safety in industrial plants. (author)

  5. Process management - critical safety issues with focus on risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2005-12-01

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  6. Safety culture' is integrating 'human' into risk assessment

    International Nuclear Information System (INIS)

    Sugimoto, Taiji

    2014-01-01

    Significance of Fukushima nuclear power accident requested reconsideration of safety standards, of which we had usually no doubt. Risk assessment standard (JIS B 9702), Which was used for repetition of database preparation and cumulative assessment, defined allowable risk and residual risk. However, work site and immediate assessment was indispensable beside such assessment so as to ensure safety. Risk of casualties was absolutely not acceptable in principle and judgments to approve allowable risk needed accountability, which was reminded by safety culture proposed by IAEA and also identified by investigation of organizational cause of Columbia accident. Actor of safety culture would be organization and individual, and mainly individual. Realization of safety culture was conducted by personnel having moral consciousness and firm sense of mission in the course of jobs and working daily with sweat pouring. Safety engineering/technology should have framework integrating human as such totality. (T. Tanaka)

  7. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  8. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  9. Dams and Levees: Safety Risks

    Science.gov (United States)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  10. A Thermorisk framework for the analysis of energy systems by combining risk and exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, G.; Colombo, E.; Zio, E.

    2016-01-01

    Highlights: • An exergy based analysis for improving efficiency and safety of energy systems is presented. • The relation between thermodynamic parameters and the safety characteristics is identified. • Possible modifications in the process are indicated to improve the safety of the system. - Abstract: The impact of energy production, transformation and use on the environmental resources encourage to understand the mechanisms of resource degradation and to develop proper analyses to reduce the impact of the energy systems on the environment. At the technical level, most attempts for reducing the environmental impact of energy systems focus on the improvement of process efficiency. One way toward an integrated approach is that of adopting exergy analysis for assessing efficiency and test improving design and operation solutions. The paper presents an exergy based analysis for improving efficiency and safety of energy systems, named Thermorisk analysis. The purpose of the Thermorisk analysis is to supply information to control, and eventually reduce, the risk of the systems (i.e. risk of accidents) by acting on the thermodynamic parameters and safety characteristics in the same frame. The proper combination of exergy and risk analysis allows monitoring the effects of efficiency improvement on the safety of the systems analyzed. A case study is presented, showing the potential of the analysis to identify the relation between the exergy efficiency and the risk of the system analyzed, and the contribution of inefficiencies on the safety of the process. Possible modifications in the process are indicated to improve the safety of the system.

  11. Risk as a target of safety research

    International Nuclear Information System (INIS)

    Krueger, W.

    1986-01-01

    Job creation is not the idea behind the demand for risk studies to be intensified in safety research. Risks are not only a target safety research should investigate, they are a subject that actually can be most adequately investigated by safety research. Assuming a neutral position between irrational fears and interest-minded problem minimization, that is the central approach and the ethics of a safety scientist. The Babylonian confusion of terminology experienced after the Chernobyl accident is a good example proving the necessity of fostering the neutral professionalism in safety research. (orig./DG) [de

  12. A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events

    International Nuclear Information System (INIS)

    Zio, E.; Ferrario, E.

    2013-01-01

    We consider a critical plant exposed to risk from external events. We propose an original framework of analysis, which extends the boundaries of the study to the interdependent infrastructures which support the plant. For the purpose of clearly illustrating the conceptual framework of system-of-systems analysis, we work out a case study of seismic risk for a nuclear power plant embedded in the connected power and water distribution, and transportation networks which support its operation. The technical details of the systems considered (including the nuclear power plant) are highly simplified, in order to preserve the purpose of illustrating the conceptual, methodological framework of analysis. Yet, as an example of the approaches that can be used to perform the analysis within the proposed framework, we consider the Muir Web as system analysis tool to build the system-of-systems model and Monte Carlo simulation for the quantitative evaluation of the model. The numerical exercise, albeit performed on a simplified case study, serves the purpose of showing the opportunity of accounting for the contribution of the interdependent infrastructure systems to the safety of a critical plant. This is relevant as it can lead to considerations with respect to the decision making related to safety critical-issues. -- Highlights: ► We consider a critical plant exposed to risk from external events. ► We consider also the interdependent infrastructures that support the plant. ► We use Muir Web as system analysis tool to build the system-of-systems model. ► We use Monte Carlo simulation for the quantitative evaluation of the model. ► We find that the interdependent infrastructures should be considered as they can be a support for the critical plant safety

  13. Investment appraisal using quantitative risk analysis.

    Science.gov (United States)

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  14. Personnel Risks in Ensuring Safety of Medical Activity

    Directory of Open Access Journals (Sweden)

    O. L. Zadvornaya

    2017-01-01

    Full Text Available Purpose: modern strategies of management of the organization require the formation of special management approaches based on the analysis of the mechanisms and processes of the organization of medical activities related to possible risks in activity of medical personnel. Based on international experience and own research the authors have identified features of a system of management of personnel risk in medical activities, examined approaches showing the sequence and contents of the main practical activities of the formation, maintenance and development of the system of management of personnel risks. Emphasized is the need for further research and implementation of the system of management of personnel risk in health care organizations. Study and assessment of personnel risks affecting the security of medical activities aimed at the development of the system of personnel risk management, development of a system of identification and monitoring of HR risk indicators with a purpose to improve institutional management and increase efficiency of activity of medical organizations. Methods: in the present study, the following methods were used: systemic approach, content analysis, methods of social diagnosis (questionnaires, interviews, comparative analysis, method of expert evaluations, method of statistical processing of information. Results: approaches to predict the occurrence and development of personnel risks have been reviewed and proposed. Conclusions and Relevance: patient safety is a global issue affecting countries at all levels of development. Each year, the WHO identifies a number of systemic and technical aspects and trends in the field of patient safety related to actions of medical workers. Existing imbalances in the staffing of the health system of the Russian Federation increase the probability of potential risks in medical practice. The personnel policy of healthcare of the Russian Federation requires further improvement and

  15. Risk Assessment in the UK Health and Safety System: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Karen Russ

    2010-09-01

    Full Text Available In the UK, a person or organisation that creates risk is required to manage and control that risk so that it is reduced 'So Far As Is Reasonably Practicable' (SFAIRP. How the risk is managed is to be determined by those who create the risk. They have a duty to demonstrate that they have taken action to ensure all risk is reduced SFAIRP and must have documentary evidence, for example a risk assessment or safety case, to prove that they manage the risks their activities create. The UK Health and Safety Executive (HSE does not tell organisations how to manage the risks they create but does inspect the quality of risk identification and management. This paper gives a brief overview of where responsibility for occupational health and safety lies in the UK, and how risk should be managed through risk assessment. The focus of the paper is three recent major UK incidents, all involving fatalities, and all of which were wholly avoidable if risks had been properly assessed and managed. The paper concludes with an analysis of the common failings of risk assessments and key actions for improvement.

  16. Risk Assessment in the UK Health and Safety System: Theory and Practice.

    Science.gov (United States)

    Russ, Karen

    2010-09-01

    In the UK, a person or organisation that creates risk is required to manage and control that risk so that it is reduced 'So Far As Is Reasonably Practicable' (SFAIRP). How the risk is managed is to be determined by those who create the risk. They have a duty to demonstrate that they have taken action to ensure all risk is reduced SFAIRP and must have documentary evidence, for example a risk assessment or safety case, to prove that they manage the risks their activities create. The UK Health and Safety Executive (HSE) does not tell organisations how to manage the risks they create but does inspect the quality of risk identification and management. This paper gives a brief overview of where responsibility for occupational health and safety lies in the UK, and how risk should be managed through risk assessment. The focus of the paper is three recent major UK incidents, all involving fatalities, and all of which were wholly avoidable if risks had been properly assessed and managed. The paper concludes with an analysis of the common failings of risk assessments and key actions for improvement.

  17. Occupational risk perception, safety training, and injury prevention: testing a model in the Italian printing industry.

    Science.gov (United States)

    Leiter, Michael P; Zanaletti, William; Argentero, Piergiorgio

    2009-01-01

    This study examined occupational risk perception in relation to safety training and injuries. In a printing industry, 350 workers from 6 departments completed a survey. Data analysis showed significant differences in risk perceptions among departments. Differences in risk perception reflected the type of work and the injury incidents in the departments. A structural equation analysis confirmed a model of risk perception on the basis of employees' evaluation of the prevalence and lethalness of hazards as well as the control over hazards they gain from training. The number of injuries sustained was positively related to the perception of risk exposure and negatively related to evaluations about the safety training. The results highlight the importance of training interventions in increasing workers' adoption of safety procedures and prevention of injuries.

  18. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    .... The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used...

  19. Understanding safety and production risks in rail engineering planning and protection.

    Science.gov (United States)

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  20. Management system of health and safety work (SMK3) with job safety analysis (JSA) in PT. Nira Murni construction

    Science.gov (United States)

    Melliana, Armen, Yusrizal, Akmal, Syarifah

    2017-11-01

    PT Nira Murni construction is a contractor of PT Chevron Pacific Indonesia which engaged in contractor, fabrication, maintenance construction suppliers, and labor services. The high of accident rate in this company is caused the lack of awareness of workplace safety. Therefore, it requires an effort to reduce the accident rate on the company so that the financial losses can be minimized. In this study, Safe T-Score method is used to analyze the accident rate by measuring the level of frequency. Analysis is continued using risk management methods which identify hazards, risk measurement and risk management. The last analysis uses Job safety analysis (JSA) which will identify the effect of accidents. From the result of this study can be concluded that Job Safety Analysis (JSA) methods has not been implemented properly. Therefore, JSA method needs to follow-up in the next study, so that can be well applied as prevention of occupational accidents.

  1. Use of safety analysis results to support process operation

    International Nuclear Information System (INIS)

    Karvonen, I.; Heino, P.

    1990-01-01

    Safety and risk analysis carried out during the design phase of a process plant produces useful knowledge about the behavior and the disturbances of the system. This knowledge, however, often remains to the designer though it would be of benefit to the operators and supervisors of the process plant, too. In Technical Research Centre of Finland a project has been started to plan and construct a prototype of an information system to make use of the analysis knowledge during the operation phase. The project belongs to a Nordic KRM project (Knowledge Based Risk Management System). The information system is planned to base on safety and risk analysis carried out during the design phase and completed with operational experience. The safety analysis includes knowledge about potential disturbances, their causes and consequences in the form of Hazard and Operability Study, faut trees and/or event trees. During the operation disturbances can however, occur, which are not included in the safety analysis, or the causes or consequences of which have been incompletely identified. Thus the information system must also have an interface for the documentation of the operational knowledge missing from the analysis results. The main tasks off the system when supporting the management of a disturbance are to identify it (or the most important of the coexistent ones) from the stored knowledge and to present it in a proper form (for example as a deviation graph). The information system may also be used to transfer knowledge from one shift to another and to train process personnel

  2. Improving ICU risk management and patient safety.

    Science.gov (United States)

    Kielty, Lucy Ann

    2017-06-12

    Purpose The purpose of this paper is to describe a study which aimed to develop and validate an assessment method for the International Electrotechnical Commission (IEC) 80001-1 (IEC, 2010) standard (the Standard); raise awareness; improve medical IT-network project risk management processes; and improve intensive care unit patient safety. Design/methodology/approach An assessment method was developed and piloted. A healthcare IT-network project assessment was undertaken using a semi-structured group interview with risk management stakeholders. Participants provided feedback via a questionnaire. Descriptive statistics and thematic analysis was undertaken. Findings The assessment method was validated as fit for purpose. Participants agreed (63 per cent, n=7) that assessment questions were clear and easy to understand, and participants agreed (82 per cent, n=9) that the assessment method was appropriate. Participant's knowledge of the Standard increased and non-compliance was identified. Medical IT-network project strengths, weaknesses, opportunities and threats in the risk management processes were identified. Practical implications The study raised awareness of the Standard and enhanced risk management processes that led to improved patient safety. Study participants confirmed they would use the assessment method in future projects. Originality/value Findings add to knowledge relating to IEC 80001-1 implementation.

  3. Exposure data and risk indicators for safety performance assessment in Europe.

    NARCIS (Netherlands)

    Papadimitriou, E. Yannis, G. Bijleveld, F.D. & Cardoso, J.L.

    2013-01-01

    The objective of this paper is the analysis of the state-of-the-art in risk indicators and exposure data for safety performance assessment in Europe, in terms of data availability, collection methodologies and use. More specifically, the concepts of exposure and risk are explored, as well as the

  4. Concept of risk: risk assessment and nuclear safety

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1980-01-01

    The dissertation is a critical examination of risk assessment and its role in public policy. Nuclear power safety safety issues are selected as the primary source of illustrations and examples. The dissertation examines how risk assessment studies develop a concept of risk which becomes decisive for policy choices. Risk-assessment techniques are interpreted as instruments which secure an evaluation of risk which, in turn, figures prominently in technical reports on nuclear power. The philosophical critique is mounted on two levels. First, an epistemological critique surveys distinctions between the technical concept of risk and more familiar senses of risk. The critique shows that utilization of risk assessment re-structures the concept of risk. The technical concept is contrasted to the function of risk within a decision-maker's conceptual agenda and hierarchy of values. Second, an ethical critique exposes the value commitments of risk assessment recommendations. Although some of these values might be defended for policy decisions, the technical character of risk assessment obfuscates normative issues. Risk assessment is shown to be a form of factual enquiry which, nonetheless, represents a commitment to a specific selection of ethical and social values. Risk assessment should not be interpreted as a primary guide to decision unless the specific values incorporated into its concept of risk are stated explicitly and justified philosophically. Such a statement would allow value questions which have been sublimated by the factual tone of the analytic techniques to be debated on clear, social and ethical grounds

  5. Risk assessment of safety violations for coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Megan Orsulaka; Vladislav Kecojevicb; Larry Graysona; Antonio Nietoa [Pennsylvania State University, University Park, PA (United States). Dept of Energy and Mineral Engineering

    2010-09-15

    This article presents an application of a risk assessment approach in characterising the risks associated with safety violations in underground bituminous mines in Pennsylvania using the Mine Safety and Health Administration (MSHA) citation database. The MSHA database on citations provides an opportunity to assess risks in mines through scrutiny of violations of mandatory safety standards. In this study, quantitative risk assessment is performed, which allows determination of the frequency of occurrence of safety violations (through associated citations) as well as the consequences of them in terms of penalty assessments. Focus is on establishing risk matrices on citation experiences of mines, which can give early indication of emerging potentially serious problems. The resulting frequency, consequence and risk rankings present valuable tools for prioritising resource allocations, determining control strategies, and could potentially contribute to more proactive prevention of incidents and injuries.

  6. Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety

    DEFF Research Database (Denmark)

    Aiassa, E.; Higgins, J.P.T.; Frampton, G. K.

    2015-01-01

    for answering questions in health care, and can be implemented to minimise biases in food and feed safety risk assessment. However, no methodological frameworks exist for refining risk assessment multi-parameter models into questions suitable for systematic review, and use of meta-analysis to estimate all......Food and feed safety risk assessment uses multi-parameter models to evaluate the likelihood of adverse events associated with exposure to hazards in human health, plant health, animal health, animal welfare and the environment. Systematic review and meta-analysis are established methods...... parameters in the risk model. This approach to planning and prioritising systematic review seems to have useful implications for producing evidence-based food and feed safety risk assessment....

  7. Risks and safety perception. IPSN barometer october 1999. Synthesis

    International Nuclear Information System (INIS)

    1999-10-01

    An opinion investigation was realized in october 1999 by the IPSN to know the public opinion concerning the risks and safety perception. Five subjects were treated: the public care subjects (social and environment); the science and scientists image; the food risks; the opinion on the nuclear activities (interveners ability and credibility, nuclear controversy, radioactive wastes and nuclear accidents); the french people cares about the risks. The methodology and the analysis of the poll results are detailed. Tables of data investigation are also included. (A.L.B.)

  8. MANAGEMENT PROCESS OF HEALTH AND SAFETY RISK IN THE NIGERIA CONSTRUCTION INDUSTRY

    OpenAIRE

    Akwu, Ifeoma Claris

    2017-01-01

    The study examined the state of health and safety risk management practices in the building sector of the construction industry with the objective to examine the health and safety risk management processes adopted by the construction industry in Nigeria; the study adopted the survey and case study research design. It employed the use of Delphi’s technique in the distribution of questionnaire and made use of chi-square analytical technique for the analysis of gathered data. The findings reveal...

  9. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1991-01-01

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  10. Risk-based configuration control: Application of PSA in improving technical specifications and operational safety

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1992-01-01

    Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. A configuration, as used here, is a set of component operability statuses that define the state of a nuclear power plant. If the component configurations that have high risk implications do not occur, then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, to minimize the risk from components being unavailable, becomes difficult, because the status of a standby safety system component is often not apparent unless it is tested. Controlling plant configuration from a risk-perspective can provide more direct risk control and also more operational flexibility by allowing looser controls in areas unimportant to risk. Risk-based configuration control approaches can be used to replace parts of nuclear power plant Technical Specifications. With the advances in probabilistic safety assessment (PSA) technology, such approaches to improve Technical Specifications and operational safety are feasible. In this paper, we present an analysis of configuration risks, and a framework for risk-based configuration control to achieve the desired control of risk-significant configurations during plant operation

  11. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  12. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    International Nuclear Information System (INIS)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user

  13. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Skandamis, Panagiotis N., E-mail: pskan@aua.gr; Andritsos, Nikolaos, E-mail: pskan@aua.gr; Psomas, Antonios, E-mail: pskan@aua.gr; Paramythiotis, Spyridon, E-mail: pskan@aua.gr [Laboratory of Food Quality Control and Hygiene, Department of Food Science and Technology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens (Greece)

    2015-01-22

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total ‘failure’ that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user

  14. New risk metrics and mathematical tools for risk analysis: Current and future challenges

    Science.gov (United States)

    Skandamis, Panagiotis N.; Andritsos, Nikolaos; Psomas, Antonios; Paramythiotis, Spyridon

    2015-01-01

    The current status of the food safety supply world wide, has led Food and Agriculture Organization (FAO) and World Health Organization (WHO) to establishing Risk Analysis as the single framework for building food safety control programs. A series of guidelines and reports that detail out the various steps in Risk Analysis, namely Risk Management, Risk Assessment and Risk Communication is available. The Risk Analysis approach enables integration between operational food management systems, such as Hazard Analysis Critical Control Points, public health and governmental decisions. To do that, a series of new Risk Metrics has been established as follows: i) the Appropriate Level of Protection (ALOP), which indicates the maximum numbers of illnesses in a population per annum, defined by quantitative risk assessments, and used to establish; ii) Food Safety Objective (FSO), which sets the maximum frequency and/or concentration of a hazard in a food at the time of consumption that provides or contributes to the ALOP. Given that ALOP is rather a metric of the public health tolerable burden (it addresses the total `failure' that may be handled at a national level), it is difficult to be interpreted into control measures applied at the manufacturing level. Thus, a series of specific objectives and criteria for performance of individual processes and products have been established, all of them assisting in the achievement of FSO and hence, ALOP. In order to achieve FSO, tools quantifying the effect of processes and intrinsic properties of foods on survival and growth of pathogens are essential. In this context, predictive microbiology and risk assessment have offered an important assistance to Food Safety Management. Predictive modelling is the basis of exposure assessment and the development of stochastic and kinetic models, which are also available in the form of Web-based applications, e.g., COMBASE and Microbial Responses Viewer), or introduced into user-friendly softwares

  15. Operational safety analysis status of Novi Han repository

    International Nuclear Information System (INIS)

    Boiadjiev, A.

    2000-01-01

    This article presents the status of the safety studies and activities related to Novi Han repository. The case of this facility is such that no clear boundary exists between post-closure safety assessment and operational safety assessment. The major findings of these activities are given. The Safety Analysis Report (SAR) for Novi Han repository is developed by Risk Engineering Ltd. under a contract with the Committee on the Use of Atomic Energy for Peaceful Purposes. The general structure and main conclusions and recommendations of the SAR are presented. (author)

  16. Food Safety Management in a Global Environment: The Role of Risk Assessment Models

    OpenAIRE

    Fuentes-Pila, Joaquin; Jimeno, Vicente; Manzano, Amparo; Rodriguez Monroy, Carlos; Mar Fernandez, Maria Del

    2006-01-01

    Quantitative risk assessment models are playing a minor role in the development of the new EU legal framework for food safety. There is a tendency of the EU institutions to apply the precautionary principle versus the predisposition of the USA institutions to rely on risk analysis. This paper provides a comparison of the role played by quantitative risk assessment models in the development of new policies on food safety in the EU and in the USA, focusing on a study case: the supply chain of s...

  17. Health risk from radioactive and chemical environmental contamination: common basis for assessment and safety decision making

    International Nuclear Information System (INIS)

    Demin, V.

    2004-01-01

    To meet the growing practical need in risk analysis in Russia health risk assessment tools and regulations have been developed in the frame of few federal research programs. RRC Kurchatov Institute is involved in R and D on risk analysis activity in these programs. One of the objectives of this development is to produce a common, unified basis of health risk analysis for different sources of risk. Current specific and different approaches in risk assessment and establishing safety standards developed for chemicals and ionising radiation are analysed. Some recommendations are given to produce the common approach. A specific risk index R has been proposed for safety decision-making (establishing safety standards and other levels of protective actions, comparison of various sources of risk, etc.). The index R is defined as the partial mathematical expectation of lost years of healthy life (LLE) due to exposure during a year to a risk source considered. The more concrete determinations of this index for different risk sources derived from the common definition of R are given. Generic safety standards (GSS) for the public and occupational workers have been suggested in terms of this index. Secondary specific safety standards have been derived from GSS for ionizing radiation and a number of other risk sources including environmental chemical pollutants. Other general and derived levels for decision-making have also been proposed including the e-minimum level. Their possible dependence on the national or regional health-demographic data is shortly considered. Recommendations are given on methods and criteria for comparison of various sources of risk. Some examples of risk comparison are demonstrated in the frame of different comparison tasks. The paper has been prepared on the basis of the research work supported by International Science and Technology Centre, Moscow (project no. 2558). (author)

  18. Safety regulations: Implications of the new risk perspectives

    International Nuclear Information System (INIS)

    Aven, T.; Ylönen, M.

    2016-01-01

    The current safety regulations for industrial activities are to a large extent functionally oriented and risk-based (informed), expressing what to achieve rather than the means and solutions needed. They are founded on a probability-based perspective on risk, with the use of risk assessment, risk acceptance criteria and tolerability limits. In recent years several risk researchers have argued for the adoption of some new types of risk perspectives which highlight uncertainties rather than probabilities in the way risk is defined, the point being to better reflect the knowledge, and lack of knowledge, dimension of risk. The Norwegian Petroleum Safety Authority has recently implemented such a perspective. The new ISO standard 31000 is based on a similar thinking. In this paper we discuss the implications of these perspectives on safety regulation, using the oil & gas and nuclear industries as illustrations. Several suggestions for how to develop the current safety regulations in line with the ideas of the new risk perspectives are outlined, including some related to the use of risk acceptance criteria (tolerability limits). We also point to potential obstacles and incentives that the larger societal and institutional setting may impose on industry as regards the adoption of the new risk perspectives. - Highlights: • Some new types of risk perspectives have been promoted. • They have been implemented for example by the Norwegian Petroleum Safety Authority. • The paper studies the implication of these perspectives on the risk regulation. • Suggestions for how to develop the regulations are provided • Obstacles and incentives for the implementation of the perspectives are pointed to.

  19. A 3S Risk ?3SR? Assessment Approach for Nuclear Power: Safety Security and Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert; Reinhardt, Jason Christian; Wheeler, Timothy A.; Williams, Adam David

    2017-11-01

    Safety-focused risk analysis and assessment approaches struggle to adequately include malicious, deliberate acts against the nuclear power industry's fissile and waste material, infrastructure, and facilities. Further, existing methods do not adequately address non- proliferation issues. Treating safety, security, and safeguards concerns independently is inefficient because, at best, it may not take explicit advantage of measures that provide benefits against multiple risk domains, and, at worst, it may lead to implementations that increase overall risk due to incompatibilities. What is needed is an integrated safety, security and safeguards risk (or "3SR") framework for describing and assessing nuclear power risks that can enable direct trade-offs and interactions in order to inform risk management processes -- a potential paradigm shift in risk analysis and management. These proceedings of the Sandia ePRA Workshop (held August 22-23, 2017) are an attempt to begin the discussions and deliberations to extend and augment safety focused risk assessment approaches to include security concerns and begin moving towards a 3S Risk approach. Safeguards concerns were not included in this initial workshop and are left to future efforts. This workshop focused on four themes in order to begin building out a the safety and security portions of the 3S Risk toolkit: 1. Historical Approaches and Tools 2. Current Challenges 3. Modern Approaches 4. Paths Forward and Next Steps This report is organized along the four areas described above, and concludes with a summary of key points. 2 Contact: rforres@sandia.gov; +1 (925) 294-2728

  20. Reducing the risk, managing safety.

    Science.gov (United States)

    Aldridge, Peter

    2016-02-01

    Fire safety in healthcare premises has always been a challenge to those that discharge this duty. Statutory compliance should be a matter of course, but in an ever increasingly challenged NHS, even this is not a given. While the NHS is driven by managing very complex risk to deliver cutting edge healthcare, providers cannot be risk averse. Which risk, however, takes priority? Here Peter Aldridge, fire and corporate services manager at Leeds Teaching Hospitals NHS Trust, and Secretary to the National Association of Healthcare Fire Officers (NAHFO)--which will this month and next jointly stage fire safety seminars with IHEEM; see page 8--considers the key issues, with input from a fire officer at a leading mental health and community Trust.

  1. The spread model of food safety risk under the supply-demand disturbance

    OpenAIRE

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors? influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of c...

  2. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    International Nuclear Information System (INIS)

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  3. Methodology for flood risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.; Casada, M.L.; Fussell, J.B.

    1984-01-01

    The methodology for flood risk analysis described here addresses the effects of a flood on nuclear power plant safety systems. Combining the results of this method with the probability of a flood allows the effects of flooding to be included in a probabilistic risk assessment. The five-step methodology includes accident sequence screening to focus the detailed analysis efforts on the accident sequences that are significantly affected by a flood event. The quantitative results include the flood's contribution to system failure probability, accident sequence occurrence frequency and consequence category occurrence frequency. The analysis can be added to existing risk assessments without a significant loss in efficiency. The results of two example applications show the usefulness of the methodology. Both examples rely on the Reactor Safety Study for the required risk assessment inputs and present changes in the Reactor Safety Study results as a function of flood probability

  4. Use of risk-matrix methods in the radiation safety analysis of PET/CT facilities

    International Nuclear Information System (INIS)

    Calderón Marín, Carlos F.; González González, Joaquín J.; Quesada Cepero, Waldo; Sinconegui Gómez, Belkys; Solá Rodríguez, Yeline; Duménigo Ámbar, Cruz; Guerrero Cancio, Mayka

    2016-01-01

    Introduction. Radiological safety is essential during clinical applications of ionizing radiations. Cuban legislation considers it mandatory to carry out risk analysis during safety assessments of facilities where Nuclear Medicine practices are performed. The Risk Matrix (R-M) method has been used in risk assessments in Radiotherapy and some experiences in Nuclear Medicine have been reported. In the present work the results of the safety evaluation, using the M-R method, of the first PET / CT center constructed at the Institute of Oncology and Radiobiology in Havana, are shown. The facilities will work as a satellite center and the production of radioactive drugs of 68 Ga will be conceived. The images will be acquired with a Philips Gemini TF64 scanner. Several stages and sub-stages were considered, including the design of the facility, quality control programs, review of the relevance of study requests, radiopharmaceutical reception and fractionation, 68 Ga radiopharmaceuticals production, management of Patient during the administration of radiopharmaceuticals and patient positioning. Initiating events (IEs), available barriers, as well as measures for the reduction of frequency (RFMs) of IEs and consequences (RCMs) were identified. In addition, IEs sequences are considered for CT scans. The incidence of risk reduction was assessed by the ratio of the number of times they were used and the total number of IEs. The calculation of the R-M was made by modeling the practice with the SEVRRA code R iskAssessmentSystem . Results. As a result, 76 IEs were identified with a distribution of 72% affecting patients, 7.9% in the Public and 19.7% on Occupationally Exposed Workers (TOEs). 89.5% of IEs are caused by human errors. Barriers and consequences and frequency reducers produced a risk distribution of 2.6% of high risk IEs, 64.5% medium risk and 32.9% low risk. The high-risk IEs are related to errors in the calculation of the shielding requirements of the facility that

  5. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines.

  6. Software safety analysis techniques for developing safety critical software in the digital protection system of the LMR

    International Nuclear Information System (INIS)

    Lee, Jang Soo; Cheon, Se Woo; Kim, Chang Hoi; Sim, Yun Sub

    2001-02-01

    This report has described the software safety analysis techniques and the engineering guidelines for developing safety critical software to identify the state of the art in this field and to give the software safety engineer a trail map between the code and standards layer and the design methodology and documents layer. We have surveyed the management aspects of software safety activities during the software lifecycle in order to improve the safety. After identifying the conventional safety analysis techniques for systems, we have surveyed in details the software safety analysis techniques, software FMEA(Failure Mode and Effects Analysis), software HAZOP(Hazard and Operability Analysis), and software FTA(Fault Tree Analysis). We have also surveyed the state of the art in the software reliability assessment techniques. The most important results from the reliability techniques are not the specific probability numbers generated, but the insights into the risk importance of software features. To defend against potential common-mode failures, high quality, defense-in-depth, and diversity are considered to be key elements in digital I and C system design. To minimize the possibility of CMFs and thus increase the plant reliability, we have provided D-in-D and D analysis guidelines

  7. The approach to risk analysis in three industries

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1991-01-01

    It is the purpose of this paper to review how risk and safety analysis is performed in the three major industries of nuclear power, space flight, and chemical and petroleum processes. The underlying reason for such a review is the belief that efficiencies and safety enhancements may result from a greater exchange of risk assessment technology between these industries. The thrust of this discussion related to the engineered systems involved in the three industries. The industries are very different. The chemical industry epitomizes the highly competitive private sector and its bottom-line emphasis; the nuclear power industry is unique by the degree to which it is regulated; and the space industry is essentially a government business just beginning to have commercial implications. Institutional differences are extreme; however, from a societal needs, and their safety implications have a far reaching impact on public opinion and support. In reviewing the risk and safety analysis activities, particular attention is given to the use of such quantitative approaches as probabilistic risk assessment (PRA) as it has evolved in the nuclear power industry

  8. Safety methodology and risk targets

    International Nuclear Information System (INIS)

    Kazimi, M.S.

    1983-01-01

    In assessing the potential safety concerns of fusion, the experience from other energy sources lead to a variety of safety assessment approaches. The available approaches are: (1) The maximum possible accident approach; (2) The maximum credible accident approach; (3) The probabilistic total risk assessment. In the first approach, the mechanistic development of the events leading to the safety concern is ignored. Instead, the total radioactivity of the plant is assumed accessible to the public. Such an approach is obviously conservative and unrealistic. In the second approach a selection is made among the most severe of the possible accidents, and the progression of the accident is modeled as mechanistically as possible. In this case, the passive and active accident mitigation capabilities of the plant are taken into consideration. The result is expected to be that none or only a fraction of the total radioactivity can be released to the public. The adverse effect of this approach is to concentrate attention on a particular accident class, and perhaps not allow for other classes, a judgement that may later become undesirable. The probabilistic risk assessment requires the safety analysts to consider all classes of accidents and estimate both the probabilities of their occurrences and their consequences. Thus, the plant design in fact is subjected to a thorough investigation and the impact of alterations in design can be reflected in the total risk estimate. The disadvantage of this approach lies in the absence of well defined acceptable risk criteria as well as the large effect of public perception factors on the accepted risk. This paper will review the impact of application of these approaches in determination of the level of protection needed against activation product release to the atmosphere. (author)

  9. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  10. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  11. On the Regulation of Life Safety Risk

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Vrouwenvelder, A.C.W.M.

    2015-01-01

    . Starting point is taken in a short outline of what is considered to comprise the present best practice rationale for life safety and health risk regulation. Thereafter, based on selected principal examples from different application areas, inconsistencies in present best practice risk quantification...... absolute level of individual life safety risk subject to assessment of acceptability. It is highlighted that a major cause of inconsistency in risk quantifications and comparisons originates from the fact that present regulations partly address societal activities and partly address applied technologies...

  12. Safety and security risk assessments--now demystified!

    Science.gov (United States)

    White, Donald E

    2011-01-01

    Safety/security risk assessments no longer need to spook nor baffle healthcare safety/security managers. This grid template provides at-at-glance quick lookup of the possible threats, the affected people and things, a priority ranking of these risks, and a workable solution for each risk. Using the standard document, spreadsheet, or graphics software already available on your computer, you can easily use a scientific method to produce professional looking risk assessments that get quickly understood by both senior managers and first responders alike!

  13. Safety Politics and Risk Perceptions in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    Abstract The book deals with the analysis of work hazards and safety in industrial enterprises in Peninsular Malaysia, Southeast Asia. It traces the development of this theme of conflict within the context constituted by state, labour market and labour-management relations in Malaysia. The book...... and safety, when compared with the influence of local conditions? What kind of process develops, as local theory about work hazards are formed among workers. And, which are the opportunities for changing working environment institutions in Malaysia? The first part of the book discusses traditions...... by the state from Burawoy, Beronius, and Adesina about production politics and social relations in the labour process provides an integrated perspective on individual risk perceptions, safety practices in enterprises, and government regulation. The empirical data were collected during the period 1989...

  14. Risk and safety analysis of nuclear systems

    CERN Document Server

    Lee, John C

    2011-01-01

    The book has been developed in conjunction with NERS 462, a course offered every year to seniors and graduate students in the University of Michigan NERS program. The first half of the book covers the principles of risk analysis, the techniques used to develop and update a reliability data base, the reliability of multi-component systems, Markov methods used to analyze the unavailability of systems with repairs, fault trees and event trees used in probabilistic risk assessments (PRAs), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear a

  15. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the MandO is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment

  16. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  17. LFR safety approach and main ELFR safety analysis results

    International Nuclear Information System (INIS)

    Bubelis, E.; Schikorr, M.; Frogheri, M.; Mansani, L.; Bandini, G.; Burgazzi, L.; Mikityuk, K.; Zhang, Y.; Lo Frano, R.; Forgione, N.

    2013-01-01

    LFR safety approach: → A global safety approach for the LFR reference plant has been assessed and the safety analyses methodology has been developed. → LFR follows the general guidelines of the Generation IV safety concept recommendations. Thus, improved safety and higher reliability are recognized as an essential priority. → The fundamental safety objectives and the Defence-in-Depth (DiD) approach, as described by IAEA Safety Guides, have been preserved. → The recommendations of the Risk and Safety Working Group (RSWG) of GEN-IV IF has been taken into account: • safety is to be “built-in” in the fundamental design rather than “added on”; • full implementation of the Defence-in-Depth principles in a manner that is demonstrably exhaustive, progressive, tolerant, forgiving and well-balanced; • “risk-informed” approach - deterministic approach complemented with a probabilistic one; • adoption of an integrated methodology that can be used to evaluate and document the safety of Gen IV nuclear systems - ISAM. In particular the OPT tool is the fundamental methodology used throughout the design process

  18. Analysis on Dangerous Source of Large Safety Accident in Storage Tank Area

    Science.gov (United States)

    Wang, Tong; Li, Ying; Xie, Tiansheng; Liu, Yu; Zhu, Xueyuan

    2018-01-01

    The difference between a large safety accident and a general accident is that the consequences of a large safety accident are particularly serious. To study the tank area which factors directly or indirectly lead to the occurrence of large-sized safety accidents. According to the three kinds of hazard source theory and the consequence cause analysis of the super safety accident, this paper analyzes the dangerous source of the super safety accident in the tank area from four aspects, such as energy source, large-sized safety accident reason, management missing, environmental impact Based on the analysis of three kinds of hazard sources and environmental analysis to derive the main risk factors and the AHP evaluation model is established, and after rigorous and scientific calculation, the weights of the related factors in four kinds of risk factors and each type of risk factors are obtained. The result of analytic hierarchy process shows that management reasons is the most important one, and then the environmental factors and the direct cause and Energy source. It should be noted that although the direct cause is relatively low overall importance, the direct cause of Failure of emergency measures and Failure of prevention and control facilities in greater weight.

  19. The PEC reactor. Safety analysis: Detailed reports

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In the safety-analysis of the PEC Brasimone reactor (Italy), attention was focused on the role of plant-incident analysis during the design stage and the conclusions reached. The analysis regarded the following: thermohydraulic incidents at full power; incidents with the reactor shut down; reactivity incidents; core local faults; analysis of fuel-handling incidents; engineered safeguards and passive safety features; coolant leakage and sodium fires; research and development studies on the seismic behaviour of the PEC fast reactor; generalized sodium fire; severe accidents, accident sequences with shudown; reference accident. Both the theoretical and experimental analyses demonstrated the adequacy of the design of the PEC fast reactor, aimed at minimizing the consequences of a hypothetical disruptive core accident with mechanical energy release. It was shown that the containment barriers were sized correctly and that the residual heat from a disassembled core would be removed. The re-evaluation of the source term emphasized the conservative nature of the hypotheses assumed in the preliminary safety analysis for calculating the risk to the public.

  20. Risk management: integration of social and technical risk variables into safety assessments of LWR'S

    International Nuclear Information System (INIS)

    Turnage, J.J.; Husseiny, A.A.

    1980-01-01

    A risk management methodology is developed here to formalize the acceptability levels of commercial LWR power plants via the estimation of risk levels acceptable to the public and the integration of such estimates into risk-benefit analysis. Utility theory is used for developing preference models based on value trade-offs among multiple objectives and uncertainties about the impact of alternatives. The method involves reducing the various variables affecting safety acceptability decisions to a single function that provides a metric for acceptability levels. The function accomondates for technical criteria related to design and licensing decisions, as well as public reactions to certain choices

  1. Acceptable risk in reactor safety studies

    International Nuclear Information System (INIS)

    Benjamin, J.R.; Shinozuka, M.; Shah, H.C.

    1975-01-01

    Acceptable risk is defined in terms of its five basic parameters: the hazard or problem; the probability of occurrence; the consequence; the possible alternative actions; and the value system of the community or the society. The problem of consistency in design at a site and between differing sites is discussed and solutions are suggested. Techniques for consistent deterministic and probabilistic setting limits and design standards are illustrated using data from AEC Reactor Safety Study, WASH-1400. The influence of level of consequence is discussed and a general methodology for decision analysis in resource allocation problem is briefly introduced and illustrated. The concept of acceptable risk is put in a quantitative format that can be used by engineers and planners. Bayesian statistical methods are introduced to develop the methodologies

  2. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  3. Risk Communication: A Key for Fostering a More Resilient Safety Culture

    International Nuclear Information System (INIS)

    Nishizawa, M.

    2016-01-01

    It is widely agreed that the accident of the Fukushima Daiichi nuclear power plant was not only triggered by natural events combined with technical failures, but was a human induced disaster. From the bitter lessons, we have learned that human and organizational factors associated with emergency planning, response and decision-making for nuclear safety need to be more carefully reviewed and enhanced. Elements of social sciences, especially, risk management and risk communication here play a key role. Risk communication is an established concept within risk analysis frameworks. It is a vital tool to convey the meaning of scientific assessment and risk management, share safety related information, and exchange views and values amongst varying stakeholder groups. Risk communication aims at building trust through this process and human interactions. However, it would not be an overstatement that the essence of risk communication is not fully understood. As a result, it is either partially integrated into risk management practice or remains unconducive. The marginalisation of risk communication is observed in a variety of risk communication practices, or more evidently, in perception gaps between lays and experts about risks.

  4. Overall risk estimation for nonreactor nuclear facilities and implementation of safety goals

    International Nuclear Information System (INIS)

    Kim, Kyo S.; Bradley, R.F.

    1992-01-01

    A typical safety analysis report (SAR) contains estimated frequencies and consequences of various design basis accident (DBA) analyses. However, the results are organized and presented in such a way that they are not conducive for summing up with mathematical rigor to give total or overall risk. This paper describes a simple protocol and mathematical formalism to derive overall risk indicators. These indicators provide some insight into the capability of confinement barriers with characteristics of source terms, and provide comparison to the Safety Goals. The protocol makes maximum use of the results of DBA analyses typically available from an SAR. The mathematical formalism is based on the cumulative complementary distribution function (CCDF) or exceedance probability of radioactivity release fraction and individual radiation dose. An example case analysis is presented to illustrate how to use the proposed protocol and mathematical formalism. A discussion of the result is also presented in terms of confinement characteristic and compliance to Safety Goals

  5. Linking Safety Analysis to Safety Requirements

    DEFF Research Database (Denmark)

    Hansen, Kirsten Mark

    Software for safety critical systems must deal with the hazards identified by safety analysistechniques: Fault trees, event trees,and cause consequence diagrams can be interpreted as safety requirements and used in the design activity. We propose that the safety analysis and the system design use...

  6. Modern design and safety analysis of the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Jordan, K.A.; Springfels, D.; Schubring, D.

    2015-01-01

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed

  7. Modern design and safety analysis of the University of Florida Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kjordan@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Springfels, D., E-mail: dspringfels@ufl.edu [University of Florida, 106 UFTR Bldg., PO Box 116400, Gainesville, FL 32611-6400 (United States); Schubring, D., E-mail: dlschubring@ufl.edu [University of Florida, 202 Nuclear Science Building, PO Box 118300, Gainesville, FL 32611-8300 (United States)

    2015-05-15

    Highlights: • A new safety analysis of the University of Florida Training Reactor is presented. • This analysis uses modern codes and replaces the NRC approved analysis from 1982. • Reduction in engineering margin confirms that the UFTR is a negligible risk reactor. • Safety systems are not required to ensure that safety limits are not breached. • Negligible risk reactors are ideal for testing digital I&C equipment. - Abstract: A comprehensive series of neutronics and thermal hydraulics analyses were conducted to demonstrate the University of Florida Training Reactor (UFTR), an ARGONAUT type research reactor, as a negligible risk reactor that does not require safety-related systems or components to prevent breach of a safety limit. These analyses show that there is no credible UFTR accident that would result in major fuel damage or risk to public health and safety. The analysis was based on two limiting scenarios, whose extremity bound all other accidents of consequence: (1) the large step insertion of positive reactivity and (2) the release of fission products due to mechanical damage to a spent fuel plate. The maximum step insertion of positive reactivity was modeled using PARET/ANL software and shows a maximum peak fuel temperature of 283.2 °C, which is significantly below the failure limit of 530 °C. The exposure to the staff and general public was calculated for the worst-case fission product release scenario using the ORIGEN-S and COMPLY codes and was shown to be 6.5% of the annual limit. Impacts on reactor operations and an Instrumentation & Control System (I&C) upgrade are discussed.

  8. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    International Nuclear Information System (INIS)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues

  9. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues.

  10. Risk assessment of computer-controlled safety systems for fusion reactors

    International Nuclear Information System (INIS)

    Fryer, M.O.; Bruske, S.Z.

    1983-01-01

    The complexity of fusion reactor systems and the need to display, analyze, and react promptly to large amounts of information during reactor operation will require a number of safety systems in the fusion facilities to be computer controlled. Computer software, therefore, must be included in the reactor safety analyses. Unfortunately, the science of integrating computer software into safety analyses is in its infancy. Combined plant hardware and computer software systems are often treated by making simple assumptions about software performance. This method is not acceptable for assessing risks in the complex fusion systems, and a new technique for risk assessment of combined plant hardware and computer software systems has been developed. This technique is an extension of the traditional fault tree analysis and uses structured flow charts of the software in a manner analogous to wiring or piping diagrams of hardware. The software logic determines the form of much of the fault trees

  11. Implementation of a patient safety program at a tertiary health system: A longitudinal analysis of interventions and serious safety events.

    Science.gov (United States)

    Cropper, Douglas P; Harb, Nidal H; Said, Patricia A; Lemke, Jon H; Shammas, Nicolas W

    2018-04-01

    We hypothesize that implementation of a safety program based on high reliability organization principles will reduce serious safety events (SSE). The safety program focused on 7 essential elements: (a) safety rounding, (b) safety oversight teams, (c) safety huddles, (d) safety coaches, (e) good catches/safety heroes, (f) safety education, and (g) red rule. An educational curriculum was implemented focusing on changing high-risk behaviors and implementing critical safety policies. All unusual occurrences were captured in the Midas system and investigated by risk specialists, the safety officer, and the chief medical officer. A multidepartmental committee evaluated these events, and a root cause analysis (RCA) was performed. Events were tabulated and serious safety event (SSE) recorded and plotted over time. Safety success stories (SSSs) were also evaluated over time. A steady drop in SSEs was seen over 9 years. Also a rise in SSSs was evident, reflecting on staff engagement in the program. The parallel change in SSEs, SSSs, and the implementation of various safety interventions highly suggest that the program was successful in achieving its goals. A safety program based on high-reliability organization principles and made a core value of the institution can have a significant positive impact on reducing SSEs. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.

  12. Perception of risks and safety. Results of the November 2001 survey

    International Nuclear Information System (INIS)

    2001-01-01

    After having recalled the themes present in the survey on the perception of risks and safety as far as nuclear energy is concerned, this report proposes an analysis of the obtained results. It discusses the current general concerns, the perception of risks (confidence, truth), the perception of technological and natural risks for the environment (hazardous installations, demand for environmental acceptability of installations, disasters), the opinions on nuclear activities (image, actors, control of these activities, possibility of a nuclear accident), and finally the risks associated with radon

  13. Safety-critical event risk associated with cell phone tasks as measured in naturalistic driving studies: A systematic review and meta-analysis.

    Science.gov (United States)

    Simmons, Sarah M; Hicks, Anne; Caird, Jeff K

    2016-02-01

    A systematic review and meta-analysis of naturalistic driving studies involving estimates of safety-critical event risk associated with handheld device use while driving is described. Fifty-seven studies identified from targeted databases, journals and websites were reviewed in depth, and six were ultimately included. These six studies, published between 2006 and 2014, encompass seven sets of naturalistic driver data and describe original research that utilized naturalistic methods to assess the effects of distracting behaviors. Four studies involved non-commercial drivers of light vehicles and two studies involved commercial drivers of trucks and buses. Odds ratios quantifying safety-critical event (SCE) risk associated with talking, dialing, locating or answering, and texting or browsing were extracted. Stratified meta-analysis of pooled odds ratios was used to estimate SCE risk by distraction type; meta-regression was used to test for sources of heterogeneity. The results indicate that tasks that require drivers to take their eyes off the road, such as dialing, locating a phone and texting, increase SCE risk to a greater extent than tasks that do not require eyes off the road such as talking. Although talking on a handheld device did not increase SCE risk, further research is required to determine whether it indirectly influences SCE risk (e.g., by encouraging other cell phone activities). In addition, a number of study biases and quality issues of naturalistic driving studies are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Risk concepts in UK nuclear safety decision-making

    International Nuclear Information System (INIS)

    Brighton, P.W.M.

    2001-01-01

    This paper discusses the concept of risk as understood in the UK, with particular reference to the use of probabilistic safety assessment (PSA) in nuclear safety decision making. The way 'risk' appears in UK fundamental legislation means that the concept cannot be limited to evaluation of numerical probabilities of physical harm. Rather the focus is on doing all that is reasonably practicable to reduce risks: this entails applying relevant good practice and then seeking further safety measures until the money, time and trouble required are grossly disproportionate to the residual risk. PSA is used to inform rather than dictate such decisions. This approach is reinforced by considering how far any practical PSA can be said to measure risk. The behaviour of complex socio-technical systems such as nuclear power stations does not meet the conditions under which probability theory can be applied in an absolutely objective statistical sense. Risk is not an intrinsic real property of such systems. Rather PSA is a synthesis of data and subjective expert judgements, dependent on the extent of detailed knowledge of the plant. There are many other aspects of engineering judgement involved in safety decisions which cannot be so captured. (author)

  15. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  16. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  17. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  18. Mare Risk Analysis monitor

    International Nuclear Information System (INIS)

    Fuente Prieto, I.; Alonso, P.; Carretero Fernandino, J. A.

    2000-01-01

    The Nuclear Safety Council's requirement that Spanish power plants comply with the requirements of the Maintenance Rule associated with plant risk assessment during power operation, arising from the partial unavailability of systems due to the maintenance activities, has led to need for additional tools to facilitate compliance with said requirements. While the impact on risk produced by individual equipment unavailabilities can easily be evaluated, either qualitatively or quantitatively, the process becomes more complicated when un programmed unavailabilities simultaneously occur in various systems, making it necessary to evaluate their functional impact. It is especially complex in the case of support systems that can affect the functionality of multiple systems. In view of the above, a computer application has been developed that is capable of providing the operator with quick answers based on the specific plant model in order to allow fast risk assessment using the information compiled as part of the Probabilistic Safety Analysis. The paper describes the most important characteristics of this application and the basic design requirements of the MARE Risk Monitor. (Author)

  19. Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization FY 2010 Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert W Youngblood

    2010-09-01

    The Risk-Informed Safety Margin Characterization (RISMC) pathway is a set of activities defined under the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. The overarching objective of RISMC is to support plant life-extension decision-making by providing a state-of-knowledge characterization of safety margins in key systems, structures, and components (SSCs). A technical challenge at the core of this effort is to establish the conceptual and technical feasibility of analyzing safety margin in a risk-informed way, which, unlike conventionally defined deterministic margin analysis, is founded on probabilistic characterizations of SSC performance.

  20. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  1. University building safety index measurement using risk and implementation matrix

    Science.gov (United States)

    Rahman, A.; Arumsari, F.; Maryani, A.

    2018-04-01

    Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.

  2. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  3. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Holmberg, J.

    1994-01-01

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  4. Identification and evaluation of priorities in the business process of a risk or safety organization

    International Nuclear Information System (INIS)

    Teng, Kuei-Yung; Thekdi, Shital A.; Lambert, James H.

    2012-01-01

    Agencies are increasingly following principles and guidelines for the coordination of risk assessment, risk management, and risk communication in large-scale programs. In particular, there is a challenge to comply with the U.S. Office of Management and Budget (OMB) memorandum “Updated Principles for Risk Analysis” among other guidelines. This paper demonstrates a systemic approach to achieve compliance of a risk program with administrative and organizational principles and guidelines for risk analysis. The paper suggests three canonical questions as the mission of such a program: (i) what sources of risks are to be managed by the program, (ii) how should multiple risk assessment, risk management, and risk communication activities be administered and coordinated, and what should be the basis for resource allocation to these activities, and (iii) how will the performance of the program be monitored and evaluated. The paper demonstrates a re-prioritization of policy initiatives of the program based on emergent and future conditions. The approach is useful to agencies implementing risk or safety organizational guidelines such as those of the OMB, the US Government Accountability Office, the US Department of Homeland Security, the US Department of Defense, and others. This paper will be of interest to risk managers; agencies; and risk and safety analysts engaged in the conception, implementation, and evaluation of risk or safety programs. - Highlights: ► We develop a systemic approach for management of a risk or safety program. ► The approach includes business process models and policy prioritization. ► The results support organizations to implement risk and safety programs.

  5. Driving behaviours, traffic risk and road safety: comparative study between Malaysia and Singapore.

    Science.gov (United States)

    Khan, Saif ur Rehman; Khalifah, Zainab Binti; Munir, Yasin; Islam, Talat; Nazir, Tahira; Khan, Hashim

    2015-01-01

    The present study aims to investigate differences in road safety attitude, driver behaviour and traffic risk perception between Malaysia and Singapore. A questionnaire-based survey was conducted among a sample of Singaporean (n = 187) and Malaysian (n = 313) road users. The data was analysed using confirmatory factor analysis and structural equation modelling applied to measure comparative fit indices of Malaysian and Singaporean respondents. The results show that the perceived traffic risk of Malaysian respondents is higher than Singaporean counterparts. Moreover, the structural equation modelling has confirmed perceived traffic risk performing the role of full mediation between perceived driving skills and perceived road safety for both the countries, while perceived traffic skills was found to perform the role of partial mediation between aggression and anxiety, on one hand, and road safety, on the other hand, in Malaysia and Singapore. In addition, in both countries, a weak correlation between perceived driving skills, aggression and anxiety with perceived road safety was found, while a strong correlation exists with traffic risk perception. The findings of this study have been discussed in terms of theoretical, practical and conceptual implications for both scholars and policy-makers to better understand the young drivers' attitude and behaviour relationship towards road safety measures with a view to future research.

  6. Risk analysis as a decision tool

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Chakraborty, S.

    1985-01-01

    From 1983 - 1985 a lecture series entitled ''Risk-benefit analysis'' was held at the Swiss Federal Institute of Technology (ETH), Zurich, in cooperation with the Central Department for the Safety of Nuclear Installations of the Swiss Federal Agency of Energy Economy. In that setting the value of risk-oriented evaluation models as a decision tool in safety questions was discussed on a broad basis. Experts of international reputation from the Federal Republic of Germany, France, Canada, the United States and Switzerland have contributed to report in this joint volume on the uses of such models. Following an introductory synopsis on risk analysis and risk assessment the book deals with practical examples in the fields of medicine, nuclear power, chemistry, transport and civil engineering. Particular attention is paid to the dialogue between analysts and decision makers taking into account the economic-technical aspects and social values. The recent chemical disaster in the Indian city of Bhopal again signals the necessity of such analyses. All the lectures were recorded individually. (orig./HP) [de

  7. BARC-risk monitor- a tool for operational safety assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Babar, A.K.; Hadap, Nikhil

    2000-12-01

    Probabilistic safety assessment has become a key tool as on today to identify and understand nuclear power plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear power plant. Operation of risk monitor is based on PSA methods for assisting in day to day applications. Risk monitoring programs can assess the risk profile and are used to optimise the operation of nuclear power plants with respect to a minimum risk level over the operating time. This report presents the background activities of risk monitor, its application areas and also gives the status of such tools in international scenarios. The software is based on the PSA model of Kaiga generating station and would be applicable to similar design configuration. (author)

  8. A holistic approach to control process safety risks: Possible ways forward

    International Nuclear Information System (INIS)

    Pasman, H.J.; Knegtering, B.; Rogers, W.J.

    2013-01-01

    Pursuing process safety in a world of continuously increasing requirements is not a simple matter. Keeping balance between producing quality and volume under budget constraints while maintaining an adequate safety level proves time and time again a difficult task given that evidently major accidents cannot be avoided. Lack of resilience from an organizational point of view to absorb unwanted and unforeseen disturbances has in recent years been put forward as a major cause, while organizational erosive drift is shown to be responsible for complacency and degradation of safety attitude. A systems approach to safety provides a new paradigm with the promise of new comprehensive tools. At the same time, one realizes that risk assessment will fall short of identifying and quantifying all possible scenarios. First, human error is in most assessments not included. It is even argued that determining human failure probability by decomposing it to basic elements of error is not possible. Second, the crux of the systemic approach is that safety is an emergent property, which means the same holds for the technological aspect: risk is not fully predictable from failure of components. By surveying and applying recent literature, besides analysing, this paper proposes a way forward by considering resilience of a socio-technical system both from an organizational and a technical side. The latter will for a large part be determined by the plant design. Sufficient redundancy and reserve shall be kept to preserve sufficient resilience, but the question that rises is how. Available methods are risk assessment and process simulation. It is helpful that the relation between risk and resilience analysis has been recently defined. Also, in a preliminary study the elements of resilience of a process have become listed. In the latter, receiving and interpreting weak signals to boost situational awareness plays an important role. To maintain alertness on the functioning of a safety management

  9. Track 6: safety and risk management. Plant operational risk management. Plant Configuration Risk Assessment Methodology Development for Periodic Maintenance

    International Nuclear Information System (INIS)

    Yang, Huichang; Chung, Chang Hyun; Sung, Key Yong

    2001-01-01

    As the operation experiences of nuclear power plants (NPPs) in Korea accumulate and NPP safety functions become enhanced, the role of stable and optimal NPP operation within acceptable safety criteria becomes important at present. To accomplish the goal of safe and optimal operation, maintenance and its related activities should be regarded as the issues of most concern. Studies of methodologies for maintenance improvement and optimization have focused on system performance rather than on the hardware itself. From this point of view, the probabilistic methods are most useful. In terms of risk including core damage frequency and unavailability, the cause that might impact plant safety during normal maintenance activities can be identified and evaluated effectively. The results from these probabilistic analyses can provide insightful information for the reallocation of risk-contributing maintenance activity. This information can be utilized in a way that separates the significant risk-contributing maintenance activities from each other unless they are timely related. In Korea, the risk-monitoring program for operating NPPs is under development and will be implemented in 2003. To accomplish the risk-monitoring program objectives, suitable risk evaluation methods should be developed before the implementation of the risk-monitoring program. The plant configuration assessment methodology was developed for these reasons, and this method is to incorporate the field experiences into the risk calculation exactly within the limit of probabilistic methods. During normal plant operation, the plant operational risk changes frequently depending on the status of the plant system and the arrangement of the components. Specific plant systems or components are typically removed from service because of random equipment failure, planned preventive/predictive maintenance, corrective maintenance, surveillance testing, and operational bypass activities, and such events usually impact the

  10. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  11. The use of current risk analysis tools evaluated towards preventing external domino accidents

    NARCIS (Netherlands)

    Reniers, Genserik L L; Dullaert, W.; Ale, B. J.M.; Soudan, K.

    Risk analysis is an essential tool for company safety policy. Risk analysis consists of identifying and evaluating all possible risks. The efficiency of risk analysis tools depends on the rigueur of identifying and evaluating all possible risks. The diversity in risk analysis procedures is such that

  12. Exposure data and risk indicators for safety performance assessment in Europe.

    Science.gov (United States)

    Papadimitriou, Eleonora; Yannis, George; Bijleveld, Frits; Cardoso, João L

    2013-11-01

    The objective of this paper is the analysis of the state-of-the-art in risk indicators and exposure data for safety performance assessment in Europe, in terms of data availability, collection methodologies and use. More specifically, the concepts of exposure and risk are explored, as well as the theoretical properties of various exposure measures used in road safety research (e.g. vehicle- and person-kilometres of travel, vehicle fleet, road length, driver population, time spent in traffic, etc.). Moreover, the existing methods for collecting disaggregate exposure data for risk estimates at national level are presented and assessed, including survey methods (e.g. travel surveys, traffic counts) and databases (e.g. national registers). A detailed analysis of the availability and quality of existing risk exposure data is also carried out. More specifically, the results of a questionnaire survey in the European countries are presented, with detailed information on exposure measures available, their possible disaggregations (i.e. variables and values), their conformity to standard definitions and the characteristics of their national collection methods. Finally, the potential of international risk comparisons is investigated, mainly through the International Data Files with exposure data (e.g. Eurostat, IRTAD, ECMT, UNECE, IRF, etc.). The results of this review confirm that comparing risk rates at international level may be a complex task, as the availability and quality of exposure estimates in European countries varies significantly. The lack of a common framework for the collection and exploitation of exposure data limits significantly the comparability of the national data. On the other hand, the International Data Files containing exposure data provide useful statistics and estimates in a systematic way and are currently the only sources allowing international comparisons of road safety performance under certain conditions. Copyright © 2013 Elsevier Ltd. All

  13. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  14. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  15. Nuclear station safety standardization from a risk concept

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1986-01-01

    This paper presents a method of standardizing safety-system reliability on an entirely new basis: all hypothetical accidents are approximated as groups, for each of which one proposes permissible frequencies on the basis of the risk concept. In this risk concept, the ''average person'' is a person living near a nuclear station or working in it, who is of average age, average state of health, and so on. Therefore, the risk can be found by summing the estimated individual risks for a particular group in the population followed by division by the number of people in that group. Basic assumptions in deriving permissible safety-system reliability are presented. Estimated permissible failure probabilities are given to illustrate the proposed method and to refine the initial data. The probabilities may also be used to lay down the reliability requirements for safety systems in particular nuclear stations on the risk basis

  16. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  17. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  18. Application of a risk management system to improve drinking water safety.

    Science.gov (United States)

    Jayaratne, Asoka

    2008-12-01

    The use of a comprehensive risk management framework is considered a very effective means of managing water quality risks. There are many risk-based systems available to water utilities such as ISO 9001 and Hazard Analysis and Critical Control Point (HACCP). In 2004, the World Health Organization's (WHO) Guidelines for Drinking Water Quality recommended the use of preventive risk management approaches to manage water quality risks. This paper describes the framework adopted by Yarra Valley Water for the development of its Drinking Water Quality Risk Management Plan incorporating HACCP and ISO 9001 systems and demonstrates benefits of Water Safety Plans such as HACCP. Copyright IWA Publishing 2008.

  19. Risk-based rules for crane safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Stian [Section for Control Systems, DNV Maritime, 1322 Hovik (Norway)], E-mail: Stian.Ruud@dnv.com; Mikkelsen, Age [Section for Lifting Appliances, DNV Maritime, 1322 Hovik (Norway)], E-mail: Age.Mikkelsen@dnv.com

    2008-09-15

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented.

  20. Risk-based rules for crane safety systems

    International Nuclear Information System (INIS)

    Ruud, Stian; Mikkelsen, Age

    2008-01-01

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented

  1. Participation in the management of occupational health and safety improvement : workers'investigation as active risk analysis

    NARCIS (Netherlands)

    Buitelaar, W.L.

    1989-01-01

    In this report the initiating involvement of workers on health and safety at the workplace and on the quality of working life has been underlined. Workers' investigation in this matter is viewed as an additional form of risk management. Covering: occupational health and safety as a social

  2. Safety analysis and review system: a Department of Energy safety assurance tool

    International Nuclear Information System (INIS)

    Rosenthal, H.B.

    1981-01-01

    The concept of the Safety Analysis and Review System is not new. It has been used within the Department and its predecessor agencies, Atomic Energy Commission (AEC) and Energy Research and Development Administration (ERDA), for over 20 years. To minimize the risks from nuclear reactor and power plants, the AEC developed a process to support management authorization of each operation through identification and analysis of potential hazards and the measures taken to control them. As the agency evolved from AEC through ERDA to the Department of Energy, its responsibilities were broadened to cover a diversity of technologies, including those associated with the development of fossil, solar, and geothermal energy. Because the safety analysis process had proved effective in a technology of high potential hazard, the Department investigated the applicability of the process to the other technologies. This paper describes the system and discusses how it is implemented within the Department

  3. Software for occupational health and safety risk analysis based on a fuzzy model.

    Science.gov (United States)

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  4. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    Science.gov (United States)

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  5. [Post-marketing drug safety-risk management plan(RMP)].

    Science.gov (United States)

    Ezaki, Asami; Hori, Akiko

    2013-03-01

    The Guidance for Risk Management Plan(RMP)was released by the Ministry of Health, Labour and Welfare in April 2012. The RMP consists of safety specifications, pharmacovigilance plans and risk minimization action plans. In this paper, we outline post-marketing drug safety operations in PMDA and the RMP, with examples of some anticancer drugs.

  6. Risk, fear and public safety

    International Nuclear Information System (INIS)

    Siddall, E.

    1981-04-01

    Part 1 of the paper advocates a rational approach to public safety based on unbiassed quantitative assessment of overall risks and benefits of any technological activity. It shows that improved safety should be attainable at less cost than is the case at present. Part 2 offers an explanation of why so little has been achieved in this direction and outlines the major errors in present practices. Part 3 suggests what might realistically be done towards the achievement of some of the possible benefits. Factors which are important in the study of safety and evidence supporting the arguments are discussed in six appendices. It is urged that the scientific and technological community should improve its understanding of safety as a specialization and should endeavour to lead rather than follow in our present political system

  7. [Communication on health and safety risk control in contemporary society: an interdisciplinary approach].

    Science.gov (United States)

    Rangel-S, Maria Ligia

    2007-01-01

    This paper discusses communication as a technology for risk control with health and safety protection and promotion, within the context of a "risk society". As a component of Risk Analysis, risk communication is a technology that appears in risk literature, with well defined objectives, principles and models. These aspects are described and the difficulties are stressed, taking into consideration the multiple rationales related to risks in the culture and the many different aspects of risk regulation and control in the so-called "late modernity". Consideration is also given to the complexity of the communications process, guided by theoretical and methodological discussions in the field. In order to understand the true value of the communications field for risk control with health and safety protection and promotion, this paper also offers an overview of communication theories that support discussions of this matter, proposing a critical approach to models that include the dimensions of power and culture in the context of a capitalist society.

  8. Categorization of reactor safety issues from a risk perspective

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the results of an effort to identify and rank reactor safety and risk issues identified from past Probabilistic Risk Assessments (PRAs) and other safety analyses. Because of the varied scope of these analyses, the list of issues may be incomplete. Nevertheless, those studies comprised ordered analyses to whatever their respective depths; hence, they warranted scrutiny for whatever insights they could reveal with respect to issue importance. The top-ranked issues in terms of their contribution to the uncertainty in risk are described in some detail. All of these risk issues are compared to the generic safety issues for completeness and omissions

  9. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  10. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Sensitivity analysis of the reactor safety study. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Rasmussen, N.C.; Hinkle, W.D.

    1979-01-01

    The Reactor Safety Study (RSS) or Wash 1400 developed a methodology estimating the public risk from light water nuclear reactors. In order to give further insights into this study, a sensitivity analysis has been performed to determine the significant contributors to risk for both the PWR and BWR. The sensitivity to variation of the point values of the failure probabilities reported in the RSS was determined for the safety systems identified therein, as well as for many of the generic classes from which individual failures contributed to system failures. Increasing as well as decreasing point values were considered. An analysis of the sensitivity to increasing uncertainty in system failure probabilities was also performed. The sensitivity parameters chosen were release category probabilities, core melt probability, and the risk parameters of early fatalities, latent cancers and total property damage. The latter three are adequate for describing all public risks identified in the RSS. The results indicate reductions of public risk by less than a factor of two for factor reductions in system or generic failure probabilities as high as one hundred. There also appears to be more benefit in monitoring the most sensitive systems to verify adherence to RSS failure rates than to backfitting present reactors. The sensitivity analysis results do indicate, however, possible benefits in reducing human error rates

  12. Risk and sensitivity analysis in relation to external events

    International Nuclear Information System (INIS)

    Alzbutas, R.; Urbonas, R.; Augutis, J.

    2001-01-01

    This paper presents risk and sensitivity analysis of external events impacts on the safe operation in general and in particular the Ignalina Nuclear Power Plant safety systems. Analysis is based on the deterministic and probabilistic assumptions and assessment of the external hazards. The real statistic data are used as well as initial external event simulation. The preliminary screening criteria are applied. The analysis of external event impact on the NPP safe operation, assessment of the event occurrence, sensitivity analysis, and recommendations for safety improvements are performed for investigated external hazards. Such events as aircraft crash, extreme rains and winds, forest fire and flying parts of the turbine are analysed. The models are developed and probabilities are calculated. As an example for sensitivity analysis the model of aircraft impact is presented. The sensitivity analysis takes into account the uncertainty features raised by external event and its model. Even in case when the external events analysis show rather limited danger, the sensitivity analysis can determine the highest influence causes. These possible variations in future can be significant for safety level and risk based decisions. Calculations show that external events cannot significantly influence the safety level of the Ignalina NPP operation, however the events occurrence and propagation can be sufficiently uncertain.(author)

  13. Safety Goal, Multi-unit Risk and PSA Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon-Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The safety goal is an answer of each country to the question 'How safe is safe enough?'. Table 1 shows some examples of the safety goal. However, many countries including Korea do not have the official safety goal for NPPs up to now since the establishment of safety goal is not just a technical issue but a very complex socio-technical issue. In establishing the safety goal for nuclear facilities, we have to consider various factors including not only technical aspects but also social, cultural ones. Recently, Korea is trying to establish the official safety goal. In this paper, we will review the relationship between the safety goal and Probabilistic Safety Assessment (PSA). We will also address some important technical issues to be considered in establishing the safety goal for NPPs from PSA point of view, i.e. a multi-unit risk issue and the uncertainty of PSA. In this paper, we reviewed some issues related to the safety goal and PSA. We believe that the safety goal is to be established in Korea considering the multi-unit risk. In addition, the relationship between the safety goal and PSA should be also defined clearly since PSA is the only way to answer to the question 'How safe is safe enough?'.

  14. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yun Goo; Oh, Eung Se [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  15. Time Based Workload Analysis Method for Safety-Related Operator Actions in Safety Analysis

    International Nuclear Information System (INIS)

    Kim, Yun Goo; Oh, Eung Se

    2016-01-01

    During the design basis event, the safety system performs safety functions to mitigate the event. The most of safety system is actuated by automatic system however, there are operator manual actions that are needed for the plant safety. These operator actions are classified as important human actions in human factors engineering design. The human factors engineering analysis and evaluation is needed for these important human actions to assure that operator successfully perform their tasks for plant safety and operational goals. The work load analysis is one of the required analysis for the important human actions.

  16. The role of quantitative uncertainty in the safety analysis of flammable gas accidents in Hanford waste tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    Following a 1990 investigation into flammable gas generation, retention, and release mechanisms within the Hanford Site high-level waste tanks, personnel concluded that the existing Authorization Basis documentation did not adequately evaluate flammable gas hazards. The US Department of Energy Headquarters subsequently declared the flammable gas hazard as an unresolved safety issue. Although work scope has been focused on resolution of the issue, it has yet to be resolved due to considerable uncertainty regarding essential technical parameters and associated risk. Resolution of the Flammable Gas Safety Issue will include the identification of a set of controls for the Authorization Basis for the tanks which will require a safety analysis of flammable gas accidents. A traditional nuclear facility safety analysis is based primarily on the analysis of a set of bounding accidents to represent the risks of the possible accidents and hazardous conditions at a facility. While this approach may provide some indication of the bounding consequences of accidents for facilities, it does not provide a satisfactory basis for identification of facility risk or safety controls when there is considerable uncertainty associated with accident phenomena and/or data as is the case with potential flammable gas accidents at the Hanford Site. This is due to the difficulties in identifying the bounding case and reaching consensus among safety analysts, facility operations and engineering, and the regulator on the implications of the safety analysis results. In addition, the bounding cases are frequently based on simplifying assumptions that make the analysis results insensitive to variations among facilities or the impact of alternative safety control strategies. The existing safety analysis of flammable gas accidents for the Tank Waste Remediation system (TWRS) at the Hanford Site has these difficulties. However, Hanford Site personnel are developing a refined safety analysis approach

  17. Perception of risks and safety. Results of the October 2000 survey

    International Nuclear Information System (INIS)

    2000-01-01

    After having recalled the themes present in the survey on the perception of risks and safety as far as nuclear energy is concerned, this report proposes an analysis of the obtained results. It discusses the current general concerns, the perception of risks (confidence, truth), the opinions on the scientific expertise, the perception of technological and natural risks for the environment (hazardous installations, demand for environmental acceptability of installations, disasters), the opinions on nuclear activities (image, actors, information, control of these activities), the possibility of a nuclear accident and the implemented countermeasures, and finally the risks associated with radon

  18. Perception of risks and safety. Results of the October 1999 survey

    International Nuclear Information System (INIS)

    1999-01-01

    After having recalled the themes present in the survey on the perception of risks and safety as far as nuclear energy is concerned, this report proposes an analysis of the obtained results. It discusses the current general concerns, the perception of risks (demand, confidence, truth), the opinions on scientific expertise, the opinions on nuclear activities (image, actors, information, control of these activities), the issue of radioactive wastes and mining residues (perceived risk depending on the site vicinity, time scale, site management), the possibility of a nuclear accident and the implemented countermeasures, and finally the risks concerning food

  19. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  20. Preliminary safety analysis report for the Waste Characterization Facility

    International Nuclear Information System (INIS)

    1994-10-01

    This safety analysis report outlines the safety concerns associated with the Waste Characterization Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are to: define and document a safety basis for the Waste Characterization Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume. 142 refs., 38 figs., 39 tabs

  1. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    1977-01-01

    The societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters (e. g., expected benefit, intensity of effect) are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce radioactivity releases and risks from nuclear power stations to ALAP (as low as practiable) levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities

  2. Optimization of safety equipment outages improves safety

    International Nuclear Information System (INIS)

    Cepin, Marko

    2002-01-01

    Testing and maintenance activities of safety equipment in nuclear power plants are an important potential for risk and cost reduction. An optimization method is presented based on the simulated annealing algorithm. The method determines the optimal schedule of safety equipment outages due to testing and maintenance based on minimization of selected risk measure. The mean value of the selected time dependent risk measure represents the objective function of the optimization. The time dependent function of the selected risk measure is obtained from probabilistic safety assessment, i.e. the fault tree analysis at the system level and the fault tree/event tree analysis at the plant level, both extended with inclusion of time requirements. Results of several examples showed that it is possible to reduce risk by application of the proposed method. Because of large uncertainties in the probabilistic safety assessment, the most important result of the method may not be a selection of the most suitable schedule of safety equipment outages among those, which results in similarly low risk. But, it may be a prevention of such schedules of safety equipment outages, which result in high risk. Such finding increases the importance of evaluation speed versus the requirement of getting always the global optimum no matter if it is only slightly better that certain local one

  3. Occupational Health and Safety: reflection on potential risks and the safety handling of nanomaterials

    Directory of Open Access Journals (Sweden)

    Guilherme Frederico Bernardo Lenz e Silva

    2013-11-01

    Full Text Available Every day the nanotechnology, that refers to a field whose theme is the control of matter on an atomic and molecular scale working with nanometric structures (<100 nm, is more present in the development of products and industrial processes. The particle manipulation of nanometric structures has created opportunities in the development of new products and materials. However, synthesis, handling, storage, stabilization and the incorporation of these materials, with nanometric dimensions, demand a new perspective of analysis and evaluation of old manufacturing processes, procedures and industrial devices, in order to guarantee collective and individual protection to workers and society. With the increasing of scale and production of nanoestrutuctured materials, a big part of labour community starts to be in contact with different nanomaterials (forms and ways. In this work the main aspects and involved risks of manufacture, storage, synthesis, stabilization and incorporation of nanomaterials on new products are evaluated in order to reduce, decrease and eliminate chemical, physical and biological risks for the employees. A bibliographic review was conducted about risk, safety and nanotechnology based on available English literature focusing safety and environmental agencies from different countries such as USA, Canada, EU (France, UK, Germany, Den-mark, Australia and Japan.

  4. Safety vs. reputation: risk controversies in emerging policy networks regarding school safety in the Netherlands

    NARCIS (Netherlands)

    Binkhorst, J.; Kingma, S.F.

    2012-01-01

    This article deals with risk controversies in emerging policy networks regarding school safety in the Netherlands. It offers a grounded account of the interpretations of school risks and safety measures by the various stakeholders of the policy network, in particular, schools, local government and

  5. Overheads, Safety Analysis and Engineering FY 1995 Site Support Program Plan WBS 6.3.5

    Energy Technology Data Exchange (ETDEWEB)

    DiVincenzo, E.P.

    1994-09-27

    The Safety Analysis & Engineering (SA&E) department provides core competency for safety analysis and risk documentation that supports achievement of the goals and mission as described in the Hanford Mission Plan, Volume I, Site Guidance (DOE-RL 1993). SA&E operations are integrated into the programs that plan and conduct safe waste management, environmental restoration, and operational activities. SA&E personnel are key members of task teams assigned to eliminate urgent risks and inherent threats that exist at the Hanford Site. Key to ensuring protection of public health and safety, and that of onsite workers, are the products and services provided by the department. SA&E will continue to provide a leadership role throughout the DOE complex with innovative, cost-effective approaches to ensuring safety during environmental cleanup operations. The SA&E mission is to provide support to direct program operations through safety analysis and risk documentation and to maintain an infrastructure responsive to the evolutionary climate at the Hanford Site. SA&E will maintain the appropriate skills mix necessary to fulfill the customers need to conduct all operations in a safe and cost-effective manner while ensuring the safety of the public and the onsite worker.

  6. Risk measures in living probabilistic safety assessment

    International Nuclear Information System (INIS)

    Holmberg, J.; Niemelae, I.

    1993-05-01

    The main objectives of the study are: to define risk measures and suggested uses of them in various living PSA applications for the operational safety management and to describe specific model features required for living PSA applications. The report is based on three case studies performed within the Nordic research project Safety Evaluation by Use of Living PSA and Safety Indicators. (48 refs., 11 figs., 17 tabs.)

  7. Efficacy and safety of transcatheter aortic valve replacement in aortic stenosis patients at low to moderate surgical risk: a comprehensive meta-analysis

    OpenAIRE

    Elmaraezy, Ahmed; Ismail, Ammar; Abushouk, Abdelrahman Ibrahim; Eltoomy, Moutaz; Saad, Soha; Negida, Ahmed; Abdelaty, Osama Mahmoud; Abdallah, Ahmed Ramadan; Aboelfotoh, Ahmed Magdy; Hassan, Hossam Mahmoud; Elmaraezy, Aya Gamal; Morsi, Mahmoud; Althaher, Farah; Althaher, Moath; AlSafadi, Ammar M.

    2017-01-01

    Background Recently, transcatheter aortic valve replacement (TAVR) has become the procedure of choice in high surgical risk patients with aortic stenosis (AS). However, its value is still debated in operable AS cases. We performed this meta-analysis to compare the safety and efficacy of TAVR to surgical aortic valve replacement (SAVR) in low-to-moderate surgical risk patients with AS. Methods A systematic search of five authentic databases retrieved 11 eligible studies (20,056 patients). Rele...

  8. A generic standard for assessing and managing activities with significant risk to health and safety

    International Nuclear Information System (INIS)

    Wilde, T.S.; Sandquist, G.M.

    2005-01-01

    Some operations and activities in industry, business, and government can present an unacceptable risk to health and safety if not performed according to established safety practices and documented procedures. The nuclear industry has extensive experience and commitment to assessing and controlling such risks. This paper provides a generic standard based upon DOE Standard DOE-STD-3007- 93, Nov 1993, Change Notice No. 1, Sep 1998. This generic standard can be used to assess practices and procedures employed by any industrial and government entity to ensure that an acceptable level of safety and control prevail for such operations. When any activity and operation is determined to involve significant risk to health and safety to workers or the public, the organization should adopt and establish an appropriate standard and methodology to ensure that adequate health and safety prevail. This paper uses DOE experience and standards to address activities with recognized potential for impact upon health and safety. Existing and future assessments of health and safety issues can be compared and evaluated against this generic standard for insuring that proper planning, analysis, review, and approval have been made. (authors)

  9. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  10. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  11. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  12. Analysis of tank safety with propane-butane on LPG distribution station

    Directory of Open Access Journals (Sweden)

    Krzysiak Zbigniew

    2017-12-01

    Full Text Available An analysis of the risk of failure in the safety valve – tank with propane-butane (LPG system has been conducted. An uncontrolled outflow of liquid LPG, caused by a failure of the above mentioned system has been considered as a threat. The main research goal of the study is the hazardous analysis of propane-butane gas outflow for the safety valve – LPG tank system. The additional goal is the development of an useful method to fast identify the hazard of a mismatched safety valve. The results of the research analysis have confirmed that safety valves are basic protection of the installation (tank against failures that can lead to loss of life, material damage and further undesired costs of their unreliability. That is why a new, professional computer program has been created that allows for the selection of safety valves or for the verification of a safety valve selection in installations where any technical or technological changes have been made.

  13. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  14. 49 CFR 209.501 - Review of rail transportation safety and security route analysis.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Review of rail transportation safety and security....820 § 209.501 Review of rail transportation safety and security route analysis. (a) Review of route... establish that the route chosen by the carrier poses the least overall safety and security risk, the...

  15. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  16. Safety analysis report for the Waste Storage Facility. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  17. Safety in relation to risk and benefit

    International Nuclear Information System (INIS)

    Siddall, E.

    1985-01-01

    The proper definition and quantification of human safety is discussed and from this basis the historical development of our present very high standard of safety is traced. It is shown that increased safety is closely associated with increased wealth, and the quantitative relationship between then is derived from different sources of evidence. When this factor is applied to the production of wealth by industry, a safety benefit is indicated which exceeds the asserted risks by orders of magnitude. It is concluded that present policies and attitudes in respect to the safety of industry may be diametrically wrong. (orig.) [de

  18. A comparative analysis of occupational health and safety risk prevention practices in Sweden and Spain.

    Science.gov (United States)

    Morillas, Rosa María; Rubio-Romero, Juan Carlos; Fuertes, Alba

    2013-12-01

    Scandinavian countries such as Sweden implemented the occupational health and safety (OHS) measures in the European Directive 89/391/EEC earlier than other European counties, including Spain. In fact, statistics on workplace accident rates reveal that between 2004 and 2009, there were considerably fewer accidents in Sweden than in Spain. The objective of the research described in this paper was to reduce workplace accidents and to improve OHS management in Spain by exploring the OHS practices in Sweden. For this purpose, an exploratory comparative study was conducted, which focused on the effectiveness of the EU directive in both countries. The study included a cross-sectional analysis of workplace accident rates and other contextual indicators in both national contexts. A case study of 14 Swedish and Spanish companies identified 14 differences in the preventive practices implemented. These differences were then assessed with a Delphi study to evaluate their contribution to the reduction of workplace accidents and their potential for improving health and safety management in Spain. The results showed that there was agreement concerning 12 of the 14 practices. Finally, we discuss opportunities of improvement in Spanish companies so that they can make their risk management practices more effective. The findings of this comparative study on the implementation of the European Directive 89/391/EEC in both Sweden and Spain have revealed health and safety managerial practices which, if properly implemented, could contribute to improved work conditions and accident statistics of Spanish companies. In particular, the results suggest that Spanish employers, safety managers, external prevention services, safety deputies and Labour Inspectorates should consider implementing streamlined internal preventive management, promoting the integration of prevention responsibilities to the chain of command, and preventing health and safety management from becoming a mere exchange of

  19. RISMC Advanced Safety Analysis Project Plan – FY 2015 - FY 2019

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In this report, a project plan is developed, focused on industry applications, using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to realistic, relevant, and current interest issues to the operating nuclear fleet. RISMC focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. This set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. The proposed plan will focus on application of the RISMC toolkit, in particular, solving realistic problems of important current issues to the nuclear industry, in collaboration with plant owners and operators to demonstrate the usefulness of these tools in decision making.

  20. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this Safety Guide is to provide harmonized guidance to designers, operators, regulators and providers of technical support on deterministic safety analysis for nuclear power plants. It provides information on the utilization of the results of such analysis for safety and reliability improvements. The Safety Guide addresses conservative, best estimate and uncertainty evaluation approaches to deterministic safety analysis and is applicable to current and future designs. Contents: 1. Introduction; 2. Grouping of initiating events and associated transients relating to plant states; 3. Deterministic safety analysis and acceptance criteria; 4. Conservative deterministic safety analysis; 5. Best estimate plus uncertainty analysis; 6. Verification and validation of computer codes; 7. Relation of deterministic safety analysis to engineering aspects of safety and probabilistic safety analysis; 8. Application of deterministic safety analysis; 9. Source term evaluation for operational states and accident conditions; References

  1. Probabilistic risk analysis in chemical engineering

    International Nuclear Information System (INIS)

    Schmalz, F.

    1991-01-01

    In risk analysis in the chemical industry, recognising potential risks is considered more important than assessing their quantitative extent. Even in assessing risks, emphasis is not on the probability involved but on the possible extent. Qualitative assessment has proved valuable here. Probabilistic methods are used in individual cases where the wide implications make it essential to be able to assess the reliability of safety precautions. In this case, assessment therefore centres on the reliability of technical systems and not on the extent of a chemical risk. 7 figs

  2. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  3. Safety management - policy, analysis and implementation

    International Nuclear Information System (INIS)

    Allen, F.R.

    1993-01-01

    The nuclear industry is moving towards a period of ever increasing emphasis on business performance and profitability. Safety has, of course, always been a major concern of management in the nuclear industry and elsewhere. The civil aviation industry , for example, has had a similar concern for safety. Other industry sectors are also developing safety management as a response to events within and outside their sectors. In this paper the way that the risk management process as a whole is being addressed is looked at. Can we use risk management, initially a safety-orientated tool, to improve business performance? (author)

  4. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    In the present study the societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce the radioactivity releases and risks from nuclear power stations to ALAP levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities. It is also shown that the incremental safety investments needed to further reduce the radiation doses in the environment during normal and continuous operation of nuclear plants are extravagantly high as compared to safety investments in other human activities and in other facets of human life. Considering that there is a limit to the economic means available, societal expenditures for reducing risks should by spread, as much as possible, over all human activities to get the maximum return from investments. (B.G.)

  5. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    International Nuclear Information System (INIS)

    Dinh, Nam; Szilard, Ronaldo

    2009-01-01

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons

  6. Public transport risk assessment through fault tree analysis

    Directory of Open Access Journals (Sweden)

    Z. Yaghoubpour

    2016-04-01

    Full Text Available This study focused on the public transport risk assessment in District one of ​​Tehran through Fault Tree Analysis involving the three criteria of human, vehicle and road in Haddon matrix. In fact, it examined the factors contributing to the occurrence of road accidents at several urban black spots within District 1. Relying on road safety checklists and survey of experts, this study made an effort to help urban managers to assess the risks in the public transport and prevent road accidents. Finally, the risk identification and assessment of public transport in District one yielded several results to answer the research questions. The hypotheses analysis suggested that safety issues involved in public transport are concerned by urban managers. The key reactive measures are investigation of accidents, identification of causes and correction of black spots. In addition to high costs, however, the reactive measures give rise to multiple operational problems such as traffic navigation and guaranteeing user safety in every operation. The case study highlighted the same fact. The macro-level management in the metropolis of Tehran is critical. The urban road casualties and losses can be curtailed by preventive measures such as continuous assessment of road safety.

  7. Perception of risks and safety. Results of the November 2002 survey

    International Nuclear Information System (INIS)

    2002-01-01

    After having recalled the themes present in the survey on the perception of risks and safety as far as nuclear energy is concerned, this report proposes an analysis of the obtained results. It discusses the current general concerns, the perception of risks (risks for the society, confidence in authorities, spoken truth), the opinions on the scientific expertise (role, opinion, confidence), the perception of technological and natural risks for the environment (hazardous installations, demand for environmental acceptability of installations, participation to information session, industrial and natural disasters), the opinions on nuclear activities (image, actors, information, control of these activities), and finally the possibility of a nuclear accident and the implemented countermeasures

  8. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  9. The use of a basic safety investment model in a practical risk management context

    International Nuclear Information System (INIS)

    Aven, Terje; Hiriart, Yolande

    2011-01-01

    We consider a basic model in economic safety analysis: a firm is willing to invest an amount x in safety measures to avoid an accident A, which in the case of occurrence, leads to a loss of size L. The probability of an accident is a function of x. The optimal value of x is determined by minimizing the expected costs. In the paper, we re-examine this model by adopting a practical risk/safety management perspective. We question how this model can be used for guiding the firm and regulators in determining the proper level of investment in safety. Attention is given to issues like how to determine the probability of an accident and how to take into account uncertainties that extend beyond the expected value. It is concluded that the model, with suitable extensions and if properly implemented, provides a valuable decision support tool. By focusing on investment levels and stimulating thereby the generation of alternative risk-reducing measures, the model is considered particularly useful in risk reduction (ALARP) processes. - Highlights: → It is shown how to use a basic investment model in a practical risk management setting. → The model may be a valuable decision support tool if properly implemented. → It guides decision makers on risk reduction and how to determine what is ALARP. → The model stimulates the generation of alternative risk-reducing measures.

  10. A strategy for the risk-based inspection of pressure safety valves

    International Nuclear Information System (INIS)

    Chien, C.-H.; Chen, C.-H.; Chao, Y.J.

    2009-01-01

    The purpose of a pressure safety valve (PSV) is to protect the life and safety of pressure vessels in a pressurized system. If a weakened PSV fails to function properly, a catastrophic event might occur if no other protective means are provided. By utilizing the as-received test data and statistical analysis of the aging conditions of PSVs in lubricant process units, a risk-based inspection (RBI) system was developed in this study. First of all, the characteristics of PSV were discussed from the practical viewpoint of engineering inspection and maintenance. The as-received test data, which shows obvious PSV damage, will be separated from the data used in the following statistical analysis. Then, the relationship between the aging conditions and the corresponding PSV parameters was analyzed by using the statistical technique-analysis of variance (ANOVA). Finally, a strategy for semi-quantitative RBI is proposed. Also, a definitive estimated inspection interval for every PSV is suggested. The outcome indicated most of the risks result from a few PSVs, for which the corresponding inspection intervals will be shorter than the 2 years in accordance with relative standards and local government regulations

  11. Final safety analysis report for the Galileo mission: Volume 3 (Book 2), Nuclear risk analysis document: Appendices: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-25

    It is the purpose of the NRAD to provide an analysis of the range of potential consequences of accidents which have been identified that are associated with the launching and deployment of the Galileo mission spacecraft. The specific consequences analyzed are those associated with the possible release of radioactive material (fuel) of the Radioisotope Thermoelectric Generators (RTGs). They are in terms of radiation doses to people and areas of deposition of radioactive material. These consequence analyses can be used in several ways. One way is to identify the potential range of consequences which might have to be dealt with if there were to be an accident with a release of fuel, so as to assure that, given such an accident, the health and safety of the public will be reasonably protected. Another use of the information, in conjunction with accident and release probabilities, is to estimate the risks associated with the mission. That is, most space launches occur without incident. Given an accident, the most probable result relative to the RTGs is complete containment of the radioactive material. Only a small fraction of accidents might result in a release of fuel and subsequent radiological consequences. The combination of probability with consequence is risk, which can be compared to other human and societal risks to assure that no undue risks are implied by undertaking the mission. Book 2 contains eight appendices.

  12. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    1999-06-08

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the

  13. Safety analysis for 'Fugen'

    International Nuclear Information System (INIS)

    1997-10-01

    The improvement of safety in nuclear power stations is an important proposition. Therefore also as to the safety evaluation, it is important to comprehensively and systematically execute it by referring to the operational experience and the new knowledge which is important for the safety throughout the period of use as well as before the construction and the start of operation of nuclear power stations. In this report, the results when the safety analysis for ''Fugen'' was carried out by referring to the newest technical knowledge are described. As the result, it was able to be confirmed that the safety of ''Fugen'' has been secured by the inherent safety and the facilities which were designed for securing the safety. The basic way of thinking on the safety analysis including the guidelines to be conformed to is mentioned. As to the abnormal transient change in operation and accidents, their definition, the events to be evaluated and the standards for judgement are reported. The matters which were taken in consideration at the time of the analysis are shown. The computation programs used for the analysis were REACT, HEATUP, LAYMON, FATRAC, SENHOR, LOTRAC, FLOOD and CONPOL. The analyses of the abnormal transient change in operation and accidents are reported on the causes, countermeasures, protective functions and results. (K.I.)

  14. Demonstration of Risk Profiling for promoting safety in SME´s

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Duijm, Nijs Jan; Troen, Hanne

    2011-01-01

    Purpose – The purpose of this paper is to identify and assess the risks and potential risks that may lead to accidents. It aims to look at how to improve risk assessment within SMEs for the benefit of all staff. Design/methodology/approach – The research included results from a Dutch project which...... identifies accident risks and safety barriers that are presented in a huge database and risk calculator. The method was first to develop a simple way of accessing this enormous amount of data, second, to develop a tool to observe risks and safety barriers in SMEs and to investigate the usefulness...... of the developed tools in real life, third, to collect data on risks and safety barriers in SMEs for two occupations by following 20 people for three days each and to create a risk profile for each occupations. Findings – The result is a simple way to go through all types of risks for accidents – a tool for risk...

  15. Atomic risk insurance. Risk policy, safety production and expertise in Germany and the USA 1945 - 1986

    International Nuclear Information System (INIS)

    Wehner, Christoph

    2017-01-01

    The book covers the following chapters: (I) Between threat and promise: Political change and the corporate perception, the burden of the atomic bomb, promise of nuclear energy risk criticism in the pre-ecological phase, nuclear risk as investment restraint; (II) Risk policy at the insurability limit: hazard knowledge, safety production and insurance expertise in the German nuclear policy (1955-1962); (III) Risk policy beyond the catastrophe, insurability interpretation, concepts and conflicts (1957-1968); (IV) Scandalization of risk policy: safety production, confidence and expertise in the nuclear controversial debate (1969 - 1979); (V) Nuclear risk policy and the challenge of the ''risk society'' (1975-1986); (VI) From safety production to hazard probe: atomic energy And the change of insurance.

  16. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.

    Science.gov (United States)

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-05-01

    Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Integrating risk management and safety culture in a framework for risk informed decision making

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2009-01-01

    Operators and regulators of nuclear power plants agree on the importance of maintaining safety and controlling accident risks. Effective safety and risk management requires treatment of both technical and organizational components. Probabilistic Risk Assessment (PRA) provides tools for technical risk management. However, organizational factors are not treated in PRA, but are addressed using different approaches. To bring both components together, a framework of Risk Informed Decision Making (RIDM) is needed. The objective tree structure of the International Atomic Energy Agency (IAEA) is a promising approach to combine both elements. Effective collaboration involving regulatory and industry groups is needed to accomplish the integration. (author)

  18. Overheads, Safety Analysis and Engineering FY 1995 Site Support Program Plan WBS 6.3.5

    International Nuclear Information System (INIS)

    DiVincenzo, E.P.

    1994-01-01

    The Safety Analysis ampersand Engineering (SA ampersand E) department provides core competency for safety analysis and risk documentation that supports achievement of the goals and mission as described in the Hanford Mission Plan, Volume I, Site Guidance (DOE-RL 1993). SA ampersand E operations are integrated into the programs that plan and conduct safe waste management, environmental restoration, and operational activities. SA ampersand E personnel are key members of task teams assigned to eliminate urgent risks and inherent threats that exist at the Hanford Site. Key to ensuring protection of public health and safety, and that of onsite workers, are the products and services provided by the department. SA ampersand E will continue to provide a leadership role throughout the DOE complex with innovative, cost-effective approaches to ensuring safety during environmental cleanup operations. The SA ampersand E mission is to provide support to direct program operations through safety analysis and risk documentation and to maintain an infrastructure responsive to the evolutionary climate at the Hanford Site. SA ampersand E will maintain the appropriate skills mix necessary to fulfill the customers need to conduct all operations in a safe and cost-effective manner while ensuring the safety of the public and the onsite worker

  19. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    International Nuclear Information System (INIS)

    Zubair, M; Ur Rahman, Khalil; Ul Hassan, Mehmood

    2013-01-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants

  20. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    Science.gov (United States)

    Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul

    2013-12-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.

  1. Taking up national safety alerts to improve patient safety in hospitals: The perspective of healthcare quality and risk managers.

    Science.gov (United States)

    Pfeiffer, Yvonne; Schwappach, David

    2016-01-01

    National safety alert systems publish relevant information to improve patient safety in hospitals. However, the information has to be transformed into local action to have an effect on patient safety. We studied three research questions: How do Swiss healthcare quality and risk managers (qm/rm(1)) see their own role in learning from safety alerts issued by the Swiss national voluntary reporting and analysis system? What are their attitudes towards and evaluations of the alerts, and which types of improvement actions were fostered by the safety alerts? A survey was developed and applied to Swiss healthcare risk and quality managers, with a response rate of 39 % (n=116). Descriptive statistics are presented. The qm/rm disseminate and communicate with a broad variety of professional groups about the alerts. While most respondents felt that they should know the alerts and their contents, only a part of them felt responsible for driving organizational change based on the recommendations. However, most respondents used safety alerts to back up their own patient safety goals. The alerts were evaluated positively on various dimensions such as usefulness and were considered as standards of good practice by the majority of the respondents. A range of organizational responses was applied, with disseminating information being the most common. An active role is related to using safety alerts for backing up own patient safety goals. To support an active role of qm/rm in their hospital's learning from safety alerts, appropriate organizational structures should be developed. Furthermore, they could be given special information or training to act as an information hub on the issues discussed in the alerts. Copyright © 2016. Published by Elsevier GmbH.

  2. Therapeutic risk management of the suicidal patient: safety planning.

    Science.gov (United States)

    Matarazzo, Bridget B; Homaifar, Beeta Y; Wortzel, Hal S

    2014-05-01

    This column is the fourth in a series describing a model for therapeutic risk management of the suicidal patient. Previous columns presented an overview of the therapeutic risk management model, provided recommendations for how to augment risk assessment using structured assessments, and discussed the importance of risk stratification in terms of both severity and temporality. This final column in the series discusses the safety planning intervention as a critical component of therapeutic risk management of suicide risk. We first present concerns related to the relatively common practice of using no-suicide contracts to manage risk. We then present the safety planning intervention as an alternative approach and provide recommendations for how to use this innovative strategy to therapeutically mitigate risk in the suicidal patient.

  3. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  4. Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Son, Kwang Seop; Jung, Wondea; Kang, Hyun Gook

    2017-01-01

    Highlights: • Safety data communication risk assessment framework and quantitative scheme were proposed. • Fault-tree model of ESFAS unavailability due to safety data communication failure was developed. • Safety data link and network risk were assessed based on various ESF-CCS design specifications. • The effect of fault-tolerant algorithm reliability of safety data network on ESFAS unavailability was assessed. - Abstract: As one of the safety-critical systems in nuclear power plants (NPPs), the Engineered Safety Feature-Component Control System (ESF-CCS) employs safety data link and network communication for the transmission of safety component actuation signals from the group controllers to loop controllers to effectively accommodate various safety-critical field controllers. Since data communication failure risk in the ESF-CCS has yet to be fully quantified, the ESF-CCS employing data communication systems have not been applied in NPPs. This study therefore developed a fault tree model to assess the data link and data network failure-induced unavailability of a system function used to generate an automated control signal for accident mitigation equipment. The current aim is to provide risk information regarding data communication failure in a digital safety feature control system in consideration of interconnection between controllers and the fault-tolerant algorithm implemented in the target system. Based on the developed fault tree model, case studies were performed to quantitatively assess the unavailability of ESF-CCS signal generation due to data link and network failure and its risk effect on safety signal generation failure. This study is expected to provide insight into the risk assessment of safety-critical data communication in a digitalized NPP instrumentation and control system.

  5. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  6. NKS/SOS-1 Seminar on Safety analysis. Report from a seminar held on 22-23 March 2000 Risø National Laboratory, Roskilde, DK

    DEFF Research Database (Denmark)

    The report describes presentations and discussions at a seminar held at Risø on March 22-23, 2000. The title of the seminar was NKS/SOS-1 – Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories......). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multi-dimensional, which makes clarity...

  7. Occupational safety and health management and risk governance

    NARCIS (Netherlands)

    Dijkman, A.; Terwoert, J.

    2014-01-01

    The advancement in new technologies, substances and new ways of working make it necessary to look beyond traditional methods of risk management. General drivers to emerging occupational safety and health (OSH) risks are: globalisation; demographic changes; technical innovations; changes in risk

  8. Review of Risk Reduction Methods using Probabilistic Safety Assessment Insights and Improved Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Choi, Byung-Pil [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    As seen in the process of the periodic safety review of domestic nuclear power plants, the risk management objectives such as core damage frequency and large early release frequency are not easy to be met without continuous safety improvements and the integratoin of the improved technologies into the PSA evaluation methodologies. Because external event analyses have a protion of uncertainty factors in the current analysis methodologies, the technical efforts in various perspectives.

  9. Understanding Risk Tolerance and Building an Effective Safety Culture

    Science.gov (United States)

    Loyd, David

    2018-01-01

    Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

  10. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  11. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  12. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  13. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    Science.gov (United States)

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  14. Managing risk in healthcare: understanding your safety culture using the Manchester Patient Safety Framework (MaPSaF).

    Science.gov (United States)

    Parker, Dianne

    2009-03-01

    To provide sufficient information about the Manchester Patient Safety Framework (MaPSaF) to allow healthcare professionals to assess its potential usefulness. The assessment of safety culture is an important aspect of risk management, and one in which there is increasing interest among healthcare organizations. Manchester Patient Safety Framework offers a theory-based framework for assessing safety culture, designed specifically for use in the NHS. The framework covers multiple dimensions of safety culture, and five levels of safety culture development. This allows the generation of a profile of an organization's safety culture in terms of areas of relative strength and challenge, which can be used to identify focus issues for change and improvement. Manchester Patient Safety Framework provides a useful method for engaging healthcare professionals in assessing and improving the safety culture in their organization, as part of a programme of risk management.

  15. Roy's safety-first portfolio principle in financial risk management of disastrous events.

    Science.gov (United States)

    Chiu, Mei Choi; Wong, Hoi Ying; Li, Duan

    2012-11-01

    Roy pioneers the concept and practice of risk management of disastrous events via his safety-first principle for portfolio selection. More specifically, his safety-first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety-first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy's setting, either leads to a trivial case or changes the problem nature completely to a target-reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill-posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding-level regulation of pension funds and modify the original safety-first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety-first asset-liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety-first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening. © 2012 Society for Risk Analysis.

  16. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  17. Theories of risk and safety: what is their relevance to nursing?

    Science.gov (United States)

    Cooke, Hannah

    2009-03-01

    The aim of this paper is to review key theories of risk and safety and their implications for nursing. The concept of of patient safety has only recently risen to prominence as an organising principle in healthcare. The paper considers the wider social context in which contemporary concepts of risk and safety have developed. In particular it looks at sociological debates about the rise of risk culture and the risk society and their influence on the patient safety movement. The paper discusses three bodies of theory which have attempted to explain the management of risk and safety in organisations: normal accident theory, high reliability theory, and grid-group cultural theory. It examine debates between these theories and their implications for healthcare. It discusses reasons for the dominance of high reliability theory in healthcare and its strengths and limitations. The paper suggest that high reliability theory has particular difficulties in explaining some aspects of organisational culture. It also suggest that the implementation of high reliability theory in healthcare has involved over reliance on numerical indicators. It suggests that patient safety could be improved by openness to a wider range of theoretical perspectives.

  18. [Patient safety in antibiotics administration: Risk assessment].

    Science.gov (United States)

    Maqueda Palau, M; Pérez Juan, E

    To determine the level of risk in the preparation and administration of antibiotics frequently used in the Intensive Care Unit using a risk matrix. A study was conducted using situation analysis and literature review of databases, protocols and good practice guidelines on intravenous therapy, drugs, and their administration routes. The most used antibiotics in the ICU registered in the ENVIN-HELICS program from 1 April to 30 June 2015 were selected. In this period, 257 patients received antimicrobial treatment and 26 antibiotics were evaluated. Variables studied: A risk assessment of each antibiotic using the scale Risk Assessment Tool, of the National Patient Safety Agency, as well as pH, osmolarity, type of catheter recommended for administration, and compatibility and incompatibility with other antibiotics studied. Almost two-thirds (65.3%) of antibiotics had more than 3 risk factors (represented by a yellow stripe), with the remaining 34.7% of antibiotics having between 0 and 2 risk factors (represented by a green stripe). There were no antibiotics with 6 or more risk factors (represented by a red stripe). Most drugs needed reconstitution, additional dilution, and the use of part of the vial to administer the prescribed dose. More than half of the antibiotics studied had a moderate risk level; thus measures should be adopted in order to reduce it. The risk matrix is a useful tool for the assessment and detection of weaknesses associated with the preparation and administration of intravenous antibiotics. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. An approach for risk informed safety culture assessment for Canadian nuclear power stations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2010-01-01

    One of the most important components of effective safety and risk management for nuclear power stations is a healthy safety culture. DNV has developed an approach for risk informed safety culture assessment that combines two complementary paradigms for safety and risk management: loss prevention - for preventing and intervening in accidents; and critical function management - for achieving safety and performance goals. Combining these two paradigms makes it possible to provide more robust systems for safety management and to support a healthy safety culture. This approach is being applied to safety culture assessment in partnership with a Canadian nuclear utility. (author)

  20. Pooling, meta-analysis, and the evaluation of drug safety

    Directory of Open Access Journals (Sweden)

    Leizorovicz Alain

    2002-03-01

    Full Text Available Abstract Background The "integrated safety report" of the drug registration files submitted to health authorities usually summarizes the rates of adverse events observed for a new drug, placebo or active control drugs by pooling the safety data across the trials. Pooling consists of adding the numbers of events observed in a given treatment group across the trials and dividing the results by the total number of patients included in this group. Because it considers treatment groups rather than studies, pooling ignores validity of the comparisons and is subject to a particular kind of bias, termed "Simpson's paradox." In contrast, meta-analysis and other stratified analyses are less susceptible to bias. Methods We use a hypothetical, but not atypical, application to demonstrate that the results of a meta-analysis can differ greatly from those obtained by pooling the same data. In our hypothetical model, a new drug is compared to 1 a placebo in 4 relatively small trials in patients at high risk for a certain adverse event and 2 an active reference drug in 2 larger trials of patients at low risk for this event. Results Using meta-analysis, the relative risk of experiencing the adverse event with the new drug was 1.78 (95% confidence interval [1.02; 3.12] compared to placebo and 2.20 [0.76; 6.32] compared to active control. By pooling the data, the results were, respectively, 1.00 [0.59; 1.70] and 5.20 [2.07; 13.08]. Conclusions Because these findings could mislead health authorities and doctors, regulatory agencies should require meta-analyses or stratified analyses of safety data in drug registration files.

  1. Quantitative risk assessment of digitalized safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Min; Lee, Sang Hun; Kang, Hym Gook [KAIST, Daejeon (Korea, Republic of); Lee, Seung Jun [UNIST, Ulasn (Korea, Republic of)

    2016-05-15

    A report published by the U.S. National Research Council indicates that appropriate methods for assessing reliability are key to establishing the acceptability of digital instrumentation and control (I and C) systems in safety-critical plants such as NPPs. Since the release of this issue, the methodology for the probabilistic safety assessment (PSA) of digital I and C systems has been studied. However, there is still no widely accepted method. Kang and Sung found three critical factors for safety assessment of digital systems: detection coverage of fault-tolerant techniques, software reliability quantification, and network communication risk. In reality the various factors composing digitalized I and C systems are not independent of each other but rather closely connected. Thus, from a macro point of view, a method that can integrate risk factors with different characteristics needs to be considered together with the micro approaches to address the challenges facing each factor.

  2. Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Brunett, Acacia; Nakayama, Marvin

    2015-04-26

    The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it is difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.

  3. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    Science.gov (United States)

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  4. A Systematic Review of the Use of Social Media for Food Safety Risk Communication.

    Science.gov (United States)

    Overbey, Katie N; Jaykus, Lee-Ann; Chapman, Benjamin J

    2017-09-01

    This article covers the current published literature related to the use of social media in food safety and infectious disease communication. The aim was to analyze literature recommendations and draw conclusions about how best to utilize social media for food safety risk communication going forward. A systematic literature review was conducted, and 24 articles were included for analysis. The inclusion criteria were (i) original peer-reviewed articles and (ii) primary focus on communication through social media about food safety and/or infectious diseases. Studies were coded for themes about social media applications, benefits, limitations, and best practices. Trust and personal beliefs were important drivers of social media use. The wide reach, immediacy, and information gathering capacities of social media were frequently cited benefits. Suggestions for social media best practices were inconsistent among studies, and study designs were highly variable. More evidence-based suggestions are needed to better establish guidelines for social media use in food safety and infectious disease risk communication. The information gleaned from this review can be used to create effective messages for shaping food safety behaviors.

  5. An intelligent hybrid system for surface coal mine safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lilic, N.; Obradovic, I.; Cvjetic, A. [University of Belgrade, Belgrade (Serbia)

    2010-06-15

    Analysis of safety in surface coal mines represents a very complex process. Published studies on mine safety analysis are usually based on research related to accidents statistics and hazard identification with risk assessment within the mining industry. Discussion in this paper is focused on the application of AI methods in the analysis of safety in mining environment. Complexity of the subject matter requires a high level of expert knowledge and great experience. The solution was found in the creation of a hybrid system PROTECTOR, whose knowledge base represents a formalization of the expert knowledge in the mine safety field. The main goal of the system is the estimation of mining environment as one of the significant components of general safety state in a mine. This global goal is subdivided into a hierarchical structure of subgoals where each subgoal can be viewed as the estimation of a set of parameters (gas, dust, climate, noise, vibration, illumination, geotechnical hazard) which determine the general mine safety state and category of hazard in mining environment. Both the hybrid nature of the system and the possibilities it offers are illustrated through a case study using field data related to an existing Serbian surface coal mine.

  6. Probabilistic safety analysis procedures guide

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Bari, R.A.; Buslik, A.J.

    1984-01-01

    A procedures guide for the performance of probabilistic safety assessment has been prepared for interim use in the Nuclear Regulatory Commission programs. The probabilistic safety assessment studies performed are intended to produce probabilistic predictive models that can be used and extended by the utilities and by NRC to sharpen the focus of inquiries into a range of tissues affecting reactor safety. This guide addresses the determination of the probability (per year) of core damage resulting from accident initiators internal to the plant and from loss of offsite electric power. The scope includes analyses of problem-solving (cognitive) human errors, a determination of importance of the various core damage accident sequences, and an explicit treatment and display of uncertainties for the key accident sequences. Ultimately, the guide will be augmented to include the plant-specific analysis of in-plant processes (i.e., containment performance) and the risk associated with external accident initiators, as consensus is developed regarding suitable methodologies in these areas. This guide provides the structure of a probabilistic safety study to be performed, and indicates what products of the study are essential for regulatory decision making. Methodology is treated in the guide only to the extent necessary to indicate the range of methods which is acceptable; ample reference is given to alternative methodologies which may be utilized in the performance of the study

  7. Remodeling Strategic Staff Safety and Security Risks Management in Nigerian Tertiary Institutions

    Directory of Open Access Journals (Sweden)

    Sunday S. AKPAN

    2015-10-01

    Full Text Available This paper examined safety and security risk management in tertiary institutions in Nigeria. The frequent attacks at workplace, especially schools, have placed safety and security in the front burner of discussion in both business and political circles. This therefore, forms the imperative for the conduct of this study. The work adopted a cross sectional survey research design and collected data from respondents who are security personnel of the University of Uyo. Analysis of data was done with simple percentage statistics while the research hypotheses were tested with mean and simple regression and correlation statistics. The findings of the study revealed that assassination, kidnappings and bombings were principal risk incidents threatening the safety and security of staff in University of Uyo. A significant positive relationship was found between the funding of security management and workers’ performance. It was discovered specifically that employment screening, regular training of security personnel, regular safety and security meetings and strategic security policy formation were the main strategies for managing safety and security in University of Uyo. The paper concluded that safety and security management and control involves every worker (management and staff of University of Uyo. It was recommended, among others, that management should be more committed to safety and security management in the University by means of making safety and security issues an integral part of University’s strategic plan and also by adopting the management line model – one form of management structure-where safety and security are located, with other general management responsibilities. This way, the resurgent cases of kidnapping, hired assassination, etc. would be reduced if not completely eradicated in the University.

  8. Periodic safety review of the HTR-10 safety analysis

    International Nuclear Information System (INIS)

    Chen Fubing; Zheng Yanhua; Shi Lei; Li Fu

    2015-01-01

    Designed by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University, the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) is the first modular High Temperature Gas-cooled Reactor (HTGR) in China. According to the nuclear safety regulations of China, the periodic safety review (PSR) of the HTR-10 was initiated by INET after approved by the National Nuclear Safety Administration (NNSA) of China. Safety analysis of the HTR-10 is one of the key safety factors of the PSR. In this paper, the main contents in the review of safety analysis are summarized; meanwhile, the internal evaluation on the review results is presented by INET. (authors)

  9. Risk and safety perception on urban and rural roads: Effects of environmental features, driver age and risk sensitivity.

    Science.gov (United States)

    Cox, Jolene A; Beanland, Vanessa; Filtness, Ashleigh J

    2017-10-03

    The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity. Sixty-three licensed drivers aged 18-70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors. Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high-risk

  10. Safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Selvatici, E.

    1981-01-01

    A study about the safety analysis of nuclear power plant, giving emphasis to how and why to do is presented. The utilization of the safety analysis aiming to perform the licensing requirements is discussed, and an example of the Angra 2 and 3 safety analysis is shown. Some presented tendency of the safety analysis are presented and examples are shown.(E.G.) [pt

  11. Probabilistic safety analysis about the radiation risk for the driver in a fast-scan container/vehicle inspection system

    International Nuclear Information System (INIS)

    Li Junli; Zhu Guoping; Ming Shenjin; Cao Yanfeng

    2008-01-01

    A new Container/Vehicle Inspection System called fast-scan inspection system has been developed and used in some countries, which has a special advantage in scanning efficiency of 200 - 400 containers per hour. However, for its unique scanning mode, the fast-scan inspection system causes some worries about the radiation risk for the truck drivers, who will drive the container truck to pass through the scanning tunnel and might be exposed by the radiation beam in accidents. A PSA analysis, which has been widely used to evaluate the safety of nuclear power plant in the past, is presented here to estimate the probability of accidental exposure to the driver and evaluate the health risk. The fault tree and event tree analysis show that the probability of accidental exposure to the driver is pretty low and the main failure contributions are human errors and scanning control devices failures, which provides some recommendations for the further improvement about this product. Furthermore, on the basic of ICRP No.60 and 76 reports, the health risk to the truck driver is only about 4.0x10 -14 /a. Compared with the exempt level of 5x10 -7 /a, it can be concluded that the fast-scan system is safe enough for the truck driver. (author)

  12. Project for the completion of a probabilistic safety analysis of an industrial irradiation

    International Nuclear Information System (INIS)

    Ferro, R.; Troncoso, M.

    1995-01-01

    The probabilistic safety analysis is a very valuable instrument in safety studies of facilities with potential risk for the personnel, population and environment. One of the possible field of use of PSA techniques in the safety studies for industrial irradiation where serious accidents have occurred. For this reason a project has been undertaken to carry out the PSA in the Irradiation Plant of Research Institute of the Food Industry, which complements the safety studies of this facility

  13. Procedures to relate the NII safety assessment principles for nuclear reactors to risk

    CERN Document Server

    Kelly, G N; Hemming, C R

    1985-01-01

    Within the framework of the Public Inquiry into the proposed pressurised water reactor (PWR) at Sizewell, estimates were made of the levels of individual and societal risk from a PWR designed in a manner which would conform to the safety assessment principles formulated by the Nuclear Installations Inspectorate (NII). The procedures used to derive these levels of risk are described in this report. The opportunity has also been taken to revise the risk estimates made at the time of the Inquiry by taking account of additional data which were not then available, and to provide further quantification of the likely range of uncertainty in the predictions. This re-analysis has led to small changes in the levels of risk previously evaluated, but these are not sufficient to affect the broad conclusions reached before. For a reactor just conforming to the NII safety assessment principles a maximum individual risk of fatal cancer of about 10 sup - sup 6 per year of reactor operation has been estimated; the societal ris...

  14. [Adolescents, risk situations and road safety].

    Science.gov (United States)

    Meneses Falcón, Carmen; Gil García, Eugenia; Romo Avilés, Nuria

    2010-09-01

    Describe the risk behaviour relationships with road safety in adolescents. Cross-sectional descriptive study. Madrid and Andalusia Regions, representative samples. The sample included 3,612 in secondary school pupils from Madrid (n=1708) and Andalusia (n=1904). The survey was carried out during May and June 2007. The data collected included sociodemographic areas (age, sex, grade, father's profession, birth place, etc.) and risk situation and behaviour (risk behaviour as driver or passenger). 16.2% of the adolescents have been involved in a dangerous situation with motorcycles during the last year. 16.7% never use a helmet when riding a motorcycle and 62% do not wear one when riding a bicycle on the road; 17.4% frequently ride a motorcycle over the speed limit and 24.5% when driving a car. There are significant differences regarding sex, grade and region (Madrid or Andalusia). There are four factors which explain 62% of the variance: drug factor, speed factor, security factor and passenger factor. Two of these have twice the probability of having a dangerous situation when riding a motorcycle: drug factor (OR=1.96; 95% CI, 1.77-2.18) and the speed factor ((OR=2.13; 95% CI, 1.92-2.36). Adolescents in higher grades and living in Andalusia were less road safety conscious. This pattern should be taken into account when designing preventive actions in Road Safety Education. 2009 Elsevier España, S.L. All rights reserved.

  15. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  16. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  17. Development of regulatory technology for thermal-hydraulic safety analysis

    International Nuclear Information System (INIS)

    Bang, Young Seok; Lee, S. H.; Ryu, Y. H.

    2001-02-01

    The present study aims to develop the regulation capability in thermal-hydraulic safety analysis which was required for the reasonable safety regulation in the current NPP, the next generation reactors, and the future-type reactors. The fourth fiscal year of the first phase of the research was focused on the following research topics: Investigation on the current status of the thermal-hydraulic safety analysis technology outside and inside of the country; Review on the improved features of the thermal-hydraulic safety analysis regulatory audit code, RELAP5/MOD3; Assessments of code with LOFT L9-3 ATWS experiment and LSTF SB-SG-10 multiple SGTR experiment; Application of the RELAP5/CANDU code to analyses of SLB and LBLOCA and evaluation of its effect on safety; Application of the code to IAEA PHWR ISP analysis; Assessments of RELAP5 and TRAC with UPTF downcomer injection test and Analysis of LBLOCA with RELAP5 for the performance evaluation of KNGR DVI; Setup of a coupled 3-D kinetics and thermal-hydraulics and application it to a reactivity accident analysis; and Extension of database and improvement of plant input decks. For supporting the resolution of safety issues, loss of RHR event during midloop operation was analyzed for Kori Unit 3, issues on high burnup fuel were reviewed and performance of FRAPCON-3 assessed. Also MSLB was analyzed to figure out the sensitivity of downcomer temperature supporting the PTS risk evaluation of Kori Unit 1. Thermal stratification in pipe was analyzed using the method proposed. And a method predicting the thermal-hydraulic performance of IRWST of KNGR was explored. The PWR ECCS performance criteria was issued as a MOST Article 200-19.and a regulatory guide on evaluation methodology was improved to cover concerns raised from the related licensing review process

  18. 10 CFR 70.62 - Safety program and integrated safety analysis.

    Science.gov (United States)

    2010-01-01

    ...; (iv) Potential accident sequences caused by process deviations or other events internal to the... have experience in nuclear criticality safety, radiation safety, fire safety, and chemical process... this safety program; namely, process safety information, integrated safety analysis, and management...

  19. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  20. Safety Analysis (SA) of the decontamination facility, Building 419, at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Odell, B.N.

    1980-01-01

    This safety analysis was performed for the Manager, Plant Services at LLNL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the maximum quantities of radioactive materials that safety procedures allow to be handled in this building do not pose undue risks on- or off-site even in postulated severe accidents. Risk from the various hazards at this facility vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for improvements that will reduce risks even further

  1. 77 FR 65000 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-24

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... Use (ETASU) before CDER's Drug Safety and Risk Management Advisory Committee (DSaRM). The Agency plans...

  2. 78 FR 30929 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-23

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... (REMS) with elements to assure safe use (ETASU) before its Drug Safety and Risk Management Advisory...

  3. ARAMIS project: a more explicit demonstration of risk control through the use of bow-tie diagrams and the evaluation of safety barrier performance.

    Science.gov (United States)

    de Dianous, Valérie; Fiévez, Cécile

    2006-03-31

    Over the last two decades a growing interest for risk analysis has been noted in the industries. The ARAMIS project has defined a methodology for risk assessment. This methodology has been built to help the industrialist to demonstrate that they have a sufficient risk control on their site. Risk analysis consists first in the identification of all the major accidents, assuming that safety functions in place are inefficient. This step of identification of the major accidents uses bow-tie diagrams. Secondly, the safety barriers really implemented on the site are taken into account. The barriers are identified on the bow-ties. An evaluation of their performance (response time, efficiency, and level of confidence) is performed to validate that they are relevant for the expected safety function. At last, the evaluation of their probability of failure enables to assess the frequency of occurrence of the accident. The demonstration of the risk control based on a couple gravity/frequency of occurrence is also possible for all the accident scenarios. During the risk analysis, a practical tool called risk graph is used to assess if the number and the reliability of the safety functions for a given cause are sufficient to reach a good risk control.

  4. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  5. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  6. Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River

    International Nuclear Information System (INIS)

    Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J.

    2013-01-01

    Formal safety assessment (FSA), as a structured and systematic risk evaluation methodology, has been increasingly and broadly used in the shipping industry around the world. Concerns have been raised as to navigational safety of the Yangtze River, China's largest and the world's busiest inland waterway. Over the last few decades, the throughput of ships in the Yangtze River has increased rapidly due to the national development of the Middle and Western parts of China. Accidents such as collisions, groundings, contacts, oil-spills and fires occur repeatedly, often causing serious consequences. In order to improve the navigational safety in the Yangtze River, this paper estimates the navigational risk of the Yangtze River using the FSA concept and a Bayesian network (BN) technique. The navigational risk model is established by considering both probability and consequences of accidents with respect to a risk matrix method, followed by a scenario analysis to demonstrate the application of the proposed model

  7. Safety Risk Knowledge Elicitation in Support of Aeronautical R and D Portfolio Management: A Case Study

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.

    2012-01-01

    Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.

  8. 77 FR 75176 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-19

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug... being rescheduled due to the postponement of the October 29-30, 2012, Drug Safety and Risk Management... Committee: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...

  9. Making the business case for process safety using value-at-risk concepts

    International Nuclear Information System (INIS)

    Fang, Jayming S.; Ford, David M.; Mannan, M. Sam

    2004-01-01

    An increasing emphasis on chemical process safety over the last two decades has led to the development and application of powerful risk assessment tools. Hazard analysis and risk evaluation techniques have developed to the point where quantitatively meaningful risks can be calculated for processes and plants. However, the results are typically presented in semi-quantitative 'ranked list' or 'categorical matrix' formats, which are certainly useful but not optimal for making business decisions. A relatively new technique for performing valuation under uncertainty, value at risk (VaR), has been developed in the financial world. VaR is a method of evaluating the probability of a gain or loss by a complex venture, by examining the stochastic behavior of its components. We believe that combining quantitative risk assessment techniques with VaR concepts will bridge the gap between engineers and scientists who determine process risk and business leaders and policy makers who evaluate, manage, or regulate risk. We present a few basic examples of the application of VaR to hazard analysis in the chemical process industry

  10. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects.

    Science.gov (United States)

    Aminbakhsh, Saman; Gunduz, Murat; Sonmez, Rifat

    2013-09-01

    The inherent and unique risks on construction projects quite often present key challenges to contractors. Health and safety risks are among the most significant risks in construction projects since the construction industry is characterized by a relatively high injury and death rate compared to other industries. In construction project management, safety risk assessment is an important step toward identifying potential hazards and evaluating the risks associated with the hazards. Adequate prioritization of safety risks during risk assessment is crucial for planning, budgeting, and management of safety related risks. In this paper, a safety risk assessment framework is presented based on the theory of cost of safety (COS) model and the analytic hierarchy process (AHP). The main contribution of the proposed framework is that it presents a robust method for prioritization of safety risks in construction projects to create a rational budget and to set realistic goals without compromising safety. The framework provides a decision tool for the decision makers to determine the adequate accident/injury prevention investments while considering the funding limits. The proposed safety risk framework is illustrated using a real-life construction project and the advantages and limitations of the framework are discussed. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  11. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy

    International Nuclear Information System (INIS)

    Giardina, M; Castiglia, F; Tomarchio, E

    2014-01-01

    Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events. (paper)

  12. Preparing Safety Cases for Operating Outside Prescriptive Fatigue Risk Management Regulations.

    Science.gov (United States)

    Gander, Philippa; Mangie, Jim; Wu, Lora; van den Berg, Margo; Signal, Leigh; Phillips, Adrienne

    2017-07-01

    Transport operators seeking to operate outside prescriptive fatigue management regulations are typically required to present a safety case justifying how they will manage the associated risk. This paper details a method for constructing a successful safety case. The method includes four elements: 1) scope (prescriptive rules and operations affected); 2) risk assessment; 3) risk mitigation strategies; and 4) monitoring ongoing risk. A successful safety case illustrates this method. It enables landing pilots in 3-pilot crews to choose the second or third in-flight rest break, rather than the regulatory requirement to take the third break. Scope was defined using a month of scheduled flights that would be covered (N = 4151). These were analyzed in the risk assessment using existing literature on factors affecting fatigue to estimate the maximum time awake at top of descent and sleep opportunities in each break. Additionally, limited data collected before the new regulations showed that pilots flying at landing chose the third break on only 6% of flights. A prospective survey comparing subjective reports (N = 280) of sleep in the second vs. third break and fatigue and sleepiness ratings at top of descent confirmed that the third break is not consistently superior. The safety case also summarized established systems for fatigue monitoring, risk assessment and hazard identification, and multiple fatigue mitigation strategies that are in place. Other successful safety cases have used this method. The evidence required depends on the expected level of risk and should evolve as experience with fatigue risk management systems builds.Gander P, Mangie J, Wu L, van den Berg M, Signal L, Phillips A. Preparing safety cases for operating outside prescriptive fatigue risk management regulations. Aerosp Med Hum Perform. 2017; 88(7):688-696.

  13. IAEA Review for Gap Analysis of Safety Analysis Capability

    International Nuclear Information System (INIS)

    Basic, Ivica; Kim, Manwoong; Huges, Peter; Lim, B-K; D'Auria, Francesco; Louis, Vidard Michael

    2014-01-01

    The IAEA Asian Nuclear Safety Network (ANSN) was launched in 2002 in the framework of the Extra Budgetary Programme (EBP) on the Safety of Nuclear Installations in the South East Asia, Pacific and Far East Countries. The main objective is to strengthen and expand human and advanced Information Technology (IT) network to pool, analyse and share nuclear safety knowledge and practical experience for peaceful uses in this region. Under the ANSN framework, a technical group on Safety Analysis (SATG) was established in 2004 aimed to providing a forum for the exchange of experience in the following areas of safety analysis: · To provide a forum for an exchange of experience in the area of safety analysis, · To maintain and improve the knowledge on safety analysis method, · To enhance the utilization of computer codes, · To pool and analyse the issues related with safety analysis of research reactor, and · To facilitate mutual interested on safety analysis among member countries. A sustainable and successful nuclear energy programme requires a strong technical infrastructure, including a workforce made up of highly specialized and well-educated professionals. A significant portion of this technical capacity must be dedicated to safety- especially to safety analysis- as only then can it serve as the basis for making the right decisions during the planning, licensing, construction and operation of new nuclear facilities. In this regard, the IAEA has provided ANSN member countries with comprehensive training opportunities for capacity building in safety analysis. Nevertheless, the SATG recognizes that it is difficult to achieve harmonization in this area among all member countries because of their different competency levels. Therefore, it is necessary to quickly identify the most obvious gaps in safety analysis capability and then to use existing resources to begin to fill those gaps. The goal of this Expert Mission (EM) for gap finding service is to facilitate

  14. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  15. How to interpret safety critical failures in risk and reliability assessments

    International Nuclear Information System (INIS)

    Selvik, Jon Tømmerås; Signoret, Jean-Pierre

    2017-01-01

    Management of safety systems often receives high attention due to the potential for industrial accidents. In risk and reliability literature concerning such systems, and particularly concerning safety-instrumented systems, one frequently comes across the term ‘safety critical failure’. It is a term associated with the term ‘critical failure’, and it is often deduced that a safety critical failure refers to a failure occurring in a safety critical system. Although this is correct in some situations, it is not matching with for example the mathematical definition given in ISO/TR 12489:2013 on reliability modeling, where a clear distinction is made between ‘safe failures’ and ‘dangerous failures’. In this article, we show that different interpretations of the term ‘safety critical failure’ exist, and there is room for misinterpretations and misunderstandings regarding risk and reliability assessments where failure information linked to safety systems are used, and which could influence decision-making. The article gives some examples from the oil and gas industry, showing different possible interpretations of the term. In particular we discuss the link between criticality and failure. The article points in general to the importance of adequate risk communication when using the term, and gives some clarification on interpretation in risk and reliability assessments.

  16. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  17. The development of a 3D risk analysis method.

    Science.gov (United States)

    I, Yet-Pole; Cheng, Te-Lung

    2008-05-01

    Much attention has been paid to the quantitative risk analysis (QRA) research in recent years due to more and more severe disasters that have happened in the process industries. Owing to its calculation complexity, very few software, such as SAFETI, can really make the risk presentation meet the practice requirements. However, the traditional risk presentation method, like the individual risk contour in SAFETI, is mainly based on the consequence analysis results of dispersion modeling, which usually assumes that the vapor cloud disperses over a constant ground roughness on a flat terrain with no obstructions and concentration fluctuations, which is quite different from the real situations of a chemical process plant. All these models usually over-predict the hazardous regions in order to maintain their conservativeness, which also increases the uncertainty of the simulation results. On the other hand, a more rigorous model such as the computational fluid dynamics (CFD) model can resolve the previous limitations; however, it cannot resolve the complexity of risk calculations. In this research, a conceptual three-dimensional (3D) risk calculation method was proposed via the combination of results of a series of CFD simulations with some post-processing procedures to obtain the 3D individual risk iso-surfaces. It is believed that such technique will not only be limited to risk analysis at ground level, but also be extended into aerial, submarine, or space risk analyses in the near future.

  18. Impediments for the application of risk-informed decision making in nuclear safety

    International Nuclear Information System (INIS)

    Hahn, L.

    2001-01-01

    A broad application of risk-informed decision making in the regulation of safety of nuclear power plants is hindered by the lack of quantitative risk and safety standards as well as of precise instruments to demonstrate an appropriate safety. An additional severe problem is associated with the difficulty to harmonize deterministic design requirements and probabilistic safety assessment. The problem is strengthened by the vulnerability of PSA for subjective influences and the potential of misuse. Beside this scepticism the nuclear community is encouraged to intensify the efforts to improve the quality standards for probabilistic safety assessments and their quality assurance. A prerequisite for reliable risk-informed decision making processes is also a well-defined and transparent relationship between deterministic and probabilistic safety approaches. (author)

  19. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  20. Safety-barrier diagrams as a safety management tool

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2009-01-01

    Safety-barrier diagrams and “bow-tie” diagrams have become popular methods in risk analysis and safety management. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The latter's relation to other methods such as fault trees and Bayesian...

  1. Safety leadership and systems thinking: application and evaluation of a Risk Management Framework in the mining industry.

    Science.gov (United States)

    Donovan, Sarah-Louise; Salmon, Paul M; Lenné, Michael G; Horberry, Tim

    2017-10-01

    Safety leadership is an important factor in supporting safety in high-risk industries. This article contends that applying systems-thinking methods to examine safety leadership can support improved learning from incidents. A case study analysis was undertaken of a large-scale mining landslide incident in which no injuries or fatalities were incurred. A multi-method approach was adopted, in which the Critical Decision Method, Rasmussen's Risk Management Framework and Accimap method were applied to examine the safety leadership decisions and actions which enabled the safe outcome. The approach enabled Rasmussen's predictions regarding safety and performance to be examined in the safety leadership context, with findings demonstrating the distribution of safety leadership across leader and system levels, and the presence of vertical integration as key to supporting the successful safety outcome. In doing so, the findings also demonstrate the usefulness of applying systems-thinking methods to examine and learn from incidents in terms of what 'went right'. The implications, including future research directions, are discussed. Practitioner Summary: This paper presents a case study analysis, in which systems-thinking methods are applied to the examination of safety leadership decisions and actions during a large-scale mining landslide incident. The findings establish safety leadership as a systems phenomenon, and furthermore, demonstrate the usefulness of applying systems-thinking methods to learn from incidents in terms of what 'went right'. Implications, including future research directions, are discussed.

  2. Computational Aspects of Dam Risk Analysis: Findings and Challenges

    Directory of Open Access Journals (Sweden)

    Ignacio Escuder-Bueno

    2016-09-01

    Full Text Available In recent years, risk analysis techniques have proved to be a useful tool to inform dam safety management. This paper summarizes the outcomes of three themes related to dam risk analysis discussed in the Benchmark Workshops organized by the International Commission on Large Dams Technical Committee on “Computational Aspects of Analysis and Design of Dams.” In the 2011 Benchmark Workshop, estimation of the probability of failure of a gravity dam for the sliding failure mode was discussed. Next, in 2013, the discussion focused on the computational challenges of the estimation of consequences in dam risk analysis. Finally, in 2015, the probability of sliding and overtopping in an embankment was analyzed. These Benchmark Workshops have allowed a complete review of numerical aspects for dam risk analysis, showing that risk analysis methods are a very useful tool to analyze the risk of dam systems, including downstream consequence assessments and the uncertainty of structural models.

  3. Safety analysis of the existing 804 and 845 firing facilities

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 804 and 845 Firing Facilities at Site 300 could present undue hazards to the general public, peronnel at Site 300, or have an adverse effect on the environment. The normal operation and credible accident that might have an effect on these facilities or have off-site consequence were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives. Since this hazard has the potential for causing significant on-site and minimum off-site consequences, Bunkers 804 and 845 have been classified as moderate hazard facilties per DOE Order 5481.1A. This safety analysis concluded that the operation at these facilities will present no undue risk to the health and safety of LLNL employees or the public

  4. The Development of a Risk Management System in the Field of Industrial Safety in the Republic of Kazakhstan

    OpenAIRE

    Sergey S. Kudryavtsev; Pavel V. Yemelin; Natalya K. Yemelina

    2018-01-01

    Background: The purpose of the work is to develop a system that allows processing of information for analysis and industrial risk management, to monitor the level of industrial safety and to perform necessary measures aimed at the prevention of accidents, casualties, and development of professional diseases for effective management of industrial safety at hazardous industrial sites. Methods: Risk assessment of accidents and incidents is based on expert evaluations. Based on the lists of crite...

  5. From Risk Analysis to the Safety Case. Values in Risk Assessments. A Report Based on Interviews with Experts in the Nuclear Waste Programs in Sweden and Finland. A Report from the RISCOM II Project

    International Nuclear Information System (INIS)

    Drottz Sjoeberg, Britt-Marie

    2004-06-01

    The report focuses on values in risk assessment, and is based on interviews with safety assessment experts and persons working at the national authorities in Sweden and Finland working in the area of nuclear waste management. The interviews contained questions related to definitions of risk and safety, standards, constraints and degrees of freedom in the work, data collections, reliability and validity of systems and the safety assessments, as well as communication between experts, and experts and non-experts. The results pointed to an increased amount of data and relevant factors considered in the analyses over time, changing the work content and process from one of risk analysis to a multifaceted teamwork towards the assessment of 'the safety case'. The multifaceted systems approach highlighted the increased importance of investigating assumptions underlying e.g. integration of diverse systems, and simplification procedures. It also highlighted the increased reliance on consensus building processes within the extended expert group, the importance of adequate communication abilities within the extended expert group, as well as the importance of transparency and communication relative the larger society. The results are discussed with reference to e.g. Janis 'groupthink' theory and Kuhns ideas of paradigmatic developments in science. It is concluded that it is well advised, in addition to the ordinary challenges of the work, to investigate also the implicit assumptions involved in the work processes to further enhance the understanding of safety assessments

  6. From Risk Analysis to the Safety Case. Values in Risk Assessments. A Report Based on Interviews with Experts in the Nuclear Waste Programs in Sweden and Finland. A Report from the RISCOM II Project

    Energy Technology Data Exchange (ETDEWEB)

    Drottz Sjoeberg, Britt-Marie [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Psychology

    2004-06-01

    The report focuses on values in risk assessment, and is based on interviews with safety assessment experts and persons working at the national authorities in Sweden and Finland working in the area of nuclear waste management. The interviews contained questions related to definitions of risk and safety, standards, constraints and degrees of freedom in the work, data collections, reliability and validity of systems and the safety assessments, as well as communication between experts, and experts and non-experts. The results pointed to an increased amount of data and relevant factors considered in the analyses over time, changing the work content and process from one of risk analysis to a multifaceted teamwork towards the assessment of 'the safety case'. The multifaceted systems approach highlighted the increased importance of investigating assumptions underlying e.g. integration of diverse systems, and simplification procedures. It also highlighted the increased reliance on consensus building processes within the extended expert group, the importance of adequate communication abilities within the extended expert group, as well as the importance of transparency and communication relative the larger society. The results are discussed with reference to e.g. Janis 'groupthink' theory and Kuhns ideas of paradigmatic developments in science. It is concluded that it is well advised, in addition to the ordinary challenges of the work, to investigate also the implicit assumptions involved in the work processes to further enhance the understanding of safety assessments.

  7. Flood risk analysis procedure for nuclear power plants

    International Nuclear Information System (INIS)

    Wagner, D.P.

    1982-01-01

    This paper describes a methodology and procedure for determining the impact of floods on nuclear power plant risk. The procedures are based on techniques of fault tree and event tree analysis and use the logic of these techniques to determine the effects of a flood on system failure probability and accident sequence occurrence frequency. The methodology can be applied independently or as an add-on analysis for an existing risk assessment. Each stage of the analysis yields useful results such as the critical flood level, failure flood level, and the flood's contribution to accident sequence occurrence frequency. The results of applications show the effects of floods on the risk from nuclear power plants analyzed in the Reactor Safety Study

  8. Risk allocation approach to reactor safety design and evaluation

    International Nuclear Information System (INIS)

    Gokcek, O.; Temme, M.I.; Derby, S.L.

    1978-01-01

    This paper describes a risk allocation technique used for determining nuclear power plant design reliability requirements. The concept of risk allocation-optimum choice of safety function reliabilities under a maximum risk constraint - is described. An example of risk allocation is presented to demonstrate the application of the methodology

  9. Introduction of the system of hazard analysis critical control point to ensure the safety of irradiated food

    International Nuclear Information System (INIS)

    Sajet, A.S.

    2014-01-01

    Hazard Analysis Critical Control Point (HACCP) is a preventive system for food safety. It identifies safety risks faced by food. Identified points are controlled ensuring product safety. Because of presence of many of the pathogenic microorganisms and parasites in food which caused cases of food poisoning and many diseases transmitted through food, the current methods of food production could not prevent food contamination or prevent the growth of these pathogens completely because of being a part of the normal flora in the environment. Irradiation technology helped to control diseases transmitted through food, caused by pathological microorganisms and parasites present in food. The application of a system based on risk analysis as a means of risk management in food chain, demonstrated the importance of food irradiation. (author)

  10. N Reactor updated safety analysis report, NUSAR

    International Nuclear Information System (INIS)

    1978-01-01

    An update of the N Reactor safety analysis is presented to reconfirm that the continued operation does not pose undue risk to DOE personnel and property, the public, or the environment. A reanalysis of LOCA and reactivity transients utilizing current codes and methods is made. The principal aspects of the overall submission, a general description, and site characteristics including geography and demography, nearby industrial, transportation and military facilities, meteorology, hydraulic engineering, and geology and seismology are described

  11. Assessing Risk-Based Performance Indicators in Safety-Critical Systems for Nuclear Power Plants

    OpenAIRE

    TONT Gabriela

    2011-01-01

    The paper proposes framework for a multidisciplinary nuclear risk and safety assessment by modeling uncertainty and combining diverse evidence provided in such a way that it could be used to represent an entire argument about a system's dependability. The identified safety issues are being treated by means of probabilistic safety assessment (PSA). The behavior simulation of power plant in thepresence of risk factors is analyzed from the vulnerability, risk and functional safety viewpoints, hi...

  12. Probabilistic safety analysis of transportation of spent fuel

    International Nuclear Information System (INIS)

    Subramaniam, Chitra

    1999-11-01

    The report presents the results of the study carried out to estimate the accident risk involved in the transport of spent fuel from Rajasthan Atomic Power Station near Kota to the fuel reprocessing plant at Tarapur. The technique of probabilistic safety analysis is used. The fuel considered is the Indian pressurised heavy water reactor fuel with a minimum cooling period of 485 days. The spent fuel is transported in a cuboidal, naturally-cooled shipping cask over a distance of 822 km by rail. The Indian rail accident statistics are used to estimate the basic rail accident frequency. The possible ways in which a release of radioactive material can occur from the spent fuel cask are identified by the fault tree analysis technique. The release sequences identified are classified into eight accident severity categories, and release fractions are assigned to each. The consequences resulting from the release are estimated by the computer code RADTRAN 4. Results of the risk analysis indicate that the accident risk values are very low and hence acceptable. Parametric studies show that the risk would continue to be small even if the controlling parameters were to simultaneously take extreme adverse values. (author)

  13. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography

  14. Ignalina Safety Analysis Group

    International Nuclear Information System (INIS)

    Ushpuras, E.

    1995-01-01

    The article describes the fields of activities of Ignalina NPP Safety Analysis Group (ISAG) in the Lithuanian Energy Institute and overview the main achievements gained since the group establishment in 1992. The group is working under the following guidelines: in-depth analysis of the fundamental physical processes of RBMK-1500 reactors; collection, systematization and verification of the design and operational data; simulation and analysis of potential accident consequences; analysis of thermohydraulic and neutronic characteristics of the plant; provision of technical and scientific consultations to VATESI, Governmental authorities, and also international institutions, participating in various projects aiming at Ignalina NPP safety enhancement. The ISAG is performing broad scientific co-operation programs with both Eastern and Western scientific groups, supplying engineering assistance for Ignalina NPP. ISAG is also participating in the joint Lithuanian - Swedish - Russian project - Barselina, the first Probabilistic Safety Assessment (PSA) study of Ignalina NPP. The work is underway together with Maryland University (USA) for assessment of the accident confinement system for a range of breaks in the primary circuit. At present the ISAG personnel is also involved in the project under the grant from the Nuclear Safety Account, administered by the European Bank for reconstruction and development for the preparation and review of an in-depth safety assessment of the Ignalina plant

  15. Safety risk assessment for vertical concrete formwork activities in civil engineering construction.

    Science.gov (United States)

    López-Arquillos, Antonio; Rubio-Romero, Juan Carlos; Gibb, Alistair G F; Gambatese, John A

    2014-01-01

    The construction sector has one of the worst occupational health and safety records in Europe. Of all construction tasks, formwork activities are associated with a high frequency of accidents and injuries. This paper presents an investigation of the activities and related safety risks present in vertical formwork for in-situ concrete construction in the civil engineering sector. Using the methodology of staticized groups, twelve activities and ten safety risks were identified and validated by experts. Every safety risk identified in this manner was quantified for each activity using binary methodology according to the frequency and severity scales developed in prior research. A panel of experts was selected according to the relevant literature on staticized groups. The results obtained show that the activities with the highest risk in vertical formwork tasks are: Plumbing and leveling of forms, cutting of material, handling materials with cranes, and climbing or descending ladders. The most dangerous health and safety risks detected were falls from height, cutting and overexertion. The research findings provide construction practitioners with further evidence of the hazardous activities associated with concrete formwork construction and a starting point for targeting worker health and safety programmes.

  16. How employees perceive risks and safety in nuclear installations

    International Nuclear Information System (INIS)

    Barny, M.-H.; Brenot, J.; Moreau, A.

    1992-01-01

    Employees of the French centre of Saclay have been interviewed twice in November 1984 and March 1987 about their risks at the workplace, their views on safety, their protective attitudes, and also about the Chernobyl accident in the second survey. Perceived risks are compared, safety measures and protection teams are judged, importance of the Chernobyl accident is appreciated. Differences in perception between the various professional groups are pointed out. The main results are briefly presented hereafter. (author)

  17. TWRS safety and technical integration risk management plan

    International Nuclear Information System (INIS)

    Fordham, R.A.

    1996-01-01

    The objectives of the Tank Waste Remediation System (TWRS) Safety and Technical Integration (STI) programmatic risk management program are to assess, analyze, and handle risks associated with TWRS STI responsibilities and to communicate information about the actions being taken and the results to enable decision making. The objective of this TWRS STI Risk Management Plan is to communicate a consistent approach to risk management that will be used by the organization

  18. Discounting the value of safety: effects of perceived risk and effort.

    Science.gov (United States)

    Sigurdsson, Sigurdur O; Taylor, Matthew A; Wirth, Oliver

    2013-09-01

    Although falls from heights remain the most prevalent cause of fatalities in the construction industry, factors impacting safety-related choices associated with work at heights are not completely understood. Better tools are needed to identify and study the factors influencing safety-related choices and decision making. Using a computer-based task within a behavioral economics paradigm, college students were presented a choice between two hypothetical scenarios that differed in working height and effort associated with retrieving and donning a safety harness. Participants were instructed to choose the scenario in which they were more likely to wear the safety harness. Based on choice patterns, switch points were identified, indicating when the perceived risk in both scenarios was equivalent. Switch points were a systematic function of working height and effort, and the quantified relation between perceived risk and effort was described well by a hyperbolic equation. Choice patterns revealed that the perceived risk of working at heights decreased as the effort to retrieve and don a safety harness increased. Results contribute to the development of computer-based procedure for assessing risk discounting within a behavioral economics framework. Such a procedure can be used as a research tool to study factors that influence safety-related decision making with a goal of informing more effective prevention and intervention strategies. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Reactor safety

    International Nuclear Information System (INIS)

    Butz, H.P.; Heuser, F.W.; May, H.

    1985-01-01

    The paper comprises an introduction into nuclear physics bases, the safety concept generally speaking, safety devices of pwr type reactors, accident analysis, external influences, probabilistic safety assessment and risk studies. It further describes operational experience, licensing procedures under the Atomic Energy Law, research in reactor safety and the nuclear fuel cycle. (DG) [de

  20. Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks

    Science.gov (United States)

    Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris

    2015-01-01

    Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.

  1. N reactor individual risk comparison to quantitative nuclear safety goals

    International Nuclear Information System (INIS)

    Wang, O.S.; Rainey, T.E.; Zentner, M.D.

    1990-01-01

    A full-scope level III probabilistic risk assessment (PRA) has been completed for N reactor, a US Department of Energy (DOE) production reactor located on the Hanford Reservation in the state of Washington. Sandia National Laboratories (SNL) provided the technical leadership for this work, using the state-of-the-art NUREG-1150 methodology developed for the US Nuclear Regulatory Commission (NRC). The main objectives of this effort were to assess the risks to the public and to the on-site workers posed by the operation of N reactor, to identify changes to the plant that could reduce the overall risk, and to compare those risks to the proposed NRC and DOE quantitative safety goals. This paper presents the methodology adopted by Westinghouse Hanford Company (WHC) and SNL for individual health risk evaluation, its results, and a comparison to the NRC safety objectives and the DOE nuclear safety guidelines. The N reactor results, are also compared with the five NUREG-1150 nuclear plants. Only internal events are compared here because external events are not yet reported in the current draft NUREG-1150. This is the first full-scope level III PRA study with a detailed quantitative safety goal comparison performed for DOE production reactors

  2. Evolution of Safety Analysis to Support New Exploration Missions

    Science.gov (United States)

    Thrasher, Chard W.

    2008-01-01

    NASA is currently developing the Ares I launch vehicle as a key component of the Constellation program which will provide safe and reliable transportation to the International Space Station, back to the moon, and later to Mars. The risks and costs of the Ares I must be significantly lowered, as compared to other manned launch vehicles, to enable the continuation of space exploration. It is essential that safety be significantly improved, and cost-effectively incorporated into the design process. This paper justifies early and effective safety analysis of complex space systems. Interactions and dependences between design, logistics, modeling, reliability, and safety engineers will be discussed to illustrate methods to lower cost, reduce design cycles and lessen the likelihood of catastrophic events.

  3. Preliminary safety analysis methodology for the SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Chung, Y. J.; Kim, H. C.; Sim, S. K.; Lee, W. J.; Chung, B. D.; Song, J. H. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This technical report was prepared for a preliminary safety analysis methodology of the 330MWt SMART (System-integrated Modular Advanced ReacTor) which has been developed by Korea Atomic Energy Research Institute (KAERI) and funded by the Ministry of Science and Technology (MOST) since July 1996. This preliminary safety analysis methodology has been used to identify an envelope for the safety of the SMART conceptual design. As the SMART design evolves, further validated final safety analysis methodology will be developed. Current licensing safety analysis methodology of the Westinghouse and KSNPP PWRs operating and under development in Korea as well as the Russian licensing safety analysis methodology for the integral reactors have been reviewed and compared to develop the preliminary SMART safety analysis methodology. SMART design characteristics and safety systems have been reviewed against licensing practices of the PWRs operating or KNGR (Korean Next Generation Reactor) under construction in Korea. Detailed safety analysis methodology has been developed for the potential SMART limiting events of main steam line break, main feedwater pipe break, loss of reactor coolant flow, CEA withdrawal, primary to secondary pipe break and the small break loss of coolant accident. SMART preliminary safety analysis methodology will be further developed and validated in parallel with the safety analysis codes as the SMART design further evolves. Validated safety analysis methodology will be submitted to MOST as a Topical Report for a review of the SMART licensing safety analysis methodology. Thus, it is recommended for the nuclear regulatory authority to establish regulatory guides and criteria for the integral reactor. 22 refs., 18 figs., 16 tabs. (Author)

  4. Probabilistic analysis of safety in industrial irradiation plants

    International Nuclear Information System (INIS)

    Alderete, F.; Elechosa, C.

    2006-01-01

    The Argentinean Nuclear Regulatory Authority is carrying out the Probabilistic Safety Analysis (PSA) of the two industrial irradiation plants existent in the country. The objective of this presentation is to show from the regulatory point of view, the advantages of applying this tool, as well as the appeared difficulties; for it will be made a brief description of the facilities, of the method and of the normative one. Both plants are multipurpose facilities classified as 'industrial irradiator category IV' (panoramic irradiator with source deposited in pool). Basically, the execution of an APS consists of the following stages: 1. Identification of initiating events. 2. Modeling of Accidental Sequences (Event Trees). 3. Analysis of Systems (Fault trees). 4. Quantification of Accidental Sequences. The argentine normative doesn't demand to these facilities the realization of an APS, however the basic standard of Radiological Safety establishes that in the design of this type of facilities in the cases that is justified, should make sure that the annual probability of occurrence of an accidental sequence and the resulting dose in a person gives as result an radiological risk inferior to the risk limit adopted as acceptance criteria. On the other hand the design standard specifies for these irradiators it demands a maximum fault rate of 10 -2 for the related components with the systems of radiological safety. In our case, the possible initiating events have been identified that carried out to not wanted situations (about people exposure, radioactive contamination). Then, for each one of the significant initiating events, the corresponding accidental sequences were modeled and the safety systems that intervene in this sequences by means of fault trees were analyzed, for then to determine the fault probabilities of the same ones. At the moment they are completing these fault trees, but the difficulty resides in the impossibility of obtaining real data of the reliability

  5. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  6. Preliminary results from the application of risk matrix method for safety assessment in industrial radiography

    International Nuclear Information System (INIS)

    Lopez G, A.; Cruz, D.; Truppa, W.; Aravena, M.; Tamayo, B.

    2015-09-01

    Although the uses of ionizing radiation in industry are subject to procedures that provide a high level of safety, experience has shown that equipment failure, human errors, or the combination of both that can trigger accidental exposures may occur. Traditionally, the radiation safety checks whether these industrial practices (industrial radiography, industrial irradiators, among others) are sufficiently safe to prevent similar accidental exposures already occurred, so that becomes dependent on the published information and not always answers questions like: What other events can occur, or what other risks are present? Taking into account the results achieved by the Foro Iberoamericano de Organismos Reguladores Radiologicos y Nucleares, its leading position in the use of techniques of risk analysis in radioactive facilities and the need to develop a proactive approach to the prevention of accidents arising from the use of ionizing radiations in the industry, it intends to apply the risk analysis technique known as Risk Matrix to a hypothetical reference entity for the region in which industrial radiography is performed. In this paper the results of the first stage of this study are shown, that is the identification of initiating events (IE) and barriers that help mitigate the consequences of such IE, so that can appreciate the applicability of this method to industrial radiography services, to reduce the risk to acceptable levels. The fundamental advantage associated with the application of this methodology is that can be applied by the professionals working in the service and identifies specific weaknesses that from the point of view of safety there, so they can be prioritized resources depending on risk reduction. (Author)

  7. Probabilistic Safety Assessment: An Effective Tool to Support “Systemic Approach” to Nuclear Safety and Analysis of Human and Organizational Aspects

    International Nuclear Information System (INIS)

    Kuzmina, I.

    2016-01-01

    The Probabilistic Safety Assessment (PSA) represents a comprehensive conceptual and analytical tool for quantitative evaluation of risk of undesirable consequences from nuclear facilities and drawing on qualitative insights for nuclear safety. PSA considers various technical, human, and organizational factors in an integral manner thus explicitly pursuing a true ‘systemic approach’ to safety and enabling holistic insights for further safety improvement. Human Reliability Analysis (HRA) is one of the major tasks within PSA. The poster paper provides an overview of the objectives and scope of PSA and HRA and discusses on further needs in the area of HRA. (author)

  8. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  9. Patient safety risk factors in minimally invasive surgery : A validation study

    NARCIS (Netherlands)

    Rodrigues, S.P.; Ter Kuile, M.; Dankelman, J.; Jansen, F.W.

    2012-01-01

    This study was conducted to adapt and validate a patient safety (PS) framework for minimally invasive surgery (MIS) as a first step in understanding the clinical relevance of various PS risk factors in MIS. Eight patient safety risk factor domains were identified using frameworks from a systems

  10. The role of color sorting machine in reducing food safety risks

    Directory of Open Access Journals (Sweden)

    Eleonora Kecskes-Nagy

    2016-07-01

    Full Text Available It is the very difficult problem how we can decrease food safety risks in the product, which was polluted in process of cropping. According to professional literature almost the prevention is considered as an exclusive method to keep below safe level the content of DON toxin. The source of food safety in food chain is that the primary products suit the food safety requirements. It is a very difficult or sometimes it is not possible to correct food safety risk factors - which got into the products during cultivation - in the course of processing. Such factor is fusariotoxin in fodder and bread wheat. DON toxin is the most frequent toxin in cereals. The objective of the searching was to investigate, if it is possible to decrease DON toxin content of durum wheat and to minimize the food safety risk by application milling technology with good production practice and technological conditions. The samples were taken in the first phase of milling technology just before and after color sorting. According to measuring results Sortex Z+ optical sorting decreased DON toxin content of wheat. This mean that the food safety risks can be reduced by Sortex Z+ optical sorting machine. Our experiments proved if there is color sorting in the cleaning process preceding the milling of wheat then a part of the grain of wheat infected by Fusarium sp. can be selected. This improves the food safety parameters of given lot of wheat and decrease the toxin content. The flour made from contaminated grains of wheat can be a serious food safety risk. We would like to support scientifically the technical development of milling technology with our experimental data. Normal 0 21 false false false HU X-NONE X-NONE MicrosoftInternetExplorer4

  11. Food, Risk and Politics: Scare, scandal and crisis - insights into the risk politics of food safety

    OpenAIRE

    Randall, Ed J.

    2009-01-01

    This book is about the risk politics of food safety. Food-related risks regularly grab the headlines in ways that threaten reasoned debate and obstruct sensible policy making. The author explains why this is the case. He goes on to make the case for a properly informed and fully open public debate about food safety issues. He argues that this is the true antidote to the politics of scare, scandal and crisis.\\ud \\ud The book skilfully weaves together the many different threads of food safety a...

  12. Handbook of methods for risk-based analysis of technical specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1994-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: Quantitatively evaluate the risk and justify changes based on objective risk arguments; Provide a defensible basis for these requirements for regulatory applications. The US NRC Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  13. Handbook of methods for risk-based analysis of Technical Specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1993-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: quantitatively evaluate the risk impact and justify changes based on objective risk arguments. Provide a defensible basis for these requirements for regulatory applications. The United States Nuclear Regulatory Commission (USNRC) Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  14. Using a quantitative risk register to promote learning from a patient safety reporting system.

    Science.gov (United States)

    Mansfield, James G; Caplan, Robert A; Campos, John S; Dreis, David F; Furman, Cathie

    2015-02-01

    Patient safety reporting systems are now used in most health care delivery organizations. These systems, such as the one in use at Virginia Mason (Seattle) since 2002, can provide valuable reports of risk and harm from the front lines of patient care. In response to the challenge of how to quantify and prioritize safety opportunities, a risk register system was developed and implemented. Basic risk register concepts were refined to provide a systematic way to understand risks reported by staff. The risk register uses a comprehensive taxonomy of patient risk and algorithmically assigns each patient safety report to 1 of 27 risk categories in three major domains (Evaluation, Treatment, and Critical Interactions). For each category, a composite score was calculated on the basis of event rate, harm, and cost. The composite scores were used to identify the "top five" risk categories, and patient safety reports in these categories were analyzed in greater depth to find recurrent patterns of risk and associated opportunities for improvement. The top five categories of risk were easy to identify and had distinctive "profiles" of rate, harm, and cost. The ability to categorize and rank risks across multiple dimensions yielded insights not previously available. These results were shared with leadership and served as input for planning quality and safety initiatives. This approach provided actionable input for the strategic planning process, while at the same time strengthening the Virginia Mason culture of safety. The quantitative patient safety risk register serves as one solution to the challenge of extracting valuable safety lessons from large numbers of incident reports and could profitably be adopted by other organizations.

  15. A risk informed safety classification for a Nordic NPP

    International Nuclear Information System (INIS)

    Jaenkaelae, K.

    2002-01-01

    The report describes a study to develop a safety classification proposal or classi- fication recommendations based on risks for selected equipment of a nuclear power plant. The application plant in this work is Loviisa NPP unit 1. The safety classification proposals are to be considered as an exercise in this pilot study and do not necessarily represent final proposals in a real situation. Comparisons to original safety classifications and technical specifications were made. The study concludes that it is possible to change safety classes or safety signifi- cances as considered in technical specifications and in in-service-inspections into both directions without endangering the safety or even by improving the safety. (au)

  16. Risk perception, risk management and safety assessment: what can governments do to increase public confidence in their vaccine system?

    Science.gov (United States)

    MacDonald, Noni E; Smith, Jennifer; Appleton, Mary

    2012-09-01

    For decades vaccine program managers and governments have devoted many resources to addressing public vaccine concerns, vaccine risk perception, risk management and safety assessment. Despite ever growing evidence that vaccines are safe and effective, public concerns continue. Education and evidence based scientific messages have not ended concerns. How can governments and programs more effectively address the public's vaccine concerns and increase confidence in the vaccine safety system? Vaccination hesitation has been attributed to concerns about vaccine safety, perceptions of high vaccine risks and low disease risk and consequences. Even when the public believes vaccines are important for protection many still have concerns about vaccine safety. This overview explores how heuristics affect public perception of vaccines and vaccine safety, how the public finds and uses vaccine information, and then proposes strategies for changes in the approach to vaccine safety communications. Facts and evidence confirming the safety of vaccines are not enough. Vaccine beliefs and behaviours must be shaped. This will require a shift in the what, when, how and why of vaccine risk and benefit communication content and practice. A change to a behavioural change strategy such as the WHO COMBI program that has been applied to disease eradication efforts is suggested. Copyright © 2011. Published by Elsevier Ltd.. All rights reserved.

  17. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  18. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  19. Industry-specific risk models for numerical scoring of hazards and prioritization of safety measures

    International Nuclear Information System (INIS)

    Khali, Y.F.; Johnson, K.

    2004-01-01

    Risk analysis consists of five cornerstones that have to be viewed in an holistic manner by risk practitioners of any organization regardless of the industry type or nature of its critical infrastructures. The cornerstones are hazard identification, risk assessment and consequence analysis, determination of risk management actions required to reduce risks to acceptable levels, communication of risk insights among the stake-holders, and continuous monitoring and verification to ensure sustained attainment of tolerable risk levels. Our primary objectives in this research are two fold: first, we compare and contrast a wide spectrum of current industry-specific and application-dependent semi-quantitative risk models. Secondly, based on the insights to be gained from the first task, we propose a framework for a robust risk-based approach for conducting security vulnerability assessment (SVA). Risk practitioners of critical infrastructures, such as commercial nuclear power plants, water utilities, chemical plants, transmission and distribution substations... etc., could readily use this proposed approach to classify, evaluate, and prioritize risks to support allocation of resources required to ensure protection of public health and safety. (author)

  20. Prioritizing risks via several expert perspectives with application to runway safety

    International Nuclear Information System (INIS)

    Rogerson, Ellen C.; Lambert, James H.

    2012-01-01

    Factor hierarchies have been widely used in the literature to represent the view of an expert of what factors most contribute to reliability or safety. The methods for rating and aggregating the influences across a set of expert-elicited factors to risk or reliability are well known as multiple criteria decision analysis. This paper describes a method for distinguishing levels of risk across a set of locations via the use of multiple factor hierarchies. The method avoids averaging across experts and is thus useful for situations where experts disagree and where an absence of expert consensus on the causative or contributing factors is important information for risk management. A case study demonstrates using seven expert perspectives on the airport-specific factors that can contribute to runway incursions. The results are described for eighty towered airports in the US. The expert perspectives include differing relative emphases across the following set of factors: airport geometry, operations, weather, geography, and days since last safety review. Future work is suggested to include human factors issues as pilot-and-controller communications styles at airports. - Highlights: ► We examine influential factors in seven expert perspectives on the problem domain. ► We assess eighty US airports with qualitative measurement scales for each risk factor. ► Results show robustness and sensitivity of the risk index to expert perspective. ► We examine factors of several types including runway geometry, operations, weather, and geography.

  1. Dynamic risk analysis using bow-tie approach

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2012-01-01

    Accident probability estimation is a common and central step to all quantitative risk assessment methods. Among many techniques available, bow-tie model (BT) is very popular because it represent the accident scenario altogether including causes and consequences. However, it suffers a static structure limiting its application in real-time monitoring and probability updating which are key factors in dynamic risk analysis. The present work is focused on using BT approach in a dynamic environment in which the occurrence probability of accident consequences changes. In this method, on one hand, failure probability of primary events of BT, leading to the top event, are developed using physical reliability models, and constantly revised as physical parameters (e.g., pressure, velocity, dimension, etc) change. And, on the other hand, the failure probability of safety barriers of the BT are periodically updated using Bayes’ theorem as new information becomes available over time. Finally, the resulting, updated BT is used to estimate the posterior probability of the consequences which in turn results in an updated risk profile. - Highlights: ► A methodology is proposed to make bow-tie method adapted for dynamic risk analysis. ► Physical reliability models are used to revise the top event. ► Bayes’ theorem is used to update the probability of safety barriers. ► The number of accidents in sequential time intervals is used to form likelihood function. ► The risk profile is updated for varying physical parameters and for different times.

  2. Radiological impacts analysis with use of new endpoint as complementary safety indicators

    International Nuclear Information System (INIS)

    Peralta Vital, J.L.; Gil Castillo, R.; Fleitas Estevez, G.G.; Olivera Acosta, J.

    2015-01-01

    The paper shows the new safety indicators on risk assessment (safety assessment) to radioactive waste environmental management implementation (concentrations and fluxes of naturally occurring radioactive materials (NORM)). The endpoint obtained, allow the best analysis of the radiological impact associated to radioactive waste isolation system. The common safety indicators for safety assessment purpose, dose and risk, are very time dependent, increasing the uncertainties in the results for long term assessment. The complementary and new proposed endpoints are more stable and they are not affected by changes in the critical group, pathways, etc. The NORM values on facility site were obtained as result of national surveys, the natural concentrations of U, Ra, Th, K has been associated with the variation of the lithologies in 3 geographical areas of the Country (Occidental, Central and Oriental). The results obtained are related with the safety assessment topics and allowed to apply the new complementary safety indicators, by comparisons between the natural concentrations and fluxes on site and its calculated values for the conceptual repository design. In order to normalize the concentration results, the analysis was realized adopting the criteria of the Repository Equivalent Rock Volume (RERV). The preliminary comparison showed that the calculated concentrations and fluxes in the Cuban conceptual radioactive waste repository are not higher than the natural values in the host rock. According to the application of new safety indicators, the reference disposal facility does not increase the natural activity concentration and fluxes in the environment. In order to implement these new safety indicator it has been used the current 226 Ra inventory of the Repository and the 226 Ra as natural concentration on the site. (authors)

  3. System study application to the safety analysis of the exhaust and the tritium systems of a fusion reactor

    International Nuclear Information System (INIS)

    Djerassi, H.; Rouillard, J.; Leger, D.; Zappellini, G.; Gambi, G.

    1988-01-01

    An applicative example of the general methodology system study to the safety analysis of the exhaust and tritium systems, in a tokamak device, is shown. The framework of the study is split into the following tasks: initial information collection, functional analysis, failure scenarios identification and description, reliability data assessment, accident sequence quantification, consequence seriousness evaluation, risk assessment. Results concerning risk contribution from direct failures show that, in the exhaust system and in the tritium system, the risk contribution to public is rather smaller than the safety design targets. Nevertheless, if the reactor building is not taken into account, the risk contribution from the exhaust system can be significant. Risk contribution to the workers seems to be not to heavy

  4. Safety- and risk analysis activities in other areas than the nuclear industry

    International Nuclear Information System (INIS)

    Kozine, I.; Duijm, N.J.; Lauridsen, K.

    2000-12-01

    The report gives an overview of the legislation within the European Union in the field of major industrial hazards and gives examples of decision criteria applied in a number of European countries when judging the acceptability of an activity. Furthermore, the report mentions a few methods used in the analysis of the safety of chemical installations. (au)

  5. Qualitative uncertainty analysis in probabilistic safety assessment context

    International Nuclear Information System (INIS)

    Apostol, M.; Constantin, M; Turcu, I.

    2007-01-01

    In Probabilistic Safety Assessment (PSA) context, an uncertainty analysis is performed either to estimate the uncertainty in the final results (the risk to public health and safety) or to estimate the uncertainty in some intermediate quantities (the core damage frequency, the radionuclide release frequency or fatality frequency). The identification and evaluation of uncertainty are important tasks because they afford credit to the results and help in the decision-making process. Uncertainty analysis can be performed qualitatively or quantitatively. This paper performs a preliminary qualitative uncertainty analysis, by identification of major uncertainty in PSA level 1- level 2 interface and in the other two major procedural steps of a level 2 PSA i.e. the analysis of accident progression and of the containment and analysis of source term for severe accidents. One should mention that a level 2 PSA for a Nuclear Power Plant (NPP) involves the evaluation and quantification of the mechanisms, amount and probabilities of subsequent radioactive material releases from the containment. According to NUREG 1150, an important task in source term analysis is fission products transport analysis. The uncertainties related to the isotopes distribution in CANDU NPP primary circuit and isotopes' masses transferred in the containment, using SOPHAEROS module from ASTEC computer code will be also presented. (authors)

  6. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  7. Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.

    Science.gov (United States)

    Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger

    2017-11-01

    It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.

  8. Safety study application guide

    International Nuclear Information System (INIS)

    1993-07-01

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly open-quotes lowclose quotes) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, open-quotes Technical Safety Requirements,close quotes and 5480.23, open-quotes Nuclear Safety Analysis Reports.close quotes A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis

  9. Comparative efficacy and safety of six antidepressants and anticonvulsants in painful diabetic neuropathy: a network meta-analysis.

    Science.gov (United States)

    Rudroju, Neelima; Bansal, Dipika; Talakokkula, Shiva Teja; Gudala, Kapil; Hota, Debasish; Bhansali, Anil; Ghai, Babita

    2013-01-01

    Anticonvulsants and antidepressants are mostly used in management of painful diabetic neuropathy (PDN). However there are few direct comparisons between drugs of these classes, making evidence-based decision-making in the treatment of painful diabetic neuropathy difficult. This study aimed to perform a network meta-analysis and benefit-risk analysis to evaluate the comparative efficacy and safety of these drugs in PDN treatment. Comparative effectiveness study. Medical Education and Research facility in India. A comprehensive data search was done in PubMed, Cochrane, and Embase up to August 2012. We then systematically reviewed the studies which compared any of 6 drugs for the management of PDN: amitriptyline, duloxetine, gabapentin, pregabalin, valproate, and venlafaxine or any of their combinations. We performed a random-effects network meta-analysis to rank treatments in terms of efficacy and safety. We chose the number of patients experiencing = 50% reduction in pain and number of patient withdrawals due to adverse events (AE) as primary outcomes for efficacy and safety, respectively. We also performed benefit-risk analysis, taking efficacy outcome as benefit and safety outcome as risk. Analysis was intention-to-treat. We included 21 published trials in the analysis. Duloxetine, gabapentin, pregabalin, and venlafaxine were shown to be significantly efficacious compared to placebo with odds ratios (OR) of 2.12, 3.98, 2.78, and 4.43, respectively. Amitriptyline (OR: 7.03, 95% confidence interval [CI]: 1.87, 29.05) and duloxetine (OR: 3.26, 95% CI: 1.04, 9.97) caused more withdrawals than gabapentin. The ranking order of efficacy was gabapentin, venlafaxine, pregabalin, duloxetine/gabapentin, duloxetine, amitriptyline, and placebo and the ranking order of safety was placebo, gabapentin, pregabalin, venlafaxine, duloxetine/gabapentin combination, duloxetine, and amitriptyline. Benefit-risk balance favored the order: gabapentin, venlafaxine, pregabalin, duloxetine

  10. Prevention and control of food safety risks: the role of governments, food producers, marketers, and academia.

    Science.gov (United States)

    Lupien, John R

    2007-01-01

    Food systems are rapidly changing as world population grows, increasing urbanization occurs, consumer tastes and preferences change and differ in various countries and cultures, large scale food production increases, and food imports and exports grow in volume and value. Consumers in all countries have become more insistent that foods available in the marketplace are of good quality and safe, and do not pose risks to them and their families. Publicity about food risk problems and related risks, including chemical and microbiological contamination of foods, mad-cow disease, avian flu, industrial chemical contamination all have made consumers and policy makers more aware of the need of the control of food safety risk factors in all countries. To discuss changes in food systems, and in consumer expectations, that have placed additional stress on the need for better control of food safety risks. Food producers, processors, and marketers have additional food law and regulations to meet; government agencies must increase monitoring and enforcement of adequate food quality and safety legislation and coordinate efforts between agriculture, health, trade, justice and customs agencies; and academia must take action to strengthen the education of competent food legislation administrators, inspectorate, and laboratory personnel for work in government and industry, including related food and food safety research . Both Government and the food industry must assure that adequate control programs are in place to control the quality and safety of all foods, raw or processed, throughout the food chain from production to final consumption. This includes appropriate laboratory facilities to perform necessary analysis of foods for risk and quality factors, and to carry out a wide range of food science, toxicological and related research.

  11. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    Science.gov (United States)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  13. Development of evaluation method for software safety analysis techniques

    International Nuclear Information System (INIS)

    Huang, H.; Tu, W.; Shih, C.; Chen, C.; Yang, W.; Yih, S.; Kuo, C.; Chen, M.

    2006-01-01

    Full text: Full text: Following the massive adoption of digital Instrumentation and Control (I and C) system for nuclear power plant (NPP), various Software Safety Analysis (SSA) techniques are used to evaluate the NPP safety for adopting appropriate digital I and C system, and then to reduce risk to acceptable level. However, each technique has its specific advantage and disadvantage. If the two or more techniques can be complementarily incorporated, the SSA combination would be more acceptable. As a result, if proper evaluation criteria are available, the analyst can then choose appropriate technique combination to perform analysis on the basis of resources. This research evaluated the applicable software safety analysis techniques nowadays, such as, Preliminary Hazard Analysis (PHA), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Markov chain modeling, Dynamic Flowgraph Methodology (DFM), and simulation-based model analysis; and then determined indexes in view of their characteristics, which include dynamic capability, completeness, achievability, detail, signal/ noise ratio, complexity, and implementation cost. These indexes may help the decision makers and the software safety analysts to choose the best SSA combination arrange their own software safety plan. By this proposed method, the analysts can evaluate various SSA combinations for specific purpose. According to the case study results, the traditional PHA + FMEA + FTA (with failure rate) + Markov chain modeling (without transfer rate) combination is not competitive due to the dilemma for obtaining acceptable software failure rates. However, the systematic architecture of FTA and Markov chain modeling is still valuable for realizing the software fault structure. The system centric techniques, such as DFM and Simulation-based model analysis, show the advantage on dynamic capability, achievability, detail, signal/noise ratio. However, their disadvantage are the completeness complexity

  14. Communicating on risk and safety in terms of awareness

    International Nuclear Information System (INIS)

    Hammar, L.; Andersson, Kjell

    1999-01-01

    'Safety awareness' is proposed as a possibly constructive concept for the purpose of promoting initiatives in nuclear safety work and gaining improved understanding when communicating on nuclear safety. Safety is thus conceived as resulting essentially from and actually constituting awareness of critical factors in regard of safety. The concept aims specifically at promoting the view of 'safety' as 'awareness of required conditions for being in control of risk'. It aims as well at making clearer sense in calling for constant improvement of safety, according to practice in a safety culture. This proposed view would be expected to lead to applying the usual types of safety criteria but offers the merit of attracting due attention to 'awareness goals' in process oriented safety management which are fundamental to maintaining and improving safety. Applications are discussed in regard of communicating on nuclear safety between decision-makers and the general public, developing and maintaining safety culture, integrating specialist expert contributions in over-all safety assessment, setting safety goals and using safety indicators

  15. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  16. FLIGHT SAFETY CONTROL OF THE BASIS OF UNCERTAIN RISK EVALUATION WITH NON-ROUTINE FLIGHT CONDITIONS INVOLVED

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article deals with methods of forecasting the level of aviation safety operation of aircraft systems on the basis of methods of evaluation the risks of negative situations as a consequence of a functional loss of initial properties of the system with critical violations of standard modes of the aircraft. Mathematical Models of Risks as a Danger Measure of Discrete Random Events in Aviation Systems are presented. Technological Schemes and Structure of Risk Control Proce- dures without the Probability are illustrated as Methods of Risk Management System in Civil Aviation. The assessment of the level of safety and quality and management of aircraft, made not only from the standpoint of reliability (quality and consumer properties, but also from the position of ICAO on the basis of a risk-based approach. According to ICAO, the security assessment is performed by comparing the calculated risk with an acceptable level. The approach justifies the use of qualitative evaluation techniques safety in the forms of proactive forecasted and predictive risk management adverse impacts to aviation operations of various kinds, including the space sector and nuclear energy. However, for the events such as accidents and disasters, accidents with the aircraft, fighters in a training flight, during the preparation of the pilots on the training aircraft, etc. there is no required statistics. Density of probability distribution (p. d. f. of these events are only hypothetical, unknown with "hard tails" that completely eliminates the application of methods of confidence intervals in the traditional approaches to the assessment of safety in the form of the probability analysis.

  17. Current issues and perspectives in food safety and risk assessment.

    Science.gov (United States)

    Eisenbrand, G

    2015-12-01

    In this review, current issues and opportunities in food safety assessment are discussed. Food safety is considered an essential element inherent in global food security. Hazard characterization is pivotal within the continuum of risk assessment, but it may be conceived only within a very limited frame as a true alternative to risk assessment. Elucidation of the mode of action underlying a given hazard is vital to create a plausible basis for human toxicology evaluation. Risk assessment, to convey meaningful risk communication, must be based on appropriate and reliable consideration of both exposure and mode of action. New perspectives, provided by monitoring human exogenous and endogenous exposure biomarkers, are considered of great promise to support classical risk extrapolation from animal toxicology. © The Author(s) 2015.

  18. Safety analysis of autonomous excavator functionality

    International Nuclear Information System (INIS)

    Seward, D.; Pace, C.; Morrey, R.; Sommerville, I.

    2000-01-01

    This paper presents an account of carrying out a hazard analysis to define the safety requirements for an autonomous robotic excavator. The work is also relevant to the growing generic class of heavy automated mobile machinery. An overview of the excavator design is provided and the concept of a safety manager is introduced. The safety manager is an autonomous module responsible for all aspects of system operational safety, and is central to the control system's architecture. Each stage of the hazard analysis is described, i.e. system model creation, hazard definition and hazard analysis. Analysis at an early stage of the design process, and on a system that interfaces directly to an unstructured environment, exposes certain issues relevant to the application of current hazard analysis methods. The approach taken in the analysis is described. Finally, it is explained how the results of the hazard analysis have influenced system design, in particular, safety manager specifications. Conclusions are then drawn about the applicability of hazard analysis of requirements in general, and suggestions are made as to how the approach can be taken further

  19. [OCCUPATIONAL HEALTH RISK ASSESSMENT AND MANAGEMENT IN WORKERS IN IMPROVEMENT OF NATIONAL POLICY IN OCCUPATIONAL HYGIENE AND SAFETY].

    Science.gov (United States)

    Shur, P Z; Zaĭtseva, N V; Alekseev, V B; Shliapnikov, D M

    2015-01-01

    In accordance with the international documents in the field of occupational safety and hygiene, the assessment and minimization of occupational risks is a key instrument for the health maintenance of workers. One of the main ways to achieve it is the minimization of occupational risks. Correspondingly, the instrument for the implementation of this method is the methodology of analysis of occupational risks. In Russian Federation there were the preconditions for the formation of the system for the assessment and management of occupational risks. As the target of the national (state) policy in the field of occupational safety in accordance with ILO Conventions it can be offered the prevention of accidents and injuries to health arising from work or related with it, minimizing the causes of hazards inherent in the working environment, as far as it is reasonably and practically feasible. Global trend ofusing the methodology of the assessment and management of occupational risks to life and health of citizens requires the improvement of national policies in the field of occupational hygiene and safety. Achieving an acceptable level of occupational risk in the formation of national policy in the field of occupational hygiene and safety can be considered as one of the main tasks.

  20. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  1. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  2. Safety analysis and evaluation of the next fusion device

    International Nuclear Information System (INIS)

    Kobayashi, Shigetada; Honda, Tsutomu; Ohmura, Hiroshi; Kawai, Masayoshi; Shimizu, Takeshi; Yamaoka, Mitsuaki; Nakahara, Katsuhiko; Seki, Yasushi.

    1988-12-01

    As a part of safety evaluation, a probabilistic risk assessment (PRA) has been attempted for the Next Fusion Device system. Among the various events related to safety, a number of representative events have been selected for assessment, from the events in normal operation state, repair and maintenance state and accidental state. In the first chapter, in order to conduct the probabilistic risk assessment of the whole Fusion Experimental Reactor (FER), the data base required for the analysis was investigated in 1.1, the results on the failure mode and effects analysis (FMEA), accident sequence, radioactive inventory leakage flow path, event tree analysis (ETA) and fault tree analysis (FTA) were summarized in 1.2 to 1.5, respectively. Based on these results, accident initiating events were evaluated in 1.6, and overall risk was assessed in 1.7 and the tasks for the future were summarized in 1.8. It is important to analyze and evaluate various events during normal operations, repair and maintenance and accidents. However, due to the large uncertainties in the modeling of phenomena or the data base, there are many events for which realistic analyses are difficult. Three such events were selected and studied in chapter two. In 2.1, the temperature rise in the reactor structure after the Loss-of-Coolant-Accident caused by the decay heat under various heat removal conditions were investigated. In 2.2, the radiation dose of personnel during repair and maintenance period caused by the release of activated dust were estimated. Lastly, in 2.3 tritium behavior in the stainless steel first wall and graphite armour were studied. (author)

  3. Inherent Risk or Risky Decision? Coach's Failure to Use Safety Device an Assumed Risk

    Science.gov (United States)

    Dodds, Mark A.; Bochicchio, Kristi Schoepfer

    2013-01-01

    The court examined whether a coach's failure to implement a safety device during pitching practice enhanced the risk to the athlete or resulted in a suboptimal playing condition, in the context of the assumption of risk doctrine.

  4. Process management - critical safety issues with focus on risk management; Processtyrning - kritiska saekerhetsfraagor med inriktning paa riskhantering

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, Johan M. [Linkoeping Univ. (Sweden). The Tema Inst. - Technology and Social Change

    2005-12-15

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  5. A study on the assessment of safety culture impacts on risk of nuclear power plants using common uncertainty source model

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Bang, Young Suk; Chung, Chang Hyun; Jeong, Ji Hwan

    2004-01-01

    Since International Safety Advisory Group (INSAG) introduced term 'safety culture', it has been widely recognized that safety culture has an important role in safety of nuclear power plants. Research on the safety culture can be divided in the following two parts. 1) Assessment of safety culture (by interview, questionnaire, etc.) 2) Assessment of link between safety culture and safety of nuclear power plants. There is a substantial body of literature that addresses the first part, but there is much less work that addresses the second part. To address the second part, most work focused on the development of model incorporating safety culture into Probabilistic Safety Assessment (PSA). One of the most advanced methodology in the area of incorporating safety culture quantitatively into PSA is System Dynamics (SD) model developed by Kwak et al. It can show interactions among various factors which affect employees' productivity and job quality. Also various situations in nuclear power plant can be simulated and time-dependent risk can be recalculated with this model. But this model does not consider minimal cut set (MCS) dependency and uncertainty of risk. Another well-known methodology is Work Process Analysis Model (WPAM) developed by Davoudian. It considers MCS dependency by modifying conditional probability values using SLI methodology. But we found that the modified conditional probability values in WPAM are somewhat artificial and have no sound basis. WPAM tend to overestimate conditional probability of hardware failure, because it uses SLI methodology which is normally used in Human Reliability Analysis (HRA). WPAM also does not consider uncertainty of risk. In this study, we proposed methodology to incorporate safety culture into PSA quantitatively that can deal with MCS dependency and uncertainty of risk by applying the Common Uncertainty Source (CUS) model developed by Zhang. CUS is uncertainty source that is common to basic events, and this can be physical

  6. [Economic analysis versus the principle of guaranteed safety in blood transfusion].

    Science.gov (United States)

    Moatti, J P; Loubière, S; Rotily, M

    2000-06-01

    This article shows that policies aimed at reducing risks of infectious agents transmissible through blood unfortunately follow a law of 'diminishing returns': increasing marginal costs have to be devoted for limited reductions in the risks of contamination through blood donations. Therefore, the economic cost-effectiveness analysis is appropriate to identify screening strategies which may minimize costs to reach a certain level of safety. Moreover, economic analysis can contribute to public debates about the level of residual risk that society is willing to accept. Empirical results from French studies about screening for hepatitis C virus (HCV) in individuals who have received blood transfusions and in blood donations are presented to illustrate these points.

  7. Sanitation health risk and safety planning in urban residential ...

    African Journals Online (AJOL)

    The aim of this review paper was to determine the best sanitation health risk and safety planning approach for sustainable management of urban environment. This was achieved by reviewing the concept of sanitation safety planning as a tool. The review adopted exploratory research approach and used secondary data ...

  8. Risk and safety analyses for disposal of alpha-contaminated waste in INEL

    International Nuclear Information System (INIS)

    Smith, T.

    1982-01-01

    The author first discusses the context, objectives, and scope of the risk analysis. Then he gives some background on the waste and how its managed, including the alternatives for long-term management. These are followed by risk evaluation approach, results, and 7 conclusions and problems. One of his conclusions is that a 100 nCi/g limit would provide adequate safety margins. Raising the limit to 100 nCi/g would allow about 20% of the stored waste to be diverted to near-surface disposal. He added that analyzing waste packages at 10 nCi/g is not now practical. 21 figures

  9. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  10. Empirical Analysis of Construction Safety Climate - A Study

    OpenAIRE

    S.V.S.RAJA PRASAD; K.P.REGHUNATH

    2010-01-01

    Safety in the construction industry has always been a major issue. Though much improvement in construction safety has been achieved, the industry still continues to lag behind most other industries with regard to safety. The safety climate of any organization consists of employee’s attitudes towards and perceptions of, health and safety behavior. Construction workers attitudes towards safety are influenced by their perceptions of risk, management, safety rulesand procedures. A measure of safe...

  11. Interactive Safety Analysis Framework of Autonomous Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Cui You Xiang

    2016-01-01

    Full Text Available More than 100,000 people were killed and around 2.6 million injured in road accidents in the People’s Republic of China (PRC, that is four to eight times that of developed countries, equivalent to 6.2 mortality per 10 thousand vehicles—the highest rate in the world. There are more than 1,700 fatalities and 840,000 injuries yearly due to vehicle crashes off public highways. In this paper, we proposed a interactive safety situation and threat analysis framework based on driver behaviour and vehicle dynamics risk analysis based on ISO26262…

  12. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  13. Safety analysis procedures for PHWR

    International Nuclear Information System (INIS)

    Min, Byung Joo; Kim, Hyoung Tae; Yoo, Kun Joong

    2004-03-01

    The methodology of safety analyses for CANDU reactors in Canada, a vendor country, uses a combination of best-estimate physical models and conservative input parameters so as to minimize the uncertainty of the plant behavior predictions. As using the conservative input parameters, the results of the safety analyses are assured the regulatory requirements such as the public dose, the integrity of fuel and fuel channel, the integrity of containment and reactor structures, etc. However, there is not the comprehensive and systematic procedures for safety analyses for CANDU reactors in Korea. In this regard, the development of the safety analyses procedures for CANDU reactors is being conducted not only to establish the safety analyses system, but also to enhance the quality assurance of the safety assessment. In the first phase of this study, the general procedures of the deterministic safety analyses are developed. The general safety procedures are covered the specification of the initial event, selection of the methodology and accident sequences, computer codes, safety analysis procedures, verification of errors and uncertainties, etc. Finally, These general procedures of the safety analyses are applied to the Large Break Loss Of Coolant Accident (LBLOCA) in Final Safety Analysis Report (FSAR) for Wolsong units 2, 3, 4

  14. Managing health and safety risks: Implications for tailoring health and safety management system practices.

    Science.gov (United States)

    Willmer, D R; Haas, E J

    2016-01-01

    As national and international health and safety management system (HSMS) standards are voluntarily accepted or regulated into practice, organizations are making an effort to modify and integrate strategic elements of a connected management system into their daily risk management practices. In high-risk industries such as mining, that effort takes on added importance. The mining industry has long recognized the importance of a more integrated approach to recognizing and responding to site-specific risks, encouraging the adoption of a risk-based management framework. Recently, the U.S. National Mining Association led the development of an industry-specific HSMS built on the strategic frameworks of ANSI: Z10, OHSAS 18001, The American Chemistry Council's Responsible Care, and ILO-OSH 2001. All of these standards provide strategic guidance and focus on how to incorporate a plan-do-check-act cycle into the identification, management and evaluation of worksite risks. This paper details an exploratory study into whether practices associated with executing a risk-based management framework are visible through the actions of an organization's site-level management of health and safety risks. The results of this study show ways that site-level leaders manage day-to-day risk at their operations that can be characterized according to practices associated with a risk-based management framework. Having tangible operational examples of day-to-day risk management can serve as a starting point for evaluating field-level risk assessment efforts and their alignment to overall company efforts at effective risk mitigation through a HSMS or other processes.

  15. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  16. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Tsuchida, Noboru; Shiraishi, Tadao; Takahashi, Yutaka; Inada, Seiji; Saito, Minoru; Futamura, Yoshiaki; Kitano, Kyoshiro.

    1992-10-01

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  17. Selection of tolerable risk criteria for dam safety decision making

    International Nuclear Information System (INIS)

    Nielsen, N.M.; Hartford, D.N.D.; MacDonald, T.F.

    1994-01-01

    Risk assessment has received increasing attention in recent years as a means of aiding decision making on dams by providing systematic and rational methods for dealing with risk and uncertainty. Risk assessment is controversial and decisions affecting risk to life are the most controversial. Tolerable criteria, based on the risks that society is prepared to accept in order to avoid excessive costs, set bounds within which risk-based decisions may be made. The components of risk associated with dam safety are addressed on an individual basis and criteria established for each component, thereby permitting flexibility in the balance between component risk and avoiding the problems of placing a monetary value on life. The guiding principle of individual risk is that dams do not impose intolerable risks on any individual. A risk to life of 1 in 10 4 per annum is generally considered the maximum tolerable risk. When considering societal risk, the safety of a dam should be proportional to the consequences of its failure. Risks of financial losses beyond the corporation's ability to finance should be so low as to be considered negligible. 17 refs., 3 figs

  18. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  19. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  20. Assessing systemwide occupational health and safety risks of energy technologies

    International Nuclear Information System (INIS)

    Rowe, M.D.

    1982-01-01

    Input-output modelling is now being used to assess systemwide occupational and public health and safety risks of energy technologies. Some of the advantages and disadvantages of this method are presented and some of its important limitations are discussed. Its primary advantage is that it provides a standard method with which to compare technologies on a consistent basis without extensive economic analysis. Among the disadvantages are limited range of applicability, limited spectrum of health impacts, and inability to identify unusual health impacts unique to a new technology. (author)

  1. A Risk Analysis Methodology to Address Human and Organizational Factors in Offshore Drilling Safety: With an Emphasis on Negative Pressure Test

    Science.gov (United States)

    Tabibzadeh, Maryam

    According to the final Presidential National Commission report on the BP Deepwater Horizon (DWH) blowout, there is need to "integrate more sophisticated risk assessment and risk management practices" in the oil industry. Reviewing the literature of the offshore drilling industry indicates that most of the developed risk analysis methodologies do not fully and more importantly, systematically address the contribution of Human and Organizational Factors (HOFs) in accident causation. This is while results of a comprehensive study, from 1988 to 2005, of more than 600 well-documented major failures in offshore structures show that approximately 80% of those failures were due to HOFs. In addition, lack of safety culture, as an issue related to HOFs, have been identified as a common contributing cause of many accidents in this industry. This dissertation introduces an integrated risk analysis methodology to systematically assess the critical role of human and organizational factors in offshore drilling safety. The proposed methodology in this research focuses on a specific procedure called Negative Pressure Test (NPT), as the primary method to ascertain well integrity during offshore drilling, and analyzes the contributing causes of misinterpreting such a critical test. In addition, the case study of the BP Deepwater Horizon accident and their conducted NPT is discussed. The risk analysis methodology in this dissertation consists of three different approaches and their integration constitutes the big picture of my whole methodology. The first approach is the comparative analysis of a "standard" NPT, which is proposed by the author, with the test conducted by the DWH crew. This analysis contributes to identifying the involved discrepancies between the two test procedures. The second approach is a conceptual risk assessment framework to analyze the causal factors of the identified mismatches in the previous step, as the main contributors of negative pressure test

  2. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  3. Nursing involvement in risk and patient safety management in Primary Care.

    Science.gov (United States)

    Coronado-Vázquez, Valle; García-López, Ana; López-Sauras, Susana; Turón Alcaine, José María

    Patient safety and quality of care in a highly complex healthcare system depends not only on the actions of professionals at an individual level, but also on interaction with the environment. Proactive risk management in the system to prevent incidents and activities targeting healthcare teams is crucial in establishing a culture of safety in centres. Nurses commonly lead these safety strategies. Even though safety incidents are relatively infrequent in primary care, since the majority are preventable, actions at this level of care are highly effective. Certification of services according to ISO standard 9001:2008 focuses on risk management in the system and its use in certifying healthcare centres is helping to build a safety culture amongst professionals. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  4. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steve [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ma, Zhegang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spears, Bob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA models for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.

  5. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  6. Safety margins of operating reactors. Analysis of uncertainties and implications for decision making

    International Nuclear Information System (INIS)

    2003-01-01

    Maintaining safety in the design and operation of nuclear power plants (NPPs) is a very important task under the conditions of a challenging environment, affected by the deregulated electricity market and implementation of risk informed regulations. In Member States, advanced computer codes are widely used as safety analysis tools in the framework of licensing of new NPP projects, safety upgrading programmes of existing NPPs, periodic safety reviews, renewal of operating licences, use of the safety margins for reactor power uprating, better utilization of nuclear fuel and higher operational flexibility, for justification of lifetime extensions, development of new emergency operating procedures, analysis of operational events, and development of accident management programmes. The issue of inadequate quality of safety analysis is becoming important due to a general tendency to use advanced tools for better establishment and utilization of safety margins, while the existence of such margins assure that NPPs operate safely in all modes of operation and at all times. The most important safety margins relate to physical barriers against release of radioactive material, such as fuel matrix and fuel cladding, reactor coolant system boundary, and the containment. Typically, safety margins are determined with use of computational tools for safety analysis. Advanced best estimate computer codes are suggested e.g. in the IAEA Safety Guide on Safety Assessment and Verification for Nuclear Power Plants to be used for current safety analysis. Such computer codes require their careful application to avoid unjustified reduction in robustness of the reactor safety. The issue of uncertainties in safety analyses and their impact on evaluation of safety margins is addressed in a number of IAEA guidance documents, in particular in the Safety Report on Accident Analysis for Nuclear Power Plants. It is also discussed in various technical meetings and workshops devoted to this area. The

  7. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  8. What is a risk. [Quantitative risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoen, G [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany, F.R.)

    1979-02-01

    The following article is a revised version of a lecture given by the author during the VDE meeting 'Technical Expert Activities' in Brunswick. First of all, the concept of 'risk' is discussed which leads to a probability scale which then permits a definition of the 'justifiable risk' as the boundary between 'hazard' and 'safety'. The boundary is quantified indirectly from laws, regulations, instructions, etc. to the 'Technological rules' for special fields of application by minimum requirement data. These viewpoints described in detail are not only of substantial significance for the creation of safety regulations but also for their application and consequently for jurisdiction.

  9. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  10. The Development of a Risk Management System in the Field of Industrial Safety in the Republic of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Sergey S. Kudryavtsev

    2018-03-01

    Full Text Available Background: The purpose of the work is to develop a system that allows processing of information for analysis and industrial risk management, to monitor the level of industrial safety and to perform necessary measures aimed at the prevention of accidents, casualties, and development of professional diseases for effective management of industrial safety at hazardous industrial sites. Methods: Risk assessment of accidents and incidents is based on expert evaluations. Based on the lists of criteria parameters and their possible values, provided by the experts, a unified information and analytical database is compiled, which is included in the final interrogation questionnaires. Risk assessment of industrial injuries and occupational diseases is based on statistical methods. Results: The result of the research is the creation of Guidelines for risk management on hazardous industrial sites of the Republic of Kazakhstan. The Guidelines determine the directions and methods of complex assessment of the state of industrial safety and labor protection and they could be applied as methodological basis at the development of preventive measures for emergencies, casualties, and incidents at hazardous industrial sites. Conclusion: Implementation of the information-analytical system of risk level assessment allows to analyze the state of risk of a possible accident at industrial sites, make valid management decisions aimed at the prevention of emergencies, and monitor the effectiveness of accident prevention measures. Keywords: industrial safety, industrial trauma, professional sickness rate, risk assessment, risk management

  11. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  12. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    International Nuclear Information System (INIS)

    E.N. Lindner

    2004-01-01

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  13. Space nuclear reactor safety

    International Nuclear Information System (INIS)

    Damon, D.; Temme, M.; Brown, N.

    1990-01-01

    Definition of safety requirements and design features of the SP-100 space reactor power system has been guided by a mission risk analysis. The analysis quantifies risk from accidental radiological consequences for a reference mission. Results show that the radiological risk from a space reactor can be made very low. The total mission risk from radiological consequences for a shuttle-launched, earth orbit SP-100 mission is estimated to be 0.05 Person-REM (expected values) based on a 1 mREM/yr de Minimus dose. Results are given for each mission phase. The safety benefits of specific design features are evaluated through risk sensitivity analyses

  14. Safety balance: Analysis of safety systems; Bilans de surete: analyse par les organismes de surete

    Energy Technology Data Exchange (ETDEWEB)

    Delage, M; Giroux, C

    1990-12-01

    Safety analysis, and particularly analysis of exploitation of NPPs is constantly affected by EDF and by the safety authorities and their methodologies. Periodic safety reports ensure that important issues are not missed on daily basis, that incidents are identified and that relevant actions are undertaken. French safety analysis method consists of three principal steps. First type of safety balance is analyzed at the normal start-up phase for each unit including the final safety report. This enables analysis of behaviour of units ten years after their licensing. Second type is periodic operational safety analysis performed during a few years. Finally, the third step consists of safety analysis of the oldest units with the aim to improve the safety standards. The three steps of safety analysis are described in this presentation in detail with the aim to present the objectives and principles. Examples of most recent exercises are included in order to illustrate the importance of such analyses.

  15. Crash Prediction and Risk Evaluation Based on Traffic Analysis Zones

    Directory of Open Access Journals (Sweden)

    Cuiping Zhang

    2014-01-01

    Full Text Available Traffic safety evaluation for traffic analysis zones (TAZs plays an important role in transportation safety planning and long-range transportation plan development. This paper aims to present a comprehensive analysis of zonal safety evaluation. First, several criteria are proposed to measure the crash risk at zonal level. Then these criteria are integrated into one measure-average hazard index (AHI, which is used to identify unsafe zones. In addition, the study develops a negative binomial regression model to statistically estimate significant factors for the unsafe zones. The model results indicate that the zonal crash frequency can be associated with several social-economic, demographic, and transportation system factors. The impact of these significant factors on zonal crash is also discussed. The finding of this study suggests that safety evaluation and estimation might benefit engineers and decision makers in identifying high crash locations for potential safety improvements.

  16. Spent fuel transport in Romania by road: An approach considering safety, risk and radiological consequences

    International Nuclear Information System (INIS)

    Vieru, G.

    2001-01-01

    The transport of high-level radioactive wastes, involving Type B packages, is a part of the safety of the Romanian waste management programme and the overall aim of this activity is to promote the safe transport of radioactive materials in Romania. The paper presents a safety case analysis of the transport of a single spent fuel CANDU bundle, using a Romanian built Type B package, from the CANDU type nuclear power plant Cernavoda to the INR Pitesti, in order to be examined within INR's hot-cells facilities. The safety assessment includes the following main aspects: (1) evaluation and analysis of available data on road traffic accidents; (2) estimation of the expected frequency for severe road accident scenarios resulting in potential radionuclide release; and (3) evaluation of the expected radiological consequences and accident risks of transport operations. (author)

  17. Report on probabilistic safety assessment (PSA) quality assurance in utilization of risk information

    International Nuclear Information System (INIS)

    2006-12-01

    Recently in Japan, introduction of nuclear safety regulations using risk information such as probabilistic safety assessment (PSA) has been considered and utilization of risk information in the rational and practical measures on safety assurance has made a progress to start with the operation or inspection area. The report compiled results of investigation and studies of PSA quality assurance in risk-informed activities in the USA. Relevant regulatory guide and standard review plan as well as issues and recommendations were reviewed for technical adequacy and advancement of probabilistic risk assessment technology in risk-informed decision making. Useful and important information to be referred as issues in PSA quality assurance was identified. (T. Tanaka)

  18. Analysis of human error and organizational deficiency in events considering risk significance

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Kim, Yoonik; Kim, Say Hyung; Kim, Chansoo; Chung, Chang Hyun; Jung, Won Dea

    2004-01-01

    In this study, we analyzed human and organizational deficiencies in the trip events of Korean nuclear power plants. K-HPES items were used in human error analysis, and the organizational factors by Jacobs and Haber were used for organizational deficiency analysis. We proposed the use of CCDP as a risk measure to consider risk information in prioritizing K-HPES items and organizational factors. Until now, the risk significance of events has not been considered in human error and organizational deficiency analysis. Considering the risk significance of events in the process of analysis is necessary for effective enhancement of nuclear power plant safety by focusing on causes of human error and organizational deficiencies that are associated with significant risk

  19. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    Science.gov (United States)

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  20. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  1. Neuropsychological assessment of driving safety risk in older adults with and without neurologic disease.

    Science.gov (United States)

    Anderson, Steven W; Aksan, Nazan; Dawson, Jeffrey D; Uc, Ergun Y; Johnson, Amy M; Rizzo, Matthew

    2012-01-01

    Decline in cognitive abilities can be an important contributor to the driving problems encountered by older adults, and neuropsychological assessment may provide a practical approach to evaluating this aspect of driving safety risk. The purpose of the present study was to evaluate several commonly used neuropsychological tests in the assessment of driving safety risk in older adults with and without neurological disease. A further goal of this study was to identify brief combinations of neuropsychological tests that sample performances in key functional domains and thus could be used to efficiently assess driving safety risk. A total of 345 legally licensed and active drivers over the age of 50, with no neurologic disease (N = 185), probable Alzheimer's disease (N = 40), Parkinson's disease (N = 91), or stroke (N = 29), completed vision testing, a battery of 10 neuropsychological tests, and an 18-mile drive on urban and rural roads in an instrumented vehicle. Performances on all neuropsychological tests were significantly correlated with driving safety errors. Confirmatory factor analysis was used to identify 3 key cognitive domains assessed by the tests (speed of processing, visuospatial abilities, and memory), and several brief batteries consisting of one test from each domain showed moderate corrected correlations with driving performance. These findings are consistent with the notion that driving places demands on multiple cognitive abilities that can be affected by aging and age-related neurological disease, and that neuropsychological assessment may provide a practical off-road window into the functional status of these cognitive systems.

  2. Why consumers behave as they do with respect to food safety and risk information

    DEFF Research Database (Denmark)

    Verbeke, Wim; Frewer, Lynn J.; Scholderer, Joachim

    2007-01-01

    rankings. The aim of this contribution is to provide a better understanding to food risk analysts of why consumers behave as they do with respect to food safety and risk information. This paper presents some cases of seemingly irrational and inconsistent consumer behaviour with respect to food safety...... and risk information and provides explanations for these behaviours based on the nature of the risk and individual psychological processes. Potential solutions for rebuilding consumer confidence in food safety and bridging between lay and expert opinions towards food risks are reviewed. These include......In recent years, it seems that consumers are generally uncertain about the safety and quality of their food and their risk perception differs substantially from that of experts. Hormone and veterinary drug residues in meat persist to occupy a high position in European consumers' food concern...

  3. Pressure Systems Stored-Energy Threshold Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Samuel S.

    2009-08-25

    Federal Regulation 10 CFR 851, which became effective February 2007, brought to light potential weaknesses regarding the Pressure Safety Program at the Pacific Northwest National Laboratory (PNNL). The definition of a pressure system in 10 CFR 851 does not contain a limit based upon pressure or any other criteria. Therefore, the need for a method to determine an appropriate risk-based hazard level for pressure safety was identified. The Laboratory has historically used a stored energy of 1000 lbf-ft to define a pressure hazard; however, an analytical basis for this value had not been documented. This document establishes the technical basis by evaluating the use of stored energy as an appropriate criterion to establish a pressure hazard, exploring a suitable risk threshold for pressure hazards, and reviewing the methods used to determine stored energy. The literature review and technical analysis concludes the use of stored energy as a method for determining a potential risk, the 1000 lbf-ft threshold, and the methods used by PNNL to calculate stored energy are all appropriate. Recommendations for further program improvements are also discussed

  4. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  5. A Big Data Analysis Approach for Rail Failure Risk Assessment.

    Science.gov (United States)

    Jamshidi, Ali; Faghih-Roohi, Shahrzad; Hajizadeh, Siamak; Núñez, Alfredo; Babuska, Robert; Dollevoet, Rolf; Li, Zili; De Schutter, Bart

    2017-08-01

    Railway infrastructure monitoring is a vital task to ensure rail transportation safety. A rail failure could result in not only a considerable impact on train delays and maintenance costs, but also on safety of passengers. In this article, the aim is to assess the risk of a rail failure by analyzing a type of rail surface defect called squats that are detected automatically among the huge number of records from video cameras. We propose an image processing approach for automatic detection of squats, especially severe types that are prone to rail breaks. We measure the visual length of the squats and use them to model the failure risk. For the assessment of the rail failure risk, we estimate the probability of rail failure based on the growth of squats. Moreover, we perform severity and crack growth analyses to consider the impact of rail traffic loads on defects in three different growth scenarios. The failure risk estimations are provided for several samples of squats with different crack growth lengths on a busy rail track of the Dutch railway network. The results illustrate the practicality and efficiency of the proposed approach. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  6. An Autopsy Checklist: A Monitor of Safety and Risk Management.

    Science.gov (United States)

    Shkrum, Michael James; Kent, Jessica

    2016-09-01

    Any autopsy has safety and risk management issues, which can arise in the preautopsy, autopsy, and postautopsy phases. The London Health Sciences Department of Pathology and Laboratory Medicine Autopsy Checklist was developed to address these issues. The current study assessed 1 measure of autopsy safety: the effectiveness of the checklist in documenting pathologists' communication of the actual or potential risk of blood-borne infections to support staff. Autopsy checklists for cases done in 2012 and 2013 were reviewed. The frequency of communication, as recorded in checklists, by pathologists to staff of previously diagnosed blood-borne infections (hepatitis B/C and human immunodeficiency virus) or the risk of infection based on lifestyle (eg, intravenous drug abuse) was tabulated. These data were compared with medical histories of the deceased and circumstances of their deaths described in the final autopsy reports. Information about blood-borne infections was recorded less frequently in the checklists compared with the final reports. Of 4 known human immunodeficiency virus cases, there was no checklist documentation in 3. All 11 hand injuries were documented. None of these cases had known infectious risks. The Autopsy Checklist is a standardized means of documenting safety and risk issues arising during the autopsy process, but its effectiveness relies on accurate completion.

  7. An integrated safety analysis of intravenous ibuprofen (Caldolor® in adults

    Directory of Open Access Journals (Sweden)

    Southworth SR

    2015-10-01

    Full Text Available Stephen R Southworth,1 Emily J Woodward,2 Alex Peng,2 Amy D Rock21North Mississippi Sports Medicine and Orthopaedic Clinic, PLLC, Tupelo, MS, 2Department of Research and Development, Cumberland Pharmaceuticals Inc., Nashville, TN, USAAbstract: Intravenous (IV nonsteroidal anti-inflammatory drugs such as IV ibuprofen are increasingly used as a component of multimodal pain management in the inpatient and outpatient settings. The safety of IV ibuprofen as assessed in ten sponsored clinical studies is presented in this analysis. Overall, 1,752 adult patients have been included in safety and efficacy trials over 11 years; 1,220 of these patients have received IV ibuprofen and 532 received either placebo or comparator medication. The incidence of adverse events (AEs, serious AEs, and changes in vital signs and clinically significant laboratory parameters have been summarized and compared to patients receiving placebo or active comparator drug. Overall, IV ibuprofen has been well tolerated by hospitalized and outpatient patients when administered both prior to surgery and postoperatively as well as for nonsurgical pain or fever. The overall incidence of AEs is lower in patients receiving IV ibuprofen as compared to those receiving placebo in this integrated analysis. Specific analysis of hematological and renal effects showed no increased risk for patients receiving IV ibuprofen. A subset analysis of elderly patients suggests that no dose adjustment is needed in this higher risk population. This integrated safety analysis demonstrates that IV ibuprofen can be safely administered prior to surgery and continued in the postoperative period as a component of multimodal pain management.Keywords: NSAID, surgical pain, fever, perioperative analgesia, critical care, multimodal pain management

  8. Developments in Levee Reliability and Flood Risk Analysis in the Netherlands

    NARCIS (Netherlands)

    Jonkman, S.N.; Schweckendiek, T.

    2015-01-01

    This paper presents and overview of advances in flood risk and levee reliability analysis in the Netherlands. It is described how new safety standards – in the form of a target failure probability – have been derived on the basis of nationwide flood risk assessments which taken into account both

  9. Outage Risk Assessment and Management (ORAM) technology to improve outage safety and economics

    International Nuclear Information System (INIS)

    Kalra, S.P.

    2004-01-01

    The Electric Power Research Institute (EPRI) has undertaken an aggressive program, called ORAM (Outage Risk Assessment and Management), to provide utilities with tools and technology to assist in managing risk during the planning and conduct of outages. The ORAM program consists of the following 6 steps: i) Perform utility surveys and visits on shutdown risk management needs, ii) Perform probabilistic shutdown safety assessments (PSSAs) to identify generic insights that can be incorporated into risk management guidelines and identify selected areas for the development of contingency actions, iii) Develop risk management guidelines (RMG's) that provide a systematic approach to the planning and conduct of outages from a safety perspective. Incorporate insights from the shutdown safety assessments and other operating experience into the RMG's. iv) Develop selected contingency actions including a thermalhydraulic tool kit to address higher risk time periods and activities identified in the shutdown safety assessments, v) Develop computer software that integrates all of the above capability into an easy to use tool for effective shutdown operation management for utilities, vi) Provide assistance in the transfer of this technology and the application of these tools. This paper briefly describes the technical approach and tools developed under EPRI's ORAM program and its applications for improving outage safety and economics. (author)

  10. SIMMER as a safety analysis tool

    International Nuclear Information System (INIS)

    Smith, L.L.; Bell, C.R.; Bohl, W.R.; Bott, T.F.; Dearing, J.F.; Luck, L.B.

    1982-01-01

    SIMMER has been used for numerous applications in fast reactor safety, encompassing both accident and experiment analysis. Recent analyses of transition-phase behavior in potential core disruptive accidents have integrated SIMMER testing with the accident analysis. Results of both the accident analysis and the verification effort are presented as a comprehensive safety analysis program

  11. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  12. Development of Risk Assessment Matrix for NASA Engineering and Safety Center

    Science.gov (United States)

    Malone, Roy W., Jr.; Moses, Kelly

    2004-01-01

    This paper describes a study, which had as its principal goal the development of a sufficiently detailed 5 x 5 Risk Matrix Scorecard. The purpose of this scorecard is to outline the criteria by which technical issues can be qualitatively and initially prioritized. The tool using this score card has been proposed to be one of the information resources the NASA Engineering and Safety Center (NESC) takes into consideration when making decisions with respect to incoming information on safety concerns across the entire NASA agency. The contents of this paper discuss in detail each element of the risk matrix scorecard, definitions for those elements and the rationale behind the development of those definitions. This scorecard development was performed in parallel with the tailoring of the existing Futron Corporation Integrated Risk Management Application (IRMA) software tool. IRMA was tailored to fit NESC needs for evaluating incoming safety concerns and was renamed NESC Assessment Risk Management Application (NAFMA) which is still in developmental phase.

  13. NASA System Safety Handbook. Volume 2: System Safety Concepts, Guidelines, and Implementation Examples

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Feather, Martin; Rutledge, Peter; Sen, Dev; Youngblood, Robert

    2015-01-01

    This is the second of two volumes that collectively comprise the NASA System Safety Handbook. Volume 1 (NASASP-210-580) was prepared for the purpose of presenting the overall framework for System Safety and for providing the general concepts needed to implement the framework. Volume 2 provides guidance for implementing these concepts as an integral part of systems engineering and risk management. This guidance addresses the following functional areas: 1.The development of objectives that collectively define adequate safety for a system, and the safety requirements derived from these objectives that are levied on the system. 2.The conduct of system safety activities, performed to meet the safety requirements, with specific emphasis on the conduct of integrated safety analysis (ISA) as a fundamental means by which systems engineering and risk management decisions are risk-informed. 3.The development of a risk-informed safety case (RISC) at major milestone reviews to argue that the systems safety objectives are satisfied (and therefore that the system is adequately safe). 4.The evaluation of the RISC (including supporting evidence) using a defined set of evaluation criteria, to assess the veracity of the claims made therein in order to support risk acceptance decisions.

  14. Governance implications of nanomaterials companies’ inconsistent risk perceptions and safety practices

    International Nuclear Information System (INIS)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-01-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders’ perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated “lack of information” as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders’ reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  15. Governance implications of nanomaterials companies' inconsistent risk perceptions and safety practices

    Science.gov (United States)

    Engeman, Cassandra D.; Baumgartner, Lynn; Carr, Benjamin M.; Fish, Allison M.; Meyerhofer, John D.; Satterfield, Terre A.; Holden, Patricia A.; Harthorn, Barbara Herr

    2012-03-01

    Current research on the nanotechnology industry indicates its downstream expansion at a rapid pace, while toxicological research and best practices for environmental health and safety are still being developed. Companies that use and/or produce engineered nanomaterials (ENMs) have enormous potential to influence safe-handling practices for ENMs across the product life cycle. Knowledge of both industry practices and leaders' perceptions of risk is vital for understanding how companies will act to control potential environmental and health risks. This article reports results from a new international survey of nanomaterials companies in 14 countries. In this survey, company participants reported relatively high levels of uncertainty and/or perceived risk with regard to ENMs. However, these perspectives were not accompanied by expected risk-avoidant practices or preferences for regulatory oversight. A majority of companies indicated "lack of information" as a significant impediment to implementing nano-specific safety practices, but they also reported practices that were inconsistent with widely available guidance. Additionally, in the absence of safe-handling regulations, companies reported nano-specific health and safety programs that were narrow in scope. Taken together, these findings indicate that health and safety guidance is not reaching industry. While industry leaders' reluctance toward regulation might be expected, their own reported unsafe practices and recognition of possible risks suggest a more top-down approach from regulators is needed to protect workers and the environment.

  16. Risk perception, safety goals and regulatory decision-making

    International Nuclear Information System (INIS)

    Hoegberg, Lars

    1998-01-01

    Deciding on 'how safe is safe enough?' includes value judgements with implications of an ethical and political nature. As regulators are accountable to governments, parliaments and the general public, regulatory decision-making should be characterized by transparency with respect to how such value judgements are reflected in risk assessments and regulatory decisions. Some approaches in this respect are discussed in the paper, based on more than fifteen years of experience in nuclear regulatory decision-making. Issues discussed include: (1) risk profiles and safety goals associated with severe reactor accidents--individual health risks, societal risks and risk of losing investments; (2) risk profile-based licensing of the Swedish SFR final disposal facility for low and intermediate level radioactive waste

  17. WE-B-BRC-02: Risk Analysis and Incident Learning

    International Nuclear Information System (INIS)

    Fraass, B.

    2016-01-01

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. We therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology

  18. WE-B-BRC-02: Risk Analysis and Incident Learning

    Energy Technology Data Exchange (ETDEWEB)

    Fraass, B. [Cedars Sinai Medical Center (United States)

    2016-06-15

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. We therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology

  19. Protection of environment, health and safety using risk management

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, G [Ghafari Associates, Inc. 17101 Michegan Avenue Dearborn, MI 48126-2736 (United States); Kummler, R H [Department of Chemical engineering Wayne Stae University Detroit, MI 48202 (United States); louvar, J [Research Services Basf Corporation Wyandotte, MI 48192 (United States)

    1997-12-31

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA`s PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility`s need for compliance and review the regulations for risk management.

  20. Protection of environment, health and safety using risk management

    International Nuclear Information System (INIS)

    Abraham, G.; Kummler, R.H.; louvar, J.

    1996-01-01

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA's PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility's need for compliance and review the regulations for risk management

  1. Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA)

    DEFF Research Database (Denmark)

    Leuschner, R. G. K.; Robinson, T. P.; Hugas, M.

    2010-01-01

    Qualified Presumption of Safety (QPS) is a generic risk assessment approach applied by the European Food Safety Authority (EFSA) to notified biological agents aiming at simplifying risk assessments across different scientific Panels and Units. The aim of this review is to outline the implementation...... and value of the QPS assessment for EFSA and to explain its principles such as the unambiguous identity of a taxonomic unit, the body of knowledge including potential safety concerns and how these considerations lead to a list of biological agents recommended for QPS which EFSA keeps updated through...

  2. The SAFE FOODS Risk Analysis Framework suitable for GMOs? A case study

    NARCIS (Netherlands)

    Kuiper, H.A.; Davies, H.V.

    2010-01-01

    This paper describes the current EU regulatory framework for risk analysis of genetically modified (GM) crop cultivation and market introduction of derived food/feed. Furthermore the risk assessment strategies for GM crops and derived food/feed as designed by the European Food Safety Authority

  3. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    International Nuclear Information System (INIS)

    Simion, G.P.; VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B.; Bulmahn, K.D.

    1993-06-01

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement

  4. Investigation of Relationship between Level of Awareness around Health, Safety and Environment Management System and Its Effects on Safety Climate and Risk Perception by Employees in an Iran Oil Refinery, 2015

    Directory of Open Access Journals (Sweden)

    Milad Ahmadi Marzaleh

    2017-02-01

    Full Text Available Special attention of and oil, gas and petrochemical large corporation in the world to the HSE management system is due to its importance in the designing and development of products, services and processes by considering its health, safety and environment requirements. Staff's perception of the existing job risks has a significant impact on their safe behavior at work. This study was conducted to determine the relationship between safety climate and staff's perception of risk with an awareness level among employees of the HSE management system in an oil refinery in Kermanshah. The study population was employees in one of the oil refineries in Iran. After designing and questionnaire psychometric assessment of staff knowledge of HSE management system (Cronbach's alpha was 0.9 and its validity was assessed by certified professionals, Loughborough safety climate questionnaire and Flin risk perception questionnaire were used. Data analysis was performed using SPSS V22 software. Results showed that the relationship between safety climate and awareness level of the HSE management system; also the relationship between safety climate and perception of risk was also getting significant. However, the relationship between perception of risk and awareness level of the HSE management system was not significant. The results of this study showed a moderate awareness of HSE Management System in refinery workers. In this regard, appropriate and proper management policy should be committed to improving the situation. The results of this study is a profile the situation of safety climate in the refinery, which can be used as an indicator for the development of preventive policies and evaluate the performance of the organization's safety and the results of the safety improvement organization.

  5. Establishment of safety goal and its quantification based on risk assessment

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Muramatsu, Ken

    2017-01-01

    We must clarify the safety objectives sought by society in securing the safety of nuclear reactors and nuclear power plants. For that purpose, it is useful to utilize risk assessment. Quantitative methods including probabilistic risk assessment (PRA) are superior in terms of scientific rationality and quantitative performance compared with conventional deterministic methods, and able to indicate an objective numerical value of safety level. Consequently, quantitative methods can enhance the transparency, consistency, compliance, predictability, and explanatory power of regulatory decisions toward business operators and citizens. Business operators can explain the validity of their own safety assurance activities to regulators and citizens. The goal to be secured becomes clear by incorporating the safety goal into the specific performance goal required for the nuclear power plant from the viewpoint of deep safeguard, and it becomes easy to evaluate the effectiveness of the safety measures. It helps us greatly in judging and selecting the appropriateness of safety measures. It should be noted: the fact that the result of implementing the PRA satisfies the safety goal is not a sufficient condition in the sense of guaranteeing complete safety but a necessary condition. The nuclear power field is a region with large uncertainty, and research/efforts for accuracy improvement and evaluation validity will be required continuously. (A.O.)

  6. PRA (probabilistic risk analysis) in the nuclear sector. Quantifying human error and human malice

    International Nuclear Information System (INIS)

    Heyes, A.G.

    1995-01-01

    Regardless of the regulatory style chosen ('command and control' or 'functional') a vital prerequisite for coherent safety regulations in the nuclear power industry is the ability to assess accident risk. In this paper we present a critical analysis of current techniques of probabilistic risk analysis applied in the industry, with particular regard to the problems of quantifying risks arising from, or exacerbated by, human risk and/or human error. (Author)

  7. Magnetic resonance imaging: hazard, risk and safety

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Suri, S.; Singh, P.

    2001-01-01

    The hazard and risk associated with magnetic resonance imaging is a matter of concern. In 1982, the Food and Drug Administration (FDA), USA issued guidelines to Hospital's Investigational Review Board (IRBs) in 'Guidelines for Evaluating Electromagnetic Exposure Risks for Trials of Clinical Nuclear Magnetic Resonance (NMR)'. In 1997, the Berufsgenossenschaft (BG), professional association for precision engineering and electronics of Germany, in their preliminary proposal for safety limits extended their concerns on static magnetic field. Owing to both time varying and static magnetic fields applied in Magnetic Resonance Imaging (MRI) this became of immediate concern to user community to assess the potential hazard and risk associated with the NMR system

  8. RISK MANAGEMENT AS TRANSPORTATION SAFETY PROVISION INSTRUMENT IN RUSSIA

    OpenAIRE

    V. A. Nikolayev

    2012-01-01

    Safety of transportation in Russia is subject to a variety of threats. Discussed in the article are characteristics of major threats to transportation security. State transportation policy directions that make it possible to ensure the security of cargo and passenger transportation are shown. A listof activities and innovative risk management tools that provide for improved safety of railway transportation is proposed.

  9. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  10. Evaluation of severe accident safety system value based on averting financial risks

    International Nuclear Information System (INIS)

    Hatch, S.W.; Benjamin, A.S.; Bennett, P.R.

    1983-01-01

    The Severe Accident Risk Reduction Program is being performed to benchmark the risks from nuclear power plants and to assess the benefits and impacts of a set of severe accident safety features. This paper describes the program in general and presents some preliminary results. These results include estimates of the financial risks associated with the operation of six reference plants and the value of severe accident prevention and mitigation safety systems in averting these risks. The results represent initial calculations and will be iterated before being used to support NRC decisions

  11. Survey of probabilistic methods in safety and risk assessment for nuclear power plant licensing

    International Nuclear Information System (INIS)

    1984-04-01

    After an overview about the goals and general methods of probabilistic approaches in nuclear safety the main features of probabilistic safety or risk assessment (PRA) methods are discussed. Mostly in practical applications not a full-fledged PRA is applied but rather various levels of analysis leading from unavailability assessment of systems over the more complex analysis of the probable core damage stages up to the assessment of the overall health effects on the total population from a certain practice. The various types of application are discussed in relation to their limitation and benefits for different stages of design or operation of nuclear power plants. This gives guidance for licensing staff to judge the usefulness of the various methods for their licensing decisions. Examples of the application of probabilistic methods in several countries are given. Two appendices on reliability analysis and on containment and consequence analysis provide some more details on these subjects. (author)

  12. Safety strategy and safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1976-01-01

    The safety strategy for nuclear power plants is characterized by the fact that the high level of safety was attained not as a result of experience, but on the basis of preventive accident analyses and the finding derived from such analyses. Although, in these accident analyses, the deterministic approach is predominant, it is supplemented by reliability analyses. The accidents analyzed in nuclear licensing procedures cover a wide spectrum from minor incidents to the design basis accidents which determine the design of the safety devices. The initial and boundary conditions, which are essentail for accident analyses, and the determination of the loads occurring in various states during regular operation and in accidents flow into the design of the individual systems and components. The inevitable residual risk and its origins are discussed. (orig.) [de

  13. Risk assessment and safety regulations in offshore oil and gas ...

    African Journals Online (AJOL)

    Risk management of which risk assessment is part, and safety regulations are common in the offshore oil and gas industry management system. The process of conducting risk assessment is mostly a challenge for operational personnel assigned to perform this function. The most significant problem is the decision to use ...

  14. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  15. Exploiting Science: Enhancing the Safety Training of Pilots to Reduce the Risk of Bird Strikes

    Science.gov (United States)

    Mendonca, Flavio A. C.

    Analysis of bird strikes to aviation in the U.S. from 1990 to 2015 indicate that the successful mitigation efforts at airports, which must be sustained, have reduced incidents with damage and a negative effect-on-flight since 2000. However, such efforts have done little to reduce strikes outside the airport jurisdiction, such as occurred with US Airways Flight 1549 in 2009. There are basically three strategies to mitigate the risk of bird strikes: standards set by aviation authorities, technology, and actions by crewmembers. Pilots play an important role as stakeholders in the prevention of bird strikes, especially outside the airport environment. Thus, safety efforts require enhanced risk management and aeronautical decision-making training for flight crews. The purpose of this study was to determine if a safety training protocol could effectively enhance CFR Part 141 general aviation pilots' knowledge and skills to reduce the risk of bird strikes to aviation. Participants were recruited from the Purdue University professional flight program and from Purdue Aviation. The researcher of this study used a pretest posttest experimental design. Additionally, qualitative data were collected through open-ended questions in the pretest, posttest, and a follow-up survey questionnaire. The participants' pretest and posttest scores were analyzed using parametric and nonparametric tests. Results indicated a significant increase in the posttest scores of the experimental group. An investigation of qualitative data showed that the topic "safety management of bird hazards by pilots" is barely covered during the ground and flight training of pilots. Furthermore, qualitative data suggest a misperception of the safety culture tenets and a poor familiarity with the safety risk management process regarding bird hazards. Finally, the researcher presented recommendations for practice and future research.

  16. Computer aided safety analysis 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The meeting was conducted in a workshop style, to encourage involvement of all participants during the discussions. Forty-five (45) experts from 19 countries, plus 22 experts from the GDR participated in the meeting. A list of participants can be found at the end of this volume. Forty-two (42) papers were presented and discussed during the meeting. Additionally an open discussion was held on the possible directions of the IAEA programme on Computer Aided Safety Analysis. A summary of the conclusions of these discussions is presented in the publication. The remainder of this proceedings volume comprises the transcript of selected technical papers (22) presented in the meeting. It is the intention of the IAEA that the publication of these proceedings will extend the benefits of the discussions held during the meeting to a larger audience throughout the world. The Technical Committee/Workshop on Computer Aided Safety Analysis was organized by the IAEA in cooperation with the National Board for Safety and Radiological Protection (SAAS) of the German Democratic Republic in Berlin. The purpose of the meeting was to provide an opportunity for discussions on experiences in the use of computer codes used for safety analysis of nuclear power plants. In particular it was intended to provide a forum for exchange of information among experts using computer codes for safety analysis under the Technical Cooperation Programme on Safety of WWER Type Reactors (RER/9/004) and other experts throughout the world. A separate abstract was prepared for each of the 22 selected papers. Refs, figs tabs and pictures

  17. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  18. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  19. Validation of risk-based performance indicators: Safety system function trends

    International Nuclear Information System (INIS)

    Boccio, J.L.; Vesely, W.E.; Azarm, M.A.; Carbonaro, J.F.; Usher, J.L.; Oden, N.

    1989-10-01

    This report describes and applies a process for validating a model for a risk-based performance indicator. The purpose of the risk-based indicator evaluated, Safety System Function Trend (SSFT), is to monitor the unavailability of selected safety systems. Interim validation of this indicator is based on three aspects: a theoretical basis, an empirical basis relying on statistical correlations, and case studies employing 25 plant years of historical data collected from five plants for a number of safety systems. Results using the SSFT model are encouraging. Application of the model through case studies dealing with the performance of important safety systems shows that statistically significant trends in, and levels of, system performance can be discerned which thereby can provide leading indications of degrading and/or improving performances. Methods for developing system performance tolerance bounds are discussed and applied to aid in the interpretation of the trends in this risk-based indicator. Some additional characteristics of the SSFT indicator, learned through the data-collection efforts and subsequent data analyses performed, are also discussed. The usefulness and practicality of other data sources for validation purposes are explored. Further validation of this indicator is noted. Also, additional research is underway in developing a more detailed estimator of system unavailability. 9 refs., 18 figs., 5 tabs

  20. Risk-informed decision making a keystone in advanced safety assessment

    International Nuclear Information System (INIS)

    Reinhart, M.

    2007-01-01

    Probabilistic Safety Assessment (PSA) has provided extremely valuable complementary insight, perspective, comprehension, and balance to deterministic nuclear reactor safety assessment. This integrated approach of risk-informed management and decision making has been called Risk-Informed Decision Making (RIDM). RIDM provides enhanced safety, reliability, operational flexibility, reduced radiological exposure, and improved fiscal economy. Applications of RIDM continuously increase. Current applications are in the areas of design, construction, licensing, operations, and security. Operational phase safety applications include the following: technical specifications improvement, risk-monitors and configuration control, maintenance planning, outage planning and management, in-service inspection, inservice testing, graded quality assurance, reactor oversight and inspection, inspection finding significance determination, operational events assessment, and rulemaking. Interestingly there is a significant spectrum of approaches, methods, programs, controls, data bases, and standards. The quest of many is to assimilate the full compliment of PSA and RIDM information and to achieve a balanced international harmony. The goal is to focus the best of the best, so to speak, for the benefit of all. Accordingly, this presentation will address the principles, benefits, and applications of RIDM. It will also address some of the challenges and areas to improve. Finally it will highlight efforts by the IAEA and others to capture the international thinking, experience, successes, challenges, and lessons in RIDM. (authors)