DEFF Research Database (Denmark)
Loureiro da Costa Lira Gargalo, Carina; Gernaey, Krist; Sin, Gürkan
2016-01-01
to propagate the market price and technical uncertainties to the economic indicator calculations and to quantify the respective economic risk. The results clearly indicated that under the given market price uncertainties, the probability of obtaining a negative NPV is 0.95. This is a very high probability...
International Nuclear Information System (INIS)
Thomas, R.E.
1982-03-01
An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software
Sensitivity and uncertainty analyses in aging risk-based prioritizations
International Nuclear Information System (INIS)
Hassan, M.; Uryas'ev, S.; Vesely, W.E.
1993-01-01
Aging risk evaluations of nuclear power plants using Probabilistic Risk Analyses (PRAs) involve assessments of the impact of aging structures, systems, and components (SSCs) on plant core damage frequency (CDF). These assessments can be used to prioritize the contributors to aging risk reflecting the relative risk potential of the SSCs. Aging prioritizations are important for identifying the SSCs contributing most to plant risk and can provide a systematic basis on which aging risk control and management strategies for a plant can be developed. However, these prioritizations are subject to variabilities arising from uncertainties in data, and/or from various modeling assumptions. The objective of this paper is to present an evaluation of the sensitivity of aging prioritizations of active components to uncertainties in aging risk quantifications. Approaches for robust prioritization of SSCs also are presented which are less susceptible to the uncertainties
International Nuclear Information System (INIS)
Andres, T.H.
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Energy Technology Data Exchange (ETDEWEB)
Andres, T.H
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Deterministic uncertainty analysis
International Nuclear Information System (INIS)
Worley, B.A.
1987-01-01
Uncertainties of computer results are of primary interest in applications such as high-level waste (HLW) repository performance assessment in which experimental validation is not possible or practical. This work presents an alternate deterministic approach for calculating uncertainties that has the potential to significantly reduce the number of computer runs required for conventional statistical analysis. 7 refs., 1 fig
International Nuclear Information System (INIS)
Barker, Kash; Haimes, Yacov Y.
2009-01-01
Risk-based decision making often relies upon expert probability assessments, particularly in the consequences of disruptive events and when such events are extreme or catastrophic in nature. Naturally, such expert-elicited probability distributions can be fraught with errors, as they describe events which occur very infrequently and for which only sparse data exist. This paper presents a quantitative framework, the extreme event uncertainty sensitivity impact method (EE-USIM), for measuring the sensitivity of extreme event consequences to uncertainties in the parameters of the underlying probability distribution. The EE-USIM is demonstrated with the Inoperability input-output model (IIM), a model with which to evaluate the propagation of inoperability throughout an interdependent set of economic and infrastructure sectors. The EE-USIM also makes use of a two-sided power distribution function generated by expert elicitation of extreme event consequences
Sensitivity and uncertainty analysis
Cacuci, Dan G; Navon, Ionel Michael
2005-01-01
As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable scientific tools. Sensitivity and Uncertainty Analysis. Volume I: Theory focused on the mathematical underpinnings of two important methods for such analyses: the Adjoint Sensitivity Analysis Procedure and the Global Adjoint Sensitivity Analysis Procedure. This volume concentrates on the practical aspects of performing these analyses for large-scale systems. The applications addressed include two-phase flow problems, a radiative c
Risk-based decision analysis for groundwater operable units
International Nuclear Information System (INIS)
Chiaramonte, G.R.
1995-01-01
This document proposes a streamlined approach and methodology for performing risk assessment in support of interim remedial measure (IRM) decisions involving the remediation of contaminated groundwater on the Hanford Site. This methodology, referred to as ''risk-based decision analysis,'' also supports the specification of target cleanup volumes and provides a basis for design and operation of the groundwater remedies. The risk-based decision analysis can be completed within a short time frame and concisely documented. The risk-based decision analysis is more versatile than the qualitative risk assessment (QRA), because it not only supports the need for IRMs, but also provides criteria for defining the success of the IRMs and provides the risk-basis for decisions on final remedies. For these reasons, it is proposed that, for groundwater operable units, the risk-based decision analysis should replace the more elaborate, costly, and time-consuming QRA
Deterministic uncertainty analysis
International Nuclear Information System (INIS)
Worley, B.A.
1987-12-01
This paper presents a deterministic uncertainty analysis (DUA) method for calculating uncertainties that has the potential to significantly reduce the number of computer runs compared to conventional statistical analysis. The method is based upon the availability of derivative and sensitivity data such as that calculated using the well known direct or adjoint sensitivity analysis techniques. Formation of response surfaces using derivative data and the propagation of input probability distributions are discussed relative to their role in the DUA method. A sample problem that models the flow of water through a borehole is used as a basis to compare the cumulative distribution function of the flow rate as calculated by the standard statistical methods and the DUA method. Propogation of uncertainties by the DUA method is compared for ten cases in which the number of reference model runs was varied from one to ten. The DUA method gives a more accurate representation of the true cumulative distribution of the flow rate based upon as few as two model executions compared to fifty model executions using a statistical approach. 16 refs., 4 figs., 5 tabs
Uncertainty analysis techniques
International Nuclear Information System (INIS)
Marivoet, J.; Saltelli, A.; Cadelli, N.
1987-01-01
The origin of the uncertainty affecting Performance Assessments, as well as their propagation to dose and risk results is discussed. The analysis is focused essentially on the uncertainties introduced by the input parameters, the values of which may range over some orders of magnitude and may be given as probability distribution function. The paper briefly reviews the existing sampling techniques used for Monte Carlo simulations and the methods for characterizing the output curves, determining their convergence and confidence limits. Annual doses, expectation values of the doses and risks are computed for a particular case of a possible repository in clay, in order to illustrate the significance of such output characteristics as the mean, the logarithmic mean and the median as well as their ratios. The report concludes that provisionally, due to its better robustness, such estimation as the 90th percentile may be substituted to the arithmetic mean for comparison of the estimated doses with acceptance criteria. In any case, the results obtained through Uncertainty Analyses must be interpreted with caution as long as input data distribution functions are not derived from experiments reasonably reproducing the situation in a well characterized repository and site
International Nuclear Information System (INIS)
Ang, M.L.; Grindon, E.; Dutton, L.M.C.; Garcia-Sedano, P.; Santamaria, C.S.; Centner, B.; Auglaire, M.; Routamo, T.; Outa, S.; Jokiniemi, J.; Gustavsson, V.; Wennerstrom, H.; Spanier, L.; Gren, M.; Boschiero, M-H; Droulas, J-L; Friederichs, H-G; Sonnenkalb, M.
2001-01-01
The purpose of this project is to address the key uncertainties associated with a number of fission product release and transport phenomena in a wider context and to assess their relevance to key severe accident sequences. This project is a wide-based analysis involving eight reactor designs that are representative of the reactors currently operating in the European Union (EU). In total, 20 accident sequences covering a wide range of conditions have been chosen to provide the basis for sensitivity studies. The appraisal is achieved through a systematic risk-based framework developed within this project. Specifically, this is a quantitative interpretation of the sensitivity calculations on the basis of 'significance indicators', applied above defined threshold values. These threshold values represent a good surrogate for 'large release', which is defined in a number of EU countries. In addition, the results are placed in the context of in-containment source term limits, for advanced light water reactor designs, as defined by international guidelines. Overall, despite the phenomenological uncertainties, the predicted source terms (both into the containment, and subsequently, into the environment) do not display a high degree of sensitivity to the individual fission product issues addressed in this project. This is due, mainly, to the substantial capacity for the attenuation of airborne fission products by the designed safety provisions and the natural fission product retention mechanisms within the containment
International Nuclear Information System (INIS)
Raimbault, P.
2004-01-01
The development of a safety case for disposal of high level and medium level long-lived waste in a geological formation has to handle two main difficulties: - uncertainties associated to natural systems; - uncertainties associated to the consideration of long time scales. Licensing of the different steps leading to geological disposal implies thus that a sufficient level of confidence in the safety case will be obtained, at each step, among the different stakeholders. The confidence in the safety case relies on the whole set of arguments of different natures which complement each other and build up the file. This means that, to be defensible, the safety case should be organised in such a way that it can be reviewed and scrutinized in a structured manner. This also means that individual elements of the safety case will have to be considered separately even if all elements should fit well in the integrated safety case. This segregation implies some inherent decoupling of parts of the system, of its evolution over time and of the events that may impact on it. This decoupling will thus introduce inherent uncertainties that risk or non-risk based approaches have to deal with since both approaches have to introduce transparency in the analysis. In the non-risk based or deterministic approach this segregation is pushed further in order to put into perspective the different elements of appreciation that allow to judge the safety case as a whole. The French regulation on deep disposal presented in the basic safety rule RFS III.3.f, issued in 1991, takes these points into consideration to set the basis for the safety case in the framework of a deterministic approach. This basic safety rule is currently being revised in order to clarify some concepts and to take account evolution of ideas at the national and international level. However the basic rationale behind the safety assessment methodology will remain the same. The approach presented in RFS III.2.f implies that at
International Nuclear Information System (INIS)
Kaul, Dean C.; Egbert, Stephen D.; Woolson, William A.
2005-01-01
In order to avoid the pitfalls that so discredited DS86 and its uncertainty estimates, and to provide DS02 uncertainties that are both defensible and credible, this report not only presents the ensemble uncertainties assembled from uncertainties in individual computational elements and radiation dose components but also describes how these relate to comparisons between observed and computed quantities at critical intervals in the computational process. These comparisons include those between observed and calculated radiation free-field components, where observations include thermal- and fast-neutron activation and gamma-ray thermoluminescence, which are relevant to the estimated systematic uncertainty for DS02. The comparisons also include those between calculated and observed survivor shielding, where the observations consist of biodosimetric measurements for individual survivors, which are relevant to the estimated random uncertainty for DS02. (J.P.N.)
Dittes, Beatrice; Kaiser, Maria; Špačková, Olga; Rieger, Wolfgang; Disse, Markus; Straub, Daniel
2018-05-01
Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood) or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes), costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.
Directory of Open Access Journals (Sweden)
B. Dittes
2018-05-01
Full Text Available Planning authorities are faced with a range of questions when planning flood protection measures: is the existing protection adequate for current and future demands or should it be extended? How will flood patterns change in the future? How should the uncertainty pertaining to this influence the planning decision, e.g., for delaying planning or including a safety margin? Is it sufficient to follow a protection criterion (e.g., to protect from the 100-year flood or should the planning be conducted in a risk-based way? How important is it for flood protection planning to accurately estimate flood frequency (changes, costs and damage? These are questions that we address for a medium-sized pre-alpine catchment in southern Germany, using a sequential Bayesian decision making framework that quantitatively addresses the full spectrum of uncertainty. We evaluate different flood protection systems considered by local agencies in a test study catchment. Despite large uncertainties in damage, cost and climate, the recommendation is robust for the most conservative approach. This demonstrates the feasibility of making robust decisions under large uncertainty. Furthermore, by comparison to a previous study, it highlights the benefits of risk-based planning over the planning of flood protection to a prescribed return period.
Uncertainty analysis of environmental models
International Nuclear Information System (INIS)
Monte, L.
1990-01-01
In the present paper an evaluation of the output uncertainty of an environmental model for assessing the transfer of 137 Cs and 131 I in the human food chain are carried out on the basis of a statistical analysis of data reported by the literature. The uncertainty analysis offers the oppotunity of obtaining some remarkable information about the uncertainty of models predicting the migration of non radioactive substances in the environment mainly in relation to the dry and wet deposition
Reliability analysis under epistemic uncertainty
International Nuclear Information System (INIS)
Nannapaneni, Saideep; Mahadevan, Sankaran
2016-01-01
This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.
Methodology for risk-based analysis of technical specifications
International Nuclear Information System (INIS)
Vesely, W.E.; Gaertner, J.P.; Wagner, D.P.
1985-01-01
Part of the effort by EPRI to apply probabilistic risk assessment methods and results to the solution of utility problems involves the investigation of methods for risk-based analysis of technical specifications. The culmination of this investigation is the SOCRATES computer code developed by Battelle's Columbus Laboratories to assist in the evaluation of technical specifications of nuclear power plants. The program is designed to use information found in PRAs to re-evaluate risk for changes in component allowed outage times (AOTs) and surveillance test intervals (STIs). The SOCRATES program is a unique and important tool for technical specification evaluations. The detailed component unavailability model allows a detailed analysis of AOT and STI contributions to risk. Explicit equations allow fast and inexpensive calculations. Because the code is designed to accept ranges of parameters and to save results of calculations that do not change during the analysis, sensitivity studies are efficiently performed and results are clearly displayed
A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties
International Nuclear Information System (INIS)
Lv, Y.; Yan, X.D.; Sun, W.; Gao, Z.Y.
2015-01-01
Emergencies involved in a bus–subway corridor system are associated with many processes and factors with social and economic implications. These processes and factors and their interactions are related to a variety of uncertainties. In this study, an interval chance-constrained integer programming (EICI) method is developed in response to such challenges for bus–subway corridor based evacuation planning. The method couples a chance-constrained programming with an interval integer programming model framework. It can thus deal with interval uncertainties that cannot be quantified with specified probability distribution functions. Meanwhile, it can also reflect stochastic features of traffic flow capacity, and thereby help examine the related violation risk of constraint. The EICI method is applied to a subway incident based evacuation case study. It is solved through an interactive algorithm that does not lead to more complicated intermediate submodels and has a relatively low computational requirement. A number of decision alternatives could be directly generated based on results from the EICI method. It is indicated that the solutions cannot only help decision makers identify desired population evacuation and vehicle dispatch schemes under hybrid uncertainties, but also provide bases for in-depth analyses of tradeoffs among evacuation plans, total evacuation time, and constraint-violation risks. - Highlights: • An inexact model is developed for the bus–subway corridor evacuation management. • It tackles stochastic and interval uncertainties in an integer programming problem. • It can examine violation risk of the roadway flow capacity related constraint. • It will help identify evacuation schemes under hybrid uncertainties
Mathematical Analysis of Uncertainty
Directory of Open Access Journals (Sweden)
Angel GARRIDO
2016-01-01
Full Text Available Classical Logic showed early its insufficiencies for solving AI problems. The introduction of Fuzzy Logic aims at this problem. There have been research in the conventional Rough direction alone or in the Fuzzy direction alone, and more recently, attempts to combine both into Fuzzy Rough Sets or Rough Fuzzy Sets. We analyse some new and powerful tools in the study of Uncertainty, as the Probabilistic Graphical Models, Chain Graphs, Bayesian Networks, and Markov Networks, integrating our knowledge of graphs and probability.
Risk-based configuration control system: Analysis and approaches
International Nuclear Information System (INIS)
Samanta, P.K.; Kim, I.S.; Lofgren, E.V.; Vesely, W.E.
1990-01-01
This paper presents an analysis of risks associated with component outage configurations during power operation of a nuclear power plant and discusses approaches and strategies for developing a risk-based configuration control system. A configuration, as used here, is a set of component states. The objective of risk-based configuration control is to detect and control plant configurations using a risk-perspective. The configuration contributions to core-melt frequency and core-melt probability are studied for two plants. Large core-melt frequency can be caused by configurations and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the actual core-melt probability contributions are also generally small. Effective strategies and criteria for controlling configuration risks are presented. Such control strategies take into consideration the risks associated with configurations, the nature and characteristics of the configuration risks, and also the practical considerations such as adequate repair times and/or options to transfer to low risk configurations. Alternative types of criteria are discussed that are not overly restrictive to result in unnecessary plant shutdown, but rather motivates effective test and maintenance practices that control risk-significant configurations to allow continued operation with an adequate margin to meet challenges to safety
Risk-based configuration control system: Analysis and approaches
International Nuclear Information System (INIS)
Samanta, P.K.; Vesely, W.E.; Kim, I.S.; Lofgren, E.V.
1989-01-01
This paper presents an analysis of risks associated with component outage configurations during power operation of a nuclear power plant and discusses approaches and strategies for developing a risk-based configuration control system. A configuration, as used here, is a set of component states. The objective of risk-based configuration control is to detect and control plant configurations using a risk-perspective. The configuration contributions to core-melt frequency and core-melt probability are studied for two plants. Large core-melt frequency can be caused by configurations and there are a number of such configurations that are not currently controlled by technical specifications. However, the expected frequency of occurrence of the impacting configurations is small and the actual core-melt probability contributions are also generally small. Effective strategies and criteria for controlling configuration risks are presented. Such control strategies take into consideration the risks associated with configurations, the nature and characteristics of the configuration risks, and also the practical considerations such as adequate repair times and/or options to transfer to low risk configurations. Alternative types of criteria are discussed that are not overly restrictive to result in unnecessary plant shutdown, but rather motivates effective tests and maintenance practices that control; risk-significant configurations to allow continued operation with an adequate margin to meet challenges to safety. 3 refs., 7 figs., 2 tabs
Case studies: Risk-based analysis of technical specifications
International Nuclear Information System (INIS)
Wagner, D.P.; Minton, L.A.; Gaertner, J.P.
1987-01-01
The SOCRATES computer program uses the results of a Probabilistic Risk Assessment (PRA) or a system level risk analysis to calculate changes in risk due to changes in the surveillance test interval and/or the allowed outage time stated in the technical specification. The computer program can accommodate various testing strategies (such as staggered or simultaneous testing) to allow modeling of component testing as it is carried out at a plant. The methods and computer program are an integral part of a larger decision process aimed at determining benefits from technical specification changes. These benefits can include cost savings to the utilities by reducing forced shutdowns with no adverse impacts on risk. Three summaries of case study applications are included to demonstrate the types of results that can be achieved through risk-based evaluation of technical specifications. (orig.)
Directory of Open Access Journals (Sweden)
Ye Xu
2016-01-01
Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.
Mean-variance model for portfolio optimization with background risk based on uncertainty theory
Zhai, Jia; Bai, Manying
2018-04-01
The aim of this paper is to develop a mean-variance model for portfolio optimization considering the background risk, liquidity and transaction cost based on uncertainty theory. In portfolio selection problem, returns of securities and assets liquidity are assumed as uncertain variables because of incidents or lacking of historical data, which are common in economic and social environment. We provide crisp forms of the model and a hybrid intelligent algorithm to solve it. Under a mean-variance framework, we analyze the portfolio frontier characteristic considering independently additive background risk. In addition, we discuss some effects of background risk and liquidity constraint on the portfolio selection. Finally, we demonstrate the proposed models by numerical simulations.
Uncertainty analysis for hot channel
International Nuclear Information System (INIS)
Panka, I.; Kereszturi, A.
2006-01-01
The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)
LOFT differential pressure uncertainty analysis
International Nuclear Information System (INIS)
Evans, R.P.; Biladeau, G.L.; Quinn, P.A.
1977-03-01
A performance analysis of the LOFT differential pressure (ΔP) measurement is presented. Along with completed descriptions of test programs and theoretical studies that have been conducted on the ΔP, specific sources of measurement uncertainty are identified, quantified, and combined to provide an assessment of the ability of this measurement to satisfy the SDD 1.4.1C (June 1975) requirement of measurement of differential pressure
Uncertainty analysis of the FRAP code
International Nuclear Information System (INIS)
Peck, S.O.
1978-01-01
A user oriented, automated uncertainty analysis capability has been built into the FRAP code (Fuel Rod Analysis Program) and applied to a PWR fuel rod undergoing a LOCA. The method of uncertainty analysis is the Response Surface Method (RSM). (author)
Risk-based configuration control system: Analysis and approaches
International Nuclear Information System (INIS)
Samanta, P.K.; Kim, I.S.; Vesely, W.E.; Lofgren, E.V.
1989-01-01
This paper presents an evaluation of the configuration risks associated with the operation of a nuclear power plant and the approaches to control these risks using risk-based configuration control considerations. In that context, the actual and maximum potential configuration risks at a plant are analyzed and the alternative types criteria for a risk-based configuration control systems are described. The risk-based configuration calculations which are studied here focus on the core-melt frequency impacts from given plant configurations. By calculating the core-melt frequency for given configurations, the configurations which cause large core-melt frequency increases can be identified and controlled. The duration time in which the configuration can exist can then be limited or the core-melt frequency level associated with the configuration can be reduced by various actions. Furthermore, maintenances and tests can be scheduled to avoid the configurations which cause large core-melt frequency increases. Present technical specifications do not control many of these configurations which can cause large core-melt frequency increases but instead focus on many risk-unimportant allowed outage times. Hence, risk-based configuration management can be effectively used to reduce core-melt frequency associated risks at a plant and at the same time can provide flexibility in plant operation. The alternative strategies for controlling the core-melt frequency and other risk contributions include: (1) controlling the increased risk level which is associated with the configuration; (2) controlling the individual configuration risk which is associated with a given duration of a configuration; (3) controlling the time period configuration risk from configurations which occur in a time period
Uncertainty analysis in seismic tomography
Owoc, Bartosz; Majdański, Mariusz
2017-04-01
Velocity field from seismic travel time tomography depends on several factors like regularization, inversion path, model parameterization etc. The result also strongly depends on an initial velocity model and precision of travel times picking. In this research we test dependence on starting model in layered tomography and compare it with effect of picking precision. Moreover, in our analysis for manual travel times picking the uncertainty distribution is asymmetric. This effect is shifting the results toward faster velocities. For calculation we are using JIVE3D travel time tomographic code. We used data from geo-engineering and industrial scale investigations, which were collected by our team from IG PAS.
Applied research in uncertainty modeling and analysis
Ayyub, Bilal
2005-01-01
Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...
LOFT uncertainty-analysis methodology
International Nuclear Information System (INIS)
Lassahn, G.D.
1983-01-01
The methodology used for uncertainty analyses of measurements in the Loss-of-Fluid Test (LOFT) nuclear-reactor-safety research program is described and compared with other methodologies established for performing uncertainty analyses
LOFT uncertainty-analysis methodology
International Nuclear Information System (INIS)
Lassahn, G.D.
1983-01-01
The methodology used for uncertainty analyses of measurements in the Loss-of-Fluid Test (LOFT) nuclear reactor safety research program is described and compared with other methodologies established for performing uncertainty analyses
Uncertainty Management and Sensitivity Analysis
DEFF Research Database (Denmark)
Rosenbaum, Ralph K.; Georgiadis, Stylianos; Fantke, Peter
2018-01-01
Uncertainty is always there and LCA is no exception to that. The presence of uncertainties of different types and from numerous sources in LCA results is a fact, but managing them allows to quantify and improve the precision of a study and the robustness of its conclusions. LCA practice sometimes...... suffers from an imbalanced perception of uncertainties, justifying modelling choices and omissions. Identifying prevalent misconceptions around uncertainties in LCA is a central goal of this chapter, aiming to establish a positive approach focusing on the advantages of uncertainty management. The main...... objectives of this chapter are to learn how to deal with uncertainty in the context of LCA, how to quantify it, interpret and use it, and how to communicate it. The subject is approached more holistically than just focusing on relevant statistical methods or purely mathematical aspects. This chapter...
Automated analysis of security requirements through risk-based argumentation
Yu, Yijun; Nunes Leal Franqueira, V.; Tun, Thein Tan; Wieringa, Roelf J.; Nuseibeh, Bashar
2015-01-01
Computer-based systems are increasingly being exposed to evolving security threats, which often reveal new vulnerabilities. A formal analysis of the evolving threats is difficult due to a number of practical considerations such as incomplete knowledge about the design, limited information about
Uncertainty analysis in safety assessment
International Nuclear Information System (INIS)
Lemos, Francisco Luiz de; Sullivan, Terry
1997-01-01
Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author)
Management of Microbiologically Influenced Corrosion in Risk Based Inspection analysis
DEFF Research Database (Denmark)
Skovhus, Torben Lund; Hillier, Elizabeth; Andersen, Erlend S.
. Microbiologically Influenced Corrosion (MIC) is a degradation mechanism that has received increased attention from corrosion engineers and asset operators in the past decades. In this paper, the most recent models that have been developed in order to assess the impact of MIC on asset integrity will be presented...... and an extensive up-to date literature study. The parameters are discussed and subsequently combined in a novel procedure that allows assessment of MIC in a RBI analysis. The procedure is sub-divided into one screening step and a detailed assessment, which fits the recommended approach to assess risk in a RBI...
Uncertainty analysis in safety assessment
Energy Technology Data Exchange (ETDEWEB)
Lemos, Francisco Luiz de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Sullivan, Terry [Brookhaven National Lab., Upton, NY (United States)
1997-12-31
Nuclear waste disposal is a very complex subject which requires the study of many different fields of science, like hydro geology, meteorology, geochemistry, etc. In addition, the waste disposal facilities are designed to last for a very long period of time. Both of these conditions make safety assessment projections filled with uncertainty. This paper addresses approaches for treatment of uncertainties in the safety assessment modeling due to the variability of data and some current approaches used to deal with this problem. (author) 13 refs.; e-mail: lemos at bnl.gov; sulliva1 at bnl.gov
Uncertainty analysis of the FRAP code
International Nuclear Information System (INIS)
Peck, S.O.
1978-01-01
A user oriented, automated uncertainty analysis capability has been built into the Fuel Rod Analysis Program (FRAP) code and has been applied to a pressurized water reactor (PWR) fuel rod undergoing a loss-of-coolant accident (LOCA). The method of uncertainty analysis is the response surface method. The automated version significantly reduced the time required to complete the analysis and, at the same time, greatly increased the problem scope. Results of the analysis showed a significant difference in the total and relative contributions to the uncertainty of the response parameters between steady state and transient conditions
Uncertainty quantification and error analysis
Energy Technology Data Exchange (ETDEWEB)
Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL
2010-01-01
UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.
Risk Characterization uncertainties associated description, sensitivity analysis
International Nuclear Information System (INIS)
Carrillo, M.; Tovar, M.; Alvarez, J.; Arraez, M.; Hordziejewicz, I.; Loreto, I.
2013-01-01
The power point presentation is about risks to the estimated levels of exposure, uncertainty and variability in the analysis, sensitivity analysis, risks from exposure to multiple substances, formulation of guidelines for carcinogenic and genotoxic compounds and risk subpopulations
Urban drainage models - making uncertainty analysis simple
DEFF Research Database (Denmark)
Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana
2012-01-01
in each measured/observed datapoint; an issue which is commonly overlook in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter......There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here...
Uncertainty analysis in Monte Carlo criticality computations
International Nuclear Information System (INIS)
Qi Ao
2011-01-01
Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.
CEC/USDOE workshop on uncertainty analysis
International Nuclear Information System (INIS)
Elderkin, C.E.; Kelly, G.N.
1990-07-01
Any measured or assessed quantity contains uncertainty. The quantitative estimation of such uncertainty is becoming increasingly important, especially in assuring that safety requirements are met in design, regulation, and operation of nuclear installations. The CEC/USDOE Workshop on Uncertainty Analysis, held in Santa Fe, New Mexico, on November 13 through 16, 1989, was organized jointly by the Commission of European Communities (CEC's) Radiation Protection Research program, dealing with uncertainties throughout the field of consequence assessment, and DOE's Atmospheric Studies in Complex Terrain (ASCOT) program, concerned with the particular uncertainties in time and space variant transport and dispersion. The workshop brought together US and European scientists who have been developing or applying uncertainty analysis methodologies, conducted in a variety of contexts, often with incomplete knowledge of the work of others in this area. Thus, it was timely to exchange views and experience, identify limitations of approaches to uncertainty and possible improvements, and enhance the interface between developers and users of uncertainty analysis methods. Furthermore, the workshop considered the extent to which consistent, rigorous methods could be used in various applications within consequence assessment. 3 refs
Fuzzy Uncertainty Evaluation for Fault Tree Analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki Beom; Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of); Jae, Moo Sung [Hanyang University, Seoul (Korea, Republic of)
2015-05-15
This traditional probabilistic approach can calculate relatively accurate results. However it requires a long time because of repetitive computation due to the MC method. In addition, when informative data for statistical analysis are not sufficient or some events are mainly caused by human error, the probabilistic approach may not be possible because uncertainties of these events are difficult to be expressed by probabilistic distributions. In order to reduce the computation time and quantify uncertainties of top events when basic events whose uncertainties are difficult to be expressed by probabilistic distributions exist, the fuzzy uncertainty propagation based on fuzzy set theory can be applied. In this paper, we develop a fuzzy uncertainty propagation code and apply the fault tree of the core damage accident after the large loss of coolant accident (LLOCA). The fuzzy uncertainty propagation code is implemented and tested for the fault tree of the radiation release accident. We apply this code to the fault tree of the core damage accident after the LLOCA in three cases and compare the results with those computed by the probabilistic uncertainty propagation using the MC method. The results obtained by the fuzzy uncertainty propagation can be calculated in relatively short time, covering the results obtained by the probabilistic uncertainty propagation.
Some reflections on uncertainty analysis and management
International Nuclear Information System (INIS)
Aven, Terje
2010-01-01
A guide to quantitative uncertainty analysis and management in industry has recently been issued. The guide provides an overall framework for uncertainty modelling and characterisations, using probabilities but also other uncertainty representations (including the Dempster-Shafer theory). A number of practical applications showing how to use the framework are presented. The guide is considered as an important contribution to the field, but there is a potential for improvements. These relate mainly to the scientific basis and clarification of critical issues, for example, concerning the meaning of a probability and the concept of model uncertainty. A reformulation of the framework is suggested using probabilities as the only representation of uncertainty. Several simple examples are included to motivate and explain the basic ideas of the modified framework.
Uncertainty analysis for secondary energy distributions
International Nuclear Information System (INIS)
Gerstl, S.A.W.
1978-01-01
In many transport calculations the integral design parameter of interest (response) is determined mainly by secondary particles such as gamma rays from (n,γ) reactions or secondary neutrons from inelastic scattering events or (n,2n) reactions. Standard sensitivity analysis usually allows to calculate the sensitivities to the production cross sections of such secondaries, but an extended formalism is needed to also obtain the sensitivities to the energy distribution of the generated secondary particles. For a 30-group standard cross-section set 84% of all non-zero table positions pertain to the description of secondary energy distributions (SED's) and only 16% to the actual reaction cross sections. Therefore, any sensitivity/uncertainty analysis which does not consider the effects of SED's is incomplete and neglects most of the input data. This paper describes the methods of how sensitivity profiles for SED's are obtained and used to estimate the uncertainty of an integral response due to uncertainties in these SED's. The detailed theory is documented elsewhere and implemented in the LASL sensitivity code SENSIT. SED sensitivity profiles have proven particularly valuable in cross-section uncertainty analyses for fusion reactors. Even when the production cross sections for secondary neutrons were assumed to be without error, the uncertainties in the energy distribution of these secondaries produced appreciable uncertainties in the calculated tritium breeding rate. However, complete error files for SED's are presently nonexistent. Therefore, methods will be described that allow rough error estimates due to estimated SED uncertainties based on integral SED sensitivities
Approach to uncertainty in risk analysis
Energy Technology Data Exchange (ETDEWEB)
Rish, W.R.
1988-08-01
In the Fall of 1985 EPA's Office of Radiation Programs (ORP) initiated a project to develop a formal approach to dealing with uncertainties encountered when estimating and evaluating risks to human health and the environment. Based on a literature review of modeling uncertainty, interviews with ORP technical and management staff, and input from experts on uncertainty analysis, a comprehensive approach was developed. This approach recognizes by design the constraints on budget, time, manpower, expertise, and availability of information often encountered in ''real world'' modeling. It is based on the observation that in practice risk modeling is usually done to support a decision process. As such, the approach focuses on how to frame a given risk modeling problem, how to use that framing to select an appropriate mixture of uncertainty analyses techniques, and how to integrate the techniques into an uncertainty assessment that effectively communicates important information and insight to decision-makers. The approach is presented in this report. Practical guidance on characterizing and analyzing uncertainties about model form and quantities and on effectively communicating uncertainty analysis results is included. Examples from actual applications are presented.
Approach to uncertainty in risk analysis
International Nuclear Information System (INIS)
Rish, W.R.
1988-08-01
In the Fall of 1985 EPA's Office of Radiation Programs (ORP) initiated a project to develop a formal approach to dealing with uncertainties encountered when estimating and evaluating risks to human health and the environment. Based on a literature review of modeling uncertainty, interviews with ORP technical and management staff, and input from experts on uncertainty analysis, a comprehensive approach was developed. This approach recognizes by design the constraints on budget, time, manpower, expertise, and availability of information often encountered in ''real world'' modeling. It is based on the observation that in practice risk modeling is usually done to support a decision process. As such, the approach focuses on how to frame a given risk modeling problem, how to use that framing to select an appropriate mixture of uncertainty analyses techniques, and how to integrate the techniques into an uncertainty assessment that effectively communicates important information and insight to decision-makers. The approach is presented in this report. Practical guidance on characterizing and analyzing uncertainties about model form and quantities and on effectively communicating uncertainty analysis results is included. Examples from actual applications are presented
Analysis of uncertainties of thermal hydraulic calculations
International Nuclear Information System (INIS)
Macek, J.; Vavrin, J.
2002-12-01
In 1993-1997 it was proposed, within OECD projects, that a common program should be set up for uncertainty analysis by a probabilistic method based on a non-parametric statistical approach for system computer codes such as RELAP, ATHLET and CATHARE and that a method should be developed for statistical analysis of experimental databases for the preparation of the input deck and statistical analysis of the output calculation results. Software for such statistical analyses would then have to be processed as individual tools independent of the computer codes used for the thermal hydraulic analysis and programs for uncertainty analysis. In this context, a method for estimation of a thermal hydraulic calculation is outlined and selected methods of statistical analysis of uncertainties are described, including methods for prediction accuracy assessment based on the discrete Fourier transformation principle. (author)
Uncertainties in thick-target PIXE analysis
International Nuclear Information System (INIS)
Campbell, J.L.; Cookson, J.A.; Paul, H.
1983-01-01
Thick-target PIXE analysis insolves uncertainties arising from the calculation of thick-target X-ray production in addition to the usual PIXE uncertainties. The calculation demands knowledge of ionization cross-sections, stopping powers and photon attenuation coefficients. Information on these is reviewed critically and a computational method is used to estimate the uncertainties transmitted from this data base into results of thick-target PIXE analyses with reference to particular specimen types using beams of 2-3 MeV protons. A detailed assessment of the accuracy of thick-target PIXE is presented. (orig.)
DEFF Research Database (Denmark)
Zhang, Ning; Kang, Chongqing; Xia, Qing
2015-01-01
The integration of wind power requires the power system to be sufficiently flexible to accommodate its forecast errors. In the market clearing process, the scheduling of flexibility relies on the manner in which the wind power uncertainty is addressed in the unit commitment (UC) model. This paper...... and are considered in both the objective functions and the constraints. The RUC model is shown to be convex and is transformed into a mixed integer linear programming (MILP) problem using relaxation and piecewise linearization. The proposed RUC model is tested using a three-bus system and an IEEE RTS79 system...... that the risk modeling facilitates a strategic market clearing procedure with a reasonable computational expense....
Uncertainty Propagation in Monte Carlo Depletion Analysis
International Nuclear Information System (INIS)
Shim, Hyung Jin; Kim, Yeong-il; Park, Ho Jin; Joo, Han Gyu; Kim, Chang Hyo
2008-01-01
A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as k eff and the microscopic reaction rates of nuclides and nuclide number densities in MC depletion analysis and examining their propagation behaviour as a function of depletion time step (DTS) is presented. It is shown that the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources; the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the contribution of the latter three sources can be determined by computing the correlation coefficients between the uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each DTS stems from uncertainties of the nuclide number densities (NND) and microscopic reaction rates (MRR) of nuclides at the beginning of each DTS and they are determined by computing correlation coefficients between these two uncertain variables. To test the viability of the formulation, we conducted MC depletion analysis for two sample depletion problems involving a simplified 7x7 fuel assembly (FA) and a 17x17 PWR FA, determined number densities of uranium and plutonium isotopes and their variances as well as k ∞ and its variance as a function of DTS, and demonstrated the applicability of the new formulation for uncertainty propagation analysis that need be followed in MC depletion computations. (authors)
Uncertainty Principles and Fourier Analysis
Indian Academy of Sciences (India)
analysis on the part of the reader. Those who are not fa- miliar with Fourier analysis are encouraged to look up Box. 1 along with [3]. (A) Heisenberg's inequality: Let us measure concentration in terms of standard deviation i.e. for a square integrable func-. 00 tion defined on 1R and normalized so that J If(x)12d,x = 1,. -00. 00.
Uncertainty analysis for Ulysses safety evaluation report
International Nuclear Information System (INIS)
Frank, M.V.
1991-01-01
As part of the effort to review the Ulysses Final Safety Analysis Report and to understand the risk of plutonium release from the Ulysses spacecraft General Purpose Heat Source---Radioisotope Thermal Generator (GPHS-RTG), the Interagency Nuclear Safety Review Panel (INSRP) and the author performed an integrated, quantitative analysis of the uncertainties of the calculated risk of plutonium release from Ulysses. Using state-of-art probabilistic risk assessment technology, the uncertainty analysis accounted for both variability and uncertainty of the key parameters of the risk analysis. The results show that INSRP had high confidence that risk of fatal cancers from potential plutonium release associated with calculated launch and deployment accident scenarios is low
Demonstration of risk-based decision analysis in remedial alternative selection and design
International Nuclear Information System (INIS)
Evans, E.K.; Duffield, G.M.; Massmann, J.W.; Freeze, R.A.; Stephenson, D.E.
1993-01-01
This study demonstrates the use of risk-based decision analysis (Massmann and Freeze 1987a, 1987b) in the selection and design of an engineering alternative for groundwater remediation at a waste site at the Savannah River Site, a US Department of Energy facility in South Carolina. The investigation focuses on the remediation and closure of the H-Area Seepage Basins, an inactive disposal site that formerly received effluent water from a nearby production facility. A previous study by Duffield et al. (1992), which used risk-based decision analysis to screen a number of ground-water remediation alternatives under consideration for this site, indicated that the most attractive remedial option is ground-water extraction by wells coupled with surface water discharge of treated effluent. The aim of the present study is to demonstrate the iterative use of risk-based decision analysis throughout the design of a particular remedial alternative. In this study, we consider the interaction between two episodes of aquifer testing over a 6-year period and the refinement of a remedial extraction well system design. Using a three-dimensional ground-water flow model, this study employs (1) geostatistics and Monte Carlo techniques to simulate hydraulic conductivity as a stochastic process and (2) Bayesian updating and conditional simulation to investigate multiple phases of aquifer testing. In our evaluation of a remedial alternative, we compute probabilistic costs associated with the failure of an alternative to completely capture a simulated contaminant plume. The results of this study demonstrate the utility of risk-based decision analysis as a tool for improving the design of a remedial alternative through the course of phased data collection at a remedial site
Uncertainty analysis of neutron transport calculation
International Nuclear Information System (INIS)
Oka, Y.; Furuta, K.; Kondo, S.
1987-01-01
A cross section sensitivity-uncertainty analysis code, SUSD was developed. The code calculates sensitivity coefficients for one and two-dimensional transport problems based on the first order perturbation theory. Variance and standard deviation of detector responses or design parameters can be obtained using cross section covariance matrix. The code is able to perform sensitivity-uncertainty analysis for secondary neutron angular distribution(SAD) and secondary neutron energy distribution(SED). Covariances of 6 Li and 7 Li neutron cross sections in JENDL-3PR1 were evaluated including SAD and SED. Covariances of Fe and Be were also evaluated. The uncertainty of tritium breeding ratio, fast neutron leakage flux and neutron heating was analysed on four types of blanket concepts for a commercial tokamak fusion reactor. The uncertainty of tritium breeding ratio was less than 6 percent. Contribution from SAD/SED uncertainties are significant for some parameters. Formulas to estimate the errors of numerical solution of the transport equation were derived based on the perturbation theory. This method enables us to deterministically estimate the numerical errors due to iterative solution, spacial discretization and Legendre polynomial expansion of transfer cross-sections. The calculational errors of the tritium breeding ratio and the fast neutron leakage flux of the fusion blankets were analysed. (author)
Wijnia, Y.C.
2016-01-01
In the liberalized energy market Distribution Network Operators (DNOs) are confronted with income reductions by the regulator. The common response to this challenge is the implementation of asset management, which can be regarded as systematically applying Cost Benefit Analysis (CBA) to the risks in
Uncertainty analysis for geologic disposal of radioactive waste
International Nuclear Information System (INIS)
Cranwell, R.M.; Helton, J.C.
1981-01-01
The incorporation and representation of uncertainty in the analysis of the consequences and risks associated with the geologic disposal of high-level radioactive waste are discussed. Such uncertainty has three primary components: process modeling uncertainty, model input data uncertainty, and scenario uncertainty. The following topics are considered in connection with the preceding components: propagation of uncertainty in the modeling of a disposal site, sampling of input data for models, and uncertainty associated with model output
Uncertainty Propagation in Hypersonic Vehicle Aerothermoelastic Analysis
Lamorte, Nicolas Etienne
Hypersonic vehicles face a challenging flight environment. The aerothermoelastic analysis of its components requires numerous simplifying approximations. Identifying and quantifying the effect of uncertainties pushes the limits of the existing deterministic models, and is pursued in this work. An uncertainty quantification framework is used to propagate the effects of identified uncertainties on the stability margins and performance of the different systems considered. First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is examined. Variability in the uncoupled natural frequencies of the system is modeled to mimic the effect of aerodynamic heating. Next, the stability of an aerodynamically heated panel representing a component of the skin of a generic hypersonic vehicle is considered. Uncertainty in the location of transition from laminar to turbulent flow and the heat flux prediction is quantified using CFD. In both cases significant reductions of the stability margins are observed. A loosely coupled airframe--integrated scramjet engine is considered next. The elongated body and cowl of the engine flow path are subject to harsh aerothermodynamic loading which causes it to deform. Uncertainty associated with deformation prediction is propagated to the engine performance analysis. The cowl deformation is the main contributor to the sensitivity of the propulsion system performance. Finally, a framework for aerothermoelastic stability boundary calculation for hypersonic vehicles using CFD is developed. The usage of CFD enables one to consider different turbulence conditions, laminar or turbulent, and different models of the air mixture, in particular real gas model which accounts for dissociation of molecules at high temperature. The system is found to be sensitive to turbulence modeling as well as the location of the transition from laminar to turbulent flow. Real gas effects play a minor role in the
Handbook of methods for risk-based analysis of technical specification requirements
International Nuclear Information System (INIS)
Samanta, P.K.; Vesely, W.E.
1994-01-01
Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: Quantitatively evaluate the risk and justify changes based on objective risk arguments; Provide a defensible basis for these requirements for regulatory applications. The US NRC Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations
Handbook of methods for risk-based analysis of Technical Specification requirements
International Nuclear Information System (INIS)
Samanta, P.K.; Vesely, W.E.
1993-01-01
Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: quantitatively evaluate the risk impact and justify changes based on objective risk arguments. Provide a defensible basis for these requirements for regulatory applications. The United States Nuclear Regulatory Commission (USNRC) Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations
Optimization of FRAP uncertainty analysis option
International Nuclear Information System (INIS)
Peck, S.O.
1979-10-01
The automated uncertainty analysis option that has been incorporated in the FRAP codes (FRAP-T5 and FRAPCON-2) provides the user with a means of obtaining uncertainty bands on code predicted variables at user-selected times during a fuel pin analysis. These uncertainty bands are obtained by multiple single fuel pin analyses to generate data which can then be analyzed by second order statistical error propagation techniques. In this process, a considerable amount of data is generated and stored on tape. The user has certain choices to make regarding which independent variables are to be used in the analysis and what order of error propagation equation should be used in modeling the output response. To aid the user in these decisions, a computer program, ANALYZ, has been written and added to the uncertainty analysis option package. A variety of considerations involved in fitting response surface equations and certain pit-falls of which the user should be aware are discussed. An equation is derived expressing a residual as a function of a fitted model and an assumed true model. A variety of experimental design choices are discussed, including the advantages and disadvantages of each approach. Finally, a description of the subcodes which constitute program ANALYZ is provided
Uncertainties in elemental quantitative analysis by PIXE
International Nuclear Information System (INIS)
Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.
1979-01-01
The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)
Application impact analysis: a risk-based approach to business continuity and disaster recovery.
Epstein, Beth; Khan, Dawn Christine
2014-01-01
There are many possible disruptions that can occur in business. Overlooking or under planning for Business Continuity requires time, understanding and careful planning. Business Continuity Management is far more than producing a document and declaring business continuity success. What is the recipe for businesses to achieve continuity management success? Application Impact Analysis is a method for understanding the unique Business Attributes. This AIA Cycle involves a risk based approach to understanding the business priority and considering business aspects such as Financial, Operational, Service Structure, Contractual Legal, and Brand. The output of this analysis provides a construct for viewing data, evaluating impact, and delivering results, for an approved valuation of Recovery Time Objectives (RTO).
Uncertainty Assessments in Fast Neutron Activation Analysis
International Nuclear Information System (INIS)
W. D. James; R. Zeisler
2000-01-01
Fast neutron activation analysis (FNAA) carried out with the use of small accelerator-based neutron generators is routinely used for major/minor element determinations in industry, mineral and petroleum exploration, and to some extent in research. While the method shares many of the operational procedures and therefore errors inherent to conventional thermal neutron activation analysis, its unique implementation gives rise to additional specific concerns that can result in errors or increased uncertainties of measured quantities. The authors were involved in a recent effort to evaluate irreversible incorporation of oxygen into a standard reference material (SRM) by direct measurement of oxygen by FNAA. That project required determination of oxygen in bottles of the SRM stored in varying environmental conditions and a comparison of the results. We recognized the need to accurately describe the total uncertainty of the measurements to accurately characterize any differences in the resulting average concentrations. It is our intent here to discuss the breadth of potential parameters that have the potential to contribute to the random and nonrandom errors of the method and provide estimates of the magnitude of uncertainty introduced. In addition, we will discuss the steps taken in this recent FNAA project to control quality, assess the uncertainty of the measurements, and evaluate results based on the statistical reproducibility
Systematic Analysis Of Ocean Colour Uncertainties
Lavender, Samantha
2013-12-01
This paper reviews current research into the estimation of uncertainties as a pixel-based measure to aid non- specialist users of remote sensing products. An example MERIS image, captured on the 28 March 2012, was processed with above-water atmospheric correction code. This was initially based on both the Antoine & Morel Standard Atmospheric Correction, with Bright Pixel correction component, and Doerffer Neural Network coastal water's approach. It's showed that analysis of the atmospheric by-products yield important information about the separation of the atmospheric and in-water signals, helping to sign-post possible uncertainties in the atmospheric correction results. Further analysis has concentrated on implementing a ‘simplistic' atmospheric correction so that the impact of changing the input auxiliary data can be analysed; the influence of changing surface pressure is demonstrated. Future work will focus on automating the analysis, so that the methodology can be implemented within an operational system.
Approach to uncertainty evaluation for safety analysis
International Nuclear Information System (INIS)
Ogura, Katsunori
2005-01-01
Nuclear power plant safety used to be verified and confirmed through accident simulations using computer codes generally because it is very difficult to perform integrated experiments or tests for the verification and validation of the plant safety due to radioactive consequence, cost, and scaling to the actual plant. Traditionally the plant safety had been secured owing to the sufficient safety margin through the conservative assumptions and models to be applied to those simulations. Meanwhile the best-estimate analysis based on the realistic assumptions and models in support of the accumulated insights could be performed recently, inducing the reduction of safety margin in the analysis results and the increase of necessity to evaluate the reliability or uncertainty of the analysis results. This paper introduces an approach to evaluate the uncertainty of accident simulation and its results. (Note: This research had been done not in the Japan Nuclear Energy Safety Organization but in the Tokyo Institute of Technology.) (author)
Erha Uncertainty Analysis: Planning for the future
International Nuclear Information System (INIS)
Brami, T.R.; Hopkins, D.F.; Loguer, W.L.; Cornagia, D.M.; Braisted, A.W.C.
2002-01-01
The Erha field (OPL 209) was discovered in 1999 approximately 100 km off the coast of Nigeria in 1,100 m of water. The discovery well (Erha-1) encountered oil and gas in deep-water clastic reservoirs. The first appraisal well (Erha-2) drilled 1.6 km downdip to the northwest penetrated an oil-water contact and confirmed a potentially commercial discovery. However, the Erha-3 and Erha-3 ST-1 boreholes, drilled on the faulted east-side of the field in 2001, encountered shallower fluid contacts. As a result of these findings, a comprehensive field-wide uncertainty analysis was performed to better understand what we know versus what we think regarding resource size and economic viability The uncertainty analysis process applied at Erha is an integrated scenario-based probabilistic approach to model resource and reserves. Its goal is to provide quantitative results for a variety of scenarios, thus allowing identification of and focus on critical controls (the variables that are likely to impose the greatest influence).The initial focus at Erha was to incorporate the observed fluid contacts and to develop potential scenarios that included the range of possibilities in unpenetrated portions of the field. Four potential compartmentalization scenarios were hypothesized. The uncertainty model combines these scenarios with reservoir parameters and their plausible ranges. Input data comes from multiple sources including: wells, 3D seismic, reservoir flow simulation, geochemistry, fault-seal analysis, sequence stratigraphic analysis, and analogs. Once created, the model is sampled using Monte-Carlo techniques to create probability density functions for a variety of variables including oil in-place and recoverable reserves.Results of the uncertainty analysis support that despite a thinner oil column on the faulted east-side of the field, Erha is an economically attractive opportunity. Further, the results have been to develop data acquisition plans and mitigation strategies that
Uncertainty Prediction in Passive Target Motion Analysis
2016-05-12
Number 15/152,696 Filing Date 12 May 2016 Inventor John G. Baylog et al Address any questions concerning this matter to the Office of...300118 1 of 25 UNCERTAINTY PREDICTION IN PASSIVE TARGET MOTION ANALYSIS STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein...at an unknown location and following an unknown course relative to an observer 12. Observer 12 has a sensor array such as a passive sonar or radar
Risk-based security cost-benefit analysis: method and example applications - 59381
International Nuclear Information System (INIS)
Wyss, Gregory; Hinton, John; Clem, John; Silva, Consuelo; Duran, Felicia A.
2012-01-01
Document available in abstract form only. Full text of publication follows: Decision makers wish to use risk-based cost-benefit analysis to prioritize security investments. However, understanding security risk requires estimating the likelihood of attack, which is extremely uncertain and depends on unquantifiable psychological factors like dissuasion and deterrence. In addition, the most common performance metric for physical security systems, probability of effectiveness at the design basis threat [P(E)], performs poorly in cost-benefit analysis. It is extremely sensitive to small changes in adversary characteristics when the threat is near a systems breaking point, but very insensitive to those changes under other conditions. This makes it difficult to prioritize investment options on the basis of P(E), especially across multiple targets or facilities. To overcome these obstacles, a Sandia National Laboratories Laboratory Directed Research and Development project has developed a risk-based security cost-benefit analysis method. This approach characterizes targets by how difficult it would be for adversaries to exploit each targets vulnerabilities to induce consequences. Adversaries generally have success criteria (e.g., adequate or desired consequences and thresholds for likelihood of success), and choose among alternative strategies that meet these criteria while considering their degree of difficulty in achieving their successful outcome. Investments reduce security risk as they reduce the severity of consequences available and/or increase the difficulty for an adversary to successfully accomplish their most advantageous attack
International Nuclear Information System (INIS)
Reynolds, J.T.
1998-01-01
Twenty-one petroleum and petrochemical companies are currently sponsoring a project within the American Petroleum Institute (API) to develop risk-based inspection (RBI) methodology for application in the refining and petrochemical industry. This paper describes that particular RBI methodology and provides a summary of the three levels of RBI analysis developed by the project. Also included is a review of the first pilot project to validate the methodology by applying RBI to several existing refining units. The failure for pressure equipment in a process unit can have several undesirable effects. For the purpose of RBI analysis, the API RBI program categorizes these effects into four basic risk outcomes: flammable events, toxic releases, major environmental damage, and business interruption losses. API RBI is a strategic process, both qualitative and quantitative, for understanding and reducing these risks associated with operating pressure equipment. This paper will show how API RBI assesses the potential consequences of a failure of the pressure boundary, as well as assessing the likelihood (probability) of failure. Risk-based inspection also prioritizes risk levels in a systematic manner so that the owner-user can then plan an inspection program that focuses more resources on the higher risk equipment; while possibly saving inspection resources that are not doing an effective job of reducing risk. At the same time, if consequence of failure is a significant driving force for high risk equipment items, plant management also has the option of applying consequence mitigation steps to minimize the impact of a hazardous release, should one occur. The target audience for this paper is engineers, inspectors, and managers who want to understand what API Risk-Based Inspection is all about, what are the benefits and limitations of RBI, and how inspection practices can be changed to reduce risks and/or save costs without impacting safety risk. (Author)
Parameter Uncertainty for Repository Thermal Analysis
Energy Technology Data Exchange (ETDEWEB)
Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Greenberg, Harris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dupont, Mark [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-10-01
This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approach to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).
Uncertainty analysis of nuclear waste package corrosion
International Nuclear Information System (INIS)
Kurth, R.E.; Nicolosi, S.L.
1986-01-01
This paper describes the results of an evaluation of three uncertainty analysis methods for assessing the possible variability in calculating the corrosion process in a nuclear waste package. The purpose of the study is the determination of how each of three uncertainty analysis methods, Monte Carlo, Latin hypercube sampling (LHS) and a modified discrete probability distribution method, perform in such calculations. The purpose is not to examine the absolute magnitude of the numbers but rather to rank the performance of each of the uncertainty methods in assessing the model variability. In this context it was found that the Monte Carlo method provided the most accurate assessment but at a prohibitively high cost. The modified discrete probability method provided accuracy close to that of the Monte Carlo for a fraction of the cost. The LHS method was found to be too inaccurate for this calculation although it would be appropriate for use in a model which requires substantially more computer time than the one studied in this paper
Risk-based analysis methods applied to nuclear power plant technical specifications
International Nuclear Information System (INIS)
Wagner, D.P.; Minton, L.A.; Gaertner, J.P.
1989-01-01
A computer-aided methodology and practical applications of risk-based evaluation of technical specifications are described. The methodology, developed for use by the utility industry, is a part of the overall process of improving nuclear power plant technical specifications. The SOCRATES computer program uses the results of a probabilistic risk assessment or a system-level risk analysis to calculate changes in risk due to changes in the surveillance test interval and/or the allowed outage time stated in the technical specification. The computer program can accommodate various testing strategies (such as staggered or simultaneous testing) to allow modeling of component testing as it is carried out at the plant. The methods and computer program are an integral part of a larger decision process aimed at determining benefits from technical specification changes. These benefits can include cost savings to the utilities by reducing forced shutdowns and decreasing labor requirements for test and maintenance activities, with no adverse impacts on risk. The methodology and the SOCRATES computer program have been used extensively toe valuate several actual technical specifications in case studies demonstrating the methods. Summaries of these applications demonstrate the types of results achieved and the usefulness of the risk-based evaluation in improving the technical specifications
Management of Microbiologically Influenced Corrosion in Risk-Based Inspection Analysis
DEFF Research Database (Denmark)
Skovhus, Torben Lund; Andersen, Erlend S.; Hillier, Elisabeth
2018-01-01
Operating offshore oil and gas production facilities is often associated with high risk. To manage the risk, operators commonly use aids to support decision making in the establishment of a maintenance and inspection strategy. Risk-based inspection (RBI) analysis is widely used in the offshore...... industry as a means to justify the inspection strategy adopted. The RBI analysis is a decision-making technique that enables asset managers to identify the risk related to failure of their most critical systems and components, with an effect on safety, environmental, and business-related issues. Risk...... influenced corrosion (MIC) is a degradation mechanism that has received increased attention from corrosion engineers and asset operators in the past decades. In this paper, the most recent models that have been developed to assess the impact of MIC on asset integrity will be presented and discussed. From...
Representing uncertainty on model analysis plots
Directory of Open Access Journals (Sweden)
Trevor I. Smith
2016-09-01
Full Text Available Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and how likely they are to choose an answer consistent with a well-documented conceptual model. Unfortunately, Bao’s original presentation of the model plot did not include a way to represent uncertainty in these measurements. I present details of a method to add error bars to model plots by expanding the work of Sommer and Lindell. I also provide a template for generating model plots with error bars.
Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis
Klügel, Jens-Uwe
2011-01-01
The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell-McGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang-Tang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.
Risk uncertainty analysis methods for NUREG-1150
International Nuclear Information System (INIS)
Benjamin, A.S.; Boyd, G.J.
1987-01-01
Evaluation and display of risk uncertainties for NUREG-1150 constitute a principal focus of the Severe Accident Risk Rebaselining/Risk Reduction Program (SARRP). Some of the principal objectives of the uncertainty evaluation are: (1) to provide a quantitative estimate that reflects, for those areas considered, a credible and realistic range of uncertainty in risk; (2) to rank the various sources of uncertainty with respect to their importance for various measures of risk; and (3) to characterize the state of understanding of each aspect of the risk assessment for which major uncertainties exist. This paper describes the methods developed to fulfill these objectives
Representation of analysis results involving aleatory and epistemic uncertainty.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jay Dean (ProStat, Mesa, AZ); Helton, Jon Craig (Arizona State University, Tempe, AZ); Oberkampf, William Louis; Sallaberry, Cedric J.
2008-08-01
Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for the representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.
Assessing scenario and parametric uncertainties in risk analysis: a model uncertainty audit
International Nuclear Information System (INIS)
Tarantola, S.; Saltelli, A.; Draper, D.
1999-01-01
In the present study a process of model audit is addressed on a computational model used for predicting maximum radiological doses to humans in the field of nuclear waste disposal. Global uncertainty and sensitivity analyses are employed to assess output uncertainty and to quantify the contribution of parametric and scenario uncertainties to the model output. These tools are of fundamental importance for risk analysis and decision making purposes
Reusable launch vehicle model uncertainties impact analysis
Chen, Jiaye; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng
2018-03-01
Reusable launch vehicle(RLV) has the typical characteristics of complex aerodynamic shape and propulsion system coupling, and the flight environment is highly complicated and intensely changeable. So its model has large uncertainty, which makes the nominal system quite different from the real system. Therefore, studying the influences caused by the uncertainties on the stability of the control system is of great significance for the controller design. In order to improve the performance of RLV, this paper proposes the approach of analyzing the influence of the model uncertainties. According to the typical RLV, the coupling dynamic and kinematics models are built. Then different factors that cause uncertainties during building the model are analyzed and summed up. After that, the model uncertainties are expressed according to the additive uncertainty model. Choosing the uncertainties matrix's maximum singular values as the boundary model, and selecting the uncertainties matrix's norm to show t how much the uncertainty factors influence is on the stability of the control system . The simulation results illustrate that the inertial factors have the largest influence on the stability of the system, and it is necessary and important to take the model uncertainties into consideration before the designing the controller of this kind of aircraft( like RLV, etc).
The uncertainty analysis of model results a practical guide
Hofer, Eduard
2018-01-01
This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.
Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust.
Ginsberg, Gary L; Belleggia, Giuliana
2017-12-01
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581
Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin
2016-04-01
Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.
Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581
International Nuclear Information System (INIS)
Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin
2016-01-01
Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.
Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581
Energy Technology Data Exchange (ETDEWEB)
Prayogo, Galang Sandy, E-mail: gasandylang@live.com; Haryadi, Gunawan Dwi; Ismail, Rifky [Department of Mechanical Engineering, Diponegoro University, Semarang (Indonesia); Kim, Seon Jin [Department of Mechanical & Automotive Engineering of Pukyong National University (Korea, Republic of)
2016-04-19
Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.
Bergion, Viktor; Lindhe, Andreas; Sokolova, Ekaterina; Rosén, Lars
2018-04-01
Waterborne outbreaks of gastrointestinal diseases can cause large costs to society. Risk management needs to be holistic and transparent in order to reduce these risks in an effective manner. Microbial risk mitigation measures in a drinking water system were investigated using a novel approach combining probabilistic risk assessment and cost-benefit analysis. Lake Vomb in Sweden was used to exemplify and illustrate the risk-based decision model. Four mitigation alternatives were compared, where the first three alternatives, A1-A3, represented connecting 25, 50 and 75%, respectively, of on-site wastewater treatment systems in the catchment to the municipal wastewater treatment plant. The fourth alternative, A4, represented installing a UV-disinfection unit in the drinking water treatment plant. Quantitative microbial risk assessment was used to estimate the positive health effects in terms of quality adjusted life years (QALYs), resulting from the four mitigation alternatives. The health benefits were monetised using a unit cost per QALY. For each mitigation alternative, the net present value of health and environmental benefits and investment, maintenance and running costs was calculated. The results showed that only A4 can reduce the risk (probability of infection) below the World Health Organization guidelines of 10 -4 infections per person per year (looking at the 95th percentile). Furthermore, all alternatives resulted in a negative net present value. However, the net present value would be positive (looking at the 50 th percentile using a 1% discount rate) if non-monetised benefits (e.g. increased property value divided evenly over the studied time horizon and reduced microbial risks posed to animals), estimated at 800-1200 SEK (€100-150) per connected on-site wastewater treatment system per year, were included. This risk-based decision model creates a robust and transparent decision support tool. It is flexible enough to be tailored and applied to local
Validation of Fuel Performance Uncertainty for RIA Safety Analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)
2016-10-15
To achieve this the computer code performance has to be validated based on the experimental results. And for the uncertainty quantification, important uncertainty parameters need to be selected, and combined uncertainty has to be evaluated with an acceptable statistical treatment. And important uncertainty parameters to the rod performance such as fuel enthalpy, fission gas release, cladding hoop strain etc. were chosen through the rigorous sensitivity studies. And their validity has been assessed by utilizing the experimental results, which were tested in CABRI and NSRR. Analysis results revealed that several tested rods were not bounded within combined fuel performance uncertainty. Assessment of fuel performance with an extended fuel power uncertainty on tested rods in NSRR and CABRI has been done. Analysis results showed that several tested rods were not bounded within calculated fuel performance uncertainty. This implies that the currently considered uncertainty range of the parameters is not enough to cover the fuel performance sufficiently.
2013-10-29
..., 507, and 579 [Docket No. FDA-2011-N-0922] Current Good Manufacturing Practice and Hazard Analysis and... requirements for current good manufacturing practice and hazard analysis and risk-based preventive controls for..., packing, or holding of animal food in two ways. First, it would create new current good manufacturing...
2013-04-26
... comments should be identified with the title ``Current Good Manufacturing Practice and Hazard Analysis and..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good Manufacturing Practice and Hazard Analysis and Risk- Based Preventive Controls for Human Food; Extension of...
The need to go beyond analysis in making risk-based decisions
Energy Technology Data Exchange (ETDEWEB)
Ahearne, J.F. [The Sigma XI Center, Research Triangle Park, NC (United States)
1999-12-01
safer systems. However, the decision-makers and their advisors have lagged in going beyond analysis in making risk-based decisions. Whether it is a case like Brent Spar here in Europe or Yucca Mountain in the United States, significant lessons can be learned on how to make decisions in democratic societies.
The need to go beyond analysis in making risk-based decisions
International Nuclear Information System (INIS)
Ahearne, J.F.
1999-01-01
decision-makers and their advisors have lagged in going beyond analysis in making risk-based decisions. Whether it is a case like Brent Spar here in Europe or Yucca Mountain in the United States, significant lessons can be learned on how to make decisions in democratic societies
Emerging contaminants in the environment: Risk-based analysis for better management.
Naidu, Ravi; Arias Espana, Victor Andres; Liu, Yanju; Jit, Joytishna
2016-07-01
Emerging contaminants (ECs) are chemicals of a synthetic origin or deriving from a natural source that has recently been discovered and for which environmental or public health risks are yet to be established. This is due to limited available information on their interaction and toxicological impacts on receptors. Several types of ECs exist such as antibiotics, pesticides, pharmaceuticals, personal care products, effluents, certain naturally occurring contaminants and more recently nanomaterials. ECs may derive from a known source, for example released directly to the aquatic environment from direct discharges such as those from wastewater treatment plants. Although in most instances the direct source cannot be identified, ECs have been detected in virtually every country's natural environment and as a consequence they represent a global problem. There is very limited information on the fate and transport of ECs in the environment and their toxicological impact. This lack of information can be attributed to limited financial resources and the lack of analytical techniques for detecting their effects on ecosystems and human health on their own or as mixture. We do not know how ECs interact with each other or various contaminants. This paper presents an overview of existing knowledge on ECs, their fate and transport and a risk-based analysis for ECs management and complementary strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A methodology for uncertainty analysis of reference equations of state
DEFF Research Database (Denmark)
Cheung, Howard; Frutiger, Jerome; Bell, Ian H.
We present a detailed methodology for the uncertainty analysis of reference equations of state (EOS) based on Helmholtz energy. In recent years there has been an increased interest in uncertainties of property data and process models of thermal systems. In the literature there are various...... for uncertainty analysis is suggested as a tool for EOS. The uncertainties of the EOS properties are calculated from the experimental values and the EOS model structure through the parameter covariance matrix and subsequent linear error propagation. This allows reporting the uncertainty range (95% confidence...
Measurement uncertainty analysis techniques applied to PV performance measurements
International Nuclear Information System (INIS)
Wells, C.
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results
Directory of Open Access Journals (Sweden)
Hujun He
2017-01-01
Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.
Uncertainty as Knowledge: Constraints on Policy Choices Provided by Analysis of Uncertainty
Lewandowsky, S.; Risbey, J.; Smithson, M.; Newell, B. R.
2012-12-01
Uncertainty forms an integral part of climate science, and it is often cited in connection with arguments against mitigative action. We argue that an analysis of uncertainty must consider existing knowledge as well as uncertainty, and the two must be evaluated with respect to the outcomes and risks associated with possible policy options. Although risk judgments are inherently subjective, an analysis of the role of uncertainty within the climate system yields two constraints that are robust to a broad range of assumptions. Those constraints are that (a) greater uncertainty about the climate system is necessarily associated with greater expected damages from warming, and (b) greater uncertainty translates into a greater risk of the failure of mitigation efforts. These ordinal constraints are unaffected by subjective or cultural risk-perception factors, they are independent of the discount rate, and they are independent of the magnitude of the estimate for climate sensitivity. The constraints mean that any appeal to uncertainty must imply a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.
Uncertainties in Safety Analysis. A literature review
International Nuclear Information System (INIS)
Ekberg, C.
1995-05-01
The purpose of the presented work has been to give a short summary of the origins of many uncertainties arising in the designing and performance assessment of a repository for spent nuclear fuel. Some different methods to treat these uncertainties is also included. The methods and conclusions are in many cases general in the sense that they are applicable to many other disciplines where simulations are used. As a conclusion it may be noted that uncertainties of different origin have been discussed and debated, but one large group, e.g. computer simulations, where the methods to make a more explicit investigation exists, have not been investigated in a satisfying way. 50 refs
Uncertainties in Safety Analysis. A literature review
Energy Technology Data Exchange (ETDEWEB)
Ekberg, C [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry
1995-05-01
The purpose of the presented work has been to give a short summary of the origins of many uncertainties arising in the designing and performance assessment of a repository for spent nuclear fuel. Some different methods to treat these uncertainties is also included. The methods and conclusions are in many cases general in the sense that they are applicable to many other disciplines where simulations are used. As a conclusion it may be noted that uncertainties of different origin have been discussed and debated, but one large group, e.g. computer simulations, where the methods to make a more explicit investigation exists, have not been investigated in a satisfying way. 50 refs.
International Nuclear Information System (INIS)
Greenspan, E.
1982-01-01
This chapter presents the mathematical basis for sensitivity functions, discusses their physical meaning and information they contain, and clarifies a number of issues concerning their application, including the definition of group sensitivities, the selection of sensitivity functions to be included in the analysis, and limitations of sensitivity theory. Examines the theoretical foundation; criticality reset sensitivities; group sensitivities and uncertainties; selection of sensitivities included in the analysis; and other uses and limitations of sensitivity functions. Gives the theoretical formulation of sensitivity functions pertaining to ''as-built'' designs for performance parameters of the form of ratios of linear flux functionals (such as reaction-rate ratios), linear adjoint functionals, bilinear functions (such as reactivity worth ratios), and for reactor reactivity. Offers a consistent procedure for reducing energy-dependent or fine-group sensitivities and uncertainties to broad group sensitivities and uncertainties. Provides illustrations of sensitivity functions as well as references to available compilations of such functions and of total sensitivities. Indicates limitations of sensitivity theory originating from the fact that this theory is based on a first-order perturbation theory
Handbook of methods for risk-based analysis of technical specifications
International Nuclear Information System (INIS)
Samanta, P.K.; Kim, I.S.; Mankamo, T.; Vesely, W.E.
1996-01-01
Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operations (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analyses and engineering judgments. Improvements in these requirements are facilitated by the availability of plant-specific Probabilistic Risk Assessments (PRAs). The US Nuclear Regulatory Commission (USNRC) Office of Research sponsored research to develop systematic, risk-based methods to improve various aspects of TS requirements. A handbook of methods summarizing such risk-based approaches has been completed in 1994. It is expected that this handbook will provide valuable input to NRC's present work in developing guidance for using PRA in risk-informed regulation. The handbook addresses reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), managing plant configurations, and scheduling maintenance
2013-02-19
... related to the proposed rule on ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based... . All comments should be identified with the title ``Current Good Manufacturing Practice and Hazard... rulemaking to modernize the regulation for ``Current Good Manufacturing Practice In Manufacturing, Packing...
2013-11-20
... Federal Register of January 16, 2013 (78 FR 3646), entitled ``Current Good Manufacturing Practice and... a proposed rule entitled ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good...
International Nuclear Information System (INIS)
Monte, Luigi; Hakanson, Lars; Bergstroem, Ulla; Brittain, John; Heling, Rudie
1996-01-01
The principles of Empirically Based Uncertainty Analysis (EBUA) are described. EBUA is based on the evaluation of 'performance indices' that express the level of agreement between the model and sets of empirical independent data collected in different experimental circumstances. Some of these indices may be used to evaluate the confidence limits of the model output. The method is based on the statistical analysis of the distribution of the index values and on the quantitative relationship of these values with the ratio 'experimental data/model output'. Some performance indices are described in the present paper. Among these, the so-called 'functional distance' (d) between the logarithm of model output and the logarithm of the experimental data, defined as d 2 =Σ n 1 ( ln M i - ln O i ) 2 /n where M i is the i-th experimental value, O i the corresponding model evaluation and n the number of the couplets 'experimental value, predicted value', is an important tool for the EBUA method. From the statistical distribution of this performance index, it is possible to infer the characteristics of the distribution of the ratio 'experimental data/model output' and, consequently to evaluate the confidence limits for the model predictions. This method was applied to calculate the uncertainty level of a model developed to predict the migration of radiocaesium in lacustrine systems. Unfortunately, performance indices are affected by the uncertainty of the experimental data used in validation. Indeed, measurement results of environmental levels of contamination are generally associated with large uncertainty due to the measurement and sampling techniques and to the large variability in space and time of the measured quantities. It is demonstrated that this non-desired effect, in some circumstances, may be corrected by means of simple formulae
The characterisation and evaluation of uncertainty in probabilistic risk analysis
International Nuclear Information System (INIS)
Parry, G.W.; Winter, P.W.
1980-10-01
The sources of uncertainty in probabilistic risk analysis are discussed using the event/fault tree methodology as an example. The role of statistics in quantifying these uncertainties is investigated. A class of uncertainties is identified which is, at present, unquantifiable, using either classical or Bayesian statistics. It is argued that Bayesian statistics is the more appropriate vehicle for the probabilistic analysis of rare events and a short review is given with some discussion on the representation of ignorance. (author)
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2017-01-01
for extreme and fatigue limit states are presented. Operation & Maintenance planning often follows corrective and preventive strategies based on information from condition monitoring and structural health monitoring systems. A reliability- and risk-based approach is presented where a life-cycle approach...
Uncertainty analysis of energy consumption in dwellings
Energy Technology Data Exchange (ETDEWEB)
Pettersen, Trine Dyrstad
1997-12-31
This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.
International Nuclear Information System (INIS)
Chapman, O.J.V.; Baker, A.E.
1993-01-01
Risk based analysis is a tool becoming available to both engineers and managers to aid decision making concerning plant matters such as In-Service Inspection (ISI). In order to develop a risk based method, some form of Structural Reliability Risk Assessment (SRRA) needs to be performed to provide a probability of failure ranking for all sites around the plant. A Probabilistic Risk Assessment (PRA) can then be carried out to combine these possible events with the capability of plant safety systems and procedures, to establish the consequences of failure for the sites. In this way the probability of failures are converted into a risk based ranking which can be used to assist the process of deciding which sites should be included in an ISI programme. This paper reviews the technique and typical results of a risk based ranking assessment carried out for nuclear power plant pipework. (author)
Analysis of uncertainty in modeling perceived risks
International Nuclear Information System (INIS)
Melnyk, R.; Sandquist, G.M.
2005-01-01
Expanding on a mathematical model developed for quantifying and assessing perceived risks, the distribution functions, variances, and uncertainties associated with estimating the model parameters are quantified. The analytical model permits the identification and assignment of any number of quantifiable risk perception factors that can be incorporated within standard risk methodology. Those risk perception factors associated with major technical issues are modeled using lognormal probability density functions to span the potentially large uncertainty variations associated with these risk perceptions. The model quantifies the logic of public risk perception and provides an effective means for measuring and responding to perceived risks. (authors)
Qualitative uncertainty analysis in probabilistic safety assessment context
International Nuclear Information System (INIS)
Apostol, M.; Constantin, M; Turcu, I.
2007-01-01
In Probabilistic Safety Assessment (PSA) context, an uncertainty analysis is performed either to estimate the uncertainty in the final results (the risk to public health and safety) or to estimate the uncertainty in some intermediate quantities (the core damage frequency, the radionuclide release frequency or fatality frequency). The identification and evaluation of uncertainty are important tasks because they afford credit to the results and help in the decision-making process. Uncertainty analysis can be performed qualitatively or quantitatively. This paper performs a preliminary qualitative uncertainty analysis, by identification of major uncertainty in PSA level 1- level 2 interface and in the other two major procedural steps of a level 2 PSA i.e. the analysis of accident progression and of the containment and analysis of source term for severe accidents. One should mention that a level 2 PSA for a Nuclear Power Plant (NPP) involves the evaluation and quantification of the mechanisms, amount and probabilities of subsequent radioactive material releases from the containment. According to NUREG 1150, an important task in source term analysis is fission products transport analysis. The uncertainties related to the isotopes distribution in CANDU NPP primary circuit and isotopes' masses transferred in the containment, using SOPHAEROS module from ASTEC computer code will be also presented. (authors)
Indian Academy of Sciences (India)
To reflect this uncertainty in the climate scenarios, the use of AOGCMs that explicitly simulate the carbon cycle and chemistry of all the substances are needed. The Hadley Centre has developed a version of the climate model that allows the effect of climate change on the carbon cycle and its feedback into climate, to be ...
International Nuclear Information System (INIS)
Silva, T.A. da
1988-01-01
The comparison between the uncertainty method recommended by International Atomic Energy Agency (IAEA) and the and the International Weight and Measure Commitee (CIPM) are showed, for the calibration of clinical dosimeters in the secondary standard Dosimetry Laboratory (SSDL). (C.G.C.) [pt
Durability reliability analysis for corroding concrete structures under uncertainty
Zhang, Hao
2018-02-01
This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.
Systematic Evaluation of Uncertainty in Material Flow Analysis
DEFF Research Database (Denmark)
Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard
2014-01-01
Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...
Uncertainty analysis of dosimetry spectrum unfolding
International Nuclear Information System (INIS)
Perey, F.G.
1977-01-01
The propagation of uncertainties in the input data is analyzed for the usual dosimetry unfolding solution. A new formulation of the dosimetry unfolding problem is proposed in which the most likely value of the spectrum is obtained. The relationship of this solution to the usual one is discussed
Analytic uncertainty and sensitivity analysis of models with input correlations
Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu
2018-03-01
Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.
Discussion of OECD LWR Uncertainty Analysis in Modelling Benchmark
International Nuclear Information System (INIS)
Ivanov, K.; Avramova, M.; Royer, E.; Gillford, J.
2013-01-01
The demand for best estimate calculations in nuclear reactor design and safety evaluations has increased in recent years. Uncertainty quantification has been highlighted as part of the best estimate calculations. The modelling aspects of uncertainty and sensitivity analysis are to be further developed and validated on scientific grounds in support of their performance and application to multi-physics reactor simulations. The Organization for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC) has endorsed the creation of an Expert Group on Uncertainty Analysis in Modelling (EGUAM). Within the framework of activities of EGUAM/NSC the OECD/NEA initiated the Benchmark for Uncertainty Analysis in Modelling for Design, Operation, and Safety Analysis of Light Water Reactor (OECD LWR UAM benchmark). The general objective of the benchmark is to propagate the predictive uncertainties of code results through complex coupled multi-physics and multi-scale simulations. The benchmark is divided into three phases with Phase I highlighting the uncertainty propagation in stand-alone neutronics calculations, while Phase II and III are focused on uncertainty analysis of reactor core and system respectively. This paper discusses the progress made in Phase I calculations, the Specifications for Phase II and the incoming challenges in defining Phase 3 exercises. The challenges of applying uncertainty quantification to complex code systems, in particular the time-dependent coupled physics models are the large computational burden and the utilization of non-linear models (expected due to the physics coupling). (authors)
Measurement uncertainty analysis techniques applied to PV performance measurements
Energy Technology Data Exchange (ETDEWEB)
Wells, C.
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.
Measurement uncertainty analysis techniques applied to PV performance measurements
Energy Technology Data Exchange (ETDEWEB)
Wells, C
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.
Sensitivity and uncertainty analysis for fission product decay heat calculations
International Nuclear Information System (INIS)
Rebah, J.; Lee, Y.K.; Nimal, J.C.; Nimal, B.; Luneville, L.; Duchemin, B.
1994-01-01
The calculated uncertainty in decay heat due to the uncertainty in basic nuclear data given in the CEA86 Library, is presented. Uncertainties in summation calculation arise from several sources: fission product yields, half-lives and average decay energies. The correlation between basic data is taken into account. The uncertainty analysis were obtained for thermal-neutron-induced fission of U235 and Pu239 in the case of burst fission and irradiation time. The calculated decay heat in this study is compared with experimental results and with new calculation using the JEF2 Library. (from authors) 6 figs., 19 refs
Urban drainage models simplifying uncertainty analysis for practitioners
DEFF Research Database (Denmark)
Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana
2013-01-01
in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter......There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here...
Uncertainty Analysis of Consequence Management (CM) Data Products.
Energy Technology Data Exchange (ETDEWEB)
Hunt, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckert-Gallup, Aubrey Celia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cochran, Lainy Dromgoole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kraus, Terrence D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fournier, Sean Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allen, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Okada, Colin E. [Remote Sensing Lab. (RSL), Nellis AFB, Las Vegas, NV (United States); Bingham, Avery A. [Remote Sensing Lab. (RSL), Nellis AFB, Las Vegas, NV (United States)
2018-01-01
The goal of this project is to develop and execute methods for characterizing uncertainty in data products that are deve loped and distributed by the DOE Consequence Management (CM) Program. A global approach to this problem is necessary because multiple sources of error and uncertainty from across the CM skill sets contribute to the ultimate p roduction of CM data products. This report presents the methods used to develop a probabilistic framework to characterize this uncertainty and provides results for an uncertainty analysis for a study scenario analyzed using this framework.
Decisions under uncertainty using Bayesian analysis
Directory of Open Access Journals (Sweden)
Stelian STANCU
2006-01-01
Full Text Available The present paper makes a short presentation of the Bayesian decions method, where extrainformation brings a great support to decision making process, but also attract new costs. In this situation, getting new information, generally experimentaly based, contributes to diminushing the uncertainty degree that influences decision making process. As a conclusion, in a large number of decision problems, there is the possibility that the decision makers will renew some decisions already taken because of the facilities offered by obtainig extrainformation.
Uncertainty Analysis of Light Water Reactor Fuel Lattices
Directory of Open Access Journals (Sweden)
C. Arenas
2013-01-01
Full Text Available The study explored the calculation of uncertainty based on available cross-section covariance data and computational tool on fuel lattice levels, which included pin cell and the fuel assembly models. Uncertainty variations due to temperatures changes and different fuel compositions are the main focus of this analysis. Selected assemblies and unit pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analysis were performed using TSUNAMI-2D sequence in SCALE 6.1. It was found that uncertainties increase with increasing temperature, while kinf decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributing reaction of uncertainty, namely, the neutron capture reaction 238U(n, γ due to the Doppler broadening. In addition, three types (UOX, MOX, and UOX-Gd2O3 of fuel material compositions were analyzed. A remarkable increase in uncertainty in kinf was observed for the case of MOX fuel. The increase in uncertainty of kinf in MOX fuel was nearly twice the corresponding value in UOX fuel. The neutron-nuclide reaction of 238U, mainly inelastic scattering (n, n′, contributed the most to the uncertainties in the MOX fuel, shifting the neutron spectrum to higher energy compared to the UOX fuel.
Automated uncertainty analysis methods in the FRAP computer codes
International Nuclear Information System (INIS)
Peck, S.O.
1980-01-01
A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts
Uncertainty Analysis with Considering Resonance Self-shielding Effect
International Nuclear Information System (INIS)
Han, Tae Young
2016-01-01
If infinitely diluted multi-group cross sections were used for the sensitivity, the covariance data from the evaluated nuclear data library (ENDL) was directly applied. However, in case of using a self-shielded multi-group cross section, the covariance data should be corrected considering self-shielding effect. Usually, implicit uncertainty can be defined as the uncertainty change by the resonance self-shielding effect as described above. MUSAD ( Modules of Uncertainty and Sensitivity Analysis for DeCART ) has been developed for a multiplication factor and cross section uncertainty based on the generalized perturbation theory and it, however, can only quantify the explicit uncertainty by the self-shielded multi-group cross sections without considering the implicit effect. Thus, this paper addresses the implementation of the implicit uncertainty analysis module into the code and the numerical results for the verification are provided. The implicit uncertainty analysis module has been implemented into MUSAD based on infinitely-diluted cross section-based consistent method. The verification calculation was performed on MHTGR 350 Ex.I-1a and the differences with McCARD result decrease from 40% to 1% in CZP case and 3% in HFP case. From this study, it is expected that MUSAD code can reasonably produce the complete uncertainty on VHTR or LWR where the resonance self-shielding effect should be significantly considered
Uncertainty Analysis with Considering Resonance Self-shielding Effect
Energy Technology Data Exchange (ETDEWEB)
Han, Tae Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
If infinitely diluted multi-group cross sections were used for the sensitivity, the covariance data from the evaluated nuclear data library (ENDL) was directly applied. However, in case of using a self-shielded multi-group cross section, the covariance data should be corrected considering self-shielding effect. Usually, implicit uncertainty can be defined as the uncertainty change by the resonance self-shielding effect as described above. MUSAD ( Modules of Uncertainty and Sensitivity Analysis for DeCART ) has been developed for a multiplication factor and cross section uncertainty based on the generalized perturbation theory and it, however, can only quantify the explicit uncertainty by the self-shielded multi-group cross sections without considering the implicit effect. Thus, this paper addresses the implementation of the implicit uncertainty analysis module into the code and the numerical results for the verification are provided. The implicit uncertainty analysis module has been implemented into MUSAD based on infinitely-diluted cross section-based consistent method. The verification calculation was performed on MHTGR 350 Ex.I-1a and the differences with McCARD result decrease from 40% to 1% in CZP case and 3% in HFP case. From this study, it is expected that MUSAD code can reasonably produce the complete uncertainty on VHTR or LWR where the resonance self-shielding effect should be significantly considered.
One Approach to the Fire PSA Uncertainty Analysis
International Nuclear Information System (INIS)
Simic, Z.; Mikulicic, V.; Vukovic, I.
2002-01-01
Experienced practical events and findings from the number of fire probabilistic safety assessment (PSA) studies show that fire has high relative importance for nuclear power plant safety. Fire PSA is a very challenging phenomenon and a number of issues are still in the area of research and development. This has a major impact on the conservatism of fire PSA findings. One way to reduce the level of conservatism is to conduct uncertainty analysis. At the top-level, uncertainty of the fire PSA can be separated in to three segments. The first segment is related to fire initiating events frequencies. The second uncertainty segment is connected to the uncertainty of fire damage. Finally, there is uncertainty related to the PSA model, which propagates this fire-initiated damage to the core damage or other analyzed risk. This paper discusses all three segments of uncertainty. Some recent experience with fire PSA study uncertainty analysis, usage of fire analysis code COMPBRN IIIe, and uncertainty evaluation importance to the final result is presented.(author)
Estimating the measurement uncertainty in forensic blood alcohol analysis.
Gullberg, Rod G
2012-04-01
For many reasons, forensic toxicologists are being asked to determine and report their measurement uncertainty in blood alcohol analysis. While understood conceptually, the elements and computations involved in determining measurement uncertainty are generally foreign to most forensic toxicologists. Several established and well-documented methods are available to determine and report the uncertainty in blood alcohol measurement. A straightforward bottom-up approach is presented that includes: (1) specifying the measurand, (2) identifying the major components of uncertainty, (3) quantifying the components, (4) statistically combining the components and (5) reporting the results. A hypothetical example is presented that employs reasonable estimates for forensic blood alcohol analysis assuming headspace gas chromatography. These computations are easily employed in spreadsheet programs as well. Determining and reporting measurement uncertainty is an important element in establishing fitness-for-purpose. Indeed, the demand for such computations and information from the forensic toxicologist will continue to increase.
Uncertainty about probability: a decision analysis perspective
International Nuclear Information System (INIS)
Howard, R.A.
1988-01-01
The issue of how to think about uncertainty about probability is framed and analyzed from the viewpoint of a decision analyst. The failure of nuclear power plants is used as an example. The key idea is to think of probability as describing a state of information on an uncertain event, and to pose the issue of uncertainty in this quantity as uncertainty about a number that would be definitive: it has the property that you would assign it as the probability if you knew it. Logical consistency requires that the probability to assign to a single occurrence in the absence of further information be the mean of the distribution of this definitive number, not the medium as is sometimes suggested. Any decision that must be made without the benefit of further information must also be made using the mean of the definitive number's distribution. With this formulation, they find further that the probability of r occurrences in n exchangeable trials will depend on the first n moments of the definitive number's distribution. In making decisions, the expected value of clairvoyance on the occurrence of the event must be at least as great as that on the definitive number. If one of the events in question occurs, then the increase in probability of another such event is readily computed. This means, in terms of coin tossing, that unless one is absolutely sure of the fairness of a coin, seeing a head must increase the probability of heads, in distinction to usual thought. A numerical example for nuclear power shows that the failure of one plant of a group with a low probability of failure can significantly increase the probability that must be assigned to failure of a second plant in the group
Uncertainty analysis in the applications of nuclear probabilistic risk assessment
International Nuclear Information System (INIS)
Le Duy, T.D.
2011-01-01
The aim of this thesis is to propose an approach to model parameter and model uncertainties affecting the results of risk indicators used in the applications of nuclear Probabilistic Risk assessment (PRA). After studying the limitations of the traditional probabilistic approach to represent uncertainty in PRA model, a new approach based on the Dempster-Shafer theory has been proposed. The uncertainty analysis process of the proposed approach consists in five main steps. The first step aims to model input parameter uncertainties by belief and plausibility functions according to the data PRA model. The second step involves the propagation of parameter uncertainties through the risk model to lay out the uncertainties associated with output risk indicators. The model uncertainty is then taken into account in the third step by considering possible alternative risk models. The fourth step is intended firstly to provide decision makers with information needed for decision making under uncertainty (parametric and model) and secondly to identify the input parameters that have significant uncertainty contributions on the result. The final step allows the process to be continued in loop by studying the updating of beliefs functions given new data. The proposed methodology was implemented on a real but simplified application of PRA model. (author)
Including uncertainty in hazard analysis through fuzzy measures
International Nuclear Information System (INIS)
Bott, T.F.; Eisenhawer, S.W.
1997-12-01
This paper presents a method for capturing the uncertainty expressed by an Hazard Analysis (HA) expert team when estimating the frequencies and consequences of accident sequences and provides a sound mathematical framework for propagating this uncertainty to the risk estimates for these accident sequences. The uncertainty is readily expressed as distributions that can visually aid the analyst in determining the extent and source of risk uncertainty in HA accident sequences. The results also can be expressed as single statistics of the distribution in a manner analogous to expressing a probabilistic distribution as a point-value statistic such as a mean or median. The study discussed here used data collected during the elicitation portion of an HA on a high-level waste transfer process to demonstrate the techniques for capturing uncertainty. These data came from observations of the uncertainty that HA team members expressed in assigning frequencies and consequences to accident sequences during an actual HA. This uncertainty was captured and manipulated using ideas from possibility theory. The result of this study is a practical method for displaying and assessing the uncertainty in the HA team estimates of the frequency and consequences for accident sequences. This uncertainty provides potentially valuable information about accident sequences that typically is lost in the HA process
Uncertainty analysis technique for OMEGA Dante measurementsa)
May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.
2010-10-01
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.
Uncertainty analysis technique for OMEGA Dante measurements
International Nuclear Information System (INIS)
May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.
2010-01-01
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.
Uncertainty Analysis Technique for OMEGA Dante Measurements
International Nuclear Information System (INIS)
May, M.J.; Widmann, K.; Sorce, C.; Park, H.; Schneider, M.
2010-01-01
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.
Assessment and uncertainty analysis of groundwater risk.
Li, Fawen; Zhu, Jingzhao; Deng, Xiyuan; Zhao, Yong; Li, Shaofei
2018-01-01
Groundwater with relatively stable quantity and quality is commonly used by human being. However, as the over-mining of groundwater, problems such as groundwater funnel, land subsidence and salt water intrusion have emerged. In order to avoid further deterioration of hydrogeological problems in over-mining regions, it is necessary to conduct the assessment of groundwater risk. In this paper, risks of shallow and deep groundwater in the water intake area of the South-to-North Water Transfer Project in Tianjin, China, were evaluated. Firstly, two sets of four-level evaluation index system were constructed based on the different characteristics of shallow and deep groundwater. Secondly, based on the normalized factor values and the synthetic weights, the risk values of shallow and deep groundwater were calculated. Lastly, the uncertainty of groundwater risk assessment was analyzed by indicator kriging method. The results meet the decision maker's demand for risk information, and overcome previous risk assessment results expressed in the form of deterministic point estimations, which ignore the uncertainty of risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
Uncertainty and sensitivity analysis in nuclear accident consequence assessment
International Nuclear Information System (INIS)
Karlberg, Olof.
1989-01-01
This report contains the results of a four year project in research contracts with the Nordic Cooperation in Nuclear Safety and the National Institute for Radiation Protection. An uncertainty/sensitivity analysis methodology consisting of Latin Hypercube sampling and regression analysis was applied to an accident consequence model. A number of input parameters were selected and the uncertainties related to these parameter were estimated within a Nordic group of experts. Individual doses, collective dose, health effects and their related uncertainties were then calculated for three release scenarios and for a representative sample of meteorological situations. From two of the scenarios the acute phase after an accident were simulated and from one the long time consequences. The most significant parameters were identified. The outer limits of the calculated uncertainty distributions are large and will grow to several order of magnitudes for the low probability consequences. The uncertainty in the expectation values are typical a factor 2-5 (1 Sigma). The variation in the model responses due to the variation of the weather parameters is fairly equal to the parameter uncertainty induced variation. The most important parameters showed out to be different for each pathway of exposure, which could be expected. However, the overall most important parameters are the wet deposition coefficient and the shielding factors. A general discussion of the usefulness of uncertainty analysis in consequence analysis is also given. (au)
Uncertainty analysis of geothermal energy economics
Sener, Adil Caner
This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be
The EURACOS activation experiments: preliminary uncertainty analysis
International Nuclear Information System (INIS)
Yeivin, Y.
1982-01-01
A sequence of counting rates of an irradiated sulphur pellet, r(tsub(i)), measured at different times after the end of the irradiation, are fitted to r(t)=Aexp(-lambda t)+B. A standard adjustment procedure is applied to determine the parameters A and B, their standard deviations and correlation, and chi square. It is demonstrated that if the counting-rate uncertainties are entirely due to the counting statistics, the experimental data are totally inconsistent with the ''theoretical'' model. However, assuming an additional systematic error of approximalety 1%, and eliminating a few ''bad'' data, produces a data set quite consistent with the model. The dependence of chi square on the assumed systematic error and the data elimination procedure are discussed in great detail. A review of the adjustment procedure is appended to the report
Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2011-01-01
This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.
Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions
Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.
2011-01-01
This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.
Sensitivity and uncertainty analysis of the PATHWAY radionuclide transport model
International Nuclear Information System (INIS)
Otis, M.D.
1983-01-01
Procedures were developed for the uncertainty and sensitivity analysis of a dynamic model of radionuclide transport through human food chains. Uncertainty in model predictions was estimated by propagation of parameter uncertainties using a Monte Carlo simulation technique. Sensitivity of model predictions to individual parameters was investigated using the partial correlation coefficient of each parameter with model output. Random values produced for the uncertainty analysis were used in the correlation analysis for sensitivity. These procedures were applied to the PATHWAY model which predicts concentrations of radionuclides in foods grown in Nevada and Utah and exposed to fallout during the period of atmospheric nuclear weapons testing in Nevada. Concentrations and time-integrated concentrations of iodine-131, cesium-136, and cesium-137 in milk and other foods were investigated. 9 figs., 13 tabs
Nuclear data sensitivity/uncertainty analysis for XT-ADS
International Nuclear Information System (INIS)
Sugawara, Takanori; Sarotto, Massimo; Stankovskiy, Alexey; Van den Eynde, Gert
2011-01-01
Highlights: → The sensitivity and uncertainty analyses were performed to comprehend the reliability of the XT-ADS neutronic design. → The uncertainties deduced from the covariance data for the XT-ADS criticality were 0.94%, 1.9% and 1.1% by the SCALE 44-group, TENDL-2009 and JENDL-3.3 data, respectively. → When the target accuracy of 0.3%Δk for the criticality was considered, the uncertainties did not satisfy it. → To achieve this accuracy, the uncertainties should be improved by experiments under an adequate condition. - Abstract: The XT-ADS, an accelerator-driven system for an experimental demonstration, has been investigated in the framework of IP EUROTRANS FP6 project. In this study, the sensitivity and uncertainty analyses were performed to comprehend the reliability of the XT-ADS neutronic design. For the sensitivity analysis, it was found that the sensitivity coefficients were significantly different by changing the geometry models and calculation codes. For the uncertainty analysis, it was confirmed that the uncertainties deduced from the covariance data varied significantly by changing them. The uncertainties deduced from the covariance data for the XT-ADS criticality were 0.94%, 1.9% and 1.1% by the SCALE 44-group, TENDL-2009 and JENDL-3.3 data, respectively. When the target accuracy of 0.3%Δk for the criticality was considered, the uncertainties did not satisfy it. To achieve this accuracy, the uncertainties should be improved by experiments under an adequate condition.
Complex Visual Data Analysis, Uncertainty, and Representation
National Research Council Canada - National Science Library
Schunn, Christian D; Saner, Lelyn D; Kirschenbaum, Susan K; Trafton, J. G; Littleton, Eliza B
2007-01-01
... (weather forecasting, submarine target motion analysis, and fMRI data analysis). Internal spatial representations are coded from spontaneous gestures made during cued-recall summaries of problem solving activities...
Uncertainty analysis with statistically correlated failure data
International Nuclear Information System (INIS)
Modarres, M.; Dezfuli, H.; Roush, M.L.
1987-01-01
Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)
Aspects of uncertainty analysis in accident consequence modeling
International Nuclear Information System (INIS)
Travis, C.C.; Hoffman, F.O.
1981-01-01
Mathematical models are frequently used to determine probable dose to man from an accidental release of radionuclides by a nuclear facility. With increased emphasis on the accuracy of these models, the incorporation of uncertainty analysis has become one of the most crucial and sensitive components in evaluating the significance of model predictions. In the present paper, we address three aspects of uncertainty in models used to assess the radiological impact to humans: uncertainties resulting from the natural variability in human biological parameters; the propagation of parameter variability by mathematical models; and comparison of model predictions to observational data
New challenges on uncertainty propagation assessment of flood risk analysis
Martins, Luciano; Aroca-Jiménez, Estefanía; Bodoque, José M.; Díez-Herrero, Andrés
2016-04-01
Natural hazards, such as floods, cause considerable damage to the human life, material and functional assets every year and around the World. Risk assessment procedures has associated a set of uncertainties, mainly of two types: natural, derived from stochastic character inherent in the flood process dynamics; and epistemic, that are associated with lack of knowledge or the bad procedures employed in the study of these processes. There are abundant scientific and technical literature on uncertainties estimation in each step of flood risk analysis (e.g. rainfall estimates, hydraulic modelling variables); but very few experience on the propagation of the uncertainties along the flood risk assessment. Therefore, epistemic uncertainties are the main goal of this work, in particular,understand the extension of the propagation of uncertainties throughout the process, starting with inundability studies until risk analysis, and how far does vary a proper analysis of the risk of flooding. These methodologies, such as Polynomial Chaos Theory (PCT), Method of Moments or Monte Carlo, are used to evaluate different sources of error, such as data records (precipitation gauges, flow gauges...), hydrologic and hydraulic modelling (inundation estimation), socio-demographic data (damage estimation) to evaluate the uncertainties propagation (UP) considered in design flood risk estimation both, in numerical and cartographic expression. In order to consider the total uncertainty and understand what factors are contributed most to the final uncertainty, we used the method of Polynomial Chaos Theory (PCT). It represents an interesting way to handle to inclusion of uncertainty in the modelling and simulation process. PCT allows for the development of a probabilistic model of the system in a deterministic setting. This is done by using random variables and polynomials to handle the effects of uncertainty. Method application results have a better robustness than traditional analysis
Application of uncertainty analysis in conceptual fusion reactor design
International Nuclear Information System (INIS)
Wu, T.; Maynard, C.W.
1979-01-01
The theories of sensitivity and uncertainty analysis are described and applied to a new conceptual tokamak fusion reactor design--NUWMAK. The responses investigated in this study include the tritium breeding ratio, first wall Ti dpa and gas productions, nuclear heating in the blanket, energy leakage to the magnet, and the dpa rate in the superconducting magnet aluminum stabilizer. The sensitivities and uncertainties of these responses are calculated. The cost/benefit feature of proposed integral measurements is also studied through the uncertainty reductions of these responses
Sensitivity and uncertainty analysis of NET/ITER shielding blankets
International Nuclear Information System (INIS)
Hogenbirk, A.; Gruppelaar, H.; Verschuur, K.A.
1990-09-01
Results are presented of sensitivity and uncertainty calculations based upon the European fusion file (EFF-1). The effect of uncertainties in Fe, Cr and Ni cross sections on the nuclear heating in the coils of a NET/ITER shielding blanket has been studied. The analysis has been performed for the total cross section as well as partial cross sections. The correct expression for the sensitivity profile was used, including the gain term. The resulting uncertainty in the nuclear heating lies between 10 and 20 per cent. (author). 18 refs.; 2 figs.; 2 tabs
Improved Monte Carlo Method for PSA Uncertainty Analysis
International Nuclear Information System (INIS)
Choi, Jongsoo
2016-01-01
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard
Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.
Improved Monte Carlo Method for PSA Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Choi, Jongsoo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
The treatment of uncertainty is an important issue for regulatory decisions. Uncertainties exist from knowledge limitations. A probabilistic approach has exposed some of these limitations and provided a framework to assess their significance and assist in developing a strategy to accommodate them in the regulatory process. The uncertainty analysis (UA) is usually based on the Monte Carlo method. This paper proposes a Monte Carlo UA approach to calculate the mean risk metrics accounting for the SOKC between basic events (including CCFs) using efficient random number generators and to meet Capability Category III of the ASME/ANS PRA standard. Audit calculation is needed in PSA regulatory reviews of uncertainty analysis results submitted for licensing. The proposed Monte Carlo UA approach provides a high degree of confidence in PSA reviews. All PSA needs accounting for the SOKC between event probabilities to meet the ASME/ANS PRA standard.
Risk-based analysis and decision making in multi-disciplinary environments
Feather, Martin S.; Cornford, Steven L.; Moran, Kelly
2003-01-01
A risk-based decision-making process conceived of and developed at JPL and NASA, has been used to help plan and guide novel technology applications for use on spacecraft. These applications exemplify key challenges inherent in multi-disciplinary design of novel technologies deployed in mission-critical settings. 1) Cross-disciplinary concerns are numerous (e.g., spacecraft involve navigation, propulsion, telecommunications). These concems are cross-coupled and interact in multiple ways (e.g., electromagnetic interference, heat transfer). 2) Time and budget pressures constrain development, operational resources constrain the resulting system (e.g., mass, volume, power). 3) Spacecraft are critical systems that must operate correctly the first time in only partially understood environments, with no chance for repair. 4) Past experience provides only a partial guide: New mission concepts are enhanced and enabled by new technologies, for which past experience is lacking. The decision-making process rests on quantitative assessments of the relationships between three classes of information - objectives (the things the system is to accomplish and constraints on its operation and development), risks (whose occurrence detracts from objectives), and mitigations (options for reducing the likelihood and or severity of risks). The process successfully guides experts to pool their knowledge, using custom-built software to support information gathering and decision-making.
Uncertainty Instability Risk Analysis of High Concrete Arch Dam Abutments
Directory of Open Access Journals (Sweden)
Xin Cao
2017-01-01
Full Text Available The uncertainties associated with concrete arch dams rise with the increased height of dams. Given the uncertainties associated with influencing factors, the stability of high arch dam abutments as a fuzzy random event was studied. In addition, given the randomness and fuzziness of calculation parameters as well as the failure criterion, hazard point and hazard surface uncertainty instability risk ratio models were proposed for high arch dam abutments on the basis of credibility theory. The uncertainty instability failure criterion was derived through the analysis of the progressive instability failure process on the basis of Shannon’s entropy theory. The uncertainties associated with influencing factors were quantized by probability or possibility distribution assignments. Gaussian random theory was used to generate random realizations for influence factors with spatial variability. The uncertainty stability analysis method was proposed by combining the finite element analysis and the limit equilibrium method. The instability risk ratio was calculated using the Monte Carlo simulation method and fuzzy random postprocessing. Results corroborate that the modeling approach is sound and that the calculation method is feasible.
International Nuclear Information System (INIS)
Ahn, Kwang Il; Yang, Joon Eon
2003-01-01
In the risk and reliability analysis of complex technological systems, the primary concern of formal uncertainty analysis is to understand why uncertainties arise, and to evaluate how they impact the results of the analysis. In recent times, many of the uncertainty analyses have focused on parameters of the risk and reliability analysis models, whose values are uncertain in an aleatory or an epistemic way. As the field of parametric uncertainty analysis matures, however, more attention is being paid to the explicit treatment of uncertainties that are addressed in the predictive model itself as well as the accuracy of the predictive model. The essential steps for evaluating impacts of these model uncertainties in the presence of parameter uncertainties are to determine rigorously various sources of uncertainties to be addressed in an underlying model itself and in turn model parameters, based on our state-of-knowledge and relevant evidence. Answering clearly the question of how to characterize and treat explicitly the forgoing different sources of uncertainty is particularly important for practical aspects such as risk and reliability optimization of systems as well as more transparent risk information and decision-making under various uncertainties. The main purpose of this paper is to provide practical guidance for quantitatively treating various model uncertainties that would often be encountered in the risk and reliability modeling process of complex technological systems
Uncertainty analysis of LBLOCA for Advanced Heavy Water Reactor
International Nuclear Information System (INIS)
Srivastava, A.; Lele, H.G.; Ghosh, A.K.; Kushwaha, H.S.
2008-01-01
The main objective of safety analysis is to demonstrate in a robust way that all safety requirements are met, i.e. sufficient margins exist between real values of important parameters and their threshold values at which damage of the barriers against release of radioactivity would occur. As stated in the IAEA Safety Requirements for Design of NPPs 'a safety analysis of the plant design shall be conducted in which methods of both deterministic and probabilistic analysis shall be applied'. It is required that 'the computer programs, analytical methods and plant models used in the safety analysis shall be verified and validated, and adequate consideration shall be given to uncertainties'. Uncertainties are present in calculations due to the computer codes, initial and boundary conditions, plant state, fuel parameters, scaling and numerical solution algorithm. All conservative approaches, still widely used, were introduced to cover uncertainties due to limited capability for modelling and understanding of physical phenomena at the early stages of safety analysis. The results obtained by this approach are quite unrealistic and the level of conservatism is not fully known. Another approach is the use of Best Estimate (BE) codes with realistic initial and boundary conditions. If this approach is selected, it should be based on statistically combined uncertainties for plant initial and boundary conditions, assumptions and code models. The current trends are going into direction of the best estimate code with some conservative assumptions of the system with realistic input data with uncertainty analysis. The BE analysis with evaluation of uncertainties offers, in addition, a way to quantify the existing plant safety margins. Its broader use in the future is therefore envisaged, even though it is not always feasible because of the difficulty of quantifying code uncertainties with sufficiently narrow range for every phenomenon and for each accident sequence. In this paper
Dealing with phenomenological uncertainty in risk analysis
International Nuclear Information System (INIS)
Theofanous, T.G.
1994-01-01
The Risk-Oriented Accident Analysis Methodology (ROAAM) is summarized and developed further towards a formal definition. The key ideas behind the methodology and these more formal aspects are also presented and discussed
The role of sensitivity analysis in assessing uncertainty
International Nuclear Information System (INIS)
Crick, M.J.; Hill, M.D.
1987-01-01
Outside the specialist world of those carrying out performance assessments considerable confusion has arisen about the meanings of sensitivity analysis and uncertainty analysis. In this paper we attempt to reduce this confusion. We then go on to review approaches to sensitivity analysis within the context of assessing uncertainty, and to outline the types of test available to identify sensitive parameters, together with their advantages and disadvantages. The views expressed in this paper are those of the authors; they have not been formally endorsed by the National Radiological Protection Board and should not be interpreted as Board advice
Uncertainty analysis in the task of individual monitoring data
International Nuclear Information System (INIS)
Molokanov, A.; Badjin, V.; Gasteva, G.; Antipin, E.
2003-01-01
Assessment of internal doses is an essential component of individual monitoring programmes for workers and consists of two stages: individual monitoring measurements and interpretation of the monitoring data in terms of annual intake and/or annual internal dose. The overall uncertainty in assessed dose is a combination of the uncertainties in these stages. An algorithm and a computer code were developed for estimating the uncertainties in these stages. An algorithm and a computer code were developed for estimating the uncertainty in the assessment of internal dose in the task of individual monitoring data interpretation. Two main influencing factors are analysed in this paper: the unknown time of the exposure and variability of bioassay measurements. The aim of this analysis is to show that the algorithm is applicable in designing an individual monitoring programme for workers so as to guarantee that the individual dose calculated from individual monitoring measurements does not exceed a required limit with a certain confidence probability. (author)
Analysis and Reduction of Complex Networks Under Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Knio, Omar M
2014-04-09
This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.
Uncertainty analysis of power monitoring transit time ultrasonic flow meters
International Nuclear Information System (INIS)
Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.
2006-01-01
A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)
Bayesian analysis for uncertainty estimation of a canopy transpiration model
Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.
2007-04-01
A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.
Nordic reference study on uncertainty and sensitivity analysis
International Nuclear Information System (INIS)
Hirschberg, S.; Jacobsson, P.; Pulkkinen, U.; Porn, K.
1989-01-01
This paper provides a review of the first phase of Nordic reference study on uncertainty and sensitivity analysis. The main objective of this study is to use experiences form previous Nordic Benchmark Exercises and reference studies concerning critical modeling issues such as common cause failures and human interactions, and to demonstrate the impact of associated uncertainties on the uncertainty of the investigated accident sequence. This has been done independently by three working groups which used different approaches to modeling and to uncertainty analysis. The estimated uncertainty interval for the analyzed accident sequence is large. Also the discrepancies between the groups are substantial but can be explained. Sensitivity analyses which have been carried out concern e.g. use of different CCF-quantification models, alternative handling of CCF-data, time windows for operator actions and time dependences in phase mission operation, impact of state-of-knowledge dependences and ranking of dominating uncertainty contributors. Specific findings with respect to these issues are summarized in the paper
Representing Uncertainty on Model Analysis Plots
Smith, Trevor I.
2016-01-01
Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and how likely they are to choose an answer consistent with a well-documented conceptual model.…
Design optimization and uncertainty analysis of SMA morphing structures
International Nuclear Information System (INIS)
Oehler, S D; Hartl, D J; Lopez, R; Malak, R J; Lagoudas, D C
2012-01-01
The continuing implementation of shape memory alloys (SMAs) as lightweight solid-state actuators in morphing structures has now motivated research into finding optimized designs for use in aerospace control systems. This work proposes methods that use iterative analysis techniques to determine optimized designs for morphing aerostructures and consider the impact of uncertainty in model variables on the solution. A combination of commercially available and custom coded tools is utilized. ModelCenter, a suite of optimization algorithms and simulation process management tools, is coupled with the Abaqus finite element analysis suite and a custom SMA constitutive model to assess morphing structure designs in an automated fashion. The chosen case study involves determining the optimized configuration of a morphing aerostructure assembly that includes SMA flexures. This is accomplished by altering design inputs representing the placement of active components to minimize a specified cost function. An uncertainty analysis is also conducted using design of experiment methods to determine the sensitivity of the solution to a set of uncertainty variables. This second study demonstrates the effective use of Monte Carlo techniques to simulate the variance of model variables representing the inherent uncertainty in component fabrication processes. This paper outlines the modeling tools used to execute each case study, details the procedures for constructing the optimization problem and uncertainty analysis, and highlights the results from both studies. (paper)
Uncertainty analysis of light water reactor unit fuel pin cells
Energy Technology Data Exchange (ETDEWEB)
Kamerow, S.; Ivanov, K., E-mail: sln107@PSU.EDU, E-mail: kni1@PSU.EDU [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA (United States); Moreno, C. Arenas, E-mail: cristina.arenas@UPC.EDU [Department of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain)
2011-07-01
The study explored the calculation of uncertainty based on available covariance data and computational tools. Uncertainty due to temperature changes and different fuel compositions are the main focus of this analysis. Selected unit fuel pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analyses were performed using TSUNAMI-1D sequence in SCALE 6.0. It was found that uncertainties increase with increasing temperature while k{sub eff} decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributor of uncertainty, namely nuclide reaction {sup 238}U (n, gamma). The sensitivity grew larger as the capture cross-section of {sup 238}U expanded due to Doppler broadening. In addition, three different compositions (UOx, MOx, and UOxGd{sub 2}O{sub 3}) of fuel cells were analyzed. It showed a remarkable increase in uncertainty in k{sub eff} for the case of the MOx fuel cell and UOxGd{sub 2}O{sub 3} fuel cell. The increase in the uncertainty of k{sub eff} in UOxGd{sub 2}O{sub 3} fuel was nearly twice of that in MOx fuel and almost four times the amount in UOx fuel. The components of the uncertainties in k{sub eff} in each case were examined and it was found that the neutron-nuclide reaction of {sup 238}U, mainly (n,n'), contributed the most to the uncertainties in the cases of MOx and UOxGd{sub 2}O{sub 3}. At higher energy, the covariance coefficient matrix of {sup 238}U (n,n') to {sup 238}U (n,n') and {sup 238}U (n,n') cross-section showed very large values. Further, examination of the UOxGd{sub 2}O{sub 3} case found that the {sup 238}U (n,n') became the dominant contributor to the uncertainty because most of the thermal neutrons in the cell were absorbed by Gadolinium in UOxGd{sub 2}O{sub 3} case and thus shifting the neutron spectrum to higher energy. For the MOx case on other hand, {sup 239}Pu has a very strong absorption cross-section at low energy
Uncertainty of quantitative microbiological methods of pharmaceutical analysis.
Gunar, O V; Sakhno, N G
2015-12-30
The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz
2016-03-01
Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uncertainty on faecal analysis on dose assessment
Energy Technology Data Exchange (ETDEWEB)
Juliao, Ligia M.Q.C.; Melo, Dunstana R.; Sousa, Wanderson de O.; Santos, Maristela S.; Fernandes, Paulo Cesar P. [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Av. Salvador Allende s/n. Via 9, Recreio, CEP 22780-160, Rio de Janeiro, RJ (Brazil)
2007-07-01
Monitoring programmes for internal dose assessment may need to have a combination of bioassay techniques, e.g. urine and faecal analysis, especially in workplaces where compounds of different solubilities are handled and also in cases of accidental intakes. Faecal analysis may be an important data for assessment of committed effective dose due to exposure to insoluble compounds, since the activity excreted by urine may not be detectable, unless a very sensitive measurement system is available. This paper discusses the variability of the daily faecal excretion based on data from just one daily collection; collection during three consecutive days: samples analysed individually and samples analysed as a pool. The results suggest that just 1 d collection is not appropriate for dose assessment, since the 24 h uranium excretion may vary by a factor of 40. On the basis of this analysis, the recommendation should be faecal collection during three consecutive days, and samples analysed as a pool, it is more economic and faster. (authors)
Munoz-Carpena, R.; Muller, S. J.; Chu, M.; Kiker, G. A.; Perz, S. G.
2014-12-01
Model Model complexity resulting from the need to integrate environmental system components cannot be understated. In particular, additional emphasis is urgently needed on rational approaches to guide decision making through uncertainties surrounding the integrated system across decision-relevant scales. However, in spite of the difficulties that the consideration of modeling uncertainty represent for the decision process, it should not be avoided or the value and science behind the models will be undermined. These two issues; i.e., the need for coupled models that can answer the pertinent questions and the need for models that do so with sufficient certainty, are the key indicators of a model's relevance. Model relevance is inextricably linked with model complexity. Although model complexity has advanced greatly in recent years there has been little work to rigorously characterize the threshold of relevance in integrated and complex models. Formally assessing the relevance of the model in the face of increasing complexity would be valuable because there is growing unease among developers and users of complex models about the cumulative effects of various sources of uncertainty on model outputs. In particular, this issue has prompted doubt over whether the considerable effort going into further elaborating complex models will in fact yield the expected payback. New approaches have been proposed recently to evaluate the uncertainty-complexity-relevance modeling trilemma (Muller, Muñoz-Carpena and Kiker, 2011) by incorporating state-of-the-art global sensitivity and uncertainty analysis (GSA/UA) in every step of the model development so as to quantify not only the uncertainty introduced by the addition of new environmental components, but the effect that these new components have over existing components (interactions, non-linear responses). Outputs from the analysis can also be used to quantify system resilience (stability, alternative states, thresholds or tipping
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
Statistically based uncertainty assessments in nuclear risk analysis
International Nuclear Information System (INIS)
Spencer, F.W.; Diegert, K.V.; Easterling, R.G.
1987-01-01
Over the last decade, the problems of estimation and uncertainty assessment in probabilistics risk assessment (PRAs) have been addressed in a variety of NRC and industry-sponsored projects. These problems have received attention because of a recognition that major uncertainties in risk estimation exist, which can be reduced by collecting more and better data and other information, and because of a recognition that better methods for assessing these uncertainties are needed. In particular, a clear understanding of the nature and magnitude of various sources of uncertainty is needed to facilitate descision-making on possible plant changes and research options. Recent PRAs have employed methods of probability propagation, sometimes involving the use of Bayes Theorem, and intended to formalize the use of ''engineering judgment'' or ''expert opinion.'' All sources, or feelings, of uncertainty are expressed probabilistically, so that uncertainty analysis becomes simply a matter of probability propagation. Alternatives to forcing a probabilistic framework at all stages of a PRA are a major concern in this paper, however
International Nuclear Information System (INIS)
Harper, F.T.; Young, M.L.; Miller, L.A.; Hora, S.C.; Lui, C.H.; Goossens, L.H.J.; Cooke, R.M.; Paesler-Sauer, J.; Helton, J.C.
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project
International Nuclear Information System (INIS)
Harper, F.T.; Young, M.L.; Miller, L.A.; Hora, S.C.; Lui, C.H.; Goossens, L.H.J.; Cooke, R.M.; Paesler-Sauer, J.; Helton, J.C.
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The ultimate objective of the joint effort was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. Experts developed their distributions independently. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. To validate the distributions generated for the dispersion code input variables, samples from the distributions and propagated through the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the first of a three-volume document describing the project
Energy Technology Data Exchange (ETDEWEB)
Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.
Integrating technical analysis and public values in risk-based decision making
International Nuclear Information System (INIS)
Bohnenblust, Hans; Slovic, Paul
1998-01-01
Simple technical analysis cannot capture the complex scope of preferences or values of society and individuals. However, decision making needs to be sustained by formal analysis. The paper describes a policy framework which incorporates both technical analysis and aspects of public values. The framework can be used as a decision supporting tool and helps decision makers to make more informed and more transparent decisions about safety issues
Geological-structural models used in SR 97. Uncertainty analysis
Energy Technology Data Exchange (ETDEWEB)
Saksa, P.; Nummela, J. [FINTACT Oy (Finland)
1998-10-01
The uncertainty of geological-structural models was studied for the three sites in SR 97, called Aberg, Beberg and Ceberg. The evaluation covered both regional and site scale models, the emphasis being placed on fracture zones in the site scale. Uncertainty is a natural feature of all geoscientific investigations. It originates from measurements (errors in data, sampling limitations, scale variation) and conceptualisation (structural geometries and properties, ambiguous geometric or parametric solutions) to name the major ones. The structures of A-, B- and Ceberg are fracture zones of varying types. No major differences in the conceptualisation between the sites were noted. One source of uncertainty in the site models is the non-existence of fracture and zone information in the scale from 10 to 300 - 1000 m. At Aberg the development of the regional model has been performed very thoroughly. At the site scale one major source of uncertainty is that a clear definition of the target area is missing. Structures encountered in the boreholes are well explained and an interdisciplinary approach in interpretation have taken place. Beberg and Ceberg regional models contain relatively large uncertainties due to the investigation methodology and experience available at that time. In site scale six additional structures were proposed both to Beberg and Ceberg to variant analysis of these sites. Both sites include uncertainty in the form of many non-interpreted fractured sections along the boreholes. Statistical analysis gives high occurrences of structures for all three sites: typically 20 - 30 structures/km{sup 3}. Aberg has highest structural frequency, Beberg comes next and Ceberg has the lowest. The borehole configuration, orientations and surveying goals were inspected to find whether preferences or factors causing bias were present. Data from Aberg supports the conclusion that Aespoe sub volume would be an anomalously fractured, tectonised unit of its own. This means that
Geological-structural models used in SR 97. Uncertainty analysis
International Nuclear Information System (INIS)
Saksa, P.; Nummela, J.
1998-10-01
The uncertainty of geological-structural models was studied for the three sites in SR 97, called Aberg, Beberg and Ceberg. The evaluation covered both regional and site scale models, the emphasis being placed on fracture zones in the site scale. Uncertainty is a natural feature of all geoscientific investigations. It originates from measurements (errors in data, sampling limitations, scale variation) and conceptualisation (structural geometries and properties, ambiguous geometric or parametric solutions) to name the major ones. The structures of A-, B- and Ceberg are fracture zones of varying types. No major differences in the conceptualisation between the sites were noted. One source of uncertainty in the site models is the non-existence of fracture and zone information in the scale from 10 to 300 - 1000 m. At Aberg the development of the regional model has been performed very thoroughly. At the site scale one major source of uncertainty is that a clear definition of the target area is missing. Structures encountered in the boreholes are well explained and an interdisciplinary approach in interpretation have taken place. Beberg and Ceberg regional models contain relatively large uncertainties due to the investigation methodology and experience available at that time. In site scale six additional structures were proposed both to Beberg and Ceberg to variant analysis of these sites. Both sites include uncertainty in the form of many non-interpreted fractured sections along the boreholes. Statistical analysis gives high occurrences of structures for all three sites: typically 20 - 30 structures/km 3 . Aberg has highest structural frequency, Beberg comes next and Ceberg has the lowest. The borehole configuration, orientations and surveying goals were inspected to find whether preferences or factors causing bias were present. Data from Aberg supports the conclusion that Aespoe sub volume would be an anomalously fractured, tectonised unit of its own. This means that the
Error Analysis of CM Data Products Sources of Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Hunt, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckert-Gallup, Aubrey Celia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cochran, Lainy Dromgoole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kraus, Terrence D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allen, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beal, Bill [National Security Technologies, Joint Base Andrews, MD (United States); Okada, Colin [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Simpson, Mathew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-02-01
This goal of this project is to address the current inability to assess the overall error and uncertainty of data products developed and distributed by DOE’s Consequence Management (CM) Program. This is a widely recognized shortfall, the resolution of which would provide a great deal of value and defensibility to the analysis results, data products, and the decision making process that follows this work. A global approach to this problem is necessary because multiple sources of error and uncertainty contribute to the ultimate production of CM data products. Therefore, this project will require collaboration with subject matter experts across a wide range of FRMAC skill sets in order to quantify the types of uncertainty that each area of the CM process might contain and to understand how variations in these uncertainty sources contribute to the aggregated uncertainty present in CM data products. The ultimate goal of this project is to quantify the confidence level of CM products to ensure that appropriate public and worker protections decisions are supported by defensible analysis.
Energy Technology Data Exchange (ETDEWEB)
Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)
1997-12-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.
Energy Technology Data Exchange (ETDEWEB)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)
1997-12-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.
Energy Technology Data Exchange (ETDEWEB)
Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)
1998-04-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.
Estimating annual bole biomass production using uncertainty analysis
Travis J. Woolley; Mark E. Harmon; Kari B. O' Connell
2007-01-01
Two common sampling methodologies coupled with a simple statistical model were evaluated to determine the accuracy and precision of annual bole biomass production (BBP) and inter-annual variability estimates using this type of approach. We performed an uncertainty analysis using Monte Carlo methods in conjunction with radial growth core data from trees in three Douglas...
Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis
Young, Cristobal; Holsteen, Katherine
2017-01-01
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
An uncertainty analysis using the NRPB accident consequence code Marc
International Nuclear Information System (INIS)
Jones, J.A.; Crick, M.J.; Simmonds, J.R.
1991-01-01
This paper describes an uncertainty analysis of MARC calculations of the consequences of accidental releases of radioactive materials to atmosphere. A total of 98 parameters describing the transfer of material through the environment to man, the doses received, and the health effects resulting from these doses, was considered. The uncertainties in the numbers of early and late health effects, numbers of people affected by countermeasures, the amounts of food restricted and the economic costs of the accident were estimated. This paper concentrates on the results for early death and fatal cancer for a large hypothetical release from a PWR
Risk-based decision analysis for the 200-BP-5 groundwater operable unit. Revision 2
International Nuclear Information System (INIS)
Chiaramonte, G.R.
1996-02-01
This document presents data from a risk analysis that was performed on three groundwater contaminant plumes within the 200-BP-5 Operable Unit. Hypothetical exposure scenarios were assessed based on current and future plume conditions. For current conditions, a hypothetical industrial groundwater scenarios were assumed. The industrial ingestion scenario, which is derived from HSRAM, was not used for drinking water and should not be implied by this risk analysis that the DOE is advocating use of this groundwater for direct human ingestion. Risk was calculated at each monitoring well using the observed radionuclide concentrations in groundwater from that well. The calculated values represent total radiological incremental lifetime cancer risk. Computer models were used to show the analytical flow and transport of contaminants of concern
Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins
Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.
2010-12-14
A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.
An educational model for ensemble streamflow simulation and uncertainty analysis
Directory of Open Access Journals (Sweden)
A. AghaKouchak
2013-02-01
Full Text Available This paper presents the hands-on modeling toolbox, HBV-Ensemble, designed as a complement to theoretical hydrology lectures, to teach hydrological processes and their uncertainties. The HBV-Ensemble can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity. HBV-Ensemble was administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of uncertainty in hydrological modeling.
Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils
International Nuclear Information System (INIS)
Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.
1990-10-01
To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs
Decision analysis of shoreline protection under climate change uncertainty
Chao, Philip T.; Hobbs, Benjamin F.
1997-04-01
If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.
Uncertainty and sensitivity analysis of the nuclear fuel thermal behavior
Energy Technology Data Exchange (ETDEWEB)
Boulore, A., E-mail: antoine.boulore@cea.fr [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Struzik, C. [Commissariat a l' Energie Atomique (CEA), DEN, Fuel Research Department, 13108 Saint-Paul-lez-Durance (France); Gaudier, F. [Commissariat a l' Energie Atomique (CEA), DEN, Systems and Structure Modeling Department, 91191 Gif-sur-Yvette (France)
2012-12-15
Highlights: Black-Right-Pointing-Pointer A complete quantitative method for uncertainty propagation and sensitivity analysis is applied. Black-Right-Pointing-Pointer The thermal conductivity of UO{sub 2} is modeled as a random variable. Black-Right-Pointing-Pointer The first source of uncertainty is the linear heat rate. Black-Right-Pointing-Pointer The second source of uncertainty is the thermal conductivity of the fuel. - Abstract: In the global framework of nuclear fuel behavior simulation, the response of the models describing the physical phenomena occurring during the irradiation in reactor is mainly conditioned by the confidence in the calculated temperature of the fuel. Amongst all parameters influencing the temperature calculation in our fuel rod simulation code (METEOR V2), several sources of uncertainty have been identified as being the most sensitive: thermal conductivity of UO{sub 2}, radial distribution of power in the fuel pellet, local linear heat rate in the fuel rod, geometry of the pellet and thermal transfer in the gap. Expert judgment and inverse methods have been used to model the uncertainty of these parameters using theoretical distributions and correlation matrices. Propagation of these uncertainties in the METEOR V2 code using the URANIE framework and a Monte-Carlo technique has been performed in different experimental irradiations of UO{sub 2} fuel. At every time step of the simulated experiments, we get a temperature statistical distribution which results from the initial distributions of the uncertain parameters. We then can estimate confidence intervals of the calculated temperature. In order to quantify the sensitivity of the calculated temperature to each of the uncertain input parameters and data, we have also performed a sensitivity analysis using the Sobol' indices at first order.
Error and Uncertainty Analysis for Ecological Modeling and Simulation
2001-12-01
nitrate flux to the Gulf of Mexico. Nature (Brief Communication) 414: 166-167. (Uncertainty analysis done with SERDP software) Gertner, G., G...D. Goolsby 2001. Relating N inputs to the Mississippi River Basin and nitrate flux in the Lower Mississippi River: A comparison of approaches...Journal of Remote Sensing, 25(4):367-380. Wu, J., D.E. Jelinski, M. Luck, and P.T. Tueller, 2000. Multiscale analysis of landscape heterogeneity: scale
Directory of Open Access Journals (Sweden)
Zongzhi Li
2017-04-01
Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.
Application of risk-based value-impact analysis in a nuclear regulatory environment
International Nuclear Information System (INIS)
Dinnie, Keith; Land, Ronald; Stella, Mark
1992-01-01
Value-impact analysis (VIA) is a quantitative process that examines the benefits of proposed actions and the costs of implementing those actions to determine the potential for a net beneficial result. There is a point beyond which efforts to improve nuclear plant safety by implementing design changes will be unjustifiably expensive for the societal benefits obtained. Resources that would be used to obtain marginal improvements in public safety can then be used to obtain greater benefits for society in other areas. VIA can help to identify this point. What can not be accomplished by VIA is the definition of the level of risk (or safety) above which cost-benefit considerations are not applicable. This must be established separately, by political action or through promulgation of acceptable risk levels and safety goals by regulatory agencies. 18 refs
Risk-based economic decision analysis of remediation options at a PCE-contaminated site
DEFF Research Database (Denmark)
Lemming, Gitte; Friis-Hansen, P.; Bjerg, Poul Løgstrup
2010-01-01
by the remediation activities. More attention is increasingly being given to these secondary environmental impacts when evaluating remediation options. This paper presents a methodology for an integrated economic decision analysis which combines assessments of remediation costs, health risk costs and potential...... at a downstream groundwater well. Potential environmental impacts on the local, regional and global scales due to the site remediation activities are evaluated using life cycle assessments (LCA). The potential impacts on health and environment are converted to monetary units using a simplified cost model. A case......Remediation methods for contaminated sites cover a wide range of technical solutions with different remedial efficiencies and costs. Additionally, they may vary in their secondary impacts on the environment i.e. the potential impacts generated due to emissions and resource use caused...
Santos, Joost R; May, Larissa; Haimar, Amine El
2013-09-01
Outbreaks of contagious diseases underscore the ever-looming threat of new epidemics. Compared to other disasters that inflict physical damage to infrastructure systems, epidemics can have more devastating and prolonged impacts on the population. This article investigates the interdependent economic and productivity risks resulting from epidemic-induced workforce absenteeism. In particular, we develop a dynamic input-output model capable of generating sector-disaggregated economic losses based on different magnitudes of workforce disruptions. An ex post analysis of the 2009 H1N1 pandemic in the national capital region (NCR) reveals the distribution of consequences across different economic sectors. Consequences are categorized into two metrics: (i) economic loss, which measures the magnitude of monetary losses incurred in each sector, and (ii) inoperability, which measures the normalized monetary losses incurred in each sector relative to the total economic output of that sector. For a simulated mild pandemic scenario in NCR, two distinct rankings are generated using the economic loss and inoperability metrics. Results indicate that the majority of the critical sectors ranked according to the economic loss metric comprise of sectors that contribute the most to the NCR's gross domestic product (e.g., federal government enterprises). In contrast, the majority of the critical sectors generated by the inoperability metric include sectors that are involved with epidemic management (e.g., hospitals). Hence, prioritizing sectors for recovery necessitates consideration of the balance between economic loss, inoperability, and other objectives. Although applied specifically to the NCR, the proposed methodology can be customized for other regions. © 2012 Society for Risk Analysis.
Energy Technology Data Exchange (ETDEWEB)
Song, Myung Sub; Kim, Song Hyun; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of); Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
The uncertainty evaluation with statistical method is performed by repetition of transport calculation with sampling the directly perturbed nuclear data. Hence, the reliable uncertainty result can be obtained by analyzing the results of the numerous transport calculations. One of the problems in the uncertainty analysis with the statistical approach is known as that the cross section sampling from the normal (Gaussian) distribution with relatively large standard deviation leads to the sampling error of the cross sections such as the sampling of the negative cross section. Some collection methods are noted; however, the methods can distort the distribution of the sampled cross sections. In this study, a sampling method of the nuclear data is proposed by using lognormal distribution. After that, the criticality calculations with sampled nuclear data are performed and the results are compared with that from the normal distribution which is conventionally used in the previous studies. In this study, the statistical sampling method of the cross section with the lognormal distribution was proposed to increase the sampling accuracy without negative sampling error. Also, a stochastic cross section sampling and writing program was developed. For the sensitivity and uncertainty analysis, the cross section sampling was pursued with the normal and lognormal distribution. The uncertainties, which are caused by covariance of (n,.) cross sections, were evaluated by solving GODIVA problem. The results show that the sampling method with lognormal distribution can efficiently solve the negative sampling problem referred in the previous studies. It is expected that this study will contribute to increase the accuracy of the sampling-based uncertainty analysis.
International Nuclear Information System (INIS)
Song, Myung Sub; Kim, Song Hyun; Kim, Jong Kyung; Noh, Jae Man
2013-01-01
The uncertainty evaluation with statistical method is performed by repetition of transport calculation with sampling the directly perturbed nuclear data. Hence, the reliable uncertainty result can be obtained by analyzing the results of the numerous transport calculations. One of the problems in the uncertainty analysis with the statistical approach is known as that the cross section sampling from the normal (Gaussian) distribution with relatively large standard deviation leads to the sampling error of the cross sections such as the sampling of the negative cross section. Some collection methods are noted; however, the methods can distort the distribution of the sampled cross sections. In this study, a sampling method of the nuclear data is proposed by using lognormal distribution. After that, the criticality calculations with sampled nuclear data are performed and the results are compared with that from the normal distribution which is conventionally used in the previous studies. In this study, the statistical sampling method of the cross section with the lognormal distribution was proposed to increase the sampling accuracy without negative sampling error. Also, a stochastic cross section sampling and writing program was developed. For the sensitivity and uncertainty analysis, the cross section sampling was pursued with the normal and lognormal distribution. The uncertainties, which are caused by covariance of (n,.) cross sections, were evaluated by solving GODIVA problem. The results show that the sampling method with lognormal distribution can efficiently solve the negative sampling problem referred in the previous studies. It is expected that this study will contribute to increase the accuracy of the sampling-based uncertainty analysis
Psychosocial Modeling of Insider Threat Risk Based on Behavioral and Word Use Analysis
Energy Technology Data Exchange (ETDEWEB)
Greitzer, Frank L.; Kangas, Lars J.; Noonan, Christine F.; Brown, Christopher R.; Ferryman, Thomas A.
2013-10-01
In many insider crimes, managers and other coworkers observed that the offenders had exhibited signs of stress, disgruntlement, or other issues, but no alarms were raised. Barriers to using such psychosocial indicators include the inability to recognize the signs and the failure to record the behaviors so that they can be assessed. A psychosocial model was developed to assess an employee’s behavior associated with an increased risk of insider abuse. The model is based on case studies and research literature on factors/correlates associated with precursor behavioral manifestations of individuals committing insider crimes. A complementary Personality Factor modeling approach was developed based on analysis to derive relevant personality characteristics from word use. Several implementations of the psychosocial model were evaluated by comparing their agreement with judgments of human resources and management professionals; the personality factor modeling approach was examined using email samples. If implemented in an operational setting, these models should be part of a set of management tools for employee assessment to identify employees who pose a greater insider threat.
Risk-based Analysis of Construction Accidents in Iran During 2007-2011-Meta Analyze Study
AMIRI, Mehran; ARDESHIR, Abdollah; FAZEL ZARANDI, Mohammad Hossein
2014-01-01
Abstract Background The present study aimed to investigate the characteristics of occupational accidents and frequency and severity of work related accidents in the construction industry among Iranian insured workers during the years 20072011. Methods The Iranian Social Security Organization (ISSO) accident database containing 21,864 cases between the years 2007-2011 was applied in this study. In the next step, Total Accident Rate (TRA), Total Severity Index (TSI), and Risk Factor (RF) were defined. The core of this work is devoted to analyzing the data from different perspectives such as age of workers, occupation and construction phase, day of the week, time of the day, seasonal analysis, regional considerations, type of accident, and body parts affected. Results Workers between 15-19 years old (TAR=13.4%) are almost six times more exposed to risk of accident than the average of all ages (TAR=2.51%). Laborers and structural workers (TAR=66.6%) and those working at heights (TAR=47.2%) experience more accidents than other groups of workers. Moreover, older workers over 65 years old (TSI=1.97%> average TSI=1.60%), work supervisors (TSI=12.20% >average TSI=9.09%), and night shift workers (TSI=1.89% >average TSI=1.47%) are more prone to severe accidents. Conclusion It is recommended that laborers, young workers, weekend and night shift workers be supervised more carefully in the workplace. Use of Personal Protective Equipment (PPE) should be compulsory in working environments, and special attention should be undertaken to people working outdoors and at heights. It is also suggested that policymakers pay more attention to the improvement of safety conditions in deprived and cold western regions. PMID:26005662
Risk-based Analysis of Construction Accidents in Iran During 2007-2011-Meta Analyze Study.
Amiri, Mehran; Ardeshir, Abdollah; Fazel Zarandi, Mohammad Hossein
2014-04-01
The present study aimed to investigate the characteristics of occupational accidents and frequency and severity of work related accidents in the construction industry among Iranian insured workers during the years 20072011. The Iranian Social Security Organization (ISSO) accident database containing 21,864 cases between the years 2007-2011 was applied in this study. In the next step, Total Accident Rate (TRA), Total Severity Index (TSI), and Risk Factor (RF) were defined. The core of this work is devoted to analyzing the data from different perspectives such as age of workers, occupation and construction phase, day of the week, time of the day, seasonal analysis, regional considerations, type of accident, and body parts affected. Workers between 15-19 years old (TAR=13.4%) are almost six times more exposed to risk of accident than the average of all ages (TAR=2.51%). Laborers and structural workers (TAR=66.6%) and those working at heights (TAR=47.2%) experience more accidents than other groups of workers. Moreover, older workers over 65 years old (TSI=1.97%> average TSI=1.60%), work supervisors (TSI=12.20% >average TSI=9.09%), and night shift workers (TSI=1.89% >average TSI=1.47%) are more prone to severe accidents. It is recommended that laborers, young workers, weekend and night shift workers be supervised more carefully in the workplace. Use of Personal Protective Equipment (PPE) should be compulsory in working environments, and special attention should be undertaken to people working outdoors and at heights. It is also suggested that policymakers pay more attention to the improvement of safety conditions in deprived and cold western regions.
Hydrocoin level 3 - Testing methods for sensitivity/uncertainty analysis
International Nuclear Information System (INIS)
Grundfelt, B.; Lindbom, B.; Larsson, A.; Andersson, K.
1991-01-01
The HYDROCOIN study is an international cooperative project for testing groundwater hydrology modelling strategies for performance assessment of nuclear waste disposal. The study was initiated in 1984 by the Swedish Nuclear Power Inspectorate and the technical work was finalised in 1987. The participating organisations are regulatory authorities as well as implementing organisations in 10 countries. The study has been performed at three levels aimed at studying computer code verification, model validation and sensitivity/uncertainty analysis respectively. The results from the first two levels, code verification and model validation, have been published in reports in 1988 and 1990 respectively. This paper focuses on some aspects of the results from Level 3, sensitivity/uncertainty analysis, for which a final report is planned to be published during 1990. For Level 3, seven test cases were defined. Some of these aimed at exploring the uncertainty associated with the modelling results by simply varying parameter values and conceptual assumptions. In other test cases statistical sampling methods were applied. One of the test cases dealt with particle tracking and the uncertainty introduced by this type of post processing. The amount of results available is substantial although unevenly spread over the test cases. It has not been possible to cover all aspects of the results in this paper. Instead, the different methods applied will be illustrated by some typical analyses. 4 figs., 9 refs
Treatment of uncertainties in the IPCC: a philosophical analysis
Jebeile, J.; Drouet, I.
2014-12-01
The IPCC produces scientific reports out of findings on climate and climate change. Because the findings are uncertain in many respects, the production of reports requires aggregating assessments of uncertainties of different kinds. This difficult task is currently regulated by the Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. The note recommends that two metrics—i.e. confidence and likelihood— be used for communicating the degree of certainty in findings. Confidence is expressed qualitatively "based on the type, amount, quality, and consistency of evidence […] and the degree of agreement", while likelihood is expressed probabilistically "based on statistical analysis of observations or model results, or expert judgment". Therefore, depending on the evidence evaluated, authors have the choice to present either an assigned level of confidence or a quantified measure of likelihood. But aggregating assessments of uncertainties of these two different kinds express distinct and conflicting methodologies. So the question arises whether the treatment of uncertainties in the IPCC is rationally justified. In order to answer the question, it is worth comparing the IPCC procedures with the formal normative theories of epistemic rationality which have been developed by philosophers. These theories—which include contributions to the philosophy of probability and to bayesian probabilistic confirmation theory—are relevant for our purpose because they are commonly used to assess the rationality of common collective jugement formation based on uncertain knowledge. In this paper we make the comparison and pursue the following objectives: i/we determine whether the IPCC confidence and likelihood can be compared with the notions of uncertainty targeted by or underlying the formal normative theories of epistemic rationality; ii/we investigate whether the formal normative theories of epistemic rationality justify
Uncertainty Assessment of Hydrological Frequency Analysis Using Bootstrap Method
Directory of Open Access Journals (Sweden)
Yi-Ming Hu
2013-01-01
Full Text Available The hydrological frequency analysis (HFA is the foundation for the hydraulic engineering design and water resources management. Hydrological extreme observations or samples are the basis for HFA; the representativeness of a sample series to the population distribution is extremely important for the estimation reliability of the hydrological design value or quantile. However, for most of hydrological extreme data obtained in practical application, the size of the samples is usually small, for example, in China about 40~50 years. Generally, samples with small size cannot completely display the statistical properties of the population distribution, thus leading to uncertainties in the estimation of hydrological design values. In this paper, a new method based on bootstrap is put forward to analyze the impact of sampling uncertainty on the design value. By bootstrap resampling technique, a large number of bootstrap samples are constructed from the original flood extreme observations; the corresponding design value or quantile is estimated for each bootstrap sample, so that the sampling distribution of design value is constructed; based on the sampling distribution, the uncertainty of quantile estimation can be quantified. Compared with the conventional approach, this method provides not only the point estimation of a design value but also quantitative evaluation on uncertainties of the estimation.
Uncertainty analysis of a nondestructive radioassay system for transuranic waste
International Nuclear Information System (INIS)
Harker, Y.D.; Blackwood, L.G.; Meachum, T.R.; Yoon, W.Y.
1996-01-01
Radioassay of transuranic waste in 207 liter drums currently stored at the Idaho National Engineering Laboratory is achieved using a Passive Active Neutron (PAN) nondestructive assay system. In order to meet data quality assurance requirements for shipping and eventual permanent storage of these drums at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, the total uncertainty of the PAN system measurements must be assessed. In particular, the uncertainty calculations are required to include the effects of variations in waste matrix parameters and related variables on the final measurement results. Because of the complexities involved in introducing waste matrix parameter effects into the uncertainty calculations, standard methods of analysis (e.g., experimentation followed by propagation of errors) could not be implemented. Instead, a modified statistical sampling and verification approach was developed. In this modified approach the total performance of the PAN system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper describes the simulation process and illustrates its application to waste comprised of weapons grade plutonium-contaminated graphite molds
Quantifying and managing uncertainty in operational modal analysis
Au, Siu-Kui; Brownjohn, James M. W.; Mottershead, John E.
2018-03-01
Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as 'uncertainty laws', these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.
Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets
International Nuclear Information System (INIS)
Embrechts, M.J.
1982-02-01
A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium
Uncertainty and sensitivity analysis of environmental transport models
International Nuclear Information System (INIS)
Margulies, T.S.; Lancaster, L.E.
1985-01-01
An uncertainty and sensitivity analysis has been made of the CRAC-2 (Calculations of Reactor Accident Consequences) atmospheric transport and deposition models. Robustness and uncertainty aspects of air and ground deposited material and the relative contribution of input and model parameters were systematically studied. The underlying data structures were investigated using a multiway layout of factors over specified ranges generated via a Latin hypercube sampling scheme. The variables selected in our analysis include: weather bin, dry deposition velocity, rain washout coefficient/rain intensity, duration of release, heat content, sigma-z (vertical) plume dispersion parameter, sigma-y (crosswind) plume dispersion parameter, and mixing height. To determine the contributors to the output variability (versus distance from the site) step-wise regression analyses were performed on transformations of the spatial concentration patterns simulated. 27 references, 2 figures, 3 tables
Stochastic analysis in production process and ecology under uncertainty
Bieda, Bogusław
2014-01-01
The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...
Applications of the TSUNAMI sensitivity and uncertainty analysis methodology
International Nuclear Information System (INIS)
Rearden, Bradley T.; Hopper, Calvin M.; Elam, Karla R.; Goluoglu, Sedat; Parks, Cecil V.
2003-01-01
The TSUNAMI sensitivity and uncertainty analysis tools under development for the SCALE code system have recently been applied in four criticality safety studies. TSUNAMI is used to identify applicable benchmark experiments for criticality code validation, assist in the design of new critical experiments for a particular need, reevaluate previously computed computational biases, and assess the validation coverage and propose a penalty for noncoverage for a specific application. (author)
INTEGRATION OF SYSTEM COMPONENTS AND UNCERTAINTY ANALYSIS - HANFORD EXAMPLES
International Nuclear Information System (INIS)
Wood, M.I.
2009-01-01
(sm b ullet) Deterministic 'One Off' analyses as basis for evaluating sensitivity and uncertainty relative to reference case (sm b ullet) Spatial coverage identical to reference case (sm b ullet) Two types of analysis assumptions - Minimax parameter values around reference case conditions - 'What If' cases that change reference case condition and associated parameter values (sm b ullet) No conclusions about likelihood of estimated result other than' qualitative expectation that actual outcome should tend toward reference case estimate
International Nuclear Information System (INIS)
Boerigter, S.T.; DeMuth, N.S.; Tietjen, G.
1996-10-01
A previous report, open-quotes Analysis of LANL Options for Processing Plutonium Legacy Materials,close quotes LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing
Summary of the CEC/USDOE workshop on uncertainty analysis
International Nuclear Information System (INIS)
Elderkin, C.E.; Kelly, G.N.
1990-06-01
There is uncertainty in all aspects of assessing the consequences of accidental releases of radioactive material, from understanding and describing the environmental and biological transfer processes to modeling emergency response. The need for an exchange of views and a comparison of approaches between the diverse disciplines led to the organization of a CEC/USDOE Workshop on Uncertainty Analysis held in Santa Fe, New Mexico, in November 1989. The workshop brought together specialists in a number of disciplines, including those expert in the mathematics and statistics of uncertainty analysis, in expert judgment elicitation and evaluation, and in all aspects of assessing the radiological and environmental consequences of accidental releases of radioactive material. In addition, there was participation from users of the output of accident consequences assessment in decision making and/or regulatory frameworks. The main conclusions that emerged from the workshop are summarized in this paper. These are discussed in the context of three different types of accident consequence assessment: probabilistic assessments of accident consequences undertaken as inputs to risk analyses of nuclear installations, assessments of accident consequences in real time to provide inputs to decisions on the introduction of countermeasures, and the reconstruction of doses and risks resulting form past releases of radioactive material
Similarity and uncertainty analysis of the ALLEGRO MOX core
International Nuclear Information System (INIS)
Vrban, B.; Hascik, J.; Necas, V.; Slugen, V.
2015-01-01
The similarity and uncertainty analysis of the ESNII+ ALLEGRO MOX core has identified specific problems and challenges in the field of neutronic calculations. Similarity assessment identified 9 partly comparable experiments where only one reached ck and E values over 0.9. However the Global Integral Index G remains still low (0.75) and cannot be judge das sufficient. The total uncertainty of calculated k eff induced by XS data is according to our calculation 1.04%. The main contributors to this uncertainty are 239 Pu nubar and 238 U inelastic scattering. The additional margin from uncovered sensitivities was determined to be 0.28%. The identified low number of similar experiments prevents the use of advanced XS adjustment and bias estimation methods. More experimental data are needed and presented results may serve as a basic step in development of necessary critical assemblies. Although exact data are not presented in the paper, faster 44 energy group calculation gives almost the same results in similarity analysis in comparison to more complex 238 group calculation. Finally, it was demonstrated that TSUNAMI-IP utility can play a significant role in the future fast reactor development in Slovakia and in the Visegrad region. Clearly a further Research and Development and strong effort should be carried out in order to receive more complex methodology consisting of more plausible covariance data and related quantities. (authors)
Uncertainty analysis on probabilistic fracture mechanics assessment methodology
International Nuclear Information System (INIS)
Rastogi, Rohit; Vinod, Gopika; Chandra, Vikas; Bhasin, Vivek; Babar, A.K.; Rao, V.V.S.S.; Vaze, K.K.; Kushwaha, H.S.; Venkat-Raj, V.
1999-01-01
Fracture Mechanics has found a profound usage in the area of design of components and assessing fitness for purpose/residual life estimation of an operating component. Since defect size and material properties are statistically distributed, various probabilistic approaches have been employed for the computation of fracture probability. Monte Carlo Simulation is one such procedure towards the analysis of fracture probability. This paper deals with uncertainty analysis using the Monte Carlo Simulation methods. These methods were developed based on the R6 failure assessment procedure, which has been widely used in analysing the integrity of structures. The application of this method is illustrated with a case study. (author)
International Nuclear Information System (INIS)
Brown, J.; Jones, J.A.
2000-01-01
This paper describes the uncertainty analysis of the food chain module of COSYMA and the uncertainty distributions on the input parameter values for the food chain model provided by the expert panels that were used for the analysis. Two expert panels were convened, covering the areas of soil and plant transfer processes and transfer to and through animals. The aggregated uncertainty distributions from the experts for the elicited variables were used in an uncertainty analysis of the food chain module of COSYMA. The main aim of the module analysis was to identify those parameters whose uncertainty makes large contributions to the overall uncertainty and so should be included in the overall analysis. (author)
International Nuclear Information System (INIS)
Quadrel, M.J.; Fowler, K.M.; Cameron, R.; Treat, R.J.; McCormack, W.D.; Cruse, J.
1995-01-01
The risk-based systems analysis model was designed to establish funding priorities among competing technologies for tank waste remediation. The model addresses a gap in the Department of Energy's (DOE's) ''toolkit'' for establishing funding priorities among emerging technologies by providing disciplined risk and cost assessments of candidate technologies within the context of a complete remediation system. The model is comprised of a risk and cost assessment and a decision interface. The former assesses the potential reductions in risk and cost offered by new technology relative to the baseline risk and cost of an entire system. The latter places this critical information in context of other values articulated by decision makers and stakeholders in the DOE system. The risk assessment portion of the model is demonstrated for two candidate technologies for tank waste retrieval (arm-based mechanical retrieval -- the ''long reach arm'') and subsurface barriers (close-coupled chemical barriers). Relative changes from the base case in cost and risk are presented for these two technologies to illustrate how the model works. The model and associated software build on previous work performed for DOE's Office of Technology Development and the former Underground Storage Tank Integrated Demonstration, and complement a decision making tool presented at Waste Management 1994 for integrating technical judgements and non-technical (stakeholder) values when making technology funding decisions
International Nuclear Information System (INIS)
Iman, R.L.; Helton, J.C.
1985-01-01
Probabilistic Risk Assessment (PRA) is playing an increasingly important role in the nuclear reactor regulatory process. The assessment of uncertainties associated with PRA results is widely recognized as an important part of the analysis process. One of the major criticisms of the Reactor Safety Study was that its representation of uncertainty was inadequate. The desire for the capability to treat uncertainties with the MELCOR risk code being developed at Sandia National Laboratories is indicative of the current interest in this topic. However, as yet, uncertainty analysis and sensitivity analysis in the context of PRA is a relatively immature field. In this paper, available methods for uncertainty analysis and sensitivity analysis in a PRA are reviewed. This review first treats methods for use with individual components of a PRA and then considers how these methods could be combined in the performance of a complete PRA. In the context of this paper, the goal of uncertainty analysis is to measure the imprecision in PRA outcomes of interest, and the goal of sensitivity analysis is to identify the major contributors to this imprecision. There are a number of areas that must be considered in uncertainty analysis and sensitivity analysis for a PRA: (1) information, (2) systems analysis, (3) thermal-hydraulic phenomena/fission product behavior, (4) health and economic consequences, and (5) display of results. Each of these areas and the synthesis of them into a complete PRA are discussed
The Impact of Uncertainty on Investment. A Meta-Analysis
Energy Technology Data Exchange (ETDEWEB)
Koetse, M.J. [Department of Spatial Economics, Vrije Universiteit Amsterdam (Netherlands); De Groot, Henri L.F. [Tinbergen Institute, Amsterdam (Netherlands); Florax, R.J.G.M. [Department of Agricultural Economics, Purdue University, West Lafayette (United States)
2006-07-01
In this paper we perform a meta-analysis on empirical estimates of the impact between investment and uncertainty. Since the outcomes of primary studies are largely incomparable with respect to the magnitude of the effect, our analysis focuses on the direction and statistical significance of the relationship. The standard approach in this situation is to estimate an ordered probit model on a categorical estimate, defined in terms of the direction of the effect. The estimates are transformed into marginal effects, in order to represent the changes in the probability of finding a negative significant, insignificant, and positive significant estimate. Although a meta-analysis generally does not allow for inferences on the correctness of model specifications in primary studies, our results give clear directions for model building in empirical investment research. For example, not including factor prices in investment models may seriously affect the model outcomes. Furthermore, we find that Q models produce more negative significant estimates than other models do, ceteris paribus. The outcome of a study is also affected by the type of data used in a primary study. Although it is clear that meta-analysis cannot always give decisive insights into the explanations for the variation in empirical outcomes, our meta-analysis shows that we can explain to a large extent why empirical estimates of the investment uncertainty relationship differ.
Uncertainty analysis in WWTP model applications: a critical discussion using an example from design
DEFF Research Database (Denmark)
Sin, Gürkan; Gernaey, Krist; Neumann, Marc B.
2009-01-01
of design performance criteria differs significantly. The implication for the practical applications of uncertainty analysis in the wastewater industry is profound: (i) as the uncertainty analysis results are specific to the framing used, the results must be interpreted within the context of that framing......This study focuses on uncertainty analysis of WWTP models and analyzes the issue of framing and how it affects the interpretation of uncertainty analysis results. As a case study, the prediction of uncertainty involved in model-based design of a wastewater treatment plant is studied. The Monte...... to stoichiometric, biokinetic and influent parameters; (2) uncertainty due to hydraulic behaviour of the plant and mass transfer parameters; (3) uncertainty due to the combination of (1) and (2). The results demonstrate that depending on the way the uncertainty analysis is framed, the estimated uncertainty...
Application of intelligence based uncertainty analysis for HLW disposal
International Nuclear Information System (INIS)
Kato, Kazuyuki
2003-01-01
Safety assessment for geological disposal of high level radioactive waste inevitably involves factors that cannot be specified in a deterministic manner. These are namely: (1) 'variability' that arises from stochastic nature of the processes and features considered, e.g., distribution of canister corrosion times and spatial heterogeneity of a host geological formation; (2) 'ignorance' due to incomplete or imprecise knowledge of the processes and conditions expected in the future, e.g., uncertainty in the estimation of solubilities and sorption coefficients for important nuclides. In many cases, a decision in assessment, e.g., selection among model options or determination of a parameter value, is subjected to both variability and ignorance in a combined form. It is clearly important to evaluate both influences of variability and ignorance on the result of a safety assessment in a consistent manner. We developed a unified methodology to handle variability and ignorance by using probabilistic and possibilistic techniques respectively. The methodology has been applied to safety assessment of geological disposal of high level radioactive waste. Uncertainties associated with scenarios, models and parameters were defined in terms of fuzzy membership functions derived through a series of interviews to the experts while variability was formulated by means of probability density functions (pdfs) based on available data set. The exercise demonstrated applicability of the new methodology and, in particular, its advantage in quantifying uncertainties based on expert's opinion and in providing information on dependence of assessment result on the level of conservatism. In addition, it was also shown that sensitivity analysis could identify key parameters in reducing uncertainties associated with the overall assessment. The above information can be used to support the judgment process and guide the process of disposal system development in optimization of protection against
Pazó, Jose A.; Granada, Enrique; Saavedra, Ángeles; Eguía, Pablo; Collazo, Joaquín
2010-01-01
The objective of this study was to develop a methodology for the determination of the maximum sampling error and confidence intervals of thermal properties obtained from thermogravimetric analysis (TG), including moisture, volatile matter, fixed carbon and ash content. The sampling procedure of the TG analysis was of particular interest and was conducted with care. The results of the present study were compared to those of a prompt analysis, and a correlation between the mean values and maximum sampling errors of the methods were not observed. In general, low and acceptable levels of uncertainty and error were obtained, demonstrating that the properties evaluated by TG analysis were representative of the overall fuel composition. The accurate determination of the thermal properties of biomass with precise confidence intervals is of particular interest in energetic biomass applications. PMID:20717532
Use of error files in uncertainty analysis and data adjustment
International Nuclear Information System (INIS)
Chestnutt, M.M.; McCracken, A.K.; McCracken, A.K.
1979-01-01
Some results are given from uncertainty analyses on Pressurized Water Reactor (PWR) and Fast Reactor Theoretical Benchmarks. Upper limit estimates of calculated quantities are shown to be significantly reduced by the use of ENDF/B data covariance files and recently published few-group covariance matrices. Some problems in the analysis of single-material benchmark experiments are discussed with reference to the Winfrith iron benchmark experiment. Particular attention is given to the difficulty of making use of very extensive measurements which are likely to be a feature of this type of experiment. Preliminary results of an adjustment in iron are shown
Uncertainty analysis in calculations of a road accident consequences
International Nuclear Information System (INIS)
Bonnefous, S.; Brenot, J.; Hubert, P.
1995-01-01
This paper develops a concrete situation witch is the search for an evacuation distance in case of a road accident implying a chlorine tank. The methodological aspect is how implementing uncertainty analysis in deterministic models with random parameters. The study demonstrates a great dispersion in the results. It allows to establish satisfactory decision rules and a hierarchy on parameters witch is useful to define priorities in the search for information and to improve the treatment of these parameters. (authors). 8 refs., 1 fig., 2 tabs
Additional challenges for uncertainty analysis in river engineering
Berends, Koen; Warmink, Jord; Hulscher, Suzanne
2016-04-01
the proposed intervention. The implicit assumption underlying such analysis is that both models are commensurable. We hypothesize that they are commensurable only to a certain extent. In an idealised study we have demonstrated that prediction performance loss should be expected with increasingly large engineering works. When accounting for parametric uncertainty of floodplain roughness in model identification, we see uncertainty bounds for predicted effects of interventions increase with increasing intervention scale. Calibration of these types of models therefore seems to have a shelf-life, beyond which calibration does not longer improves prediction. Therefore a qualification scheme for model use is required that can be linked to model validity. In this study, we characterize model use along three dimensions: extrapolation (using the model with different external drivers), extension (using the model for different output or indicators) and modification (using modified models). Such use of models is expected to have implications for the applicability of surrogating modelling for efficient uncertainty analysis as well, which is recommended for future research. Warmink, J. J.; Straatsma, M. W.; Huthoff, F.; Booij, M. J. & Hulscher, S. J. M. H. 2013. Uncertainty of design water levels due to combined bed form and vegetation roughness in the Dutch river Waal. Journal of Flood Risk Management 6, 302-318 . DOI: 10.1111/jfr3.12014
International Nuclear Information System (INIS)
Kim, Song Hyun; Song, Myung Sub; Shin, Chang Ho; Noh, Jae Man
2014-01-01
In using the perturbation theory, the uncertainty of the response can be estimated by a single transport simulation, and therefore it requires small computational load. However, it has a disadvantage that the computation methodology must be modified whenever estimating different response type such as multiplication factor, flux, or power distribution. Hence, it is suitable for analyzing few responses with lots of perturbed parameters. Statistical approach is a sampling based method which uses randomly sampled cross sections from covariance data for analyzing the uncertainty of the response. XSUSA is a code based on the statistical approach. The cross sections are only modified with the sampling based method; thus, general transport codes can be directly utilized for the S/U analysis without any code modifications. However, to calculate the uncertainty distribution from the result, code simulation should be enough repeated with randomly sampled cross sections. Therefore, this inefficiency is known as a disadvantage of the stochastic method. In this study, an advanced sampling method of the cross sections is proposed and verified to increase the estimation efficiency of the sampling based method. In this study, to increase the estimation efficiency of the sampling based S/U method, an advanced sampling and estimation method was proposed. The main feature of the proposed method is that the cross section averaged from each single sampled cross section is used. For the use of the proposed method, the validation was performed using the perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2017-07-01
Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)
International Nuclear Information System (INIS)
Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.
2017-01-01
Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)
Statistical analysis of the uncertainty related to flood hazard appraisal
Notaro, Vincenza; Freni, Gabriele
2015-12-01
The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.
International Nuclear Information System (INIS)
Hofer, E.; Hoffman, F.O.
1987-02-01
The uncertainty analysis of model predictions has to discriminate between two fundamentally different types of uncertainty. The presence of stochastic variability (Type 1 uncertainty) necessitates the use of a probabilistic model instead of the much simpler deterministic one. Lack of knowledge (Type 2 uncertainty), however, applies to deterministic as well as to probabilistic model predictions and often dominates over uncertainties of Type 1. The term ''probability'' is interpreted differently in the probabilistic analysis of either type of uncertainty. After these discriminations have been explained the discussion centers on the propagation of parameter uncertainties through the model, the derivation of quantitative uncertainty statements for model predictions and the presentation and interpretation of the results of a Type 2 uncertainty analysis. Various alternative approaches are compared for a very simple deterministic model
Huttenlau, Matthias; Stötter, Johann
2010-05-01
weighting within the risk concept, this has sufficient implications on the results of risk analyses. Thus, an equal and scale appropriated balance of those risk components is a fundamental key factor for effective natural hazard risk analyses. The results of such analyses inform especially decision makers in the insurance industry, the administration, and politicians on potential consequences and are the basis for appropriate risk management strategies. Thereby, results (i) on an annual or probabilistic risk comprehension have to be distinguished from (ii) scenario-based analyses. The first analyses are based on statistics of periodically or episodically occurring events whereas the latter approach is especially applied for extreme, non-linear, stochastic events. Focusing on the needs especially of insurance companies, the first approaches are appropriate for premium pricing and reinsurance strategies with an annual perspective, whereas the latter is focusing on events with extreme loss burdens under worst-case criteria to guarantee accordant reinsurance coverage. Moreover, the demand of adequate loss model approaches and methods is strengthened by the risk-based requirements of the upcoming capital requirement directive Solvency II. The present study estimates the potential elements at risk, their corresponding damage potentials and the Probable Maximum Losses (PMLs) of extreme natural hazards events in Tyrol (Austria) and considers adequatly the scale dependency and balanced application of the introduced risk components. Beside the introduced analysis an additionally portfolio analysis of a regional insurance company was executed. The geocoded insurance contracts of this portfolio analysis were the basis to estimate spatial, socio-economical and functional differentiated mean insurance values for the different risk categories of (i) buildings, (ii) contents or inventory, (iii) vehicles, and (iv) persons in the study area. The estimated mean insurance values were
Sensitivity/uncertainty analysis for the Hiroshima dosimetry reevaluation effort
International Nuclear Information System (INIS)
Broadhead, B.L.; Lillie, R.A.; Pace, J.V. III; Cacuci, D.G.
1987-01-01
Uncertainty estimates and cross correlations by range/survivor location have been obtained for the free-in-air (FIA) tissue kerma for the Hiroshima atomic event. These uncertainties in the FIA kerma include contributions due to various modeling parameters and the basic cross section data and are given at three ground ranges, 700, 1000 and 1500 m. The estimated uncertainties are nearly constant over the given ground ranges and are approximately 27% for the prompt neutron kerma and secondary gamma kerma and 35% for the prompt gamma kerma. The total kerma uncertainty is dominated by the secondary gamma kerma uncertainties which are in turn largely due to the modeling parameter uncertainties
Rohmer, Jeremy; Verdel, Thierry
2017-04-01
Uncertainty analysis is an unavoidable task of stability analysis of any geotechnical systems. Such analysis usually relies on the safety factor SF (if SF is below some specified threshold), the failure is possible). The objective of the stability analysis is then to estimate the failure probability P for SF to be below the specified threshold. When dealing with uncertainties, two facets should be considered as outlined by several authors in the domain of geotechnics, namely "aleatoric uncertainty" (also named "randomness" or "intrinsic variability") and "epistemic uncertainty" (i.e. when facing "vague, incomplete or imprecise information" such as limited databases and observations or "imperfect" modelling). The benefits of separating both facets of uncertainty can be seen from a risk management perspective because: - Aleatoric uncertainty, being a property of the system under study, cannot be reduced. However, practical actions can be taken to circumvent the potentially dangerous effects of such variability; - Epistemic uncertainty, being due to the incomplete/imprecise nature of available information, can be reduced by e.g., increasing the number of tests (lab or in site survey), improving the measurement methods or evaluating calculation procedure with model tests, confronting more information sources (expert opinions, data from literature, etc.). Uncertainty treatment in stability analysis usually restricts to the probabilistic framework to represent both facets of uncertainty. Yet, in the domain of geo-hazard assessments (like landslides, mine pillar collapse, rockfalls, etc.), the validity of this approach can be debatable. In the present communication, we propose to review the major criticisms available in the literature against the systematic use of probability in situations of high degree of uncertainty. On this basis, the feasibility of using a more flexible uncertainty representation tool is then investigated, namely Possibility distributions (e
Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties
Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong
2018-03-01
This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.
Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis
International Nuclear Information System (INIS)
Abdel-Khalik, Hany S.; Bang, Youngsuk; Wang, Congjian
2013-01-01
Highlights: ► We overview the state-of-the-art in uncertainty quantification and sensitivity analysis. ► We overview new developments in above areas using hybrid methods. ► We give a tutorial introduction to above areas and the new developments. ► Hybrid methods address the explosion in dimensionality in nonlinear models. ► Representative numerical experiments are given. -- Abstract: The role of modeling and simulation has been heavily promoted in recent years to improve understanding of complex engineering systems. To realize the benefits of modeling and simulation, concerted efforts in the areas of uncertainty quantification and sensitivity analysis are required. The manuscript intends to serve as a pedagogical presentation of the material to young researchers and practitioners with little background on the subjects. We believe this is important as the role of these subjects is expected to be integral to the design, safety, and operation of existing as well as next generation reactors. In addition to covering the basics, an overview of the current state-of-the-art will be given with particular emphasis on the challenges pertaining to nuclear reactor modeling. The second objective will focus on presenting our own development of hybrid subspace methods intended to address the explosion in the computational overhead required when handling real-world complex engineering systems.
Procedures for uncertainty and sensitivity analysis in repository performance assessment
International Nuclear Information System (INIS)
Poern, K.; Aakerlund, O.
1985-10-01
The objective of the project was mainly a literature study of available methods for the treatment of parameter uncertainty propagation and sensitivity aspects in complete models such as those concerning geologic disposal of radioactive waste. The study, which has run parallel with the development of a code package (PROPER) for computer assisted analysis of function, also aims at the choice of accurate, cost-affective methods for uncertainty and sensitivity analysis. Such a choice depends on several factors like the number of input parameters, the capacity of the model and the computer reresources required to use the model. Two basic approaches are addressed in the report. In one of these the model of interest is directly simulated by an efficient sampling technique to generate an output distribution. Applying the other basic method the model is replaced by an approximating analytical response surface, which is then used in the sampling phase or in moment matching to generate the output distribution. Both approaches are illustrated by simple examples in the report. (author)
Directory of Open Access Journals (Sweden)
Rehan Balqis M.
2016-01-01
Full Text Available Current practice in flood frequency analysis assumes that the stochastic properties of extreme floods follow that of stationary conditions. As human intervention and anthropogenic climate change influences in hydrometeorological variables are becoming evident in some places, there have been suggestions that nonstationary statistics would be better to represent the stochastic properties of the extreme floods. The probabilistic estimation of non-stationary models, however, is surrounded with uncertainty related to scarcity of observations and modelling complexities hence the difficulty to project the future condition. In the face of uncertain future and the subjectivity of model choices, this study attempts to demonstrate the practical implications of applying a nonstationary model and compares it with a stationary model in flood risk assessment. A fully integrated framework to simulate decision makers’ behaviour in flood frequency analysis is thereby developed. The framework is applied to hypothetical flood risk management decisions and the outcomes are compared with those of known underlying future conditions. Uncertainty of the economic performance of the risk-based decisions is assessed through Monte Carlo simulations. Sensitivity of the results is also tested by varying the possible magnitude of future changes. The application provides quantitative and qualitative comparative results that satisfy a preliminary analysis of whether the nonstationary model complexity should be applied to improve the economic performance of decisions. Results obtained from the case study shows that the relative differences of competing models for all considered possible future changes are small, suggesting that stationary assumptions are preferred to a shift to nonstationary statistics for practical application of flood risk management. Nevertheless, nonstationary assumption should also be considered during a planning stage in addition to stationary assumption
A retrospective dosimetry method and its uncertainty analysis
International Nuclear Information System (INIS)
Zhang, L.; Jia, D.; Dai, G.
2000-01-01
The main aim of a radiation epidemiological study is to assess the risk of the population exposed to ionizing radiation. The actual work of the assessment may be very difficult because dose information about the population is often indirect and incomplete. It is very important, therefore, to find a way of estimating reasonable and reliable doses of the population by a retrospective method from limited information. In order to provide reasonable dose information for the cohort study of Chinese medical diagnostic X-ray workers, a retrospective dosimetry method was established. In China, a cohort study of more than 27,000 medical diagnostic X-ray workers, with 25,000 controls, has been carried out for about fifteen years in order to assess the risk to an occupationally exposed population. Obviously, a key to the success of the study is to obtain reliable and reasonable results of dose estimation by the dose reconstruction method. Before 1985, there was a lack of information regarding personal dose measured directly; however, we can obtain other indirect information. Examples are information about working loads from the documents of the hospitals, information about operational conditions of the workers of different statuses by a survey of occupational history, and the exposure levels of various working conditions by some simulation methods. The information for estimating organ dose can also be obtained by simulating experiments with a phantom. Based on the information mentioned above, a mathematical model and computerizing system for dose reconstruction of this occupational population was design and developed. Uncertainty analysis very important for dose reconstruction. The sources of uncertainty of our study are coming from two fields. One is coming from the mode of dose reconstruction. Another is coming from the survey of the occupational history. In the result reported, main results of the uncertainty will be presented. In order to control the uncertainty of the
Uncertainty propagation in probabilistic safety analysis of nuclear power plants
International Nuclear Information System (INIS)
Fleming, P.V.
1981-09-01
The uncertainty propagation in probabilistic safety analysis of nuclear power plants, is done. The methodology of the minimal cut is implemented in the computer code SVALON and the results for several cases are compared with corresponding results obtained with the SAMPLE code, which employs the Monte Carlo method to propagate the uncertanties. The results have show that, for a relatively small number of dominant minimal cut sets (n approximately 25) and error factors (r approximately 5) the SVALON code yields results which are comparable to those obtained with SAMPLE. An analysis of the unavailability of the low pressure recirculation system of Angra 1 for both the short and long term recirculation phases, are presented. The results for the short term phase are in good agreement with the corresponding one given in WASH-1400. (E.G.) [pt
Energy Technology Data Exchange (ETDEWEB)
Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others
1997-06-01
This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses.
International Nuclear Information System (INIS)
Brown, J.; Goossens, L.H.J.; Kraan, B.C.P.
1997-06-01
This volume is the first of a two-volume document that summarizes a joint project conducted by the US Nuclear Regulatory Commission and the European Commission to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This document reports on an ongoing project to assess uncertainty in the MACCS and COSYMA calculations for the offsite consequences of radionuclide releases by hypothetical nuclear power plant accidents. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain variables that affect calculations of offsite consequences. The expert judgment elicitation procedure and its outcomes are described in these volumes. Other panels were formed to consider uncertainty in other aspects of the codes. Their results are described in companion reports. Volume 1 contains background information and a complete description of the joint consequence uncertainty study. Volume 2 contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures for both panels, (3) the rationales and results for the panels on soil and plant transfer and animal transfer, (4) short biographies of the experts, and (5) the aggregated results of their responses
Advanced uncertainty modelling for container port risk analysis.
Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin
2016-08-13
Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geoengineering to Avoid Overshoot: An Analysis of Uncertainty
Tanaka, Katsumasa; Cho, Cheolhung; Krey, Volker; Patt, Anthony; Rafaj, Peter; Rao-Skirbekk, Shilpa; Wagner, Fabian
2010-05-01
., 2009) is employed to calculate climate responses including associated uncertainty and to estimate geoengineering profiles to cap the warming at 2°C since preindustrial. The inversion setup for the model ACC2 is used to estimate the uncertain parameters (e.g. climate sensitivity) against associated historical observations (e.g. global-mean surface air temperature). Our preliminary results show that under climate and scenario uncertainties, a geoengineering intervention to avoid an overshoot would be with medium intensity in the latter half of this century (≈ 1 Mt. Pinatubo eruption every 4 years in terms of stratospheric sulfur injections). The start year of geoengineering intervention does not significantly influence the long-term geoengineering profile. However, a geoengineering intervention of the medium intensity could bring about substantial environmental side effects such as the destruction of stratospheric ozone. Our results point to the necessity to pursue persistently mainstream mitigation efforts. 2) Pollution Abatement and Geoengineering The second study examines the potential of geoengineering combined with air clean policy. A drastic air pollution abatement might result in an abrupt warming because it would suddenly remove the tropospheric aerosols which partly offset the background global warming (e.g. Andreae et al, 2005, Raddatz and Tanaka, 2010). This study investigates the magnitude of unrealized warming under a range of policy assumptions and associated uncertainties. Then the profile of geoengineering is estimated to suppress the warming that would be accompanied by clean air policy. This study is the first attempt to explore uncertainty in the warming caused by clean air policy - Kloster et al. (2009), which assess regional changes in climate and hydrological cycle, has not however included associated uncertainties in the analysis. A variety of policy assumptions will be devised to represent various degrees of air pollution abatement. These
Uncertainty analysis comes to integrated assessment models for climate change and conversely
Cooke, R.M.
2012-01-01
This article traces the development of uncertainty analysis through three generations punctuated by large methodology investments in the nuclear sector. Driven by a very high perceived legitimation burden, these investments aimed at strengthening the scientific basis of uncertainty quantification.
Analysis and evaluation of regulatory uncertainties in 10 CFR 60 subparts B and E
International Nuclear Information System (INIS)
Weiner, R.F.; Patrick, W.C.
1990-01-01
This paper presents an attribute analysis scheme for prioritizing the resolution of regulatory uncertainties. Attributes are presented which assist in identifying the need for timeliness and durability of the resolution of an uncertainty
DEFF Research Database (Denmark)
Prunescu, Remus Mihail; Sin, Gürkan
2014-01-01
This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...
Uncertainty analysis of NDA waste measurements using computer simulations
International Nuclear Information System (INIS)
Blackwood, L.G.; Harker, Y.D.; Yoon, W.Y.; Meachum, T.R.
2000-01-01
Uncertainty assessments for nondestructive radioassay (NDA) systems for nuclear waste are complicated by factors extraneous to the measurement systems themselves. Most notably, characteristics of the waste matrix (e.g., homogeneity) and radioactive source material (e.g., particle size distribution) can have great effects on measured mass values. Under these circumstances, characterizing the waste population is as important as understanding the measurement system in obtaining realistic uncertainty values. When extraneous waste characteristics affect measurement results, the uncertainty results are waste-type specific. The goal becomes to assess the expected bias and precision for the measurement of a randomly selected item from the waste population of interest. Standard propagation-of-errors methods for uncertainty analysis can be very difficult to implement in the presence of significant extraneous effects on the measurement system. An alternative approach that naturally includes the extraneous effects is as follows: (1) Draw a random sample of items from the population of interest; (2) Measure the items using the NDA system of interest; (3) Establish the true quantity being measured using a gold standard technique; and (4) Estimate bias by deriving a statistical regression model comparing the measurements on the system of interest to the gold standard values; similar regression techniques for modeling the standard deviation of the difference values gives the estimated precision. Actual implementation of this method is often impractical. For example, a true gold standard confirmation measurement may not exist. A more tractable implementation is obtained by developing numerical models for both the waste material and the measurement system. A random sample of simulated waste containers generated by the waste population model serves as input to the measurement system model. This approach has been developed and successfully applied to assessing the quantity of
Bayesian uncertainty analysis with applications to turbulence modeling
International Nuclear Information System (INIS)
Cheung, Sai Hung; Oliver, Todd A.; Prudencio, Ernesto E.; Prudhomme, Serge; Moser, Robert D.
2011-01-01
In this paper, we apply Bayesian uncertainty quantification techniques to the processes of calibrating complex mathematical models and predicting quantities of interest (QoI's) with such models. These techniques also enable the systematic comparison of competing model classes. The processes of calibration and comparison constitute the building blocks of a larger validation process, the goal of which is to accept or reject a given mathematical model for the prediction of a particular QoI for a particular scenario. In this work, we take the first step in this process by applying the methodology to the analysis of the Spalart-Allmaras turbulence model in the context of incompressible, boundary layer flows. Three competing model classes based on the Spalart-Allmaras model are formulated, calibrated against experimental data, and used to issue a prediction with quantified uncertainty. The model classes are compared in terms of their posterior probabilities and their prediction of QoI's. The model posterior probability represents the relative plausibility of a model class given the data. Thus, it incorporates the model's ability to fit experimental observations. Alternatively, comparing models using the predicted QoI connects the process to the needs of decision makers that use the results of the model. We show that by using both the model plausibility and predicted QoI, one has the opportunity to reject some model classes after calibration, before subjecting the remaining classes to additional validation challenges.
Methods and computer codes for probabilistic sensitivity and uncertainty analysis
International Nuclear Information System (INIS)
Vaurio, J.K.
1985-01-01
This paper describes the methods and applications experience with two computer codes that are now available from the National Energy Software Center at Argonne National Laboratory. The purpose of the SCREEN code is to identify a group of most important input variables of a code that has many (tens, hundreds) input variables with uncertainties, and do this without relying on judgment or exhaustive sensitivity studies. Purpose of the PROSA-2 code is to propagate uncertainties and calculate the distributions of interesting output variable(s) of a safety analysis code using response surface techniques, based on the same runs used for screening. Several applications are discussed, but the codes are generic, not tailored to any specific safety application code. They are compatible in terms of input/output requirements but also independent of each other, e.g., PROSA-2 can be used without first using SCREEN if a set of important input variables has first been selected by other methods. Also, although SCREEN can select cases to be run (by random sampling), a user can select cases by other methods if he so prefers, and still use the rest of SCREEN for identifying important input variables
Quantification of Uncertainty in the Flood Frequency Analysis
Kasiapillai Sudalaimuthu, K.; He, J.; Swami, D.
2017-12-01
Flood frequency analysis (FFA) is usually carried out for planning and designing of water resources and hydraulic structures. Owing to the existence of variability in sample representation, selection of distribution and estimation of distribution parameters, the estimation of flood quantile has been always uncertain. Hence, suitable approaches must be developed to quantify the uncertainty in the form of prediction interval as an alternate to deterministic approach. The developed framework in the present study to include uncertainty in the FFA discusses a multi-objective optimization approach to construct the prediction interval using ensemble of flood quantile. Through this approach, an optimal variability of distribution parameters is identified to carry out FFA. To demonstrate the proposed approach, annual maximum flow data from two gauge stations (Bow river at Calgary and Banff, Canada) are used. The major focus of the present study was to evaluate the changes in magnitude of flood quantiles due to the recent extreme flood event occurred during the year 2013. In addition, the efficacy of the proposed method was further verified using standard bootstrap based sampling approaches and found that the proposed method is reliable in modeling extreme floods as compared to the bootstrap methods.
Selection of Representative Models for Decision Analysis Under Uncertainty
Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.
2016-03-01
The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.
Reduction of uncertainties in probabilistic seismic hazard analysis
Energy Technology Data Exchange (ETDEWEB)
Seo, Jeong Moon; Choun, Young Sun; Choi, In Kil [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-02-01
An integrated research for the reduction of conservatism and uncertainties in PSHA in Korea was performed. The research consisted of five technical task areas as follows; Task 1: Earthquake Catalog Development for PSHA. Task 2: Evaluation of Seismicity and Tectonics of the Korea Region. Task 3: Development of a Ground Motion Relationships. Task 4: Improvement of PSHA Modelling Methodology. Task 5: Development of Seismic Source Interpretations for the region of Korea for Inputs to PSHA. A series of tests on an ancient wooden house and an analysis on medium size earthquake in Korea were performed intensively. Signification improvement, especially in the estimation of historical earthquake, ground motion attenuation, and seismic source interpretations, were made through this study. 314 refs., 180 figs., 54 tabs. (Author)
Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety
International Nuclear Information System (INIS)
Broadhead, B.L.; Childs, R.L.; Rearden, B.T.
1999-01-01
Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community
Reducing the uncertainty in robotic machining by modal analysis
Alberdi, Iñigo; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde
2017-10-01
The use of industrial robots for machining could lead to high cost and energy savings for the manufacturing industry. Machining robots offer several advantages respect to CNC machines such as flexibility, wide working space, adaptability and relatively low cost. However, there are some drawbacks that are preventing a widespread adoption of robotic solutions namely lower stiffness, vibration/chatter problems and lower accuracy and repeatability. Normally due to these issues conservative cutting parameters are chosen, resulting in a low material removal rate (MRR). In this article, an example of a modal analysis of a robot is presented. For that purpose the Tap-testing technology is introduced, which aims at maximizing productivity, reducing the uncertainty in the selection of cutting parameters and offering a stable process free from chatter vibrations.
Parameter uncertainty effects on variance-based sensitivity analysis
International Nuclear Information System (INIS)
Yu, W.; Harris, T.J.
2009-01-01
In the past several years there has been considerable commercial and academic interest in methods for variance-based sensitivity analysis. The industrial focus is motivated by the importance of attributing variance contributions to input factors. A more complete understanding of these relationships enables companies to achieve goals related to quality, safety and asset utilization. In a number of applications, it is possible to distinguish between two types of input variables-regressive variables and model parameters. Regressive variables are those that can be influenced by process design or by a control strategy. With model parameters, there are typically no opportunities to directly influence their variability. In this paper, we propose a new method to perform sensitivity analysis through a partitioning of the input variables into these two groupings: regressive variables and model parameters. A sequential analysis is proposed, where first an sensitivity analysis is performed with respect to the regressive variables. In the second step, the uncertainty effects arising from the model parameters are included. This strategy can be quite useful in understanding process variability and in developing strategies to reduce overall variability. When this method is used for nonlinear models which are linear in the parameters, analytical solutions can be utilized. In the more general case of models that are nonlinear in both the regressive variables and the parameters, either first order approximations can be used, or numerically intensive methods must be used
Uncertainty importance analysis using parametric moment ratio functions.
Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen
2014-02-01
This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.
Uncertainty Analysis of the NASA Glenn 8x6 Supersonic Wind Tunnel
Stephens, Julia; Hubbard, Erin; Walter, Joel; McElroy, Tyler
2016-01-01
This paper presents methods and results of a detailed measurement uncertainty analysis that was performed for the 8- by 6-foot Supersonic Wind Tunnel located at the NASA Glenn Research Center. The statistical methods and engineering judgments used to estimate elemental uncertainties are described. The Monte Carlo method of propagating uncertainty was selected to determine the uncertainty of calculated variables of interest. A detailed description of the Monte Carlo method as applied for this analysis is provided. Detailed uncertainty results for the uncertainty in average free stream Mach number as well as other variables of interest are provided. All results are presented as random (variation in observed values about a true value), systematic (potential offset between observed and true value), and total (random and systematic combined) uncertainty. The largest sources contributing to uncertainty are determined and potential improvement opportunities for the facility are investigated.
Uncertainty analysis of a low flow model for the Rhine River
Demirel, M.C.; Booij, Martijn J.
2011-01-01
It is widely recognized that hydrological models are subject to parameter uncertainty. However, little attention has been paid so far to the uncertainty in parameters of the data-driven models like weights in neural networks. This study aims at applying a structured uncertainty analysis to a
Quality in environmental science for policy: assessing uncertainty as a component of policy analysis
Maxim, L.; van der Sluijs, J.P.
2011-01-01
The sheer number of attempts to define and classify uncertainty reveals an awareness of its importance in environmental science for policy, though the nature of uncertainty is often misunderstood. The interdisciplinary field of uncertainty analysis is unstable; there are currently several incomplete
Uncertainty Analysis of In leakage Test for Pressurized Control Room Envelop
Energy Technology Data Exchange (ETDEWEB)
Lee, J. B. [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2013-10-15
In leakage tests for control room envelops(CRE) of newly constructed nuclear power plants are required to prove the control room habitability. Results of the in leakage tests should be analyzed using an uncertainty analysis. Test uncertainty can be an issue if the test results for pressurized CREs show low in leakage. To have a better knowledge of the test uncertainty, a statistical model for the uncertainty analysis is described here and a representative uncertainty analysis of a sample in leakage test is presented. A statistical method for analyzing the uncertainty of the in leakage test is presented here and a representative uncertainty analysis of a sample in leakage test was performed. By using the statistical method we can evaluate the test result with certain level of significance. This method can be more helpful when the difference of the two mean values of the test result is small.
Uncertainty Analysis of In leakage Test for Pressurized Control Room Envelop
International Nuclear Information System (INIS)
Lee, J. B.
2013-01-01
In leakage tests for control room envelops(CRE) of newly constructed nuclear power plants are required to prove the control room habitability. Results of the in leakage tests should be analyzed using an uncertainty analysis. Test uncertainty can be an issue if the test results for pressurized CREs show low in leakage. To have a better knowledge of the test uncertainty, a statistical model for the uncertainty analysis is described here and a representative uncertainty analysis of a sample in leakage test is presented. A statistical method for analyzing the uncertainty of the in leakage test is presented here and a representative uncertainty analysis of a sample in leakage test was performed. By using the statistical method we can evaluate the test result with certain level of significance. This method can be more helpful when the difference of the two mean values of the test result is small
Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh
Mortuza, M. R.; Demissie, Y.; Li, H. Y.
2014-12-01
Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.
Best-estimate analysis and decision making under uncertainty
International Nuclear Information System (INIS)
Orechwa, Y.
2004-01-01
In many engineering analyses of system safety the traditional reliance on conservative evaluation model calculations is being replaced with so called best-estimate analysis. These best-estimate analyses differentiate themselves from the traditional conservative analyses through two ingredients, namely realistic models and an account of the residual uncertainty associated with the model calculations. Best-estimate analysis, in the context of this paper, refers to the numerical evaluation of system properties of interest in situations where direct confirmatory measurements are not feasible. A decision with regard to the safety of the system is then made based on the computed numerical values of the system properties of interest. These situations generally arise in the design of systems that require computed and generally nontrivial extrapolations from the available data. In the case of nuclear reactors, examples are criticality of spent fuel pools, neutronic parameters of new advanced designs where insufficient material is available for mockup critical experiments and, the large break loss of coolant accident (LOCA). In this paper the case of LOCA, is taken to discuss the best-estimate analysis and decision making. Central to decision making is information. Thus, of interest is the source, quantity and quality of the information obtained in a best-estimate analysis, and used to define the acceptance criteria and to formulate a decision rule. This in effect expands the problem from the calculation of a conservative margin to a predefined acceptance criterion, to the formulation of a consistent decision rule and the computation of a test statistic for application of the decision rule. The latter view is a necessary condition for developing risk informed decision rules, and, thus, the relation between design basis analysis criteria and probabilistic risk assessment criteria is key. The discussion is in the context of making a decision under uncertainty for a reactor
Energy Technology Data Exchange (ETDEWEB)
WHEELER, TIMOTHY A.; WYSS, GREGORY D.; HARPER, FREDERICK T.
2000-11-01
Uncertainty distributions for specific parameters of the Cassini General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) Final Safety Analysis Report consequence risk analysis were revised and updated. The revisions and updates were done for all consequence parameters for which relevant information exists from the joint project on Probabilistic Accident Consequence Uncertainty Analysis by the United States Nuclear Regulatory Commission and the Commission of European Communities.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Investments in technology subject to uncertainty. Analysis and policy
DEFF Research Database (Denmark)
Pedersen, Jørgen Lindgaard
1997-01-01
Investments in technology are today of such a magnitude that it matters. In the paper there are three important questions. First on the question in which sense technological uncertainty can be said to be a problem. Second on strategies for diminishing technological uncertainties. Three on policy...
On the principled assignment of probabilities for uncertainty analysis
International Nuclear Information System (INIS)
Unwin, S.D.; Cook, I.
1986-01-01
The authors sympathize with those who raise the questions of inscrutability and over-precision in connection with probabilistic techniques as currently implemented in nuclear PRA. This inscrutability also renders the probabilistic approach, as practiced, open to abuse. They believe that the appropriate remedy is not the discarding of the probabilistic representation of uncertainty in favour of a more simply structured, but logically inconsistent approach such as that of bounding analysis. This would be like forbidding the use of arithmetic in order to prevent the issuing of fraudulent company prospectuses. The remedy, in this analogy, is the enforcement of accounting standards for the valuation of inventory, rates of depreciation etc. They require an analogue of such standards in the PRA domain. What is needed is not the interdiction of probabilistic judgment, but the interdiction of private, inscrutable judgment. Some principles may be conventional in character, as are certain accounting principles. They expound a set of controlling principles which they suggest should govern the formulation of probabilities in nuclear risk analysis. A fuller derivation and consideration of these principles can be found
Uncertainty Analysis of RBMK-Related Experimental Data
International Nuclear Information System (INIS)
Urbonas, Rolandas; Kaliatka, Algirdas; Liaukonis, Mindaugas
2002-01-01
An attempt to validate state-of-the-art thermal hydraulic code ATHLET (GRS, Germany) on the basis of E-108 test facility was made. Originally this code was developed and validated for different type reactors than RBMK. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors, further codes' implementation and validation is required. The phenomena associated with channel type flow instabilities and CHF were found to be an important step in the frame of the overall effort of state-of-the-art validation and application for RBMK reactors. In the paper one-channel approach analysis is presented. Thus, the oscillatory behaviour of the system was not detected. The results show dependence on the nodalization used in the heated channels, initial and boundary conditions and code selected models. It is shown that the code is able to predict a sudden heat structure temperature excursion, when critical heat flux is approached. GRS developed uncertainty and sensitivity methodology was employed in the analysis. (authors)
The uncertainty in physical measurements an introduction to data analysis in the physics laboratory
Fornasini, Paolo
2008-01-01
All measurements of physical quantities are affected by uncertainty. Understanding the origin of uncertainty, evaluating its extent and suitably taking it into account in data analysis is essential for assessing the degree of accuracy of phenomenological relationships and physical laws in both scientific research and technological applications. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory presents an introduction to uncertainty and to some of the most common procedures of data analysis. This book will serve the reader well by filling the gap between tutorial textbooks and highly specialized monographs. The book is divided into three parts. The first part is a phenomenological introduction to measurement and uncertainty: properties of instruments, different causes and corresponding expressions of uncertainty, histograms and distributions, and unified expression of uncertainty. The second part contains an introduction to probability theory, random variable...
Energy Technology Data Exchange (ETDEWEB)
Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others
1997-06-01
This volume is the second of a two-volume document that summarizes a joint project by the US Nuclear Regulatory and the Commission of European Communities to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This two-volume report, which examines mechanisms and uncertainties of transfer through the food chain, is the first in a series of five such reports. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain transfer that affect calculations of offsite radiological consequences. Seven of the experts reported on transfer into the food chain through soil and plants, nine reported on transfer via food products from animals, and two reported on both. The expert judgment elicitation procedure and its outcomes are described in these volumes. This volume contains seven appendices. Appendix A presents a brief discussion of the MAACS and COSYMA model codes. Appendix B is the structure document and elicitation questionnaire for the expert panel on soils and plants. Appendix C presents the rationales and responses of each of the members of the soils and plants expert panel. Appendix D is the structure document and elicitation questionnaire for the expert panel on animal transfer. The rationales and responses of each of the experts on animal transfer are given in Appendix E. Brief biographies of the food chain expert panel members are provided in Appendix F. Aggregated results of expert responses are presented in graph format in Appendix G.
International Nuclear Information System (INIS)
Brown, J.; Goossens, L.H.J.; Kraan, B.C.P.
1997-06-01
This volume is the second of a two-volume document that summarizes a joint project by the US Nuclear Regulatory and the Commission of European Communities to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This two-volume report, which examines mechanisms and uncertainties of transfer through the food chain, is the first in a series of five such reports. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain transfer that affect calculations of offsite radiological consequences. Seven of the experts reported on transfer into the food chain through soil and plants, nine reported on transfer via food products from animals, and two reported on both. The expert judgment elicitation procedure and its outcomes are described in these volumes. This volume contains seven appendices. Appendix A presents a brief discussion of the MAACS and COSYMA model codes. Appendix B is the structure document and elicitation questionnaire for the expert panel on soils and plants. Appendix C presents the rationales and responses of each of the members of the soils and plants expert panel. Appendix D is the structure document and elicitation questionnaire for the expert panel on animal transfer. The rationales and responses of each of the experts on animal transfer are given in Appendix E. Brief biographies of the food chain expert panel members are provided in Appendix F. Aggregated results of expert responses are presented in graph format in Appendix G
International Nuclear Information System (INIS)
Boak, D.M.; Painton, L.
1995-01-01
Probabilistic forecasting techniques have been used in many risk assessment and performance assessment applications on radioactive waste disposal projects such as Yucca Mountain and the Waste Isolation Pilot Plant (WIPP). Probabilistic techniques such as Monte Carlo and Latin Hypercube sampling methods are routinely used to treat uncertainties in physical parameters important in simulating radionuclide transport in a coupled geohydrologic system and assessing the ability of that system to comply with regulatory release limits. However, the use of probabilistic techniques in the treatment of uncertainties in the cost and duration of programmatic alternatives on risk and performance assessment projects is less common. Where significant uncertainties exist and where programmatic decisions must be made despite existing uncertainties, probabilistic techniques may yield important insights into decision options, especially when used in a decision analysis framework and when properly balanced with deterministic analyses. For relatively simple evaluations, these types of probabilistic evaluations can be made using personal computer-based software
Energy Technology Data Exchange (ETDEWEB)
Cardoni, Jeffrey N.; Kalinich, Donald A.
2014-02-01
Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.
Report of a CSNI workshop on uncertainty analysis methods. Volume 1 + 2
International Nuclear Information System (INIS)
Wickett, A.J.; Yadigaroglu, G.
1994-08-01
The OECD NEA CSNI Principal Working Group 2 (PWG2) Task Group on Thermal Hydraulic System Behaviour (TGTHSB) has, in recent years, received presentations of a variety of different methods to analyze the uncertainty in the calculations of advanced unbiased (best estimate) codes. Proposals were also made for an International Standard Problem (ISP) to compare the uncertainty analysis methods. The objectives for the Workshop were to discuss and fully understand the principles of uncertainty analysis relevant to LOCA modelling and like problems, to examine the underlying issues from first principles, in preference to comparing and contrasting the currently proposed methods, to reach consensus on the issues identified as far as possible while not avoiding the controversial aspects, to identify as clearly as possible unreconciled differences, and to issue a Status Report. Eight uncertainty analysis methods were presented. A structured discussion of various aspects of uncertainty analysis followed - the need for uncertainty analysis, identification and ranking of uncertainties, characterisation, quantification and combination of uncertainties and applications, resources and future developments. As a result, the objectives set out above were, to a very large extent, achieved. Plans for the ISP were also discussed. Volume 1 contains a record of the discussions on uncertainty methods. Volume 2 is a compilation of descriptions of the eight uncertainty analysis methods presented at the workshop
Code development for eigenvalue total sensitivity analysis and total uncertainty analysis
International Nuclear Information System (INIS)
Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Zu, Tiejun; Shen, Wei
2015-01-01
Highlights: • We develop a new code for total sensitivity and uncertainty analysis. • The implicit effects of cross sections can be considered. • The results of our code agree well with TSUNAMI-1D. • Detailed analysis for origins of implicit effects is performed. - Abstract: The uncertainties of multigroup cross sections notably impact eigenvalue of neutron-transport equation. We report on a total sensitivity analysis and total uncertainty analysis code named UNICORN that has been developed by applying the direct numerical perturbation method and statistical sampling method. In order to consider the contributions of various basic cross sections and the implicit effects which are indirect results of multigroup cross sections through resonance self-shielding calculation, an improved multigroup cross-section perturbation model is developed. The DRAGON 4.0 code, with application of WIMSD-4 format library, is used by UNICORN to carry out the resonance self-shielding and neutron-transport calculations. In addition, the bootstrap technique has been applied to the statistical sampling method in UNICORN to obtain much steadier and more reliable uncertainty results. The UNICORN code has been verified against TSUNAMI-1D by analyzing the case of TMI-1 pin-cell. The numerical results show that the total uncertainty of eigenvalue caused by cross sections can reach up to be about 0.72%. Therefore the contributions of the basic cross sections and their implicit effects are not negligible
Bayesian models for comparative analysis integrating phylogenetic uncertainty
Directory of Open Access Journals (Sweden)
Villemereuil Pierre de
2012-06-01
Full Text Available Abstract Background Uncertainty in comparative analyses can come from at least two sources: a phylogenetic uncertainty in the tree topology or branch lengths, and b uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow and inflated significance in hypothesis testing (e.g. p-values will be too small. Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible
Bayesian models for comparative analysis integrating phylogenetic uncertainty
2012-01-01
Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for
Uncertainty Analysis of Multi-Model Flood Forecasts
Directory of Open Access Journals (Sweden)
Erich J. Plate
2015-12-01
Full Text Available This paper demonstrates, by means of a systematic uncertainty analysis, that the use of outputs from more than one model can significantly improve conditional forecasts of discharges or water stages, provided the models are structurally different. Discharge forecasts from two models and the actual forecasted discharge are assumed to form a three-dimensional joint probability density distribution (jpdf, calibrated on long time series of data. The jpdf is decomposed into conditional probability density distributions (cpdf by means of Bayes formula, as suggested and explored by Krzysztofowicz in a series of papers. In this paper his approach is simplified to optimize conditional forecasts for any set of two forecast models. Its application is demonstrated by means of models developed in a study of flood forecasting for station Stung Treng on the middle reach of the Mekong River in South-East Asia. Four different forecast models were used and pairwise combined: forecast with no model, with persistence model, with a regression model, and with a rainfall-runoff model. Working with cpdfs requires determination of dependency among variables, for which linear regressions are required, as was done by Krzysztofowicz. His Bayesian approach based on transforming observed probability distributions of discharges and forecasts into normal distributions is also explored. Results obtained with his method for normal prior and likelihood distributions are identical to results from direct multiple regressions. Furthermore, it is shown that in the present case forecast accuracy is only marginally improved, if Weibull distributed basic data were converted into normally distributed variables.
Sequencing Infrastructure Investments under Deep Uncertainty Using Real Options Analysis
Directory of Open Access Journals (Sweden)
Nishtha Manocha
2018-02-01
Full Text Available The adaptation tipping point and adaptation pathway approach developed to make decisions under deep uncertainty do not shed light on which among the multiple available pathways should be chosen as the preferred pathway. This creates the need to extend these approaches by means of suitable tools that can help sequence actions and subsequently enable the outlining of relevant policies. This paper presents two sequencing approaches, namely, the “Build to Target” and “Build Up” approach, to aid in sub-selecting a set of preferred pathways. Both approaches differ in the levels of flexibility they offer. They are exemplified by means of two case studies wherein the Net Present Valuation and the Real Options Analysis are employed as selection criterions. The results demonstrate the benefit of these two approaches when used in conjunction with the adaptation pathways and show how the pathways selected by means of a Build to Target approach generally have a value greater than, or at least the same as, the pathways selected by the Build Up approach. Further, this paper also demonstrates the capacity of Real Options to quantify and capture the economic value of flexibility, which cannot be done by traditional valuation approaches such as Net Present Valuation.
Application of status uncertainty analysis methods for AP1000 LBLOCA calculation
International Nuclear Information System (INIS)
Zhang Shunxiang; Liang Guoxing
2012-01-01
Parameter uncertainty analysis is developed by using the reasonable method to establish the response relations between input parameter uncertainties and output uncertainties. The application of the parameter uncertainty analysis makes the simulation of plant state more accuracy and improves the plant economy with reasonable security assurance. The AP1000 LBLOCA was analyzed in this paper and the results indicate that the random sampling statistical analysis method, sensitivity analysis numerical method and traditional error propagation analysis method can provide quite large peak cladding temperature (PCT) safety margin, which is much helpful for choosing suitable uncertainty analysis method to improve the plant economy. Additionally, the random sampling statistical analysis method applying mathematical statistics theory makes the largest safety margin due to the reducing of the conservation. Comparing with the traditional conservative bounding parameter analysis method, the random sampling method can provide the PCT margin of 100 K, while the other two methods can only provide 50-60 K. (authors)
International Nuclear Information System (INIS)
Barhen, J.; Bjerke, M.A.; Cacuci, D.G.; Mullins, C.B.; Wagschal, G.G.
1982-01-01
An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two ''off-line'' formalisms, with and without ''foresight'' characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The ''online'' formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems
A structured analysis of uncertainty surrounding modeled impacts of groundwater-extraction rules
Guillaume, Joseph H. A.; Qureshi, M. Ejaz; Jakeman, Anthony J.
2012-08-01
Integrating economic and groundwater models for groundwater-management can help improve understanding of trade-offs involved between conflicting socioeconomic and biophysical objectives. However, there is significant uncertainty in most strategic decision-making situations, including in the models constructed to represent them. If not addressed, this uncertainty may be used to challenge the legitimacy of the models and decisions made using them. In this context, a preliminary uncertainty analysis was conducted of a dynamic coupled economic-groundwater model aimed at assessing groundwater extraction rules. The analysis demonstrates how a variety of uncertainties in such a model can be addressed. A number of methods are used including propagation of scenarios and bounds on parameters, multiple models, block bootstrap time-series sampling and robust linear regression for model calibration. These methods are described within the context of a theoretical uncertainty management framework, using a set of fundamental uncertainty management tasks and an uncertainty typology.
Uncertainty analysis of thermal quantities measurement in a centrifugal compressor
Hurda, Lukáš; Matas, Richard
2017-09-01
Compressor performance characteristics evaluation process based on the measurement of pressure, temperature and other quantities is examined to find uncertainties for directly measured and derived quantities. CFD is used as a tool to quantify the influences of different sources of uncertainty of measurements for single- and multi-thermocouple total temperature probes. The heat conduction through the body of the thermocouple probe and the heat-up of the air in the intake piping are the main phenomena of interest.
International Nuclear Information System (INIS)
Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.
2002-01-01
The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management
Energy Technology Data Exchange (ETDEWEB)
Redus, K. S.; Hampshire, G. J.; Patterson, J. E.; Perkins, A. B.
2002-02-25
The Waste Acceptance Criteria Forecasting and Analysis Capability System (WACFACS) is used to plan for, evaluate, and control the supply of approximately 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous wastes from over 60 environmental restoration projects between FY02 through FY10 to the Oak Ridge Environmental Management Waste Management Facility (EMWMF). WACFACS is a validated decision support tool that propagates uncertainties inherent in site-related contaminant characterization data, disposition volumes during EMWMF operations, and project schedules to quantitatively determine the confidence that risk-based performance standards are met. Trade-offs in schedule, volumes of waste lots, and allowable concentrations of contaminants are performed to optimize project waste disposition, regulatory compliance, and disposal cell management.
Analysis of Uncertainty in Dynamic Processes Development of Banks Functioning
Directory of Open Access Journals (Sweden)
Aleksei V. Korovyakovskii
2013-01-01
Full Text Available The paper offers the approach to measure of uncertainty estimation in dynamic processes of banks functioning, using statistic data of different banking operations indicators. To calculate measure of uncertainty in dynamic processes of banks functioning the phase images of relevant sets of statistic data are considered. Besides, it is shown that the form of phase image of the studied sets of statistic data can act as a basis of measure of uncertainty estimation in dynamic processes of banks functioning. The set of analytical characteristics are offered to formalize the form of phase image definition of the studied sets of statistic data. It is shown that the offered analytical characteristics consider inequality of changes in values of the studied sets of statistic data, which is one of the ways of uncertainty display in dynamic processes development. The invariant estimates of measure of uncertainty in dynamic processes of banks functioning, considering significant changes in absolute values of the same indicators for different banks were obtained. The examples of calculation of measure of uncertainty in dynamic processes of concrete banks functioning were cited.
Cooke, Georga; Tapley, Amanda; Holliday, Elizabeth; Morgan, Simon; Henderson, Kim; Ball, Jean; van Driel, Mieke; Spike, Neil; Kerr, Rohan; Magin, Parker
2017-12-01
Tolerance for ambiguity is essential for optimal learning and professional competence. General practice trainees must be, or must learn to be, adept at managing clinical uncertainty. However, few studies have examined associations of intolerance of uncertainty in this group. The aim of this study was to establish levels of tolerance of uncertainty in Australian general practice trainees and associations of uncertainty with demographic, educational and training practice factors. A cross-sectional analysis was performed on the Registrar Clinical Encounters in Training (ReCEnT) project, an ongoing multi-site cohort study. Scores on three of the four independent subscales of the Physicians' Reaction to Uncertainty (PRU) instrument were analysed as outcome variables in linear regression models with trainee and practice factors as independent variables. A total of 594 trainees contributed data on a total of 1209 occasions. Trainees in earlier training terms had higher scores for 'Anxiety due to uncertainty', 'Concern about bad outcomes' and 'Reluctance to disclose diagnosis/treatment uncertainty to patients'. Beyond this, findings suggest two distinct sets of associations regarding reaction to uncertainty. Firstly, affective aspects of uncertainty (the 'Anxiety' and 'Concern' subscales) were associated with female gender, less experience in hospital prior to commencing general practice training, and graduation overseas. Secondly, a maladaptive response to uncertainty (the 'Reluctance to disclose' subscale) was associated with urban practice, health qualifications prior to studying medicine, practice in an area of higher socio-economic status, and being Australian-trained. This study has established levels of three measures of trainees' responses to uncertainty and associations with these responses. The current findings suggest differing 'phenotypes' of trainees with high 'affective' responses to uncertainty and those reluctant to disclose uncertainty to patients. More
Han, Feng; Zheng, Yi
2018-06-01
Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.
Uncertainty analysis of nonlinear systems employing the first-order reliability method
International Nuclear Information System (INIS)
Choi, Chan Kyu; Yoo, Hong Hee
2012-01-01
In most mechanical systems, properties of the system elements have uncertainties due to several reasons. For example, mass, stiffness coefficient of a spring, damping coefficient of a damper or friction coefficients have uncertain characteristics. The uncertain characteristics of the elements have a direct effect on the system performance uncertainty. It is very important to estimate the performance uncertainty since the performance uncertainty is directly related to manufacturing yield and consumer satisfaction. Due to this reason, the performance uncertainty should be estimated accurately and considered in the system design. In this paper, performance measures are defined for nonlinear vibration systems and the performance measure uncertainties are estimated employing the first order reliability method (FORM). It was found that the FORM could provide good results in spite of the system nonlinear characteristics. Comparing to the results obtained by Monte Carlo Simulation (MCS), the accuracy of the uncertainty analysis results obtained by the FORM is validated
SENSIT: a cross-section and design sensitivity and uncertainty analysis code
International Nuclear Information System (INIS)
Gerstl, S.A.W.
1980-01-01
SENSIT computes the sensitivity and uncertainty of a calculated integral response (such as a dose rate) due to input cross sections and their uncertainties. Sensitivity profiles are computed for neutron and gamma-ray reaction cross sections of standard multigroup cross section sets and for secondary energy distributions (SEDs) of multigroup scattering matrices. In the design sensitivity mode, SENSIT computes changes in an integral response due to design changes and gives the appropriate sensitivity coefficients. Cross section uncertainty analyses are performed for three types of input data uncertainties: cross-section covariance matrices for pairs of multigroup reaction cross sections, spectral shape uncertainty parameters for secondary energy distributions (integral SED uncertainties), and covariance matrices for energy-dependent response functions. For all three types of data uncertainties SENSIT computes the resulting variance and estimated standard deviation in an integral response of interest, on the basis of generalized perturbation theory. SENSIT attempts to be more comprehensive than earlier sensitivity analysis codes, such as SWANLAKE
Uncertainty Analysis of RELAP5-3D
Energy Technology Data Exchange (ETDEWEB)
Alexandra E Gertman; Dr. George L Mesina
2012-07-01
As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.
International Nuclear Information System (INIS)
Gerstl, S.A.W.; LaBauve, R.J.; Young, P.G.
1980-05-01
On the example of General Atomic's well-documented Power Generating Fusion Reactor (PGFR) design, this report exercises a comprehensive neutron cross-section and secondary energy distribution (SED) uncertainty analysis. The LASL sensitivity and uncertainty analysis code SENSIT is used to calculate reaction cross-section sensitivity profiles and integral SED sensitivity coefficients. These are then folded with covariance matrices and integral SED uncertainties to obtain the resulting uncertainties of three calculated neutronics design parameters: two critical radiation damage rates and a nuclear heating rate. The report documents the first sensitivity-based data uncertainty analysis, which incorporates a quantitative treatment of the effects of SED uncertainties. The results demonstrate quantitatively that the ENDF/B-V cross-section data files for C, H, and O, including their SED data, are fully adequate for this design application, while the data for Fe and Ni are at best marginally adequate because they give rise to response uncertainties up to 25%. Much higher response uncertainties are caused by cross-section and SED data uncertainties in Cu (26 to 45%), tungsten (24 to 54%), and Cr (up to 98%). Specific recommendations are given for re-evaluations of certain reaction cross-sections, secondary energy distributions, and uncertainty estimates
Methodologies for uncertainty analysis in the level 2 PSA and their implementation procedures
International Nuclear Information System (INIS)
Ahn, Kwang Il; Yang, Joon Eun; Kim, Dong Ha
2002-04-01
Main purpose of this report to present standardized methodologies for uncertainty analysis in the Level 2 Probabilistic Safety Assessment (PSA) and their implementation procedures, based on results obtained through a critical review of the existing methodologies for the analysis of uncertainties employed in the Level 2 PSA, especially Accident Progression Event Tree (APET). Uncertainties employed in the Level 2 PSA, quantitative expressions of overall knowledge of analysts' and experts' participating in the probabilistic quantification process of phenomenological accident progressions ranging from core melt to containment failure, their numerical values are directly related to the degree of confidence that the analyst has that a given phenomenological event or accident process will or will not occur, or analyst's subjective probabilities of occurrence. These results that are obtained from Level 2 PSA uncertainty analysis, become an essential contributor to the plant risk, in addition to the Level 1 PSA and Level 3 PSA uncertainties. Uncertainty analysis methodologies and their implementation procedures presented in this report was prepared based on the following criteria: 'uncertainty quantification process must be logical, scrutable, complete, consistent and in an appropriate level of detail, as mandated by the Level 2 PSA objectives'. For the aforementioned purpose, this report deals mainly with (1) summary of general or Level 2 PSA specific uncertainty analysis methodologies, (2) selection of phenomenological branch events for uncertainty analysis in the APET, methodology for quantification of APET uncertainty inputs and its implementation procedure, (3) statistical propagation of uncertainty inputs through APET and its implementation procedure, and (4) formal procedure for quantification of APET uncertainties and source term categories (STCs) through the Level 2 PSA quantification codes
DEFF Research Database (Denmark)
Price, Jason Anthony; Nordblad, Mathias; Woodley, John
2014-01-01
This paper demonstrates the added benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production. For this study, a kinetic model by Fedosov and co-workers is used. For the uncertainty analysis the Monte Carlo procedure was used to statistically quantify...
Modified Phenomena Identification and Ranking Table (PIRT) for Uncertainty Analysis
International Nuclear Information System (INIS)
Gol-Mohamad, Mohammad P.; Modarres, Mohammad; Mosleh, Ali
2006-01-01
This paper describes a methodology of characterizing important phenomena, which is also part of a broader research by the authors called 'Modified PIRT'. The methodology provides robust process of phenomena identification and ranking process for more precise quantification of uncertainty. It is a two-step process of identifying and ranking methodology based on thermal-hydraulics (TH) importance as well as uncertainty importance. Analytical Hierarchical Process (AHP) has been used for as a formal approach for TH identification and ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the TH model(s) used to represent the important phenomena. This part uses subjective justification by evaluating available information and data from experiments, and code predictions. The proposed methodology was demonstrated by developing a PIRT for large break loss of coolant accident LBLOCA for the LOFT integral facility with highest core power (test LB-1). (authors)
Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques
AUTHOR|(CDS)2090816; Almond, Heather
Big science and ambitious industrial projects continually push forward with technical requirements beyond the grasp of conventional engineering techniques. Example of those are ultra-high precision requirements in the field of celestial telescopes, particle accelerators and aerospace industry. Such extreme requirements are limited largely by the capability of the metrology used, namely, it’s uncertainty in relation to the alignment tolerance required. The current work was initiated as part of Maria Curie European research project held at CERN, Geneva aiming to answer those challenges as related to future accelerators requiring alignment of 2 m large assemblies to tolerances in the 10 µm range. The thesis has found several gaps in current knowledge limiting such capability. Among those was the lack of application of state of the art uncertainty propagation methods in alignment measurements metrology. Another major limiting factor found was the lack of uncertainty statements in the thermal errors compensatio...
Uncertainties in criticality analysis which affect the storage and transportation of LWR fuel
International Nuclear Information System (INIS)
Napolitani, D.G.
1989-01-01
Satisfying the design criteria for subcriticality with uncertainties affects: the capacity of LWR storage arrays, maximum allowable enrichment, minimum allowable burnup and economics of various storage options. There are uncertainties due to: calculational method, data libraries, geometric limitations, modelling bias, the number and quality of benchmarks performed and mechanical uncertainties in the array. Yankee Atomic Electric Co. (YAEC) has developed and benchmarked methods to handle: high density storage rack designs, pin consolidation, low density moderation and burnup credit. The uncertainties associated with such criticality analysis are quantified on the basis of clean criticals, power reactor criticals and intercomparison of independent analysis methods
Energy Technology Data Exchange (ETDEWEB)
Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes.
International Nuclear Information System (INIS)
Harper, F.T.; Young, M.L.; Miller, L.A.
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes
Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions
International Nuclear Information System (INIS)
Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei
2017-01-01
Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k_e_f_f and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.
Principles and applications of measurement and uncertainty analysis in research and calibration
Energy Technology Data Exchange (ETDEWEB)
Wells, C.V.
1992-11-01
Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.
Principles and applications of measurement and uncertainty analysis in research and calibration
Energy Technology Data Exchange (ETDEWEB)
Wells, C.V.
1992-11-01
Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.
Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions
Energy Technology Data Exchange (ETDEWEB)
Wan, Chenghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Shen, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)
2017-04-15
Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k{sub eff} and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.
PCT Uncertainty Analysis Using Unscented Transform with Random Orthogonal Matrix
Energy Technology Data Exchange (ETDEWEB)
Fynana, Douglas A.; Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of); Lee, John C. [Univ. of Michigan, Michigan (United States)
2015-05-15
Most Best Estimate Plus Uncertainty (BEPU) methods employ nonparametric order statistics through Wilks' formula to quantify uncertainties of best estimate simulations of nuclear power plant (NPP) transients. 95%/95% limits, the 95''t{sup h} percentile at a 95% confidence level, are obtained by randomly sampling all uncertainty contributors through conventional Monte Carlo (MC). Advantages are simple implementation of MC sampling of input probability density functions (pdfs) and limited computational expense of 1''s{sup t}, 2''n{sup d}, and 3''r{sup d} order Wilks' formula requiring only 59, 93, or 124 simulations, respectively. A disadvantage of small sample size is large sample to sample variation of statistical estimators. This paper presents a new efficient sampling based algorithm for accurate estimation of mean and variance of the output parameter pdf. The algorithm combines a deterministic sampling method, the unscented transform (UT), with random sampling through the generation of a random orthogonal matrix (ROM). The UT guarantees the mean, covariance, and 3''r{sup d} order moments of the multivariate input parameter distributions are exactly preserved by the sampled input points and the orthogonal transformation of the points by a ROM guarantees the sample error of all 4''t{sup h} order and higher moments are unbiased. The UT with ROM algorithm is applied to the uncertainty quantification of the peak clad temperature (PCT) during a large break loss-of-coolant accident (LBLOCA) in an OPR1000 NPP to demonstrate the applicability of the new algorithm to BEPU. This paper presented a new algorithm combining the UT with ROM for efficient multivariate parameter sampling that ensures sample input covariance and 3''r{sup d} order moments are exactly preserved and 4''th moment errors are small and unbiased. The advantageous sample properties guarantee higher order accuracy and
Probabilistic structural analysis to quantify uncertainties associated with turbopump blades
Nagpal, Vinod K.; Rubinstein, Robert; Chamis, Christos C.
1987-01-01
A probabilistic study of turbopump blades has been in progress at NASA Lewis Research Center for over the last two years. The objectives of this study are to evaluate the effects of uncertainties in geometry and material properties on the structural response of the turbopump blades to evaluate the tolerance limits on the design. A methodology based on probabilistic approach has been developed to quantify the effects of the random uncertainties. The results of this study indicate that only the variations in geometry have significant effects.
International Nuclear Information System (INIS)
Heo, Jaeseok; Kim, Kyung Doo
2015-01-01
Statistical approaches to uncertainty quantification and sensitivity analysis are very important in estimating the safety margins for an engineering design application. This paper presents a system analysis and optimization toolkit developed by Korea Atomic Energy Research Institute (KAERI), which includes multiple packages of the sensitivity analysis and uncertainty quantification algorithms. In order to reduce the computing demand, multiple compute resources including multiprocessor computers and a network of workstations are simultaneously used. A Graphical User Interface (GUI) was also developed within the parallel computing framework for users to readily employ the toolkit for an engineering design and optimization problem. The goal of this work is to develop a GUI framework for engineering design and scientific analysis problems by implementing multiple packages of system analysis methods in the parallel computing toolkit. This was done by building an interface between an engineering simulation code and the system analysis software packages. The methods and strategies in the framework were designed to exploit parallel computing resources such as those found in a desktop multiprocessor workstation or a network of workstations. Available approaches in the framework include statistical and mathematical algorithms for use in science and engineering design problems. Currently the toolkit has 6 modules of the system analysis methodologies: deterministic and probabilistic approaches of data assimilation, uncertainty propagation, Chi-square linearity test, sensitivity analysis, and FFTBM
Energy Technology Data Exchange (ETDEWEB)
Heo, Jaeseok; Kim, Kyung Doo [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Statistical approaches to uncertainty quantification and sensitivity analysis are very important in estimating the safety margins for an engineering design application. This paper presents a system analysis and optimization toolkit developed by Korea Atomic Energy Research Institute (KAERI), which includes multiple packages of the sensitivity analysis and uncertainty quantification algorithms. In order to reduce the computing demand, multiple compute resources including multiprocessor computers and a network of workstations are simultaneously used. A Graphical User Interface (GUI) was also developed within the parallel computing framework for users to readily employ the toolkit for an engineering design and optimization problem. The goal of this work is to develop a GUI framework for engineering design and scientific analysis problems by implementing multiple packages of system analysis methods in the parallel computing toolkit. This was done by building an interface between an engineering simulation code and the system analysis software packages. The methods and strategies in the framework were designed to exploit parallel computing resources such as those found in a desktop multiprocessor workstation or a network of workstations. Available approaches in the framework include statistical and mathematical algorithms for use in science and engineering design problems. Currently the toolkit has 6 modules of the system analysis methodologies: deterministic and probabilistic approaches of data assimilation, uncertainty propagation, Chi-square linearity test, sensitivity analysis, and FFTBM.
Directory of Open Access Journals (Sweden)
J. Florian Wellmann
2013-04-01
Full Text Available The quantification and analysis of uncertainties is important in all cases where maps and models of uncertain properties are the basis for further decisions. Once these uncertainties are identified, the logical next step is to determine how they can be reduced. Information theory provides a framework for the analysis of spatial uncertainties when different subregions are considered as random variables. In the work presented here, joint entropy, conditional entropy, and mutual information are applied for a detailed analysis of spatial uncertainty correlations. The aim is to determine (i which areas in a spatial analysis share information, and (ii where, and by how much, additional information would reduce uncertainties. As an illustration, a typical geological example is evaluated: the case of a subsurface layer with uncertain depth, shape and thickness. Mutual information and multivariate conditional entropies are determined based on multiple simulated model realisations. Even for this simple case, the measures not only provide a clear picture of uncertainties and their correlations but also give detailed insights into the potential reduction of uncertainties at each position, given additional information at a different location. The methods are directly applicable to other types of spatial uncertainty evaluations, especially where multiple realisations of a model simulation are analysed. In summary, the application of information theoretic measures opens up the path to a better understanding of spatial uncertainties, and their relationship to information and prior knowledge, for cases where uncertain property distributions are spatially analysed and visualised in maps and models.
International Nuclear Information System (INIS)
Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.
1993-06-01
The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS
International Nuclear Information System (INIS)
Szikszai, T.
1997-01-01
The presentation discusses the following issues: The objectives of the risk-based indicator programme. The characteristics of the risk-based indicators. The objectives of risk-based safety indicators - in monitoring safety; in PSA applications. What indicators? How to produce the risk based indicators? PSA requirements
Quality in environmental science for policy: Assessing uncertainty as a component of policy analysis
International Nuclear Information System (INIS)
Maxim, Laura; Sluijs, Jeroen P. van der
2011-01-01
The sheer number of attempts to define and classify uncertainty reveals an awareness of its importance in environmental science for policy, though the nature of uncertainty is often misunderstood. The interdisciplinary field of uncertainty analysis is unstable; there are currently several incomplete notions of uncertainty leading to different and incompatible uncertainty classifications. One of the most salient shortcomings of present-day practice is that most of these classifications focus on quantifying uncertainty while ignoring the qualitative aspects that tend to be decisive in the interface between science and policy. Consequently, the current practices of uncertainty analysis contribute to increasing the perceived precision of scientific knowledge, but do not adequately address its lack of socio-political relevance. The 'positivistic' uncertainty analysis models (like those that dominate the fields of climate change modelling and nuclear or chemical risk assessment) have little social relevance, as they do not influence negotiations between stakeholders. From the perspective of the science-policy interface, the current practices of uncertainty analysis are incomplete and incorrectly focused. We argue that although scientific knowledge produced and used in a context of political decision-making embodies traditional scientific characteristics, it also holds additional properties linked to its influence on social, political, and economic relations. Therefore, the significance of uncertainty cannot be assessed based on quality criteria that refer to the scientific content only; uncertainty must also include quality criteria specific to the properties and roles of this scientific knowledge within political, social, and economic contexts and processes. We propose a conceptual framework designed to account for such substantive, contextual, and procedural criteria of knowledge quality. At the same time, the proposed framework includes and synthesizes the various
International Nuclear Information System (INIS)
Unwin, S.D.; Cazzoli, E.G.; Davis, R.E.; Khatib-Rahbar, M.; Lee, M.; Nourbakhsh, H.; Park, C.K.; Schmidt, E.
1989-01-01
The probabilistic characterization of uncertainty can be problematic in circumstances where there is a paucity of supporting data and limited experience on which to base engineering judgement. Information theory provides a framework in which to address this issue through reliance upon entropy-related principles of uncertainty maximization. We describe an application of such principles in the United States Nuclear Regulatory Commission-sponsored program QUASAR (Quantification and Uncertainty Analysis of Source Terms for Severe Accidents in Light Water Reactors). (author)
Uncertainty budget in internal monostandard NAA for small and large size samples analysis
International Nuclear Information System (INIS)
Dasari, K.B.; Acharya, R.
2014-01-01
Total uncertainty budget evaluation on determined concentration value is important under quality assurance programme. Concentration calculation in NAA or carried out by relative NAA and k0 based internal monostandard NAA (IM-NAA) method. IM-NAA method has been used for small and large sample analysis of clay potteries. An attempt was made to identify the uncertainty components in IM-NAA and uncertainty budget for La in both small and large size samples has been evaluated and compared. (author)
Uncertainty analysis for a field-scale P loss model
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study we assessed the effect of model input error on predic...
Uncertainty, financial development and economic growth : an empirical analysis
Lensink, Robert
1999-01-01
This paper examines whether financial sector development may partly undo growth-reducing effects of policy uncertainty. By performing a cross-country growth regression for the 1970-1995 period I find evidence that countries with a more developed financial sector are better able to nullify the
Uncertainty in river discharge observations: a quantitative analysis
Directory of Open Access Journals (Sweden)
G. Di Baldassarre
2009-06-01
Full Text Available This study proposes a framework for analysing and quantifying the uncertainty of river flow data. Such uncertainty is often considered to be negligible with respect to other approximations affecting hydrological studies. Actually, given that river discharge data are usually obtained by means of the so-called rating curve method, a number of different sources of error affect the derived observations. These include: errors in measurements of river stage and discharge utilised to parameterise the rating curve, interpolation and extrapolation error of the rating curve, presence of unsteady flow conditions, and seasonal variations of the state of the vegetation (i.e. roughness. This study aims at analysing these sources of uncertainty using an original methodology. The novelty of the proposed framework lies in the estimation of rating curve uncertainty, which is based on hydraulic simulations. These latter are carried out on a reach of the Po River (Italy by means of a one-dimensional (1-D hydraulic model code (HEC-RAS. The results of the study show that errors in river flow data are indeed far from negligible.
Latent class analysis of indicators of intolerance of uncertainty
Boelen, P.A.|info:eu-repo/dai/nl/174011954; Lenferink, L.I.M.|info:eu-repo/dai/nl/411295896
Intolerance of Uncertainty (IU) is a transdiagnostic vulnerability factor involved in depression and anxiety symptoms and disorders. IU encompasses Prospective IU (“Unforeseen events upset me greatly”) and Inhibitory IU (“The smallest doubt can stop me from acting”). Research has yet to explore
3.8 Proposed approach to uncertainty quantification and sensitivity analysis in the next PA
Energy Technology Data Exchange (ETDEWEB)
Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wohlwend, Jen [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-10-02
This memorandum builds upon Section 3.8 of SRNL (2016) and Flach (2017) by defining key error analysis, uncertainty quantification, and sensitivity analysis concepts and terms, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.
Determination of uncertainties in energy and exergy analysis of a power plant
International Nuclear Information System (INIS)
Ege, Ahmet; Şahin, Hacı Mehmet
2014-01-01
Highlights: • Energy and exergy efficiency uncertainties in a large thermal power plant examined. • Sensitivity analysis shows importance of basic measurements on efficiency analysis. • A quick and practical approach is provided for determining efficiency uncertainties. • Extreme case analysis characterizes maximum possible boundaries of uncertainties. • Uncertainty determination in a plant is a dynamic process with real data. - Abstract: In this study, energy and exergy efficiency uncertainties of a large scale lignite fired power plant cycle and various measurement parameter sensitivities were investigated for five different design power outputs (100%, 85%, 80%, 60% and 40%) and with real data of the plant. For that purpose a black box method was employed considering coal flow with Lower Heating Value (LHV) as a single input and electricity produced as a single output of the plant. The uncertainty of energy and exergy efficiency of the plant was evaluated with this method by applying sensitivity analysis depending on the effect of measurement parameters such as LHV, coal mass flow rate, cell generator output voltage/current. In addition, an extreme case analysis was investigated to determine the maximum range of the uncertainties. Results of the black box method showed that uncertainties varied between 1.82–1.98% for energy efficiency and 1.32–1.43% for exergy efficiency of the plant at an operating power level of 40–100% of full power. It was concluded that LHV determination was the most important uncertainty source of energy and exergy efficiency of the plant. The uncertainties of the extreme case analysis were determined between 2.30% and 2.36% for energy efficiency while 1.66% and 1.70% for exergy efficiency for 40–100% power output respectively. Proposed method was shown to be an approach for understanding major uncertainties as well as effects of some measurement parameters in a large scale thermal power plant
Uncertainty and sensitivity analysis in a Probabilistic Safety Analysis level-1
International Nuclear Information System (INIS)
Nunez Mc Leod, Jorge E.; Rivera, Selva S.
1996-01-01
A methodology for sensitivity and uncertainty analysis, applicable to a Probabilistic Safety Assessment Level I has been presented. The work contents are: correct association of distributions to parameters, importance and qualification of expert opinions, generations of samples according to sample sizes, and study of the relationships among system variables and systems response. A series of statistical-mathematical techniques are recommended along the development of the analysis methodology, as well as different graphical visualization for the control of the study. (author)
Sampling based uncertainty analysis of 10% hot leg break LOCA in large scale test facility
International Nuclear Information System (INIS)
Sengupta, Samiran; Kraina, V.; Dubey, S. K.; Rao, R. S.; Gupta, S. K.
2010-01-01
Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between 5 th and 95 th percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure
Uncertainty Flow Facilitates Zero-Shot Multi-Label Learning in Affective Facial Analysis
Directory of Open Access Journals (Sweden)
Wenjun Bai
2018-02-01
Full Text Available Featured Application: The proposed Uncertainty Flow framework may benefit the facial analysis with its promised elevation in discriminability in multi-label affective classification tasks. Moreover, this framework also allows the efficient model training and between tasks knowledge transfer. The applications that rely heavily on continuous prediction on emotional valance, e.g., to monitor prisoners’ emotional stability in jail, can be directly benefited from our framework. Abstract: To lower the single-label dependency on affective facial analysis, it urges the fruition of multi-label affective learning. The impediment to practical implementation of existing multi-label algorithms pertains to scarcity of scalable multi-label training datasets. To resolve this, an inductive transfer learning based framework, i.e.,Uncertainty Flow, is put forward in this research to allow knowledge transfer from a single labelled emotion recognition task to a multi-label affective recognition task. I.e., the model uncertainty—which can be quantified in Uncertainty Flow—is distilled from a single-label learning task. The distilled model uncertainty ensures the later efficient zero-shot multi-label affective learning. On the theoretical perspective, within our proposed Uncertainty Flow framework, the feasibility of applying weakly informative priors, e.g., uniform and Cauchy prior, is fully explored in this research. More importantly, based on the derived weight uncertainty, three sets of prediction related uncertainty indexes, i.e., soft-max uncertainty, pure uncertainty and uncertainty plus are proposed to produce reliable and accurate multi-label predictions. Validated on our manual annotated evaluation dataset, i.e., the multi-label annotated FER2013, our proposed Uncertainty Flow in multi-label facial expression analysis exhibited superiority to conventional multi-label learning algorithms and multi-label compatible neural networks. The success of our
Uncertainty analysis for results of thermal hydraulic codes of best-estimate-type
International Nuclear Information System (INIS)
Alva N, J.
2010-01-01
In this thesis, some fundamental knowledge is presented about uncertainty analysis and about diverse methodologies applied in the study of nuclear power plant transient event analysis, particularly related to thermal hydraulics phenomena. These concepts and methodologies mentioned in this work come from a wide bibliographical research in the nuclear power subject. Methodologies for uncertainty analysis have been developed by quite diverse institutions, and they have been widely used worldwide for application to results from best-estimate-type computer codes in nuclear reactor thermal hydraulics and safety analysis. Also, the main uncertainty sources, types of uncertainties, and aspects related to best estimate modeling and methods are introduced. Once the main bases of uncertainty analysis have been set, and some of the known methodologies have been introduced, it is presented in detail the CSAU methodology, which will be applied in the analyses. The main objective of this thesis is to compare the results of an uncertainty and sensibility analysis by using the Response Surface Technique to the application of W ilks formula, apply through a loss coolant experiment and an event of rise in a BWR. Both techniques are options in the part of uncertainty and sensibility analysis of the CSAU methodology, which was developed for the analysis of transients and accidents at nuclear power plants, and it is the base of most of the methodologies used in licensing of nuclear power plants practically everywhere. Finally, the results of applying both techniques are compared and discussed. (Author)
International Nuclear Information System (INIS)
Aven, T.
2011-01-01
Probability is the predominant tool used to measure uncertainties in reliability and risk analyses. However, other representations also exist, including imprecise (interval) probability, fuzzy probability and representations based on the theories of evidence (belief functions) and possibility. Many researchers in the field are strong proponents of these alternative methods, but some are also sceptical. In this paper, we address one basic requirement set for quantitative measures of uncertainty: the interpretation needed to explain what an uncertainty number expresses. We question to what extent the various measures meet this requirement. Comparisons are made with probabilistic analysis, where uncertainty is represented by subjective probabilities, using either a betting interpretation or a reference to an uncertainty standard interpretation. By distinguishing between chances (expressing variation) and subjective probabilities, new insights are gained into the link between the alternative uncertainty representations and probability.
Uncertainty and sensitivity analysis applied to coupled code calculations for a VVER plant transient
International Nuclear Information System (INIS)
Langenbuch, S.; Krzykacz-Hausmann, B.; Schmidt, K. D.
2004-01-01
The development of coupled codes, combining thermal-hydraulic system codes and 3D neutron kinetics, is an important step to perform best-estimate plant transient calculations. It is generally agreed that the application of best-estimate methods should be supplemented by an uncertainty and sensitivity analysis to quantify the uncertainty of the results. The paper presents results from the application of the GRS uncertainty and sensitivity method for a VVER-440 plant transient, which was already studied earlier for the validation of coupled codes. For this application, the main steps of the uncertainty method are described. Typical results of the method applied to the analysis of the plant transient by several working groups using different coupled codes are presented and discussed The results demonstrate the capability of an uncertainty and sensitivity analysis. (authors)
Reiner, Bruce I
2018-04-01
Uncertainty in text-based medical reports has long been recognized as problematic, frequently resulting in misunderstanding and miscommunication. One strategy for addressing the negative clinical ramifications of report uncertainty would be the creation of a standardized methodology for characterizing and quantifying uncertainty language, which could provide both the report author and reader with context related to the perceived level of diagnostic confidence and accuracy. A number of computerized strategies could be employed in the creation of this analysis including string search, natural language processing and understanding, histogram analysis, topic modeling, and machine learning. The derived uncertainty data offers the potential to objectively analyze report uncertainty in real time and correlate with outcomes analysis for the purpose of context and user-specific decision support at the point of care, where intervention would have the greatest clinical impact.
Uncertainty analysis of atmospheric friction torque on the solid Earth
Directory of Open Access Journals (Sweden)
Haoming Yan
2016-05-01
Full Text Available The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF, National Centers for Environmental Prediction (NCEP climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric friction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.
Measurement uncertainties in regression analysis with scarcity of data
International Nuclear Information System (INIS)
Sousa, J A; Ribeiro, A S; Cox, M G; Harris, P M; Sousa, J F V
2010-01-01
The evaluation of measurement uncertainty, in certain fields of science, faces the problem of scarcity of data. This is certainly the case in the testing of geological soils in civil engineering, where tests can take several days or weeks and where the same sample is not available for further testing, being destroyed during the experiment. In this particular study attention will be paid to triaxial compression tests used to typify particular soils. The purpose of the testing is to determine two parameters that characterize the soil, namely, cohesion and friction angle. These parameters are defined in terms of the intercept and slope of a straight line fitted to a small number of points (usually three) derived from experimental data. The use of ordinary least squares to obtain uncertainties associated with estimates of the two parameters would be unreliable if there were only three points (and no replicates) and hence only one degrees of freedom.
Sensitivity, uncertainty, and importance analysis of a risk assessment
International Nuclear Information System (INIS)
Andsten, R.S.; Vaurio, J.K.
1992-01-01
In this paper a number of supplementary studies and applications associated with probabilistic safety assessment (PSA) are described, including sensitivity and importance evaluations of failures, errors, systems, and groups of components. The main purpose is to illustrate the usefulness of a PSA for making decisions about safety improvements, training, allowed outage times, and test intervals. A useful measure of uncertainty importance is presented, and it points out areas needing development, such as reactor vessel aging phenomena, for reducing overall uncertainty. A time-dependent core damage frequency is also presented, illustrating the impact of testing scenarios and intervals. Tea methods and applications presented are based on the Level 1 PSA carried out for the internal initiating event of the Loviisa 1 nuclear power station. Steam generator leakages and associated operator actions are major contributors to the current core-damage frequency estimate of 2 x10 -4 /yr. The results are used to improve the plant and procedures and to guide future improvements
Use of quantitative uncertainty analysis for human health risk assessment
International Nuclear Information System (INIS)
Duncan, F.L.W.; Gordon, J.W.; Kelly, M.
1994-01-01
Current human health risk assessment method for environmental risks typically use point estimates of risk accompanied by qualitative discussions of uncertainty. Alternatively, Monte Carlo simulations may be used with distributions for input parameters to estimate the resulting risk distribution and descriptive risk percentiles. These two techniques are applied for the ingestion of 1,1=dichloroethene in ground water. The results indicate that Monte Carlo simulations provide significantly more information for risk assessment and risk management than do point estimates
International Nuclear Information System (INIS)
Shimada, Yoko; Morisawa, Shinsuke
1998-01-01
Most of model estimation of the environmental contamination includes some uncertainty associated with the parameter uncertainty in the model. In this study, the uncertainty was analyzed in a model for evaluating the ingestion of radionuclide caused by the long-term global low-level radioactive contamination by using various uncertainty analysis methods: the percentile estimate, the robustness analysis and the fuzzy estimate. The model is mainly composed of five sub-models, which include their own uncertainty; we also analyzed the uncertainty. The major findings obtained in this study include that the possibility of the discrepancy between predicted value by the model simulation and the observed data is less than 10%; the uncertainty of the predicted value is higher before 1950 and after 1980; the uncertainty of the predicted value can be reduced by decreasing the uncertainty of some environmental parameters in the model; the reliability of the model can definitively depend on the following environmental factors: direct foliar absorption coefficient, transfer factor of radionuclide from stratosphere down to troposphere, residual rate by food processing and cooking, transfer factor of radionuclide in ocean and sedimentation in ocean. (author)
Uncertainty modelling and analysis of environmental systems: a river sediment yield example
Keesman, K.J.; Koskela, J.; Guillaume, J.H.; Norton, J.P.; Croke, B.; Jakeman, A.
2011-01-01
Abstract: Throughout the last decades uncertainty analysis has become an essential part of environmental model building (e.g. Beck 1987; Refsgaard et al., 2007). The objective of the paper is to introduce stochastic and setmembership uncertainty modelling concepts, which basically differ in the
Model parameter uncertainty analysis for annual field-scale P loss model
Phosphorous (P) loss models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. All P loss models, however, have an inherent amount of uncertainty associated with them. In this study, we conducted an uncertainty analysis with ...
Model parameter uncertainty analysis for an annual field-scale phosphorus loss model
Phosphorous (P) loss models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. All P loss models, however, have an inherent amount of uncertainty associated with them. In this study, we conducted an uncertainty analysis with ...
Uncertainties combined in algae and water in chemical analysis in determinations with ICP-OES
International Nuclear Information System (INIS)
Souza, Poliana Santos de
2014-01-01
One way to determine if some trace elements in algae and water is through uncertainty calculations. Spectrometry and inductively coupled plasma optical emission (ICP-OES) is widely used in this procedure, because it allows the analysis in waters and areas of solid samples. Thus, some elements (Fe, Ca and Mg) were used to calculate the uncertainty. (author)
DEFF Research Database (Denmark)
Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan
2009-01-01
The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predict...
An introductory guide to uncertainty analysis in environmental and health risk assessment
International Nuclear Information System (INIS)
Hoffman, F.O.; Hammonds, J.S.
1992-10-01
To compensate for the potential for overly conservative estimates of risk using standard US Environmental Protection Agency methods, an uncertainty analysis should be performed as an integral part of each risk assessment. Uncertainty analyses allow one to obtain quantitative results in the form of confidence intervals that will aid in decision making and will provide guidance for the acquisition of additional data. To perform an uncertainty analysis, one must frequently rely on subjective judgment in the absence of data to estimate the range and a probability distribution describing the extent of uncertainty about a true but unknown value for each parameter of interest. This information is formulated from professional judgment based on an extensive review of literature, analysis of the data, and interviews with experts. Various analytical and numerical techniques are available to allow statistical propagation of the uncertainty in the model parameters to a statement of uncertainty in the risk to a potentially exposed individual. Although analytical methods may be straightforward for relatively simple models, they rapidly become complicated for more involved risk assessments. Because of the tedious efforts required to mathematically derive analytical approaches to propagate uncertainty in complicated risk assessments, numerical methods such as Monte Carlo simulation should be employed. The primary objective of this report is to provide an introductory guide for performing uncertainty analysis in risk assessments being performed for Superfund sites
Spatial GHG Inventory: Analysis of Uncertainty Sources. A Case Study for Ukraine
International Nuclear Information System (INIS)
Bun, R.; Gusti, M.; Kujii, L.; Tokar, O.; Tsybrivskyy, Y.; Bun, A.
2007-01-01
A geoinformation technology for creating spatially distributed greenhouse gas inventories based on a methodology provided by the Intergovernmental Panel on Climate Change and special software linking input data, inventory models, and a means for visualization are proposed. This technology opens up new possibilities for qualitative and quantitative spatially distributed presentations of inventory uncertainty at the regional level. Problems concerning uncertainty and verification of the distributed inventory are discussed. A Monte Carlo analysis of uncertainties in the energy sector at the regional level is performed, and a number of simulations concerning the effectiveness of uncertainty reduction in some regions are carried out. Uncertainties in activity data have a considerable influence on overall inventory uncertainty, for example, the inventory uncertainty in the energy sector declines from 3.2 to 2.0% when the uncertainty of energy-related statistical data on fuels combusted in the energy industries declines from 10 to 5%. Within the energy sector, the 'energy industries' subsector has the greatest impact on inventory uncertainty. The relative uncertainty in the energy sector inventory can be reduced from 2.19 to 1.47% if the uncertainty of specific statistical data on fuel consumption decreases from 10 to 5%. The 'energy industries' subsector has the greatest influence in the Donetsk oblast. Reducing the uncertainty of statistical data on electricity generation in just three regions - the Donetsk, Dnipropetrovsk, and Luhansk oblasts - from 7.5 to 4.0% results in a decline from 2.6 to 1.6% in the uncertainty in the national energy sector inventory
Analysis of uncertainty propagation in nuclear fuel cycle scenarios
International Nuclear Information System (INIS)
Krivtchik, Guillaume
2014-01-01
Nuclear scenario studies model nuclear fleet over a given period. They enable the comparison of different options for the reactor fleet evolution, and the management of the future fuel cycle materials, from mining to disposal, based on criteria such as installed capacity per reactor technology, mass inventories and flows, in the fuel cycle and in the waste. Uncertainties associated with nuclear data and scenario parameters (fuel, reactors and facilities characteristics) propagate along the isotopic chains in depletion calculations, and through out the scenario history, which reduces the precision of the results. The aim of this work is to develop, implement and use a stochastic uncertainty propagation methodology adapted to scenario studies. The method chosen is based on development of depletion computation surrogate models, which reduce the scenario studies computation time, and whose parameters include perturbations of the depletion model; and fabrication of equivalence model which take into account cross-sections perturbations for computation of fresh fuel enrichment. Then the uncertainty propagation methodology is applied to different scenarios of interest, considering different options of evolution for the French PWR fleet with SFR deployment. (author) [fr
A python framework for environmental model uncertainty analysis
White, Jeremy; Fienen, Michael N.; Doherty, John E.
2016-01-01
We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.
Survey of sampling-based methods for uncertainty and sensitivity analysis
International Nuclear Information System (INIS)
Helton, J.C.; Johnson, J.D.; Sallaberry, C.J.; Storlie, C.B.
2006-01-01
Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) definition of probability distributions to characterize epistemic uncertainty in analysis inputs (ii) generation of samples from uncertain analysis inputs (iii) propagation of sampled inputs through an analysis (iv) presentation of uncertainty analysis results, and (v) determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two-dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition
Survey of sampling-based methods for uncertainty and sensitivity analysis.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jay Dean; Helton, Jon Craig; Sallaberry, Cedric J. PhD. (.; .); Storlie, Curt B. (Colorado State University, Fort Collins, CO)
2006-06-01
Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (1) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (2) Generation of samples from uncertain analysis inputs, (3) Propagation of sampled inputs through an analysis, (4) Presentation of uncertainty analysis results, and (5) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.
2013-08-09
... collection related to the proposed rule, ``Current Good Manufacturing Practice and Hazard Analysis and Risk... period. These two proposals are related to the proposed rule ``Current Good Manufacturing Practice and... final extension of the comment period for the ``Current Good Manufacturing Practice and Hazard Analysis...
International Nuclear Information System (INIS)
Endah Damastuti; Muhayatun; Diah Dwiana L
2009-01-01
Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)
Uncertainty analysis of hydrological modeling in a tropical area using different algorithms
Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh
2018-01-01
Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor 0.91, NSE>0.89, and 0.18
Energy Technology Data Exchange (ETDEWEB)
Emery, Keith [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-09-01
The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence of Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.
Directory of Open Access Journals (Sweden)
Marton Daniel
2015-12-01
Full Text Available The paper contains a sensitivity analysis of the influence of uncertainties in input hydrological, morphological and operating data required for a proposal for active reservoir conservation storage capacity and its achieved values. By introducing uncertainties into the considered inputs of the water management analysis of a reservoir, the subsequent analysed reservoir storage capacity is also affected with uncertainties. The values of water outflows from the reservoir and the hydrological reliabilities are affected with uncertainties as well. A simulation model of reservoir behaviour has been compiled with this kind of calculation as stated below. The model allows evaluation of the solution results, taking uncertainties into consideration, in contributing to a reduction in the occurrence of failure or lack of water during reservoir operation in low-water and dry periods.
Directory of Open Access Journals (Sweden)
Abbas Akbarzadeh
2010-09-01
Full Text Available Accurate prediction of longitudinal dispersion coefficient (LDC can be useful for the determination of pollutants concentration distribution in natural rivers. However, the uncertainty associated with the results obtained from forecasting models has a negative effect on pollutant management in water resources. In this research, appropriate models are first developed using ANN and ANFIS techniques to predict the LDC in natural streams. Then, an uncertainty analysis is performed for ANN and ANFIS models based on Monte-Carlo simulation. The input parameters of the models are related to hydraulic variables and stream geometry. Results indicate that ANN is a suitable model for predicting the LDC, but it is also associated with a high level of uncertainty. However, results of uncertainty analysis show that ANFIS model has less uncertainty; i.e. it is the best model for forecasting satisfactorily the LDC in natural streams.
International Nuclear Information System (INIS)
Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong
2010-01-01
Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.
Uncertainty Analysis of Few Group Cross Sections Based on Generalized Perturbation Theory
International Nuclear Information System (INIS)
Han, Tae Young; Lee, Hyun Chul; Noh, Jae Man
2014-01-01
In this paper, the methodology of the sensitivity and uncertainty analysis code based on GPT was described and the preliminary verification calculations on the PMR200 pin cell problem were carried out. As a result, they are in a good agreement when compared with the results by TSUNAMI. From this study, it is expected that MUSAD code based on GPT can produce the uncertainty of the homogenized few group microscopic cross sections for a core simulator. For sensitivity and uncertainty analyses for general core responses, a two-step method is available and it utilizes the generalized perturbation theory (GPT) for homogenized few group cross sections in the first step and stochastic sampling method for general core responses in the second step. The uncertainty analysis procedure based on GPT in the first step needs the generalized adjoint solution from a cell or lattice code. For this, the generalized adjoint solver has been integrated into DeCART in our previous work. In this paper, MUSAD (Modues of Uncertainty and Sensitivity Analysis for DeCART) code based on the classical perturbation theory was expanded to the function of the sensitivity and uncertainty analysis for few group cross sections based on GPT. First, the uncertainty analysis method based on GPT was described and, in the next section, the preliminary results of the verification calculation on a VHTR pin cell problem were compared with the results by TSUNAMI of SCALE 6.1
The role of uncertainty analysis in dose reconstruction and risk assessment
International Nuclear Information System (INIS)
Hoffman, F.O.; Simon, S.L.; Thiessen. K.M.
1996-01-01
Dose reconstruction and risk assessment rely heavily on the use of mathematical models to extrapolate information beyond the realm of direct observation. Because models are merely approximations of real systems, their predictions are inherently uncertain. As a result, full disclosure of uncertainty in dose and risk estimates is essential to achieve scientific credibility and to build public trust. The need for formal analysis of uncertainty in model predictions was presented during the nineteenth annual meeting of the NCRP. At that time, quantitative uncertainty analysis was considered a relatively new and difficult subject practiced by only a few investigators. Today, uncertainty analysis has become synonymous with the assessment process itself. When an uncertainty analysis is used iteratively within the assessment process, it can guide experimental research to refine dose and risk estimates, deferring potentially high cost or high consequence decisions until uncertainty is either acceptable or irreducible. Uncertainty analysis is now mandated for all ongoing dose reconstruction projects within the United States, a fact that distinguishes dose reconstruction from other types of exposure and risk assessments. 64 refs., 6 figs., 1 tab
PROBABILISTIC SENSITIVITY AND UNCERTAINTY ANALYSIS WORKSHOP SUMMARY REPORT
Energy Technology Data Exchange (ETDEWEB)
Seitz, R
2008-06-25
Stochastic or probabilistic modeling approaches are being applied more frequently in the United States and globally to quantify uncertainty and enhance understanding of model response in performance assessments for disposal of radioactive waste. This increased use has resulted in global interest in sharing results of research and applied studies that have been completed to date. This technical report reflects the results of a workshop that was held to share results of research and applied work related to performance assessments conducted at United States Department of Energy sites. Key findings of this research and applied work are discussed and recommendations for future activities are provided.
Flutter analysis of an airfoil with multiple nonlinearities and uncertainties
Directory of Open Access Journals (Sweden)
Haitao Liao
2013-09-01
Full Text Available An original method for calculating the limit cycle oscillations of nonlinear aero-elastic system is presented. The problem of determining the maximum vibration amplitude of limit cycle is transformed into a nonlinear optimization problem. The harmonic balance method and the Floquet theory are selected to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated and used to analyse the limit cycle oscillations of an airfoil with multiple nonlinearities and uncertainties. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.
Best estimate analysis of LOFT L2-5 with CATHARE: uncertainty and sensitivity analysis
Energy Technology Data Exchange (ETDEWEB)
JOUCLA, Jerome; PROBST, Pierre [Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); FOUET, Fabrice [APTUS, Versailles (France)
2008-07-01
The revision of the 10 CFR50.46 in 1988 has made possible the use of best-estimate codes. They may be used in safety demonstration and licensing, provided that uncertainties are added to the relevant output parameters before comparing them with the acceptance criteria. In the safety analysis of the large break loss of coolant accident, it was agreed that the 95. percentile estimated with a high degree of confidence should be lower than the acceptance criteria. It appeared necessary to IRSN, technical support of the French Safety Authority, to get more insight into these strategies which are being developed not only in thermal-hydraulics but in other fields such as in neutronics. To estimate the 95. percentile with a high confidence level, we propose to use rank statistics or bootstrap. Toward the objective of assessing uncertainty, it is useful to determine and to classify the main input parameters. We suggest approximating the code by a surrogate model, the Kriging model, which will be used to make a sensitivity analysis with the SOBOL methodology. This paper presents the application of two new methodologies of how to make the uncertainty and sensitivity analysis on the maximum peak cladding temperature of the LOFT L2-5 test with the CATHARE code. (authors)
Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong
2018-06-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen
Uncertainty and sensitivity analysis in the scenario simulation with RELAP/SCDAP and MELCOR codes
International Nuclear Information System (INIS)
Garcia J, T.; Cardenas V, J.
2015-09-01
A methodology was implemented for analysis of uncertainty in simulations of scenarios with RELAP/SCDAP V- 3.4 bi-7 and MELCOR V-2.1 codes, same that are used to perform safety analysis in the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). The uncertainty analysis methodology chosen is a probabilistic method of type Propagation of uncertainty of the input parameters to the departure parameters. Therefore, it began with the selection of the input parameters considered uncertain and are considered of high importance in the scenario for its direct effect on the output interest variable. These parameters were randomly sampled according to intervals of variation or probability distribution functions assigned by expert judgment to generate a set of input files that were run through the simulation code to propagate the uncertainty to the output parameters. Then, through the use or ordered statistical and formula Wilks, was determined that the minimum number of executions required to obtain the uncertainty bands that include a population of 95% at a confidence level of 95% in the results is 93, is important to mention that in this method that number of executions does not depend on the number of selected input parameters. In the implementation routines in Fortran 90 that allowed automate the process to make the uncertainty analysis in transients for RELAP/SCDAP code were generated. In the case of MELCOR code for severe accident analysis, automation was carried out through complement Dakota Uncertainty incorporated into the Snap platform. To test the practical application of this methodology, two analyzes were performed: the first with the simulation of closing transient of the main steam isolation valves using the RELAP/SCDAP code obtaining the uncertainty band of the dome pressure of the vessel; while in the second analysis, the accident simulation of the power total loss (Sbo) was carried out with the Macarol code obtaining the uncertainty band for the
Analysis and Reduction of Complex Networks Under Uncertainty.
Energy Technology Data Exchange (ETDEWEB)
Ghanem, Roger G [University of Southern California
2014-07-31
This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC team consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.
Energy Technology Data Exchange (ETDEWEB)
Dupleac, D., E-mail: danieldu@cne.pub.ro [Politehnica Univ. of Bucharest (Romania); Perez, M.; Reventos, F., E-mail: marina.perez@upc.edu, E-mail: francesc.reventos@upc.edu [Technical Univ. of Catalonia (Spain); Allison, C., E-mail: iss@cableone.net [Innovative Systems Software (United States)
2011-07-01
The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology Software Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses the publicly available RELAP5 and SCDAP models in combination with (a) advanced programming and numerical techniques, (b) advanced SDTP-member-developed models for LWR, HWR, and research reactor analysis, and (c) a variety of other member-developed computational packages. One such computational package is an integrated uncertainty analysis (IUA) package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). RELAP/SCDAPSIM/MOD4.0(IUA) follows the input-propagation approach using probability distribution functions to define the uncertainty of the input parameters. The main steps for this type of methodologies, often referred as to statistical approaches or Wilks’ methods, are the ones that follow: 1. Selection of the plant; 2. Selection of the scenario; 3. Selection of the safety criteria; 4. Identification and ranking of the relevant phenomena based on the safety criteria; 5. Selection of the appropriate code parameters to represent those phenomena; 6. Association of uncertainty by means of Probability Distribution Functions (PDFs) for each selected parameter; 7. Random sampling of the selected parameters according to its PDF and performing multiple computer runs to obtain uncertainty bands with a certain percentile and confidence level; 8. Processing the results of the multiple computer runs to estimate the uncertainty bands for the computed quantities associated with the selected safety criteria. RELAP/SCDAPSIM/MOD4.0(IUA) calculates the number of required code runs given the desired percentile and confidence level, performs the sampling process for the
International Nuclear Information System (INIS)
Dupleac, D.; Perez, M.; Reventos, F.; Allison, C.
2011-01-01
The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology Software Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses the publicly available RELAP5 and SCDAP models in combination with (a) advanced programming and numerical techniques, (b) advanced SDTP-member-developed models for LWR, HWR, and research reactor analysis, and (c) a variety of other member-developed computational packages. One such computational package is an integrated uncertainty analysis (IUA) package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). RELAP/SCDAPSIM/MOD4.0(IUA) follows the input-propagation approach using probability distribution functions to define the uncertainty of the input parameters. The main steps for this type of methodologies, often referred as to statistical approaches or Wilks’ methods, are the ones that follow: 1. Selection of the plant; 2. Selection of the scenario; 3. Selection of the safety criteria; 4. Identification and ranking of the relevant phenomena based on the safety criteria; 5. Selection of the appropriate code parameters to represent those phenomena; 6. Association of uncertainty by means of Probability Distribution Functions (PDFs) for each selected parameter; 7. Random sampling of the selected parameters according to its PDF and performing multiple computer runs to obtain uncertainty bands with a certain percentile and confidence level; 8. Processing the results of the multiple computer runs to estimate the uncertainty bands for the computed quantities associated with the selected safety criteria. RELAP/SCDAPSIM/MOD4.0(IUA) calculates the number of required code runs given the desired percentile and confidence level, performs the sampling process for the
Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)
International Nuclear Information System (INIS)
BABA, T.; ISHIGURO, K.; ISHIHARA, Y.; SAWADA, A.; UMEKI, H.; WAKASUGI, K.; WEBB, ERIK K.
1999-01-01
Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs were defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment
International Nuclear Information System (INIS)
Vanhanen, R.
2015-01-01
The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of 16 O is problematic due to lack of correlation between total and elastic reactions
Directory of Open Access Journals (Sweden)
Cihad DELEN
2015-12-01
Full Text Available In this study, some systematical resistance tests, where were performed in Ata Nutku Ship Model Testing Laboratory of Istanbul Technical University (ITU, have been included in order to determine the uncertainties. Experiments which are conducted in the framework of mathematical and physical rules for the solution of engineering problems, measurements, calculations include uncertainty. To question the reliability of the obtained values, the existing uncertainties should be expressed as quantities. The uncertainty of a measurement system is not known if the results do not carry a universal value. On the other hand, resistance is one of the most important parameters that should be considered in the process of ship design. Ship resistance during the design phase of a ship cannot be determined precisely and reliably due to the uncertainty resources in determining the resistance value that are taken into account. This case may cause negative effects to provide the required specifications in the latter design steps. The uncertainty arising from the resistance test has been estimated and compared for a displacement type ship and high speed marine vehicles according to ITTC 2002 and ITTC 2014 regulations which are related to the uncertainty analysis methods. Also, the advantages and disadvantages of both ITTC uncertainty analysis methods have been discussed.
Energy Technology Data Exchange (ETDEWEB)
Vanhanen, R., E-mail: risto.vanhanen@aalto.fi
2015-03-15
The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of {sup 16}O is problematic due to lack of correlation between total and elastic reactions.
Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment
Taner, M. U.; Wi, S.; Brown, C.
2017-12-01
The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.
Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty
International Nuclear Information System (INIS)
Purba, Julwan Hendry; Sony Tjahyani, D.T.; Ekariansyah, Andi Sofrany; Tjahjono, Hendro
2015-01-01
Highlights: • Fuzzy probability based fault tree analysis is to evaluate epistemic uncertainty in fuzzy fault tree analysis. • Fuzzy probabilities represent likelihood occurrences of all events in a fault tree. • A fuzzy multiplication rule quantifies epistemic uncertainty of minimal cut sets. • A fuzzy complement rule estimate epistemic uncertainty of the top event. • The proposed FPFTA has successfully evaluated the U.S. Combustion Engineering RPS. - Abstract: A number of fuzzy fault tree analysis approaches, which integrate fuzzy concepts into the quantitative phase of conventional fault tree analysis, have been proposed to study reliabilities of engineering systems. Those new approaches apply expert judgments to overcome the limitation of the conventional fault tree analysis when basic events do not have probability distributions. Since expert judgments might come with epistemic uncertainty, it is important to quantify the overall uncertainties of the fuzzy fault tree analysis. Monte Carlo simulation is commonly used to quantify the overall uncertainties of conventional fault tree analysis. However, since Monte Carlo simulation is based on probability distribution, this technique is not appropriate for fuzzy fault tree analysis, which is based on fuzzy probabilities. The objective of this study is to develop a fuzzy probability based fault tree analysis to overcome the limitation of fuzzy fault tree analysis. To demonstrate the applicability of the proposed approach, a case study is performed and its results are then compared to the results analyzed by a conventional fault tree analysis. The results confirm that the proposed fuzzy probability based fault tree analysis is feasible to propagate and quantify epistemic uncertainties in fault tree analysis
Directory of Open Access Journals (Sweden)
Zhu Hao
2015-06-01
Full Text Available In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO and uncertainty-based design optimization (UDO are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS and Kriging-based Taylor series approximation (KTSA, are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.
Sensitivity and uncertainty analysis applied to a repository in rock salt
International Nuclear Information System (INIS)
Polle, A.N.
1996-12-01
This document describes the sensitivity and uncertainty analysis with UNCSAM, as applied to a repository in rock salt for the EVEREST project. UNCSAM is a dedicated software package for sensitivity and uncertainty analysis, which was already used within the preceding PROSA project. The use of UNCSAM provides a flexible interface to EMOS ECN by substituting the sampled values in the various input files to be used by EMOS ECN ; the model calculations for this repository were performed with the EMOS ECN code. Preceding the sensitivity and uncertainty analysis, a number of preparations has been carried out to facilitate EMOS ECN with the probabilistic input data. For post-processing the EMOS ECN results, the characteristic output signals were processed. For the sensitivity and uncertainty analysis with UNCSAM the stochastic input, i.e. sampled values, and the output for the various EMOS ECN runs have been analyzed. (orig.)
May Day: A computer code to perform uncertainty and sensitivity analysis. Manuals
International Nuclear Information System (INIS)
Bolado, R.; Alonso, A.; Moya, J.M.
1996-07-01
The computer program May Day was developed to carry out the uncertainty and sensitivity analysis in the evaluation of radioactive waste storage. The May Day was made by the Polytechnical University of Madrid. (Author)
Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas
2014-03-01
GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.
Risk-based configuration control
International Nuclear Information System (INIS)
Szikszai, T.
1997-01-01
The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)
DEFF Research Database (Denmark)
Sin, Gürkan; Gernaey, Krist; Neumann, Marc B.
2011-01-01
This study demonstrates the usefulness of global sensitivity analysis in wastewater treatment plant (WWTP) design to prioritize sources of uncertainty and quantify their impact on performance criteria. The study, which is performed with the Benchmark Simulation Model no. 1 plant design, complements...... insight into devising useful ways for reducing uncertainties in the plant performance. This information can help engineers design robust WWTP plants....... a previous paper on input uncertainty characterisation and propagation (Sin et al., 2009). A sampling-based sensitivity analysis is conducted to compute standardized regression coefficients. It was found that this method is able to decompose satisfactorily the variance of plant performance criteria (with R2...
Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications
International Nuclear Information System (INIS)
Rahman, S.; Ghadiali, N.; Wilkowski, G.
1997-01-01
During the NRC's Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined
Uncertainty and sensitivity analysis using probabilistic system assessment code. 1
International Nuclear Information System (INIS)
Honma, Toshimitsu; Sasahara, Takashi.
1993-10-01
This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)
Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications
Energy Technology Data Exchange (ETDEWEB)
Rahman, S.; Ghadiali, N.; Wilkowski, G.
1997-04-01
During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.
Directory of Open Access Journals (Sweden)
Ramnath Vishal
2017-01-01
Full Text Available Traditionally in the field of pressure metrology uncertainty quantification was performed with the use of the Guide to the Uncertainty in Measurement (GUM; however, with the introduction of the GUM Supplement 1 (GS1 the use of Monte Carlo simulations has become an accepted practice for uncertainty analysis in metrology for mathematical models in which the underlying assumptions of the GUM are not valid. Consequently the use of quantile functions was developed as a means to easily summarize and report on uncertainty numerical results that were based on Monte Carlo simulations. In this paper, we considered the case of a piston–cylinder operated pressure balance where the effective area is modelled in terms of a combination of explicit/implicit and linear/non-linear models, and how quantile functions may be applied to analyse results and compare uncertainties from a mixture of GUM and GS1 methodologies.
Effect of Uncertainties in Physical Property Estimates on Process Design - Sensitivity Analysis
DEFF Research Database (Denmark)
Hukkerikar, Amol; Jones, Mark Nicholas; Sin, Gürkan
for performing sensitivity of process design subject to uncertainties in the property estimates. To this end, first uncertainty analysis of the property models of pure components and their mixtures was performed in order to obtain the uncertainties in the estimated property values. As a next step, sensitivity......Chemical process design calculations require accurate and reliable physical and thermodynamic property data and property models of pure components and their mixtures in order to obtain reliable design parameters which help to achieve desired specifications. The uncertainties in the property values...... can arise from the experiments itself or from the property models employed. It is important to consider the effect of these uncertainties on the process design in order to assess the quality and reliability of the final design. The main objective of this work is to develop a systematic methodology...
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
The development of the risk-based cost-benefit analysis framework for risk-informed regulation
International Nuclear Information System (INIS)
Yang, Z. A.; Hwang, M. J.; Lee, K. S.
2001-01-01
US NRC (Nuclear Regulatory Committee) introduces the Risk-informed Regulation (RIR) to allocate the resources of NRC effectively and to reduce the unnecessary burden of utilities. This approach inherently includes the cost-benefit analysis (CBA) concept. The CBA method has been widely used for many problems in order to support the decision making by analyzing the effectiveness of the proposed plan and/or activity in the aspect of cost and benefit. However, in general, the conventional CBA method does not use the information such as risk that is the essential element of RIR. So, we developed a revised CBA framework that incorporates the risk information in analyzing the cost and benefit of the regulatory and/or operational activities in nuclear industry
International Nuclear Information System (INIS)
Peters, B.B.; Cameron, R.J.; McCormack, W.D.
1994-08-01
The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing
Energy Technology Data Exchange (ETDEWEB)
Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)
1994-08-01
The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.
Uncertainty and sensitivity analysis on probabilistic safety assessment of an experimental facility
International Nuclear Information System (INIS)
Burgazzi, L.
2000-01-01
The aim of this work is to perform an uncertainty and sensitivity analysis on the probabilistic safety assessment of the International Fusion Materials Irradiation Facility (IFMIF), in order to assess the effect on the final risk values of the uncertainties associated with the generic data used for the initiating events and component reliability and to identify the key quantities contributing to this uncertainty. The analysis is conducted on the expected frequency calculated for the accident sequences, defined through the event tree (ET) modeling. This is in order to increment credit to the ET model quantification, to calculate frequency distributions for the occurrence of events and, consequently, to assess if sequences have been correctly selected on the probability standpoint and finally to verify the fulfillment of the safety conditions. Uncertainty and sensitivity analysis are performed using respectively Monte Carlo sampling and an importance parameter technique. (author)
Analysis of uncertainties in the IAEA/WHO TLD postal dose audit system
Energy Technology Data Exchange (ETDEWEB)
Izewska, J. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)], E-mail: j.izewska@iaea.org; Hultqvist, M. [Department of Medical Radiation Physics, Karolinska Institute, Stockholm University, Stockholm (Sweden); Bera, P. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, Vienna (Austria)
2008-02-15
The International Atomic Energy Agency (IAEA) and the World Health Organisation (WHO) operate the IAEA/WHO TLD postal dose audit programme. Thermoluminescence dosimeters (TLDs) are used as transfer devices in this programme. In the present work the uncertainties in the dose determination from TLD measurements have been evaluated. The analysis of uncertainties comprises uncertainties in the calibration coefficient of the TLD system and uncertainties in factors correcting for dose response non-linearity, fading of TL signal, energy response and influence of TLD holder. The individual uncertainties have been combined to estimate the total uncertainty in the dose evaluated from TLD measurements. The combined relative standard uncertainty in the dose determined from TLD measurements has been estimated to be 1.2% for irradiations with Co-60 {gamma}-rays and 1.6% for irradiations with high-energy X-rays. Results from irradiations by the Bureau international des poids et mesures (BIPM), Primary Standard Dosimetry Laboratories (PSDLs) and Secondary Standards Dosimetry Laboratories (SSDLs) compare favourably with the estimated uncertainties, whereas TLD results of radiotherapy centres show higher standard deviations than those derived theoretically.
International Nuclear Information System (INIS)
Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji
2011-01-01
In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code
International Nuclear Information System (INIS)
Peters, B.B.; Cameron, R.J.; McCormack, W.D.
1994-08-01
This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program
The treatment of uncertainties in risk for regulatory decision making
International Nuclear Information System (INIS)
Baybutt, P.; Cox, D.C.; Denning, R.S.; Kurth, R.E.; Fraley, D.W.; Heaberlin, S.W.
1982-01-01
This paper describes research conducted in an ongoing program at Battelle to develop and adapt decision analysis methods for regulatory decision making. A general approach to risk-based decision making is discussed. The nature of uncertainties in risk assessment is described and methods for their inclusion in decision making are proposed. The use of decision analysis methods in regulatory decision making and the consideration of uncertainties is illustrated in a realistic case study
Energy Technology Data Exchange (ETDEWEB)
Pourgol-Mohammad, Mohammad, E-mail: pourgolmohammad@sut.ac.ir [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Hoseyni, Seyed Mojtaba [Building & Housing Research Center, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)
2016-08-15
Highlights: • Existing uncertainty ranking methods prove inconsistent for TH applications. • Introduction of a new method for ranking sources of uncertainty in TH codes. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • The importance of parameters is calculated by a limited number of TH code executions. • Methodology is applied successfully on LOFT-LB1 test facility. - Abstract: In application to thermal–hydraulic calculations by system codes, sensitivity analysis plays an important role for managing the uncertainties of code output and risk analysis. Sensitivity analysis is also used to confirm the results of qualitative Phenomena Identification and Ranking Table (PIRT). Several methodologies have been developed to address uncertainty importance assessment. Generally, uncertainty importance measures, mainly devised for the Probabilistic Risk Assessment (PRA) applications, are not affordable for computationally demanding calculations of the complex thermal–hydraulics (TH) system codes. In other words, for effective quantification of the degree of the contribution of each phenomenon to the total uncertainty of the output, a practical approach is needed by considering high computational burden of TH calculations. This study aims primarily to show the inefficiency of the existing approaches and then introduces a solution to cope with the challenges in this area by modification of variance-based uncertainty importance method. Important parameters are identified by the modified PIRT approach qualitatively then their uncertainty importance is quantified by a local derivative index. The proposed index is attractive from its practicality point of view on TH applications. It is capable of calculating the importance of parameters by a limited number of TH code executions. Application of the proposed methodology is demonstrated on LOFT-LB1 test facility.
International Nuclear Information System (INIS)
Pourgol-Mohammad, Mohammad; Hoseyni, Seyed Mohsen; Hoseyni, Seyed Mojtaba; Sepanloo, Kamran
2016-01-01
Highlights: • Existing uncertainty ranking methods prove inconsistent for TH applications. • Introduction of a new method for ranking sources of uncertainty in TH codes. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • The importance of parameters is calculated by a limited number of TH code executions. • Methodology is applied successfully on LOFT-LB1 test facility. - Abstract: In application to thermal–hydraulic calculations by system codes, sensitivity analysis plays an important role for managing the uncertainties of code output and risk analysis. Sensitivity analysis is also used to confirm the results of qualitative Phenomena Identification and Ranking Table (PIRT). Several methodologies have been developed to address uncertainty importance assessment. Generally, uncertainty importance measures, mainly devised for the Probabilistic Risk Assessment (PRA) applications, are not affordable for computationally demanding calculations of the complex thermal–hydraulics (TH) system codes. In other words, for effective quantification of the degree of the contribution of each phenomenon to the total uncertainty of the output, a practical approach is needed by considering high computational burden of TH calculations. This study aims primarily to show the inefficiency of the existing approaches and then introduces a solution to cope with the challenges in this area by modification of variance-based uncertainty importance method. Important parameters are identified by the modified PIRT approach qualitatively then their uncertainty importance is quantified by a local derivative index. The proposed index is attractive from its practicality point of view on TH applications. It is capable of calculating the importance of parameters by a limited number of TH code executions. Application of the proposed methodology is demonstrated on LOFT-LB1 test facility.
Ruiz, Rafael O.; Meruane, Viviana
2017-06-01
The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.
Etkind, Simon Noah; Bristowe, Katherine; Bailey, Katharine; Selman, Lucy Ellen; Murtagh, Fliss Em
2017-02-01
Uncertainty is common in advanced illness but is infrequently studied in this context. If poorly addressed, uncertainty can lead to adverse patient outcomes. We aimed to understand patient experiences of uncertainty in advanced illness and develop a typology of patients' responses and preferences to inform practice. Secondary analysis of qualitative interview transcripts. Studies were assessed for inclusion and interviews were sampled using maximum-variation sampling. Analysis used a thematic approach with 10% of coding cross-checked to enhance reliability. Qualitative interviews from six studies including patients with heart failure, chronic obstructive pulmonary disease, renal disease, cancer and liver failure. A total of 30 transcripts were analysed. Median age was 75 (range, 43-95), 12 patients were women. The impact of uncertainty was frequently discussed: the main related themes were engagement with illness, information needs, patient priorities and the period of time that patients mainly focused their attention on (temporal focus). A typology of patient responses to uncertainty was developed from these themes. Uncertainty influences patient experience in advanced illness through affecting patients' information needs, preferences and future priorities for care. Our typology aids understanding of how patients with advanced illness respond to uncertainty. Assessment of these three factors may be a useful starting point to guide clinical assessment and shared decision making.
Status of XSUSA for sampling based nuclear data uncertainty and sensitivity analysis
International Nuclear Information System (INIS)
Zwermann, W.; Gallner, L.; Klein, M.; Krzydacz-Hausmann; Pasichnyk, I.; Pautz, A.; Velkov, K.
2013-01-01
In the present contribution, an overview of the sampling based XSUSA method for sensitivity and uncertainty analysis with respect to nuclear data is given. The focus is on recent developments and applications of XSUSA. These applications include calculations for critical assemblies, fuel assembly depletion calculations, and steady state as well as transient reactor core calculations. The analyses are partially performed in the framework of international benchmark working groups (UACSA - Uncertainty Analyses for Criticality Safety Assessment, UAM - Uncertainty Analysis in Modelling). It is demonstrated that particularly for full-scale reactor calculations the influence of the nuclear data uncertainties on the results can be substantial. For instance, for the radial fission rate distributions of mixed UO 2 /MOX light water reactor cores, the 2σ uncertainties in the core centre and periphery can reach values exceeding 10%. For a fast transient, the resulting time behaviour of the reactor power was covered by a wide uncertainty band. Overall, the results confirm the necessity of adding systematic uncertainty analyses to best-estimate reactor calculations. (authors)
Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V
2009-01-01
The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.
A global water supply reservoir yield model with uncertainty analysis
International Nuclear Information System (INIS)
Kuria, Faith W; Vogel, Richard M
2014-01-01
Understanding the reliability and uncertainty associated with water supply yields derived from surface water reservoirs is central for planning purposes. Using a global dataset of monthly river discharge, we introduce a generalized model for estimating the mean and variance of water supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S assuming a flow record of length n. The generalized storage–reliability–yield (SRY) relationships reported here have numerous water resource applications ranging from preliminary water supply investigations, to economic and climate change impact assessments. An example indicates how our generalized SRY relationship can be combined with a hydroclimatic model to determine the impact of climate change on surface reservoir water supply yields. We also document that the variability of estimates of water supply yield are invariant to characteristics of the reservoir system, including its storage capacity and reliability. Standardized metrics of the variability of water supply yields are shown to depend only on the sample size of the inflows and the statistical characteristics of the inflow series. (paper)
A GLUE uncertainty analysis of a drying model of pharmaceutical granules
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Van Hoey, Stijn; Cierkens, Katrijn
2013-01-01
unit, which is part of the full continuous from-powder-to-tablet manufacturing line (Consigma™, GEA Pharma Systems). A validated model describing the drying behaviour of a single pharmaceutical granule in two consecutive phases is used. First of all, the effect of the assumptions at the particle level...... on the prediction uncertainty is assessed. Secondly, the paper focuses on the influence of the most sensitive parameters in the model. Finally, a combined analysis (particle level plus most sensitive parameters) is performed and discussed. To propagate the uncertainty originating from the parameter uncertainty...
Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model
Energy Technology Data Exchange (ETDEWEB)
Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.
2001-11-09
Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.
International Nuclear Information System (INIS)
Gomes, Daniel S.; Teixeira, Antonio S.
2017-01-01
Although regulatory agencies have shown a special interest in incorporating best estimate approaches in the fuel licensing process, fuel codes are currently licensed based on only the deterministic limits such as those seen in 10CRF50, and therefore, may yield unrealistic safety margins. The concept of uncertainty analysis is employed to more realistically manage this risk. In this study, uncertainties were classified into two categories: probabilistic and epistemic (owing to a lack of pre-existing knowledge in this area). Fuel rods have three sources of uncertainty: manufacturing tolerance, boundary conditions, and physical models. The first step in successfully analyzing the uncertainties involves performing a statistical analysis on the input parameters used throughout the fuel code. The response obtained from this analysis must show proportional index correlations because the uncertainties are globally propagated. The Dakota toolkit was used to analyze the FRAPTRAN transient fuel code. The subsequent sensitivity analyses helped in identifying the key parameters with the highest correlation indices including the peak cladding temperature and the time required for cladding failures. The uncertainty analysis was performed using an IFA-650-5 fuel rod, which was in line with the tests performed in the Halden Project in Norway. The main objectives of the Halden project included studying the ballooning and rupture processes. The results of this experiment demonstrate the accuracy and applicability of the physical models in evaluating the thermal conductivity, mechanical model, and fuel swelling formulations. (author)
Energy Technology Data Exchange (ETDEWEB)
Gomes, Daniel S.; Teixeira, Antonio S., E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
Although regulatory agencies have shown a special interest in incorporating best estimate approaches in the fuel licensing process, fuel codes are currently licensed based on only the deterministic limits such as those seen in 10CRF50, and therefore, may yield unrealistic safety margins. The concept of uncertainty analysis is employed to more realistically manage this risk. In this study, uncertainties were classified into two categories: probabilistic and epistemic (owing to a lack of pre-existing knowledge in this area). Fuel rods have three sources of uncertainty: manufacturing tolerance, boundary conditions, and physical models. The first step in successfully analyzing the uncertainties involves performing a statistical analysis on the input parameters used throughout the fuel code. The response obtained from this analysis must show proportional index correlations because the uncertainties are globally propagated. The Dakota toolkit was used to analyze the FRAPTRAN transient fuel code. The subsequent sensitivity analyses helped in identifying the key parameters with the highest correlation indices including the peak cladding temperature and the time required for cladding failures. The uncertainty analysis was performed using an IFA-650-5 fuel rod, which was in line with the tests performed in the Halden Project in Norway. The main objectives of the Halden project included studying the ballooning and rupture processes. The results of this experiment demonstrate the accuracy and applicability of the physical models in evaluating the thermal conductivity, mechanical model, and fuel swelling formulations. (author)
International Nuclear Information System (INIS)
Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin
2011-01-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)
Practical Policy Applications of Uncertainty Analysis for National Greenhouse Gas Inventories
Energy Technology Data Exchange (ETDEWEB)
Gillenwater, M. [Environmental Resources Trust (United States)], E-mail: mgillenwater@ert.net; Sussman, F.; Cohen, J. [ICF International (United States)
2007-09-15
goals precisely in terms of relationships among important variables (such as emissions estimate, commitment level, or statistical confidence); and (3) develop a quantifiable adjustment mechanism that reflects these environmental goals. We recommend that countries implement an investigation-focused (i.e., qualitative) uncertainty analysis that will (1) provide the type of information necessary to develop more substantive, and potentially useful, quantitative uncertainty estimates-regardless of whether those quantitative estimates are used for policy purposes; and (2) provide information needed to understand the likely causes of uncertainty in inventory data and thereby point to ways to improve inventory quality (i.e., accuracy, transparency, completeness, and consistency)
Practical Policy Applications of Uncertainty Analysis for National Greenhouse Gas Inventories
International Nuclear Information System (INIS)
Gillenwater, M.; Sussman, F.; Cohen, J.
2007-01-01
goals precisely in terms of relationships among important variables (such as emissions estimate, commitment level, or statistical confidence); and (3) develop a quantifiable adjustment mechanism that reflects these environmental goals. We recommend that countries implement an investigation-focused (i.e., qualitative) uncertainty analysis that will (1) provide the type of information necessary to develop more substantive, and potentially useful, quantitative uncertainty estimates-regardless of whether those quantitative estimates are used for policy purposes; and (2) provide information needed to understand the likely causes of uncertainty in inventory data and thereby point to ways to improve inventory quality (i.e., accuracy, transparency, completeness, and consistency)
Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric
Directory of Open Access Journals (Sweden)
Muhammad Dawood Husain
2016-11-01
Full Text Available This paper reports the uncertainty analysis of the temperature–resistance (TR data of the newly developed temperature sensing fabric (TSF, which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD; that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats and repeatability uncertainty (uncertainty among repeats were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C. The cooling TR data showed considerably reduced values (±0.07 °C of uncertainty in comparison with the heating TR data (±0.24 °C. The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body.
Risk-based performance indicators
International Nuclear Information System (INIS)
Azarm, M.A.; Boccio, J.L.; Vesely, W.E.; Lofgren, E.
1987-01-01
The purpose of risk-based indicators is to monitor plant safety. Safety is measured by monitoring the potential for core melt (core-melt frequency) and the public risk. Targets for these measures can be set consistent with NRC safety goals. In this process, the performance of safety systems, support systems, major components, and initiating events can be monitored using measures such as unavailability, failure or occurrence frequency. The changes in performance measures and their trends are determined from the time behavior of monitored measures by differentiation between stochastical and actual variations. Therefore, degradation, as well as improvement in the plant safety performance, can be determined. The development of risk-based performance indicators will also provide the means to trace a change in the safety measures to specific problem areas which are amenable to root cause analysis and inspection audits. In addition, systematic methods will be developed to identify specific improvement policies using the plant information system for the identified problem areas. The final product of the performance indicator project will be a methodology, and an integrated and validated set of software packages which, if properly interfaced with the logic model software of a plant, can monitor the plant performance as plant information is provided as input
DEFF Research Database (Denmark)
Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan; Gernaey, Krist
2013-01-01
This paper presents the application of uncertainty and sensitivity analysis as part of a systematic modelbased process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty...
Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System
International Nuclear Information System (INIS)
Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun
2012-01-01
The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method
Development of Uncertainty Analysis Method for SMART Digital Core Protection and Monitoring System
International Nuclear Information System (INIS)
Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun
2012-01-01
The Korea Atomic Energy Research Institute has developed a system-integrated modular advanced reactor (SMART) for a seawater desalination and electricity generation. Online digital core protection and monitoring systems, called SCOPS and SCOMS respectively were developed. SCOPS calculates minimum DNBR and maximum LPD based on the several online measured system parameters. SCOMS calculates the variables of limiting conditions for operation. KAERI developed overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system. By applying overall uncertainty factors in on-line SCOPS/SCOMS calculation, calculated LPD and DNBR are conservative with a 95/95 probability/confidence level. In this paper, uncertainty analysis method is described for SMART core protection and monitoring system
Energy Technology Data Exchange (ETDEWEB)
Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)
A new measure of uncertainty importance based on distributional sensitivity analysis for PSA
International Nuclear Information System (INIS)
Han, Seok Jung; Tak, Nam Il; Chun, Moon Hyun
1996-01-01
The main objective of the present study is to propose a new measure of uncertainty importance based on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given by a known analytical distribution and the other given by an empirical distribution generated by a crude Monte Carlo simulation. To study its applicability, the present measure has been applied to two different cases. The results are compared with those of existing three methods. The present approach is a useful measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate uncertainty importance without any complex process. On the basis of the results obtained in the present work, the present method is recommended to be used as a tool for the analysis of uncertainty importance
Energy Technology Data Exchange (ETDEWEB)
Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1999-12-31
The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)
Code development of total sensitivity and uncertainty analysis for reactor physics calculations
International Nuclear Information System (INIS)
Wan, C.; Cao, L.; Wu, H.; Zu, T.; Shen, W.
2015-01-01
Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)
Code development of total sensitivity and uncertainty analysis for reactor physics calculations
Energy Technology Data Exchange (ETDEWEB)
Wan, C.; Cao, L.; Wu, H.; Zu, T., E-mail: chenghuiwan@stu.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: tiejun@mail.xjtu.edu.cn [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Shen, W., E-mail: Wei.Shen@cnsc-ccsn.gc.ca [Xi' an Jiaotong Univ., School of Nuclear Science and Technology, Xi' an (China); Canadian Nuclear Safety Commission, Ottawa, ON (Canada)
2015-07-01
Sensitivity and uncertainty analysis are essential parts for reactor system to perform risk and policy analysis. In this study, total sensitivity and corresponding uncertainty analysis for responses of neutronics calculations have been accomplished and developed the S&U analysis code named UNICORN. The UNICORN code can consider the implicit effects of multigroup cross sections on the responses. The UNICORN code has been applied to typical pin-cell case in this paper, and can be proved correct by comparison the results with those of the TSUNAMI-1D code. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Su Won
2011-02-15
The severe accident has inherently significant uncertainty due to wide range of conditions and performing experiments, validation and practical application are extremely difficult because of its high temperature and pressure. Although internal and external researches were put into practice, the reference used in Korean nuclear plants were foreign data of 1980s and safety analysis as the probabilistic safety assessment has not applied the newest methodology. Also, it is applied to containment pressure formed into point value as results of thermal hydraulic analysis to identify the probability of containment failure in level 2 PSA. In this paper, the uncertainty analysis methods for phenomena of severe accident influencing early containment failure were developed, the uncertainty analysis that apply Korean nuclear plants using the MELCOR code was performed and it is a point of view to present the distribution of containment pressure as a result of uncertainty analysis. Because early containment failure is important factor of Large Early Release Frequency(LERF) that is used as representative criteria of decision-making in nuclear power plants, it was selected in this paper among various modes of containment failure. Important phenomena of early containment failure at severe accident based on previous researches were comprehended and methodology of 7th steps to evaluate uncertainty was developed. The MELCOR input for analysis of the severe accident reflected natural circulation flow was developed and the accident scenario for station black out that was representative initial event of early containment failure was determined. By reviewing the internal model and correlation for MELCOR model relevant important phenomena of early containment failure, the uncertainty factors which could affect on the uncertainty were founded and the major factors were finally identified through the sensitivity analysis. In order to determine total number of MELCOR calculations which can
Parameter sensitivity and uncertainty of the forest carbon flux model FORUG : a Monte Carlo analysis
Energy Technology Data Exchange (ETDEWEB)
Verbeeck, H.; Samson, R.; Lemeur, R. [Ghent Univ., Ghent (Belgium). Laboratory of Plant Ecology; Verdonck, F. [Ghent Univ., Ghent (Belgium). Dept. of Applied Mathematics, Biometrics and Process Control
2006-06-15
The FORUG model is a multi-layer process-based model that simulates carbon dioxide (CO{sub 2}) and water exchange between forest stands and the atmosphere. The main model outputs are net ecosystem exchange (NEE), total ecosystem respiration (TER), gross primary production (GPP) and evapotranspiration. This study used a sensitivity analysis to identify the parameters contributing to NEE uncertainty in the FORUG model. The aim was to determine if it is necessary to estimate the uncertainty of all parameters of a model to determine overall output uncertainty. Data used in the study were the meteorological and flux data of beech trees in Hesse. The Monte Carlo method was used to rank sensitivity and uncertainty parameters in combination with a multiple linear regression. Simulations were run in which parameters were assigned probability distributions and the effect of variance in the parameters on the output distribution was assessed. The uncertainty of the output for NEE was estimated. Based on the arbitrary uncertainty of 10 key parameters, a standard deviation of 0.88 Mg C per year per NEE was found, which was equal to 24 per cent of the mean value of NEE. The sensitivity analysis showed that the overall output uncertainty of the FORUG model could be determined by accounting for only a few key parameters, which were identified as corresponding to critical parameters in the literature. It was concluded that the 10 most important parameters determined more than 90 per cent of the output uncertainty. High ranking parameters included soil respiration; photosynthesis; and crown architecture. It was concluded that the Monte Carlo technique is a useful tool for ranking the uncertainty of parameters of process-based forest flux models. 48 refs., 2 tabs., 2 figs.
Status report on activities of ASTM E10.05.01 Task Group on Uncertainty Analysis
International Nuclear Information System (INIS)
Kam, F.B.K.; Stallman, F.W.
1979-01-01
Uncertainties in the field of reactor dosimetry are analyzed. A survey on uncertainty analysis as it is practiced at leading laboratories which are involved in reactor dosimetry is described. A questionnaire was prepared and mailed to about 45 installations and researchers. Nine replies were received, several of them were prepared by more than one author. Three of the nine came from installations outside the US. Results and the questionnaire are presented
Crashworthiness uncertainty analysis of typical civil aircraft based on Box–Behnken method
Ren Yiru; Xiang Jinwu
2014-01-01
The crashworthiness is an important design factor of civil aircraft related with the safety of occupant during impact accident. It is a highly nonlinear transient dynamic problem and may be greatly influenced by the uncertainty factors. Crashworthiness uncertainty analysis is conducted to investigate the effects of initial conditions, structural dimensions and material properties. Simplified finite element model is built based on the geometrical model and basic physics phenomenon. Box–Behnken...
Analysis of uncertainties in CRAC2 calculations: the inhalation pathway
International Nuclear Information System (INIS)
Killough, G.G.; Dunning, D.E. Jr.
1984-01-01
CRAC2 is a computer code for estimating the health effects and economic costs that might result from a release of radioactivity from a nuclear reactor to the environment. This paper describes tests of sensitivity of the predicted health effects to uncertainties in parameters associated with inhalation of the released radionuclides. These parameters are the particle size of the carrier aerosol and, for each element in the release, the clearance parameters for the lung model on which the code's dose conversion factors for inhalation are based. CRAC2 uses hourly meteorological data and a straight-line Gaussian plume model to predict the transport of airborne radioactivity; it includes models for plume depletion and population evacuation, and data for the distributions of population and land use. The code can compute results for single weather sequences, or it can perform random sampling of weather sequences from the meteorological data file and compute results for each weather sequence in the sample. For the work described in this paper, we concentrated on three fixed weather sequences that represent a range of conditions. For each fixed weather sequence, we applied random sampling to joint distributions of the inhalation parameters in order to estimate the sensitivity of the predicted health effects. All sampling runs produced coefficients of variation that were less than 50%, but some differences of means between weather sequences were substantial, as were some differences between means and the corresponding CRAC2 results without random sampling. Early injuries showed differences of as much as 1 to 2 orders of magnitude, while the differences in early fatalities were less than a factor of 2. Latent cancer fatalities varied by less than 10%. 19 references, 6 figures, 3 tables
International Nuclear Information System (INIS)
Sig Drellack, Lance Prothro
2007-01-01
The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The
Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool
Pisoni, E.; Albrecht, D.; Mara, T. A.; Rosati, R.; Tarantola, S.; Thunis, P.
2018-06-01
Air quality has significantly improved in Europe over the past few decades. Nonetheless we still find high concentrations in measurements mainly in specific regions or cities. This dimensional shift, from EU-wide to hot-spot exceedances, calls for a novel approach to regional air quality management (to complement EU-wide existing policies). The SHERPA (Screening for High Emission Reduction Potentials on Air quality) modelling tool was developed in this context. It provides an additional tool to be used in support to regional/local decision makers responsible for the design of air quality plans. It is therefore important to evaluate the quality of the SHERPA model, and its behavior in the face of various kinds of uncertainty. Uncertainty and sensitivity analysis techniques can be used for this purpose. They both reveal the links between assumptions and forecasts, help in-model simplification and may highlight unexpected relationships between inputs and outputs. Thus, a policy steered SHERPA module - predicting air quality improvement linked to emission reduction scenarios - was evaluated by means of (1) uncertainty analysis (UA) to quantify uncertainty in the model output, and (2) by sensitivity analysis (SA) to identify the most influential input sources of this uncertainty. The results of this study provide relevant information about the key variables driving the SHERPA output uncertainty, and advise policy-makers and modellers where to place their efforts for an improved decision-making process.
Uncertainty analysis technique of dynamic response and cumulative damage properties of piping system
International Nuclear Information System (INIS)
Suzuki, Kohei; Aoki, Shigeru; Hara, Fumio; Hanaoka, Masaaki; Yamashita, Tadashi.
1982-01-01
It is a technologically important subject to establish the method of uncertainty analysis statistically examining the variation of the earthquake response and damage properties of equipment and piping system due to the change of input load and the parameters of structural system, for evaluating the aseismatic capability and dynamic structural reliability of these systems. The uncertainty in the response and damage properties when equipment and piping system are subjected to excessive vibration load is mainly dependent on the irregularity of acting input load such as the unsteady vibration of earthquakes, and structural uncertainty in forms and dimensions. This study is the basic one to establish the method for evaluating the uncertainty in the cumulative damage property at the time of resonant vibration of piping system due to the disperse of structural parameters with a simple model. First, the piping models with simple form were broken by resonant vibration, and the uncertainty in the cumulative damage property was evaluated. Next, the response analysis using an elasto-plastic mechanics model was performed by numerical simulation. Finally, the method of uncertainty analysis for response and damage properties by the perturbation method utilizing equivalent linearization was proposed, and its propriety was proved. (Kako, I.)
Integrated uncertainty analysis using RELAP/SCDAPSIM/MOD4.0
International Nuclear Information System (INIS)
Perez, M.; Reventos, F.; Wagner, R.; Allison, C.
2009-01-01
The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of an international nuclear technology Software Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses the publicly available RELAP5 and SCDAP models in combination with (a) advanced programming and numerical techniques, (b) advanced SDTP-member-developed models for LWR, HWR, and research reactor analysis, and (c) a variety of other member-developed computational packages. One such computational package is an integrated uncertainty analysis package being developed jointly by the Technical University of Catalunya (UPC) and Innovative Systems Software (ISS). The integrated uncertainty analysis approach used in the package uses the following steps: 1. Selection of the plant; 2. Selection of the scenario; 3. Selection of the safety criteria; 4. Identification and ranking of the relevant phenomena based on the safety criteria; 5. Selection of the appropriate code parameters to represent those phenomena; 6. Association of uncertainty by means of Probability Distribution Functions (PDFs) for each selected parameter; 7. Random sampling of the selected parameters according to its PDF and performing multiple computer runs to obtain uncertainty bands with a certain percentile and confidence level; 8. Processing the results of the multiple computer runs to estimate the uncertainty bands for the computed quantities associated with the selected safety criteria. The first four steps are performed by the user prior to the RELAP/SCDAPSIM/MOD4.0 analysis. The remaining steps are included with the MOD4.0 integrated uncertainty analysis (IUA) package. This paper briefly describes the integrated uncertainty analysis package including (a) the features of the package, (b) the implementation of the package into RELAP/SCDAPSIM/MOD4.0, and
International Nuclear Information System (INIS)
Johnson, David R.; Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine; Skone, Timothy
2011-01-01
Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. -- Highlights: → We describe key model, scenario and data uncertainties in LCAs of biobased fuels. → System boundaries and allocation choices should be consistent with study goals. → Scenarios should be designed around policy levers that can be controlled. → We describe a new way to analyze the importance of covariance between inputs.
Uncertainty analysis of suppression pool heating during an ATWS in a BWR-5 plant
International Nuclear Information System (INIS)
Wulff, W.; Cheng, H.S.; Mallen, A.N.; Johnsen, G.W.; Lellouche, G.S.
1994-03-01
The uncertainty has been estimated of predicting the peak temperature in the suppression pool of a BWR power plant, which undergoes an NRC-postulated Anticipated Transient Without Scram (ATWS). The ATWS is initiated by recirculation-pump trips, and then leads to power and flow oscillations as they had occurred at the LaSalle-2 Power Station in March of 1988. After limit-cycle oscillations have been established, the turbines are tripped, but without MSIV closure, allowing steam discharge through the turbine bypass into the condenser. Postulated operator actions, namely to lower the reactor vessel pressure and the level elevation in the downcomer, are simulated by a robot model which accounts for operator uncertainty. All balance of plant and control systems modeling uncertainties were part of the statistical uncertainty analysis that was patterned after the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis showed that the predicted suppression-pool peak temperature of 329.3 K (133 degrees F) has a 95-percentile uncertainty of 14.4 K (26 degrees F), and that the size of this uncertainty bracket is dominated by the experimental uncertainty of measuring Safety and Relief Valve mass flow rates under critical-flow conditions. The analysis showed also that the probability of exceeding the suppression-pool temperature limit of 352.6 K (175 degrees F) is most likely zero (it is estimated as < 5-104). The square root of the sum of the squares of all the computed peak pool temperatures is 350.7 K (171.6 degrees F)
Energy Technology Data Exchange (ETDEWEB)
Cabellos, O.; Garcya-Herranz, N.; Sanz, J. [Institute of Nuclear Fusion, UPM, Madrid (Spain); Cabellos, O.; Garcya-Herranz, N.; Fernandez, P.; Fernandez, B. [Dept. of Nuclear Engineering, UPM, Madrid (Spain); Sanz, J. [Dept. of Power Engineering, UNED, Madrid (Spain); Reyes, S. [Safety, Environment and Health Group, ITER Joint Work Site, Cadarache Center (France)
2008-07-01
We address uncertainty analysis to draw conclusions on the reliability of the activation calculation in the International Fusion Materials Irradiation Facility (IFMIF) under the potential impact of activation cross section uncertainties. The Monte Carlo methodology implemented in ACAB code gives the uncertainty estimates due to the synergetic/global effect of the complete set of cross section uncertainties. An element-by-element analysis has been demonstrated as a helpful tool to easily analyse the transmutation performance of irradiated materials.The uncertainty analysis results showed that for times over about 24 h the relative error in the contact dose rate can be as large as 23 per cent. We have calculated the effect of cross section uncertainties in the IFMIF activation of all different elements. For EUROFER, uncertainties in H and He elements are 7.3% and 5.6%, respectively. We have found significant uncertainties in the transmutation response for C, P and Nb.
Thermal-Hydraulic Analysis for SBLOCA in OPR1000 and Evaluation of Uncertainty for PSA
International Nuclear Information System (INIS)
Kim, Tae Jin; Park, Goon Cherl
2012-01-01
Probabilistic Safety assessment (PSA) is a mathematical tool to evaluate numerical estimates of risk for nuclear power plants (NPPs). But PSA has the problems about quality and reliability since the quantification of uncertainties from thermal hydraulic (TH) analysis has not been included in the quantification of overall uncertainties in PSA. From the former research, it is proved that the quantification of uncertainties from best-estimate LBLOCA analysis can improve the PSA quality by modifying the core damage frequency (CDF) from the existing PSA report. Basing on the similar concept, this study considers the quantification of SBLOCA analysis results. In this study, however, operator error parameters are also included in addition to the phenomenon parameters which are considered in LBLOCA analysis
Zhang, Yimei; Li, Shuai; Wang, Fei; Chen, Zhuang; Chen, Jie; Wang, Liqun
2018-09-01
Toxicity of heavy metals from industrialization poses critical concern, and analysis of sources associated with potential human health risks is of unique significance. Assessing human health risk of pollution sources (factored health risk) concurrently in the whole and the sub region can provide more instructive information to protect specific potential victims. In this research, we establish a new expression model of human health risk based on quantitative analysis of sources contribution in different spatial scales. The larger scale grids and their spatial codes are used to initially identify the level of pollution risk, the type of pollution source and the sensitive population at high risk. The smaller scale grids and their spatial codes are used to identify the contribution of various sources of pollution to each sub region (larger grid) and to assess the health risks posed by each source for each sub region. The results of case study show that, for children (sensitive populations, taking school and residential area as major region of activity), the major pollution source is from the abandoned lead-acid battery plant (ALP), traffic emission and agricultural activity. The new models and results of this research present effective spatial information and useful model for quantifying the hazards of source categories and human health a t complex industrial system in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Uncertainty Parameters in Blowdown and Reflood Models for OPR1000 LBLOCA Analysis
Energy Technology Data Exchange (ETDEWEB)
Huh, Byung Gil; Jin, Chang Yong; Seul, Kwangwon; Hwang, Taesuk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2014-05-15
KINS(Korea Institute of Nuclear Safety) has also performed the audit calculation with the KINS Realistic Evaluation Methodology(KINS-REM) to confirm the validity of licensee's calculation. In the BEPU method, it is very important to quantify the code and model uncertainty. It is referred in the following requirement: BE calculations in Regulatory Guide 1.157 - 'the code and models used are acceptable and applicable to the specific facility over the intended operating range and must quantify the uncertainty in the specific application'. In general, the uncertainty of model/code should be obtained through the data comparison with relevant integral- and separate-effect tests at different scales. However, it is not easy to determine these kinds of uncertainty because of the difficulty for evaluating accurately various experiments. Therefore, the expert judgment has been used in many cases even with the limitation that the uncertainty range of important parameters can be wide and inaccurate. In the KINS-REM, six heat transfer parameters in the blowdown phase have been used to consider the uncertainty of models. Recently, MARS-KS code was modified to consider the uncertainty of the five heat transfer parameters in the reflood phase. Accordingly, it is required that the uncertainty range for parameters of reflood models is determined and the effect of these ranges is evaluated. In this study, the large break LOCA (LBLOCA) analysis for OPR1000 was performed to identify the effect of uncertainty parameters in blowdown and reflood models.
DEFF Research Database (Denmark)
Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.
2014-01-01
The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...
Energy Technology Data Exchange (ETDEWEB)
Pawel, David [U.S. Environmental Protection Agency; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Nelson, Christopher [U.S. Environmental Protection Agency
2007-01-01
Federal Guidance Report No. 13 (FGR 13) provides risk coefficients for estimation of the risk of cancer due to low-level exposure to each of more than 800 radionuclides. Uncertainties in risk coefficients were quantified in FGR 13 for 33 cases (exposure to each of 11 radionuclides by each of three exposure pathways) on the basis of sensitivity analyses in which various combinations of plausible biokinetic, dosimetric, and radiation risk models were used to generate alternative risk coefficients. The present report updates the uncertainty analysis in FGR 13 for the cases of inhalation and ingestion of radionuclides and expands the analysis to all radionuclides addressed in that report. The analysis indicates that most risk coefficients for inhalation or ingestion of radionuclides are determined within a factor of 5 or less by current information. That is, application of alternate plausible biokinetic and dosimetric models and radiation risk models (based on the linear, no-threshold hypothesis with an adjustment for the dose and dose rate effectiveness factor) is unlikely to change these coefficients by more than a factor of 5. In this analysis the assessed uncertainty in the radiation risk model was found to be the main determinant of the uncertainty category for most risk coefficients, but conclusions concerning the relative contributions of risk and dose models to the total uncertainty in a risk coefficient may depend strongly on the method of assessing uncertainties in the risk model.
Uncertainty analysis for the BEACON-COLSS core monitoring system application
International Nuclear Information System (INIS)
Morita, T.; Boyd, W.A.; Seong, K.B.
2005-01-01
This paper will cover the measurement uncertainty analysis of BEACON-COLSS core monitoring system. The uncertainty evaluation is made by using a BEACON-COLSS simulation program. By simulating the BEACON on-line operation for analytically generated reactor conditions, accuracy of the 'Measured' results can be evaluated by comparing to analytically generated 'Truth'. The DNB power margin is evaluated based on the Combustion Engineering's Modified Statistical Combination of Uncertainties (MSCU) using the CETOPD code for the DNBR calculation. A BEACON-COLSS simulation program for the uncertainty evaluation function has been established for plant applications. Qualification work has been completed for two Combustion Engineering plants. Results of the BEACON-COLSS measured peaking factors and DNBR power margin are plant type dependent and are applicable to reload cores as long as the core geometry and detector layout are unchanged. (authors)
Coupled code analysis of uncertainty and sensitivity of Kalinin-3 benchmark
Energy Technology Data Exchange (ETDEWEB)
Pasichnyk, Ihor; Zwermann, Winfried; Velkov, Kiril [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Nikonov, Sergey [VNIIAES, Moscow (Russian Federation)
2016-09-15
An uncertainty and sensitivity analysis is performed for the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). A switch off of one main coolant pump (MCP) at nominal reactor power is calculated using a coupled thermohydraulic and neutron-kinetic ATHLET-PARCS code. The objectives are to study uncertainty of total reactor power and to identify the main sources of reactor power uncertainty. The GRS uncertainty and sensitivity software package XSUSA is applied to propagate uncertainties in nuclear data libraries to the full core coupled transient calculations. A set of most important thermal-hydraulic parameters of the primary circuit is identified and a total of 23 thermohydraulic parameters are statistically varied using GRS code SUSA. The ATHLET model contains also a balance-of-plant (BOP) model which is simulated using ATHLET GCSM module. In particular the operation of the main steam generator regulators is modelled in detail. A set of 200 varied coupled ATHLET-PARCS calculations is analyzed. The results obtained show a clustering effect in the behavior of global reactor parameters. It is found that the GCSM system together with varied input parameters strongly influence the overall nuclear power plant behavior and can even lead to a new scenario. Possible reasons of the clustering effect are discussed in the paper. This work is a step forward in establishing a ''best-estimate calculations in combination with performing uncertainty analysis'' methodology for coupled full core calculations.
Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model
Wang, Shitao
2016-05-27
Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model\\'s estimates of the plume\\'s trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate\\'s contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.
Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)
International Nuclear Information System (INIS)
Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.
1982-01-01
The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections
Cressie, Noel; Calder, Catherine A; Clark, James S; Ver Hoef, Jay M; Wikle, Christopher K
2009-04-01
Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.
International Nuclear Information System (INIS)
Matsubara, Tassiane C.M.; Saiki, Mitiko; Zahn, Guilherme S.; Moreira, Edson G.
2013-01-01
Antimony is an element found in low concentrations in the environment. However, its determination has attracted great interest because of the knowledge of its toxicity and increasing application. Neutron activation analysis (NAA) is a suitable method for the determination of several elements in different types, but in case of Sb, the analysis presents some difficulties due to spectral interferences. The objective of this research was to validate the method of NAA and uncertainty assessment for Sb determination in environmental samples. The experimental procedure consisted of irradiating twelve certified reference samples of different kind of matrices. The samples were irradiated in the nuclear research reactor IEA R1 IPEN/CNEN/SP followed by measurement of induced radioactivity, using a hyperpure germanium detector coupled to a gamma ray spectrometry. The radioisotopes 122 Sb and 124 Sb were measured and the Sb concentrations with their respective uncertainties were obtained by the comparative method. Relative errors and values of Z scores were calculated to evaluate the accuracy of the results for Sb determination in certified reference materials. The evaluation of the components that contribute to uncertainty measurement of the Sb concentration, showed that the major uncertainty contribution is due to statistical counting. The results also indicated that the uncertainty value of the combined standard uncertainty depends on the radioisotope measured and the decay time used for counting. (author)
Propagation of uncertainty and sensitivity analysis in an integral oil-gas plume model
Wang, Shitao; Iskandarani, Mohamed; Srinivasan, Ashwanth; Thacker, W. Carlisle; Winokur, Justin; Knio, Omar
2016-01-01
Polynomial Chaos expansions are used to analyze uncertainties in an integral oil-gas plume model simulating the Deepwater Horizon oil spill. The study focuses on six uncertain input parameters—two entrainment parameters, the gas to oil ratio, two parameters associated with the droplet-size distribution, and the flow rate—that impact the model's estimates of the plume's trap and peel heights, and of its various gas fluxes. The ranges of the uncertain inputs were determined by experimental data. Ensemble calculations were performed to construct polynomial chaos-based surrogates that describe the variations in the outputs due to variations in the uncertain inputs. The surrogates were then used to estimate reliably the statistics of the model outputs, and to perform an analysis of variance. Two experiments were performed to study the impacts of high and low flow rate uncertainties. The analysis shows that in the former case the flow rate is the largest contributor to output uncertainties, whereas in the latter case, with the uncertainty range constrained by aposteriori analyses, the flow rate's contribution becomes negligible. The trap and peel heights uncertainties are then mainly due to uncertainties in the 95% percentile of the droplet size and in the entrainment parameters.
Directory of Open Access Journals (Sweden)
Leonetti Davide
2018-01-01
Full Text Available Estimating and reducing uncertainty in fatigue test data analysis is a relevant task in order to assess the reliability of a structural connection with respect to fatigue. Several statistical models have been proposed in the literature with the aim of representing the stress range vs. endurance trend of fatigue test data under constant amplitude loading and the scatter in the finite and infinite life regions. In order to estimate the safety level of the connection also the uncertainty related to the amount of information available need to be estimated using the methods provided by the theory of statistic. The Bayesian analysis is employed to reduce the uncertainty due to the often small amount of test data by introducing prior information related to the parameters of the statistical model. In this work, the inference of fatigue test data belonging to cover plated steel beams is presented. The uncertainty is estimated by making use of Bayesian and frequentist methods. The 5% quantile of the fatigue life is estimated by taking into account the uncertainty related to the sample size for both a dataset containing few samples and one containing more data. The S-N curves resulting from the application of the employed methods are compared and the effect of the reduction of uncertainty in the infinite life region is quantified.
Operational modal analysis modeling, Bayesian inference, uncertainty laws
Au, Siu-Kui
2017-01-01
This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic pro...
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Gernaey, Krist; Adler-Nissen, Jens
2012-01-01
to uncertainty in the model predictions. The aim of the current paper is to address this uncertainty challenge in the modelling of food production processes using a combination of uncertainty and sensitivity analysis, where the uncertainty analysis and global sensitivity analysis were applied to a heat and mass......Similar to other processes, the modelling of heat and mass transfer during food processing involves uncertainty in the values of input parameters (heat and mass transfer coefficients, evaporation rate parameters, thermo-physical properties, initial and boundary conditions) which leads...
Energy Technology Data Exchange (ETDEWEB)
Groen, E.A., E-mail: Evelyne.Groen@gmail.com [Wageningen University, P.O. Box 338, Wageningen 6700 AH (Netherlands); Heijungs, R. [Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV (Netherlands); Leiden University, Einsteinweg 2, Leiden 2333 CC (Netherlands)
2017-01-15
Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlations between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.
DEFF Research Database (Denmark)
Lindblom, Erik Ulfson; Madsen, Henrik; Mikkelsen, Peter Steen
2007-01-01
. With the proposed model and input data, the GLUE analysis show that the total sampled copper mass can be predicted within a range of +/- 50% of the median value ( 385 g), whereas the grey-box analysis showed a prediction uncertainty of less than +/- 30%. Future work will clarify the pros and cons of the two methods...
Integrated Risk-Capability Analysis under Deep Uncertainty : An ESDMA Approach
Pruyt, E.; Kwakkel, J.H.
2012-01-01
Integrated risk-capability analysis methodologies for dealing with increasing degrees of complexity and deep uncertainty are urgently needed in an ever more complex and uncertain world. Although scenario approaches, risk assessment methods, and capability analysis methods are used, few organizations
DEFF Research Database (Denmark)
Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard
2015-01-01
Material flow analysis (MFA) is a widely applied tool to investigate resource and recycling systems of metals and minerals. Owing to data limitations and restricted system understanding, MFA results are inherently uncertain. To demonstrate the systematic implementation of uncertainty analysis in ...
Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry
West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat
2016-01-01
The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.
Directory of Open Access Journals (Sweden)
Rianne M. Bijlsma
2011-03-01
Full Text Available Stakeholder participation is advocated widely, but there is little structured, empirical research into its influence on policy development. We aim to further the insight into the characteristics of participatory policy development by comparing it to expert-based policy development for the same case. We describe the process of problem framing and analysis, as well as the knowledge base used. We apply an uncertainty perspective to reveal differences between the approaches and speculate about possible explanations. We view policy development as a continuous handling of substantive uncertainty and process uncertainty, and investigate how the methods of handling uncertainty of actors influence the policy development. Our findings suggest that the wider frame that was adopted in the participatory approach was the result of a more active handling of process uncertainty. The stakeholders handled institutional uncertainty by broadening the problem frame, and they handled strategic uncertainty by negotiating commitment and by including all important stakeholder criteria in the frame. In the expert-based approach, we observed a more passive handling of uncertainty, apparently to avoid complexity. The experts handled institutional uncertainty by reducing the scope and by anticipating windows of opportunity in other policy arenas. Strategic uncertainty was handled by assuming stakeholders' acceptance of noncontroversial measures that balanced benefits and sacrifices. Three other observations are of interest to the scientific debate on participatory policy processes. Firstly, the participatory policy was less adaptive than the expert-based policy. The observed low tolerance for process uncertainty of participants made them opt for a rigorous "once and for all" settling of the conflict. Secondly, in the participatory approach, actors preferred procedures of traceable knowledge acquisition over controversial topics to handle substantive uncertainty. This
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, andParameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...
Uncertainty in soil-structure interaction analysis arising from differences in analytical techniques
International Nuclear Information System (INIS)
Maslenikov, O.R.; Chen, J.C.; Johnson, J.J.
1982-07-01
This study addresses uncertainties arising from variations in different modeling approaches to soil-structure interaction of massive structures at a nuclear power plant. To perform a comprehensive systems analysis, it is necessary to quantify, for each phase of the traditional analysis procedure, both the realistic seismic response and the uncertainties associated with them. In this study two linear soil-structure interaction techniques were used to analyze the Zion, Illinois nuclear power plant: a direct method using the FLUSH computer program and a substructure approach using the CLASSI family of computer programs. In-structure response from two earthquakes, one real and one synthetic, was compared. Structure configurations from relatively simple to complicated multi-structure cases were analyzed. The resulting variations help quantify uncertainty in structure response due to analysis procedures
Design, Analysis and Test of Logic Circuits Under Uncertainty
Krishnaswamy, Smita; Hayes, John P
2013-01-01
Integrated circuits (ICs) increasingly exhibit uncertain characteristics due to soft errors, inherently probabilistic devices, and manufacturing variability. As device technologies scale, these effects can be detrimental to the reliability of logic circuits. To improve future semiconductor designs, this book describes methods for analyzing, designing, and testing circuits subject to probabilistic effects. The authors first develop techniques to model inherently probabilistic methods in logic circuits and to test circuits for determining their reliability after they are manufactured. Then, they study error-masking mechanisms intrinsic to digital circuits and show how to leverage them to design more reliable circuits. The book describes techniques for: • Modeling and reasoning about probabilistic behavior in logic circuits, including a matrix-based reliability-analysis framework; • Accurate analysis of soft-error rate (SER) based on functional-simulation, sufficiently scalable for use in gate-l...
Life cycle cost analysis of wind power considering stochastic uncertainties
International Nuclear Information System (INIS)
Li, Chiao-Ting; Peng, Huei; Sun, Jing
2014-01-01
This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion. - Highlights: • The competitiveness of wind power is analyzed via life cycle cost analysis. • Wind intermittency and reserve costs are explicitly considered in the analysis. • Results show that wind is still more expensive than natural gas power plants. • Wind can be cheaper than coal capacities if wind intermittency is mitigated. • Wind will be competitive if costs of carbon emissions are considered
Implementation of a Bayesian Engine for Uncertainty Analysis
Energy Technology Data Exchange (ETDEWEB)
Leng Vang; Curtis Smith; Steven Prescott
2014-08-01
In probabilistic risk assessment, it is important to have an environment where analysts have access to a shared and secured high performance computing and a statistical analysis tool package. As part of the advanced small modular reactor probabilistic risk analysis framework implementation, we have identified the need for advanced Bayesian computations. However, in order to make this technology available to non-specialists, there is also a need of a simplified tool that allows users to author models and evaluate them within this framework. As a proof-of-concept, we have implemented an advanced open source Bayesian inference tool, OpenBUGS, within the browser-based cloud risk analysis framework that is under development at the Idaho National Laboratory. This development, the “OpenBUGS Scripter” has been implemented as a client side, visual web-based and integrated development environment for creating OpenBUGS language scripts. It depends on the shared server environment to execute the generated scripts and to transmit results back to the user. The visual models are in the form of linked diagrams, from which we automatically create the applicable OpenBUGS script that matches the diagram. These diagrams can be saved locally or stored on the server environment to be shared with other users.
van der Spek, Mijndert; Ramirez, Andrea; Faaij, André
2016-01-01
This article aims to improve uncertainty evaluation of process models by combining a quantitative uncertainty evaluation method (data validation) with a qualitative uncertainty evaluation method (pedigree analysis). The approach is tested on a case study of monoethanolamine based postcombustion CO2
Energy Technology Data Exchange (ETDEWEB)
Patriarca, Riccardo, E-mail: riccardo.patriarca@uniroma1.it; Di Gravio, Giulio; Costantino, Francesco; Tronci, Massimo
2017-03-15
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order to define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.
International Nuclear Information System (INIS)
Patriarca, Riccardo; Di Gravio, Giulio; Costantino, Francesco; Tronci, Massimo
2017-01-01
Environmental auditing is a main issue for any production plant and assessing environmental performance is crucial to identify risks factors. The complexity of current plants arises from interactions among technological, human and organizational system components, which are often transient and not easily detectable. The auditing thus requires a systemic perspective, rather than focusing on individual behaviors, as emerged in recent research in the safety domain for socio-technical systems. We explore the significance of modeling the interactions of system components in everyday work, by the application of a recent systemic method, i.e. the Functional Resonance Analysis Method (FRAM), in order to define dynamically the system structure. We present also an innovative evolution of traditional FRAM following a semi-quantitative approach based on Monte Carlo simulation. This paper represents the first contribution related to the application of FRAM in the environmental context, moreover considering a consistent evolution based on Monte Carlo simulation. The case study of an environmental risk auditing in a sinter plant validates the research, showing the benefits in terms of identifying potential critical activities, related mitigating actions and comprehensive environmental monitoring indicators. - Highlights: • We discuss the relevance of a systemic risk based environmental audit. • We present FRAM to represent functional interactions of the system. • We develop a semi-quantitative FRAM framework to assess environmental risks. • We apply the semi-quantitative FRAM framework to build a model for a sinter plant.
Total sensitivity and uncertainty analysis for LWR pin-cells with improved UNICORN code
International Nuclear Information System (INIS)
Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei
2017-01-01
Highlights: • A new model is established for the total sensitivity and uncertainty analysis. • The NR approximation applied in S&U analysis can be avoided by the new model. • Sensitivity and uncertainty analysis is performed to PWR pin-cells by the new model. • The effects of the NR approximation for the PWR pin-cells are quantified. - Abstract: In this paper, improvements to the multigroup cross-section perturbation model have been proposed and applied in the self-developed UNICORN code, which is capable of performing the total sensitivity and total uncertainty analysis for the neutron-physics calculations by applying the direct numerical perturbation method and the statistical sampling method respectively. The narrow resonance (NR) approximation was applied in the multigroup cross-section perturbation model, implemented in UNICORN. As improvements to the NR approximation to refine the multigroup cross-section perturbation model, an ultrafine-group cross-section perturbation model has been established, in which the actual perturbations are applied to the ultrafine-group cross-section library and the reconstructions of the resonance cross sections are performed by solving the neutron slowing-down equation. The total sensitivity and total uncertainty analysis were then applied to the LWR pin-cells, using both the multigroup and the ultrafine-group cross-section perturbation models. The numerical results show that the NR approximation overestimates the relative sensitivity coefficients and the corresponding uncertainty results for the LWR pin-cells, and the effects of the NR approximation are significant for σ_(_n_,_γ_) and σ_(_n_,_e_l_a_s_) of "2"3"8U. Therefore, the effects of the NR approximation applied in the total sensitivity and total uncertainty analysis for the neutron-physics calculations of LWR should be taken into account.
Using finite mixture models in thermal-hydraulics system code uncertainty analysis
Energy Technology Data Exchange (ETDEWEB)
Carlos, S., E-mail: scarlos@iqn.upv.es [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Sánchez, A. [Department d’Estadística Aplicada i Qualitat, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Ginestar, D. [Department de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Martorell, S. [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain)
2013-09-15
Highlights: • Best estimate codes simulation needs uncertainty quantification. • The output variables can present multimodal probability distributions. • The analysis of multimodal distribution is performed using finite mixture models. • Two methods to reconstruct output variable probability distribution are used. -- Abstract: Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty in input parameters and modeling, it is necessary to perform uncertainty assessment (UA), and eventually sensitivity analysis (SA), of the results obtained. These analyses are part of the appropriate treatment of uncertainties imposed by current regulation based on the adoption of the best estimate plus uncertainty (BEPU) approach. The most popular approach for uncertainty assessment, based on Wilks’ method, obtains a tolerance/confidence interval, but it does not completely characterize the output variable behavior, which is required for an extended UA and SA. However, the development of standard UA and SA impose high computational cost due to the large number of simulations needed. In order to obtain more information about the output variable and, at the same time, to keep computational cost as low as possible, there has been a recent shift toward developing metamodels (model of model), or surrogate models, that approximate or emulate complex computer codes. In this way, there exist different techniques to reconstruct the probability distribution using the information provided by a sample of values as, for example, the finite mixture models. In this paper, the Expectation Maximization and the k-means algorithms are used to obtain a finite mixture model that reconstructs the output variable probability distribution from data obtained with RELAP-5 simulations. Both methodologies have been applied to a separated
Li, Wei Bo; Greiter, Matthias; Oeh, Uwe; Hoeschen, Christoph
2011-12-01
The reliability of biokinetic models is essential in internal dose assessments and radiation risk analysis for the public, occupational workers, and patients exposed to radionuclides. In this paper, a method for assessing the reliability of biokinetic models by means of uncertainty and sensitivity analysis was developed. The paper is divided into two parts. In the first part of the study published here, the uncertainty sources of the model parameters for zirconium (Zr), developed by the International Commission on Radiological Protection (ICRP), were identified and analyzed. Furthermore, the uncertainty of the biokinetic experimental measurement performed at the Helmholtz Zentrum München-German Research Center for Environmental Health (HMGU) for developing a new biokinetic model of Zr was analyzed according to the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. The confidence interval and distribution of model parameters of the ICRP and HMGU Zr biokinetic models were evaluated. As a result of computer biokinetic modelings, the mean, standard uncertainty, and confidence interval of model prediction calculated based on the model parameter uncertainty were presented and compared to the plasma clearance and urinary excretion measured after intravenous administration. It was shown that for the most important compartment, the plasma, the uncertainty evaluated for the HMGU model was much smaller than that for the ICRP model; that phenomenon was observed for other organs and tissues as well. The uncertainty of the integral of the radioactivity of Zr up to 50 y calculated by the HMGU model after ingestion by adult members of the public was shown to be smaller by a factor of two than that of the ICRP model. It was also shown that the distribution type of the model parameter strongly influences the model prediction, and the correlation of the model input parameters affects the model prediction to a
Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs
Energy Technology Data Exchange (ETDEWEB)
Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)
2017-04-15
Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.
Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs
International Nuclear Information System (INIS)
Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry
2017-01-01
Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
Applications of uncertainty analysis to visual evaluation of density in radiographs
International Nuclear Information System (INIS)
Uchida, Suguru; Ohtsuka, Akiyoshi; Fujita, Hiroshi.
1981-01-01
Uncertainty analysis, developed as a method of absolute judgment in psychology, is applied to a method of radiographic image evaluation with perceptual fluctuations and to an examination of visual evaluation of density in radiographs. Subjects are composed of three groups of four neurosurgeons, four radiologic technologists and four nonprofessionals. By using a five-category rating scale, each observer is directed to classify 255 radiographs randomly presented without feedback. Characteristics of each observer and each group can be shown quantitatively by calculated information values. It is also described that bivariate uncertainty analysis or entropy method can be used to calculate the degree of agreement of evaluation. (author)
Uncertainty modeling in vibration, control and fuzzy analysis of structural systems
Halder, Achintya; Ayyub, Bilal M
1997-01-01
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy
Applications of uncertainty analysis to visual evaluation of density in radiographs
Energy Technology Data Exchange (ETDEWEB)
Uchida, S [Gifu Univ. (Japan); Ohtsuka, A; Fujita, H
1981-03-01
Uncertainty analysis, developed as a method of absolute judgment in psychology, is applied to a method of radiographic image evaluation with perceptual fluctuations and to an examination of visual evaluation of density in radiographs. Subjects are composed of three groups of four neurosurgeons, four radiologic technologists and four nonprofessionals. By using a five-category rating scale, each observer is directed to classify 255 radiographs randomly presented without feedback. Characteristics of each observer and each group can be shown quantitatively by calculated information values. It is also described that bivariate uncertainty analysis or entropy method can be used to calculate the degree of agreement of evaluation.
Analysis of parameter uncertainties in the assessment of seismic risk for nuclear power plants
International Nuclear Information System (INIS)
Yucemen, S.M.
1981-04-01
Probabilistic and statistical methods are used to develop a procedure by which the seismic risk at a specific site can be systematically analyzed. The proposed probabilistic procedure provides a consisted method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. Methods are proposed for including these uncertainties in the final value of calculated risks. Two specific case studies are presented in detail to illustrate the application of the probabilistic method of seismic risk evaluation and to investigate the sensitivity of results to different assumptions
Energy Technology Data Exchange (ETDEWEB)
Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on
An analysis of uncertainties in the reference resonance absorption calculations
International Nuclear Information System (INIS)
Milosevic, M.; Pesic, M.
1997-05-01
A recently appeared generation of design-oriented methods, which allows to compute the space and energy dependence of the resonant absorption inside the fuel rod, induces a new problem of validation of results obtained with improved resonance treatments, Because no experimental results are available on the spatial and energy distribution of resonance absorption, detailed reference calculations were generated with the continuos-energy Monte Carlo and energy pointwise slowing-down codes. The accuracy of these calculations depends>on various in.fluences. In this paper an analysis of some influences, such as differences ;n nuclear data libraries and philosophy of reproducing the cross section data, is presented. Example application is given for a calculation benchmark that consists of determination of resonance absorption by 238 U in typical PWR pin cell geometry (author)
BEMUSE Phase III Report - Uncertainty and Sensitivity Analysis of the LOFT L2-5 Test
International Nuclear Information System (INIS)
Bazin, P.; Crecy, A. de; Glaeser, H.; Skorek, T.; Joucla, J.; Probst, P.; Chung, B.; Oh, D.Y.; Kyncl, M.; Pernica, R.; Macek, J.; Meca, R.; Macian, R.; D'Auria, F.; Petruzzi, A.; Perez, M.; Reventos, F.; Fujioka, K.
2007-02-01
This report summarises the various contributions (ten participants) for phase 3 of BEMUSE: Uncertainty and Sensitivity Analyses of the LOFT L2-5 experiment, a Large-Break Loss-of-Coolant-Accident (LB-LOCA). For this phase, precise requirements step by step were provided to the participants. Four main parts are defined, which are: 1. List and uncertainties of the input uncertain parameters. 2. Uncertainty analysis results. 3. Sensitivity analysis results. 4. Improved methods, assessment of the methods (optional). 5% and 95% percentiles have to be estimated for 6 output parameters, which are of two kinds: 1. Scalar output parameters (First Peak Cladding Temperature (PCT), Second Peak Cladding Temperature, Time of accumulator injection, Time of complete quenching); 2. Time trends output parameters (Maximum cladding temperature, Upper plenum pressure). The main lessons learnt from phase 3 of the BEMUSE programme are the following: - for uncertainty analysis, all the participants use a probabilistic method associated with the use of Wilks' formula, except for UNIPI with its CIAU method (Code with the Capability of Internal Assessment of Uncertainty). Use of both methods has been successfully mastered. - Compared with the experiment, the results of uncertainty analysis are good on the whole. For example, for the cladding temperature-type output parameters (1. PCT, 2. PCT, time of complete quenching, maximum cladding temperature), 8 participants out of 10 find upper and lower bounds which envelop the experimental data. - Sensitivity analysis has been successfully performed by all the participants using the probabilistic method. All the used influence measures include the range of variation of the input parameters. Synthesis tables of the most influential phenomena and parameters have been plotted and participants will be able to use them for the continuation of the BEMUSE programme
Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California
Mahdyiar, M.; Guin, J.
2005-12-01
Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground
Demonstration uncertainty/sensitivity analysis using the health and economic consequence model CRAC2
International Nuclear Information System (INIS)
Alpert, D.J.; Iman, R.L.; Johnson, J.D.; Helton, J.C.
1985-01-01
This paper summarizes a demonstration uncertainty/sensitivity analysis performed on the reactor accident consequence model CRAC2. The study was performed with uncertainty/sensitivity analysis techniques compiled as part of the MELCOR program. The principal objectives of the study were: 1) to demonstrate the use of the uncertainty/sensitivity analysis techniques on a health and economic consequence model, 2) to test the computer models which implement the techniques, 3) to identify possible difficulties in performing such an analysis, and 4) to explore alternative means of analyzing, displaying, and describing the results. Demonstration of the applicability of the techniques was the motivation for performing this study; thus, the results should not be taken as a definitive uncertainty analysis of health and economic consequences. Nevertheless, significant insights on health and economic consequence analysis can be drawn from the results of this type of study. Latin hypercube sampling (LHS), a modified Monte Carlo technique, was used in this study. LHS generates a multivariate input structure in which all the variables of interest are varied simultaneously and desired correlations between variables are preserved. LHS has been shown to produce estimates of output distribution functions that are comparable with results of larger random samples
International Nuclear Information System (INIS)
Luxat, J.C.; Huget, R.G.
2001-01-01
Development of a methodology to perform best estimate and uncertainty nuclear safety analysis has been underway at Ontario Power Generation for the past two and one half years. A key driver for the methodology development, and one of the major challenges faced, is the need to re-establish demonstrated safety margins that have progressively been undermined through excessive and compounding conservatism in deterministic analyses. The major focus of the prototyping applications was to quantify the safety margins that exist at the probable range of high power operating conditions, rather than the highly improbable operating states associated with Limit of the Envelope (LOE) assumptions. In LOE, all parameters of significance to the consequences of a postulated accident are assumed to simultaneously deviate to their limiting values. Another equally important objective of the prototyping was to demonstrate the feasibility of conducting safety analysis as an incremental analysis activity, as opposed to a major re-analysis activity. The prototype analysis solely employed prior analyses of Bruce B large break LOCA events - no new computer simulations were undertaken. This is a significant and novel feature of the prototyping work. This methodology framework has been applied to a postulated large break LOCA in a Bruce generating unit on a prototype basis. This paper presents results of the application. (author)
Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors
Petrenko, M.; Ichoku, C.
2013-01-01
Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in
Energy Technology Data Exchange (ETDEWEB)
Ikonen, T., E-mail: timo.ikonen@vtt.fi; Tulkki, V.
2014-08-15
Highlights: • Uncertainty and sensitivity analysis of modeled nuclear fuel behavior is performed. • Burnup dependency of the uncertainties and sensitivities is characterized. • Input interactions significantly increase output uncertainties for irradiated fuel. • Identification of uncertainty sources is greatly improved with higher order methods. • Results stress the importance of using methods that take interactions into account. - Abstract: The propagation of uncertainties in a PWR fuel rod under steady-state irradiation is analyzed by computational means. A hypothetical steady-state scenario of the Three Mile Island 1 reactor fuel rod is modeled with the fuel performance FRAPCON, using realistic input uncertainties for the fabrication and model parameters, boundary conditions and material properties. The uncertainty and sensitivity analysis is performed by extensive Monte Carlo sampling of the inputs’ probability distribution and by applying correlation coefficient and Sobol’ variance decomposition analyses. The latter includes evaluation of the second order and total effect sensitivity indices, allowing the study of interactions between input variables. The results show that the interactions play a large role in the propagation of uncertainties, and first order methods such as the correlation coefficient analyses are in general insufficient for sensitivity analysis of the fuel rod. Significant improvement over the first order methods can be achieved by using higher order methods. The results also show that both the magnitude of the uncertainties and their propagation depends not only on the output in question, but also on burnup. The latter is due to onset of new phenomena (such as the fission gas release) and the gradual closure of the pellet-cladding gap with increasing burnup. Increasing burnup also affects the importance of input interactions. Interaction effects are typically highest in the moderate burnup (of the order of 10–40 MWd
Reliability analysis of water distribution systems under uncertainty
International Nuclear Information System (INIS)
Kansal, M.L.; Kumar, Arun; Sharma, P.B.
1995-01-01
In most of the developing countries, the Water Distribution Networks (WDN) are of intermittent type because of the shortage of safe drinking water. Failure of a pipeline(s) in such cases will cause not only the fall in one or more nodal heads but also the poor connectivity of source with various demand nodes of the system. Most of the previous works have used the two-step algorithm based on pathset or cutset approach for connectivity analysis. The computations become more cumbersome when connectivity of all demand nodes taken together with that of supply is carried out. In the present paper, network connectivity based on the concept of Appended Spanning Tree (AST) is suggested to compute global network connectivity which is defined as the probability of the source node being connected with all the demand nodes simultaneously. The concept of AST has distinct advantages as it attacks the problem directly rather than in an indirect way as most of the studies so far have done. Since the water distribution system is a repairable one, a general expression for pipeline avialability using the failure/repair rate is considered. Furthermore, the sensitivity of global reliability estimates due to the likely error in the estimation of failure/repair rates of various pipelines is also studied
An estimation of uncertainties in containment P/T analysis using CONTEMPT/LT code
International Nuclear Information System (INIS)
Kang, Y.M.; Park, G.C.; Lee, U.C.; Kang, C.S.
1991-01-01
In a nuclear power plant, the containment design pressure and temperature (P/T) have been established based on the unrealistic conservatism with suffering from a drawback in the economics. Thus, it is necessary that the uncertainties of design P/T values have to be well defined through an extensive uncertainty analysis with plant-specific input data and or models used in the computer code. This study is to estimate plant-specific uncertainties of containment design P/T using the Monte Carlo method in Kori-3 reactor. Kori-3 plant parameters and Uchida heat transfer coefficient are selected to be treated statistically after the sensitivity study. The Monte Carlo analysis has performed based on the response surface method with the CONTEMPT/LT code and Latin Hypercube sampling technique. Finally, the design values based on 95 %/95 % probability are compared with worst estimated values to assess the design margin. (author)
Deterministic sensitivity and uncertainty analysis for large-scale computer models
International Nuclear Information System (INIS)
Worley, B.A.; Pin, F.G.; Oblow, E.M.; Maerker, R.E.; Horwedel, J.E.; Wright, R.Q.
1988-01-01
This paper presents a comprehensive approach to sensitivity and uncertainty analysis of large-scale computer models that is analytic (deterministic) in principle and that is firmly based on the model equations. The theory and application of two systems based upon computer calculus, GRESS and ADGEN, are discussed relative to their role in calculating model derivatives and sensitivities without a prohibitive initial manpower investment. Storage and computational requirements for these two systems are compared for a gradient-enhanced version of the PRESTO-II computer model. A Deterministic Uncertainty Analysis (DUA) method that retains the characteristics of analytically computing result uncertainties based upon parameter probability distributions is then introduced and results from recent studies are shown. 29 refs., 4 figs., 1 tab
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.
International Nuclear Information System (INIS)
Allison, C.M.; Hohorst, J.K.; Perez, M.; Reventos, F.
2010-01-01
The RELAP/SCDAPSIM/MOD4.0 code, designed to predict the behavior of reactor systems during normal and accident conditions, is being developed as part of the international SCDAP Development and Training Program (SDTP). RELAP/SCDAPSIM/MOD4.0, which is the first version of RELAP5 completely rewritten to FORTRAN 90/95/2000 standards, uses publicly available RELAP5 and SCDAP models in combination with advanced programming and numerical techniques and other SDTP-member modeling/user options. One such member developed option is an integrated uncertainty analysis package being developed jointly by the Technical University of Catalonia (UPC) and Innovative Systems Software (ISS). This paper briefly summarizes the features of RELAP/SCDAPSIM/MOD4.0 and the integrated uncertainty analysis package, and then presents an example of how the integrated uncertainty package can be setup and used for a simple pipe flow problem. (author)
Uncertainty analysis of flexible rotors considering fuzzy parameters and fuzzy-random parameters
Directory of Open Access Journals (Sweden)
Fabian Andres Lara-Molina
Full Text Available Abstract The components of flexible rotors are subjected to uncertainties. The main sources of uncertainties include the variation of mechanical properties. This contribution aims at analyzing the dynamics of flexible rotors under uncertain parameters modeled as fuzzy and fuzzy random variables. The uncertainty analysis encompasses the modeling of uncertain parameters and the numerical simulation of the corresponding flexible rotor model by using an approach based on fuzzy dynamic analysis. The numerical simulation is accomplished by mapping the fuzzy parameters of the deterministic flexible rotor model. Thereby, the flexible rotor is modeled by using both the Fuzzy Finite Element Method and the Fuzzy Stochastic Finite Element Method. Numerical simulations illustrate the methodology conveyed in terms of orbits and frequency response functions subject to uncertain parameters.
Stochastic Watershed Models for Risk Based Decision Making
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
Demonstration uncertainty/sensitivity analysis using the health and economic consequence model CRAC2
International Nuclear Information System (INIS)
Alpert, D.J.; Iman, R.L.; Johnson, J.D.; Helton, J.C.
1984-12-01
The techniques for performing uncertainty/sensitivity analyses compiled as part of the MELCOR program appear to be well suited for use with a health and economic consequence model. Two replicate samples of size 50 gave essentially identical results, indicating that for this case, a Latin hypercube sample of size 50 seems adequate to represent the distribution of results. Though the intent of this study was a demonstration of uncertainty/sensitivity analysis techniques, a number of insights relevant to health and economic consequence modeling can be gleaned: uncertainties in early deaths are significantly greater than uncertainties in latent cancer deaths; though the magnitude of the source term is the largest source of variation in estimated distributions of early deaths, a number of additional parameters are also important; even with the release fractions for a full SST1, one quarter of the CRAC2 runs gave no early deaths; and comparison of the estimates of mean early deaths for a full SST1 release in this study with those of recent point estimates for similar conditions indicates that the recent estimates may be significant overestimations of early deaths. Estimates of latent cancer deaths, however, are roughly comparable. An analysis of the type described here can provide insights in a number of areas. First, the variability in the results gives an indication of the potential uncertainty associated with the calculations. Second, the sensitivity of the results to assumptions about the input variables can be determined. Research efforts can then be concentrated on reducing the uncertainty in the variables which are the largest contributors to uncertainty in results
Reliability and Robustness Analysis of the Masinga Dam under Uncertainty
Directory of Open Access Journals (Sweden)
Hayden Postle-Floyd
2017-02-01
Full Text Available Kenya’s water abstraction must meet the projected growth in municipal and irrigation demand by the end of 2030 in order to achieve the country’s industrial and economic development plan. The Masinga dam, on the Tana River, is the key to meeting this goal to satisfy the growing demands whilst also continuing to provide hydroelectric power generation. This study quantitatively assesses the reliability and robustness of the Masinga dam system under uncertain future supply and demand using probabilistic climate and population projections, and examines how long-term planning may improve the longevity of the dam. River flow and demand projections are used alongside each other as inputs to the dam system simulation model linked to an optimisation engine to maximise water availability. Water availability after demand satisfaction is assessed for future years, and the projected reliability of the system is calculated for selected years. The analysis shows that maximising power generation on a short-term year-by-year basis achieves 80%, 50% and 1% reliability by 2020, 2025 and 2030 onwards, respectively. Longer term optimal planning, however, has increased system reliability to up to 95% in 2020, 80% in 2025, and more than 40% in 2030 onwards. In addition, increasing the capacity of the reservoir by around 25% can significantly improve the robustness of the system for all future time periods. This study provides a platform for analysing the implication of different planning and management of Masinga dam and suggests that careful consideration should be given to account for growing municipal needs and irrigation schemes in both the immediate and the associated Tana River basin.
Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate
Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.
2013-01-01
There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable
International Nuclear Information System (INIS)
Pasanisi, Alberto; Keller, Merlin; Parent, Eric
2012-01-01
In the context of risk analysis under uncertainty, we focus here on the problem of estimating a so-called quantity of interest of an uncertainty analysis problem, i.e. a given feature of the probability distribution function (pdf) of the output of a deterministic model with uncertain inputs. We will stay here in a fully probabilistic setting. A common problem is how to account for epistemic uncertainty tainting the parameter of the probability distribution of the inputs. In the standard practice, this uncertainty is often neglected (plug-in approach). When a specific uncertainty assessment is made, under the basis of the available information (expertise and/or data), a common solution consists in marginalizing the joint distribution of both observable inputs and parameters of the probabilistic model (i.e. computing the predictive pdf of the inputs), then propagating it through the deterministic model. We will reinterpret this approach in the light of Bayesian decision theory, and will put into evidence that this practice leads the analyst to adopt implicitly a specific loss function which may be inappropriate for the problem under investigation, and suboptimal from a decisional perspective. These concepts are illustrated on a simple numerical example, concerning a case of flood risk assessment.
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling
Energy Technology Data Exchange (ETDEWEB)
Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)
2015-01-15
The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.
Risk Analysis of Reservoir Flood Routing Calculation Based on Inflow Forecast Uncertainty
Directory of Open Access Journals (Sweden)
Binquan Li
2016-10-01
Full Text Available Possible risks in reservoir flood control and regulation cannot be objectively assessed by deterministic flood forecasts, resulting in the probability of reservoir failure. We demonstrated a risk analysis of reservoir flood routing calculation accounting for inflow forecast uncertainty in a sub-basin of Huaihe River, China. The Xinanjiang model was used to provide deterministic flood forecasts, and was combined with the Hydrologic Uncertainty Processor (HUP to quantify reservoir inflow uncertainty in the probability density function (PDF form. Furthermore, the PDFs of reservoir water level (RWL and the risk rate of RWL exceeding a defined safety control level could be obtained. Results suggested that the median forecast (50th percentiles of HUP showed better agreement with observed inflows than the Xinanjiang model did in terms of the performance measures of flood process, peak, and volume. In addition, most observations (77.2% were bracketed by the uncertainty band of 90% confidence interval, with some small exceptions of high flows. Results proved that this framework of risk analysis could provide not only the deterministic forecasts of inflow and RWL, but also the fundamental uncertainty information (e.g., 90% confidence band for the reservoir flood routing calculation.
International Nuclear Information System (INIS)
Shimada, Yoshio
2002-01-01
We analyzed how the convergence of mean core damage frequency (CDF) depends on the number of minimal cut sets, the sampling method and the random seed, using level 1 PSA models for Surry 1 and a Japanese 4 loop PWR plant. As a result, the followings were clarified: the good convergence efficiency of the latin hypercube sampling (LHS), the relationship between number of minimal cut sets and mean CDF, as well as the standard deviation and the easy method of judgment for mean CDF convergence. In addition, it was seen that the relationship between the number of probability variables (i.e. the number of basic events) and the number of samplings needed to converge for mean CDF. Analysis of important factors affecting uncertainty was also performed. As a result, it was found that the initiating events (especially loss of coolant accidents) were the dominant important factors. Finally, comparisons were made for the 95% confidence interval of the calculated results from the operating experience of the worldwide nuclear power plants with (1) the mean core damage frequency by PSA for 108 US plants and 51 Japanese plants and (2) the 95% confidence interval of the US and the Japanese Plant PSA model used in this research. As a result, it was clarified that the mean core damage frequency of almost all US pressurized and boiling light water reactors in the US was in the 90% confidence interval calculated from the operating experience of the nuclear power plants (PWRs and BWRs) in the world, but that of those reactors in Japan was smaller then that level. (author)
Energy Technology Data Exchange (ETDEWEB)
Shimada, Yoshio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2002-09-01
We analyzed how the convergence of mean core damage frequency (CDF) depends on the number of minimal cut sets, the sampling method and the random seed, using level 1 PSA models for Surry 1 and a Japanese 4 loop PWR plant. As a result, the followings were clarified: the good convergence efficiency of the latin hypercube sampling (LHS), the relationship between number of minimal cut sets and mean CDF, as well as the standard deviation and the easy method of judgment for mean CDF convergence. In addition, it was seen that the relationship between the number of probability variables (i.e. the number of basic events) and the number of samplings needed to converge for mean CDF. Analysis of important factors affecting uncertainty was also performed. As a result, it was found that the initiating event