WorldWideScience

Sample records for risk-based seismic life-cycle

  1. Life-cycle cost assessment of seismically base-isolated structures in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Hao; Weng, Dagen; Lu, Xilin; Lu, Liang

    2013-01-01

    Highlights: • The life-cycle cost of seismic base-isolated nuclear power plants is modeled. • The change law of life-cycle cost with seismic fortification intensity is studied. • The initial cost of laminated lead rubber bearings can be expressed as the function of volume. • The initial cost of a damper can be expressed as the function of its maximum displacement and tonnage. • The use of base-isolation can greatly reduce the expected damage cost, which leads to the reduction of the life-cycle cost. -- Abstract: Evaluation of seismically base-isolated structural life-cycle cost is the key problem in performance based seismic design. A method is being introduced to address the life-cycle cost of base-isolated reinforced concrete structures in nuclear power plants. Each composition of life-cycle cost is analyzed including the initial construction cost, the isolators cost and the excepted damage cost over life-cycle of the structure. The concept of seismic intensity is being used to estimate the expected damage cost, greatly simplifying the calculation. Moreover, French Cruas nuclear power plant is employed as an example to assess its life-cycle cost, compared to the cost of non-isolated plant at the same time. The results show that the proposed method is efficient and the expected damage cost is enormously reduced because of the application of isolators, which leads to the reduction of the life-cycle cost of nuclear power plants

  2. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S.

    2009-01-01

    This paper describes a design process based on risk-informed probabilistic design methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept embodies use of probabilistic risk assessments to establish target reliabilities for facility systems and components. The target reliabilities are used for system based code margin exchange and performance simulation analyses to optimize design over all phases (design, construction, operation and decommissioning) of a facility's life-cycle. System based code margin exchange reduces excessive level of construction margins for passive components to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. System and subsystem simulation analyses determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The paper includes a description of these risk-informed life-cycle design processes, a summary of work being done, and a discussion of additional work needed to implement the process.

  3. Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions

    International Nuclear Information System (INIS)

    Mitropoulou, Chara Ch.; Lagaros, Nikos D.; Papadrakakis, Manolis

    2011-01-01

    Life-cycle cost analysis (LCCA) is an assessment tool for studying the performance of systems in many fields of engineering. In earthquake engineering LCCA demands the calculation of the cost components that are related to the performance of the structure in multiple earthquake hazard levels. Incremental static and dynamic analyses are two procedures that can be used for estimating the seismic capacity of a structural system and can therefore be incorporated into the LCCA methodology. In this work the effect of the analysis procedure, the number of seismic records imposed, the performance criterion used and the structural type (regular or irregular) is investigated, on the life-cycle cost analysis of 3D reinforced concrete structures. Furthermore, the influence of uncertainties on the seismic response of structural systems and their impact on LCCA is examined. The uncertainty on the material properties, the cross-section dimensions and the record-incident angle is taking into account with the incorporation of the Latin hypercube sampling method into the incremental dynamic analysis procedure. In addition, the LCCA methodology is used as an assessment tool for the designs obtained by means of prescriptive and performance-based optimum design methodologies. The first one is obtained from a single-objective optimization problem, where the initial construction cost was the objective to be minimized, while the second one as a two-objective optimization problem where the life-cycle cost was the additional objective also to be minimized.

  4. Implementing risk-informed life-cycle design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2007-01-01

    This paper describes a design process based on risk-informed probabilistic methodologies that cover a facility's life-cycle from start of conceptual design through decontamination and decommissioning. The concept uses probabilistic risk assessments to identify target reliabilities for facility systems and components. Target reliabilities are used in system and subsystem simulation analyses to determine the optimum combination of initial system and component construction reliability, maintenance frequency, and inspection frequency for both active and passive components. The target reliabilities are also used for system based code margin exchange to reduce excessive level of margins to appropriate levels resulting in a more flexible structure of codes and standards that improves facility reliability and cost. The paper includes a description of a risk informed life-cycle design process, a summary of work being done, and a discussion of work needed to implement the process. (author)

  5. Risk informed life cycle plant design

    International Nuclear Information System (INIS)

    Hill, Ralph S. III; Nutt, Mark M.

    2003-01-01

    Many facility life cycle activities including design, construction, fabrication, inspection and maintenance are evolving from a deterministic to a risk-informed basis. The risk informed approach uses probabilistic methods to evaluate the contribution of individual system components to total system performance. Total system performance considers both safety and cost considerations including system failure, reliability, and availability. By necessity, a risk-informed approach considers both the component's life cycle and the life cycle of the system. In the nuclear industry, risk-informed approaches, namely probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA), have become a standard tool used to evaluate the safety of nuclear power plants. Recent studies pertaining to advanced reactor development have indicated that these new power plants must provide enhanced safety over existing nuclear facilities and be cost-competitive with other energy sources. Risk-informed approaches, beyond traditional PRA, offer the opportunity to optimize design while considering the total life cycle of the plant in order to realize these goals. The use of risk-informed design approaches in the nuclear industry is only beginning, with recent promulgation of risk-informed regulations and proposals for risk-informed codes. This paper briefly summarizes the current state of affairs regarding the use of risk-informed approaches in design. Key points to fully realize the benefit of applying a risk-informed approach to nuclear power plant design are then presented. These points are equally applicable to non-nuclear facilities where optimization for cost competitiveness and/or safety is desired. (author)

  6. Life cycle cost-based risk model for energy performance contracting retrofits

    Science.gov (United States)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a

  7. Life cycle cost and risk estimation of environmental management options

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.

    1996-01-01

    The evaluation process is demonstrated in this paper through comparative analysis of two alternative scenarios identified for the management of the alpha-contaminated fixed low-level waste currently stored at INEL. These two scenarios, the Base Case and the Delay Case, are realistic and based on actual data, but are not intended to exactly match actual plans currently being developed at INEL. Life cycle cost estimates were developed for both scenarios using the System Cost Model; resulting costs are presented and compared. Life cycle costs are shown as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Although there are some short-term cost savings for the Delay Case, cumulative life cycle costs eventually become much higher than costs for the Base Case over the same period of time, due mainly to the storage and repackaging necessary to accommodate the longer Delay Case schedule. Life cycle risk estimates were prepared using a new risk analysis method adapted to the System Cost Model architecture for automated, systematic cost/risk applications. Relative risk summaries are presented for both scenarios as a function of time and also aggregated by pretreatment, treatment, storage, and disposal activities. Relative risk of the Delay Case is shown to be higher than that of the Base Case. Finally, risk and cost results are combined to show how the collective information can be used to help identify opportunities for risk or cost reduction and highlight areas where risk reduction can be achieved most economically

  8. An approach to incorporate risks into a product's life-cycle assessment

    International Nuclear Information System (INIS)

    Pirhonen, P.

    1995-01-01

    Life-cycle assessment is usually based on regular discharges that occur at a more or less constant rate. Nevertheless, the more factors that are taken into account in the LCA the better picture it gives on the environmental aspects of a product. In this study an approach to incorporate accidental releases into a products' life-cycle assessment was developed. In this approach accidental releases are divided into two categories. The first category consists of those unplanned releases which occur with a predicted level and frequency. Due to the high frequency and small release size at a time, these accidental releases can be compared to continuous emissions. Their global impacts are studied in this approach. Accidental releases of the second category are sudden, unplanned releases caused by exceptional situations, e.g. technical failure, action error or disturbances in process conditions. These releases have a singular character and local impacts are typical of them. As far as the accidental releases of the second category are concerned, the approach introduced in this study results in a risk value for every stage of a life-cycle, the sum of which is a risk value for the whole life-cycle. Risk value is based on occurrence frequencies of incidents and potential environmental damage caused by releases. Risk value illustrates the level of potential damage caused by accidental releases related to the system under study and is meant to be used for comparison of these levels of two different products. It can also be used to compare the risk levels of different stages of the life-cycle. An approach was illustrated using petrol as an example product. The whole life-cycle of petrol from crude oil production to the consumption of petrol was studied

  9. Quantifying Cost Risk Early in the Life Cycle

    International Nuclear Information System (INIS)

    Mar, B.

    2004-01-01

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk

  10. Risk based seismic design criteria

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1999-01-01

    In order to develop a risk based seismic design criteria the following four issues must be addressed: (1) What target annual probability of seismic induced unacceptable performance is acceptable? (2) What minimum seismic margin is acceptable? (3) Given the decisions made under Issues 1 and 2, at what annual frequency of exceedance should the safe-shutdown-earthquake (SSE) ground motion be defined? (4) What seismic design criteria should be established to reasonably achieve the seismic margin defined under Issue 2? The first issue is purely a policy decision and is not addressed in this paper. Each of the other three issues are addressed. Issues 2 and 3 are integrally tied together so that a very large number of possible combinations of responses to these two issues can be used to achieve the target goal defined under Issue 1. Section 2 lays out a combined approach to these two issues and presents three potentially attractive combined resolutions of these two issues which reasonably achieves the target goal. The remainder of the paper discusses an approach which can be used to develop seismic design criteria aimed at achieving the desired seismic margin defined in resolution of Issue 2. Suggestions for revising existing seismic design criteria to more consistently achieve the desired seismic margin are presented. (orig.)

  11. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    International Nuclear Information System (INIS)

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  12. Security Risks: Management and Mitigation in the Software Life Cycle

    Science.gov (United States)

    Gilliam, David P.

    2004-01-01

    A formal approach to managing and mitigating security risks in the software life cycle is requisite to developing software that has a higher degree of assurance that it is free of security defects which pose risk to the computing environment and the organization. Due to its criticality, security should be integrated as a formal approach in the software life cycle. Both a software security checklist and assessment tools should be incorporated into this life cycle process and integrated with a security risk assessment and mitigation tool. The current research at JPL addresses these areas through the development of a Sotfware Security Assessment Instrument (SSAI) and integrating it with a Defect Detection and Prevention (DDP) risk management tool.

  13. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  14. Effect of cyclic plastic pre-strain on low cycle fatigue life

    International Nuclear Information System (INIS)

    Kanno, Satoshi; Nakane, Motoki; Yorikawa, Morio; Takagi, Yoshio

    2010-01-01

    In order to evaluate structural integrity of nuclear components subjected large seismic load which produce locally plastic strain, low cycle fatigue life was examined using cyclic plastic pre-strained materials of austenitic steel (SUS316, SUS316L, SUS304TP: JIS (Japanese Industrial Standards)) and ferritic steel (SFVQ1A, STS480, STPT410, SFVC2B, SS400: JIS). It was not found that cyclic plastic pre-strain up to range of 16%, 2.5 times affected on low cycle fatigue life. The validity of existing procedure of fatigue life estimation based on usage factor was confirmed when large seismic load brought nuclear materials cyclic plastic strain. (author)

  15. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  16. Seismic design considerations for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2001-01-01

    During the last few decades, there have been considerable advances in the field of a seismic design of nuclear structures and components housed inside a Nuclear power Plant (NPP). The seismic design and qualification of theses systems and components are carried out through the use of well proven and established theoretical as well as experimental means. Many of the related research works pertaining to these methods are available in the published literature, codes, guides etc. Contrary to this, there is very little information available with regards to the seismic design aspects of the nuclear fuel cycle facilities. This is probably on account of the little importance attached to these facilities from the point of view of seismic loading. In reality, some of these facilities handle a large inventory of radioactive materials and, therefore, these facilities must survive during a seismic event without giving rise to any sort of undue radiological risk to the plant personnel and the public at large. Presented herein in this paper are the seismic design considerations which are adopted for the design of nuclear fuel cycle facilities in India. (author)

  17. Towards a Life Cycle Based Chemical Alternative Assessment (LCAA)

    DEFF Research Database (Denmark)

    Jolliet, O.; Huang, L.; Overcash, Michael

    2017-01-01

    approach combines the following elements: a) The manufacturing phase chemical inventory is based on the environmental genome of industrial products database, ensuring mass and energy balance, b) near-field exposure to consumer products during the use phase is determined based on the mass of chemical......There is a need for an operational quantitative screening-level assessment of alternatives, that is life-cycle based and able to serve both Life cycle Assessment (LCA and chemical alternatives assessment (CAA). This presentation therefore aims to develop and illustrate a new approach called “Life...... Cycle Based Chemical Alternative Assessment (LCAA)” that will quantify exposure and life cycle impacts consistently and efficiently over the main life cycle stages. The new LCAA approach is illustrated though a proof-of-concept case study of alternative plasticizers in vinyl flooring. The proposed LCAA...

  18. ANALYSIS OF RISK FACTORS AT THE STAGE OF THE PRODUCT LIFE CYCLE

    Directory of Open Access Journals (Sweden)

    N. Skopenko

    2016-10-01

    Full Text Available The article outlines and summarizes the risks of enterprises at different stages of product life cycle. A diagnose and assess of risks according to the main stages of the product development are offered. Groups of factors that shape the economic risks at different stages of the product life cycle, by the possible negative consequences of their impact are formulated. To reduce the probable losses of the company and a reasonable assortment portfolio formation generalized classification of risks that are typical for any company is proposed.

  19. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  20. Interconnection of the Degree of Risk and Life Cycle of the “Green Construction” Investment Projects

    OpenAIRE

    Lepehova Natalia; Shoshinov Vitaly

    2017-01-01

    This article analyses interconnection of the degree of risk and the life cycle of the “green building” investment projects, which is structured according to the life cycle. Main stages of the implementation of investment and construction project were considered, interconnection of the project life cycle and the level of project risk were presented in the form of graphical model, proposed a mathematical model of the risk calculation at different stages of the project life cycle, which is a fun...

  1. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    International Nuclear Information System (INIS)

    Ballesteros Cánovas, J.A.; Stoffel, M.; Corona, C.; Schraml, K.; Gobiet, A.; Tani, S.; Sinabell, F.; Fuchs, S.; Kaitna, R.

    2016-01-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  2. Debris-flow risk analysis in a managed torrent based on a stochastic life-cycle performance

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Cánovas, J.A., E-mail: juan.ballesteros@dendrolab.ch [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Stoffel, M. [Dendrolab.ch. Institute for Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern (Switzerland); Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva (Switzerland); Department of Earth Sciences, University of Geneva, 13 rue des Maraîchers, CH-1205 Geneva (Switzerland); Corona, C. [Centre National de la Recherche Scientifique (CNRS) UMR6042 Geolab, 4 rue Ledru, F-63057 Clermont-Ferrand Cedex (France); Schraml, K. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria); Gobiet, A. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Central Office for Meteorology and Geodynamics (ZAMG), A-1190 Vienna (Austria); Tani, S. [University of Graz, Wegener Center for Climate and Global Change (WegCenter), A-8010 Graz (Austria); Sinabell, F. [Austrian Institute of Economic Research, A-1030 Vienna (Austria); Fuchs, S.; Kaitna, R. [Institute for Alpine Hazards, University of Natural Resources and Life Sciences, Vienna (BOKU), A-1190 Vienna (Austria)

    2016-07-01

    Two key factors can affect the functional ability of protection structures in mountains torrents, namely (i) infrastructure maintenance of existing infrastructures (as a majority of existing works is in the second half of their life cycle), and (ii) changes in debris-flow activity as a result of ongoing and expected future climatic changes. Here, we explore the applicability of a stochastic life-cycle performance to assess debris-flow risk in the heavily managed Wartschenbach torrent (Lienz region, Austria) and to quantify associated, expected economic losses. We do so by considering maintenance costs to restore infrastructure in the aftermath of debris-flow events as well as by assessing the probability of check dam failure (e.g., as a result of overload). Our analysis comprises two different management strategies as well as three scenarios defining future changes in debris-flow activity resulting from climatic changes. At the study site, an average debris-flow frequency of 21 events per decade was observed for the period 1950–2000; activity at the site is projected to change by + 38% to − 33%, according to the climate scenario used. Comparison of the different management alternatives suggests that the current mitigation strategy will allow to reduce expected damage to infrastructure and population almost fully (89%). However, to guarantee a comparable level of safety, maintenance costs is expected to increase by 57–63%, with an increase of maintenance costs by ca. 50% for each intervention. Our analysis therefore also highlights the importance of taking maintenance costs into account for risk assessments realized in managed torrent systems, as they result both from progressive and event-related deteriorations. We conclude that the stochastic life-cycle performance adopted in this study represents indeed an integrated approach to assess the long-term effects and costs of prevention structures in managed torrents. - Highlights: • Debris flows are considered

  3. Seismic hazard assessment in intra-plate areas and backfitting

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Eng, P.

    2001-01-01

    Typically, fuel cycle facilities have been constructed over a 40 year time period incorporating various ages of seismic design provisions ranging from no specific seismic requirements to the life safety provisions normally incorporated in national building codes through to the latest seismic nuclear codes that provide not only for structural robustness but also include operational requirements for continued operation of essential safety functions. The task is to ensure uniform seismic risk in all facilities. Since the majority of the fuel cycle infrastructure has been built the emphasis is on re-evaluation and backfitting. The wide range of facilities included in the fuel cycle and the vastly varying hazard to safety, health and the environment suggest a performance based approach. This paper presents such an approach, placed in an intra-plate setting of a Stable Continental Region (SCR) typical to that found in Eastern Canada. (author)

  4. The System Cost Model: A tool for life cycle cost and risk analysis

    International Nuclear Information System (INIS)

    Hsu, K.; Lundeen, A.; Shropshire, D.; Sherick, M.

    1996-01-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors began development of the System Cost Model (SCM) application. The SCM estimates life cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, and transuranic waste. The SCM uses parametric cost functions to estimate life cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at DOE installations. In addition, SCM can model new TSD facilities based on capacity needs over the program life cycle. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction, operations and maintenance, and decommissioning these waste management facilities. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. A complement to the SCM is the System Cost Model-Risk (SCM-R) model, which provides relative Environmental, Safety, and Health (ES and H) risk information. A relative ES and H risk basis has been developed and applied by LITCO at the INEL. The risk basis is now being automated in the SCM-R to facilitate rapid risk analysis of system alternatives. The added risk functionality will allow combined cost and risk evaluation of EM alternatives

  5. Seismic Risk Perception compared with seismic Risk Factors

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Pessina, Vera; Pino, Nicola Alessandro; Peruzza, Laura

    2016-04-01

    The communication of natural hazards and their consequences is one of the more relevant ethical issues faced by scientists. In the last years, social studies have provided evidence that risk communication is strongly influenced by the risk perception of people. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. A theory that offers an integrative approach to understanding and explaining risk perception is still missing. To explain risk perception, it is necessary to consider several perspectives: social, psychological and cultural perspectives and their interactions. This paper presents the results of the CATI survey on seismic risk perception in Italy, conducted by INGV researchers on funding by the DPC. We built a questionnaire to assess seismic risk perception, with a particular attention to compare hazard, vulnerability and exposure perception with the real data of the same factors. The Seismic Risk Perception Questionnaire (SRP-Q) is designed by semantic differential method, using opposite terms on a Likert scale to seven points. The questionnaire allows to obtain the scores of five risk indicators: Hazard, Exposure, Vulnerability, People and Community, Earthquake Phenomenon. The questionnaire was administered by telephone interview (C.A.T.I.) on a statistical sample at national level of over 4,000 people, in the period January -February 2015. Results show that risk perception seems be underestimated for all indicators considered. In particular scores of seismic Vulnerability factor are extremely low compared with house information data of the respondents. Other data collected by the questionnaire regard Earthquake information level, Sources of information, Earthquake occurrence with respect to other natural hazards, participation at risk reduction activities and level of involvement. Research on risk perception aims to aid risk analysis and policy-making by

  6. Complementary use of life cycle assessment and risk assessment for engineered nanomaterials: Lessons learned from chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko

    2013-01-01

    Successful strategies to handle the potential health and environmental risks of engineered nanomaterials (ENM) often rely upon the well-established frameworks of life cycle assessment (LCA) and risk assessment (RA). However, current research and specific guidance on how to actually apply these two...... scientific research efforts have taken into account some key lessons learned from past experiences with chemicals at the same time that many key challenges remain to applying these frameworks to ENM. In that setting, two main proposed approaches to use LCA and RA together for ENM are identified: i) LC......-based RA, similar to traditional RA applied in a life cycle perspective, and ii) RA-complemented LCA, similar to conventional LCA supplemented by RA in specific life cycle steps. This study finds that these two approaches for using LCA and RA together for ENM are similar to those made for chemicals...

  7. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.

    Science.gov (United States)

    Inoue, Yasushi; Katayama, Arata

    2011-09-15

    A two-scale evaluation concept of remediation technologies for a contaminated site was expanded by introducing life cycle costing (LCC) and economic input-output life cycle assessment (EIO-LCA). The expanded evaluation index, the rescue number for soil (RN(SOIL)) with LCC and EIO-LCA, comprises two scales, such as risk-cost, risk-energy consumption or risk-CO(2) emission of a remediation. The effectiveness of RN(SOIL) with LCC and EIO-LCA was examined in a typical contamination and remediation scenario in which dieldrin contaminated an agricultural field. Remediation was simulated using four technologies: disposal, high temperature thermal desorption, biopile and landfarming. Energy consumption and CO(2) emission were determined from a life cycle inventory analysis using monetary-based intensity based on an input-output table. The values of RN(SOIL) based on risk-cost, risk-energy consumption and risk-CO(2) emission were calculated, and then rankings of the candidates were compiled according to RN(SOIL) values. A comparison between three rankings showed the different ranking orders. The existence of differences in ranking order indicates that the scales would not have reciprocal compatibility for two-scale evaluation and that each scale should be used independently. The RN(SOIL) with LCA will be helpful in selecting a technology, provided an appropriate scale is determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  9. LIFE-CYCLE COST MODEL AND DESIGN OPTIMIZATION OF BASE ISOLATED BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Chara C. Mitropoulou

    2016-11-01

    Full Text Available Design of economic structures adequately resistant to withstand during their service life, without catastrophic failures, all possible loading conditions and to absorb the induced seismic energy in a controlled fashion, has been the subject of intensive research so far. Modern buildings usually contain extremely sensitive and costly equipment that are vital in business, commerce, education and/or health care. The building contents frequently are more valuable than the buildings them-selves. Furthermore, hospitals, communication and emergency centres, police and fire stations must be operational when needed most: immediately after an earthquake. Conventional con-struction can cause very high floor accelerations in stiff buildings and large interstorey drifts in flexible structures. These two factors cause difficulties in insuring the safety of both building and its contents. For this reason base-isolated structures are considered as an efficient alternative design practice to the conventional fixed-base one. In this study a systematic assessment of op-timized fixed and base-isolated reinforced concrete buildings is presented in terms of their initial and total cost taking into account the life-cycle cost of the structures.

  10. Seismic design considerations of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2001-10-01

    An Advisory Group Meeting (AGM) on Seismic Technologies of Nuclear Fuel Cycle Facilities was convened in Vienna from 12 to 14 November 1997. The main objective of the meeting was the investigation of the present status of seismic technologies in nuclear fuel cycle facilities in Member States as a starting point for understanding of the most important directions and trends of national initiatives, including research and development, in the area of seismic safety. The AGM gave priority to the establishment of a consistent programme for seismic assessment of nuclear fuel cycle facilities worldwide. A consultants meeting subsequently met in Vienna from 16 to 19 March 1999. At this meeting the necessity of a dedicated programme was further supported and a technical background to the initiative was provided. This publication provides recommendations both for the seismic design of new plants and for re-evaluation projects of nuclear fuel cycle facilities. After a short introduction of the general IAEA approach, some key contributions from Member State participants are presented. Each of them was indexed separately

  11. Generalized Fragility Relationships with Local Site Conditions for Probabilistic Performance-based Seismic Risk Assessment of Bridge Inventories

    Directory of Open Access Journals (Sweden)

    Sivathayalan S.

    2012-01-01

    Full Text Available The current practice of detailed seismic risk assessment cannot be easily applied to all the bridges in a large transportation networks due to limited resources. This paper presents a new approach for seismic risk assessment of large bridge inventories in a city or national bridge network based on the framework of probabilistic performance based seismic risk assessment. To account for the influences of local site effects, a procedure to generate site-specific hazard curves that includes seismic hazard microzonation information has been developed for seismic risk assessment of bridge inventories. Simulated ground motions compatible with the site specific seismic hazard are used as input excitations in nonlinear time history analysis of representative bridges for calibration. A normalizing procedure to obtain generalized fragility relationships in terms of structural characteristic parameters of bridge span and size and longitudinal and transverse reinforcement ratios is presented. The seismic risk of bridges in a large inventory can then be easily evaluated using the normalized fragility relationships without the requirement of carrying out detailed nonlinear time history analysis.

  12. Accident risk-based life cycle assessment methodology for green and safe fuel selection

    NARCIS (Netherlands)

    Khakzad, Sina; Khan, Faisal; Abbassi, Rouzbeh; Khakzad Rostami, N.

    2017-01-01

    Using the emissions produced during the entire life-cycle of a fuel or a product, Life-cycle assessment (LCA) is an effective technique widely used to estimate environmental impacts. However, most of the conventional LCA methods consider the impacts of voluntary releases such as discharged toxic

  13. Risk analysis of the proxy life-cycle investments in the second pillar pension scheme in Croatia

    Directory of Open Access Journals (Sweden)

    Renata Kovačević

    2015-03-01

    Full Text Available In this article we analyze the expected risk of pension funds with different risk profiles in the proxy life-cycle model of investments for the 2nd pillar pension scheme in Croatia. The benefits of implementing proxy life-cycle investments, compared to the previous model of mandatory pension funds investments, are clearly visible in the total expected amount of accumulated savings from the risk/return perspective. However, those benefits are partially diminished by the fact that the expected risk of a pension fund with the lowest risk profile is not substantially different from the expected risk of a pension fund with a medium risk profile, due to the lack of diversification. Additionally, we analyze the robustness of the proxy life-cycle model to a sudden and severe market shock, where we determine the presence of risk for those members who choose to switch to a pension fund with a lower risk profile at an unfavorable moment.

  14. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  15. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    Science.gov (United States)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  16. An experimental overview of the seismic cycle

    Science.gov (United States)

    Spagnuolo, E.; Violay, M.; Passelegue, F. X.; Nielsen, S. B.; Di Toro, G.

    2017-12-01

    Earthquake nucleation is the last stage of the inter-seismic cycle where the fault surface evolves through the interplay of friction, healing, stress perturbations and strain events. Slip stability under rate-and state friction has been extensively discussed in terms of loading point velocity and equivalent fault stiffness, but fault evolution towards seismic runaway under complex loading histories (e.g. slow variations of tectonic stress, stress transfer from impulsive nearby seismic events) is not yet fully investigated. Nevertheless, the short term earthquake forecasting is based precisely on a relation between seismic productivity and loading history which remains up to date still largely unresolved. To this end we propose a novel experimental approach which avails of a closed loop control of the shear stress, a nominally infinite equivalent slip and transducers for continuous monitoring of acoustic emissions. This experimental simulation allows us to study the stress dependency and temporal evolution of spontaneous slip events occurring on a pre-existing fault subjected to different loading histories. The experimental fault has an initial roughness which mimic a population of randomly distributed asperities, which here are used as a proxy for patches which are either far or close to failure on an extended fault. Our observations suggest that the increase of shear stress may trigger either spontaneous slow slip (creep) or short-lived stick-slip bursts, eventually leading to a fast slip instability (seismic runaway) when slip rates are larger than a few cm/s. The event type and the slip rate are regulated at first order by the background shear stress whereas the ultimate strength of the entire fault is dominated by the number of asperities close to failure under a stress step. The extrapolation of these results to natural conditions might explain the plethora of events that often characterize seismic sequences. Nonetheless this experimental approach helps the

  17. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    International Nuclear Information System (INIS)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu

    2015-01-01

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities

  18. Seismic Risk of the Base Isolation System Protected by the Hard Stop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In-Kil; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The concept of base isolation is to permit the deformation of isolator for absorbing seismic input wave from the ground. In a nuclear power plant design, allowable shear deformation of isolators should be enough to absorb the displacement response by extended design basis (EDB) ground motions. However isolators cannot resist over its displacement capacity. So, the clearance of hard stop (CHS) needs to be set between the response of base isolation system excited by the EDB ground motion and the displacement capacity of isolators. The isolation system must survive with high confidence in any seismic accident because it is a non-redundant system. Therefore, the CHS should be determined carefully based on the failure risk of base isolation system considering the uncertainties of earthquake responses and isolator capacities. In this research, the fragility curve of isolation system and its failure risk were estimated. The procedure to calculate the acceleration based fragility curve of the isolation system was developed. The fragility curve and failure risk for example case was estimated and its result was compared with different isolator capacities.

  19. Seismic risk assessment for road in Indonesia

    Science.gov (United States)

    Toyfur, Mona Foralisa; Pribadi, Krishna S.

    2016-05-01

    Road networks in Indonesia consist of 446,000 km of national, provincial and local roads as well as toll highways. Indonesia is one of countries that exposed to various natural hazards, such as earthquakes, floods, landslides, etc. Within the Indonesian archipelago, several global tectonic plates interact, such as the Indo-Australian, Pacific, Eurasian, resulting in a complex geological setting, characterized by the existence of seismically active faults and subduction zones and a chain of more than one hundred active volcanoes. Roads in Indonesia are vital infrastructure needed for people and goods movement, thus supporting community life and economic activities, including promoting regional economic development. Road damages and losses due to earthquakes have not been studied widely, whereas road disruption caused enormous economic damage. The aim of this research is to develop a method to analyse risk caused by seismic hazard to roads. The seismic risk level of road segment is defined using an earthquake risk index, adopting the method of Earthquake Disaster Risk Index model developed by Davidson (1997). Using this method, road segments' risk level can be defined and compared, and road risk map can be developed as a tool for prioritizing risk mitigation programs for road networks in Indonesia.

  20. Life cycle management of analytical methods.

    Science.gov (United States)

    Parr, Maria Kristina; Schmidt, Alexander H

    2018-01-05

    In modern process management, the life cycle concept gains more and more importance. It focusses on the total costs of the process from invest to operation and finally retirement. Also for analytical procedures an increasing interest for this concept exists in the recent years. The life cycle of an analytical method consists of design, development, validation (including instrumental qualification, continuous method performance verification and method transfer) and finally retirement of the method. It appears, that also regulatory bodies have increased their awareness on life cycle management for analytical methods. Thus, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), as well as the United States Pharmacopeial Forum discuss the enrollment of new guidelines that include life cycle management of analytical methods. The US Pharmacopeia (USP) Validation and Verification expert panel already proposed a new General Chapter 〈1220〉 "The Analytical Procedure Lifecycle" for integration into USP. Furthermore, also in the non-regulated environment a growing interest on life cycle management is seen. Quality-by-design based method development results in increased method robustness. Thereby a decreased effort is needed for method performance verification, and post-approval changes as well as minimized risk of method related out-of-specification results. This strongly contributes to reduced costs of the method during its life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  2. A risk-mitigation approach to the management of induced seismicity

    Science.gov (United States)

    Bommer, Julian J.; Crowley, Helen; Pinho, Rui

    2015-04-01

    Earthquakes may be induced by a wide range of anthropogenic activities such as mining, fluid injection and extraction, and hydraulic fracturing. In recent years, the increased occurrence of induced seismicity and the impact of some of these earthquakes on the built environment have heightened both public concern and regulatory scrutiny, motivating the need for a framework for the management of induced seismicity. Efforts to develop systems to enable control of seismicity have not yet resulted in solutions that can be applied with confidence in most cases. The more rational approach proposed herein is based on applying the same risk quantification and mitigation measures that are applied to the hazard from natural seismicity. This framework allows informed decision-making regarding the conduct of anthropogenic activities that may cause earthquakes. The consequent risk, if related to non-structural damage (when re-location is not an option), can be addressed by appropriate financial compensation. If the risk poses a threat to life and limb, then it may be reduced through the application of strengthening measures in the built environment—the cost of which can be balanced against the economic benefits of the activity in question—rather than attempting to ensure that some threshold on earthquake magnitude or ground-shaking amplitude is not exceeded. However, because of the specific characteristics of induced earthquakes—which may occur in regions with little or no natural seismicity—the procedures used in standard earthquake engineering need adaptation and modification for application to induced seismicity.

  3. Seismic risk assessment of a BWR

    International Nuclear Information System (INIS)

    Wells, J.E.; Bernreuter, D.L.; Chen, J.C.; Lappa, D.A.; Chuang, T.Y.; Murray, R.C.; Johnson, J.J.

    1987-01-01

    The simplified seismic risk methodology developed in the USNRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant (PWR). The simplified seismic risk methodology was developed to reduce the costs associated with a seismic risk analysis while providing adequate results. A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models, was developed and used in assessing the seismic risk of the Zion nuclear power plant (FSAR). The simplified seismic risk methodology was applied to the LaSalle County Station nuclear power plant, a BWR; to further demonstrate its applicability, and if possible, to provide a basis for comparing the seismic risk from PWRs and BWRs. (orig./HP)

  4. Risk Identification and Assessment in PPP Infrastructure Projects using Fuzzy Analytical Hierarchy Process and Life-Cycle Methodology

    Directory of Open Access Journals (Sweden)

    Jie Li

    2012-11-01

    Full Text Available To fulfil the increasing demands of the public,Public Private Partnership (PPP has beenincreasingly used to procure infrastructureprojects, such as motor ways, bridges, tunnelsand railways. However, the risks involved inPPP projects are unique and dynamic due tolarge amount of investment and longconcession period. This paper aims to developa risk identification framework from theperspectives of project life cycle, and anassessment framework for risks associatedwith PPP project using fuzzy analyticalhierarchy process (AHP. First the paperreviews the current literature to identifycommon risks in PPP infrastructure projectsand classification methods used. The risksidentified from the literature were classifiedusing project life cycle perspectives. Followingthat, the paper presents the advantages offuzzy AHP. Furthermore, the paper provides aframework for assessment of risks in PPPprojects followed by an illustrative examplewhere the data was obtained from surveyquestionnaires. The paper concludes that risksassociated in PPP infrastructure projects areunique and therefore it is beneficial to classifythem from project life cycle perspectives, andthe proposed fuzzy AHP method is suitable forthe assessment of these risks.

  5. Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney

    2010-10-01

    Full Text Available Citing the myriad applications of nanotechnology, this paper emphasizes the need to conduct “life cycle” based assessments as early in the new product development process as possible, for a better understanding of the potential environmental and human health consequences of nanomaterials over the entire life cycle of a nano-enabled product. The importance of this reasoning is further reinforced through an illustrative case study on automotive exterior body panels, which shows that the perceived environmental benefits of nano-based products in the Use stage may not adequately represent the complete picture, without examining the impacts in the other life cycle stages, particularly Materials Processing and Manufacturing. Nanomanufacturing methods often have associated environmental and human health impacts, which must be kept in perspective when evaluating nanoproducts for their “greenness.” Incorporating life-cycle thinking for making informed decisions at the product design stage, combining life cycle and risk analysis, using sustainable manufacturing practices, and employing green chemistry alternatives are seen as possible solutions.

  6. Seismic risk and heavy industrial facilities conference: proceedings

    International Nuclear Information System (INIS)

    1983-01-01

    Summaries of over 50 papers related to seismic risk analysis were presented. The papers cover areas such as seismic input description, response of components and structures, assessment of risk and reliability including human factors, and results of integrated studies. Papers have been individually abstracted for the Energy Data Base

  7. Risk perception versus seismic risk: An introduction

    International Nuclear Information System (INIS)

    Cubeddu, Francesca

    2015-01-01

    A seismic event generally has consequences on the social relationships, economy and culture of the impacted territory. As Mary Douglas quotes, a change into the social perception of risk as consequence of an earthquake may have effects on the lifestyle of the local community. The above mentioned statement is the starting point of this article. illustrating the difference between peril and risk is the second point. According to the Aristotelian theory of categories, risk can be considered as a human characteristic depending on social and cultural factors. Risk is here intended as a social category and cannot be de facto reported as a statistical or stochastic function based on a mathematical formula, as long assumed in the past. This approach, then, requires a deep revision. In this sense, and following the concept of risk perception, seismic risk is analysed in this article in terms of impacts, precautionary measures, risk assessment and management. Knowledge of this topic cannot be intended as a simple philosophical exercise, since right on awareness depend risk reduction, humans and goods too [it

  8. A Life-Cycle Risk-Informed Systems Structured Nuclear Code

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2002-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The design code is a separate volume from the code for inservice inspections and both are separate from the standards for operations and maintenance. The ASME code for inservice inspections and code for nuclear plant operations and maintenance have adopted risk-informed methodologies for inservice inspection, preventive maintenance, and repair and replacement decisions. The American Institute of Steel Construction and the American Concrete Institute have incorporated risk-informed probabilistic methodologies into their design codes. It is proposed that the ASME nuclear code should undergo a planned evolution that integrates the various nuclear codes and standards and adopts a risk-informed approach across a facility life-cycle - encompassing design, construction, operation, maintenance and closure. (author)

  9. Seismic qualification of equipment by means of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Azarm, M.A.; Farahzad, P.; Boccio, J.L.

    1982-01-01

    Upon the sponsorship of the Equipment Qualification Branch (EQB) of NRC, Brookhaven National Laboratory (BNL) has utilized a risk-based approach for identifying, in a generic fashion, seismically risk-sensitive equipment. It is anticipated that the conclusions drawn therefrom and the methodology employed will, in part, reconcile some of the concerns dealing with the seismic qualification of equipment in operating plants. The approach taken augments an existing sensitivity analysis, based upon the WASH-1400 Reactor Safety Study (RSS), by accounting for seismicity and component fragility with the Kennedy model and by essentially including the requisite seismic data presented in the Zion Probabilistic Safety Study (ZPSS). Parametrically adjusting the seismic-related variables and ascertaining their effects on overall plant risk, core-melt probability, accident sequence probability, etc., allows one to identify those seismically risk-sensitive systems and equipment. This paper describes the approach taken and highlights the results obtained thus far for a hypothetical pressurized water reactor

  10. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    Science.gov (United States)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework

  11. Urban seismic risk assessment: statistical repair cost data and probable structural losses based on damage scenario—correlation analysis

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Baltzopoulou, Aikaterini D.; Karabinis, Athanasios I.

    2016-06-01

    The current seismic risk assessment is based on two discrete approaches, actual and probable, validating afterwards the produced results. In the first part of this research, the seismic risk is evaluated from the available data regarding the mean statistical repair/strengthening or replacement cost for the total number of damaged structures (180,427 buildings) after the 7/9/1999 Parnitha (Athens) earthquake. The actual evaluated seismic risk is afterwards compared to the estimated probable structural losses, which is presented in the second part of the paper, based on a damage scenario in the referring earthquake. The applied damage scenario is based on recently developed damage probability matrices (DPMs) from Athens (Greece) damage database. The seismic risk estimation refers to 750,085 buildings situated in the extended urban region of Athens. The building exposure is categorized in five typical structural types and represents 18.80 % of the entire building stock in Greece. The last information is provided by the National Statistics Service of Greece (NSSG) according to the 2000-2001 census. The seismic input is characterized by the ratio, a g/ a o, where a g is the regional peak ground acceleration (PGA) which is evaluated from the earlier estimated research macroseismic intensities, and a o is the PGA according to the hazard map of the 2003 Greek Seismic Code. Finally, the collected investigated financial data derived from different National Services responsible for the post-earthquake crisis management concerning the repair/strengthening or replacement costs or other categories of costs for the rehabilitation of earthquake victims (construction and function of settlements for earthquake homeless, rent supports, demolitions, shorings) are used to determine the final total seismic risk factor.

  12. Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France test site

    Directory of Open Access Journals (Sweden)

    F. Dunand

    2012-02-01

    Full Text Available France has a moderate level of seismic activity, characterized by diffuse seismicity, sometimes experiencing earthquakes of a magnitude of more than 5 in the most active zones. In this seismicity context, Grenoble is a city of major economic and social importance. However, earthquakes being rare, public authorities and the decision makers are only vaguely committed to reducing seismic risk: return periods are long and local policy makers do not have much information available. Over the past 25 yr, a large number of studies have been conducted to improve our knowledge of seismic hazard in this region. One of the decision-making concerns of Grenoble's public authorities, as managers of a large number of public buildings, is to know not only the seismic-prone regions, the variability of seismic hazard due to site effects and the city's overall vulnerability, but also the level of seismic risk and exposure for the entire city, also compared to other natural or/and domestic hazards. Our seismic risk analysis uses a probabilistic approach for regional and local hazards and the vulnerability assessment of buildings. Its applicability to Grenoble offers the advantage of being based on knowledge acquired by previous projects conducted over the years. This paper aims to compare the level of seismic risk with that of other risks and to introduce the notion of risk acceptability in order to offer guidance in the management of seismic risk. This notion of acceptability, which is now part of seismic risk consideration for existing buildings in Switzerland, is relevant in moderately seismic-prone countries like France.

  13. Seismic Risk Assessment and Loss Estimation for Tbilisi City

    Science.gov (United States)

    Tsereteli, Nino; Alania, Victor; Varazanashvili, Otar; Gugeshashvili, Tengiz; Arabidze, Vakhtang; Arevadze, Nika; Tsereteli, Emili; Gaphrindashvili, Giorgi; Gventcadze, Alexander; Goguadze, Nino; Vephkhvadze, Sophio

    2013-04-01

    The proper assessment of seismic risk is of crucial importance for society protection and city sustainable economic development, as it is the essential part to seismic hazard reduction. Estimation of seismic risk and losses is complicated tasks. There is always knowledge deficiency on real seismic hazard, local site effects, inventory on elements at risk, infrastructure vulnerability, especially for developing countries. Lately great efforts was done in the frame of EMME (earthquake Model for Middle East Region) project, where in the work packages WP1, WP2 , WP3 and WP4 where improved gaps related to seismic hazard assessment and vulnerability analysis. Finely in the frame of work package wp5 "City Scenario" additional work to this direction and detail investigation of local site conditions, active fault (3D) beneath Tbilisi were done. For estimation economic losses the algorithm was prepared taking into account obtained inventory. The long term usage of building is very complex. It relates to the reliability and durability of buildings. The long term usage and durability of a building is determined by the concept of depreciation. Depreciation of an entire building is calculated by summing the products of individual construction unit' depreciation rates and the corresponding value of these units within the building. This method of calculation is based on an assumption that depreciation is proportional to the building's (constructions) useful life. We used this methodology to create a matrix, which provides a way to evaluate the depreciation rates of buildings with different type and construction period and to determine their corresponding value. Finally loss was estimated resulting from shaking 10%, 5% and 2% exceedance probability in 50 years. Loss resulting from scenario earthquake (earthquake with possible maximum magnitude) also where estimated.

  14. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  15. Seismic risk map for Southeastern Brazil

    International Nuclear Information System (INIS)

    Mioto, J.A.

    1984-01-01

    During the last few years, some studies regarding seismic risk were prepared for three regions of Brazil. They were carried on account of two basic interests: first, toward the seismic history and recurrence of Brazilian seismic events; second, in a way as to provide seismic parameters for the design and construction of hydro and nuclear power plants. The first seismic risk map prepared for the southeastern region was elaborated in 1979 by 6he Universidade de Brasilia (UnB-Brasilia Seismological Station). In 1981 another seismic risk map was completed on the basis of seismotectonic studies carried out for the design and construction of the Nuclear power plants of Itaorna Beach (Angra dos Reis, Rio de Janeiro) by IPT (Mining and Applied Geology Division). In Brazil, until 1984, seismic studies concerning hydro and nuclear power plants and other civil construction of larger size did not take into account the seismic events from the point of view of probabilities of seismic recurrences. Such analysis in design is more important than the choice of a level of intensity or magnitude, or adoption of a seismicity level ased on deterministic methods. In this way, some considerations were made, concerning the use of seisms in Brazilian designs of hydro and nuclear power plants, as far as seismic analysis is concerned, recently altered over the current seismic risk panorama. (D.J.M.) [pt

  16. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Science.gov (United States)

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  17. Risk Assessment and Life Cycle Assessment, Environmental Strategies, Nordic Workshop, Vedbæk 1999

    DEFF Research Database (Denmark)

    Poll, Christian

    At a Nordic workshop on Product-oriented Environmental Strategies the roles of risk and hazard assessment and life cycle assessment of products in the future regulation of chemicals were discussed by participants representing administration, academia and industry from the Nordic countries....... This report compiles the papers and presentations given at the workshop. The papers present and discuss the different assessment tools and procedures - for individual chemicals through hazard and risk assessments and for products, materials and services through life-cycle assessment. The report also contains......, consultants and private enterprises to consider these well-established tools as individually necessary for the future regulation of the chemical pressure on the environment and to accept them as complementary to each other. Together with other process- or chain oriented tools like Substance or Material Flow...

  18. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    Science.gov (United States)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    magnitudes which, according to USLE, corresponded to the probability of exceedance 1% and 10% during 50 years or, if the reliable estimate is absent, the maximal magnitudes reported during the instrumental period. As a result, the seismic hazard maps for the Himalayas and the adjacent regions in terms of standard seismic zoning were constructed. Based on these calculations, in order to exemplify the method, we present a series of seismic risk maps taking into account the population density prone to seismic hazard and the dependence of the risk on the vulnerability as a function of population density.

  19. Research items regarding seismic residual risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  20. General Concerns Life-Cycle Design of Economical Ice-Resistant Structures in the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Zhang Da-yong

    2017-08-01

    Full Text Available In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both iceresistant and economical offshore platforms. However, there are many risks during the life cycle of offshore platforms due to the imperfect preliminary design for the Bohai Sea economical ice-resistant structures. As a result, the whole life-cycle design should be considered, including plan, design, construction, management and maintenance design. Based on the demand of existing codes and research of the basic design, structural ice-resistant performance and the reasonable management and maintenance, the life-cycle design theory is discussed. It was concluded that the life-cycle cost-effective optimum design proposed will lead to a minimum risk.

  1. Life cycle risks for human health: a comparison of petroleum versus bio-based production of five bulk organic chemicals.

    Science.gov (United States)

    Roes, Alexander L; Patel, Martin K

    2007-10-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes. Conventional risks are the risks of well-established processes, and not those related to genetically modified microorganisms and plants. Our approach combines classical risk assessment methods (largely based on toxicology), as developed by the life cycle assessment (LCA) community, with statistics on technological disasters, accidents, and work-related illnesses. Moreover, it covers the total process chain for both petrochemical and bio-based products from cradle to grave. The approach was applied to five products: the plastics polytrimethylene terephthalate (PTT), polyhydroxyalkanoates (PHA), polyethylene terephthalate (PET), polyethylene (PE), and ethanol. Our results show that the conventional risks related to the white biotechnology products studied are lower than those of the petrochemical products. However, considering the uncertainties with respect to the ranges of input data, the (incomplete) coverage of emissions by the environmental priority strategies (EPS) 2000 method, and the uncertainties of the assumptions made in this study (i.e., large to very large), the differences in results between bio-based and petrochemical products fall into the uncertainty range. Because of this, future research is necessary to decrease the uncertainties before we can conclude that the conventional risks of biotechnologically produced chemicals are lower than those of fossil-fuel-derived chemicals.

  2. Seismic Risk Assessment for the Kyrgyz Republic

    Science.gov (United States)

    Pittore, Massimiliano; Sousa, Luis; Grant, Damian; Fleming, Kevin; Parolai, Stefano; Fourniadis, Yannis; Free, Matthew; Moldobekov, Bolot; Takeuchi, Ko

    2017-04-01

    The Kyrgyz Republic is one of the most socially and economically dynamic countries in Central Asia, and one of the most endangered by earthquake hazard in the region. In order to support the government of the Kyrgyz Republic in the development of a country-level Disaster Risk Reduction strategy, a comprehensive seismic risk study has been developed with the support of the World Bank. As part of this project, state-of-the-art hazard, exposure and vulnerability models have been developed and combined into the assessment of direct physical and economic risk on residential, educational and transportation infrastructure. The seismic hazard has been modelled with three different approaches, in order to provide a comprehensive overview of the possible consequences. A probabilistic seismic hazard assessment (PSHA) approach has been used to quantitatively evaluate the distribution of expected ground shaking intensity, as constrained by the compiled earthquake catalogue and associated seismic source model. A set of specific seismic scenarios based on events generated from known fault systems have been also considered, in order to provide insight on the expected consequences in case of strong events in proximity of densely inhabited areas. Furthermore, long-span catalogues of events have been generated stochastically and employed in the probabilistic analysis of expected losses over the territory of the Kyrgyz Republic. Damage and risk estimates have been computed by using an exposure model recently developed for the country, combined with the assignment of suitable fragility/vulnerability models. The risk estimation has been carried out with spatial aggregation at the district (rayon) level. The obtained results confirm the high level of seismic risk throughout the country, also pinpointing the location of several risk hotspots, particularly in the southern districts, in correspondence with the Ferghana valley. The outcome of this project will further support the local

  3. Emissions from photovoltaic life cycles

    NARCIS (Netherlands)

    Fthenakis, V.M.; Kim, H.C.; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2008-01-01

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle

  4. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  5. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  6. Evaluation of Seismic Risk of Siberia Territory

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  7. The Life Cycle Analysis Toolbox

    International Nuclear Information System (INIS)

    Bishop, L.; Tonn, B.E.; Williams, K.A.; Yerace, P.; Yuracko, K.L.

    1999-01-01

    The life cycle analysis toolbox is a valuable integration of decision-making tools and supporting materials developed by Oak Ridge National Laboratory (ORNL) to help Department of Energy managers improve environmental quality, reduce costs, and minimize risk. The toolbox provides decision-makers access to a wide variety of proven tools for pollution prevention (P2) and waste minimization (WMin), as well as ORNL expertise to select from this toolbox exactly the right tool to solve any given P2/WMin problem. The central element of the toolbox is a multiple criteria approach to life cycle analysis developed specifically to aid P2/WMin decision-making. ORNL has developed numerous tools that support this life cycle analysis approach. Tools are available to help model P2/WMin processes, estimate human health risks, estimate costs, and represent and manipulate uncertainties. Tools are available to help document P2/WMin decision-making and implement programs. Tools are also available to help track potential future environmental regulations that could impact P2/WMin programs and current regulations that must be followed. An Internet-site will provide broad access to the tools

  8. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  9. A First Case Study of a Life Cycle-Based Alternatives Assessment (LCAA)

    DEFF Research Database (Denmark)

    Fantke, Peter; Huang, L.; Overcash, Michael

    2017-01-01

    cycle impacts. Our approach is evaluated in a case study, through which we outline future research needs to fully operationalize a consistent and Life Cycle-based Alternatives Assessment (LCAA). We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions...... and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. When combined with chemical masses in products and further with toxicity information, this approach is a resourceful way to inform AA. Our case study reveals that replacing...... various population groups including workers, consumers and the general public, while life cycle impacts need to focus on categories relevant for a given AA chemical-product application. We systematically define the scope of AA and identify key elements for quantitatively considering exposure and life...

  10. Obesity in women – a life cycle of medical risk | van der Merwe ...

    African Journals Online (AJOL)

    Obesity can have an impact on health at each stage of a woman's life cycle. In young women, obesity has an impact on psychosocial health and, as they grow older, on their reproductive health. Obesity also imposes a number of serious risks during pregnancy. In older women, obesity is associated with the emergence of a ...

  11. Seismic risk assessment and application in the central United States

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  12. Life Cycle Thinking in Impact Assessment

    DEFF Research Database (Denmark)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life...

  13. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  14. Life cycle impact assessment of bio-based plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, I.; Faaij, A. P C; Lundquist, L.; Schenker, U.; Briois, J. F.; Patel, M. K.

    2015-01-01

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  15. Life cycle sustainability assessment of chemical processes

    DEFF Research Database (Denmark)

    Xu, Di; Lv, Liping; Ren, Jingzheng

    2017-01-01

    In this study, an integrated vector-based three-dimensional (3D) methodology for the life cycle sustainability assessment (LCSA) of chemical process alternatives is proposed. In the methodology, a 3D criteria assessment system is first established by using the life cycle assessment, the life cycl...

  16. A case study by life cycle assessment

    Science.gov (United States)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  17. Including pathogen risk in life cycle assessment of wastewater management. 2. Quantitative comparison of pathogen risk to other impacts on human health.

    Science.gov (United States)

    Heimersson, Sara; Harder, Robin; Peters, Gregory M; Svanström, Magdalena

    2014-08-19

    Resource recovery from sewage sludge has the potential to save natural resources, but the potential risks connected to human exposure to heavy metals, organic micropollutants, and pathogenic microorganisms attract stakeholder concern. The purpose of the presented study was to include pathogen risks to human health in life cycle assessment (LCA) of wastewater and sludge management systems, as this is commonly omitted from LCAs due to methodological limitations. Part 1 of this article series estimated the overall pathogen risk for such a system with agricultural use of the sludge, in a way that enables the results to be integrated in LCA. This article (part 2) presents a full LCA for two model systems (with agricultural utilization or incineration of sludge) to reveal the relative importance of pathogen risk in relation to other potential impacts on human health. The study showed that, for both model systems, pathogen risk can constitute an important part (in this study up to 20%) of the total life cycle impacts on human health (expressed in disability adjusted life years) which include other important impacts such as human toxicity potential, global warming potential, and photochemical oxidant formation potential.

  18. Conceptual Framework To Extend Life Cycle Assessment ...

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  19. Assessing the seismic risk potential of South America

    Science.gov (United States)

    Jaiswal, Kishor; Petersen, Mark D.; Harmsen, Stephen; Smoczyk, Gregory M.

    2016-01-01

    We present here a simplified approach to quantifying regional seismic risk. The seismic risk for a given region can be inferred in terms of average annual loss (AAL) that represents long-term value of earthquake losses in any one year caused from a long-term seismic hazard. The AAL are commonly measured in the form of earthquake shaking-induced deaths, direct economic impacts or indirect losses caused due to loss of functionality. In the context of South American subcontinent, the analysis makes use of readily available public data on seismicity, population exposure, and the hazard and vulnerability models for the region. The seismic hazard model was derived using available seismic catalogs, fault databases, and the hazard methodologies that are analogous to the U.S. Geological Survey’s national seismic hazard mapping process. The Prompt Assessment of Global Earthquakes for Response (PAGER) system’s direct empirical vulnerability functions in terms of fatality and economic impact were used for performing exposure and risk analyses. The broad findings presented and the risk maps produced herein are preliminary, yet they do offer important insights into the underlying zones of high and low seismic risks in the South American subcontinent. A more detailed analysis of risk may be warranted by engaging local experts, especially in some of the high risk zones identified through the present investigation.

  20. Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage

    International Nuclear Information System (INIS)

    Nam, Kiil; Chang, Daejun; Chang, Kwangpil; Rhee, Taejin; Lee, In-Beum

    2011-01-01

    This study proposed a new LCC (life cycle cost) methodology with the risk expenditure taken into account for comparative evaluation of offshore process options at their conceptual design stage. The risk expenditure consisted of the failure risk expenditure and the accident risk expenditure. The former accounted for the production loss and the maintenance expense due to equipment failures while the latter reflected the asset damage and the fatality worth caused by disastrous accidents such as fire and explosion. It was demonstrated that the new LCC methodology was capable of playing the role of a process selection basis in choosing the best of the liquefaction process options including the power generation systems for a floating LNG (Liquefied natural gas) production facility. Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. The new methodology with the risk expenditure, however, indicated that the nitrogen expansion cycle driven by steam turbines should be the optimum choice, mainly due to its better availability and safety. -- Highlights: → The study presented the methodology of the LCC with the risk expenditure for the conceptual design of offshore processes. → The proposed methodology demonstrated the applicability of the liquefaction unit with the power generation system of LNG FPSO. → Without the risk expenditure, a simple economic comparison apparently favored the mixed refrigerant cycle which had the better efficiency. → The new methodology indicated that the nitrogen expansion cycle driven by steam turbines is the optimum choice due to its better availability and safety.

  1. Integrate life-cycle assessment and risk analysis results, not methods.

    Science.gov (United States)

    Linkov, Igor; Trump, Benjamin D; Wender, Ben A; Seager, Thomas P; Kennedy, Alan J; Keisler, Jeffrey M

    2017-08-04

    Two analytic perspectives on environmental assessment dominate environmental policy and decision-making: risk analysis (RA) and life-cycle assessment (LCA). RA focuses on management of a toxicological hazard in a specific exposure scenario, while LCA seeks a holistic estimation of impacts of thousands of substances across multiple media, including non-toxicological and non-chemically deleterious effects. While recommendations to integrate the two approaches have remained a consistent feature of environmental scholarship for at least 15 years, the current perception is that progress is slow largely because of practical obstacles, such as a lack of data, rather than insurmountable theoretical difficulties. Nonetheless, the emergence of nanotechnology presents a serious challenge to both perspectives. Because the pace of nanomaterial innovation far outstrips acquisition of environmentally relevant data, it is now clear that a further integration of RA and LCA based on dataset completion will remain futile. In fact, the two approaches are suited for different purposes and answer different questions. A more pragmatic approach to providing better guidance to decision-makers is to apply the two methods in parallel, integrating only after obtaining separate results.

  2. Seismic component fragility data base for IPEEE

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.

    1990-01-01

    Seismic probabilistic risk assessment or a seismic margin study will require a reliable data base of seismic fragility of various equipment classes. Brookhaven National Laboratory (BNL) has selected a group of equipment and generically evaluated the seismic fragility of each equipment class by use of existing test data. This paper briefly discusses the evaluation methodology and the fragility results. The fragility analysis results when used in the Individual Plant Examination for External Events (IPEEE) Program for nuclear power plants are expected to provide insights into seismic vulnerabilities of equipment for earthquakes beyond the design basis. 3 refs., 1 fig., 1 tab

  3. Life-cycle energy of residential buildings in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Ries, Robert J.; Wang, Yaowu

    2013-01-01

    In the context of rapid urbanization and new construction in rural China, residential building energy consumption has the potential to increase with the expected increase in demand. A process-based hybrid life-cycle assessment model is used to quantify the life-cycle energy use for both urban and rural residential buildings in China and determine the energy use characteristics of each life cycle phase. An input–output model for the pre-use phases is based on 2007 Chinese economic benchmark data. A process-based life-cycle assessment model for estimating the operation and demolition phases uses historical energy-intensity data. Results show that operation energy in both urban and rural residential buildings is dominant and varies from 75% to 86% of life cycle energy respectively. Gaps in living standards as well as differences in building structure and materials result in a life-cycle energy intensity of urban residential buildings that is 20% higher than that of rural residential buildings. The life-cycle energy of urban residential buildings is most sensitive to the reduction of operational energy intensity excluding heating energy which depends on both the occupants' energy-saving behavior as well as the performance of the building itself. -- Highlights: •We developed a hybrid LCA model to quantify the life-cycle energy for urban and rural residential buildings in China. •Operation energy in urban and rural residential buildings is dominant, varying from 75% to 86% of life cycle energy respectively. •Compared with rural residential buildings, the life-cycle energy intensity of urban residential buildings is 20% higher. •The life-cycle energy of urban residential buildings is most sensitive to the reduction of daily activity energy

  4. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2018-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision...

  5. Seismic fragilities for nuclear power plant risk studies

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Ravindra, M.K.

    1983-01-01

    Seismic fragilities of critical structures and equipment are developed as families of conditional failure frequency curves plotted against peak ground acceleration. The procedure is based on available data combined with judicious extrapolation of design information on plant structures and equipment. Representative values of fragility parameters for typical modern nuclear power plants are provided. Based on the fragility evaluation for about a dozen nuclear power plants, it is proposed that unnecessary conservatism existing in current seismic design practice could be removed by properly accounting for inelastic energy absorption capabilities of structures. The paper discusses the key contributors to seismic risk and the significance of possible correlation between component failures and potential design and construction errors

  6. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  7. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  8. Risk-Informed Selection of Steel Connections for Seismic Zones

    Directory of Open Access Journals (Sweden)

    De León-Escobedo D.

    2011-04-01

    Full Text Available The findings about the fragile behavior of steel welded connections after the Northridge 1994 earthquake, specially for frames designed to withstand lateral force, has brought an amount of new attention to the design and safety issues of the welded connections for structures located on seismic zones. In México, practitioners and designers are wondering about the seismic effectiveness of the several kinds of connections as used in steel structures. A decision must be made to balance the safety required with the costs incurred after exceeding the serviceability limit state. Structural reliability techniques provide the proper framework to include the inherent uncertainties into the design process. Registered motions after the 1985 Mexico City earthquake are properly scaled according to the seismic hazard curve for soft soil in Mexico City. Earthquake occurrence is modeled as a Poisson process and the expected life-cycle cost is taken as the decision criteria. Parametric analyses allow the identification of dominant variables and ranges where one option is more recommendable than the other one. The proposed formulation may support designers and builders for the decision making process about the selection of the convenient connection type for the seismic zones with soft soil in Mexico City.

  9. Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities

    International Nuclear Information System (INIS)

    Miller, Mahalia; Baker, Jack W.

    2016-01-01

    In this paper, we develop a framework for coupling mode-destination accessibility with quantitative seismic risk assessment to identify communities at high risk for travel disruptions after an earthquake. Mode-destination accessibility measures the ability of people to reach destinations they desire. We use a probabilistic seismic risk assessment procedure, including a stochastic set of earthquake events, ground-motion intensity maps, damage maps, and realizations of traffic and accessibility impacts. For a case study of the San Francisco Bay Area, we couple our seismic risk framework with a practical activity-based traffic model. As a result, we quantify accessibility risk probabilistically by community and household type. We find that accessibility varies more strongly as a function of travelers' geographic location than as a function of their income class, and we identify particularly at-risk communities. We also observe that communities more conducive to local trips by foot or bike are predicted to be less impacted by losses in accessibility. This work shows the potential to link quantitative risk assessment methodologies with high-resolution travel models used by transportation planners. Quantitative risk metrics of this type should have great utility for planners working to reduce risk to a region's infrastructure systems. - Highlights: • We couple mode-destination accessibility with probabilistic seismic risk assessment. • Results identify communities at high risk for post-earthquake travel disruptions. • Accessibility varies more as a function of home location than by income. • Our model predicts reduced accessibility risk for more walking-friendly communities.

  10. Seismic risk assessment of a BWR: status report

    International Nuclear Information System (INIS)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant

  11. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  12. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  13. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  14. Seismic risk control of nuclear power plants using seismic protection systems in stable continental regions: The UK case

    Energy Technology Data Exchange (ETDEWEB)

    Medel-Vera, Carlos, E-mail: cbmedel@uc.cl; Ji, Tianjian, E-mail: tianjian.ji@manchester.ac.uk

    2016-10-15

    Highlights: • Strategies to reduce seismic risk for nuclear power stations in the UK are analysed. • Efficiency of devices to reduce risk: viscous-based higher than hysteretic-based. • Scenario-based incremental dynamic analysis is introduced for use in nuclear stations. • Surfaces of seismic unacceptable performance for nuclear stations are proposed. - Abstract: This article analyses three different strategies on the use of seismic protection systems (SPS) for nuclear power plants (NPPs) in the UK. Such strategies are based on the experience reported elsewhere of seismically protected nuclear reactor buildings in other stable continental regions. Analyses are conducted using an example of application based on a 1000 MW Pressurised Water Reactor building located in a representative UK nuclear site. The efficiency of the SPS is probabilistically assessed to achieve possible risk reduction for both rock and soil sites in comparison with conventionally constructed NPPs. Further analyses are conducted to study how the reduction of risk changes when all controlling scenarios of the site are included. This is done by introducing a scenario-based incremental dynamic analysis aimed at the generation of surfaces for unacceptable performance of NPPs as a function of earthquake magnitude (M{sub w}) and distance-to-site (R{sub epi}). General guidelines are proposed to potentially use SPS in future NPPs in the UK. Such recommendations can be used by the British nuclear industry in the future development of 12 new reactors to be built in the next two decades to generate 16 GWe of new nuclear capacity.

  15. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    Science.gov (United States)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for

  16. Conceptual design study of small long-life PWR based on thorium cycle fuel

    International Nuclear Information System (INIS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-01-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of 233 U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation

  17. Seismic risk perception test

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  18. Assessment of wind turbine seismic risk : existing literature and simple study of tower moment demand.

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, Ian (University of California, San Diego, CA); Veers, Paul S.

    2009-03-01

    Various sources of risk exist for all civil structures, one of which is seismic risk. As structures change in scale, the magnitude of seismic risk changes relative to risk from other sources. This paper presents an introduction to seismic hazard as applied to wind turbine structures. The existing design methods and research regarding seismic risk for wind turbines is then summarized. Finally a preliminary assessment is made based on current guidelines to understand how tower moment demand scales as rated power increases. Potential areas of uncertainty in the application of the current guidelines are summarized.

  19. Perceived Risk Influence on the Consumer Attitude to Private Labels in the Product’s Life Cycle Growth Stage

    Directory of Open Access Journals (Sweden)

    Sandra Horvat

    2013-12-01

    Full Text Available The aim of this paper is to explore the relationship between purchasing risk associated with private labels and consumer attitudes towards private labels in different product categories in the growth stage of the product life cycle. The first part of the paper is devoted to a brief literature review of the relevant constructs. The second part describes the research and summarizes its results. Descriptive research was conducted on the Croatian market relating to private labels in three different product categories in the growth stage of the product life cycle: liquid soap, chocolate and facial care products. The results confirm negative correlation between perceived risk and attitudes towards private labels in all analysed categories.

  20. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  1. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens.

    Science.gov (United States)

    Harder, Robin; Heimersson, Sara; Svanström, Magdalena; Peters, Gregory M

    2014-08-19

    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series.

  2. Combined methodology of optimization and life cycle inventory for a biomass gasification based BCHP system

    International Nuclear Information System (INIS)

    Wang, Jiang-Jiang; Yang, Kun; Xu, Zi-Long; Fu, Chao; Li, Li; Zhou, Zun-Kai

    2014-01-01

    Biomass gasification based building cooling, heating, and power (BCHP) system is an effective distributed energy system to improve the utilization of biomass resources. This paper proposes a combined methodology of optimization method and life cycle inventory (LCI) for the biomass gasification based BCHP system. The life cycle models including biomass planting, biomass collection-storage-transportation, BCHP plant construction and operation, and BCHP plant demolition and recycle, are constructed to obtain economic cost, energy consumption and CO 2 emission in the whole service-life. Then, the optimization model for the biomass BCHP system including variables, objective function and solution method are presented. Finally, a biomass BCHP case in Harbin, China, is optimized under different optimization objectives, the life-cycle performances including cost, energy and CO 2 emission are obtained and the grey incidence approach is employed to evaluate their comprehensive performances of the biomass BCHP schemes. The results indicate that the life-cycle cost, energy efficiency and CO 2 emission of the biomass BCHP system are about 41.9 $ MWh −1 , 41% and 59.60 kg MWh −1 respectively. The optimized biomass BCHP configuration to minimize the life-cycle cost is the best scheme to achieve comprehensive benefit including cost, energy consumption, renewable energy ratio, steel consumption, and CO 2 emission. - Highlights: • Propose the combined method of optimization and LCI for biomass BCHP system. • Optimize the biomass BCHP system to minimize the life-cycle cost, energy and emission. • Obtain the optimized life-cycle cost, energy efficiency and CO 2 emission. • Select the best biomass BCHP scheme using grey incidence approach

  3. Assessing Water Risks in the Mining Industry using Life Cycle Assessment Based Approaches

    OpenAIRE

    STEPHEN ALAN NORTHEY

    2018-01-01

    Recent advances life cycle assessment methodology provide an opportunity to gain a more holistic understanding of how the mining industry interacts with water resources. A detailed review of assessment methodology and water management in the mining industry was undertaken to identify research needs. Global datasets of water use statistics for mining operations were also developed, and an exhaustive analysis of how global mineral resources and production are spatially distributed across local ...

  4. A model for a knowledge-based system's life cycle

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a Committee on Standards for Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that committee. The purpose here is to present a candidate model for the development life cycle of Knowledge Based Systems (KBS). The intent is for the model to be used by the Aerospace Community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are detailed as are and the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  5. Ethical Implications of Seismic Risk Communication in Istanbul - Insights from a Transdisciplinary, Film-based Science Communication Workshop

    Science.gov (United States)

    Ickert, Johanna; Stewart, Iain S.

    2016-04-01

    For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city

  6. Life cycle versus balanced funds: An emerging market perspective

    Directory of Open Access Journals (Sweden)

    Elbie Louw

    2017-08-01

    Full Text Available Background: Inadequate retirement savings is an international challenge. Additionally, individuals are not cognisant of how asset allocation choices ultimately impact retirement savings. Life cycle and balanced funds are popular asset allocation strategies to save towards retirement. However, recent research is questioning the efficacy of life cycle funds that switch to lower risk asset classes as retirement approaches. Aim: The purpose of this study is to compare the performance of life cycle funds with balanced funds to determine whether either dominates the other. The study compares balanced and life cycle funds with similar starting asset allocations as well as those where the starting asset allocations differ. Setting: The study has a South African focus and constructs funds using historical data for the main local asset classes; that is, equity, fixed income and cash, as well as a proxy for foreign equity covering the period 1986–2013. Method: The study makes use of Monte Carlo simulations and bootstrap with replacement, and compares the simulated outcomes using stochastic dominance as decision-making criteria. Results: The results indicate that life cycle funds fail to dominate balanced funds by first-order or almost stochastic dominance when funds have a similar starting asset allocation. It is noteworthy that there are instances where the opposite is true, that is, balanced funds dominate life cycle funds. These results highlight that while the life cycle funds provide more downside protection, they significantly suppress the upside potential compared to balanced funds. When the starting asset allocations of the balanced and life cycle funds differ, the stochastic dominance results are inconsistent as to the efficacy of the life cycle fund strategies considered. Conclusion: The study shows that whether one fund is likely to dominate the other is strongly dependent on the underlying asset allocation strategies of the funds

  7. Emissions from photovoltaic life cycles.

    Science.gov (United States)

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  8. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Cooper, R.A.

    1976-01-01

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  9. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    Science.gov (United States)

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. © The Author(s) 2015.

  10. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    International Nuclear Information System (INIS)

    Walker, William C.; Bosso, Christopher J.; Eckelman, Matthew; Isaacs, Jacqueline A.; Pourzahedi, Leila

    2015-01-01

    The 2011 National Nanotechnology Initiative’s Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010–2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI’s focus was primarily on the “responsible development of nanotechnology” we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation

  11. Integrating life cycle assessment into managing potential EHS risks of engineered nanomaterials: reviewing progress to date

    Energy Technology Data Exchange (ETDEWEB)

    Walker, William C.; Bosso, Christopher J., E-mail: c.bosso@neu.edu [Northeastern University, School of Public Policy and Urban Affairs (United States); Eckelman, Matthew [Northeastern University, Department of Civil and Environmental Engineering (United States); Isaacs, Jacqueline A. [Northeastern University, Department of Mechanical and Industrial Engineering (United States); Pourzahedi, Leila [Northeastern University, Department of Civil and Environmental Engineering (United States)

    2015-08-15

    The 2011 National Nanotechnology Initiative’s Environmental Health and Safety Research Strategy stressed the need for research to integrate life cycle considerations into risk management and, then, to better integrate risk assessment into decisionmaking on environmental, health, and safety (EHS) dimensions of nanomanufacturing. This paper reviews scholarly articles published 2010–2015 that in some way apply life cycle analysis to nanotechnology to assess the extent to which current research reflects the priorities lain out in the NNI report. As the NNI’s focus was primarily on the “responsible development of nanotechnology” we also focus our examination on the ways in which LCA, in concert with other methodologies, can provide utility to decision makers facing the challenge of implementing that broad goal. We explore some of the challenges and opportunities inherent in using LCA, a tool built to optimize manufacturing decisions, as a guide for policy formulation or tool for policy implementation.

  12. Seismic risk analysis in the German risk study phase B

    International Nuclear Information System (INIS)

    Hasser, D.; Liemersdorf, J.

    1989-01-01

    The paper discusses some aspects of the seismic risk part of the German risk study for nuclear power plants, phase B. First simplified analyses in phase A of the study allowed a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported, in order to demonstrate the influence of different assumptions for material behavior and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to the distribution assumptions, acceptable simplifications, special results for the PWR reference plant and, finally, the influence of model uncertainties

  13. Seismic risk analyses in the German Risk Study, phase B

    International Nuclear Information System (INIS)

    Hosser, D.; Liemersdorf, H.

    1991-01-01

    The paper discusses some aspects of the seismic risk part of the German Risk Study for Nuclear Power Plants, Phase B. First simplified analyses in Phase A of the study allowed only a rough classification of structures and systems of the PWR reference plant according to their seismic risk contribution. These studies were extended in Phase B using improved models for the dynamic analyses of buildings, structures and components as well as for the probabilistic analyses of seismic loading, failure probabilities and event trees. The methodology of deriving probabilistic seismic load descriptions is explained and compared with the methods in Phase A of the study and in other studies. Some details of the linear and nonlinear dynamic analyses of structures are reported in order to demonstrate the influence of different assumptions for material behaviour and failure criteria. The probabilistic structural and event tree analyses are discussed with respect to distribution assumptions, acceptable simplifications and model uncertainties. Some results for the PWR reference plant are given. (orig.)

  14. Sustainable Building Life Cycle Design

    Directory of Open Access Journals (Sweden)

    Ginzburg Alexander

    2016-01-01

    Full Text Available The current building life cycle management system in the Russian Federation is a family of discrete subsystems that exist independently for different building life cycle stages. In this situation building reliability and sustainable functioning are out of the question. The implementation of a united information model (BIM-model intended to describe building entire life cycle will allow to raise the sustainability, but this will happen only if goals and concerns of all participants of the project process are properly coordinated. An important figure of process sustainability is the organizational and technological reliability (OTR that describes the possibility of a system to reach a goal. In case of building life cycle design, the economical efficiency of a building can be considered as the goal. The required technical, ecological, organizational, and other parameters form a complex of constraints that determine the area of allowable values for building functioning. In its broad meaning, OTR may be understood as the probability of receiving an economical effect based on the value of organizational and economical reliability (OER.

  15. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  16. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Laurent, Alexis; Miseljic, Mirko

    2012-01-01

    of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key ‘‘lessons learned’’ from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches...... for using these methods together for NM: ‘‘LC-based RA’’ (traditional RA applied in a life-cycle perspective) and ‘‘RA-complemented LCA’’ (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods......While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance...

  17. Life cycle assessment of energy consumption and environmental emissions for cornstalk-based ethyl levulinate

    International Nuclear Information System (INIS)

    Wang, Zhiwei; Li, Zaifeng; Lei, Tingzhou; Yang, Miao; Qi, Tian; Lin, Lu; Xin, Xiaofei; Ajayebi, Atta; Yang, Yantao; He, Xiaofeng; Yan, Xiaoyu

    2016-01-01

    Highlights: • The first LCA of cornstalk-based ethyl levulinate. • Life cycle energy consumption and environmental emissions were evaluated. • Detailed foreground data from a demonstration project in China was used. • Criteria emissions in the combustion stage were based on engine tests. • Sensitivity analysis was performed based on different cornstalk prices. - Abstract: This study analysed the sustainability of fuel-ethyl levulinate (EL) production along with furfural, as a by-product, from cornstalk in China. A life cycle assessment (LCA) was conducted using the SimaPro software to evaluate the energy consumption (EC), greenhouse gas (GHG) and criteria emissions, from cornstalk growth to EL utilisation. The total life cycle EC was found to be 4.54 MJ/MJ EL, of which 94.7% was biomass energy. EC in the EL production stage was the highest, accounting for 96.8% of total EC. Fossil EC in this stage was estimated to be 0.095 MJ/MJ, which also represents the highest fossil EC throughout the life cycle (39.5% of the total). The ratio of biomass to fossil EC over the life cycle was 17.9, indicating good utilisation of renewable energy in cornstalk-based EL production. The net life cycle GHG emissions were 96.6 g CO_2-eq/MJ. The EL production stage demonstrated the highest GHG emissions, representing 53.4% of the total positive amount. Criteria emissions of carbon monoxide (CO) and particulates ⩽10 μm (PM10) showed negative values, of −3.15 and −0.72 g/MJ, respectively. Nitrogen oxides (NO_x) and sulphur dioxide (SO_2) emissions showed positive values of 0.33 and 0.28 g/MJ, respectively, mainly arising from the EL production stage. According to the sensitivity analysis, increasing or removing the cornstalk revenue in the LCA leads to an increase or decrease in the EC and environmental emissions while burning cornstalk directly in the field results in large increases in emissions of NMVOC, CO, NO_x and PM10 but decreases in fossil EC, and SO_2 and GHG

  18. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    Science.gov (United States)

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2017-07-01

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.

  19. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, Chingching [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Whittaker, Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosbab, Ben [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  20. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    Science.gov (United States)

    Xie, Furen; Wang, Zhenming; Liu, Jingwei

    2011-03-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 × 0.1°. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ≥ 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i.e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate.

  1. Life cycle assessment and additives: state of knowledge

    DEFF Research Database (Denmark)

    is to identify research needs within this area focusing on both risk assessment (RA) and life cycle assessment (LCA). Besides the sectors on paper and plastics also lubricants, textiles, electronics and leather are included in RiskCycle. On plastics a literature review regarding the state of knowledge......Concerns about possible toxic effects from additives/impurities accumulated in globally recycled waste/resources like paper and plastics was one of the main reasons for starting up the EU FP7 Coordination Action project RiskCycle (www.wadef.com/projects/riskcycle). A key aim of the project...... on additives/impurities in LCA has been performed within RiskCycle. Several inventory databases (LCI data) have been investigated and the result shows that most LCI databases use PlasticsEurope data for plastics production. Most of these data are aggregated and do not include additives. Regarding...

  2. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  3. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator

    International Nuclear Information System (INIS)

    Li, Yancheng; Li, Jianchun; Samali, Bijan; Li, Weihua

    2013-01-01

    One of the main shortcomings in current base isolation design/practice is lack of adaptability. As a result, a base isolation system that is effective for one type earthquake may become ineffective or may have adverse effect for other earthquakes. The vulnerability of traditional base isolation systems can be exaggerated by two types of earthquakes, i.e. near-field earthquakes and far-field earthquakes. This paper addresses the challenge facing current base isolation design/practice by proposing a new type of seismic isolator for the base isolation system, namely an adaptive seismic isolator. The novel adaptive seismic isolator utilizes magnetorheological elastomer (MRE) for its field-sensitive material property. Traditional seismic isolator design with a unique laminated structure of steel and MRE layers has been adopted in the novel MRE seismic isolator. To evaluate and characterize the behavior of the MRE seismic isolator, experimental testing was conducted on a shake table facility under harmonic cycling loading. Experimental results show that the proposed adaptive seismic isolator can successfully alter the lateral stiffness and damping force in real time up to 37% and 45% respectively. Based on the successful development of the novel adaptive seismic isolator, a discussion is also extended to the impact and potential applications of such a device in structural control applications in civil engineering. (paper)

  4. A probabilistic seismic risk assessment procedure for nuclear power plants: (II) Application

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    This paper presents the procedures and results of intensity- and time-based seismic risk assessments of a sample nuclear power plant (NPP) to demonstrate the risk-assessment methodology proposed in its companion paper. The intensity-based assessments include three sets of sensitivity studies to identify the impact of the following factors on the seismic vulnerability of the sample NPP, namely: (1) the description of fragility curves for primary and secondary components of NPPs, (2) the number of simulations of NPP response required for risk assessment, and (3) the correlation in responses between NPP components. The time-based assessment is performed as a series of intensity-based assessments. The studies illustrate the utility of the response-based fragility curves and the inclusion of the correlation in the responses of NPP components directly in the risk computation. ?? 2011 Published by Elsevier B.V.

  5. How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?

    DEFF Research Database (Denmark)

    Niero, Monia; Di Felice, Francesco; Ren, Jingzheng

    2014-01-01

    , as the information required for fulfilling the LCI are standard information about the features of the wooden pallet and its manufacturing process. The contribution analysis on the reference product revealed that the most contributing life cycle stages are wood and nails extraction and manufacturing (positive value......This study discusses the use of parameterization within the life cycle inventory (LCI) in the wooden pallet sector, in order to test the effectiveness of LCI parametric models to calculate the environmental impacts of similar products. Starting from a single case study, the objectives of this paper......; these correlations can be used to improve the design of new wooden pallets.The conceptual scheme for defining the model is based on ISO14040-44 standards. First of all, the product system was defined identifying the life cycle of a generic wood pallet, as well as its life cycle stages. A list of independent...

  6. Asset Allocation Over the Life Cycle

    DEFF Research Database (Denmark)

    Fischer, Marcel; Kraft, Holger; Munk, Claus

    2013-01-01

    We study the welfare effect of tax-optimizing portfolio decisions in a life cycle model with unspanned labor income and realization-based capital gain taxation. For realistic parameterizations of our model, certainty equivalent welfare gains from fully tax-optimized portfolio decisions are less...... and instead assumes mark-to-market taxation, these gains are less than 0.5%. That is, our work provides a justification for ignoring taxes in life cycle portfolio choice problems - a wide-spread assumption in that literature. However, if capital gains are forgiven at death (as in the U.S.), investors...... with strong bequest motives face substantial welfare costs when not tax-optimizing their portfolio decisions towards the end of the life cycle....

  7. LIFE CYCLE OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Y. S. Sennik

    2015-01-01

    Full Text Available This work is a generalization of the theoretical propositions related to the life cycle of information systems. There was given the definition of the life cycle, specify which items you should include every step of the cycle. Describes the methodology division of the life cycle on the main stage, including methodology Rational Unified Process. The description of the fundamental standards in this area. Special attention was paid to the work of the basic life cycle models. It was carried out their comparative characteristics. On the basis of the theoretical propositions, it was concluded that the preferred model of the life cycle for the corporate network is a spiral model and the use of international standards in the life cycle saves a lot of effort, time and material resources.

  8. Source modelling in seismic risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, M.S.

    1978-12-01

    The proposed probabilistic procedure provides a consistent method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. The potential earthquake activity zones are idealized as point, line or area sources. For these seismic source types, expressions to evaluate their contribution to seismic risk are derived, considering all the possible site-source configurations. The seismic risk at a site is found to depend not only on the inherent randomness of the earthquake occurrences with respect to magnitude, time and space, but also on the uncertainties associated with the predicted values of the seismic and geometric parameters, as well as the uncertainty in the attenuation model. The uncertainty due to the attenuation equation is incorporated into the analysis through the use of random correction factors. The influence of the uncertainty resulting from the insufficient information on the seismic parameters and source geometry is introduced into the analysis by computing a mean risk curve averaged over the various alternative assumptions on the parameters and source geometry. Seismic risk analysis is carried for the city of Denizli, which is located in the seismically most active zone of Turkey. The second analysis is for Akkuyu

  9. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  10. A procedure for seismic risk reduction in Campania Region

    International Nuclear Information System (INIS)

    Zuccaro, G.; Palmieri, M.; Cicalese, S.; Grassi, V.; Rauci, M.; Maggio, F.

    2008-01-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  11. A procedure for seismic risk reduction in Campania Region

    Science.gov (United States)

    Zuccaro, G.; Palmieri, M.; Maggiò, F.; Cicalese, S.; Grassi, V.; Rauci, M.

    2008-07-01

    The Campania Region has set and performed a peculiar procedure in the field of seismic risk reduction. Great attention has been paid to public strategic buildings such as town halls, civil protection buildings and schools. The Ordinance 3274 promulgate in the 2004 by the Italian central authority obliged the owners of strategic buildings to perform seismic analyses within 2008 in order to check the safety of the structures and the adequacy to the use. In the procedure the Campania region, instead of the local authorities, ensure the complete drafting of seismic checks through financial resources of the Italian Government. A regional scientific technical committee has been constituted, composed of scientific experts, academics in seismic engineering. The committee has drawn up guidelines for the processing of seismic analyses. At the same time, the Region has issued a public competition to select technical seismic engineering experts to appoint seismic analysis in accordance with guidelines. The scientific committee has the option of requiring additional documents and studies in order to approve the safety checks elaborated. The Committee is supported by a technical and administrative secretariat composed of a group of expert in seismic engineering. At the moment several seismic safety checks have been completed. The results will be presented in this paper. Moreover, the policy to mitigate the seismic risk, set by Campania region, was to spend the most of the financial resources available on structural strengthening of public strategic buildings rather than in safety checks. A first set of buildings of which the response under seismic action was already known by data and studies of vulnerability previously realised, were selected for immediate retrofitting designs. Secondly, an other set of buildings were identified for structural strengthening. These were selected by using the criteria specified in the Guide Line prepared by the Scientific Committee and based on

  12. An integrated life cycle inventory for demolition processes in the context of life cycle sustainability assessment

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Hu, Mingming; van Roekel, Eric

    2012-01-01

    According to the Life Cycle Assessment in Building and Construction: State-of-the-Art Report (2003), the dismantling and demolition stage of the building life cycle is only sometimes included in the Life Cycle Inventory (LCI) when doing Life Cycle Assessments (LCA). The reason that it is less...... inventoried in a traditional LCA maybe because this stage is expected to have a negligible environmental impact comparing to other stages in the life cycle of the buildings. When doing a life cycle sustainability assessment considering not only environmental but also economic and social impacts, the impacts...

  13. Green tourism supply chain management based on life cycle impact assessment

    Directory of Open Access Journals (Sweden)

    Alexandra V. Michailidou

    2016-06-01

    Full Text Available Tourism is one of the most dynamic and far-reaching economic sectors in the world. Numerous different and complex activities are involved in the efficient development of tourism. These activities interrelate economic, environmental, social, cultural and political dimensions in the overall supply chain. However, apart from its key role as a driver of socio-economic progress, tourism is responsible for environmental deterioration, not only in areas popular with tourists, but also by enhancing climate change globally. This paper presents a robust method based on the Green Tourism Supply Chain Management (GTSCM concept, which can be used to estimate the effect on the environment that can be attributed to each link of the supply chain. The overall approach is based on Life Cycle Impact Assessment (LCIA theory and corresponding models. A case study to demonstrate the applicability of this approach is presented for two large seaside hotels located in Chalkidiki, Greece. Chalkidiki is the most popular tourist destination in Northern Greece. A LCIA questionnaire was developed and input data for the Life Cycle Assessment (LCA obtained from the hotel managers. For this LCA SimaPro 8 software was used. The LCIA methods chosen were Eco-indicator 99 and CML 2001. The effect on fossil fuel consumption of both hotels due to their use of local transport and electricity was considerable but less than that needed for transporting the tourists by air to Chalkidiki. This paper clearly indicates that LCA and Life Cycle Thinking (LCT can form the basis for promoting GTSCM in the tourism industry.

  14. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses of specific action to mitigate the seismic risks from strong deep Vrancea earthquakes should be considered as key to future development projects, including: - Early warning system for industrial facilities; - Short and long term prediction program of strong Vrancea earthquakes; - Seismic hazard map of Romania; - Seismic microzonation of large populated cities; - Shake map; - Seismic tomography of dams for avoiding disasters. The quality of life and the security of infrastructure (including human services, civil and industrial structures, financial infrastructure, information transmission and processing systems) in every nation are increasingly vulnerable to disasters caused by events that have geological, atmospheric, hydrologic, and technological origins. As UN Secretary General Kofi Annan pointed out, 'Building a culture of prevention is not easy. While the costs of prevention have to be paid in the present, its benefits lie in a distant future'. In other words: Prevention pays off. This may not always become apparent immediately, but, in the long run, the benefits from prevention measures will always outweigh their costs by far. Romania is an earthquake prone area and these main specific actions are really contributing to seismic risk mitigation. These specific actions are provided for in Law nr. 372/March 18,2004 -'The National Program of Seismic Risk Management'. (authors)

  15. Effects of an LMR-based partitioning-transmutation system on US nuclear fuel cycle health risk

    International Nuclear Information System (INIS)

    Michaels, G.E.; Reich, W.J.

    1992-01-01

    Health risks for the current US nuclear fuel cycle and for an illustrative partitioning and transmutation (P-T) fuel cycle based on Liquid Metal Reactor (LMR) technology are calculated and compared. Health risks are calculated for all non-reactor fuel cycle steps, including reprocessing, transportation, and high-level waste (HLW) disposal. Uranium mining and milling health risks have been updated to include recent occupational injury and death statistics, and the radiological health risk to the general public posed by the uranium mining overburden. In addition, the radiological health risks for transportation have been updated to include latent cancer fatalities associated with both normal transport and accidents. Given the assumptions of the study, it is shown that the deployment of an LMR-based P-T system is expected to reduce overall nuclear fuel cycle health risk

  16. Antifreeze life cycle assessment (LCA

    Directory of Open Access Journals (Sweden)

    Kesić Jelena

    2005-01-01

    Full Text Available Antifreeze based on ethylene glycol is a commonly used commercial product The classification of ethylene glycol as a toxic material increased the disposal costs for used antifreeze and life cycle assessment became a necessity. Life Cycle Assessment (LCA considers the identification and quantification of raw materials and energy inputs and waste outputs during the whole life cycle of the analyzed product. The objectives of LCA are the evaluation of impacts on the environment and improvements of processes in order to reduce and/or eliminate waste. LCA is conducted through a mathematical model derived from mass and energy balances of all the processes included in the life cycle. In all energy processes the part of energy that can be transformed into some other kind of energy is called exergy. The concept of exergy considers the quality of different types of energy and the quality of different materials. It is also a connection between energy and mass transformations. The whole life cycle can be described by the value of the total loss of exergy. The physical meaning of this value is the loss of material and energy that can be used. The results of LCA are very useful for the analyzed products and processes and for the determined conditions under which the analysis was conducted. The results of this study indicate that recycling is the most satisfactory solution for the treatment of used antifreeze regarding material and energy consumption but the re-use of antifreeze should not be neglected as a solution.

  17. Evolution of a seismic risk assessment technique

    International Nuclear Information System (INIS)

    Wells, J.E.; Cummings, G.E.

    1985-01-01

    To assist the NRC in its licensing evaluation role the Seismic Safety Margins Research Program (SSMRP) was started at LLNL in 1978. Its goal was to develop tools and data bases to evaluate the probability of earthquake caused radioactive releases from commercial nuclear power plants. The methodology was finalized in 1982 and a seismic risk assessment of the Zion Nuclear Power Plant was finished in 1983. Work continues on the study of the LaSalle Boiling Water Reactor. This paper will discuss some of the effects of the assumptions made during development of the systems analysis techniques used in SSMRP in light of the results obtained on studies to date. 5 refs

  18. Enriching step-based product information models to support product life-cycle activities

    Science.gov (United States)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  19. Seismic hazard assessment based on the Unified Scaling Law for Earthquakes: the Greater Caucasus

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2015-12-01

    Losses from natural disasters continue to increase mainly due to poor understanding by majority of scientific community, decision makers and public, the three components of Risk, i.e., Hazard, Exposure, and Vulnerability. Contemporary Science is responsible for not coping with challenging changes of Exposures and their Vulnerability inflicted by growing population, its concentration, etc., which result in a steady increase of Losses from Natural Hazards. Scientists owe to Society for lack of knowledge, education, and communication. In fact, Contemporary Science can do a better job in disclosing Natural Hazards, assessing Risks, and delivering such knowledge in advance catastrophic events. We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A - B•(M-6) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The parameters A, B, and C of USLE are used to estimate, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters including macro-seismic intensity. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks (e.g., those based on the density of exposed population). The methodology of seismic hazard and risks assessment based on USLE is illustrated by application to the seismic region of Greater Caucasus.

  20. Fuzzy Activity Based Life Cycle Costing For Repairable Equipment

    Directory of Open Access Journals (Sweden)

    Mulubrhan Freselam

    2016-01-01

    Full Text Available Life-cycle cost (LCC is the much known method used for decision making that considers all costs in the life of a system or equipment. Predicting LCCs is fraught with potential errors, owing to the uncertainty in future events, future costs, interest rates, and even hidden costs. These uncertainties have a direct impact on the decision making. Activity based LCC is used to identify the activities and cost drivers in acquisition, operation and maintenance phase. This activity based LCC is integrated with fuzzy set theory and interval mathematics to model these uncertainties. Day–Stout–Warren (DSW algorithm and the vertex method are then used to evaluate competing alternatives. A case of two pumps (Pump A and Pump B are taken and their LCC is analysed using the developed model. The equivalent annual cost of Pump B is greater than Pump A, which leads the decision maker to choose Pump A over Pump B.

  1. Benefit-Risk Assessment, Communication, and Evaluation (BRACE) throughout the life cycle of therapeutic products : overall perspective and role of the pharmacoepidemiologist

    NARCIS (Netherlands)

    Radawski, Christine; Morrato, Elaine; Hornbuckle, Kenneth; Bahri, Priya; Smith, Meredith; Juhaeri, Juhaeri; Mol, Peter; Levitan, Bennett; Huang, Han-Yao; Coplan, Paul; Li, Hu

    2015-01-01

    Purpose Optimizing a therapeutic product's benefit-risk profile is an on-going process throughout the product's life cycle. Different, yet related, benefit-risk assessment strategies and frameworks are being developed by various regulatory agencies, industry groups, and stakeholders. This paper

  2. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    International Nuclear Information System (INIS)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J.

    2008-01-01

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted

  3. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Parikhit; Kriegner, Christopher J.; Schew, William A.; Kaczmar, Swiatoslav W.; Traister, Matthew; Wilson, David J. [O' Brien and Gere, Ecological Sciences, E. 512 Township Line Road, Two Valley Square, Suite 120, Blue Bell, PA 19422 (United States)

    2008-01-15

    Market projections for cadmium-telluride (CdTe) thin-film photovoltaics (PV) are tempered by global environmental policies based on the precautionary principle which restrict electronic products containing cadmium, a known human carcinogen. An alternative to the precautionary principle is life cycle management, which involves manufacturers assuming product stewardship from beginning to end of product life. Both approaches have the aim of minimizing environmental contamination, but attempt to do so in different ways. Restrictions on electronic products containing cadmium by the precautionary principle-based restriction of hazardous substances (RoHS) directive in the European Union and a similar policy in China are presented, relative to their potential impact on CdTe PV. Life cycle environmental risks with respect to potential release of cadmium to the environment are also presented for routine operation of CdTe PV panels, potential catastrophic release of cadmium from a residential fire, and at the end of the product life. There is negligible risk of environmental cadmium contamination during routine operation and insignificant risk during catastrophic exposure events such as fire. At the end of the product life, risks of contamination are minimized by take-back programs that may be paid for by insurance premiums incorporated into the cost of the product. Therefore, policies based on the precautionary principle that could potentially ban the product based on its cadmium content may not be warranted. (author)

  4. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years

  5. Seismic risk analysis for the Atomics International Nuclear Materials Development Facility, Santa Susana California

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-29

    This report presents the results of a detailed seismic risk analysis of the Nuclear Materials Development Facility (NMDF) operated by Atomics International at Santa Susana, California. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases including the USGS, California Institute of Technology and NEIS data bases. The resulting seismic record, covering the period 1969 to 1977, was used to identify all possible sources of seismicity that could affect the site. The best estimate curve indicates that the facility will experience 30% g with a return period of 55 years and 60% g with a return period of 750 years.

  6. Seismic risk evaluation within the technology neutral framework

    International Nuclear Information System (INIS)

    Johnson, B.C.; Apostolakis, G.E.

    2012-01-01

    Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10 −5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10 −7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10 −7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10 −5 per year to focus on

  7. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    Science.gov (United States)

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  8. Intelligent seismic risk mitigation system on structure building

    Science.gov (United States)

    Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.

    2018-01-01

    Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.

  9. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  10. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    when it comes to compiling and assessing information about potential environmental impacts of a product. It has been standardized in the ISO 14040 and 14044 and is applied by practitioners globally. Life cycle costing as a technique to calculate and manage costs, especially for large investments has been used to support decision-makers in procurement for decades, with a rigorous focus on private costs. Prerequisites for better alignment with (environmental) LCA are currently being researched and will help the further development of the method. As an emerging technique, S-LCA will play a key role in complementing material- and energy-flow-related information. Since the late 1990s, the Life Cycle Initiative partnership of the United Nations Environment Programme (UNEP) and the Society for Environmental Toxicology and Chemistry (SETAC) has enhanced the role of life cycle based approaches and thinking in several ways. Two examples are the partnership's contributions to the Marrakech Process on Sustainable Consumption and Production (SCP) and inputs for the development of a 10-Year Framework of Programmes on SCP (10YFP). This current publication, Towards a Life Cycle Sustainability Assessment, expands this work by bringing the concept of LCSA methods to the fore. In doing so, it will contribute to the sustainable development discussions of the United Nations Conference on Sustainable Development (Summit) in 2012 ('Rio+20'). The text will also contribute to the UNEP Green Economy Initiative -- which strives to build economies that bring improved human well-being, reduce inequalities over the long term and which keep future generations safe from environmental risk and ecological scarcity. The publication includes eight case studies to illustrate how current and emerging life cycle assessment techniques are being implemented worldwide from Asia through Europe and Latin America.

  11. Towards a life cycle sustainability assessment: making informed choices on products

    Energy Technology Data Exchange (ETDEWEB)

    Ciroth, Andreas [GreenDeltaTC, Berlin (Germany); Finkbeiner, Matthias; Traverso, Marzia [TU Berlin (Germany); Hildenbrand, Jutta [Chalmers University (United States); Kloepffer, Walter [Editor-in-Chief of the International Journal of Life Cycle Assessment (Germany); Mazijn, Bernard [Ghent University (Belgium); Prakash, Siddharth [Oeko-Institut (Germany); Sonnemann, Guido; Valdivia, Sonia [UNEP (France); Ugaya, Cassia Maria Lie [Technological Federal University of Parana, ACV (Brazil); Vickery-Niederman, Gina [University of Arkansas (United States)

    2011-07-01

    compiling and assessing information about potential environmental impacts of a product. It has been standardized in the ISO 14040 and 14044 and is applied by practitioners globally. Life cycle costing as a technique to calculate and manage costs, especially for large investments has been used to support decision-makers in procurement for decades, with a rigorous focus on private costs. Prerequisites for better alignment with (environmental) LCA are currently being researched and will help the further development of the method. As an emerging technique, S-LCA will play a key role in complementing material- and energy-flow-related information. Since the late 1990s, the Life Cycle Initiative partnership of the United Nations Environment Programme (UNEP) and the Society for Environmental Toxicology and Chemistry (SETAC) has enhanced the role of life cycle based approaches and thinking in several ways. Two examples are the partnership's contributions to the Marrakech Process on Sustainable Consumption and Production (SCP) and inputs for the development of a 10-Year Framework of Programmes on SCP (10YFP). This current publication, Towards a Life Cycle Sustainability Assessment, expands this work by bringing the concept of LCSA methods to the fore. In doing so, it will contribute to the sustainable development discussions of the United Nations Conference on Sustainable Development (Summit) in 2012 ('Rio+20'). The text will also contribute to the UNEP Green Economy Initiative -- which strives to build economies that bring improved human well-being, reduce inequalities over the long term and which keep future generations safe from environmental risk and ecological scarcity. The publication includes eight case studies to illustrate how current and emerging life cycle assessment techniques are being implemented worldwide from Asia through Europe and Latin America.

  12. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  13. Life cycle assessment of renewable energy sources

    CERN Document Server

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    Governments are setting challenging targets to increase the production of energy and transport fuel from sustainable sources. The emphasis is increasingly on renewable sources including wind, solar, geothermal, biomass based biofuel, photovoltaics or energy recovery from waste. What are the environmental consequences of adopting these other sources? How do these various sources compare to each other? Life Cycle Assessment of Renewable Energy Sources tries to answer these questions based on the universally adopted method of Life Cycle Assessment (LCA). This book introduces the concept and impor

  14. Greenhouse impact assessment of peat-based Fischer-Tropsch diesel life-cycle

    International Nuclear Information System (INIS)

    Kirkinen, Johanna; Soimakallio, Sampo; Maekinen, Tuula; Savolainen, Ilkka

    2010-01-01

    New raw materials for transportation fuels need to be introduced, in order to fight against climate change and also to cope with increasing risks of availability and price of oil. Peat has been recognised suitable raw material option for diesel produced by gasification and Fischer-Tropsch (FT) synthesis. The energy content of Finnish peat reserves is remarkable. In this study, the greenhouse impact of peat-based FT diesel production and utilisation in Finland was assessed from the life-cycle point of view. In 100 year's time horizon the greenhouse impact of peat-based FT diesel is likely larger than the impact of fossil diesel. The impact can somewhat be lowered by producing peat from the agricultural peatland (strong greenhouse gas emissions from the decaying peatlayer are avoided) with new peat production technique, and utilising the produced biomass from the after-treatment area for diesel also. If diesel production is integrated with pulp and paper mill to achieve energy efficiency benefits and if the electricity demand can be covered by zero emission electricity, the greenhouse impact of peat-based FT diesel reduces to the level of fossil diesel when agricultural peatland is used, and is somewhat higher when forestry-drained peatland is used as raw material source.

  15. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here...

  16. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysis of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure

  17. Seismic design and analysis of nuclear fuel cycle facilities in France

    International Nuclear Information System (INIS)

    Sollogoub, P.

    2001-01-01

    Methodology for seismic design of nuclear fuel facilities and power plants in France is described. After the description of regulatory and normative texts for seismic design, different elements are examined: definition of ground motion, analysis methods, new trends, reevaluation and specificity of Fuel Cycle Facilities. R/D developments are explicated in each part. Their final objective are to better quantify the margins of each step which, in relation with safety analysis,lead to balanced design, analysis and retrofit rules. (author)

  18. Life Cycle Management for Equipments in Nuclear Plants Based on Reliability

    International Nuclear Information System (INIS)

    Wang Dalin; Sun Jinlong

    2012-01-01

    Life cycle management model based on reliability includes two parts: obtaining failure rate function and founding cost-oriented model to solve. It is actually a single objective programming whose optimal solution is the most economical replacement period. Parameters of failure rate function are estimated by Weibull process fitting with the method of maximum likelihood. The objective function of the model is life-cost function where the dependent variable is replacement period T, with the constraints of failure rate or availability. After foundation of LCM model, we solve it to find the optimal replacement period for the equipments. (author)

  19. A Framework for Understanding Uncertainty in Seismic Risk Assessment.

    Science.gov (United States)

    Foulser-Piggott, Roxane; Bowman, Gary; Hughes, Martin

    2017-10-11

    A better understanding of the uncertainty that exists in models used for seismic risk assessment is critical to improving risk-based decisions pertaining to earthquake safety. Current models estimating the probability of collapse of a building do not consider comprehensively the nature and impact of uncertainty. This article presents a model framework to enhance seismic risk assessment and thus gives decisionmakers a fuller understanding of the nature and limitations of the estimates. This can help ensure that risks are not over- or underestimated and the value of acquiring accurate data is appreciated fully. The methodology presented provides a novel treatment of uncertainties in input variables, their propagation through the model, and their effect on the results. The study presents ranges of possible annual collapse probabilities for different case studies on buildings in different parts of the world, exposed to different levels of seismicity, and with different vulnerabilities. A global sensitivity analysis was conducted to determine the significance of uncertain variables. Two key outcomes are (1) that the uncertainty in ground-motion conversion equations has the largest effect on the uncertainty in the calculation of annual collapse probability; and (2) the vulnerability of a building appears to have an effect on the range of annual collapse probabilities produced, i.e., the level of uncertainty in the estimate of annual collapse probability, with less vulnerable buildings having a smaller uncertainty. © 2017 Society for Risk Analysis.

  20. Integrated approach for characterizing and comparing exposure-based impacts with life cycle impacts

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier

    2016-01-01

    ions that involve burden shifting or that result in only incremental improvement. Focusing in the life cycle impacts on widely accepted and applied impact categories like global warming potential or cumulative energy demand aggregating several impact categories will lead to underestimations of life...... to the environment from product-related processes along the product life cycle. We build on a flexible mass balance-based modeling system yielding cumulative multimedia transfer fractions and exposure pathway-specific Product Intake Fractions defined as chemical mass taken in by humans per unit mass of chemical...... in a product. When combined chemical masses in products and further with toxicity information, this approach is a resourceful way to inform CAA and minimize human exposure to toxic chemicals in consumer products through both product use and environmental emissions. We use an example of chemicals in consumer...

  1. LIFE CYCLE DESIGN OF MILK AND JUICE PACKAGING

    Science.gov (United States)

    A life cycle design demonstration project was initiated between the U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Dow Chemical Company, and the University of Michigan to investigate milk and juice packagie design. The primary objective of ...

  2. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  3. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  4. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    Science.gov (United States)

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  5. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    OpenAIRE

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-01-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure...

  6. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  7. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  8. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    Science.gov (United States)

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-06-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  9. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    Directory of Open Access Journals (Sweden)

    V. M. Zobin

    2010-06-01

    Full Text Available A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  10. Multiscale design and life-cycle based sustainability assessment of polymer nanocomposite coatings

    Science.gov (United States)

    Uttarwar, Rohan G.

    In recent years, nanocoatings with exceptionally improved and new performance properties have found numerous applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, and many other industries. Especially the formulations providing multiple functionalities to cured paint films are believed to dominate the coatings market in the near future. It has shifted the focus of research towards building sustainable coating recipes which can deliver multiple functionalities through applied films. The challenge to this exciting area of research arrives from the insufficient knowledge about structure-property correlations of nanocoating materials and their design complexity. Experimental efforts have been successful in developing certain types of nanopaints exhibiting improved properties. However, multifunctional nanopaint design optimality is extremely difficult to address if not impossible solely through experiments. In addition to this, the environmental implications and societal risks associated with this growing field of nanotechnology raise several questions related to its sustainable development. This research focuses on the study of a multiscale sustainable nanocoating design which can have the application from novel function envisioning and idea refinement point of view, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications. The nanocoating design is studied using computational simulations of nano- to macro- scale models and sustainability assessment study over the life-cycle. Computational simulations aim at integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and effect, deductive systems engineering approaches for material development. The in-silico paint resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated into it. The nano-scale atomistic and micro-scale coarse-grained (CG) level

  11. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil

    International Nuclear Information System (INIS)

    Luo, Lin; Van der Voet, Ester; Huppes, Gjalt

    2009-01-01

    Brazil has always been the pioneer in the application of bioethanol as a main fuel for automobiles, hence environmental and economic analyses of the Brazilian ethanol industries are of crucial importance. This study presents a comparative life cycle assessment (LCA) on gasoline and ethanol as fuels, and with two types of blends of gasoline with bioethanol, all used in a midsize car. The focus is on a main application in Brazil, sugarcane based ethanol. The results of two cases are presented: base case - bioethanol production from sugarcane and electricity generation from bagasse; future case - bioethanol production from both sugarcane and bagasse and electricity generation from wastes. In both cases sugar is co-produced. The life cycles of fuels include gasoline production, agricultural production of sugarcane, ethanol production, sugar and electricity co-production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85%), and finally the use of gasoline, E10, E85 and pure ethanol. Furthermore, a life cycle costing (LCC) was conducted to give an indication on fuel economy in both cases. The results show that in the base case less GHG is emitted; while the overall evaluation of these fuel options depends on the importance attached to different impacts. The future case is certainly more economically attractive, which has been the driving force for development in the ethanol industry in Brazil. Nevertheless, the outcomes depend very much on the assumed price for crude oil. In LCC a steady-state cost model was used and only the production cost was taken into account. In the real market the prices of fuels are very much dependent on the taxes and subsidies. Technological development can help in lowering both the environmental impact and the prices of the ethanol fuels. (author)

  12. Analysis of ship life cycles: the impact of economic cycles and ship inspection

    NARCIS (Netherlands)

    Bijwaard, G.E.; Knapp, S.

    2009-01-01

    Due to the shipping industry's international legal framework, there are loopholes in the system, which can increase the risk of incidents with high economic costs due to the substandard operation of vessels. This article uses duration analysis and through the creation of ship life cycles provides

  13. Seismotectonic Conditions and Seismic Risk in Gori

    International Nuclear Information System (INIS)

    Varazanashvili, O.; Tsereteli, N.; Sumbadze, B.; Mukhadze, T.

    2006-01-01

    The seismic history and seismotectonic conditions of earthquake initiation are investigated in Gori and surrounding area. The main parameters of the newly discovered past earthquake at Takhtisdziri are estimated. The levels of seismic risk of 7,8 and 9 intensity scenario earthquakes estimated in Gori. Also damage of sity caused by destroying Kartli earthquake of 1920 is estimated. (author)

  14. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  15. Cities at risk: status of Italian planning system in reducing seismic and hydrogeological risks

    Directory of Open Access Journals (Sweden)

    Grazia Di Giovanni

    2016-03-01

    Full Text Available Italy and its urban systems are under high seismic and hydrogeological risks. The awareness about the role of human activities in the genesis of disasters is achieved in the scientific debate, as well as the role of urban and regional planning in reducing risks. The paper reviews the state of Italian major cities referred to hydrogeological and seismic risk by: 1 extrapolating data and maps about seismic hazard and landslide risk concerning cities with more than 50.000 inhabitants and metropolitan contexts, and 2 outlining how risk reduction is framed in Italian planning system (at national and regional levels. The analyses of available data and the review of the normative framework highlight the existing gaps in addressing risk reduction: nevertheless a wide knowledge about natural risks afflicting Italian territory and an articulated regulatory framework, the available data about risks are not exhaustive, and risk reduction policies and multidisciplinary pro-active approaches are only partially fostered and applied.

  16. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  17. Life-cycle assessment of semiconductors

    CERN Document Server

    Boyd, Sarah B

    2012-01-01

    Life-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluation of the potential environmental benefits of information technologies (IT). The analysis and results presented in this book will allow a higher degree of confidence and certainty in decisions concerning the use of IT in efforts to reduce climate change and other environmental effects. Coverage includes but is not limited to semiconductor manufacturing trends by product type and geography, unique coverage of life-cycle assessment, with a focus on uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions. The book also: Provides a detailed, complete a...

  18. sensitivity analysis on flexible road pavement life cycle cost model

    African Journals Online (AJOL)

    user

    of sensitivity analysis on a developed flexible pavement life cycle cost model using varying discount rate. The study .... organizations and specific projects needs based. Life-cycle ... developed and completed urban road infrastructure corridor ...

  19. Seismic risk map of Korea

    International Nuclear Information System (INIS)

    Lee, S.H.; Lee, Y.K.; Eum, S.H.; Yang, S.J.; Chun, M.S.

    1983-01-01

    A study on seismic hazard level in Korea has been performed and the main results of the study are summarized as follows: 1. Historians suggest that the quality of historical earthquake data may be accurate in some degree and the data should be used in seismic risk analysis. 2. The historical damage events are conformed in historical literatures and their intensities are re-evaluated by joint researchers. The maximum MM intensity of them is VIII evaluated for 17 events. 3. The relation of earthquakes to surface fault is not clear. It seems resonable to related them to tectonic provinces. 4. Statistical seismic risk analysis shows that the acceleration expected within 50O year return period is less than 0.25G when only instrumental earthquakes are used and less than 0.10G if all of instrumental and historical earthquakes are used. The acceleration in Western Coast and Kyungsang area is higher than the other regions in Korea. 5. The maximum horizontal acceleration determined by conservative method is 0.26G when historical earthquake data are used and less than 0.20G if only instrumental earthquakes are used. The return period of 0.26G is 240 years in Kyungsang province and longer in other provinces. (Author)

  20. Financail Disaster Risk Mangement Solutions for Life Systems Infrastructure in Low and Middle Income Countries

    Science.gov (United States)

    Skees, J. R.

    2016-12-01

    Growing populations and increased frequency of extreme climate events as a result of anthropogenic climate change will make poor populations more vulnerable in the future. Seismic events (earthquakes and tsunamis) also create extreme hazards for the poor and vulnerable living in cities in low and middle income countries. Vulnerability of life-systems infrastructure (e.g., water treatment facilities, hospitals, protective sea walls, etc.) to extreme climate and seismic events compound problems for the poor and vulnerable. By using risk hazard modelling with engineering design, it is possible to blend improved engineering in concert with financial disaster risk management (including insurance) solutions to improve the resiliency of life-systems infrastructure.

  1. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  2. Component fragility analysis methodology for seismic risk assessment projects. Proven PSA safety document processing and assessment procedures

    International Nuclear Information System (INIS)

    Kolar, Ladislav

    2013-03-01

    The seismic risk task assessment task should be structured as follows: (i) Define all reactor unit building structures, components and equipment involved in the creation of an initiating event (IE) induced by an seismic event or contributing to the reliability of reactor unit response to an IE; (ii) construct and estimate of the fragility curves for the building and component groups sub (i); (iii) determine the HCLPF for each group of buildings, components or equipment; (iv) determine the nuclear source's seismic resistance (SME) as the minimum HCLPF from the group of equipment in the risk-dominant scenarios; (v) define the risk-limiting group of components, equipment and building structures to the SME value; (vi) based on the fragility levels, identify component groups for which a more detailed fragility analysis is needed; and (vii) recommend groups of equipment or building structures that should be taken into account with respect to the seismic risk, i.e. such groups of equipment or building structures as exhibit a low seismic resistance (HCLPF) and, at the same time, are involved to a significant extent in the reactor unit's seismic risk (are present in the dominant risk scenarios). (P.A.)

  3. Achieving Our Environmental Sustainability Goals: The Opportunities and Pitfalls of Applying Life Cycle Thinking

    Science.gov (United States)

    An increasing number of people around the world are beginning to realize that a systems approach, such as life cycle thinking, is necessary to truly achieve environmental sustainability. Without the holistic perspective that life cycle thinking provides, our actions risk leading ...

  4. Waste-to-energy: A review of life cycle assessment and its extension methods.

    Science.gov (United States)

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  5. Seismic risk analysis for the Westinghouse Electric facility, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    This report presents the results of a detailed seismic risk analysis of the Westinghouse Electric plutonium fuel development facility at Cheswick, Pennsylvania. This report focuses on earthquakes. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. For example, allowance was made for both the uncertainty in predicting maximum possible earthquakes in the region and the effect of the dispersion of data about the best fit attenuation relation. The attenuation relationship is derived from two of the most recent, advanced studies relating earthquake intensity reports and acceleration. Results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented as return period accelerations. The best estimate curve indicates that the Westinghouse facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and each of the source regions contributes almost equally to the cumulative risk at the site

  6. Does It Have a Life Cycle?

    Science.gov (United States)

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  7. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Science.gov (United States)

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  8. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  9. Life Cycle Assessment of Soybean-Based Biodiesel in Argentina for Export

    OpenAIRE

    Panichelli, Luis; Dauriat, Arnaud; Gnansounou, Edgard

    2009-01-01

    Background, aim and scope. Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel producti...

  10. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes

    Science.gov (United States)

    Trubienko, Olga; Fleitout, Luce; Garaud, Jean-Didier; Vigny, Christophe

    2013-03-01

    The deformations of the overriding and subducting plates during the seismic cycle associated with large subduction earthquakes are modelled using 2D and 3D finite element techniques. A particular emphasis is put on the interseismic velocities and on the impact of the rheology of the asthenosphere. The distance over which the seismic cycle perturbs significantly the velocities depends upon the ratio of the viscosity in the asthenosphere to the period of the seismic cycle and can reach several thousand km for rheological parameters deduced from the first years of deformation after the Aceh earthquake. For a same early postseismic velocity, a Burger rheology of the asthenosphere implies a smaller duration of the postseismic phase and thus smaller interseismic velocities than a Maxwell rheology. A low viscosity wedge (LVW) modifies very significantly the predicted horizontal and vertical motions in the near and middle fields. In particular, with a LVW, the peak in vertical velocity at the end of the cycle is predicted to be no longer above the deep end of the locked section of the fault but further away, above the continentward limit of the LVW. The lateral viscosity variations linked to the presence at depth of the subducting slab affect substantially the results. The north-south interseismic compression predicted by this preliminary 2D model over more than 1500 km within the Sunda block is in good agreement with the pre-2004 velocities with respect to South-China inferred from GPS observations in Thailand, Malaysia and Indonesia. In Japan, before the Tohoku earthquake, the eastern part of northern Honshu was subsiding while the western part was uplifting. This transition from subsidence to uplift so far away from the trench is well fitted by the predictions from our models involving a LVW. Most of the results obtained here in a 2D geometry are shown to provide a good estimate of the displacements for fault segments of finite lateral extent, with a 3D spherical

  11. ICPP tank farm closure study. Volume III: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    International Nuclear Information System (INIS)

    1998-02-01

    This volume contains information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the six options described in Volume 1, Section 2: Option 1 -- Total removal clean closure; No subsequent use; Option 2 -- Risk-based clean closure; LLW fill; Option 3 -- Risk-based clean closure; CERCLA fill; Option 4 -- Close to RCRA landfill standards; LLW fill; Option 5 -- Close to RCRA landfill standards; CERCLA fill; and Option 6 -- Close to RCRA landfill standards; Clean fill. This volume is divided into two portions. The first portion contains the cost and planning schedule estimates while the second portion contains life-cycle costs and yearly cash flow information for each option

  12. Seismic technology of nuclear fuel cycle facilities: A view of BNFL's approach and methods

    International Nuclear Information System (INIS)

    Morris, I.R.

    2001-01-01

    The approach BNFL employs in the seismic qualification of its nuclear fuel cycle facilities is described in this paper. The overall seismic qualification process from design to installation and commissioning is considered. The approach for new facilities, such as the Sellafield Mixed Oxide Fuel Plant and Windscale Vitrification Plant Line 3 currently under construction, is examined. (author)

  13. Predicting product life cycle using fuzzy neural network

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2014-09-01

    Full Text Available One of the most important tasks of science in different fields is to find the relationships among various phenomena in order to predict future. Production and service organizations are not exceptions and they should predict future to survive. Predicting the life cycle of the organization's products is one of the most important prediction cases in an organization. Predicting the product life cycle provides an opportunity to identify the product position and help to get a better insight about competitors. This paper deals with the predictability of the product life cycle with Adaptive Network-Based Fuzzy Inference System (ANFIS. The Population of this study was Pegah Fars products and the sample was this company's cheese products. In this regard, this paper attempts to model and predict the product life cycle of cheese products in Pegah Fars Company. In this due, a designed questionnaire was distributed among some experts, distributors and retailers and seven independent variables were selected. In this survey, ANFIS sales forecasting technique was employed and MATLAB software was used for data analysis. The results confirmed ANFIS as a good method to predict the product life cycle.

  14. A full life cycle nuclear knowledge management framework based on digital system

    International Nuclear Information System (INIS)

    Wang, Minglu; Zheng, Mingguang; Tian, Lin; Qiu, Zhongming; Li, Xiaoyan

    2017-01-01

    Highlights: • A full life cycle nuclear power plant knowledge management framework is introduced. • This framework benefits the safe design, construction, operation and maintenance. • This framework enhances safety, economy and reliability of nuclear power plant. - Abstract: The nuclear power plant is highly knowledge-intensive facility. With the rapid advent and development of modern information and communication technology, knowledge management in nuclear industry has been provided with new approaches and possibilities. This paper introduces a full cycle nuclear power plant knowledge management framework based on digital system and tries to find solutions to knowledge creation, sharing, transfer, application and further innovation in nuclear industry. This framework utilizes information and digital technology to build top-tier object driven work environment, automatic design and analysis integration platform, digital dynamic performance Verification & Validation (V&V) platform, collaborative manufacture procedure, digital construction platform, online monitoring and configuration management which benefit knowledge management in NPP full life cycle. The suggested framework will strengthen the design basis of the nuclear power plants (NPPs) and will ensure the safety of the NPP design throughout the whole lifetime of the plant.

  15. Seismic Risk Assessment of Italian Seaports Using GIS

    International Nuclear Information System (INIS)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-01-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004)

  16. Seismic Risk Assessment of Italian Seaports Using GIS

    Science.gov (United States)

    Bartolomei, Anna; Corigliano, Mirko; Lai, Carlo G.

    2008-07-01

    Seaports are crucial elements in the export and import of goods and/or on the flow of travellers in the tourism industry of many industrialised nations included Italy. Experience gained from recent earthquakes (e.g. 1989 Loma Prieta in USA, 1995 Hyogoken-Nanbu and 2003 Tokachi-Oki in Japan) have dramatically demonstrated the seismic vulnerability of seaport structures and the severe damage that can be caused by ground shaking. In Italy, the Department of Civil Protection has funded a research project to develop a methodology for the seismic design of new marginal wharves and assessment of existing structures at seaports located in areas of medium or high seismicity. This paper shows part of the results of this research project, currently underway, with particular reference to the seismic risk assessment through an interactive, geographically referenced database (GIS). Standard risk assessment have been carried out for the Gioia Tauro port in Calabria (Italy) using the empirical curves implemented by the National Institute of Building Sciences (NIBS, 2004).

  17. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.; Funiciello, F.; Moroni, M.; van Dinther, Y.; Mai, Paul Martin; Dalguer, L. A.; Faccenna, C.

    2013-01-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  18. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.

    2013-04-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  19. Delineation of seismic source zones based on seismicity parameters ...

    Indian Academy of Sciences (India)

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  20. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  1. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  2. Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Pere Fullana-i-Palmer

    2011-03-01

    Full Text Available Recently increasing attention has been paid to complementing environmental Life Cycle Assessment (LCA with social aspects. The paper discusses the selection of social impacts and indicators from existing frameworks like Social Life Cycle Assessment (SLCA and Social Impact Assessment (SIA. Two ongoing case studies, addressing sustainability assessment within decision support, were considered: (1 Integrated Water Resources Management (IWRM in Indonesia; and (2 Integrated Packaging Waste Management in Spain and Portugal (FENIX. The focus was put on social impacts occurring due to decisions within these systems, such as choice of technologies, practices or suppliers. Thus, decision makers—here understood as intended users of the studies’ results—are not consumers that buy (or do not buy a product, such as in recent SLCA case-studies, but mainly institutions that decide about the design of the water or packaging waste management system. Therefore, in the FENIX project, a list of social impacts identified from literature was sent to the intended users to be ranked according to their priorities. Finally, the paper discusses to what extent the entire life cycle is reflected in SLCA impact categories and indicators, and explains how both life-cycle and on-site-related social impacts were chosen to be assessed. However, not all indicators in the two projects will assess all stages of the life cycle, because of their varying relevance in the different stages, data availability and practical interest of decision makers.

  3. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  4. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    Science.gov (United States)

    The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...

  5. 10 CFR 436.19 - Life cycle costs.

    Science.gov (United States)

    2010-01-01

    ... operation and maintenance costs: (c) Replacement costs less salvage costs of replaced building systems; and... 10 Energy 3 2010-01-01 2010-01-01 false Life cycle costs. 436.19 Section 436.19 Energy DEPARTMENT... Procedures for Life Cycle Cost Analyses § 436.19 Life cycle costs. Life cycle costs are the sum of the...

  6. Methodological Approach for the Sustainability Assessment of Development Cooperation Projects for Built Innovations Based on the SDGs and Life Cycle Thinking

    Directory of Open Access Journals (Sweden)

    Stephanie D. Maier

    2016-10-01

    Full Text Available This paper describes a methodological approach for a sustainability assessment of development cooperation projects. Between the scientific disciplines there is no agreement on the term of “sustainability”. Whereas the definition of sustainability within the context of development cooperation frequently highlights the long-term success of an intervention, the United Nations herald the inclusion of social, economic and environmental aspects. This paper proposes to bridge this gap by providing an analytical framework that uses nine impact category groups based on thematic priorities of sustainable development derived from the Sustainable Development Goals. Additionally, the long-term effectiveness of a project is taken into consideration. These impact category groups comprise the analytical framework, which is investigated by the Life Cycle Assessment and an indicator-based analysis. These data are obtained through empirical social research and the LCA inventory. The underlying concept is based on life cycle thinking. Taking up a multi-cycle model this study establishes two life cycles: first, the project management life cycle; and, second, the life cycle of a project’s innovation. The innovation’s life cycle is identified to have the greatest impact on the target region and the local people and is consequently of primary interest. This methodological approach enables an ex-post sustainability assessment of a built innovation of a development cooperation project and is tested on a case study on Improved Cooking Stoves in Bangladesh.

  7. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?

    Energy Technology Data Exchange (ETDEWEB)

    Groen, E.A., E-mail: Evelyne.Groen@gmail.com [Wageningen University, P.O. Box 338, Wageningen 6700 AH (Netherlands); Heijungs, R. [Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV (Netherlands); Leiden University, Einsteinweg 2, Leiden 2333 CC (Netherlands)

    2017-01-15

    Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlations between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.

  8. Human health tradeoffs in wellhead drinking water treatment: Comparing exposure reduction to embedded life cycle risks.

    Science.gov (United States)

    Gifford, Mac; Chester, Mikhail; Hristovski, Kiril; Westerhoff, Paul

    2018-01-01

    Treatment of drinking water decreases human health risks by reducing pollutants, but the required materials, chemicals, and energy emit pollutants and increase health risks. We explored human carcinogenic and non-carcinogenic disease tradeoffs of water treatment by comparing pollutant dose-response curves against life cycle burden using USEtox methodology. An illustrative wellhead sorbent groundwater treatment system removing hexavalent chromium or pentavalent arsenic serving 3200 people was studied. Reducing pollutant concentrations in drinking water from 20 μg L -1 to 10 μg L -1 avoided 37 potential cancer cases and 64 potential non-cancer disease cases. Human carcinogenicity embedded in treatment was 0.2-5.3 cases, and non-carcinogenic toxicity was 0.2-14.3 cases, depending on technology and degree of treatment. Embedded toxicity impacts from treating Cr(VI) using strong-base anion exchange were 90% of the toxicity impacts for treatment options requiring pH control. In scenarios where benefits exceeded burdens, tradeoffs still existed. Benefits are experienced by a local population but burdens are born externally where the materials and energy are produced, thus exporting the health risks. Even when burdens clearly exceeded benefits, cost considerations may still drive selecting a detrimental treatment level or technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Methodologies for Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Le Bocq, Agathe; Nazakina, Liudmila

    2008-01-01

    Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several similarit......Goal, Scope and Background. In recent years several different approaches towards Social Life Cycle Assessment (SLCA) have been developed. The purpose of this review is to compare these approaches in order to highlight methodological differences and general shortcomings. SLCA has several...... similarities with other social assessment tools, but in order to limit the review, only claims to address social impacts from an LCA-like framework is considered. Main Features. The review is to a large extent based on conference proceedings and reports of which some are not easily accessible, since very...... stage in the product life cycle. Another very important difference among the proposals is their position towards the use of generic data. Several of the proposals argue that social impacts are connected to the conduct of the company leading to the conclusion that each individual company in the product...

  10. Taking into account seismic risk on glove boxes

    Energy Technology Data Exchange (ETDEWEB)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  11. Taking into account seismic risk on glove boxes

    International Nuclear Information System (INIS)

    Ladurelle, Marie; Philipponneau, Yannick

    2005-01-01

    Built in 1981, the LEFCA is a Basic Nuclear Facility (BNF) in which experimental plutonium based fuels are produced and characterised in about a hundred Gloves Boxes (GB). Many safety rules are required, especially those concerning seismic risk. In order to prepare the December 2003 safety reconsideration, the following methodology has been proposed so that GB might resist the Safe Shutdown Earthquake. 1) The determination of a safety target: the GB static containment. 2) The realisation of an ''in situ'' assessment: the definition of several classes of GB, vibrating table tests and the modelling of the GB behaviour with seismic solicitations, 3) A strength diagnosis for equipment: filters, connecting tunnels and pipes holding. 4) A proposal for further strengthening modifications if necessary : fixing the frame, interlocking GB and the frame, taking internal or external GB missiles into account. This process has contributed to a reduction in the radiological potential seismic impact for the neighbouring populations. We shall present the implemented methodology and the strengthening works that have been approved by Safety Authorities. Reinforcement modifications will begin in 2004. (Author)

  12. Seismic risk evaluation for high voltage air insulated substations

    International Nuclear Information System (INIS)

    Camensig, Carlo; Bresesti, Luca; Clementel, Stefano; Salvetti, Maurizio

    1997-01-01

    This paper describes the results of the analytical and experimental activities performed by ISMES for the evaluation of the structural reliability of electrical substations with respect to seismic events. In the following, the reference station is described along with the methods used to define the site seismic input, the analytical and experimental evaluation of the components' fragility curves and the whole station seismic risk evaluation

  13. Introducing Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark AJ

    2015-01-01

    This chapter serves as an introduction to the presentation of the many aspects of life cycle impact assessment (LCIA) in this volume of the book series ‘LCA Compendium’. It starts with a brief historical overview of the development of life cycle impact assessment driven by numerous national LCIA...... methodology projects and presents the international scientific discussions and methodological consensus attempts in consecutive working groups under the auspices of the Society of Environmental Toxicology and Chemistry (SETAC) as well as the UNEP/ SETAC Life Cycle Initiative, and the (almost) parallel...

  14. Small business life cycle: statics and dynamics (S

    Directory of Open Access Journals (Sweden)

    Matejun Marek

    2017-12-01

    Full Text Available The aim of the paper is the presentation of theoretical foundations and the structure of original, 8-stage statics and dynamics model in the small business life cycle. Based on theoretical considerations, two hypotheses concerning the impact of dynamic and static nature of the life-cycle stages on selected determinants and effects of SMEs’ development were formulated. The hypotheses were verified based on the results of the survey conducted on a sample of 1,741 SMEs from 22 countries of the European Union. The results indicate that companies in the dynamic life-cycle stages are run by more enterprising owners, operate in more promising markets with a higher potential and make greater use of market niches thus limiting the level of competition. At the same time, such companies are characterised by higher levels of flexibility and involvement in innovative activities, which translates into obtaining a significantly higher level of business performance, in the area of quantitative as well as qualitative results.

  15. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    International Nuclear Information System (INIS)

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures

  16. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    Energy Technology Data Exchange (ETDEWEB)

    George, L.L.; O' Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  17. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  18. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  19. Implementing Life Cycle Assessment in systems development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Hauschild, Michael Zwicky; McAloone, Timothy Charles

    2003-01-01

    and the rapid changes in markets for many products. The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems...... for the designer in evaluating the environmental benignity of the product from the outset and to provide the designer with a framework for decision support based on the performance evaluation at different stages of the design process. The overall aim of this paper is to produce an in-depth understanding...... of possibilities which can be introduced in the design stage compared to the other life cycle stages of the product system. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience and further provides eco-design life cycle assessment strategies...

  20. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    Science.gov (United States)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  1. Software Safety Life cycle and Method of POSAFE-Q System

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Kwon, Kee-Choon

    2006-01-01

    This paper describes the relationship between the overall safety life cycle and the software safety life cycle during the development of the software based safety systems of Nuclear Power Plants. This includes the design and evaluation activities of components as well as the system. The paper also compares the safety life cycle and planning activities defined in IEC 61508 with those in IEC 60880, IEEE 7-4.3.2, and IEEE 1228. Using the KNICS project as an example, software safety life cycle and safety analysis methods applied to the POSAFE-Q are demonstrated. KNICS software safety life cycle is described by comparing to the software development, testing, and safety analysis process with international standards. The safety assessment of the software for POSAFE-Q is a joint Korean German project. The assessment methods applied in the project and the experiences gained from this project are presented

  2. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    Science.gov (United States)

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  3. Are slide-hold-slide tests a good analogue for the seismic cycle?

    Science.gov (United States)

    van den Ende, Martijn; Niemeijer, André; Marketos, George; Spiers, Christopher

    2017-04-01

    Earthquakes are among the most disruptive of natural hazards known to man. Owing to their destructive potential and poor predictability, earthquakes and unstable frictional sliding in general receive considerable attention, both in experimental and in modelling studies. For reliable seismic hazard assessments, accurate predictions of the failure strength of seismogenic faults is paramount. To study the time-dependent restrengthening (or "healing") of faults in a laboratory setting, the slide-hold-slide (SHS) method is commonly employed as an analogue for the seismic cycle. Using this method, it is assumed that the rate of restrengthening as observed in SHS tests is similar to the rate of restrengthening of natural faults during the interseismic phase. However, the dynamic and kinematic boundary conditions of SHS tests are inherently different to those of a fault that is being tectonically loaded. As such, it can be questioned whether SHS tests (in which the interseismic period is characterised by stress relaxation) yield the same rate of restrengthening as would be expected from laboratory stick-slip or natural seismic cycles (characterised by a more complex stress history). This question could in principle be addressed experimentally by comparing the results from SHS tests with the stress drop and recurrence time of regular stick-slips. However, due to technical limitations, direct comparison between SHS and stick-slips is non-trivial, and uncertainties in extrapolating the laboratory results remain. To assess the validity of SHS tests as an analogue for the seismic cycle, we simulate laboratory SHS tests as well as stick-slips using the Discrete Element Method (DEM). DEM is a particle-based numerical technique that is suitable for modelling granular media, such as fault gouges. Its constitutive relations are linked to grain-scale micro-processes, and, in the work presented here, we incorporate pressure solution creep and frictional sliding. The simultaneous

  4. Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils.

    NARCIS (Netherlands)

    Ernst, W.H.O.; Nelissen, H.J.M.

    2000-01-01

    Short-term exposure of plants to heavy metals is often used for risk assessment of metal-enriched soils (OECD guideline 208) without considering the reliability of the assessment for long-term exposure, i.e. for the completion of a plant's life-cycle. In the present study with 15 orogenic soils

  5. LIFE CYCLE OF A WINE BRAND

    Directory of Open Access Journals (Sweden)

    Viktoriia Paziuk

    2015-11-01

    Full Text Available The aim of the work is to determine the life cycle of the wine brand, the development of ways to improve its effectiveness at different stages of the life cycle. Being scientifically informed of the existence of the life cycle of the brand allows modern enterprises to enhance their competitive position in the market and take advantage of the acquired differences in order to attract more attention from consumers. Methods. The study is based on scientific methods of research of economic phenomena: the dialectic, abstract logical (in the exercise of theoretical generalizations to the definition of the concept of «life cycle of the perpetrator of the brand, a scientific abstraction, comparison and ordering (the study of factors influencing the life cycle of the perpetrator of the brand and the factors influencing a choice of products for consumers, statistical and problem-chronological (the study of the requirements of the brand in a changing consumer preferences, logical generalization (in determining the social and ethical functions guilty brand. Results. The stages of the life cycle of the wine brand, which take into account its characteristics and form its social and ethical functions. Describing the requirements for the wine brand in the changing tastes and preferences of consumers. Specification of wine promotion of the brand in an increasingly competitive environment. Preconditions have been set for a new wine brand. The practical significance. The brand always increases the value of the product and its entry into new markets, as well as reduces the time to attract consumers. Possibility to ensure the growth of the brand in a declining market; building market share in a highly competitive environment; marketing innovative products in order to create a new sales strategy. After all, to gain and maintain the popularity of a certain product, one must personalize it with giving associations and a way to provide it with distinctive features. Only

  6. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  7. Prediction of residual life of low-cycle fatigue in austenitic stainless steel based on indentation test

    International Nuclear Information System (INIS)

    Yonezu, Akio; Touda, Yuya; Kim, HakGui; Yoneda, Keishi; Sakihara, Masayuki; Minoshima; Kohji

    2011-01-01

    In this study, a method to predict residual life of low-cycle fatigue in austenitic stainless steel (SUS316NG) was proposed based on indentation test. Low-cycle fatigue tests for SUS316NG were first conducted based on uniaxial tensile-compressive loading under the control of true strain range. Applied strain ranges were varied from about 3 to 12%. Their hysteresis loops of stress and strain were monitored during the fatigue tests. Plastic deformation range in hysteresis loop at each cycle could be roughly expressed by bi-linear hardening rule, whose plastic properties involve yield stress and work-hardening coefficient. The cyclic plastic properties were found to be dependent on the number of cycles and applied strain range, due to work-hardening. We experimentally investigated the empirical relationship between the plastic properties and number of cycles for each applied strain range. It is found that the relationship quantitatively predicts the applied strain range and number of cycles, when the plastic properties, or yield stress and work-hardening coefficient were known. Indentation tests were applied to the samples subjected to low cycle fatigue test, in order to quantitatively determine the plastic properties. The estimated properties were assigned to the proposed relationship, yielding the applied strain range and the cycle numbers. The proposed method was applied to the several stainless steel samples subjected to low cycle fatigue tests, suggesting that their residual lives could be reasonably predicted. Our method is thus useful for predicting the residual life of low-cycle fatigue in austenitic stainless steel. (author)

  8. Stochastic optimized life cycle models for risk mitigation in power system applications

    International Nuclear Information System (INIS)

    Sageder, A.

    1998-01-01

    This ork shows the relevance of stochastic optimization in complex power system applications. It was proven that usual deterministic mean value models not only predict inaccurate results but are also most often on the risky side. The change in the market effects all kind of evaluation processes (e.g. fuel type and technology but especially financial engineering evaluations) in the endeavor of a strict risk mitigation comparison. But not only IPPs also traditional Utilities dash for risk/return optimized investment opportunities. In this study I developed a 2-phase model which can support a decision-maker in finding optimal solutions on investment and profitability. It has to be stated, that in this study no objective function will be optimized in an algorithmically way. On the one hand focus is laid on finding optimal solutions out of different choices (highest return at lowest possible risk); on the other hand the endeavor was to provide a decision makers with a better assessment of the likelihood of outcomes on investment considerations. The first (deterministic) phase computes in a Total Cost of Ownership (TCO) approach (Life cycle Calculation; DCF method). Most of the causal relations (day of operation, escalation of personal expanses, inflation, depreciation period, etc.) are defined within this phase. The second (stochastic) phase is a total new way in optimizing risk/return relations. With the some decision theory mathematics an expected value of stochastic solutions can be calculated. Furthermore probability function have to be defined out of historical data. The model not only supports profitability analysis (including regress and sensitivity analysis) but also supports a decision-maker in a decision process. Emphasis was laid on risk-return analysis, which can give the decision-maker first hand informations of the type of risk return problem (risk concave, averse or linear). Five important parameters were chosen which have the characteristics of typical

  9. Estimating pesticide emissions for life cycle assessment of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Røpke, Inge

    2004-01-01

    As the first country in Europe Denmark almost 2 years ago established an official center for Life Cycle Assessments and life cycle approaches as an element of the national IPP (Integrated Product Policy). The Danish EPA lends financial support to this important initiative, the aim of which is to: 1....... promote the use of Life Cycle Assessment and other product-oriented environmental tools in companies, 2. support companies and other in using environmental assessment of products and services, 3. ensure that the effort in the LCA area is based on a solid and scientific basis, and 4. maintain the well...... evaluation finished in September 2004. Important learnings for all who are engaged in dissemination of life cycle thinking in industry will be presented....

  10. Improved seismic risk estimation for Bucharest, based on multiple hazard scenarios, analytical methods and new techniques

    Science.gov (United States)

    Toma-Danila, Dragos; Florinela Manea, Elena; Ortanza Cioflan, Carmen

    2014-05-01

    Bucharest, capital of Romania (with 1678000 inhabitants in 2011), is one of the most exposed big cities in Europe to seismic damage. The major earthquakes affecting the city have their origin in the Vrancea region. The Vrancea intermediate-depth source generates, statistically, 2-3 shocks with moment magnitude >7.0 per century. Although the focal distance is greater than 170 km, the historical records (from the 1838, 1894, 1908, 1940 and 1977 events) reveal severe effects in the Bucharest area, e.g. intensities IX (MSK) for the case of 1940 event. During the 1977 earthquake, 1420 people were killed and 33 large buildings collapsed. The nowadays building stock is vulnerable both due to construction (material, age) and soil conditions (high amplification, generated within the weak consolidated Quaternary deposits, their thickness is varying 250-500m throughout the city). A number of 373 old buildings, out of 2563, evaluated by experts are more likely to experience severe damage/collapse in the next major earthquake. The total number of residential buildings, in 2011, was 113900. In order to guide the mitigation measures, different studies tried to estimate the seismic risk of Bucharest, in terms of buildings, population or economic damage probability. Unfortunately, most of them were based on incomplete sets of data, whether regarding the hazard or the building stock in detail. However, during the DACEA Project, the National Institute for Earth Physics, together with the Technical University of Civil Engineering Bucharest and NORSAR Institute managed to compile a database for buildings in southern Romania (according to the 1999 census), with 48 associated capacity and fragility curves. Until now, the developed real-time estimation system was not implemented for Bucharest. This paper presents more than an adaptation of this system to Bucharest; first, we analyze the previous seismic risk studies, from a SWOT perspective. This reveals that most of the studies don't use

  11. A methodology for the quantitative risk assessment of major accidents triggered by seismic events

    International Nuclear Information System (INIS)

    Antonioni, Giacomo; Spadoni, Gigliola; Cozzani, Valerio

    2007-01-01

    A procedure for the quantitative risk assessment of accidents triggered by seismic events in industrial facilities was developed. The starting point of the procedure was the use of available historical data to assess the expected frequencies and the severity of seismic events. Available equipment-dependant failure probability models (vulnerability or fragility curves) were used to assess the damage probability of equipment items due to a seismic event. An analytic procedure was subsequently developed to identify, evaluate the credibility and finally assess the expected consequences of all the possible scenarios that may follow the seismic events. The procedure was implemented in a GIS-based software tool in order to manage the high number of event sequences that are likely to be generated in large industrial facilities. The developed methodology requires a limited amount of additional data with respect to those used in a conventional QRA, and yields with a limited effort a preliminary quantitative assessment of the contribution of the scenarios triggered by earthquakes to the individual and societal risk indexes. The application of the methodology to several case-studies evidenced that the scenarios initiated by seismic events may have a relevant influence on industrial risk, both raising the overall expected frequency of single scenarios and causing specific severe scenarios simultaneously involving several plant units

  12. A microseismic workflow for managing induced seismicity risk as CO2 storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Matzel, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morency, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pyle, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Templeton, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-27

    It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to large, damaging events—by altering state-of-stress conditions in the subsurface. While induced seismicity has not been a major operational issue for carbon storage projects to date, a seismicity hazard exists and must be carefully addressed. Two essential components of effective seismic risk management are (1) sensitive microseismic monitoring and (2) robust data interpretation tools. This report describes a novel workflow, based on advanced processing algorithms applied to microseismic data, to help improve management of seismic risk. This workflow has three main goals: (1) to improve the resolution and reliability of passive seismic monitoring, (2) to extract additional, valuable information from continuous waveform data that is often ignored in standard processing, and (3) to minimize the turn-around time between data collection, interpretation, and decision-making. These three objectives can allow for a better-informed and rapid response to changing subsurface conditions.

  13. Benefit-Risk Assessment, Communication, and Evaluation (BRACE) throughout the life cycle of therapeutic products: overall perspective and role of the pharmacoepidemiologist.

    Science.gov (United States)

    Radawski, Christine; Morrato, Elaine; Hornbuckle, Kenneth; Bahri, Priya; Smith, Meredith; Juhaeri, Juhaeri; Mol, Peter; Levitan, Bennett; Huang, Han-Yao; Coplan, Paul; Li, Hu

    2015-12-01

    Optimizing a therapeutic product's benefit-risk profile is an on-going process throughout the product's life cycle. Different, yet related, benefit-risk assessment strategies and frameworks are being developed by various regulatory agencies, industry groups, and stakeholders. This paper summarizes current best practices and discusses the role of the pharmacoepidemiologist in these activities, taking a life-cycle approach to integrated Benefit-Risk Assessment, Communication, and Evaluation (BRACE). A review of the medical and regulatory literature was performed for the following steps involved in therapeutic benefit-risk optimization: benefit-risk evidence generation; data integration and analysis; decision making; regulatory and policy decision making; benefit-risk communication and risk minimization; and evaluation. Feedback from International Society for Pharmacoepidemiology members was solicited on the role of the pharmacoepidemiologist. The case example of natalizumab is provided to illustrate the cyclic nature of the benefit-risk optimization process. No single, globally adopted benefit-risk assessment process exists. The BRACE heuristic offers a way to clarify research needs and to promote best practices in a cyclic and integrated manner and highlight the critical importance of cross-disciplinary input. Its approach focuses on the integration of BRACE activities for risk minimization and optimization of the benefit-risk profile. The activities defined in the BRACE heuristic contribute to the optimization of the benefit-risk profile of therapeutic products in the clinical world at both the patient and population health level. With interdisciplinary collaboration, pharmacoepidemiologists are well suited for bringing in methodology expertise, relevant research, and public health perspectives into the BRACE process. Copyright © 2015 John Wiley & Sons, Ltd.

  14. The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain)

    Science.gov (United States)

    Rivas-Medina, A.; Gaspar-Escribano, J. M.; Benito, B.; Bernabé, M. A.

    2013-11-01

    This work describes the structure and characteristics of the geographic information system (GIS) developed for the urban seismic risk study of the city of Almería (southern Spain), identifying the stages in which the use of this tool proved to be very beneficial for adopting informed decisions throughout the execution of the work. After the completion of the regional emergency plans for seismic risk in Spain and its subsequent approval by the National Civil Defence Commission, the municipalities that need to develop specific local seismic risk plans have been identified. Hence, the next action is to develop urban seismic risk analyses at a proper scale (Urban Seismic Risk Evaluation - Risk-UR). For this evaluation, different factors influencing seismic risk such as seismic hazard, geotechnical soil characteristics, vulnerability of structures of the region, reparation costs of damaged buildings and exposed population are combined. All these variables are gathered and analysed within a GIS and subsequently used for seismic risk estimation. The GIS constitutes a highly useful working tool because it facilitates data interoperability, making the great volume of information required and the numerous processes that take part in the calculations easier to handle, speeding up the analysis and the interpretation and presentation of the results of the different working phases. The result of this study is based on a great set of variables that provide a comprehensive view of the urban seismic risk, such as the damage distribution of buildings and dwellings of different typologies, the mean damage and the number of uninhabitable buildings for the expected seismic motion, the number of dead and injured at different times of the day, the cost of reconstruction and repair of buildings, among others. These results are intended for interpretation and decision making in emergency management by unspecialised users (Civil Defence technicians and managers).

  15. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    International Nuclear Information System (INIS)

    Grieger, Khara D.; Laurent, Alexis; Miseljic, Mirko; Christensen, Frans; Baun, Anders; Olsen, Stig I.

    2012-01-01

    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life-cycle assessment (LCA) and risk assessment (RA), scientific research, and specific guidance on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key “lessons learned” from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches for using these methods together for NM: “LC-based RA” (traditional RA applied in a life-cycle perspective) and “RA-complemented LCA” (conventional LCA supplemented by RA in specific life-cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods for NM-risk research efforts to date as the former is rather a continuation of normal RA according to standard assessment procedures (e.g., REACH). Both these approaches along with recommendations for using LCA and RA together for NM are similar to those made previously for chemicals, and thus, there does not appear to be much progress made specific for NM. We have identified one issue in particular that may be specific for NM when applying LCA and RA at this time: the need to establish proper dose metrics within both methods.

  16. Towards Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Marzia Traverso

    2010-10-01

    Full Text Available Sustainability is nowadays accepted by all stakeholders as a guiding principle for both public policy making and corporate strategies. However, the biggest challenge for most organizations remains in the real and substantial implementation of the sustainability concept. The core of the implementation challenge is the question, how sustainability performance can be measured, especially for products and processes. This paper explores the current status of Life Cycle Sustainability Assessment (LCSA for products and processes. For the environmental dimension well established tools like Life Cycle Assessment are available. For the economic and social dimension, there is still need for consistent and robust indicators and methods. In addition to measuring the individual sustainability dimensions, another challenge is a comprehensive, yet understandable presentation of the results. The “Life Cycle Sustainability Dashboard” and the “Life Cycle Sustainability Triangle” are presented as examples for communication tools for both experts and non expert stakeholders.

  17. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.

    Science.gov (United States)

    Kendall, Alissa; Price, Lindsay

    2012-03-06

    Beginning with model year 2012, light-duty vehicles sold in the U.S. are subject to new rules that regulate tailpipe greenhouse gas (GHG) emissions based on grams of CO(2)-equivalent per mile (gCO(2)e/mi). However, improvements in vehicle technology, lower-carbon fuels, and improvements in GHG accounting practices which account for distortions related to emissions timing all contribute to shifting a greater portion of life cycle emissions away from the vehicle use phase and toward the vehicle production phase. This article proposes methods for calculating time-corrected life cycle emissions intensity on a gCO(2)e/mi basis and explores whether regulating only tailpipe CO(2) could lead to an undesirable regulatory outcome, where technologies and vehicle architectures with higher life cycle GHGs are favored over technologies with lower life cycle emissions but with higher tailpipe GHG emissions. Two life cycle GHG assessments for future vehicles are presented in addition to time correction factors for production and end-of-life GHG emissions. Results demonstrate that, based on the vehicle designs considered here, there is a potential for favoring vehicles with higher life cycle emissions if only tailpipe emissions are regulated; moreover, the application of time correction factors amplifies the importance of production emissions and the potential for a perverse outcome.

  18. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  19. A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project

    Directory of Open Access Journals (Sweden)

    Xun Xu

    2014-08-01

    Full Text Available BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM-based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organize the life-cycle information well, the information components and information flow during the project life-cycle are defined. Then, the application of BIM in life-cycle information management is analysed. This framework will provide a unified platform for information management and ensure data integrity.

  20. Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania

    International Nuclear Information System (INIS)

    1977-01-01

    The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region around the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations

  1. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  2. A GIS approach to seismic risk assessment with an application to mining-related seismicity in Johannesburg, South Africa

    Science.gov (United States)

    Liebenberg, Keagen; Smit, Ansie; Coetzee, Serena; Kijko, Andrzej

    2017-08-01

    The majority of seismic activity in South Africa is related to extensive mining operations, usually in close proximity to densely populated areas where a relatively weak seismic event could cause damage. Despite a significant decrease in mining operations in the Witwatersrand area, the number of seismic events appears to be increasing and is attributed to the acid mine drainage problem. The increased seismicity is raising concern amongst disaster management centres and in the insurance industry. A better understanding is required of the vulnerability and the size of the potential loss of people and infrastructure in densely populated Johannesburg and its surrounding areas. Results of a deterministic seismic risk, vulnerability, and loss assessment are presented by making use of a geographic information system (GIS). The results illustrate the benefits of using GIS and contribute to a better understanding of the risk, which can assist in improving disaster preparedness.

  3. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  4. Life cycle assessment : Past, present, and future

    NARCIS (Netherlands)

    Guinée, Jeroen B.; Heijungs, Reinout; Huppes, Gjalt; Zamagni, Alessandra; Masoni, Paolo; Buonamici, Roberto; Ekvall, Tomas; Rydberg, Tomas

    2011-01-01

    Environmental life cycle assessment (LCA) has developed fast over the last three decades. Whereas LCA developed from merely energy analysis to a comprehensive environmental burden analysis in the 1970s, full-fledged life cycle impact assessment and life cycle costing models were introduced in the

  5. Ecology and Life Cycle Patterns of Echinococcus Species.

    Science.gov (United States)

    Romig, T; Deplazes, P; Jenkins, D; Giraudoux, P; Massolo, A; Craig, P S; Wassermann, M; Takahashi, K; de la Rue, M

    2017-01-01

    The genus Echinococcus is composed of eight generally recognized species and one genotypic cluster (Echinococcus canadensis cluster) that may in future be resolved into one to three species. For each species, we review existing information on transmission routes and life cycles in different geographical contexts and - where available - include basic biological information of parasites and hosts (e.g., susceptibility of host species). While some Echinococcus spp. are transmitted in life cycles that involve predominantly domestic animals (e.g., dog - livestock cycles), others are wildlife parasites that do or do not interact with domestic transmission. In many cases, life cycle patterns of the same parasite species differ according to geography. Simple life cycles contrast with transmission patterns that are highly complex, involving multihost systems that may include both domestic and wild mammals. Wildlife transmission may be primary or secondary, i.e., resulting from spillovers from domestic animals. For most of the species and regions, existing information does not yet permit a conclusive description of transmission systems. Such data, however, would be highly relevant, e.g., for anticipation of geographical changes of the presence and frequency of these parasites in a warming world, or for initiating evidence-based control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A probabilistic seismic risk assessment procedure for nuclear power plants: (I) Methodology

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2011-01-01

    A new procedure for probabilistic seismic risk assessment of nuclear power plants (NPPs) is proposed. This procedure modifies the current procedures using tools developed recently for performance-based earthquake engineering of buildings. The proposed procedure uses (a) response-based fragility curves to represent the capacity of structural and nonstructural components of NPPs, (b) nonlinear response-history analysis to characterize the demands on those components, and (c) Monte Carlo simulations to determine the damage state of the components. The use of response-rather than ground-motion-based fragility curves enables the curves to be independent of seismic hazard and closely related to component capacity. The use of Monte Carlo procedure enables the correlation in the responses of components to be directly included in the risk assessment. An example of the methodology is presented in a companion paper to demonstrate its use and provide the technical basis for aspects of the methodology. ?? 2011 Published by Elsevier B.V.

  7. Risk-based management of remaining life of power plant components

    International Nuclear Information System (INIS)

    Roos, E.; Jovanovic, A.S.; Maile, K.; Auerkari, P.

    1999-01-01

    The paper describes application of different modules of the MPA-System ALIAS in risk-based management of remaining life of power plant components. The system allows comprehensive coverage of all aspects of the remaining life management, including also the risk analysis and risk management. In addition, thanks to the modular character of the system it is also possible to implement new methods: In the case described here, a new (probabilistic) method for determination of the next inspection time for the components exposed to creep loading has been developed and implemented in the system. Practical application of the method has shown (a) that the mean values obtained by the method fall into the range of results obtained by other methods (based on expert knowledge), and (b) that it is possible to quantify the probability of aberration from the mean values. This in turn allows quantifying the additional risks linked to e.g. prolonging of inspection intervals. (orig.) [de

  8. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    OpenAIRE

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle Management by means of a four year Action Research project implementing Asset Life Cycle Plans. Five main capabilities emerged: 1. strategic information use; 2. alignment of operations and strategy;...

  9. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  10. Risk assessment and early warning systems for industrial facilities in seismic zones

    International Nuclear Information System (INIS)

    Salzano, Ernesto; Garcia Agreda, Anita; Di Carluccio, Antonio; Fabbrocino, Giovanni

    2009-01-01

    Industrial equipments and systems can suffer structural damage when hit by earthquakes, so that accidental scenarios as fire, explosion and dispersion of toxic substances can take place. As a result, overall damage to people, environment and properties increases. The present paper deals with seismic risk analysis of industrial facilities where atmospheric storage tanks (anchored or unanchored to ground), horizontal pressurised tanks, reactors and pumps are installed. Simplified procedures and methodologies based on historical database and literature data on natural-technological (Na-Tech) accidents for seismic risk assessment are discussed. Equipment-specific fragility curves have been thus derived depending on a single earthquake measure, peak ground acceleration (PGA). Fragility parameters have been then transformed to linear probit coefficients in order to obtain reliable threshold values for earthquake intensity measure, both for structural damage and loss of containment. These threshold values are of great interest when development of active and passive mitigation actions and systems, safety management, and the implementation of early warning system are concerned. The approach is general and can be implemented in any available code or procedure for risk assessment. Some results of seismic analysis of atmospheric storage tanks are also presented for validation.

  11. Life cycle human health impacts of 875 pesticides

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Oliver

    2016-01-01

    present a consistent framework for characterizing human toxicological impacts associated with pesticides applied to agricultural crops in the frame of life cycle impact assessment based on state-of-the-art data and methods. Methods We combine a dynamic multicrop plant uptake model designed for evaluating......-crop combinations of 10 orders of magnitude. Conclusions Our framework is operational for use in current life cycle impact assessment models, is made available for USEtox, and closes an important gap in the assessment of human exposure to pesticides. For ready use in life cycle assessment studies, we present...... pesticide-crop combination-specific characterization factors normalized to pesticide mass applied and provide default data for application times and loss due to post-harvest food processing. When using our data, we emphasize the need to consult current pesticide regulation, since each pesticide...

  12. A life cycle assessment of destruction of ammunition

    International Nuclear Information System (INIS)

    Alverbro, K.; Bjoerklund, A.; Finnveden, G.; Hochschorner, E.; Haegvall, J.

    2009-01-01

    The Swedish Armed Forces have large stocks of ammunition that were produced at a time when decommissioning was not considered. This ammunition will eventually become obsolete and must be destroyed, preferably with minimal impact on the environment and in a safe way for personnel. The aim of this paper is to make a comparison of the environmental impacts in a life cycle perspective of three different methods of decommissioning/destruction of ammunition, and to identify the environmental advantages and disadvantages of each of these destruction methods: open detonation; static kiln incineration with air pollution control combined with metal recycling, and a combination of incineration with air pollution control, open burning, recovery of some energetic material and metal recycling. Data used are for the specific processes and from established LCA databases. Recycling the materials in the ammunition and minimising the spread of airborne pollutants during incineration were found to be the most important factors affecting the life cycle environmental performance of the compared destruction methods. Open detonation with or without metal recycling proved to be the overall worst alternative from a life cycle perspective. The results for the static kiln and combination treatment indicate that the kind of ammunition and location of the destruction plant might determine the choice of method, since the environmental impacts from these methods are of little difference in the case of this specific grenade. Different methods for destruction of ammunition have previously been discussed from a risk and safety perspective. This is however to our knowledge the first study looking specifically on environmentally aspect in a life cycle perspective.

  13. Applying life cycle management of colombian cocoa production

    Directory of Open Access Journals (Sweden)

    Oscar Orlando Ortiz-R

    2014-03-01

    Full Text Available The present research aims to evaluate the usefulness of the application of Life Cycle Management in the agricultural sector focusing on the environmental and socio-economic aspects of decision making in the Colombian cocoa production. Such appraisal is based on the application of two methodological tools: Life Cycle Assessment, which considers environmental impacts throughout the life cycle of the cocoa production system, and Taguchi Loss Function, which measures the economic impact of a process' deviation from production targets. Results show that appropriate improvements in farming practices and supply consumption can enhance decision-making in the agricultural cocoa sector towards sustainability. In terms of agri-business purposes, such qualitative shift allows not only meeting consumer demands for environmentally friendly products, but also increasing the productivity and competitiveness of cocoa production, all of which has helped Life Cycle Management gain global acceptance. Since farmers have an important role in improving social and economic indicators at the national level, more attention should be paid to the upgrading of their cropping practices. Finally, one fundamental aspect of national cocoa production is the institutional and governmental support available for farmers in face of socio-economic or technological needs.

  14. Imperative of preventive measures addressing the life-cycle.

    Science.gov (United States)

    Yajnik, Chittaranjan S

    2009-01-01

    The epidemiological characteristics of chronic non-communicable diseases (NCD) are fast changing. The prevalence has risen to unprecedented levels, and the young and the underprivileged are increasingly affected. The classic view of the etiology of NCD consists of a genetic susceptibility which is precipitated by aging and modern lifestyle. In a virtual absence of any methods to tackle genetic susceptibility, the preventive approach has so far been focused on the control of lifestyle factors in those at high risk (old, and those with positive family history and elevated risk factors). Such an approach might help high risk individuals, but is unlikely to curtail the burgeoning epidemic of obesity and diabetes. Recent research has suggested that susceptibility to NCD originates in early life through non-genetic mechanisms (fetal programming). Tackling these may offer an exciting opportunity to control the NCD epidemic by influencing the susceptibility in a more durable manner than only controlling the lifestyle factors in adult life. The imperative is to address the life cycle rather than concentrate on the end stages. Copyright (c) 2009 S. Karger AG, Basel.

  15. Life cycle assessment of village electrification based on straight jatropha oil in Chhattisgarh, India

    Energy Technology Data Exchange (ETDEWEB)

    Gmuender, Simon Michael; Zah, Rainer; Widmer, Rolf [Technology and Society Lab, Swiss Federal Laboratories for Materials Testing and Research (EMPA), Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Bhatacharjee, Somnath [Winrock India International, New Delhi (India); Classen, Mischa [First Climate AG, Zuerich (Switzerland); Mukherjee, Prodyut [Sir Dorabji Tata Trust and Allied Trusts, New Delhi (India)

    2010-03-15

    A decentralized power generation plant fuelled by straight jatropha oil was implemented in 2006 in Ranidhera, Chhattisgarh, India. The goal of this study was to assess the environmental sustainability of that electrification project in order to provide a scientific basis for policy decisions on electrifying remote villages. A full Life Cycle Assessment (LCA) was conducted on jatropha-based rural electrification and then compared with other electrification approaches such as photovoltaic (PV), grid connection and a diesel-fuelled power generator. In summary, the jatropha-based electrification in Ranidhera reduces greenhouse gas emissions over the full life cycle by a factor of 7 compared to a diesel generator or grid connection. The environmental performance is only slightly improved, mainly due to the high air pollution from pre-heating the jatropha seeds. With additional measures oil extraction and overall efficiency could be further improved. However, environmental benefits can only be achieved if jatropha is cultivated on marginal land and land use competition can be excluded. Under these conditions, jatropha-based electricity generation might be a useful alternative to other renewable electrification options, as the technology is very sturdy and can be maintained even in remote and highly under-developed regions. (author)

  16. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources (International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  17. Developing Asset Life Cycle Management capabilities through the implementation of Asset Life Cycle Plans – an Action Research project

    NARCIS (Netherlands)

    Ruitenburg, Richard; Braaksma, Anne Johannes Jan

    2017-01-01

    Asset Life Cycle Management is a strategic approach to managing physical assets over their complete life cycle. However, the literature and the recent ISO 55,000 standard do not offer guidance as to how to develop such an approach. This paper investigates the main capabilities for Asset Life Cycle

  18. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  19. A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change

    International Nuclear Information System (INIS)

    Lee, Ji Yun; Ellingwood, Bruce R.

    2017-01-01

    Public awareness of civil infrastructure performance has increased considerably in recent years as a result of repeated natural disasters. Risks from natural hazards may increase dramatically in the future, given current patterns of urbanization and population growth in hazard-prone areas. Risk assessments for infrastructure with expected service periods of a century or more are highly uncertain, and there is compelling evidence that climatology will evolve over such intervals. Thus, current natural hazard and risk assessment models, which are based on a presumption of stationarity in hazard occurrence and intensity, may not be adequate to assess the potential risks from hazards occurring in the distant future. This paper addresses two significant intergenerational elements – the potential impact of non-stationarity in hazard due to climate change and intergenerational discounting practices – that are essential to provide an improved decision support framework that accommodates the needs and values of future generations. The framework so developed is tested through two benchmark problems involving buildings exposed to hurricanes. - Highlights: • Difficulties of conventional life-cycle engineering decision-making over multiple generations are clearly elaborated. • Two intergenerational elements are proposed to reflect equitable allocations of risk between generations. • A data-based approach to forecast future hurricanes is provided to bridge the gap between models at large and local scales. • The feasibility and practicability of a refined framework are examined through two lifecycle cost assessment examples. • The two intergenerational elements suggested in this study have a wide range of applicability.

  20. An integrated factor analysis model for product eco-design based on full life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Xiao, T.; Li, D.

    2016-07-01

    Among the methods of comprehensive analysis for a product or an enterprise, there exist defects and deficiencies in traditional standard cost analyses and life cycle assessment methods. For example, some methods only emphasize one dimension (such as economic or environmental factors) while neglecting other relevant dimensions. This paper builds a factor analysis model of resource value flow, based on full life cycle assessment and eco-design theory, in order to expose the relevant internal logic between these two factors. The model considers the efficient multiplication of resources, economic efficiency, and environmental efficiency as its core objectives. The model studies the status of resource value flow during the entire life cycle of a product, and gives an in-depth analysis on the mutual logical relationship of product performance, value, resource consumption, and environmental load to reveal the symptoms and potentials in different dimensions. This provides comprehensive, accurate and timely decision-making information for enterprise managers regarding product eco-design, as well as production and management activities. To conclude, it verifies the availability of this evaluation and analysis model using a Chinese SUV manufacturer as an example. (Author)

  1. Seismic risk assessment of Navarre (Northern Spain)

    Science.gov (United States)

    Gaspar-Escribano, J. M.; Rivas-Medina, A.; García Rodríguez, M. J.; Benito, B.; Tsige, M.; Martínez-Díaz, J. J.; Murphy, P.

    2009-04-01

    The RISNA project, financed by the Emergency Agency of Navarre (Northern Spain), aims at assessing the seismic risk of the entire region. The final goal of the project is the definition of emergency plans for future earthquakes. With this purpose, four main topics are covered: seismic hazard characterization, geotechnical classification, vulnerability assessment and damage estimation to structures and exposed population. A geographic information system is used to integrate, analyze and represent all information colleted in the different phases of the study. Expected ground motions on rock conditions with a 90% probability of non-exceedance in an exposure time of 50 years are determined following a Probabilistic Seismic Hazard Assessment (PSHA) methodology that includes a logic tree with different ground motion and source zoning models. As the region under study is located in the boundary between Spain and France, an effort is required to collect and homogenise seismological data from different national and regional agencies. A new homogenised seismic catalogue, merging data from Spanish, French, Catalonian and international agencies and establishing correlations between different magnitude scales, is developed. In addition, a new seismic zoning model focused on the study area is proposed. Results show that the highest ground motions on rock conditions are expected in the northeastern part of the region, decreasing southwards. Seismic hazard can be expressed as low-to-moderate. A geotechnical classification of the entire region is developed based on surface geology, available borehole data and morphotectonic constraints. Frequency-dependent amplification factors, consistent with code values, are proposed. The northern and southern parts of the region are characterized by stiff and soft soils respectively, being the softest soils located along river valleys. Seismic hazard maps including soil effects are obtained by applying these factors to the seismic hazard maps

  2. Life cycle assessment of a wind farm and related externalities

    DEFF Research Database (Denmark)

    Schleisner, Liselotte

    2000-01-01

    This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different...... materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described......, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies. (C) 2000 Elsevier Science Ltd. All rights reserved....

  3. Life Cycle Assessment of fresh dairy packaging at ELOPAK

    OpenAIRE

    Ruttenborg, Vegard

    2017-01-01

    Nearly all food and drink products require some packaging, and the impact from production and consumption is causing a strain on the environment. To counteract the bad effects, business is emphasizing the environmental performance of products and therefore utilising Life Cycle Assessment as a tool to quantify the environmental impacts from a products life cycle. Elopak, which is an International supplier of paper-based packaging for liquid food, is a such company. This thesis i...

  4. A life-cycle based decision-making framework for electricity generation system planning

    Energy Technology Data Exchange (ETDEWEB)

    Norrie, S.J.; Fang, L. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Environmental Applied Science and Management Graduate Program

    2006-07-01

    This paper proposed a framework for the consideration of multiple objectives in the long-term planning of electricity generation systems. The framework was comprised of 3 components: (1) information based on life-cycle inventories of electricity generation technologies; (2) a set of alternative scenarios to be evaluated and ranked using the framework; and (3) stakeholder values for decision objectives. Scenarios were developed to represent a set of future conditions, and values were derived through the use of questionnaires. Planning for electricity generation in Ontario was selected as a test case for the DM framework. Three scenarios were presented: (1) a business as usual scenario characterized by large, central power plants; (2) a mix of central power plants, distributed generation, and advanced conventional fuel technologies; and (3) small-scale distributed and renewable energy sources and aggressive demand-side management. The life-cycle based information from the scenario evaluation was used to estimate the performance of each scenario on the established decision criteria. Results showed that scenario 3 was the closest to achieving the fundamental objectives according to the decision criteria. It was concluded that the DM framework showed that the use of holistic environmental information and preferential information for multiple objectives can be integrated into a framework that openly and consistently evaluates a set of alternative scenarios. 31 refs., 7 tabs., 4 figs.

  5. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    genetic algorithms (GAs), particle swarm optimisation (PSOs), and stochastic hill climbing to create a generally well-performing search heuristics. In the LifeCycle model, we consider candidate solutions and their fitness as individuals, which, based on their recent search progress, can decide to become...... either a GA individual, a particle of a PSO, or a single stochastic hill climber. First results from a comparison of our new approach with the single search algorithms indicate a generally good performance in numerical optimization....

  6. Transparent Global Seismic Hazard and Risk Assessment

    Science.gov (United States)

    Smolka, Anselm; Schneider, John; Pinho, Rui; Crowley, Helen

    2013-04-01

    Vulnerability to earthquakes is increasing, yet advanced reliable risk assessment tools and data are inaccessible to most, despite being a critical basis for managing risk. Also, there are few, if any, global standards that allow us to compare risk between various locations. The Global Earthquake Model (GEM) is a unique collaborative effort that aims to provide organizations and individuals with tools and resources for transparent assessment of earthquake risk anywhere in the world. By pooling data, knowledge and people, GEM acts as an international forum for collaboration and exchange, and leverages the knowledge of leading experts for the benefit of society. Sharing of data and risk information, best practices, and approaches across the globe is key to assessing risk more effectively. Through global projects, open-source IT development and collaborations with more than 10 regions, leading experts are collaboratively developing unique global datasets, best practice, open tools and models for seismic hazard and risk assessment. Guided by the needs and experiences of governments, companies and citizens at large, they work in continuous interaction with the wider community. A continuously expanding public-private partnership constitutes the GEM Foundation, which drives the collaborative GEM effort. An integrated and holistic approach to risk is key to GEM's risk assessment platform, OpenQuake, that integrates all above-mentioned contributions and will become available towards the end of 2014. Stakeholders worldwide will be able to calculate, visualise and investigate earthquake risk, capture new data and to share their findings for joint learning. Homogenized information on hazard can be combined with data on exposure (buildings, population) and data on their vulnerability, for loss assessment around the globe. Furthermore, for a true integrated view of seismic risk, users can add social vulnerability and resilience indices to maps and estimate the costs and benefits

  7. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  8. Toxicological risk at workplace and toxicity as Life Cycle Assessment impact category: Substitution of solvents as an example.

    Science.gov (United States)

    Schupp, Thomas; Georg, Philipp Alexander; Kirstein, Guenter

    2017-01-01

    Substitution of hazardous substances against less hazardous ones is a central requirement of the European Chemical Regulation REACH (European Regulation 1907/2006/EC). Hazardous substances emitted from products may not only affect the worker; drift off and distribution in the environment may finally result in exposure of the general population. This potential threat to health is covered by the impact category "toxicity" in Life Cycle Assessments. In this paper, we present a case of a substitution of volatile organic compounds in a reactive varnish, and compare the "old" formulation with the "new" formulation against health risk to the worker, and concerning the Life Cycle Assessment impact category "toxicity". The "old" formulation contained Naphtha (petroleum), hydrodesulfurized, heavy and Solvent naphtha (petroleum), light, aromatic. In the new formulation, both naphthas were replaced by n-Butylacetate, 1-Ethoxy-2-propyl acetate and Ethyl-3-ethoxy propionate. In the European Union, the naphthas are classified as mutagens and carcinogens category 1, officially. However, if benzene is below 0.1 %, registrants in the EU proposed to omit this classification, and todays naptha products on the market obviously have benzene contents below 0.1 %. On a first glance, the improvement for workplace safety introduced by the substitution, therefore, is comparatively small, as it is for toxicity in Life Cycle Assessment. However, when background knowledge concerning chemical production processes of naphtha is included, benzene below a content of 0.1 % needs to be taken into consideration, and the benefit of substitution is more obvious.

  9. The Sphinx's Riddle: Life and Career Cycles.

    Science.gov (United States)

    Burack, Elmer H.

    1984-01-01

    Career cycles should be considered apart from life cycles, even though the two are interrelated. This essay examines five theories about life and career cycles, and offers insights into their limitations and potential uses. (JB)

  10. Simulation-based seismic loss estimation of seaport transportation system

    International Nuclear Information System (INIS)

    Ung Jin Na; Shinozuka, Masanobu

    2009-01-01

    Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit-cost analysis

  11. Seismic isolation of plants at risk of a severe accident

    International Nuclear Information System (INIS)

    Forni, Massimo

    2015-01-01

    More and more devastating earthquakes struck every year our planet. Many of these, though occurring in areas considered at high risk of earthquakes, far exceed the levels required by law. The industrial plants subjected to risk of severe accident, in particular petrochemical and nuclear power plants, are particularly exposed to this risk because of the number and the complexity of the structures and critical components of which they are composed. For this type of structures, anti-seismic techniques able to provide complete protection, even in case of unforeseen events, are needed. Seismic isolation is certainly the most promising technology of modern antiseismic as it allows not only to significantly reduce the dynamic load acting on the structures in case of seismic attack, but to provide safety margins against violent earthquakes, exceeding the assumed maximum design limit. [it

  12. A life cycle greenhouse gas inventory of a tree production system

    Science.gov (United States)

    Alissa Kendall; E. Gregory McPherson

    2012-01-01

    PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....

  13. A comparison of production system life cycle models

    Science.gov (United States)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  14. Development of substance flow based Life Cycle Assessment tool for sewage sludge treatment and disposal

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte

    Life Cycle Assessment (LCA) is a method to quantify environmental impacts of products or systems. It is often done by correlating material and energy demands with certain input characteristics. An attempt was made to evaluate the robustness of the substance flow based LCA for wastewater and sludg...

  15. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  16. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  17. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  18. Towards prospective life cycle sustainability analysis: exploring complementarities between social and environmental life cycle assessments for the case of Luxembourg's energy system

    International Nuclear Information System (INIS)

    Rugani, B.; Benetto, E.; Igos, E.; Quinti, G.; Declich, A.; Feudo, F.

    2014-01-01

    Sustainability typically relies on the durable interaction between humans and the environment. Historically, modelling tools such as environmental-life cycle assessment (E-LCA) have been developed to address the mitigation of environmental impacts generated by human activities. More recently, social-life cycle assessment (S-LCA) methods have been proposed to investigate the social sustainability sphere, looking at the life cycle effects generated by positive or negative pressures on social endpoints (i.e. well-being of stakeholders). Despite this promising added value, however, S-LCA methods still show limitations and challenges to be faced, e.g. regarding the lack of high quality datasets and the implementation of consensual social impact assessment indicators. This paper discusses on the complementarity between S-LCA and E-LCA towards the definition of prospective life cycle sustainability analysis (LCSA) approaches. To this aim, a case study is presented comparing (i) E-LCA results of business-as-usual (BAU) scenarios of energy supply and demand technology changes in Luxembourg, up to 2025, based on economic equilibrium modeling and hybrid life cycle inventories, with (ii) a monetary-based input-output estimation of the related changes in the societal sphere. The results show that environmental and social issues do not follow the same impact trends. While E-LCA outputs highlight contrasting patterns, they do generally underlie a relatively low decrease in the aggregated environmental burdens curve (around 20% of decrease over the single-score impact trend over time). In contrast, social hotspots (identified in S-LCA by specific risk indicators of human rights, worker treatment, poverty, etc.) are typically increasing over time according to the growth of the final energy demand. Overall, the case study allowed identifying possible synergies and tradeoffs related to the impact of projected energy demands in Luxembourg. Despite the studied approach does not fully

  19. Life cycle and nano-products: end-of-life assessment

    International Nuclear Information System (INIS)

    Asmatulu, Eylem; Twomey, Janet; Overcash, Michael

    2012-01-01

    Understanding environmental impacts of nanomaterials necessitates analyzing the life cycle profile. The initial emphasis of nanomaterial life cycle studies has been on the environmental and health effects of nanoproducts during the production and usage stages. Analyzing the end-of-life (eol) stage of nanomaterials is also critical because significant impacts or benefits for the environment may arise at that particular stage. In this article, the Woodrow Wilson Center’s Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI) model was used, which contains a relatively large and complete nanoproduct list (1,014) as of 2010. The consumer products have wide range of applications, such as clothing, sports goods, personal care products, medicine, as well as contributing to faster cars and planes, more powerful computers and satellites, better micro and nanochips, and long-lasting batteries. In order to understand the eol cycle concept, we allocated 1,014 nanoproducts into the nine end-of-life categories (e.g., recyclability, ingestion, absorption by skin/public sewer, public sewer, burning/landfill, landfill, air release, air release/public sewer, and other) based on probable final destinations of the nanoproducts. This article highlights the results of this preliminary assessment of end-of-life stage of nanoproducts. The largest potential eol fate was found to be recyclability, however little literature appears to have evolved around nanoproduct recycling. At lower frequency is dermal and ingestion human uptake and then landfill. Release to water and air are much lower potential eol fates for current nanoproducts. In addition, an analysis of nano-product categories with the largest number of products listed indicated that clothes, followed by dermal-related products and then sports equipment were the most represented in the PEN CPI (http

  20. Life cycle and nano-products: end-of-life assessment

    Energy Technology Data Exchange (ETDEWEB)

    Asmatulu, Eylem; Twomey, Janet; Overcash, Michael, E-mail: mrovercash@earthlink.net [Wichita State University, Department of Industrial and Manufacturing Engineering (United States)

    2012-03-15

    Understanding environmental impacts of nanomaterials necessitates analyzing the life cycle profile. The initial emphasis of nanomaterial life cycle studies has been on the environmental and health effects of nanoproducts during the production and usage stages. Analyzing the end-of-life (eol) stage of nanomaterials is also critical because significant impacts or benefits for the environment may arise at that particular stage. In this article, the Woodrow Wilson Center's Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI) model was used, which contains a relatively large and complete nanoproduct list (1,014) as of 2010. The consumer products have wide range of applications, such as clothing, sports goods, personal care products, medicine, as well as contributing to faster cars and planes, more powerful computers and satellites, better micro and nanochips, and long-lasting batteries. In order to understand the eol cycle concept, we allocated 1,014 nanoproducts into the nine end-of-life categories (e.g., recyclability, ingestion, absorption by skin/public sewer, public sewer, burning/landfill, landfill, air release, air release/public sewer, and other) based on probable final destinations of the nanoproducts. This article highlights the results of this preliminary assessment of end-of-life stage of nanoproducts. The largest potential eol fate was found to be recyclability, however little literature appears to have evolved around nanoproduct recycling. At lower frequency is dermal and ingestion human uptake and then landfill. Release to water and air are much lower potential eol fates for current nanoproducts. In addition, an analysis of nano-product categories with the largest number of products listed indicated that clothes, followed by dermal-related products and then sports equipment were the most represented in the PEN CPI (http

  1. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    2013-01-01

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities...

  2. A Spatio-Temporal Building Exposure Database and Information Life-Cycle Management Solution

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2017-04-01

    Full Text Available With an ever-increasing volume and complexity of data collected from a variety of sources, the efficient management of geospatial information becomes a key topic in disaster risk management. For example, the representation of assets exposed to natural disasters is subjected to changes throughout the different phases of risk management reaching from pre-disaster mitigation to the response after an event and the long-term recovery of affected assets. Spatio-temporal changes need to be integrated into a sound conceptual and technological framework able to deal with data coming from different sources, at varying scales, and changing in space and time. Especially managing the information life-cycle, the integration of heterogeneous information and the distributed versioning and release of geospatial information are important topics that need to become essential parts of modern exposure modelling solutions. The main purpose of this study is to provide a conceptual and technological framework to tackle the requirements implied by disaster risk management for describing exposed assets in space and time. An information life-cycle management solution is proposed, based on a relational spatio-temporal database model coupled with Git and GeoGig repositories for distributed versioning. Two application scenarios focusing on the modelling of residential building stocks are presented to show the capabilities of the implemented solution. A prototype database model is shared on GitHub along with the necessary scenario data.

  3. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    Science.gov (United States)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  4. Structure of Cost of Equity as the Dependence on the Corporate- and Market Life Cycle

    Directory of Open Access Journals (Sweden)

    Zdeněk Konečný

    2013-10-01

    Full Text Available Purpose of the article: Companies, like all living creatures, goes through their life cycle, which includes some partial phases. Each of these phases is specific. Depending up the corporate life cycle, there are changed managerial decisions, that have an considerable influence, among others, on financial indicators like liquidity (current ratio, quick ratio, cash ratio, return (on investment, assets, equity, sales, economic value added, or cost of capital. The purpose of this article is to show relations between corporate life cycle and the structure of cost of equity. Furthermore, there will be, besides the corporate life cycle, considered also the market life cycle and market positions, that can companies hold on the market, on which they are acting. Methodology/methods: There is used a method, based on the analysis of secondary data, gotten from financial statements of selected companies and from statistical and analytical documents, published by Czech Ministry of Industry and Trade. There are selected 39 companies, acting on the czech market with motor vehicles production. The data are gathered for periods from 2002 up to 2010. There is used a model by Reiners (2004 to identify phases of corporate- and market life cycle and market positions. For finding out the structure of cost of equity there is used the constructional model by Czech Ministry of Industry and Trade. Scientific aim: The selected companies are divided into groups with considering different phases of their life cycle and with considering their different market positions. There are for each period found out numbers of companies from these groups, that reached the minimal value, the value within the interval and maximal value of all risk rewards, that are, besides the riskless rate, components of cost of equity. Findings: The greatest part of cost of equity, reached on the market, is the riskless rate. Other components (and their shares on the cost of equity

  5. Temporal discounting in life cycle assessment: A critical review and theoretical framework

    International Nuclear Information System (INIS)

    Yuan, Chris; Wang, Endong; Zhai, Qiang; Yang, Fan

    2015-01-01

    Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting in LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework

  6. The importance of life cycle concepts for the development of safe nanoproducts

    International Nuclear Information System (INIS)

    Som, Claudia; Berges, Markus; Chaudhry, Qasim; Dusinska, Maria; Fernandes, Teresa F.; Olsen, Stig I.; Nowack, Bernd

    2010-01-01

    Whilst the global players in industry are rapidly moving forward to take advantage of the new opportunities and prospects offered by nanotechnologies, it is imperative that such developments take place in a safe and sustainable manner. The increasing use of engineered nanomaterials (ENMs) in consumer products has raised certain concerns over their safety to human health and the environment. There are currently a number of major uncertainties and knowledge gaps in regard to behavior, chemical and biological interactions and toxicological properties of ENMs. As dealing with these uncertainties will require the generation of new basic knowledge, it is unlikely that they will be resolved in the immediate future. One has to consider the whole life cycle of nanoproducts to ensure that possible impacts can be systematically discovered. For example, life cycle assessment (LCA) - a formalized life cycle concept - may be used to assess the relative environmental sustainability performance of nanoproducts in comparison with their conventional equivalents. Other less formalized life cycle concepts in the framework of prospective technology assessment may uncover further detailed and prospective knowledge for human and environmental exposure to ENMs during the life cycle of nanoproducts. They systematically reveal impacts such as cross product contamination or dissipation of scarce materials among others. The combination of different life cycle concepts with the evolving knowledge from toxicology and risk assessment can mitigate uncertainties and can provide an early basis for informed decision making by the industry and regulators.

  7. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    Background, Aims and Scope The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. EU has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented...... waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems. Materials...

  8. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  9. Life-cycle assessment of biodiesel versus petroleum diesel fuel

    International Nuclear Information System (INIS)

    Coulon, R.; Camobreco, V.; Sheehan, J.; Duffield, J.

    1995-01-01

    The US Department of Energy's Office of Transportation Technologies, DOE's National Renewable Energy Laboratory, the US Department of Agriculture's Office of Energy, and Ecobalance are carrying out a comprehensive Life-Cycle Assessment of soy-based diesel fuel (biodiesel) to quantify the environmental aspects of the cradle-to-grave production and use of biodiesel. The purpose of the project is to produce an analytical tool and database for use by industry and government decision makers involved in alternative fuel use and production. The study also includes a parallel effort to develop a life-cycle model for petroleum diesel fuel. The two models are used to compare the life-cycle energy and environmental implications of petroleum diesel and biodiesel derived from soybean. Several scenarios are studied, analyzing the influence of transportation distances, agricultural practice and allocation rules used. The project also includes effort to integrate spatial data into the inventory analysis and probabilistic uncertainty considerations into the impact assessment stage. Traditional life-cycle inventory analysis includes an aggregation process that eliminates spatial, temporal, and threshold information. This project will demonstrate an approach to life-cycle inventory analysis that retains spatial data for use in impact assessment. Explicit probabilistic treatment of uncertainty in impact assessment will take account of scientific uncertainties, and will attempt to identify the level of spatial detail that most efficiently reduces impact assessment uncertainties

  10. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    International Nuclear Information System (INIS)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates

  11. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  12. Life Cycle Management at Brødrene Hartmann A/S - strategy,- organisation and implementation

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Alting, Leo; Mortensen, Anna Lise

    1997-01-01

    decisionmaking is under development.The implementation of life cycle management in Hartmann is organised with respect to the divisional areas: strategic management, product development, purchase, production, sale and distribution. The implementation of life cycle managment is assisted by tools to support...... decision making. The tools are developed in coorporation with the Department of Manufacturing Engineering at the Technical University of Denmark.This paper presents- The Hartmann environmental strategy, based on the life cycle concept- Experiences and results from developing a life cycle orientated...... organisation- Experiences and results from developing and implementing tools for life cycle management...

  13. Seismic hazard estimation based on the distributed seismicity in northern China

    Science.gov (United States)

    Yang, Yong; Shi, Bao-Ping; Sun, Liang

    2008-03-01

    In this paper, we have proposed an alternative seismic hazard modeling by using distributed seismicites. The distributed seismicity model does not need delineation of seismic source zones, and simplify the methodology of probabilistic seismic hazard analysis. Based on the devastating earthquake catalogue, we established three seismicity model, derived the distribution of a-value in northern China by using Gaussian smoothing function, and calculated peak ground acceleration distributions for this area with 2%, 5% and 10% probability of exceedance in a 50-year period by using three attenuation models, respectively. In general, the peak ground motion distribution patterns are consistent with current seismic hazard map of China, but in some specific seismic zones which include Shanxi Province and Shijiazhuang areas, our results indicated a little bit higher peak ground motions and zonation characters which are in agreement with seismicity distribution patterns in these areas. The hazard curves have been developed for Beijing, Tianjin, Taiyuan, Tangshan, and Ji’nan, the metropolitan cities in the northern China. The results showed that Tangshan, Taiyuan, Beijing has a higher seismic hazard than that of other cities mentioned above.

  14. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    Science.gov (United States)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  15. Recent developments in Life Cycle Assessment

    NARCIS (Netherlands)

    Finnveden, Göran; Hauschild, Michael Z.; Ekvall, Tomas; Guinée, Jeroen B.; Heijungs, Reinout; Hellweg, Stefanie; Koehler, Annette; Pennington, David; Suh, Sangwon

    2009-01-01

    Life Cycle Assessment is a tool to assess the environmental impacts and resources used throughout a product's life cycle, i.e., from raw material acquisition, via production and use phases, to waste management. The methodological development in LCA has been strong, and LCA is broadly applied in

  16. Educational Focuses in Organisational Life Cycles.

    Science.gov (United States)

    Miller, Harry G.

    1985-01-01

    Presents four stages frequently associated with the stages of an organization's life cycle: experimentation, growth, maturity, and decline or stability. The author also demonstrates that the impact of employment and thus training related to organizational life cycles suggests a need for understanding the technical preparation required for…

  17. Using Model-Based System Engineering to Provide Artifacts for NASA Project Life-Cycle and Technical Reviews Presentation

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.

  18. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  19. Life cycle greenhouse gas emissions estimation for small hydropower schemes in India

    International Nuclear Information System (INIS)

    Varun; Prakash, Ravi; Bhat, I.K.

    2012-01-01

    This paper presents for the first time correlations for greenhouse gas (GHG) emissions from small hydropower schemes in India. In this paper an attempt has been made to develop life cycle GHG emissions correlations for three different types of small hydropower schemes (run-of river, canal based and dam-toe) in India. It has been found out that GHG emissions depend on the head and capacity of the small hydropower project. The results obtained from correlations show good agreement with the estimated results using EIO-LCA (Economic Input–Output-Life Cycle Assessment) technique. These correlations may be useful for the development of new small hydropower (SHP) schemes, as they can be used to predict life cycle GHG emissions based on capacity, head and type of SHP schemes. -- Highlights: ► A study has been carried out for the Life Cycle Greenhouse gas emissions estimation for SHP schemes in India. ► Around 145 SHP schemes have been studied and their GHG emissions have been estimated. ► Based upon these results correlations have been developed for three different types of SHP schemes.

  20. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  1. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  2. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  3. A Framework for Seismic Design of Items in Safety-Critical Facilities for Implementing a Risk-Informed Defense-in-Depth-Based Concept

    Directory of Open Access Journals (Sweden)

    Tatsuya Itoi

    2017-05-01

    Full Text Available Recently, especially after the 2011 off the Pacific coast of Tohoku earthquake and the Fukushima Daiichi nuclear power plant accident, the need for treating residual risks and cliff-edge effects in safety-critical facilities has been widely recognized as an extremely important issue. In this article, the sophistication of seismic designs in safety-critical facilities is discussed from the viewpoint of mitigating the consequences of accidents, such as the avoidance of cliff-edge effects. For this purpose, the implementation of a risk-informed defense-in-depth-based framework is proposed in this study. A basic framework that utilizes diversity in the dynamic characteristics of items and also provides additional seismic margin to items important for safety when needed is proposed to prevent common cause failure and to avoid cliff-edge effects as far as practicable. The proposed method is demonstrated to be effective using an example calculation.

  4. A Framework for BIM-enabled Life-cycle Information Management of Construction Project

    OpenAIRE

    Xu, n; Ma, Ling; Ding, Lieyun

    2014-01-01

    BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM- based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organ...

  5. Base Camp Life Cycle Management: Focusing on the Critical Elements

    Science.gov (United States)

    2011-12-01

    needs of the occupants, although “building” this infrastructure often meant cobbling together prefabricated buildings or tents as much as it meant...as System Boundaries.” Journal of Industrial Ecology 10, no. 1 (2006): 61-77. Rebitzer, G. and Hunkeler, D. Life Cycle Costing in LCM: Ambitions

  6. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  7. Life cycle management for equipments in nuclear plants based on reliability and actual conditions

    International Nuclear Information System (INIS)

    Dalin, Wang; Jingquan, Liu; Peng, Liu

    2010-01-01

    Life cycle management model based on reliability includes two parts: obtaining failure rate function and founding cost-oriented model to solve. It is actually a single objective programming whose optimal solution is the most economical replacement period. Parameters of failure rate function are estimated by Weibull process fitting with the method of maximum likelihood. The objective function of the model is life-cost function where the dependent variable is replacement period T, with the constraints of failure rate or availability. After foundation of LCM model, we solve it to find the optimal replacement period for the equipments. (authors)

  8. Life-cycle assessments in the South African water sector: A review ...

    African Journals Online (AJOL)

    Therefore, in South Africa it is important to promote the use of LCAs for the water sector in order to improve efficiency of processes and systems, but also to promote life-cycle based water footprinting and to include differentiated water consumption data into life-cycle inventories to make more efficient use of water as a ...

  9. Cost Accounting of Venture Company Depending on the Stage of Its Life Cycle

    OpenAIRE

    Olha Usatenko

    2015-01-01

    The purpose of the article is to identify groups of costs that are inherent in life-cycle stages of venture companies and which directly are the objects of accounting. The author distinguishes stages of the life cycle of the venture company with an indication of the degree of risk and the need for venture capital, which determine the accounting tasks required to reflect it. The model of lifecycle accounting of venture company is grounded. The conventional range of expected return on the inves...

  10. Analysis of parameter uncertainties in the assessment of seismic risk for nuclear power plants

    International Nuclear Information System (INIS)

    Yucemen, S.M.

    1981-04-01

    Probabilistic and statistical methods are used to develop a procedure by which the seismic risk at a specific site can be systematically analyzed. The proposed probabilistic procedure provides a consisted method for the modelling, analysis and updating of uncertainties that are involved in the seismic risk analysis for nuclear power plants. Methods are proposed for including these uncertainties in the final value of calculated risks. Two specific case studies are presented in detail to illustrate the application of the probabilistic method of seismic risk evaluation and to investigate the sensitivity of results to different assumptions

  11. Uncertainty analysis in agent-based modelling and consequential life cycle assessment coupled models : a critical review

    NARCIS (Netherlands)

    Baustert, P.M.; Benetto, E.

    2017-01-01

    The evolution of life cycle assessment (LCA) from a merely comparative tool for the assessment of products to a policy analysis tool proceeds by incorporating increasingly complex modelling approaches. In more recent studies of complex systems, such as the agriculture sector or mobility, agent-based

  12. Integration of Life Cycle Assessment Into Agent-Based Modeling : Toward Informed Decisions on Evolving Infrastructure Systems

    NARCIS (Netherlands)

    Davis, C.B.; Nikoli?, I.; Dijkema, G.P.J.

    2009-01-01

    A method is presented that allows for a life cycle assessment (LCA) to provide environmental information on an energy infrastructure system while it evolves. Energy conversion facilities are represented in an agent-based model (ABM) as distinct instances of technologies with owners capable of making

  13. Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada

    Institute of Scientific and Technical Information of China (English)

    Krish Homagain; Chander Shahi; Nancy Luckai; Mahadev Sharma

    2017-01-01

    Background:Replacement of fossil fuel based energy with biochar-based bioenergy production can help reduce greenhouse gas emissions while mitigating the adverse impacts of climate change and global warming.However,the production of biochar-based bioenergy depends on a sustainable supply of biomass.Although,Northwestern Ontario has a rich and sustainable supply of woody biomass,a comprehensive life cycle cost and economic assessment of biochar-based bioenergy production technology has not been done so far in the region.Methods:In this paper,we conducted a thorough life cycle cost assessment (LCCA) of biochar-based bioenergy production and its land application under four different scenarios:1) biochar production with low feedstock availability;2) biochar production with high feedstock availability;3) biochar production with low feedstock availability and its land application;and 4) biochar production with high feedstock availability and its land application-using SimaPro(R),EIOLCA(R) software and spreadsheet modeling.Based on the LCCA results,we further conducted an economic assessment for the break-even and viability of this technology over the project period.Results:It was found that the economic viability of biochar-based bioenergy production system within the life cycle analysis system boundary based on study assumptions is directly dependent on costs of pyrolysis,feedstock processing (drying,grinding and pelletization) and collection on site and the value of total carbon offset provided by the system.Sensitivity analysis of transportation distance and different values of C offset showed that the system is profitable in case of high biomass availability within 200 km and when the cost of carbon sequestration exceeds CAD S60 per tonne of equivalent carbon (CO2e).Conclusions:Biochar-based bioenergy system is economically viable when life cycle costs and environmental assumptions are accounted for.This study provides a medium scale slow-pyrolysis plant scenario and

  14. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  15. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  16. An ensemble-based method for constrained reservoir life-cycle optimization

    NARCIS (Netherlands)

    Leeuwenburgh, O.; Egberts, P.J.P.; Chitu, A.G.

    2015-01-01

    We consider the problem of finding optimal long-term (life-cycle) recovery strategies for hydrocarbon reservoirs by use of simulation models. In such problems the presence of operating constraints, such as for example a maximum rate limit for a group of wells, may strongly influence the range of

  17. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  18. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade......-offs between the heat produced to meet a building's space heating load and insulation produced to reduce its space heating load throughout the whole life-cycle of a building. To obtain a more realistic valuation of this tradeoff, a dynamic heat production model, which accounts for political projections...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  19. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  20. The life cycle rebound effect of air-conditioner consumption in China

    International Nuclear Information System (INIS)

    Liu, Jingru; Sun, Xin; Lu, Bin; Zhang, Yunkun; Sun, Rui

    2016-01-01

    Highlights: • Develop a life cycle rebound effect model. • Assess the life cycle rebound effect of Chinese room air conditioners. • Conduct a questionnaire to assess the consumption behavior of Chinese room air conditioners. • Rebound effect should be considered by energy policy makers. - Abstract: Governments worldwide are attempting to reduce energy consumption and environmental pollution by confronting environmental problems and adopting more energy-efficient products. However, because of the rebound effect, energy-saving targets cannot always be fully achieved, and sometimes greater energy consumption is generated. Research on the rebound effect from the perspective of industrial ecology considers not only direct energy consumption but also its life cycle negative impacts on the environment with China’s rapid economic development and simultaneously improving quality of life, the ownership of room air conditioners (RACs) has increased more than three hundred times, and air conditioners’ energy consumption has increased one thousand times over the last twenty years. The Air Conditioner Energy Efficiency Standard is one of the most important measures in China for reducing the amount of energy consumed by RACs. This paper introduces a life cycle based method to estimate the rebound effect of Chinese RACs consumption. This model provides a product’s life-cycle view to assess the rebound effect, considering the contribution of both producer and consumer. Based on the established life cycle rebound effect model, we compared urban household RAC consumption behaviour before and after the launch of the Air Conditioner Energy Efficiency Standard. A rebound effect in RAC consumption was found that there was a longer daily usage period in the household as air conditioner efficiency levels improved. The life cycle rebound effect of household air-conditioner consumption was calculated to be 67%. The main conclusion obtained from this study is that policies and

  1. Potential pyrolysis pathway assessment for microalgae-based aviation fuel based on energy conversion efficiency and life cycle

    International Nuclear Information System (INIS)

    Guo, Fang; Wang, Xin; Yang, Xiaoyi

    2017-01-01

    Highlights: • High lipid content in microalgae increases energy conversion efficiency. • Indirect pathway has the highest mass ratio, energy ratio and energy efficiency. • The Isochrysis indirect pathway produces most kerosene component precursor. • The Isochrysis indirect pyrolysis pathway shows the best performance in LCA. - Abstract: Although the research of microalgae pyrolysis has been conducted for many years, there is a lack of investigations on energy efficiency and life cycle assessment. In this study, we investigated the biocrude yield and energy efficiency of direct pyrolysis, microalgae residue pyrolysis after lipid extraction (indirect pyrolysis), and different microalgae co-pyrolysis. This research also investigated the life cycle assessment of the three different pyrolysis pathways. A system boundary of Well-to-Wake (WTWa) was defined and included sub-process models, such as feedstock production, fuel production and pump-to-wheels (PTW) stages. The pathway of Isochrysis indirect pyrolysis shows the best performance in the mass ratio and energy ratio, produces the most kerosene component precursor, has the lowest WTWa total energy input, fossil fuel consumption and greenhouse gas emissions, and resultes in the best energy efficiency. All the evidence indicates that Isochrysis R2 pathway is a potential and optimal pyrolysis pathway to liquid biofuels. The mass ratio of pyrolysis biocrude is shown to be the decisive factor for different microalgae species. The sensitivity analysis results also indicates that the life cycle indicators are particularly sensitive to the mass ratio of pyrolysis biocrude for microalgae-based hydrotreated pyrolysis aviation fuel.

  2. Life cycle thinking in impact assessment—Current practice and LCA gains

    Energy Technology Data Exchange (ETDEWEB)

    Bidstrup, Morten, E-mail: Bidstrup@plan.aau.dk

    2015-09-15

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains.

  3. Life cycle thinking in impact assessment—Current practice and LCA gains

    International Nuclear Information System (INIS)

    Bidstrup, Morten

    2015-01-01

    It has been advocated that life cycle thinking (LCT) should be applied in impact assessment (IA) to a greater extent, since some development proposals pose a risk of significant impacts throughout the interconnected activities of product systems. Multiple authors have proposed the usage of life cycle assessment (LCA) for such analytical advancement, but little to no research on this tool application has been founded in IA practice so far. The aim of this article is to elaborate further on the gains assigned to application of LCA. The research builds on a review of 85 Danish IA reports, which were analysed for analytical appropriateness and application of LCT. Through a focus on the non-technical summary, the conclusion and the use of specific search words, passages containing LCT were searched for in each IA report. These passages were then analysed with a generic framework. The results reveal that LCT is appropriate for most of the IAs, but that LCA is rarely applied to provide such a perspective. Without LCA, the IAs show mixed performance in regard to LCT. Most IAs do consider the product provision of development proposals, but they rarely relate impacts to this function explicitly. Many IAs do consider downstream impacts, but assessments of upstream, distant impacts are generally absent. It is concluded that multiple analytical gains can be attributed to greater application of LCA in IA practice, though some level of LCT already exists. - Highlights: • Life cycle thinking is appropriate across the types and topics of impact assessment. • Yet, life cycle assessment is rarely used for adding such perspective. • Impact assessment practice does apply some degree of life cycle thinking. • However, application of life cycle assessment could bring analytical gains

  4. Social Life Cycle Assessment: An Introduction

    DEFF Research Database (Denmark)

    Moltesen, Andreas; Bonou, Alexandra; Wangel, Arne

    2018-01-01

    An expansion of the LCA framework has been going on through the development of ‘social life cycle assessment’—S-LCA. The methodology, still in its infancy, has the goal of assessing social impacts related to a product’s life cycle. This chapter introduces S-LCA framework area and the related...

  5. Life cycle assessments of energy from solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Finnveden, Goeran; Johansson, Jessica; Lind, Per; Moberg, Aasa [Stockholm Univ. (Sweden). Dept. of Systems Ecology/Natural Resoruces Management Inst.]|[Defence Research Establishment, Stockholm (Sweden). Div. of Defence Analysis

    2000-09-01

    The overall aim of the present study is to evaluate different strategies for treatment of solid waste based on a life-cycle perspective. Important goals are to identify advantages and disadvantages of different methods for treatment of solid waste, and to identify critical factors in the systems, including the background systems, which may significantly influence the results. Included in the study are landfilling, incineration, recycling, digestion and composting. The waste fractions considered are the combustible and recyclable or compostable fractions of municipal solid waste. The methodology used is Life Cycle Assessment. The results can be used for policy decisions as well as strategic decisions on waste management systems.

  6. Seismic risk and safety of nuclear installations. A look at the Cadarache Centre

    International Nuclear Information System (INIS)

    Verrhiest-Leblanc, G.; Chevallier, A.

    2010-01-01

    After a brief recall of some important seismic events which occurred in the past in the south-eastern part of France, the authors indicate the nuclear installations present in this region. They outline the difference between requirements for a usual building and for basic nuclear installations. They indicate laws and regulations which are to be applied to these installations like to any hazardous industrial installation. They describe the seismic risk as it has been determined for the Cadarache area, and evoke the para-seismic design of new nuclear installations which are to be built in Cadarache and actions for a para-seismic reinforcement of existing constructions. Finally, they evoke organisational aspects (emergency plans) and the approach for a better information and transparency about the seismic risk

  7. Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol

    International Nuclear Information System (INIS)

    Malça, João; Freire, Fausto

    2012-01-01

    Despite the significant growth in the number of published life-cycle assessments of biofuels, important aspects have not captured sufficient attention, namely soil carbon emissions from land use change (LUC) and uncertainty analysis. The main goal of this article is to evaluate the implications of different LUC scenarios and uncertainty in the life-cycle energy renewability efficiency and GHG (greenhouse gases) intensity of wheat-based bioethanol replacing gasoline. A comprehensive assessment of different LUC scenarios (grassland or cropland converted to wheat cultivation) and agricultural practices is conducted, which results in different carbon stock change values. The types of uncertainty addressed include parameter uncertainty (propagated into LC (life-cycle) results using Monte-Carlo simulation) and uncertainty concerning how bioethanol co-product credits are accounted for. Results show that GHG emissions have considerably higher uncertainty than energy efficiency values, mainly due to soil carbon emissions from direct LUC and N 2 O release from cultivated soil. Moreover, LUC dominates the GHG intensity of bioethanol. Very different GHG emissions are calculated depending on the LUC scenario considered. Conversion of full- or low-tillage croplands to wheat cultivation results in bioethanol GHG emissions lower than gasoline emissions, whereas conversion of grassland does not contribute to bioethanol GHG savings over gasoline in the short- to mid-term. -- Highlights: ► We address different LUC scenarios and uncertainty in the LCA of wheat bioethanol. ► GHG emissions have considerably higher uncertainty than energy efficiency values. ► Bioethanol contributes to primary energy savings over gasoline. ► Very different life-cycle GHG emissions are calculated depending on the LUC scenario. ► GHG savings over gasoline are only achieved if cropland is the reference land use.

  8. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk

    Science.gov (United States)

    Bourne, S. J.; Oates, S. J.; van Elk, J.

    2018-06-01

    Induced seismicity typically arises from the progressive activation of recently inactive geological faults by anthropogenic activity. Faults are mechanically and geometrically heterogeneous, so their extremes of stress and strength govern the initial evolution of induced seismicity. We derive a statistical model of Coulomb stress failures and associated aftershocks within the tail of the distribution of fault stress and strength variations to show initial induced seismicity rates will increase as an exponential function of induced stress. Our model provides operational forecasts consistent with the observed space-time-magnitude distribution of earthquakes induced by gas production from the Groningen field in the Netherlands. These probabilistic forecasts also match the observed changes in seismicity following a significant and sustained decrease in gas production rates designed to reduce seismic hazard and risk. This forecast capability allows reliable assessment of alternative control options to better inform future induced seismic risk management decisions.

  9. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  10. Habitat-based constraints on food web structure and parasite life cycles.

    Science.gov (United States)

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  11. Research on performance-based seismic design criteria

    Institute of Scientific and Technical Information of China (English)

    谢礼立; 马玉宏

    2002-01-01

    The seismic design criterion adopted in the existing seismic design codes is reviewed. It is pointed out that the presently used seismic design criterion is not satisfied with the requirements of nowadays social and economic development. A new performance-based seismic design criterion that is composed of three components is presented in this paper. It can not only effectively control the economic losses and casualty, but also ensure the building(s function in proper operation during earthquakes. The three components are: classification of seismic design for buildings, determination of seismic design intensity and/or seismic design ground motion for controlling seismic economic losses and casualties, and determination of the importance factors in terms of service periods of buildings. For controlling the seismic human losses, the idea of socially acceptable casualty level is presented and the (Optimal Economic Decision Model( and (Optimal Safe Decision Model( are established. Finally, a new method is recommended for calculating the importance factors of structures by adjusting structures service period on the base of more important structure with longer service period than the conventional ones. Therefore, the more important structure with longer service periods will be designed for higher seismic loads, in case the exceedance probability of seismic hazard in different service period is same.

  12. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  13. Integrated risk assessment for the natomas basin (California) analysis of loss of life and emergency management for floods

    NARCIS (Netherlands)

    Jonkman, S.N.; Hiel, L.A.; Bea, R.G.; Foster, H.; Tsioulou, A.; Arroyo, P.; Stallard, T.; Harris, L.

    2012-01-01

    This article assesses the risk to life for the Natomas Basin, a low-lying, rapidly urbanizing region in the Sacramento-San Joaquin Delta in California. Using an empirical method, the loss of life is determined for a flood (high water), seismic, and sunny-day levee breach scenario. The analysis

  14. Defining the baseline in social life cycle assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Finkbeiner, Matthias; Jørgensen, Michael Søgaard

    2010-01-01

    A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product's life cycle. To create this effect, the SLCA, among other things, needs to provide...... valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and 'non-implemented' product life cycle. This difference can to some extent be found...... using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life...

  15. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  16. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  17. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  18. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature

    International Nuclear Information System (INIS)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included

  19. A study on the environmental impacts analysis with life cycle analysis of NPPs

    International Nuclear Information System (INIS)

    Jeong, H. S.; Moon, K. H.; Youn, S. W.

    2003-01-01

    This Life Cycle Analysis (LCA) work was accomplished based on the ISO-14040 framework goal and scope definition, including life cycle inventory analysis, and life cycle impact assessment. For the selection of impact categories, resource use, global affairs, local affairs, and nuclear specific affair were considered. It was unexpected that environmental burdens are generally heavier in an electricity generation process than in upper stream and fabrication processes, except ODP and ETPs. It has been normally thought that environmental burden in upper steam would be heavier than those in other processes. This misconception could have originated from the ambiguous thought for end-of-pipe emissions and life cycle inventories

  20. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  1. Optimal, Risk-based Operation and Maintenance Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    For offshore wind turbines costs to operation and maintenance are substantial. This paper describes a risk-based life-cycle approach for optimal planning of operation and maintenance. The approach is based on pre-posterior Bayesian decision theory. Deterioration mechanisms such as fatigue...

  2. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  3. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a seismic risk analysis that focuses on all possible sources of seismic activity, with the exception of the postulated Verona Fault. The best estimate curve indicates that the Vallecitos facility will experience 30% g with a return period of roughly 130 years and 60% g with a return period of roughly 700 years

  4. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  5. Multi-board concept - a scenario based approach for supporting product quality and life cycle oriented design

    DEFF Research Database (Denmark)

    Robotham, Antony John; Hertzum, Morten

    2000-01-01

    This paper will describe the multi-board concept, which is a working approach for supporting life cycle oriented design and product quality. Aspects of this concept include construction of a common working environment where multiple display boards depict scenarios of the product life cycle...... to believe that the multi-board concept promises to be a useful means of communication amongst the design team. We be-lieve that it fosters a thorough understanding of life cycle events, which, in turn, inspires the design of innovative products of the highest quality......., creating a shared quality mindset amongst design-ers, and developing creativity and synthesis in product design. The appropriateness of scenarios for supporting life cycle oriented design will be ar-gued and preliminary results from early experi-mentation will be presented.Initial results lead us...

  6. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    Science.gov (United States)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  7. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  8. Addressing the effect of social life cycle assessments

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Dreyer, Louise Camilla; Wangel, Arne

    2012-01-01

    the validity of these hypotheses. Results: Three in some cases potentially overlapping SLCA approaches are presented, assumed to create a beneficial effect in the life cycle in different ways. However, empirical and theoretical findings show that the beneficial effects proposed to arise from the use of each......Purpose: In the recently published ‘Guidelines for social life cycle assessment of products’, it is stated that the ultimate objective of developing the social life cycle assessment (SLCA) is to promote improvements of social conditions for the stakeholders in the life cycle. This article addresses...... how the SLCA should be developed so that its use promotes these improvements. Methods: Hypotheses of how the use of SLCA can promote improvement of social conditions in the life cycle are formulated, after which theories and empirical findings from relevant fields of research are used to address...

  9. A framework for social life cycle impact assessment

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Hauschild, Michael Zwicky; Schierbeck, Jens

    2006-01-01

    Goal, Scope and Background. To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner...... by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected...... in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles...

  10. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit

    2016-10-01

    In Taiwan, due to the limited capacity of waste cooking oil, palm oil has been viewed as the potential low-cost imported feedstock for producing biodiesel, in the way of obtaining oil feedstock in Malaysia and producing biodiesel in Taiwan. This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling are investigated based on the Malaysia case and those of refining, and fuel production as well as engine combustion is based on Taiwan case. The greenhouse gas (GHG) emission and energy consumption for the whole life cycle were calculated as −28.29 kg CO2-equiv. and +23.71 MJ/kg of palm-derived biodiesel. We also analyze the impacts of global warming potential (GWP) and the payback time for recovering the GHG emissions when producing and using biodiesel. Various scenarios include (1) clearing rainforest or peat-forest; (2) treating or discharging palm-oil-milling effluent (POME) are further developed to examine the effectiveness of improving the environmental impacts © 2016 Springer-Verlag Berlin Heidelberg

  11. Optimum Envelope of a Single-Family House Based on Life Cycle Analysis

    Directory of Open Access Journals (Sweden)

    Marie-Claude Hamelin

    2014-04-01

    Full Text Available This paper describes the methodology used for the life cycle cost (LCC and life cycle energy (LCE analyses of the case study house in Quebec, Canada. The TRNSYS energy analysis program is coupled with GenOpt, a general purpose optimization program, for the purpose of this study. The particle swarm optimization (PSO algorithm is used for the search for the optimum solution. Results show that the optimum levels of insulation should be higher than the reference values, even for the case of LCC analysis. The results are for the most part still valid if electricity costs are assumed to increase below the inflation rate for the duration of the study period.

  12. Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective

    Directory of Open Access Journals (Sweden)

    Pasquale Marcello Falcone

    2018-03-01

    Full Text Available The sustainability of bio-based products, especially when compared with fossil based products, must be assured. The life cycle approach has proven to be a promising way to analyze the social, economic and environmental impacts of bio-based products along the whole value chain. Until now, however, the social aspects have been under-investigated in comparison to environmental and economic aspects. In this context, the present paper aims to identify the main social impact categories and indicators that should be included in a social sustainability assessment of bio-based products, with a focus on the consumers’ category. To identify which social categories and indicators are most relevant, we carry out a literature review on existing social life cycle studies; this is followed by a focus group with industrial experts and academics. Afterwards, we conduct semi-structured interviews with some consumer representatives to understand which social indicators pertaining to consumers are perceived as relevant. Our findings highlight the necessity for the development and dissemination of improved frameworks capable of exploiting the consumers’ role in the ongoing process of market uptake of bio-based products. More specifically, this need regards the effective inclusion of some social indicators (i.e., end users’ health and safety, feedback mechanisms, transparency, and end-of-life responsibility in the social life cycle assessment scheme for bio-based products. This would allow consumers, where properly communicated, to make more informed and aware purchasing choices, therefore having a flywheel effect on the market diffusion of a bio-based product.

  13. The Life Cycle of Centrioles

    OpenAIRE

    Hatch, E.; Stearns, T.

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have di...

  14. Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook)

    OpenAIRE

    HAUSCHILD Michael; GOEDKOOP Mark; GUINEE Jerome; HEIJUNGS Reinout; HUIJBREGTS Mark; JOLLIET Olivier; MARGNI Manuele; DE SCHRYVER An

    2010-01-01

    To achieve more sustainable production and consumption patterns, we must consider the environmental implications of the whole supply-chain of products, both goods and services, their use, and waste management, i.e. their entire life cycle from ¿cradle to grave¿. In the Communication on Integrated Product Policy (IPP), (EC, 2003), the European Commission committed to produce a handbook on best practice in Life Cycle Assessment (LCA). The Sustainable Consumption and Production (SCP) Action ...

  15. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  16. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  17. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  18. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  19. Accounting for ecosystem services in Life Cycle Assessment, Part II: toward an ecologically based LCA.

    Science.gov (United States)

    Zhang, Yi; Baral, Anil; Bakshi, Bhavik R

    2010-04-01

    Despite the essential role of ecosystem goods and services in sustaining all human activities, they are often ignored in engineering decision making, even in methods that are meant to encourage sustainability. For example, conventional Life Cycle Assessment focuses on the impact of emissions and consumption of some resources. While aggregation and interpretation methods are quite advanced for emissions, similar methods for resources have been lagging, and most ignore the role of nature. Such oversight may even result in perverse decisions that encourage reliance on deteriorating ecosystem services. This article presents a step toward including the direct and indirect role of ecosystems in LCA, and a hierarchical scheme to interpret their contribution. The resulting Ecologically Based LCA (Eco-LCA) includes a large number of provisioning, regulating, and supporting ecosystem services as inputs to a life cycle model at the process or economy scale. These resources are represented in diverse physical units and may be compared via their mass, fuel value, industrial cumulative exergy consumption, or ecological cumulative exergy consumption or by normalization with total consumption of each resource or their availability. Such results at a fine scale provide insight about relative resource use and the risk and vulnerability to the loss of specific resources. Aggregate indicators are also defined to obtain indices such as renewability, efficiency, and return on investment. An Eco-LCA model of the 1997 economy is developed and made available via the web (www.resilience.osu.edu/ecolca). An illustrative example comparing paper and plastic cups provides insight into the features of the proposed approach. The need for further work in bridging the gap between knowledge about ecosystem services and their direct and indirect role in supporting human activities is discussed as an important area for future work.

  20. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    cycle of high-rise buildings, which, unlike the systems being currently used, is not targeted at the company or production but on the project. The topicality of organizational reengineering of schemes of information interaction between the project’s participants is substantiated. It is shown that consolidation of methods and technologies for data management and project management should become the basis for strategic management of the project’s full life cycle. Conclusions: analysis of the accumulated experience in the development of unique and large-scale projects of high-rise buildings shows that managing the life cycle of the high-rise development project is a topical and unsolved problem that requires serious scientific and project research. The existing concepts and schemes for the project’s life cycle management and the interaction between all participants of the high-rise construction project should be substantially modernized taking into account the use of capabilities of digital modeling of the project (BIM - Building Information Modeling together with technologies for support of its life cycle (Continuous Acquisition and Life Cycle Support. At the same time, the development of an integrated information environment for the project’s life cycle should be based on the integration of data management and project management, which will ensure a multiple increase in the efficiency and competitiveness of a high-rise building project at all stages of its life cycle.

  1. A Hospital Nursing Adverse Events Reporting System Project: An Approach Based on the Systems Development Life Cycle.

    Science.gov (United States)

    Cao, Yingjuan; Ball, Marion

    2017-01-01

    Based on the System Development Life Cycle, a hospital based nursing adverse event reporting system was developed and implemented which integrated with the current Hospital Information System (HIS). Besides the potitive outcomes in terms of timeliness and efficiency, this approach has brought an enormous change in how the nurses report, analyze and respond to the adverse events.

  2. Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Wagendorp, Tim; Gulinck, Hubert; Coppin, Pol; Muys, Bart

    2006-01-01

    Life Cycle Assessment (LCA) studies of products with a major part of their life cycle in biological production systems (i.e. forestry and agriculture) are often incomplete because the assessment of the land use impact is not operational. Most method proposals include the quality of the land in a descriptive way using rank scores for an arbitrarily selected set of indicators. This paper first offers a theoretical framework for the selection of suitable indicators for land use impact assessment, based on ecosystem thermodynamics. According to recent theories on the thermodynamics of open systems, a goal function of ecosystems is to maximize the dissipation of exogenic exergy fluxes by maximizing the internal exergy storage under form of biomass, biodiversity and complex trophical networks. Human impact may decrease this ecosystem exergy level by simplification, i.e. decreasing biomass and destroying internal complexity. Within this theoretical framework, we then studied possibilities for assessing the land use impact in a more direct way by measuring the ecosystems' capacity to dissipate solar exergy. Measuring ecosystem thermal characteristics by using remote sensing techniques was considered a promising tool. Once operational, it could offer a quick and cheap alternative to quantify land use impacts in any terrestrial ecosystem of any size. Recommendations are given for further exploration of this method and for its integration into an ISO compatible LCA framework

  3. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    Science.gov (United States)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  4. Life-Cycle Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future.......The future use of Life-Cycle Cost-Benefit (LCCB) analysis is discussed in this paper. A more complete analysis including not only the traditional factors and user costs, but also factors which are difficult to include in the analysis is needed in the future....

  5. Steam generator life cycle management - B and W perspective

    International Nuclear Information System (INIS)

    Dhar, D.; Fluit, S.; Millman, J.

    2006-01-01

    This paper is an effort towards the B and W perspective about the effective life cycle management (LCM) of the CANDU Steam Generators (SGs) based on the identification of active and plausible degradation mechanisms for various SG components and the need to achieve a safe and economic operating interval for the station. The objective of this paper is to provide the long-term effective strategy for inspections, maintenance and design modifications as necessary for the safe and reliable operation of the SGs during the plant design life. The derived activities of this strategy need to be integrated with the station outage specific work scope plan for an effective life cycle management. The technical basis for these activities is based on the review of previous field inspection records, maintenance work and modifications at the station and operational experience (OPEX) from other CANDU steam generators with similar design. These activities need to be performed in order to ensure that the SGs perform within an acceptable level of safety and reliability as per the licensing bases, while optimizing station production and cost effectiveness. (author)

  6. Pick- and waveform-based techniques for real-time detection of induced seismicity

    Science.gov (United States)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  7. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  8. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  9. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  10. Corporate entrepreneurship in organisational life-cycle

    OpenAIRE

    Duobienė, Jurga

    2013-01-01

    Paper deals with the development of corporate entrepreneurship in different stages of organisational life-cycle. The research presents a model for the evaluation of corporate entrepreneurship and systemises relevant theoretical and empirical research in the field of entrepreneurship and corporate entrepreneurship. Moreover, it describes the development of corporate entrepreneurship in the entire organisational life-cycle since most of researchers who discuss the topics of corporate entreprene...

  11. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Comparative Life Cycle Studies on Poly(3-hydroxybutyrate)-Based Composites as Potential Replacement for Conventional Petrochemical Plastics

    NARCIS (Netherlands)

    Pietrini, M.; Roes, A.L.; Patel, M.K.; Chiellini, E.

    2007-01-01

    A cradle-to-grave environmental life cycle assessment (LCA) of a few poly(3-hydroxybutyrate) (PHB) based composites has been performed and was compared to commodity petrochemical polymers. The end products studied are a cathode ray tube (CRT) monitor housing (conventionally produced from high-impact

  13. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    Science.gov (United States)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  14. Pengaruh Family Control, Firm Size, Firm Risk, Dan Firm Life Cycle Terhadap Profitabilitas Dan Nilai Perusahaan Sektor Industri Barang Konsumsi

    OpenAIRE

    Servin, Servin

    2014-01-01

    This study aims to examine the effect of family control, firm size, firm risk, and firm lifecycle towards profitability and firm's value. Sampels were taken from 27 consumer goodscompanies, listed in Indonesia Stock Exchange, ranging from 2010 – 2012. The hypotheseswere tested using multiple regression analysis. In this study, profitability was measured byROA (Return on Asset) and firm's value was measured by Tobin's q. The result were, familycontrol and life cycle stage-growth had negative i...

  15. Life cycle impact assssment of biobased plastics from sugarcane ethanol

    NARCIS (Netherlands)

    Tsiropoulos, Ioannis; Faaij, André; Lundquist, Lars; Schenker, Urs; Biois, J.F.; Patel, M.K.

    The increasing production of bio-based plastics calls for thorough environmental assessments. Using life cycle assessment, this study compares European supply of fully bio-based high-density polyethylene and partially bio-based polyethylene terephthalate from Brazilian and Indian sugarcane ethanol

  16. Life Cycle Development of Obesity and Its Determinants

    DEFF Research Database (Denmark)

    Cavaco, Sandra; Eriksson, Tor; Skalli, Ali

    This paper is concerned with how obesity and some of its determinants develop over individuals’ life cycles. In particular we examine empirically the role and relative importance of early life conditions (parents’ education and socioeconomic status) and individuals’ own education as adults and how...... their impacts on the probability of overweight and obesity evolves over the life cycle. As the data set includes information about the individuals’ health behaviours (smoking and physical exercise) at various ages we can also examine the impact of these at different stages of the persons’ life cycle. The data......’ socioeconomic status predicts obesity in early adulthood whereas individuals’ own socioeconomic status as adults is more important in explaining obesity at later stages of the life cycle, and (iii) changes in obesity status are associated with changes in health behaviours....

  17. Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures

    Directory of Open Access Journals (Sweden)

    Umberto Vitiello

    2016-12-01

    Full Text Available In the last few years, the renovation and refurbishment of existing buildings have become the main activities of the construction industry. In particular, many studies have recently focused on the mechanical and energy performances of existing retrofitted/refurbished facilities, while some research has addressed the environmental effects of such operations. The present study aims to assess the environmental impact of some retrofit interventions on an existing reinforced concrete (RC building. Once the structural requirements have been satisfied and the environmental effects of these retrofit solutions defined, the final purpose of this study is to identify the most environmentally sustainable retrofit strategy. The environmental impact of the structural retrofit options is assessed using a life-cycle assessment (LCA. This paper sets out a systematic approach that can be adopted when choosing the best structural retrofit option in terms of sustainability performance. The final aim of the study is to also provide a tool for researchers and practitioners that reflects a deep understanding of the sustainability aspects of retrofit operations and can be used for future researches or practical activities.

  18. FY 1997 survey report on information sharing product life-cycle systems. 2; 1997 nendo joho kyoyugata product life cycle system ni kansuru chosa hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Highly value-added products considering a total life-cycle of products by integrating both production and consumption activities are much in demand, and each information corresponding to each product should be realized by concept integrating both information and product as common element. Survey was made on what a social system integrating production and consumption should be, a product information model, and technology integrating both information and product for raw material, industrial machine and household appliance as examples. An information model shared by the whole production and consumption activities was first prepared. Based on this model, data storage, update, retrieval and dispatch technologies were surveyed and developed for life-cycle systems. Degradation and life sensing technology was surveyed for maintenance, repair and disposal activities using proper unstable information of each product. A support system for use of shared information was developed to promote a new highly value-added function. Total evaluation was made on information sharing product life-cycle systems. 10 refs., 23 figs., 7 tabs.

  19. Metadata Life Cycles, Use Cases and Hierarchies

    Directory of Open Access Journals (Sweden)

    Ted Habermann

    2018-05-01

    Full Text Available The historic view of metadata as “data about data” is expanding to include data about other items that must be created, used, and understood throughout the data and project life cycles. In this context, metadata might better be defined as the structured and standard part of documentation, and the metadata life cycle can be described as the metadata content that is required for documentation in each phase of the project and data life cycles. This incremental approach to metadata creation is similar to the spiral model used in software development. Each phase also has distinct users and specific questions to which they need answers. In many cases, the metadata life cycle involves hierarchies where latter phases have increased numbers of items. The relationships between metadata in different phases can be captured through structure in the metadata standard, or through conventions for identifiers. Metadata creation and management can be streamlined and simplified by re-using metadata across many records. Many of these ideas have been developed to various degrees in several Geoscience disciplines and are being used in metadata for documenting the integrated life cycle of environmental research in the Arctic, including projects, collection sites, and datasets.

  20. Specification of life cycle assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Abbaspour, M.; Kargari, N.; Mastouri, R.

    2008-01-01

    Life Cycle Assessment is an environmental management tool for assessing the environmental impacts of a product of a process. life cycle assessment involves the evaluation of environmental impacts through all stages of life cycle of a product or process. In other words life cycle assessment has a c radle to grave a pproach. Some results of life cycle assessment consist of pollution prevention, energy efficient system, material conservation, economic system and sustainable development. All power generation technologies affect the environment in one way or another. The main environmental impact does not always occur during operation of power plant. The life cycle assessment of nuclear power has entailed studying the entire fuel cycle from mine to deep repository, as well as the construction, operation and demolition of the power station. Nuclear power plays an important role in electricity production for several countries. even though the use of nuclear power remains controversial. But due to the shortage of fossil fuel energy resources many countries have started to try more alternation to their sources of energy production. A life cycle assessment could detect all environmental impacts of nuclear power from extracting resources, building facilities and transporting material through the final conversion to useful energy services

  1. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  2. Life Cycle Assessment in the Cereal and Derived Products Sector

    DEFF Research Database (Denmark)

    Renzulli, Pietro A.; Bacenetti, Jacopo; Benedetto, Graziella

    2015-01-01

    environmental improvement in such systems. Following a brief introduction to the cereal sector and supply chain, this chapter reviews some of the current cereal-based life cycle thinking literature, with a particular emphasis on LCA. Next, an analysis of the LCA methodological issues emerging from......This chapter discusses the application of life cycle assessment methodologies to rice, wheat, corn and some of their derived products. Cereal product systems are vital for the production of commodities of worldwide importance that entail particular environmental hot spots originating from...... their widespread use and from their particular nature. It is thus important for tools such as life cycle assessment (LCA) to be tailored to such cereal systems in order to be used as a means of identifying the negative environmental effects of cereal products and highlighting possible pathways to overall...

  3. Investigation into life-cycle costing as a comparative analysis approach of energy systems

    CSIR Research Space (South Africa)

    Mokheseng, B

    2010-08-31

    Full Text Available selection based on a simple payback period. Due to life-cycle stages, often the real costs of the project or equipment, either to the decision maker or the cost bearer, are not reflected by the upfront capital costs. In this paper, the life-cycle costing...

  4. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  5. Proceedings of third Indo-German workshop and theme meeting on seismic safety of structures, risk assessment and disaster mitigation

    International Nuclear Information System (INIS)

    Reddy, G.R.; Parulekar, Y.M.

    2007-01-01

    This Indo-German workshop focuses and emphasises the current research and development activities in both the countries. Themes of this meeting are Earthquake Hazard and Vulnerability Assessment, Risk Assessment Techniques, Seismic Risk to Mega Cities, Testing and Evaluation of Structures and Components, Base Isolation and other Control Techniques, Seismic Strengthening of Structures, Design Practices and Specifications, Remote Sensing and GIS Applications, Structural Materials and Composites, Containment and Other Special Structures. Papers relevant to INIS are indexed separately

  6. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  7. A life cycle framework to support materials selection for Ecodesign: A case study on biodegradable polymers

    International Nuclear Information System (INIS)

    Ribeiro, I.; Peças, P.; Henriques, E.

    2013-01-01

    Highlights: • Life cycle framework to support material selection in Ecodesign. • Early design stage estimates and sensitivity analyses based on process-based models. • Sensitivity analysis to product geometry, industrial context and EoL scenarios. • Cost and environmental performance comparison – BDP vs. fossil based polymers. • Best alternatives mapping integrating cost and environmental performances. - Abstract: Nowadays society compels designers to develop more sustainable products. Ecodesign directs product design towards the goal of reducing environmental impacts. Within Ecodesign, materials selection plays a major role on product cost and environmental performance throughout its life cycle. This paper proposes a comprehensive life cycle framework to support Ecodesign in material selection. Dealing with new materials and technologies in early design stages, process-based models are used to represent the whole life cycle and supply integrated data to assess material alternatives, considering cost and environmental dimensions. An integrated analysis is then proposed to support decision making by mapping the best alternative materials according to the importance given to upstream and downstream life phases and to the environmental impacts. The proposed framework is applied to compare the life cycle performance of injection moulded samples made of four commercial biodegradable polymers with different contents of Thermo Plasticized Starch and PolyLactic Acid and a common fossil based polymer, Polypropylene. Instead of labelling materials just as “green”, the need to fully capture all impacts in the whole life cycle was shown. The fossil based polymer is the best economic alternative, but polymers with higher content of Thermo Plasticized Starch have a better environmental performance. However, parts geometry and EoL scenarios play a major role on the life cycle performance of candidate materials. The selection decision is then supported by mapping

  8. [Discussion on Quality Evaluation Method of Medical Device During Life-Cycle in Operation Based on the Analytic Hierarchy Process].

    Science.gov (United States)

    Zheng, Caixian; Zheng, Kun; Shen, Yunming; Wu, Yunyun

    2016-01-01

    The content related to the quality during life-cycle in operation of medical device includes daily use, repair volume, preventive maintenance, quality control and adverse event monitoring. In view of this, the article aims at discussion on the quality evaluation method of medical devices during their life cycle in operation based on the Analytic Hierarchy Process (AHP). The presented method is proved to be effective by evaluating patient monitors as example. The method presented in can promote and guide the device quality control work, and it can provide valuable inputs to decisions about purchase of new device.

  9. Seismic risk assessment in the Mexican Nuclear Center applying the Gumbel-I distribution

    International Nuclear Information System (INIS)

    Flores R, J.H.; Arguelles F, R.; Camacho L, M.E.; Urrutia F, J.

    1997-01-01

    A licensing requirement for the operation of nuclear facilities is the performance of different kinds of studies, one of which is seismic risk assessment. This study is useful for the validation of the seismic coefficient applied in the structural design of the facilities. Thus, for the construction of a pilot nuclear fuel plant at Mexico Nuclear Centre of the Instituto Nacional de Investigaciones Nucleares (ININ), was necessary to make such study. The seismicity data for the period between 1912 and 1990 were used and the extreme values Gumbel-I distribution was applied to them. With this, ground acceleration seismic risk maps for recurrence periods of 1, 25 and 50 years were drawn up, showing maximum values of 1.2, 4.25, and 5.0 gales, respectively. (Author)

  10. Influences of the Landscape on Life Cycle Carbon Intensity of Biofuels

    Science.gov (United States)

    Adler, P. R.; Del Grosso, S.; Parton, W. J.; Spatari, S.

    2011-12-01

    Biofuels derived from first (sugar and starch based) and second (lignocellulosic) generation agricultural feedstocks will continue to expand into the market between now and 2022 as incentivized through the federal Energy Independence and Security Act (EISA). Nitrogen use is one of the key environmental concerns within the life cycle since it is both the dominant source of life cycle greenhouse gas (GHG) emissions (energy from N fertilizer production and N2O emissions) and poses risks of reactive N movement throughout agricultural landscapes and watersheds. The other dominant components of the feedstock production on life cycle GHG emissions are tillage and land use change impacts on soil organic carbon (SOC). Opportunities to reduce reactive N through winter double crops may satisfy the dual goal of mitigating N2O emissions and reducing NO3 loses while meeting the objectives of EISA. However, changes in N2O, NO3, and SOC are variable within the agricultural landscape due to soil texture, climate, and crop rotation history thereby increasing the complexity of developing mitigation recommendations. Moreover, the inherent variability in N2O emissions makes it difficult to develop single life cycle carbon intensity profiles for specific fuel pathways that apply across the US, since those pathways will have geographic dependencies. Estimating the expected changes in N2O and SOC is an integral part of quantifying the life cycle GHG profile of biofuels derived from winter double crop feedstocks, while NO3 losses affect both indirect N2O emissions and water quality. The biogeochemical model DayCent was used to simulate the impact of growing winter barley as a double crop following corn before soybean establishment during the winter fallow period for six states in the Mid Atlantic region of the Eastern US on SOC and direct and indirect N2O. EPA is currently reviewing the addition of an advanced fuel pathway for winter barley in the Mid Atlantic region as part of the RFS2

  11. Micronutrients in the life cycle: Requirements and sufficient supply

    Directory of Open Access Journals (Sweden)

    K. Biesalski Hans

    2018-06-01

    Full Text Available Macronutrients (fat, protein, carbohydrates deliver energy and important material to ensure the entire body composition. Micronutrients are needed to keep this process of continuous construction and re-construction running. Consequently, the requirement for micronutrients will differ depending on the individual need which is related to the different metabolic conditions within the life cycle. Within the first 1000 days of life, from conception to the end of the second year of life the requirement for micronutrients is high and if the supply is inadequate that might have consequences for physical and at least cognitive development. In particular, iron, iodine, vitamin D and folate are micronutrients which might become critical during that period. Due to the fact that clinical symptoms of deficiencies develop late, but inadequate supply of one or more micronutrients may have consequences for health the term hidden hunger has been introduced to describe that situation. In particular the time period of pregnancy and early childhood is critical and hidden hunger is a worldwide problem, affecting >2 billion people, primarily females and children. The importance of different requirements during the life cycle is usually not considered. In addition, we do not really know what the individual requirement is. The estimation of the requirement is based on studies calculating the supply of a micronutrient to avoid a deficiency disease within a healthy population and is not based on sound scientific methodology or data. We need to consider that at different moments in the life cycle the supply might become critical in particular in case of a disease or sudden increase of metabolic turnover. In this narrative review we summarize data from studies dealing with different micronutrient requirements in pregnancy, exercise, vegan diet, adolescents and elderly. Knowledge of critical periods and related critical micronutrients might help to avoid hidden hunger and

  12. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  13. From life cycle talking to taking action

    NARCIS (Netherlands)

    Potting, J.; Curran, M.A.; Blottnitz, von H.

    2010-01-01

    Introduction - The biannual Life Cycle Management conference series aims to create a platform for users and developers of Life Cycle Assessment (LCA) and related tools to share their experiences. A key concern of the LCM community has been to move beyond the production of LCA reports toward using

  14. Asset life cycle plans: twelve steps to assist strategic decision-making in asset life cycle management

    NARCIS (Netherlands)

    Ruitenburg, Richard Jacob; Braaksma, Anne Johannes Jan; van Dongen, Leonardus Adriana Maria; Carnero, Maria Carmen; Gonzalez-Prida, Vicente

    2017-01-01

    Effective management of physical assets should deliver maximum business value. Therefore, Asset Management standards such as PAS 55 and ISO 55000 ask for a life cycle approach. However, most existing methods focus only on the short term of the asset's life or the estimation of its remaining life.

  15. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    Science.gov (United States)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original

  16. Parameters and criteria for repair and strengthening of buildings in the old town core of Dubrovnik based on seismic risk analysis

    Directory of Open Access Journals (Sweden)

    M. Vladimir

    1995-06-01

    Full Text Available Definition of the seismicity conditions, the design seismic parameters and the seismic risk level are important and inevitable phases ol the complex process of repair and strengthening of existing structures in certain towns located in seismically active areas. These should be studied in all necessary details in order to provide corresponding bases and define the necessary preventive measures against expected strong earthquakes. Such an approach becomes even nlore necessary arter the experience regarding the last catastrophic earthquakes that occurred in Former Yugoslavia (Skopje. Banja Luka, Montenegro coast and Kopaonik and inflicted heavy losses of human lives and material properties. The old town core of Dubrovnik is known for the large concentration of buildings of enorrnous cultural-historic importance. Considering the high seismic activity of this area. all these buildings are very likely to experience heavy damage and failure. Tlie history of the town records many catastrophic earthquakes that inflicted heavy material losses and loss of human lives. Here, we can rnention the great Dubrovnik earthquake of 1667 and the last Montenegro earthquake of April 15, 1979 with an epicenter in the Ulcinj-Bar area. The consequences of the latter are well known. The purpose of this paper is to present some results and experience gained from the investigations performed for the area of Dubro~nikil lustrated by several examples of buildings existing in the old town core of Dubrovnik.

  17. Life cycle assessment of mobile phone housing.

    Science.gov (United States)

    Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru

    2004-01-01

    The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.

  18. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  19. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    International Nuclear Information System (INIS)

    1998-02-01

    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill

  20. ICPP calcined solids storage facility closure study. Volume II: Cost estimates, planning schedules, yearly cost flowcharts, and life-cycle cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This document contains Volume II of the Closure Study for the Idaho Chemical Processing Plant Calcined Solids Storage Facility. This volume contains draft information on cost estimates, planning schedules, yearly cost flowcharts, and life-cycle costs for the four options described in Volume I: (1) Risk-Based Clean Closure; NRC Class C fill, (2) Risk-Based Clean Closure; Clean fill, (3) Closure to landfill Standards; NRC Class C fill, and (4) Closure to Landfill Standards; Clean fill.

  1. Seismic Cycle Variability in Space and Time: The Sumatran Sunda Megathrust as a Behavior Catalog

    Science.gov (United States)

    Philibosian, B.; Sieh, K.; Natawidjaja, D. H.; Avouac, J. P.; Chiang, H. W.; WU, C. C.; Shen, C. C.; Perfettini, H.; Daryono, M. R.; Suwargadi, B. W.

    2015-12-01

    Thanks to the great success of the coral microatoll technique for paleoseismology and paleogeodesy, as well as many recent ruptures, the Sumatran Sunda megathrust has emerged from obscurity to become one of the best-studied faults in the world. Though the reliable historical record is short compared to other areas such as Japan or South America, seismic cycle deformation with high spatial resolution has been reconstructed over multiple cycles based on coral records. This unique level of detail has revealed many complexities that would be difficult to discern using other methods. Some of these features may be specific to the Sumatran case, but it is likely that many other subduction megathrusts and other fault systems exhibit similar behaviors. The low elevations of Holocene corals throughout the outer arc islands indicate little or no active permanent upper plate deformation, suggesting that the Sunda megathrust behaves almost purely elastically. At first order, the fault behavior is well-described by the classical model of fault segmentation with quasi-periodic characteristic ruptures along each segment. Two well-defined segment boundaries, barriers to rupture that persist over multiple seismic cycles, have been identified. However, within each segment there are potentially multiple fault asperities that may rupture individually or combine to form larger events. The Nias-Simeulue segment is relatively short and appears dominated by single end-to-end ruptures, while the longer Mentawai segment characteristically exhibits supercycles. In the supercycle case, each long interseismic period culminates in a temporal cluster of partially overlapping ruptures that in summation relieve stress over the entire segment. Each rupture sequence in our record evolved uniquely, likely indicating that fault slip is controlled by variations in fault frictional properties at spatial scales of ~100 km and temporal scales of a decade. The megathrust is also segmented along dip: the

  2. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  3. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  4. Evaluation of pavement life cycle cost analysis: Review and analysis

    Directory of Open Access Journals (Sweden)

    Peyman Babashamsi

    2016-07-01

    Full Text Available The cost of road construction consists of design expenses, material extraction, construction equipment, maintenance and rehabilitation strategies, and operations over the entire service life. An economic analysis process known as Life-Cycle Cost Analysis (LCCA is used to evaluate the cost-efficiency of alternatives based on the Net Present Value (NPV concept. It is essential to evaluate the above-mentioned cost aspects in order to obtain optimum pavement life-cycle costs. However, pavement managers are often unable to consider each important element that may be required for performing future maintenance tasks. Over the last few decades, several approaches have been developed by agencies and institutions for pavement Life-Cycle Cost Analysis (LCCA. While the transportation community has increasingly been utilising LCCA as an essential practice, several organisations have even designed computer programs for their LCCA approaches in order to assist with the analysis. Current LCCA methods are analysed and LCCA software is introduced in this article. Subsequently, a list of economic indicators is provided along with their substantial components. Collecting previous literature will help highlight and study the weakest aspects so as to mitigate the shortcomings of existing LCCA methods and processes. LCCA research will become more robust if improvements are made, facilitating private industries and government agencies to accomplish their economic aims. Keywords: Life-Cycle Cost Analysis (LCCA, Pavement management, LCCA software, Net Present Value (NPV

  5. DETERMINANTS OF ENTERPRISES LIFE CYCLE IN MODERN CONDITIONS OF DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Alla Polianska

    2016-03-01

    Full Text Available In the article the theoretical basis of organization life cycle research as well as the particularly of the organization life cycle concept implementation for solving of modern targets of enterprises and organizations development are highlighted. The determinants of one life cycle stage transformation to the other at the enterprises, that allows to better understand the conditions of its functioning and to identify factors that affect the viability of the company and its duration, are considered. Management technologies at different stages of organizations life cycle are proposed. Keywords: enterprise, development, organizations life cycle, determinants, Oil and Gas company JEL: M 20

  6. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  7. EVALUATING THE LIFE CYCLE COSTS OF PLANT ASSETS – A MULTIDIMENSIONAL VIEW

    Directory of Open Access Journals (Sweden)

    Markus Gram

    2012-11-01

    Full Text Available This paper shows the results of the task group "Asset life cycle management" of the AustrianScientific Maintenance and Asset Management Association (ÖVIA. One purpose of the researchactivities is to create a generic life cycle model for physical assets which includes all costs in everyphase of the asset life cycle. The first step is a literature review determining the most established lifecycle cost models. This is the input for discussing the completeness of such frameworks with theparticipating industrial companies. A general model is deducted from existing approaches and thedetermined costs are evaluated with respect to priority and practical relevance. The result of theevaluation shows which costs are taken into account for investment decisions. Another outcome ofthe study is the verification of importance of the proposed costs for industrial companies, especiallyfor the process industry. The derived life cycle cost framework is the basis for developing a calculationtool and subsequently, for further research in the flied of uncertainty-based methodologies forlife cycle cost analyzing of physical plant assets.

  8. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment

    OpenAIRE

    Yamín Lacouture, Luis Eduardo; Hurtado Chaparro, Alvaro Ivan; Barbat Barbat, Horia Alejandro; Cardona Arboleda, Omar Dario

    2014-01-01

    A general methodology to evaluate vulnerability functions suitable for a probabilistic global risk assessment is proposed. The methodology is partially based in the methodological approach of the Multi-hazard Loss Estimation Methodology (Hazus) developed by the Federal Emergency Management Agency (FEMA). The vulnerability assessment process considers the resolution, information and limitations established for both the hazard and exposure models adopted. Seismic and wind vulnerability function...

  9. Life cycle cost analysis of alternative vehicles and fuels in Thailand

    International Nuclear Information System (INIS)

    Goedecke, Martin; Therdthianwong, Supaporn; Gheewala, Shabbir H.

    2007-01-01

    High crude oil prices and pollution problems have drawn attention to alternative vehicle technologies and fuels for the transportation sector. The question is: What are the benefits/costs of these technologies for society? To answer this question in a quantitative way, a web-based model (http://vehiclesandfuels.memebot.com) has been developed to calculate the societal life cycle costs, the consumer life cycle costs and the tax for different vehicle technologies. By comparing these costs it is possible to draw conclusions about the social benefit and the related tax structure. The model should help to guide decisions toward optimality, which refers to maximum social benefit. The model was applied to the case of Thailand. The life cycle cost of 13 different alternative vehicle technologies in Thailand have been calculated and the tax structure analyzed

  10. The life cycle of centrioles.

    Science.gov (United States)

    Hatch, E; Stearns, T

    2010-01-01

    Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.

  11. Life Cycle Costing: An Introduction

    DEFF Research Database (Denmark)

    Rödger, Jan-Markus; Kjær, Louise Laumann; Pagoropoulos, Aris

    2018-01-01

    The chapter gives an introduction to life cycle costing (LCC) and how it can be used to support decision-making. It can form the economic pillar in a full life cycle sustainability assessment, but often system delimitations differ depending on the goal and scope of the study. To provide a profound...... as well as guidance on how to collect data to overcome this hurdle. In an illustrative case study on window frames, the eLCC theory is applied and demonstrated with each step along the eLCC procedure described in detail. A final section about advanced LCC introduces how to monetarise externalities and how...

  12. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  13. Seismic risk analysis for the fast breeder prototype SNR-300 in Kalkar (FRG)

    International Nuclear Information System (INIS)

    Hosser, D.

    1983-01-01

    This paper summarizes the seismic part of the SNR-300 Risk Oriented Analysis. Two different approaches were used for the seismic hazard description. In the first one, similar to the German Risk Study for PWR, the seismic input was given by a site-independent mean acceleration response spectrum and duration of strong motion prescribed for the design of the plant; the spectrum was scaled with the peak ground acceleration the probability of exceedance of which at the site Kalkar had been calculated in a former seismic hazard tudy. For the second approach, site- and intensity- dependent mean acceleration response spectra and duration of strong motion were derived and the probability of exceedance of the site intensity was evaluated in a probabilistic seismic hazard analysis. The seismic responses of safety related and other important buildings were calculated by time-history analyses using artificial acceleration time-histories with the given frequency content and duration of strong motion. The influence of uncertainties in dynamic soil parameters and structural modelling was assessed in parametric studies. Some important structural elements within the buildings were investigated in more detail. Their seismic performance was evaluated using ultimate limit state definitions according to the respective design codes or rotation limits for nonlinear dynamic calculations. (orig./RW)

  14. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  15. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    Science.gov (United States)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the

  16. Survey on the life cycle system of a product with shared information; Joho kyoyugata product life cycle system ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report provides and proposes new concept and optimization technology on the life cycle system of product for emission minimum. For the proposed life cycle system of product with shared information, the global emission minimum is realized by considering the final emission, the information is given to the product and shared in all the life cycle system, the information sending function is considered from the product, and the information necessary for material processing are actively used. For this life cycle system of product, development of the information model for the system, development of the technology of data saving, renewing, searching and sending, development of sensing and re-using technologies of the product for life cycle, development of the technology attaching information in the product for emission minimum, design of the guidelines of material composition, and research and development of materials for emission minimum are extracted and provided as tasks. 26 refs., 69 figs., 8 tabs.

  17. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2012-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  18. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2013-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  19. Life extension and life cycle management

    International Nuclear Information System (INIS)

    Hoang, H.

    2010-10-01

    To continue the effort of nuclear energy as the clean energy offsetting the increase in greenhouse gas emission that contributes to the increased global warming effect, the nuclear industry is focused on the optimization of their current nuclear generation assets. Plant life extension (Plex) and Plant life management (Plim), together with power up rate, are the key strategies for the optimization effort. Plex begins with the process to obtain the regulatory approval for an additional 20 years of operation, beyond the current 40-year limit. This highly standardized process consists of the following steps: 1) Scoping: identify the systems, structures and components for inclusion in the license renewal scope of work. 2) Screening: narrow down the selection of the in-scope systems, structures and components based on passive and long-lived characteristics. 3) Aging management review: demonstrate that aging effects will continue to be managed during the additional 20 years of operation. 4) Time limiting aging analyses: confirm the acceptability of design bases analyses that assume the 40-year plant life as a key input assumptions. To provide a consistent approach for the preparation of the license renewal application, the following are the key guidance documents: NUREG-1800: Standard review plan; NUREG-1801: Generic aging lessons learned; Nuclear Energy Institute NEI 95-10. The objectives of Plim are to focus on improving plant reliability/availability, and to plan for equipment upgrades for efficiency improvement as well as technological obsolescence. Plim is a technical evaluation combined with a risk assessment to produce a long-range business plant with a time horizon of 10 years or longer. Due to its long view nature, this plan will be reviewed on a yearly basis for any required adjustments. The technical evaluation consists of the following major steps: 1) Select systems, structures and components with performance deficiencies experience. 2) Collect operating data

  20. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    Science.gov (United States)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  1. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  2. Seismic risk assessment of building based on damaged database of 1995 Hyogoken Nanbu Earthquake; Hyogoken nanbu jishin no hisai database wo mochiita kenchikubutsu no jishin risk hyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, H.; Nobata, A.; Seki, M. [Obayashi Corp., Tokyo (Japan)

    2000-01-10

    The objective of this paper is to evaluate a vulnerability function and a repair cost in terms of each structural damage level based on the damaged database of the 1995 Hyogoken Nanbu Earthquake. The seismic risk of a building in Kobe is calculated through the analytical results. As a result, the following are verified : 1. The expectation of vulnerability function, in which peak ground acceleration is taken for seismic intensity, is about 550 cm/s{sup 2} for minor damage, about 700 cm/s{sup 2} for moderate damage, and about 950 cm/s{sup 2} for major damage respectively. However, the coefficient of variation (C. O. V. ) is about 0.5 for all damage levels. 2. The expectation of repair cost per square meter is about 29000 yen for minor damage, about 60000 yen for moderate damage, and about 64000 yen for major damage respectively. However, the variation is very large, for example, the C. O. V. for repair cost varies from 1.2 to 1.6. 3. The seismic risk of a building in Kobe, that is normalized by new construction cost, is about three percent on condition that the design lifetime is assumed to be 50 years. (author)

  3. A methodology for assessment seismic risk in PSAs

    International Nuclear Information System (INIS)

    Jae, Moo Sung

    2001-01-01

    This paper suggested a new framework for assessing seismic risk in PSAs. The framework used the concepts of requirement and achievement in the reliability physics. The quantified correlation which is a function of the requirement variable (hazard curve) and the achievement variable (fragility curve) results in a quantity, the unconditional frequency of exceeding a damage lelvel. This framework can be applied to any other external safety assessment, such as Fire and Flood Risk in PSAs

  4. Land Use and Land Cover Change in Forest Frontiers: The Role of Household Life Cycles

    Science.gov (United States)

    Walker, Robert

    2002-01-01

    Tropical deforestation remains a critical issue given its present rate and a widespread consensus regarding its implications for the global carbon cycle and biodiversity. Nowhere is the problem more pronounced than in the Amazon basin, home to the world's largest intact, tropical forest. This article addresses land cover change processes at household level in the Amazon basin, and to this end adapts a concept of domestic life cycle to the current institutional environment of tropical frontiers. In particular, it poses a risk minimization model that integrates demography with market-based factors such as transportation costs and accessibility. In essence, the article merges the theory of Chayanov with the household economy framework, in which markets exist for inputs (including labor), outputs, and capital. The risk model is specified and estimated, using survey data for 261 small producers along the Transamazon Highway in the eastern sector of the Brazilian Amazon.

  5. Vertical deformation through a complete seismic cycle at Isla Santa María, Chile

    Science.gov (United States)

    Wesson, Robert L.; Melnick, Daniel; Cisternas, Marco; Moreno, Marcos; Ely, Lisa

    2014-01-01

    Individual great earthquakes are posited to release the elastic strain energy that has accumulated over centuries by the gradual movement of tectonic plates1, 2. However, knowledge of plate deformation during a complete seismic cycle—two successive great earthquakes and the intervening interseismic period—remains incomplete3. A complete seismic cycle began in south-central Chile in 1835 with an earthquake of about magnitude 8.5 (refs 4, 5) and ended in 2010 with a magnitude 8.8 earthquake6. During the first earthquake, an uplift of Isla Santa María by 2.4 to 3 m was documented4, 5. In the second earthquake, the island was uplifted7 by 1.8 m. Here we use nautical surveys made in 1804, after the earthquake in 1835 and in 1886, together with modern echo sounder surveys and GPS measurements made immediately before and after the 2010 earthquake, to quantify vertical deformation through the complete seismic cycle. We find that in the period between the two earthquakes, Isla Santa María subsided by about 1.4 m. We simulate the patterns of vertical deformation with a finite-element model and find that they agree broadly with predictions from elastic rebound theory2. However, comparison with geomorphic and geologic records of millennial coastline emergence8, 9 reveal that 10–20% of the vertical uplift could be permanent.

  6. Engineering Seismic Base Layer for Defining Design Earthquake Motion

    International Nuclear Information System (INIS)

    Yoshida, Nozomu

    2008-01-01

    Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term ''base''. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface

  7. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    Science.gov (United States)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further

  8. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    Science.gov (United States)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences

  9. Life Cycle Impact Assessment Research Developments and Needs

    Science.gov (United States)

    Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...

  10. Human health impacts in the life cycle of future European electricity generation

    International Nuclear Information System (INIS)

    Treyer, Karin; Bauer, Christian; Simons, Andrew

    2014-01-01

    This paper presents Life Cycle Assessment (LCA) based quantification of the potential human health impacts (HHI) of base-load power generation technologies for the year 2030. Cumulative Greenhouse Gas (GHG) emissions per kWh electricity produced are shown in order to provide the basis for comparison with existing literature. Minimising negative impacts on human health is one of the key elements of policy making towards sustainable development: besides their direct impacts on quality of life, HHI also trigger other impacts, e.g. external costs in the health care system. These HHI are measured using the Life Cycle Impact Assessment (LCIA) methods “ReCiPe” with its three different perspectives and “IMPACT2002+”. Total HHI as well as the shares of the contributing damage categories vary largely between these perspectives and methods. Impacts due to climate change, human toxicity, and particulate matter formation are the main contributors to total HHI. Independently of the perspective chosen, the overall impacts on human health from nuclear power and renewables are substantially lower than those caused by coal power, while natural gas can have lower HHI than nuclear and some renewables. Fossil fuel combustion as well as coal, uranium and metal mining are the life cycle stages generating the highest HHI. - Highlights: • Life cycle human health impacts (HHI) due to electricity production are analysed. • Results are shown for the three ReCiPe perspectives and IMPACT2002+LCIA method. • Total HHI of nuclear and renewables are much below those of fossil technologies. • Climate change and human toxicity contribute most to total HHI. • Fossil fuel combustion and coal mining are the most polluting life cycle stages

  11. Optimal fleet conversion policy from a life cycle perspective

    International Nuclear Information System (INIS)

    Hyung Chul Kim; Ross, M.H.; Keoleian, G.A.

    2004-01-01

    Vehicles typically deteriorate with accumulating mileage and emit more tailpipe air pollutants per mile. Although incentive programs for scrapping old, high-emitting vehicles have been implemented to reduce urban air pollutants and greenhouse gases, these policies may create additional sales of new vehicles as well. From a life cycle perspective, the emissions from both the additional vehicle production and scrapping need to be addressed when evaluating the benefits of scrapping older vehicles. This study explores an optimal fleet conversion policy based on mid-sized internal combustion engine vehicles in the US, defined as one that minimizes total life cycle emissions from the entire fleet of new and used vehicles. To describe vehicles' lifetime emission profiles as functions of accumulated mileage, a series of life cycle inventories characterizing environmental performance for vehicle production, use, and retirement was developed for each model year between 1981 and 2020. A simulation program is developed to investigate ideal and practical fleet conversion policies separately for three regulated pollutants (CO, NMHC, and NO x ) and for CO 2 . According to the simulation results, accelerated scrapping policies are generally recommended to reduce regulated emissions, but they may increase greenhouse gases. Multi- objective analysis based on economic valuation methods was used to investigate trade-offs among emissions of different pollutants for optimal fleet conversion policies. (author)

  12. Developing the Social Life Cycle Assessment

    DEFF Research Database (Denmark)

    Jørgensen, Andreas

    social audits. Through an interview with a social auditor it is suggested that the auditor varies the procedures for carrying out the audit in order to get the most valid result. For example, the auditor has to take into account the various tricks a company in a given context normally uses to cheat......This thesis seeks to add to the development of the Social Life Cycle Assessment (SLCA), which can be defined as an assessment method for assessing the social impacts connected to the life cycle of a product, service or system. In such development it is important to realise that the SLCA is only...... appealing to the extent that it does what it is supposed to do. In this thesis, this goal of SLCA is defined as to support improvements of the social conditions for the stakeholders throughout the life cycle of the assessed product, system or service. This effect should arise through decision makers...

  13. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    Science.gov (United States)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  14. Steam generator life cycle management challenges - on-going and new build

    International Nuclear Information System (INIS)

    Spekkens, P.

    2009-01-01

    Ontario Power Generation (OPG) is committed to the safe, reliable, and cost-effective operation of its fleet of CANDU plants. Steam Generators (SGs) are a major component of the heat transport system in these plants and maintaining their health is an essential element to achieving plant safety, reliability and economic performance. OPG has been actively engaged in formal life cycle management of its SGs for about 15 years. Over this time, we have developed stable, mature, detailed life cycle plans for each of our plants on a unit by unit, and in some cases, SG by SG, basis. These plans have been externally reviewed over the years by our regulator and by other third-party experts, and they've been acknowledged as being among the best life cycle plans anywhere. Although we are pleased that our life cycle plans are as detailed and mature as they are, we certainly aren't fully satisfied because they're not perfect. Even if they were perfect at any point in time, they wouldn't be for very long because the environment is constantly changing, both the technical environment and the business environment. This paper presents some of these challenges and offers some possible solutions or suggestions based on OPG's experience. The paper describes the background on SG life cycle management in OPG, i.e. what it is and how we do it. Then it presents challenges in the following areas: despite having some very detailed and technically strong life cycle plans, we still face some technical issues; in addition, we face challenges in integrating these plans into the overall business processes within the company; up until now, our life cycle planning has been aimed at early-and mid-life in our units. But our units are aging and we are now within sight, at least in a life cycle management sense, of a point at which decisions need to be made on refurbishment, life extension or retirement of the units. We need to adjust our life cycle management approach as we approach those major

  15. KOH concentration effect on cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, Hong S.; Verzwyvelt, S. A.

    1987-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  16. Life-cycle analysis of renewable energy systems

    DEFF Research Database (Denmark)

    Sørensen, Bent

    1994-01-01

    An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants......An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants...

  17. Analysis within the systems development life-cycle

    CERN Document Server

    Rock-Evans, Rosemary

    1987-01-01

    Analysis within the Systems Development Life-Cycle: Book 1, Data Analysis-The Deliverables provides a comprehensive treatment of data analysis within the systems development life-cycle and all the deliverables that need to be collected in analysis. The purpose of deliverables is explained and a number of alternative ways of collecting them are discussed. This book is comprised of five chapters and begins with an overview of what """"analysis"""" actually means, with particular reference to tasks such as hardware planning and software evaluation and where they fit into the overall cycle. The ne

  18. Enhancing the seismic margin review methodology to obtain risk insights

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1992-01-01

    This paper discusses methods for obtaining risk insights from the seismic margin review (SMR) methodology. The SMR methodology was originally developed in 1984-1987 with the objective of analyzing an individual nuclear power plant to ascertain whether the plant has the ability to withstand earthquakes substantially beyond the design-basis earthquake without suffering a core-damage accident. Recently, in the context of Nuclear Regulatory Commission's (NRC's) Individual Plant Evaluation for External Events (IPEEE) program, the SMR methodology has been developed further by NRC to allow plants to identify plant-specific vulnerabilities (in the IPEEE sense) to seismic events. The objective of these enhancements has been to provide a methodology for IPEEE seismic review that is substantially less expensive than a full-scope seismic PRA, but that achieves the IPEEE's vulnerability-search objectives. In this paper, the steps involved in the enhanced methodology are discussed

  19. Complex scheme of company image management on the stages of its life cycle

    OpenAIRE

    A.V. Kolodka

    2014-01-01

    The aim of the article. The aim of the article is to create a common integrated circuit image management during a life-cycle of enterprise based on internal and external economic conditions. The results of the analysis. In the article the general scheme of image management during a life-cycle of enterprise based on internal and external economic conditions is formed. There is no single view on the question of forming general concepts and approaches to image building. That threatens making ...

  20. Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)

    Science.gov (United States)

    Ismail-Zadeh, A.

    2013-12-01

    Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.

  1. Innovative predictive maintenance concepts to improve life cycle management

    NARCIS (Netherlands)

    Tinga, Tiedo

    2014-01-01

    For naval systems with typically long service lives, high sustainment costs and strict availability requirements, an effective and efficient life cycle management process is very important. In this paper four approaches are discussed to improve that process: physics of failure based predictive

  2. 19th CIRP Conference on Life Cycle Engineering

    CERN Document Server

    Linke, Barbara

    2012-01-01

    The 19th CIRP Conference on Life Cycle Engineering continues a strong tradition of scientific meetings in the areas of sustainability and engineering within the community of the International Academy for Production Engineering (CIRP). The focus of the conference is to review and discuss the current developments, technology improvements, and future research directions that will allow engineers to help create green businesses and industries that are both socially responsible and economically successful.  The symposium covers a variety of relevant topics within life cycle engineering including Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability, Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, and Supply Chain Management.

  3. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Søndergaard, Roar R.; Jørgensen, Mikkel

    2016-01-01

    based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than...

  4. STAKEHOLDER OPINION-BASED COMPARISON OF LIFE CYCLE ENVIRONMENTAL IMPACTS OF ELECTRICITY GENERATION IN TURKEY WITH SELECTED EUROPEAN COUNTRIES

    OpenAIRE

    Gorkem Uctug

    2017-01-01

    The life cycle environmental impacts of electricity generation in Turkey were compared to those of Denmark, France, and Poland. The reason for selecting these particular countries for benchmarking was the fact that electricity generation in these countries is dominated mostly by a single source, that is wind, nuclear, and coal, respectively. OpenLCA software and European Life Cycle Database database were used, CML2001 method was employed. The life cycle analysis approach was from cradle to gr...

  5. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  6. When Product Life Cycle Meets Customer Activity Cycle

    DEFF Research Database (Denmark)

    Tan, Adrian Ronald

    2007-01-01

    Manufacturing companies have traditionally focused their efforts on designing, developing and producing products to offer on the market. Today global competition and demands for greater company responsibility of products throughout their entire life cycle are driving manufacturing companies to sh...

  7. Implementing Life Cycle Assessment in Product development

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh

    2003-01-01

    The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the envir......The overall aim of the paper is to provide an understanding of the environmental issues involved in the early stages of product development and the capacity of life cycle assessment techniques to address these issues. The paper aims to outline the problems for the designer in evaluating......, and of the opportunities for introducing environmental criteria in the design process through meeting the information requirements of the designer on the different life cycle stages, producing an in-depth understanding of the attitudes of practitioners among product developers to the subject area, and an understanding...... of possible future directions for product development. An Environmentally Conscious Design method is introduced and trade-offs are presented between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are addressed. The paper collects experiences and ideas around...

  8. Optimizing the data life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kilian [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Jung, Christopher [KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2013-07-01

    Today, data play a central role in most fields of Science. In recent years, the amount of data from experiment, observation, and simulation has increased rapidly and the data complexity has grown. Also, communities and shared storage have become geographically more distributed. Therefore, methods and techniques applied for scientific data need to be revised and partially be replaced, while keeping the community-specific needs in focus. The Helmholtz Portfolio Extension ''Large Scale Data Management and Analysis'' (LSDMA) focuses on the optimization of the data life cycle in different research areas. In its five Data Life Cycle Labs (DLCLs), data experts closely collaborate with the communities in joint research and development to optimize the respective data life cycle. In addition, the Data Services Integration Team provides data analysis tools and services which are common to several DLCLs. This presentation describes the various activities within LSDMA and focuses on the work done in the DLCL ''Structure of Matter''. The main topics of this DLCL are the support for the international projects FAIR (Facility for Anti Proton and Ion Research) which will evolve around GSI in Darmstadt and the European XFEL and PETRA III at DESY in Hamburg.

  9. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    Science.gov (United States)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  10. Computer Software for Life Cycle Cost.

    Science.gov (United States)

    1987-04-01

    34 111. 1111I .25 IL4 jj 16 MICROCOPY RESOLUTION TEST CHART hut FILE C AIR CoMMNAMN STFF COLLG STUJDET PORTO i COMpUTER SOFTWARE FOR LIFE CYCLE CO879...obsolete), physical life (utility before physically wearing out), or application life (utility in a given function)." (7:5) The costs are usually

  11. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  12. Managing the Life Cycle Risks of Nanomaterials

    Science.gov (United States)

    2009-07-01

    Nanomaterials Report Research to date focuses predominantly on aquatic organisms of the oceans or seas; no groundwater or soil exposure scenarios have been...pollution, create medical innovations, or develop new materials based on old concepts (e.g., plastics , thin films, and transistors). As already...Risks of Nanomaterials Report consumption, land use, ozone depletion, global warming, acidification , eutrophication, tropospheric ozone formation

  13. Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source

    Science.gov (United States)

    Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe

    2018-05-01

    Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.

  14. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    Science.gov (United States)

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  15. Improving life-cycle cost management in the US. Army: analysis of the U.S. Army and Commercial Businesses life-cycle cost management.

    OpenAIRE

    White, Bradley A.

    2001-01-01

    The roles and responsibilities of the Army acquisition and logistics communities, as they pertain to the life-cycle management, are undergoing fundamental change. The early identification and total control of life-cycle cost, in particular operations and sustainment costs which comprises as much as 70-80% of a systems total life-cycle cost, is a high priority for the Army. The basis of this change is adoption of commercial best practices to support the Army's goal to organize. tram. equip, an...

  16. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  17. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.; Gerya, T. V.; Dalguer, L. A.; Corbi, F.; Funiciello, F.; Mai, Paul Martin

    2013-01-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  18. Development of an Enhanced Generic Data Mining Life Cycle (DMLC)

    OpenAIRE

    Hofmann, Markus; Tierney, Brendan

    2017-01-01

    Data mining projects are complex and have a high failure rate. In order to improve project management and success rates of such projects a life cycle is vital to the overall success of the project. This paper reports on a research project that was concerned with the life cycle development for large scale data mining projects. The paper provides a detailed view of the design and development of a generic data mining life cycle called DMLC. The life cycle aims to support all members of data mini...

  19. Life cycle assesment for glasswool panels of HVAC ducts. External Verification

    Directory of Open Access Journals (Sweden)

    S. Herranz García

    2018-02-01

    Full Text Available This paper presents the current situation of the environmental behavior, throughout its life cycle, of air conditioning ducts made of glass wool panels. Their use is more and more common in the realization of high efficiency installations, frequently replacing sheet metal ducts coated with glass wool blankets, due to the advantages they bring to the installation. The life cycle analysis allows us to quantify the environmental impact of these products. The procedure will be based on the UNE-EN 15804: 2012 + A1 standard, which defines the common framework for harmonizing the structure of Environmental Product Declarations in building materials and gives veracity scientific based on the environmental data provided, when verified by a third part.

  20. The circle of life: A cross-cultural comparison of children's attribution of life-cycle traits.

    Science.gov (United States)

    Burdett, Emily R R; Barrett, Justin L

    2016-06-01

    Do children attribute mortality and other life-cycle traits to all minded beings? The present study examined whether culture influences young children's ability to conceptualize and differentiate human beings from supernatural beings (such as God) in terms of life-cycle traits. Three-to-5-year-old Israeli and British children were questioned whether their mother, a friend, and God would be subject to various life-cycle processes: Birth, death, ageing, existence/longevity, and parentage. Children did not anthropomorphize but differentiated among human and supernatural beings, attributing life-cycle traits to humans, but not to God. Although 3-year-olds differentiated significantly among agents, 5-year-olds attributed correct life-cycle traits more consistently than younger children. The results also indicated some cross-cultural variation in these attributions. Implications for biological conceptual development are discussed. © 2015 The British Psychological Society.

  1. 76 FR 57767 - Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for...

    Science.gov (United States)

    2011-09-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0204] Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for Operating Reactors AGENCY: Nuclear Regulatory Commission... FR 54507), that requested public comment on Draft NRC Generic Letter 2011- XX: Seismic Risk...

  2. Probability problems in seismic risk analysis and load combinations for nuclear power plants

    International Nuclear Information System (INIS)

    George, L.L.

    1983-01-01

    This workshop describes some probability problems in power plant reliability and maintenance analysis. The problems are seismic risk analysis, loss of load probability, load combinations, and load sharing. The seismic risk problem is to compute power plant reliability given an earthquake and the resulting risk. Component survival occurs if its peak random response to the earthquake does not exceed its strength. Power plant survival is a complicated Boolean function of component failures and survivals. The responses and strengths of components are dependent random processes, and the peak responses are maxima of random processes. The resulting risk is the expected cost of power plant failure

  3. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2000-01-01

    . The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows the existing approaches of LCM and discusses their prospects and further development....... concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole and optimizes the interaction of product design, manufacturing and life cycle activities...

  4. Life Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social Sustainability

    OpenAIRE

    Sakellariou, Nikolaos

    2015-01-01

    AbstractLife Cycle Assessment of Energy Systems: Closing the Ethical Loophole of Social SustainabilitybyNikolaos SakellariouDoctor of Philosophy in Environmental Science, Policy, and ManagementUniversity of California, BerkeleyProfessor Alastair T. Iles, ChairThis dissertation investigates the historical and normative bases of what contemporary engineers consider to be the embodiment of sustainability: Life Cycle Assessment (LCA). It explores the interplay among technology ethics, energy syst...

  5. Life cycle assessment of biomass-to-liquid fuels - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  6. Advanced Composite Air Frame Life Cycle Cost Estimating

    Science.gov (United States)

    2014-06-19

    the ACCA based on the cost . This cost analysis takes into account the increased performance parameters of the new airframe structure. This research...20 Advanced Composite Cargo Aircraft ( ACCA ) ..........................................................23 viii Cost Estimation...establishing the procurement strategies and life cycle cost (LCC) model cost estimations. The current LCC models do not take into account the potential cost

  7. Evaluation of Environmental Impacts for Rice Agroecosystems using Life Cycle Assessment (LCA)

    OpenAIRE

    S. Khoramdel; J. Shabahang; A. Amin Ghafouri

    2017-01-01

    In order to evaluate life cycle assessment (LCA) for rice agroecosystems based on mean of nitrogen fertilizer levels (less than 190, 190-200, 200-210, 210-220 and more than 220 kg N ha) during 1999-2012, an experiment was conducted. Four steps includung goal definition and scoping, inventory analysis, life cycle impact assessment and integration and interpretation were computed. Functional unit was considered as one tone paddy. Impact categories were acidification, eutrophication in aquatic a...

  8. Comparison of evaluation guidelines for life-safety seismic hazards

    International Nuclear Information System (INIS)

    Wyllie, L.A.; Love, R.J.

    1989-01-01

    The guidelines presented in Design Evaluation guidelines for Department of Energy Facilities Subjected to natural Phenomena Hazards (UCRL 15910 Draft; May 1989) include evaluation criteria for existing Department of Energy buildings subjected to earthquakes. These criteria were developed at the Lawrence Livermore National Laboratory for use in both the seismic design of new structures and the evaluation of existing structures. ATC-14: Evaluating The Seismic Resistance of Existing Buildings developed by the Applied Technology Council, consists of guidelines and criteria for identifying the buildings or building components that present unacceptable risk to human lives. This paper compares and contrasts the two evaluation guidelines for existing buildings using a prototype building as an example. The prototype building is a seven story, concrete shear wall building assuming a General Use Occupancy

  9. 20th CIRP International Conference on Life Cycle Engineering

    CERN Document Server

    Song, Bin; Ong, Soh-Khim

    2013-01-01

    This edited volume presents the proceedings of the 20th CIRP LCE Conference, which cover various areas in life cycle engineering such as life cycle design, end-of-life management, manufacturing processes, manufacturing systems, methods and tools for sustainability, social sustainability, supply chain management, remanufacturing, etc.

  10. Total Product Life Cycle (TPLC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Total Product Life Cycle (TPLC) database integrates premarket and postmarket data about medical devices. It includes information pulled from CDRH databases...

  11. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    Science.gov (United States)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  12. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    Science.gov (United States)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  13. Residential Preferences and Moving Behavior: A Family Life Cycle Analysis.

    Science.gov (United States)

    McAuley, William J.; Nutty, Cheri L.

    The relationship of family life cycle changes to housing preferences and residential mobility is examined. Two residential decision-making issues are explored in detail--how family life cycle stages influence what people view as important to their choice of residential setting and what individuals at different family life cycle stages view as the…

  14. Seismic risk maps of Switzerland; description of the probabilistic method and discussion of some input parameters

    International Nuclear Information System (INIS)

    Mayer-Rosa, D.; Merz, H.A.

    1976-01-01

    The probabilistic model used in a seismic risk mapping project for Switzerland is presented. Some of its advantages and limitations are spelled out. In addition some earthquake parameters which should be carefully investigated before using them in a seismic risk analysis are discussed

  15. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  16. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  18. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya

    NARCIS (Netherlands)

    Bhochhibhoya, Silu; Pizzol, Massimo; Achten, Wouter M.J.; Maskey, Ramesh Kumar; Zanetti, Michela; Cavalli, Raffaele

    2017-01-01

    Purpose: The main aim of the study is to assess the environmental and economic impacts of the lodging sector located in the Himalayan region of Nepal, from a life cycle perspective. The assessment should support decision making in technology and material selection for minimal environmental and

  19. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    Science.gov (United States)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  20. Indicators for human toxicity in Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Krewitt, Wolfram; Pennington, David W.; Olsen, Stig Irving

    2002-01-01

    The main objectives of this task group under SETAC-Europe’s Second Working Group on Life Cycle Impact Assessment (LCIA-WIA2) were to identify and discuss the suitability of toxicological impact measures for human health for use in characterization in LCIA. The current state of the art of defining......, as well as potency. Quantitative severity-based indicators yield measures in terms of Years of Life Lost (YOLL), Disability Adjusted Life Years (DALY), Quality Adjusted Life Years (QALY) and other similar measures. DALYs and QALYs are examples of approaches that attempt to account for both years of life...... such as No Observed Effect Levels (NOEL). NOELs, and similar data, are determined in laboratory studies using rodents and are then extrapolated to more relevant human measures. Many examples also exist of measures and methods beyond potency-based indicators that attempt to account for differences in expected severity...

  1. Probabilistic Seismic Risk Assessment in Manizales, Colombia:Quantifying Losses for Insurance Purposes

    Institute of Scientific and Technical Information of China (English)

    Mario A.Salgado-Gálvez; Gabriel A.Bernal; Daniela Zuloaga; Mabel C.Marulanda; Omar-Darío Cardona; Sebastián Henao

    2017-01-01

    A fully probabilistic seismic risk assessment was developed in Manizales,Colombia,considering assets of different types.The first type includes elements that are part of the water and sewage network,and the second type includes public and private buildings.This assessment required the development of a probabilistic seismic hazard analysis that accounts for the dynamic soil response,assembling high resolution exposure databases,and the development of damage models for different types of elements.The economic appraisal of the exposed assets was developed together with specialists of the water utilities company of Manizales and the city administration.The risk assessment was performed using several Comprehensive Approach to Probabilistic Risk Assessment modules as well as the R-System,obtaining results in terms of traditional metrics such as loss exceedance curve,average annual loss,and probable maximum loss.For the case of pipelines,repair rates were also estimated.The results for the water and sewage network were used in activities related to the expansion and maintenance strategies,as well as for the exploration of financial retention and transfer alternatives using insurance schemes based on technical,probabilistic,and prospective damage and loss estimations.In the case of the buildings,the results were used in the update of the technical premium values of the existing collective insurance scheme.

  2. Using the Boston Matrix at Identification of the Corporate Life Cycle Stage

    Directory of Open Access Journals (Sweden)

    Zdeněk Konečný

    2015-01-01

    Full Text Available The main aim of this article is to develop a new model supporting the identification of the particular corporate life stage within the corporate life cycle. This model will be derived from the Boston matrix. The main reason for using this approach as the base for making new model of the corporate life cycle is the fact, that every quadrant of the Boston matrix can be assigned to one phase of the product life cycle and there is supposed, that the phase, in which are most products, determines the phase of the corporate life cycle. For application the Boston matrix by identification phases of the corporate life cycle is necessary to define low and high values of both its variables using some quantities from the model of corporate- and market life cycle by Reiners (2004. So the interval of low and high sales growth is determined by comparing sales of the company and sales of the market and furthermore, there is considered the rate of inflation to eliminate the impact of price changes. And for determination low and high market shares, there are compared the shares of sales and shares of total assets. After that, there will be possible to identify all the quadrants and thus all the individual phases unequivocally, which is the basic advantage compared to most existing models of the corporate life cycle. The following aim of this article is to compare the occurrence of individual phases, identified by this modified model, depending on the sector sensitivity to the economic cycle, measured by the coefficient of correlation between sales on the market and GDP. There are selected two sectors of the Czech economy, namely one cyclical and one neutral sector. Subsequently there is selected a sample of companies from both these sectors. The data are collected from financial statements of companies and from analytical materials by the Czech Ministry of Industry and Trade and by the Czech Statistical Office. On the basis of this research, there were recorded

  3. A resource guide to nuclear plant life-cycle management

    International Nuclear Information System (INIS)

    Negin, C.A.; Klein, D.J.

    1993-11-01

    Forecasting the useful economic life of a nuclear unit and addressing the complementary issue of license renewal, both key elements of life cycle management, are complex undertakings. This guide is a resource document emphasizing the technical elements of life cycle management (LCM) with focus on the determination of adequate maintenance programs and the identification of data and records necessary to support them. Information on other life cycle management issues, such as license renewal regulation, is also provided. Because of the volume of information required for LCM evaluations and the need for periodic updating, this Guide is presented as an updatable ''electronic book.''

  4. Destructiveness criteria for seismic risk evaluation of nuclear power plant

    International Nuclear Information System (INIS)

    Saragoni, G.R.

    1995-01-01

    Two criteria of destructiveness for seismic risk evaluation of nuclear power plant are presented. The first one is a simple linear criterion that allows to compute average response spectra in terms of earthquake accelerogram characteristics. The second defines the destructiveness potential factor P D which measures the capacity of earthquake to produce nonlinear damage. This second criterion that shows large differences of destructiveness capacity for earthquake accelerograms of different seismic environment, specially between subductive and transcursive, is strongly recommended. (author). 8 refs., 1 fig. 1 tab

  5. Life cycle management and assessment: approaches and visions towards sustainable manufacturing

    DEFF Research Database (Denmark)

    Westkämper, Engelbert; Alting, Leo; Arndt, Günther

    2001-01-01

    and optimizes the interaction of product design, manufacturing and life cycle activities. The goal of this approach is to protect resources and maximize effectiveness by means of life cycle assessment, product data management, technical support and, last but not least, life cycle costing. This paper shows....... Economically successful business areas can also be explored. Whether new service concepts are required, new regulations have been passed or consumer values are changing, the differences between business areas are disappearing. Life cycle management (LCM) considers the product life cycle as a whole...... the existing approaches of LCM and discusses their prospects and further development....

  6. Seismic testing of the base-isolated PWR spent-fuel storage rack

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Tanaka, Mamoru; Nakamura, Masaaki; Tsujikura, Yonezo.

    1990-01-01

    The present paper aims to verify the seismic safety of the base-isolated spent-fuel storage rack. A series of seismic tests has been conducted using a three-dimensional shaking table. A sliding-type base-isolation system was employed for the prototype rack considering environmental conditions in an actual plant. A non linear seismic response analysis was also performed, and it is verified that the prototype of a base-isolated spent-fuel storage rack has a sufficient seismic safety margin for design seismic conditions from the viewpoint of seismic response. (author)

  7. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Buck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic, M.

    2004-01-01

    In the framework of EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM, Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: - development (RTD); - demonstration (DEMO): - thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: - identification of critical components; - application of a multilevel risk analysis (...from 'screening' to 'detailed analysis'); - determination of PoF (Probability of Failure); - determination of CoF (Consequence of Failure); - optimation of inspection and maintenance plan. From our experience with the application of the RIMAP methodology the following conclusions can be drawn: The use of risk-based methods in inspection and maintenance of piping systems in power plants gives transparency to the decision making process and gives an optimized maintenance policy based on current state of the components. The results of the work clearly show the power of the proposed method for concentration on critical items: out of 64 monitored components 5 were selected for intermediate analysis and only 1 for the detailed analysis (probabilistic high temperature fracture mechanics)

  8. Development and application of basis database for materials life cycle assessment in china

    Science.gov (United States)

    Li, Xiaoqing; Gong, Xianzheng; Liu, Yu

    2017-03-01

    As the data intensive method, high quality environmental burden data is an important premise of carrying out materials life cycle assessment (MLCA), and the reliability of data directly influences the reliability of the assessment results and its application performance. Therefore, building Chinese MLCA database is the basic data needs and technical supports for carrying out and improving LCA practice. Firstly, some new progress on database which related to materials life cycle assessment research and development are introduced. Secondly, according to requirement of ISO 14040 series standards, the database framework and main datasets of the materials life cycle assessment are studied. Thirdly, MLCA data platform based on big data is developed. Finally, the future research works were proposed and discussed.

  9. Short-term planning and the life-cycle consumption puzzle

    OpenAIRE

    Frank Caliendo; David Aadland

    2004-01-01

    This paper provides a new explanation for the hump-shaped age- consumption profile observed in household data. Standard life-cycle models are based on an optimization problem that spans the entire life expectancy. Alternatively, we examine the consumption profile of an individual with a shorter planning horizon. The actual consumption profile is the envelope of a continuum of control problems because the agent’s short-term planning horizon continually slides along the time- scale, and the age...

  10. Evaluation of life-cycle air emission factors of freight transportation.

    Science.gov (United States)

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  11. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  12. Rules of Thumb in Life-Cycle Saving Decisions

    OpenAIRE

    Winter, Joachim; Schlafmann, Kathrin; Rodepeter, Ralf

    2011-01-01

    We analyse life-cycle saving decisions when households use simple heuristics, or rules of thumb, rather than solve the underlying intertemporal optimization problem. We simulate life-cycle saving decisions using three simple rules and compute utility losses relative to the solution of the optimization problem. Our simulations suggest that utility losses induced by following simple decision rules are relatively low. Moreover, the two main saving motives re ected by the canonical life-cyc...

  13. Golden Rules of Financing Related to the Life Cycle of Czech Automotive Firms

    Directory of Open Access Journals (Sweden)

    Konecny Zdenek

    2013-06-01

    Full Text Available Companies go through their life cycle and it is only possible to moderate but not completely eliminate the switchover from one phase to another. Each phase is connected with different financial results as a consequence of financial conditions and financial decisions. The aim of this article is to find out whether the golden rules of financing are (or are not respected, dependent on financial strategy, in sub-phases of the corporate life cycle. It is caused by the fact that the golden rules are indicators of the rate of financial risk and some providers can consider their respecting by deciding to lend capital. However, golden rules of financing are not set strictly and therefore the comparison with market averages is necessary. The research is implemented by analyzing secondary data from financial statements and documents of the Ministry of Industryand Trade of the Czech Republic for years from 2007 to 2011. The sample consists of 43 companies limited by guarantee and joint-stock companies, regardless their size, acting in the Czech automotive industry. Phases of the corporate life cycle are identified according to the model by Dickinson (2010 based on combinations of cash flow values. The research showed that the golden rule of risk compensation is respected especially during maturity, whilst during introduction it is broken and on the market this rule is not respected either. Almost in all companies, regardless the phase, as well as on the whole market are long-term assets financed with long-term sources. During maturity, shake-out and decline the recommended liquidity of the second level is reached, but not the liquidity of the third level, whereas during the introduction and growth is not reached the recommended liquidity of any levels. The market is characterizedwith a sufficient liquidity of the second and insufficient liquidity of the third level. A surprising finding is that the golden ratio rule is, in most periods, respected on the

  14. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  15. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  16. Reliability analysis and risk-based methods for planning of operation & maintenance of offshore wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2017-01-01

    for extreme and fatigue limit states are presented. Operation & Maintenance planning often follows corrective and preventive strategies based on information from condition monitoring and structural health monitoring systems. A reliability- and risk-based approach is presented where a life-cycle approach...

  17. Management system and organizational life cycle: A qualitative study

    OpenAIRE

    Selma Zone Fekih Ahmed

    2013-01-01

    This research deals with the importance of the components of the management system according to the phases of organizational life cycle. The goal of our research is to provide the theoretical reflection on the life cycle of the organization and to shed light on the components of the management system for each phase. The conceptual analysis shows that the management system is made up of its three components: ethics, mode of functioning and procedure of regulation. The organizational life cycle...

  18. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2015-03-01

    Full Text Available In recent years, there has been an increasing interest in Life Cycle Assessment (LCA applied to estimate the cradle-to-grave environmental impact of agricultural products or processes. Furthermore, including in the analysis an economic evaluation, from the perspective of an integrated life cycle approach, appears nowadays as a fundamental improvement. In particular, Life Cycle Costing (LCC, is a method that could integrate financial data and cost information with metrics of life cycle approaches. In this study, LCA in conjunction with LCC methods were used, with the aim to evaluate the main cost drivers—environmental and economic—of five widely diffused and market-valued agricultural productions (organic tomato and pear, integrated wheat, apple and chicory and to combine the results in order to understand the long-term externalities impacts of agricultural productions. Data obtained in local assessment show a wide margin of improvement of resources management at farms level in the short-term, but also allow for the investigation of future effects of environmental impacts not expressed in product price on the market. Reaching a real sustainable model for agriculture could be a value added approach firstly for farmers, but also for all the people who live in rural areas or use agricultural products.

  19. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  20. Designer and Constructor Practices to Ensure Life Cycle Performance

    National Research Council Canada - National Science Library

    Shelton, Joelle

    1998-01-01

    .... Many of these attempts focus on reducing costs and improving functionality, such as life cycle cost analysis and value engineering, while others, such as design-build, focus on specific phases of the life cycle...