WorldWideScience

Sample records for risk-based process safety

  1. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1997-01-01

    The presentation discusses the following issues: The objectives of the risk-based indicator programme. The characteristics of the risk-based indicators. The objectives of risk-based safety indicators - in monitoring safety; in PSA applications. What indicators? How to produce the risk based indicators? PSA requirements

  2. Risk-based safety indicators

    International Nuclear Information System (INIS)

    Sedlak, J.

    2001-12-01

    The report is structured as follows: 1. Risk-based safety indicators: Typology of risk-based indicators (RBIs); Tools for defining RBIs; Requirements for the PSA model; Data sources for RBIs; Types of risks monitored; RBIs and operational safety indicators; Feedback from operating experience; PSO model modification for RBIs; RBI categorization; RBI assessment; RBI applications; Suitable RBI applications. 2. Proposal for risk-based indicators: Acquiring information from operational experience; Method of acquiring safety relevance coefficients for the systems from a PSA model; Indicator definitions; On-line indicators. 3. Annex: Application of RBIs worldwide. (P.A.)

  3. Risk based limits for Operational Safety Requirements

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.

    1993-01-01

    OSR limits are designed to protect the assumptions made in the facility safety analysis in order to preserve the safety envelope during facility operation. Normally, limits are set based on ''worst case conditions'' without regard to the likelihood (frequency) of a credible event occurring. In special cases where the accident analyses are based on ''time at risk'' arguments, it may be desirable to control the time at which the facility is at risk. A methodology has been developed to use OSR limits to control the source terms and the times these source terms would be available, thus controlling the acceptable risk to a nuclear process facility. The methodology defines a new term ''gram-days''. This term represents the area under a source term (inventory) vs time curve which represents the risk to the facility. Using the concept of gram-days (normalized to one year) allows the use of an accounting scheme to control the risk under the inventory vs time curve. The methodology results in at least three OSR limits: (1) control of the maximum inventory or source term, (2) control of the maximum gram-days for the period based on a source term weighted average, and (3) control of the maximum gram-days at the individual source term levels. Basing OSR limits on risk based safety analysis is feasible, and a basis for development of risk based limits is defensible. However, monitoring inventories and the frequencies required to maintain facility operation within the safety envelope may be complex and time consuming

  4. Perceptions about safety and risks in gender-based violence research: implications for the ethics review process.

    Science.gov (United States)

    Sikweyiya, Yandisa; Jewkes, Rachel

    2011-10-01

    Does research on gender-based violence (GBV) pose greater than minimal risk to researchers and participants? This question needs to be understood particularly in light of hesitancy by Institutional Review Boards to approve research on GBV. The safety and risks of doing GBV studies and the implications for the ethical review process have not been a focus of much research. This qualitative study collected data through in-depth interviews with 12 experienced GBV researchers from various countries and a desk review. This paper explores researchers' interpretation of and meanings of the safety recommendations as provided in the WHO guidelines and whether there is empirical evidence on the presence of risks and safety concerns unique to GBV research. Informants raised a number of safety concerns about GBV research, yet in the interviews there were very few examples of problems having occurred, possibly because of the precautions applied. This paper argues that the notion that GBV studies carry greater than minimal risk when ethics precautions are followed is based on speculation, not evidence. It highlights the need for empirical evidence to support assertions of risk in research.

  5. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  6. EFFICIENT QUANTITATIVE RISK ASSESSMENT OF JUMP PROCESSES: IMPLICATIONS FOR FOOD SAFETY

    OpenAIRE

    Nganje, William E.

    1999-01-01

    This paper develops a dynamic framework for efficient quantitative risk assessment from the simplest general risk, combining three parameters (contamination, exposure, and dose response) in a Kataoka safety-first model and a Poisson probability representing the uncertainty effect or jump processes associated with food safety. Analysis indicates that incorporating jump processes in food safety risk assessment provides more efficient cost/risk tradeoffs. Nevertheless, increased margin of safety...

  7. A holistic approach to control process safety risks: Possible ways forward

    International Nuclear Information System (INIS)

    Pasman, H.J.; Knegtering, B.; Rogers, W.J.

    2013-01-01

    system, the process industry is monitoring safety performance indicators. The critical intensity level upon which management must be alarmed is less simple. Risk assessment may be improved, made dynamic, and be a tool of process control by taking account of short-term risk fluctuations based on sensor signals and the influence of human factors with its long-term changes via indicators. Bayesian network can provide the infrastructure. The paper will describe various complexities when applying a holistic control of safety to a process plant in general, and it will more specifically focus on safeguarding measures such as barriers and other controls with some examples. -- Highlights: • Complexity of process installations makes risk control of a process challenging. • Erosive drift by cost pressure and efficiency increase may undermine safety level. • Resilience engineering in socio-psychological context analyzed this successfully. • There is prospect too to develop the technical side of process safety resilience. • Process safety performance indicator information may help to establish risk level

  8. Management by process based systems and safety focus

    International Nuclear Information System (INIS)

    Rydnert, Bo; Groenlund, Bjoern

    2005-12-01

    An initiative from The Swedish Nuclear Power Inspectorate led to this study carried out in the late autumn of 2005. The objective was to understand in more detail how an increasing use of process management affects organisations, on the one hand regarding risks and security, on the other hand regarding management by objectives and other management and operative effects. The main method was interviewing representatives of companies and independent experts. More than 20 interviews were carried out. In addition a literature study was made. All participating companies are using Management Systems based on processes. However, the methods chosen, and the results achieved, vary extensively. Thus, there are surprisingly few examples of complete and effective management by processes. Yet there is no doubt that management by processes is effective and efficient. Overall goals are reached, business results are achieved in more reliable ways and customers are more satisfied. The weaknesses found can be translated into a few comprehensive recommendations. A clear, structured and acknowledged model should be used and the processes should be described unambiguously. The changed management roles should be described and obeyed extremely legibly. New types of process objectives need to be formulated. In addition one fact needs to be observed and effectively fended off. Changes are often met by mental opposition on management level, as well as among co-workers. This fact needs attention and leadership. Safety development is closely related to the design and operation of a business management system and its continual improvement. A deep understanding of what constitutes an efficient and effective management system affects the understanding of safety. safety culture and abilities to achieve safety goals. Concerning risk, the opinions were unambiguous. Management by processes as such does not result in any further risks. On the contrary. Processes give a clear view of production and

  9. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    Zhang, Limao; Wu, Xianguo; Skibniewski, Miroslaw J.; Zhong, Jingbing; Lu, Yujie

    2014-01-01

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  10. Validation of risk-based performance indicators: Safety system function trends

    International Nuclear Information System (INIS)

    Boccio, J.L.; Vesely, W.E.; Azarm, M.A.; Carbonaro, J.F.; Usher, J.L.; Oden, N.

    1989-10-01

    This report describes and applies a process for validating a model for a risk-based performance indicator. The purpose of the risk-based indicator evaluated, Safety System Function Trend (SSFT), is to monitor the unavailability of selected safety systems. Interim validation of this indicator is based on three aspects: a theoretical basis, an empirical basis relying on statistical correlations, and case studies employing 25 plant years of historical data collected from five plants for a number of safety systems. Results using the SSFT model are encouraging. Application of the model through case studies dealing with the performance of important safety systems shows that statistically significant trends in, and levels of, system performance can be discerned which thereby can provide leading indications of degrading and/or improving performances. Methods for developing system performance tolerance bounds are discussed and applied to aid in the interpretation of the trends in this risk-based indicator. Some additional characteristics of the SSFT indicator, learned through the data-collection efforts and subsequent data analyses performed, are also discussed. The usefulness and practicality of other data sources for validation purposes are explored. Further validation of this indicator is noted. Also, additional research is underway in developing a more detailed estimator of system unavailability. 9 refs., 18 figs., 5 tabs

  11. Risk-based rules for crane safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Stian [Section for Control Systems, DNV Maritime, 1322 Hovik (Norway)], E-mail: Stian.Ruud@dnv.com; Mikkelsen, Age [Section for Lifting Appliances, DNV Maritime, 1322 Hovik (Norway)], E-mail: Age.Mikkelsen@dnv.com

    2008-09-15

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented.

  12. Risk-based rules for crane safety systems

    International Nuclear Information System (INIS)

    Ruud, Stian; Mikkelsen, Age

    2008-01-01

    The International Maritime Organisation (IMO) has recommended a method called formal safety assessment (FSA) for future development of rules and regulations. The FSA method has been applied in a pilot research project for development of risk-based rules and functional requirements for systems and components for offshore crane systems. This paper reports some developments in the project. A method for estimating target reliability for the risk-control options (safety functions) by means of the cost/benefit decision criterion has been developed in the project and is presented in this paper. Finally, a structure for risk-based rules is proposed and presented

  13. Safety risk assessment using analytic hierarchy process (AHP) during planning and budgeting of construction projects.

    Science.gov (United States)

    Aminbakhsh, Saman; Gunduz, Murat; Sonmez, Rifat

    2013-09-01

    The inherent and unique risks on construction projects quite often present key challenges to contractors. Health and safety risks are among the most significant risks in construction projects since the construction industry is characterized by a relatively high injury and death rate compared to other industries. In construction project management, safety risk assessment is an important step toward identifying potential hazards and evaluating the risks associated with the hazards. Adequate prioritization of safety risks during risk assessment is crucial for planning, budgeting, and management of safety related risks. In this paper, a safety risk assessment framework is presented based on the theory of cost of safety (COS) model and the analytic hierarchy process (AHP). The main contribution of the proposed framework is that it presents a robust method for prioritization of safety risks in construction projects to create a rational budget and to set realistic goals without compromising safety. The framework provides a decision tool for the decision makers to determine the adequate accident/injury prevention investments while considering the funding limits. The proposed safety risk framework is illustrated using a real-life construction project and the advantages and limitations of the framework are discussed. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  14. Process management - critical safety issues with focus on risk management

    International Nuclear Information System (INIS)

    Sanne, Johan M.

    2005-12-01

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  15. Risk Classification and Risk-based Safety and Mission Assurance

    Science.gov (United States)

    Leitner, Jesse A.

    2014-01-01

    Recent activities to revamp and emphasize the need to streamline processes and activities for Class D missions across the agency have led to various interpretations of Class D, including the lumping of a variety of low-cost projects into Class D. Sometimes terms such as Class D minus are used. In this presentation, mission risk classifications will be traced to official requirements and definitions as a measure to ensure that projects and programs align with the guidance and requirements that are commensurate for their defined risk posture. As part of this, the full suite of risk classifications, formal and informal will be defined, followed by an introduction to the new GPR 8705.4 that is currently under review.GPR 8705.4 lays out guidance for the mission success activities performed at the Classes A-D for NPR 7120.5 projects as well as for projects not under NPR 7120.5. Furthermore, the trends in stepping from Class A into higher risk posture classifications will be discussed. The talk will conclude with a discussion about risk-based safety and mission assuranceat GSFC.

  16. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  17. Risk based maintenance to increase safety and decrease costs

    International Nuclear Information System (INIS)

    Phillips, J.H.

    2000-01-01

    Risk-Based techniques have been developed for commercial nuclear power plants for the last eight years by a team working through the ASME Center for Research and Technology Development (CRTD). System boundaries and success criteria is defined using the Probabilistic Risk Analysis or Probabilistic Safety Analysis developed to meet the Individual Plant Evaluation. Final ranking of components is by a plant expert panel similar to the one developed for the Maintenance Rule. Components are identified as being high risk-significant or low risk-significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of plants. Results from the first risk-based inspection pilot plant indicates safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. Pilot studies on risk-based testing indicate that about 60% of pumps and 25 to 30% of valves in plants are high safety-significant The reduction in inspection and testing reduces the person-rem exposure and resulting in further increases in safety. These techniques have been documented in publications by the ASME CRTD which are referenced. (author)

  18. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  19. Behavior based safety process - a pragmatic approach

    International Nuclear Information System (INIS)

    Sharma, R.K.; Malaikar, N.L.; Belokar, S.G.; Arora, Yashpal

    2009-01-01

    Materials handling, processing and storage of hazardous chemicals has grown exponentially. The chemical industries has reacted to the situation by introducing numerous safety systems such as IS18001, 'HAZOP', safety audits, risk assessment, training etc, which has reduced hazards and improved safety performance, but has not totally eliminated exposure to the hazards. These safety systems aim to bring change in attitude of the persons which is difficult to change or control. However, behaviour of plant personnel can be controlled or improved upon, which should be our aim. (author)

  20. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  1. Risk-based Strategy to Determine Testing Requirement for the Removal of Residual Process Reagents as Process-related Impurities in Bioprocesses.

    Science.gov (United States)

    Qiu, Jinshu; Li, Kim; Miller, Karen; Raghani, Anil

    2015-01-01

    The purpose of this article is to recommend a risk-based strategy for determining clearance testing requirements of the process reagents used in manufacturing biopharmaceutical products. The strategy takes account of four risk factors. Firstly, the process reagents are classified into two categories according to their safety profile and history of use: generally recognized as safe (GRAS) and potential safety concern (PSC) reagents. The clearance testing of GRAS reagents can be eliminated because of their safe use historically and process capability to remove these reagents. An estimated safety margin (Se) value, a ratio of the exposure limit to the estimated maximum reagent amount, is then used to evaluate the necessity for testing the PSC reagents at an early development stage. The Se value is calculated from two risk factors, the starting PSC reagent amount per maximum product dose (Me), and the exposure limit (Le). A worst-case scenario is assumed to estimate the Me value, that is common. The PSC reagent of interest is co-purified with the product and no clearance occurs throughout the entire purification process. No clearance testing is required for this PSC reagent if its Se value is ≥1; otherwise clearance testing is needed. Finally, the point of the process reagent introduction to the process is also considered in determining the necessity of the clearance testing for process reagents. How to use the measured safety margin as a criterion for determining PSC reagent testing at process characterization, process validation, and commercial production stages are also described. A large number of process reagents are used in the biopharmaceutical manufacturing to control the process performance. Clearance testing for all of the process reagents will be an enormous analytical task. In this article, a risk-based strategy is described to eliminate unnecessary clearance testing for majority of the process reagents using four risk factors. The risk factors included

  2. Management by process based systems and safety focus; Verksamhetsstyrning med process-baserade ledningssystem och saekerhetsfokus

    Energy Technology Data Exchange (ETDEWEB)

    Rydnert, Bo; Groenlund, Bjoern [SIS Forum AB, Stockholm (Sweden)

    2005-12-15

    An initiative from The Swedish Nuclear Power Inspectorate led to this study carried out in the late autumn of 2005. The objective was to understand in more detail how an increasing use of process management affects organisations, on the one hand regarding risks and security, on the other hand regarding management by objectives and other management and operative effects. The main method was interviewing representatives of companies and independent experts. More than 20 interviews were carried out. In addition a literature study was made. All participating companies are using Management Systems based on processes. However, the methods chosen, and the results achieved, vary extensively. Thus, there are surprisingly few examples of complete and effective management by processes. Yet there is no doubt that management by processes is effective and efficient. Overall goals are reached, business results are achieved in more reliable ways and customers are more satisfied. The weaknesses found can be translated into a few comprehensive recommendations. A clear, structured and acknowledged model should be used and the processes should be described unambiguously. The changed management roles should be described and obeyed extremely legibly. New types of process objectives need to be formulated. In addition one fact needs to be observed and effectively fended off. Changes are often met by mental opposition on management level, as well as among co-workers. This fact needs attention and leadership. Safety development is closely related to the design and operation of a business management system and its continual improvement. A deep understanding of what constitutes an efficient and effective management system affects the understanding of safety. safety culture and abilities to achieve safety goals. Concerning risk, the opinions were unambiguous. Management by processes as such does not result in any further risks. On the contrary. Processes give a clear view of production and

  3. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  4. Optimized work control process to improve safety and reliability in a risk-based and deregulated environment

    International Nuclear Information System (INIS)

    Anderson, Jon G.; Jeffries, Jeffrey D. E.; Mairs, Todd P.; Rahn, Frank J.

    1999-01-01

    This paper provides an overview of strategic models to assist power generating plants to improve their work control processes. These models include mechanisms to continually keep the process up to date. Included in the work control process are elements for system cost/performance analysis, life-cycle maintenance planning, on-line scheduling and look-ahead techniques, and schedule implementation to conduct work on the asset. The paper also discusses how risk management associated with work control issues that effect the safety and reliability, as well as O and M costs, is integrated into this strategy. The work control process is a pervasive and critical element in the successful implementation of operations and work management programs. While providing a method to implement maintenance activities in a cost-effective manner, the work control process improves plant safety and system reliability

  5. Identification and evaluation of priorities in the business process of a risk or safety organization

    International Nuclear Information System (INIS)

    Teng, Kuei-Yung; Thekdi, Shital A.; Lambert, James H.

    2012-01-01

    Agencies are increasingly following principles and guidelines for the coordination of risk assessment, risk management, and risk communication in large-scale programs. In particular, there is a challenge to comply with the U.S. Office of Management and Budget (OMB) memorandum “Updated Principles for Risk Analysis” among other guidelines. This paper demonstrates a systemic approach to achieve compliance of a risk program with administrative and organizational principles and guidelines for risk analysis. The paper suggests three canonical questions as the mission of such a program: (i) what sources of risks are to be managed by the program, (ii) how should multiple risk assessment, risk management, and risk communication activities be administered and coordinated, and what should be the basis for resource allocation to these activities, and (iii) how will the performance of the program be monitored and evaluated. The paper demonstrates a re-prioritization of policy initiatives of the program based on emergent and future conditions. The approach is useful to agencies implementing risk or safety organizational guidelines such as those of the OMB, the US Government Accountability Office, the US Department of Homeland Security, the US Department of Defense, and others. This paper will be of interest to risk managers; agencies; and risk and safety analysts engaged in the conception, implementation, and evaluation of risk or safety programs. - Highlights: ► We develop a systemic approach for management of a risk or safety program. ► The approach includes business process models and policy prioritization. ► The results support organizations to implement risk and safety programs.

  6. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  7. Formal safety assessment based on relative risks model in ship navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Shenping [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: sphu@mmc.shmtu.edu.cn; Fang Quangen [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: qgfang@mmc.shmtu.edu.cn; Xia Haibo [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: hbxia@mmc.shmtu.edu.cn; Xi Yongtao [Merchant Marine College, Shanghai Maritime University, 1550, Pudong Dadao, Shanghai 200135 (China)]. E-mail: xiyt@mmc.shmtu.edu.cn

    2007-03-15

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

  8. Formal safety assessment based on relative risks model in ship navigation

    International Nuclear Information System (INIS)

    Hu Shenping; Fang Quangen; Xia Haibo; Xi Yongtao

    2007-01-01

    Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice

  9. Thermonuclear generation program: risks and safety

    International Nuclear Information System (INIS)

    Goes, Alexandre Gromann de Araujo

    1999-01-01

    This work deals with the fundamental concepts of risk and safety related to nuclear power generation. In the first chapter, a general evaluation of the various systems for energy generation and their environmental impacts is made. Some definitions for safety and risk are suggested, based on the already existing regulatory processes and also on the current tendencies of risk management. Aspects regarding the safety culture are commented. The International Nuclear Event Scale (INES), a coherent and clear mechanism of communication between nuclear specialists and the general public, is analyzed. The second chapter examines the thermonuclear generation program in Brazil and the role of the National Nuclear Energy Commission. The third chapter presents national and international scenarios in terms of safety and risks, available policies and the main obstacles for future development of nuclear energy and nuclear engineering, and strategies are proposed. In the last chapter, comments about possible trends and recommendations related to practical risk management procedures, taking into account rational criteria for resources distribution and risk reduction are made, envisaging a closer integration between nuclear specialists and the society as a whole, thus decreasing the conflicts in a democratic decision-making process

  10. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  11. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  13. MANAGEMENT PROCESS OF HEALTH AND SAFETY RISK IN THE NIGERIA CONSTRUCTION INDUSTRY

    OpenAIRE

    Akwu, Ifeoma Claris

    2017-01-01

    The study examined the state of health and safety risk management practices in the building sector of the construction industry with the objective to examine the health and safety risk management processes adopted by the construction industry in Nigeria; the study adopted the survey and case study research design. It employed the use of Delphi’s technique in the distribution of questionnaire and made use of chi-square analytical technique for the analysis of gathered data. The findings reveal...

  14. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  15. Licensing process for safety-critical software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland); Pulkkinen, U. [VTT Automation, Espoo (Finland)

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications

  16. Licensing process for safety-critical software-based systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Korhonen, J.; Pulkkinen, U.

    2000-12-01

    System vendors nowadays propose software-based technology even for the most critical safety functions in nuclear power plants. Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of these systems. In the research project 'Programmable automation systems in nuclear power plants (OHA)', financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. As a part of the OHA-work a reference model for the licensing process for software-based safety automation systems is defined. The licensing process is defined as the set of interrelated activities whose purpose is to produce and assess evidence concerning the safety and reliability of the system/application to be licensed and to make the decision about the granting the construction and operation permissions based on this evidence. The parties of the licensing process are the authority, the licensee (the utility company), system vendors and their subcontractors and possible external independent assessors. The responsibility about the production of the evidence in first place lies at the licensee who in most cases rests heavily on the vendor expertise. The evaluation and gauging of the evidence is carried out by the authority (possibly using external experts), who also can acquire additional evidence by using their own (independent) methods and tools. Central issue in the licensing process is to combine the quality evidence about the system development process with the information acquired through tests, analyses and operational experience. The purpose of the licensing process described in this report is to act as a reference model both for the authority and the licensee when planning the licensing of individual applications. Many of the

  17. The new risk paradigm for chemical process security and safety.

    Science.gov (United States)

    Moore, David A

    2004-11-11

    The world of safety and security in the chemical process industries has certainly changed since 11 September, but the biggest challenges may be yet to come. This paper will explain that there is a new risk management paradigm for chemical security, discuss the differences in interpreting this risk versus accidental risk, and identify the challenges we can anticipate will occur in the future on this issue. Companies need to be ready to manage the new chemical security responsibilities and to exceed the expectations of the public and regulators. This paper will outline the challenge and a suggested course of action.

  18. Improved safety culture and labor-management relations attributed to changing at-risk behavior process at Union Pacific.

    Science.gov (United States)

    2009-09-01

    Changing At-Risk Behavior (CAB) is a safety process that is being conducted at Union Pacifics San Antonio Service Unit (SASU) with the aim of improving road and yard safety. CAB is an example of a proactive safety risk-reduction method called Clea...

  19. Proposal for the improvement of IRD safety culture based on risk analysis

    International Nuclear Information System (INIS)

    Aguiar, L.A.; Ferreira, P.R.R.; Silveira, C.S.

    2017-01-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  20. Proposal for the improvement of IRD safety culture based on risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, L.A.; Ferreira, P.R.R. [Instituto de Radioproteção e Dosimetria (DIRAD/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silveira, C.S., E-mail: laguiar@ird.gov.br [Comissão Nacional de Energia Nuclear (DRS/CGMI/CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The Safety Culture (SC) is a concept about the relationship of individuals and organizations towards the safety in a specific activity. Any organization that carries out activities with risks has a SC, even at minimum levels. People perceive different types of radiation risks in very different ways, therefore, to identify and to analysis of the possible radiation risks resulting from normal operation or accident conditions is an important issue in order to improve the SC in organization. The main is to present guidelines for the improvement of the safety culture in the Institute of Radiation Protection and Dosimetry - IRD through on risk-based approach. The methodology proposed here is: A) select a division of the IRD for case study; B) assess the level of the 10 culture safety basic elements of the IRD division selected; C) conduct a survey of the hazards and risks associated with the various activities developed by the division; D) reassess the level of the 10 basic elements of CS; And E) analyze the results and correlate the impact of risk knowledge on safety culture improvement. The expected result is improvement the safety and of safety culture by understanding of radiation risks and hazards relating to work and to the working environment; and thus enforce a collective commitment to safety by teams and individuals and raise the safety culture to higher levels. (author)

  1. Risk-based configuration control: Application of PSA in improving technical specifications and operational safety

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1992-01-01

    Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. A configuration, as used here, is a set of component operability statuses that define the state of a nuclear power plant. If the component configurations that have high risk implications do not occur, then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, to minimize the risk from components being unavailable, becomes difficult, because the status of a standby safety system component is often not apparent unless it is tested. Controlling plant configuration from a risk-perspective can provide more direct risk control and also more operational flexibility by allowing looser controls in areas unimportant to risk. Risk-based configuration control approaches can be used to replace parts of nuclear power plant Technical Specifications. With the advances in probabilistic safety assessment (PSA) technology, such approaches to improve Technical Specifications and operational safety are feasible. In this paper, we present an analysis of configuration risks, and a framework for risk-based configuration control to achieve the desired control of risk-significant configurations during plant operation

  2. The role of hazard- and risk-based approaches in ensuring food safety

    DEFF Research Database (Denmark)

    Barlow, Susan M.; Boobis, Alan R.; Bridges, Jim

    2015-01-01

    action. Risk-based approaches allow consideration of exposure in assessing whether there may be unacceptable risks to health. Scope and approach The advantages and disadvantages of hazard- and risk-based approaches for ensuring the safety of food chemicals, allergens, ingredients and microorganisms were...

  3. Mitigating construction safety risks using prevention through design.

    Science.gov (United States)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Roca, Xavier; Fuertes, Alba

    2010-04-01

    Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD). This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs. Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction. The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Fuzzy-based Prioritization of Health, Safety, and Environmental Risks: The Case of a Large Gas Refinery

    Directory of Open Access Journals (Sweden)

    Auob Mirsaeidi

    2017-01-01

    Full Text Available The main objective of this study was to develop a fuzzy–based framework for the prioritization of health, safety and environment related risks posed against employees, working conditions, and process equipment in large gas refineries. The First Refinery at Pars Special Economic Energy Zone in South of Iran was taken as a case study. For this purpose, health, safety and environment related risks were determined based on the three criteria of impact severity, occurrence probability, and detect-ability using a questionnaire of 33 identified failures. The values obtained were processed by a so-called ‘contribution coefficient’. The results were then subjected to fuzzification and fuzzy rules were defined to calculate the risk level indices as the model outputs, which was then employed to facilitate the management decision-making process by prioritizing the management options. The prioritization values were then classified in six categories in the order of risk severity. Results revealed that failure in a combustion furnace had the highest rank while failure in the slug catcher ranked the lowest among the risk sources. It was also found that about 0.4% of the identified risks prioritized as “intolerable”, 79% as “major”, 20% as “tolerable”, and 0.7% as “minor”. Thus, most of the risks (more than 79% associated with the refinery has the potential of significant risks. The results indicated that the risk of the pollutant emissions from the combustion furnaces is the highest. Exposures to harmful physical, chemical, psychological, and ergonomic substances are the other risks, respectively.

  5. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  6. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    International Nuclear Information System (INIS)

    Kastenberg, William E.; Blandford, Edward; Kim, Lance

    2009-01-01

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public

  7. Making the business case for process safety using value-at-risk concepts

    International Nuclear Information System (INIS)

    Fang, Jayming S.; Ford, David M.; Mannan, M. Sam

    2004-01-01

    An increasing emphasis on chemical process safety over the last two decades has led to the development and application of powerful risk assessment tools. Hazard analysis and risk evaluation techniques have developed to the point where quantitatively meaningful risks can be calculated for processes and plants. However, the results are typically presented in semi-quantitative 'ranked list' or 'categorical matrix' formats, which are certainly useful but not optimal for making business decisions. A relatively new technique for performing valuation under uncertainty, value at risk (VaR), has been developed in the financial world. VaR is a method of evaluating the probability of a gain or loss by a complex venture, by examining the stochastic behavior of its components. We believe that combining quantitative risk assessment techniques with VaR concepts will bridge the gap between engineers and scientists who determine process risk and business leaders and policy makers who evaluate, manage, or regulate risk. We present a few basic examples of the application of VaR to hazard analysis in the chemical process industry

  8. Strengthening air traffic safety management by moving from outcome-based towards risk-based evaluation of runway incursions

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Som, Pradip; Doorn, Bas A. van; Bakker, G.J.

    2016-01-01

    Current safety management of aerodrome operations uses judgements of severity categories to evaluate runway incursions. Incident data show a small minority of severe incursions and a large majority of less severe incursions. We show that these severity judgements are mainly based upon the outcomes of runway incursions, in particular on the closest distances attained. As such, the severity-based evaluation leads to coincidental safety management feedback, wherein causes and risk implications of runway incursions are not well considered. In this paper we present a new framework for the evaluation of runway incursions, which effectively uses all runway incursions, which judges same types of causes similarly, and which structures causes and risk implications. The framework is based on risks of scenarios associated with the initiation of runway incursions. As a basis an inventory of scenarios is provided, which can represent almost all runway incursions involving a conflict with an aircraft. A main step in the framework is the assessment of the conditional probability of a collision given a runway incursion scenario. This can be effectively achieved for large sets of scenarios by agent-based dynamic risk modelling. The results provide detailed feedback on risks of runway incursion scenarios, thus enabling effective safety management. - Highlights: • Current evaluation of runway incursions is primarily based on their outcomes. • A new framework assesses collision risk given initiation of runway incursions. • Agent-based dynamic risk modelling can evaluate the risks of many scenarios. • A developed scenario inventory can represent almost all runway incursions. • The framework provides detailed feedback to safety management.

  9. The challenge of defining risk-based metrics to improve food safety: inputs from the BASELINE project.

    Science.gov (United States)

    Manfreda, Gerardo; De Cesare, Alessandra

    2014-08-01

    In 2002, the Regulation (EC) 178 of the European Parliament and of the Council states that, in order to achieve the general objective of a high level of protection of human health and life, food law shall be based on risk analysis. However, the Commission Regulation No 2073/2005 on microbiological criteria for foodstuffs requires that food business operators ensure that foodstuffs comply with the relevant microbiological criteria. Such criteria define the acceptability of a product, a batch of foodstuffs or a process, based on the absence, presence or number of micro-organisms, and/or on the quantity of their toxins/metabolites, per unit(s) of mass, volume, area or batch. The same Regulation describes a food safety criterion as a mean to define the acceptability of a product or a batch of foodstuff applicable to products placed on the market; moreover, it states a process hygiene criterion as a mean indicating the acceptable functioning of the production process. Both food safety criteria and process hygiene criteria are not based on risk analysis. On the contrary, the metrics formulated by the Codex Alimentarius Commission in 2004, named Food Safety Objective (FSO) and Performance Objective (PO), are risk-based and fit the indications of Regulation 178/2002. The main aims of this review are to illustrate the key differences between microbiological criteria and the risk-based metrics defined by the Codex Alimentarius Commission and to explore the opportunity and also the possibility to implement future European Regulations including PO and FSO as supporting parameters to microbiological criteria. This review clarifies also the implications of defining an appropriate level of human protection, how to establish FSO and PO and how to implement them in practice linked to each other through quantitative risk assessment models. The contents of this review should clarify the context for application of the results collected during the EU funded project named BASELINE (www

  10. The role of hazard- and risk-based approaches in ensuring food safety

    OpenAIRE

    Barlow, Susan M.; Boobis, Alan R.; Bridges, Jim; Cockburn, Andrew; Dekant, Wolfgang; Hepburn, Paul; Houben, Geert F.; König, Jürgen; Nauta, Maarten; Schuermans, Jeroen; Bánáti, Diána

    2015-01-01

    BackgroundFood legislation in the European Union and elsewhere includes both hazard- and risk-based approaches for ensuring safety. In hazard-based approaches, simply the presence of a potentially harmful agent at a detectable level in food is used as a basis for legislation and/or risk management action. Risk-based approaches allow consideration of exposure in assessing whether there may be unacceptable risks to health.Scope and approachThe advantages and disadvantages of hazard- and risk-ba...

  11. A Study on the Estimation Method of Risk Based Area for Jetty Safety Monitoring

    Directory of Open Access Journals (Sweden)

    Byeong-Wook Nam

    2015-09-01

    Full Text Available Recently, the importance of safety-monitoring systems was highlighted by the unprecedented collision between a ship and a jetty in Yeosu. Accordingly, in this study, we introduce the concept of risk based area and develop a methodology for a jetty safety-monitoring system. By calculating the risk based areas for a ship and a jetty, the risk of collision was evaluated. To calculate the risk based areas, we employed an automatic identification system for the ship, stopping-distance equations, and the regulation velocity near the jetty. In this paper, we suggest a risk calculation method for jetty safety monitoring that can determine the collision probability in real time and predict collisions using the amount of overlap between the two calculated risk based areas. A test was conducted at a jetty control center at GS Caltex, and the effectiveness of the proposed risk calculation method was verified. The method is currently applied to the jetty-monitoring system at GS Caltex in Yeosu for the prevention of collisions.

  12. Risk-based evaluation tool for safety-related maintenance involving scaffolding

    International Nuclear Information System (INIS)

    Stevens, C.; Azizi, M.; Massman, M.

    1988-01-01

    The US Nuclear Regulatory Commission (NRC) has expressed a general concern that transient materials in and around safety systems at nuclear power plants represent a seismic safety hazard to the plant, in particular, the uncontrolled use of scaffolding during maintenance activities. Currently, most plants perform a seismic safety analysis for all uses of scaffolding near safety-related equipment to determine appropriate tie-down locations, scaffolding reinforcements, etc. This is both time-consuming and, for the most part, unnecessary. A workable engineering solution based on risk analysis techniques has been developed and is being used at the Palo Verde nuclear generating station (PVNGS)

  13. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  14. Marked point process framework for living probabilistic safety assessment and risk follow-up

    International Nuclear Information System (INIS)

    Arjas, Elja; Holmberg, Jan

    1995-01-01

    We construct a model for living probabilistic safety assessment (PSA) by applying the general framework of marked point processes. The framework provides a theoretically rigorous approach for considering risk follow-up of posterior hazards. In risk follow-up, the hazard of core damage is evaluated synthetically at time points in the past, by using some observed events as logged history and combining it with re-evaluated potential hazards. There are several alternatives for doing this, of which we consider three here, calling them initiating event approach, hazard rate approach, and safety system approach. In addition, for a comparison, we consider a core damage hazard arising in risk monitoring. Each of these four definitions draws attention to a particular aspect in risk assessment, and this is reflected in the behaviour of the consequent risk importance measures. Several alternative measures are again considered. The concepts and definitions are illustrated by a numerical example

  15. Implementing a least cost and risk focused maintenance process

    International Nuclear Information System (INIS)

    Darling, S.S.

    1996-01-01

    The paper will focus on the vital role maintenance, big ''M'' (spares, PM program, planning and scheduling, turning the wrench), has in preserving return of investment, and safety in operation of high risk high value facilities/platforms. The maintenance process of today and for the future must utilize risk assessment and reliability engineering techniques to prioritize plant resources. The new process must provide for high levels of safety assurance yet allow for improved generation and transmission capacity while maintaining adequate system reliability. This approach ultimately leads to continuous and sustained reduction in operating cost, improved production capacity, and a safety culture based upon a risk determent cost-beneficial decision process

  16. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    Science.gov (United States)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  17. The role of hazard- and risk-based approaches in ensuring food safety

    NARCIS (Netherlands)

    Barlow, S.M.; Boobis, A.R.; Bridges, J.; Cockburn, A.; Dekant, W.; Hepburn, P.; Houben, G.F.; König, J.; Nauta, M.J.; Schuermans, J.; Bánáti, D.

    2015-01-01

    Background: Food legislation in the European Union and elsewhere includes both hazard- and risk-based approaches for ensuring safety. In hazard-based approaches, simply the presence of a potentially harmful agent at a detectable level in food is used as a basis for legislation and/or risk management

  18. Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation.

    Science.gov (United States)

    Badri, Adel; Nadeau, Sylvie; Gbodossou, André

    2012-09-01

    Excluding occupational health and safety (OHS) from project management is no longer acceptable. Numerous industrial accidents have exposed the ineffectiveness of conventional risk evaluation methods as well as negligence of risk factors having major impact on the health and safety of workers and nearby residents. Lack of reliable and complete evaluations from the beginning of a project generates bad decisions that could end up threatening the very existence of an organization. This article supports a systematic approach to the evaluation of OHS risks and proposes a new procedure based on the number of risk factors identified and their relative significance. A new concept called risk factor concentration along with weighting of risk factor categories as contributors to undesirable events are used in the analytical hierarchy process multi-criteria comparison model with Expert Choice(©) software. A case study is used to illustrate the various steps of the risk evaluation approach and the quick and simple integration of OHS at an early stage of a project. The approach allows continual reassessment of criteria over the course of the project or when new data are acquired. It was thus possible to differentiate the OHS risks from the risk of drop in quality in the case of the factory expansion project. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. ESTIMATION OF PROCESSES REALIZATION RISK AS A MANNER OF SAFETY MANAGEMENT IN THE INTEGRATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tatiana Karkoszka

    2011-12-01

    Full Text Available Realization of quality, environmental and occupational health and safety policy using the proposed model of processes' integrated risk estimation leads to the improvement of the analyzed productive processes by the preventive and corrective actions, and in consequence - to their optimization from the point of view of products' quality and in the aspect of quality of environmental influence and occupational health and safety.

  20. ESTIMATION OF PROCESSES REALIZATION RISK AS A MANNER OF SAFETY MANAGEMENT IN THE INTEGRATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tatiana Karkoszka

    2011-06-01

    Full Text Available Realization of quality, environmental and occupational health and safety policy using the proposed model of processes' integrated risk estimation leads to the improvement of the analyzed productive processes by the preventive and corrective actions, and in consequence - to their optimization from the point of view of products' quality and in the aspect of quality of environmental influence and occupational health and safety.

  1. A strategy for the risk-based inspection of pressure safety valves

    International Nuclear Information System (INIS)

    Chien, C.-H.; Chen, C.-H.; Chao, Y.J.

    2009-01-01

    The purpose of a pressure safety valve (PSV) is to protect the life and safety of pressure vessels in a pressurized system. If a weakened PSV fails to function properly, a catastrophic event might occur if no other protective means are provided. By utilizing the as-received test data and statistical analysis of the aging conditions of PSVs in lubricant process units, a risk-based inspection (RBI) system was developed in this study. First of all, the characteristics of PSV were discussed from the practical viewpoint of engineering inspection and maintenance. The as-received test data, which shows obvious PSV damage, will be separated from the data used in the following statistical analysis. Then, the relationship between the aging conditions and the corresponding PSV parameters was analyzed by using the statistical technique-analysis of variance (ANOVA). Finally, a strategy for semi-quantitative RBI is proposed. Also, a definitive estimated inspection interval for every PSV is suggested. The outcome indicated most of the risks result from a few PSVs, for which the corresponding inspection intervals will be shorter than the 2 years in accordance with relative standards and local government regulations

  2. Process management - critical safety issues with focus on risk management; Processtyrning - kritiska saekerhetsfraagor med inriktning paa riskhantering

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, Johan M. [Linkoeping Univ. (Sweden). The Tema Inst. - Technology and Social Change

    2005-12-15

    Organizational changes focused on process orientation are taking place among Swedish nuclear power plants, aiming at improving the operation. The Swedish Nuclear Power Inspectorate has identified a need for increased knowledge within the area for its regulatory activities. In order to analyze what process orientation imply for nuclear power plant safety a number of questions must be asked: 1. How is safety in nuclear power production created currently? What significance does the functional organization play? 2. How can organizational forms be analysed? What consequences does quality management have for work and for the enterprise? 3. Why should nuclear power plants be process oriented? Who are the customers and what are their customer values? Which customers are expected to contribute from process orientation? 4. What can one learn from process orientation in other safety critical systems? What is the effect on those features that currently create safety? 5. Could customer values increase for one customer without decreasing for other customers? What is the relationship between economic and safety interests from an increased process orientation? The deregulation of the electricity market have caused an interest in increased economic efficiency, which is the motivation for the interest in process orientation. among other means. It is the nuclear power plants' owners and the distributors (often the same corporations) that have the strongest interest in process orientation. If the functional organization and associated practices are decomposed, the prerequisites of the risk management regime changes, perhaps deteriorating its functionality. When nuclear power operators consider the introduction of process orientation, the Nuclear Power Inspectorate should require that 1. The operators perform a risk analysis beforehand concerning the potential consequences that process orientation might convey: the analysis should contain a model specifying how safety is currently

  3. A process for risk-focused maintenance

    International Nuclear Information System (INIS)

    Lofgren, E.V.; Cooper, S.E.; Kurth, R.E.; Phillips, L.B.

    1991-03-01

    This report presents a process for focusing maintenance resources on components that enable nuclear plant systems to perform their essential functions and on components whose failure may initiate challenges to safety systems, so as to have the greatest impact in decreasing risk. The process provides criteria, based on risk, for deciding which components are critical to risk and determining what maintenance activities are required to ensure reliable operation of those risk-critical components. Two approaches are provided for selection of risk-critical components. One approach uses the results of a Probabilistic Risk Assessment (PRA); the other is based on the methodology developed for this report, which has a basis in PRA although it does not use the results of a PRA study. Following identification of risk-critical components, both approaches use a single methodology for determining what maintenance activities are required to ensure reliable operation of the identified components. The report also provides demonstrations of application of the two approaches to selection of risk-critical components and demonstrations of application of the methodology for determining what maintenance activities are required to an active standby safety system, a normally operating system, and passive components. 5 refs., 11 figs., 1 tab

  4. A process for risk-focused maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lofgren, E.V.; Cooper, S.E.; Kurth, R.E.; Phillips, L.B. (Science Applications International Corp., McLean, VA (USA))

    1991-03-01

    This report presents a process for focusing maintenance resources on components that enable nuclear plant systems to perform their essential functions and on components whose failure may initiate challenges to safety systems, so as to have the greatest impact in decreasing risk. The process provides criteria, based on risk, for deciding which components are critical to risk and determining what maintenance activities are required to ensure reliable operation of those risk-critical components. Two approaches are provided for selection of risk-critical components. One approach uses the results of a Probabilistic Risk Assessment (PRA); the other is based on the methodology developed for this report, which has a basis in PRA although it does not use the results of a PRA study. Following identification of risk-critical components, both approaches use a single methodology for determining what maintenance activities are required to ensure reliable operation of the identified components. The report also provides demonstrations of application of the two approaches to selection of risk-critical components and demonstrations of application of the methodology for determining what maintenance activities are required to an active standby safety system, a normally operating system, and passive components. 5 refs., 11 figs., 1 tab.

  5. Guidance on the implementation of a risk based safety performance monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Sewell, R.T.; Kuritzky, A.S.; Khatib-Rahbar, M.

    1997-05-01

    The principal objective of the present study is to review and evaluate existing Performance Indicator (PI) monitoring programs, and to develop and demonstrate an overall PSA-based methodology and framework for the monitoring and use of risk-based PIs and SIs (Safety Indicator), that would enable: Identification of trends and patterns in safety performance at a specific plant and a population of plants; Assessment of the significance of the trends and patterns; Identification of precursors of accident sequences and safety reductions; Identification of the most critical functional areas of concern, especially as they relate to a defense-in-depth safety philosophy; Comparison of safety performance trends at a plant with those at comparable plants; Incorporation of the PIs and SIs into a risk- and performance-based decision process. To support the overall project objective, it is important that information needs and data collection procedures are clearly outlined. Of key significance in this regard is the premise that a performance monitoring system should not be burdened by an excessive number of low-level PIs that may have only a peripheral relationship to safety. Other supporting objectives of the study include: To identify and discuss other issues pertaining to the practical implementation of a safety performance monitoring system (outlining the databases and algorithms needed); and to demonstrate implementation of the preliminary guidance for monitoring and use of the selected set of PIs and SIs, within the proposed framework, via application to the operating history of a NPP having a PSA and readily available event data

  6. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    Science.gov (United States)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  7. Risk analysis and safety rationale

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1989-01-01

    Decision making with respect to safety is becoming more and more complex. The risk involved must be taken into account together with numerous other factors such as the benefits, the uncertainties and the public perception. Can the decision maker be aided by some kind of system, general rules of thumb, or broader perspective on similar decisions? This question has been addressed in a joint Nordic project relating to nuclear power. Modern techniques for risk assessment and management have been studied, and parallels drawn to such areas as offshore safety and management of toxic chemicals in the environment. The report summarises the finding of 5 major technical reports which have been published in the NORD-series. The topics includes developments, uncertainties and limitations in probabilistic safety assessments, negligible risks, risk-cost trade-offs, optimisation of nuclear safety and radiation protection, and the role of risks in the decision making process. (author) 84 refs

  8. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    International Nuclear Information System (INIS)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues

  9. Application of the risk-based strategy to the Hanford tank waste organic-nitrate safety issue

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, V.L.; Colson, S.D.; Ferryman, T.; Gephart, R.E.; Heasler, P.; Scheele, R.D.

    1997-12-01

    This report describes the results from application of the Risk-Based Decision Management Approach for Justifying Characterization of Hanford Tank Waste to the organic-nitrate safety issue in Hanford single-shell tanks (SSTs). Existing chemical and physical models were used, taking advantage of the most current (mid-1997) sampling and analysis data. The purpose of this study is to make specific recommendations for planning characterization to help ensure the safety of each SST as it relates to the organic-nitrate safety issue. An additional objective is to demonstrate the viability of the Risk-Based Strategy for addressing Hanford tank waste safety issues.

  10. Risk-Based Predictive Maintenance for Safety-Critical Systems by Using Probabilistic Inference

    Directory of Open Access Journals (Sweden)

    Tianhua Xu

    2013-01-01

    Full Text Available Risk-based maintenance (RBM aims to improve maintenance planning and decision making by reducing the probability and consequences of failure of equipment. A new predictive maintenance strategy that integrates dynamic evolution model and risk assessment is proposed which can be used to calculate the optimal maintenance time with minimal cost and safety constraints. The dynamic evolution model provides qualified risks by using probabilistic inference with bucket elimination and gives the prospective degradation trend of a complex system. Based on the degradation trend, an optimal maintenance time can be determined by minimizing the expected maintenance cost per time unit. The effectiveness of the proposed method is validated and demonstrated by a collision accident of high-speed trains with obstacles in the presence of safety and cost constrains.

  11. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    Science.gov (United States)

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. © 2015 Society for Risk Analysis.

  12. Safety applications of computer based systems for the process industry

    International Nuclear Information System (INIS)

    Bologna, Sandro; Picciolo, Giovanni; Taylor, Robert

    1997-11-01

    Computer based systems, generally referred to as Programmable Electronic Systems (PESs) are being increasingly used in the process industry, also to perform safety functions. The process industry as they intend in this document includes, but is not limited to, chemicals, oil and gas production, oil refining and power generation. Starting in the early 1970's the wide application possibilities and the related development problems of such systems were recognized. Since then, many guidelines and standards have been developed to direct and regulate the application of computers to perform safety functions (EWICS-TC7, IEC, ISA). Lessons learnt in the last twenty years can be summarised as follows: safety is a cultural issue; safety is a management issue; safety is an engineering issue. In particular, safety systems can only be properly addressed in the overall system context. No single method can be considered sufficient to achieve the safety features required in many safety applications. Good safety engineering approach has to address not only hardware and software problems in isolation but also their interfaces and man-machine interface problems. Finally, the economic and industrial aspects of the safety applications and development of PESs in process plants are evidenced throughout all the Report. Scope of the Report is to contribute to the development of an adequate awareness of these problems and to illustrate technical solutions applied or being developed

  13. Application of risk-based methodologies to prioritize safety resources

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Hosler, J.

    1993-01-01

    The Electric Power Research Institute (EPRI) started a program entitled risk-based prioritization in 1992. The purpose of this program is to provide generic technical support to the nuclear power industry relative to its recent initiatives in the area of operations and maintenance (O ampersand M) cost control using state-of-the-art risk methods. The approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate resources commensurate with the risk posed by nuclear plant operations. Specifically, those items or events that have high risk significance would receive the most attention, while those with little risk content would command fewer resources. As quantified in a companion paper,close-quote the potential O ampersand M cost reduction inherent in this approach is very large. Furthermore, risk-based methods should also lead to safety improvements. This paper outlines the way that the EPRI technical work complements the technical, policy, and regulatory initiatives taken by others in the industry and provides an example of the approach as used to prioritize motor-operated valve (MOV) testing in response to US Nuclear Regulatory Commission (NRC) Generic Letter 89-10

  14. Risk assessment by the occupational safety and health at work in the process of geological exploration

    Directory of Open Access Journals (Sweden)

    Staletović Novica M.

    2015-01-01

    Full Text Available This paper presents a model of risk assessment in terms of safety and health at work in the process of geological work/ drilling. Optimization model estimates OH & S risk for work place qualified driller, is in line with the provisions of the Mining and Geological exploration, the Law on Safety and Health at Work, the application of the requirements of ISO 31000 and criteria Kinny methods. Model estimates OH & S risks is the basis for the development and implementation of the management system of protection of health and safety at work according to BS OHSAS 18001: 2008 model is applied, checked and verified the approved exploration areas during execution and supervision applied geological exploration (of metals on the territory of the Republic of Serbia.

  15. Risk Level Based Management System: a control banding model for occupational health and safety risk management in a highly regulated environment

    Energy Technology Data Exchange (ETDEWEB)

    Zalk, D; Kamerzell, R; Paik, S; Kapp, J; Harrington, D; Swuste, P

    2009-05-27

    The Risk Level Based Management System (RLBMS) is an occupational risk management (ORM) model that focuses occupational safety, hygeiene, and health (OSHH) resources on the highest risk procedures at work. This article demonstrates the model's simplicity through an implementation within a heavily regulated research institution. The model utilizes control banding strategies with a stratification of four risk levels (RLs) for many commonly performed maintenance and support activities, characterizing risk consistently for comparable tasks. RLBMS creates an auditable tracking of activities, maximizes OSHH professional field time, and standardizes documentation and control commensurate to a given task's RL. Validation of RLs and their exposure control effectiveness is collected in a traditional quantitative collection regime for regulatory auditing. However, qualitative risk assessment methods are also used within this validation process. Participatory approaches are used throughout the RLBMS process. Workers are involved in all phases of building, maintaining, and improving this model. This work participation also improves the implementation of established controls.

  16. WTS - Risk Based Resource Targeting (RBRT) -

    Data.gov (United States)

    Department of Transportation — The Risk Based Resource Targeting (RBRT) application supports a new SMS-structured process designed to focus on safety oversight of systems and processes rather than...

  17. A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2004-01-01

    A risk-informed safety significance categorization (RISSC) is to categorize structures, systems, or components (SSCs) of a nuclear power plant (NPP) into two or more groups, according to their safety significance using both probabilistic and deterministic insights. In the conventional methods for the RISSC, the SSCs are quantitatively categorized according to their importance measures for the initial categorization. The final decisions (categorizations) of SSCs, however, are qualitatively made by an expert panel through discussions and adjustments of opinions by using the probabilistic insights compiled in the initial categorization process and combining the probabilistic insights with the deterministic insights. Therefore, owing to the qualitative and linear decision-making process, the conventional methods have the demerits as follows: (1) they are very costly in terms of time and labor, (2) it is not easy to reach the final decision, when the opinions of the experts are in conflict and (3) they have an overlapping process due to the linear paradigm (the categorization is performed twice - first, by the engineers who propose the method, and second, by the expert panel). In this work, a method for RISSC using the analytic hierarchy process (AHP) and bayesian belief networks (BBN) is proposed to overcome the demerits of the conventional methods and to effectively arrive at a final decision (or categorization). By using the AHP and BBN, the expert panel takes part in the early stage of the categorization (that is, the quantification process) and the safety significance based on both probabilistic and deterministic insights is quantified. According to that safety significance, SSCs are quantitatively categorized into three categories such as high safety significant category (Hi), potentially safety significant category (Po), or low safety significant category (Lo). The proposed method was applied to the components such as CC-V073, CV-V530, and SI-V644 in Ulchin Unit

  18. Optimizing Processes to Minimize Risk

    Science.gov (United States)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  19. Risk-based performance indicators

    International Nuclear Information System (INIS)

    Azarm, M.A.; Boccio, J.L.; Vesely, W.E.; Lofgren, E.

    1987-01-01

    The purpose of risk-based indicators is to monitor plant safety. Safety is measured by monitoring the potential for core melt (core-melt frequency) and the public risk. Targets for these measures can be set consistent with NRC safety goals. In this process, the performance of safety systems, support systems, major components, and initiating events can be monitored using measures such as unavailability, failure or occurrence frequency. The changes in performance measures and their trends are determined from the time behavior of monitored measures by differentiation between stochastical and actual variations. Therefore, degradation, as well as improvement in the plant safety performance, can be determined. The development of risk-based performance indicators will also provide the means to trace a change in the safety measures to specific problem areas which are amenable to root cause analysis and inspection audits. In addition, systematic methods will be developed to identify specific improvement policies using the plant information system for the identified problem areas. The final product of the performance indicator project will be a methodology, and an integrated and validated set of software packages which, if properly interfaced with the logic model software of a plant, can monitor the plant performance as plant information is provided as input

  20. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  1. Use of safety analysis results to support process operation

    International Nuclear Information System (INIS)

    Karvonen, I.; Heino, P.

    1990-01-01

    Safety and risk analysis carried out during the design phase of a process plant produces useful knowledge about the behavior and the disturbances of the system. This knowledge, however, often remains to the designer though it would be of benefit to the operators and supervisors of the process plant, too. In Technical Research Centre of Finland a project has been started to plan and construct a prototype of an information system to make use of the analysis knowledge during the operation phase. The project belongs to a Nordic KRM project (Knowledge Based Risk Management System). The information system is planned to base on safety and risk analysis carried out during the design phase and completed with operational experience. The safety analysis includes knowledge about potential disturbances, their causes and consequences in the form of Hazard and Operability Study, faut trees and/or event trees. During the operation disturbances can however, occur, which are not included in the safety analysis, or the causes or consequences of which have been incompletely identified. Thus the information system must also have an interface for the documentation of the operational knowledge missing from the analysis results. The main tasks off the system when supporting the management of a disturbance are to identify it (or the most important of the coexistent ones) from the stored knowledge and to present it in a proper form (for example as a deviation graph). The information system may also be used to transfer knowledge from one shift to another and to train process personnel

  2. Risk assessment for nuclear processes at the Savannah River Site

    International Nuclear Information System (INIS)

    Durant, W.S.

    1992-01-01

    The Savannah River Site, one of the US Department of Energy's nuclear materials processing facilities, has for many years conducted risk-based safety analyses for the nuclear processes conducted at the facilities. This approach has allowed comparisons of risks to established criteria for acceptability. When the risk-based program was begun, it was evident that its success would depend upon having a compilation of data that was site specific. The decision was made to create a data bank of undesirable events that had occurred at the site's nuclear fuel reprocessing facilities. From this modest beginning, five data banks have been created for nuclear fuel reprocessing, waste management, nuclear fuel fabrication, tritium operations, and the Savannah River Technology Center. In addition to the primary purpose of providing a sound basis for risk-based safety analyses, these highly versatile data banks are routinely used for equipment breakdown histories, incident investigations, design studies, project justifications, reliability studies, process problem solving, training, and audits

  3. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  4. Toward introduction of risk informed safety regulation. Nuclear Safety Commission taskforce's interim report

    International Nuclear Information System (INIS)

    2006-01-01

    Nuclear Safety Commission's taskforce on 'Introduction of Safety Regulation Utilizing Risk Information' completed the interim report on its future subjects and directions in December 2005. Although current safety regulatory activities have been based on deterministic approach, this report shows the risk informed approach is expected to be very useful for making nuclear safety regulation and assurance activities reasonable and also for appropriate allocation of regulatory resources. For introduction of risk informed regulation, it also recommends pileups of experiences with gradual introduction and trial of the risk informed approach, improvement of plant maintenance rules and regulatory requirements utilizing risk information, and establishment of framework to assure quality of risk evaluation. (T. Tanaka)

  5. Risk based modelling

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Baker, A.E.

    1993-01-01

    Risk based analysis is a tool becoming available to both engineers and managers to aid decision making concerning plant matters such as In-Service Inspection (ISI). In order to develop a risk based method, some form of Structural Reliability Risk Assessment (SRRA) needs to be performed to provide a probability of failure ranking for all sites around the plant. A Probabilistic Risk Assessment (PRA) can then be carried out to combine these possible events with the capability of plant safety systems and procedures, to establish the consequences of failure for the sites. In this way the probability of failures are converted into a risk based ranking which can be used to assist the process of deciding which sites should be included in an ISI programme. This paper reviews the technique and typical results of a risk based ranking assessment carried out for nuclear power plant pipework. (author)

  6. Risk-based Regulatory Evaluation Program methodology

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Sanders, G.A.; Carlson, D.D.; Asselin, S.V.

    1987-01-01

    The objectives of this DOE-supported Regulatory Evaluation Progrwam are to analyze and evaluate the safety importance and economic significance of existing regulatory guidance in order to assist in the improvement of the regulatory process for current generation and future design reactors. A risk-based cost-benefit methodology was developed to evaluate the safety benefit and cost of specific regulations or Standard Review Plan sections. Risk-based methods can be used in lieu of or in combination with deterministic methods in developing regulatory requirements and reaching regulatory decisions

  7. Ensuring the quality of occupational safety risk assessment.

    Science.gov (United States)

    Pinto, Abel; Ribeiro, Rita A; Nunes, Isabel L

    2013-03-01

    In work environments, the main aim of occupational safety risk assessment (OSRA) is to improve the safety level of an installation or site by either preventing accidents and injuries or minimizing their consequences. To this end, it is of paramount importance to identify all sources of hazards and assess their potential to cause problems in the respective context. If the OSRA process is inadequate and/or not applied effectively, it results in an ineffective safety prevention program and inefficient use of resources. An appropriate OSRA is an essential component of the occupational safety risk management process in industries. In this article, we performed a survey to elicit the relative importance for identified OSRA tasks to enable an in-depth evaluation of the quality of risk assessments related to occupational safety aspects on industrial sites. The survey involved defining a questionnaire with the most important elements (tasks) for OSRA quality assessment, which was then presented to safety experts in the mining, electrical power production, transportation, and petrochemical industries. With this work, we expect to contribute to the main question of OSRA in industries: "What constitutes a good occupational safety risk assessment?" The results obtained from the questionnaire showed that experts agree with the proposed OSRA process decomposition in steps and tasks (taxonomy) and also with the importance of assigning weights to obtain knowledge about OSRA task relevance. The knowledge gained will enable us, in the near future, to build a framework to evaluate OSRA quality for industrial sites. © 2012 Society for Risk Analysis.

  8. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  9. Quantitative Estimation of Risks for Production Unit Based on OSHMS and Process Resilience

    Science.gov (United States)

    Nyambayar, D.; Koshijima, I.; Eguchi, H.

    2017-06-01

    Three principal elements in the production field of chemical/petrochemical industry are (i) Production Units, (ii) Production Plant Personnel and (iii) Production Support System (computer system introduced for improving productivity). Each principal element has production process resilience, i.e. a capability to restrain disruptive signals occurred in and out of the production field. In each principal element, risk assessment is indispensable for the production field. In a production facility, the occupational safety and health management system (Hereafter, referred to as OSHMS) has been introduced to reduce a risk of accidents and troubles that may occur during production. In OSHMS, a risk assessment is specified to reduce a potential risk in the production facility such as a factory, and PDCA activities are required for a continual improvement of safety production environments. However, there is no clear statement to adopt the OSHMS standard into the production field. This study introduces a metric to estimate the resilience of the production field by using the resilience generated by the production plant personnel and the result of the risk assessment in the production field. A method for evaluating how OSHMS functions are systematically installed in the production field is also discussed based on the resilience of the three principal elements.

  10. Managing health and safety risks: Implications for tailoring health and safety management system practices.

    Science.gov (United States)

    Willmer, D R; Haas, E J

    2016-01-01

    As national and international health and safety management system (HSMS) standards are voluntarily accepted or regulated into practice, organizations are making an effort to modify and integrate strategic elements of a connected management system into their daily risk management practices. In high-risk industries such as mining, that effort takes on added importance. The mining industry has long recognized the importance of a more integrated approach to recognizing and responding to site-specific risks, encouraging the adoption of a risk-based management framework. Recently, the U.S. National Mining Association led the development of an industry-specific HSMS built on the strategic frameworks of ANSI: Z10, OHSAS 18001, The American Chemistry Council's Responsible Care, and ILO-OSH 2001. All of these standards provide strategic guidance and focus on how to incorporate a plan-do-check-act cycle into the identification, management and evaluation of worksite risks. This paper details an exploratory study into whether practices associated with executing a risk-based management framework are visible through the actions of an organization's site-level management of health and safety risks. The results of this study show ways that site-level leaders manage day-to-day risk at their operations that can be characterized according to practices associated with a risk-based management framework. Having tangible operational examples of day-to-day risk management can serve as a starting point for evaluating field-level risk assessment efforts and their alignment to overall company efforts at effective risk mitigation through a HSMS or other processes.

  11. [A systemic risk analysis of hospital management processes by medical employees--an effective basis for improving patient safety].

    Science.gov (United States)

    Sobottka, Stephan B; Eberlein-Gonska, Maria; Schackert, Gabriele; Töpfer, Armin

    2009-01-01

    Due to the knowledge gap that exists between patients and health care staff the quality of medical treatment usually cannot be assessed securely by patients. For an optimization of safety in treatment-related processes of medical care, the medical staff needs to be actively involved in preventive and proactive quality management. Using voluntary, confidential and non-punitive systematic employee surveys, vulnerable topics and areas in patient care revealing preventable risks can be identified at an early stage. Preventive measures to continuously optimize treatment quality can be defined by creating a risk portfolio and a priority list of vulnerable topics. Whereas critical incident reporting systems are suitable for continuous risk assessment by detecting safety-relevant single events, employee surveys permit to conduct a systematic risk analysis of all treatment-related processes of patient care at any given point in time.

  12. Research needs for risk-informed, performance-based regulation

    International Nuclear Information System (INIS)

    Cloninger, T.H.

    1997-01-01

    This presentation was made by an executive in the utility which operates the South Texas Project reactors, and summarizes their perspective on probabilistic safety analysis, risk-based operation, and risk-based regulation. They view it as a tool to help them better apply their resources to maintain the level of safety necessary to protect the public health and safety. South Texas served as one of the pilot plants for the application of risk-based regulation to the maintenance rule. The author feels that the process presents opportunities as well as challenges. Among the opportunities is the involvement of more people in the process, and the sense of investment they take in the decisions, in addition to the insight they can offer. In the area of challenges there is the need for better understanding of how to apply what already is known on problems, rather than essentially reinventing the wheel to address problems. Research is needed to better understand when some events are not truly of a significant safety concern. The demarcation between deterministic decisions and the appropriate application of risk-based decisions must be better defined, for the sake of the operator as well as the public observing plant operation

  13. Safety regulations: Implications of the new risk perspectives

    International Nuclear Information System (INIS)

    Aven, T.; Ylönen, M.

    2016-01-01

    The current safety regulations for industrial activities are to a large extent functionally oriented and risk-based (informed), expressing what to achieve rather than the means and solutions needed. They are founded on a probability-based perspective on risk, with the use of risk assessment, risk acceptance criteria and tolerability limits. In recent years several risk researchers have argued for the adoption of some new types of risk perspectives which highlight uncertainties rather than probabilities in the way risk is defined, the point being to better reflect the knowledge, and lack of knowledge, dimension of risk. The Norwegian Petroleum Safety Authority has recently implemented such a perspective. The new ISO standard 31000 is based on a similar thinking. In this paper we discuss the implications of these perspectives on safety regulation, using the oil & gas and nuclear industries as illustrations. Several suggestions for how to develop the current safety regulations in line with the ideas of the new risk perspectives are outlined, including some related to the use of risk acceptance criteria (tolerability limits). We also point to potential obstacles and incentives that the larger societal and institutional setting may impose on industry as regards the adoption of the new risk perspectives. - Highlights: • Some new types of risk perspectives have been promoted. • They have been implemented for example by the Norwegian Petroleum Safety Authority. • The paper studies the implication of these perspectives on the risk regulation. • Suggestions for how to develop the regulations are provided • Obstacles and incentives for the implementation of the perspectives are pointed to.

  14. A Real-Time Location-Based Services System Using WiFi Fingerprinting Algorithm for Safety Risk Assessment of Workers in Tunnels

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available This paper investigates the feasibility of a real-time tunnel location-based services (LBS system to provide workers’ safety protection and various services in concrete dam site. In this study, received signal strength- (RSS- based location using fingerprinting algorithm and artificial neural network (ANN risk assessment is employed for position analysis. This tunnel LBS system achieves an online, real-time, intelligent tracking identification feature, and the on-site running system has many functions such as worker emergency call, track history, and location query. Based on ANN with a strong nonlinear mapping, and large-scale parallel processing capabilities, proposed LBS system is effective to evaluate the risk management on worker safety. The field implementation shows that the proposed location algorithm is reliable and accurate (3 to 5 meters enough for providing real-time positioning service. The proposed LBS system is demonstrated and firstly applied to the second largest hydropower project in the world, to track workers on tunnel site and assure their safety. The results show that the system is simple and easily deployed.

  15. Process and plant safety

    CERN Document Server

    Hauptmanns, Ulrich

    2015-01-01

    Accidents in technical installations are random events. Hence they cannot be totally avoided. Only the probability of their occurrence may be reduced and their consequences be mitigated. The book proceeds from hazards caused by materials and process conditions to indicating technical and organizational measures for achieving the objectives of reduction and mitigation. Qualitative methods for identifying weaknesses of design and increasing safety as well as models for assessing accident consequences are presented. The quantitative assessment of the effectiveness of safety measures is explained. The treatment of uncertainties plays a role there. They stem from the random character of the accident and from lacks of knowledge on some of the phenomena to be addressed. The reader is acquainted with the simulation of accidents, safety and risk analyses and learns how to judge the potential and limitations of mathematical modelling. Risk analysis is applied amongst others to “functional safety” and the determinat...

  16. Risk monitor - a tool for operational safety assessment risk monitor - user's manual

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.

    2006-06-01

    Probabilistic Safety Assessment has become a key tool as on today to identify and understand Nuclear Power Plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk Monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk Monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear Power plant. Operation of Risk Monitor is based on PSA methods for assisting in day to day applications. Risk Monitoring programs can assess the risk profile and are used to optimize the operation of Nuclear Power Plants with respect to a minimum risk level over the operating time. This report presents the background activities of Risk Monitor, its application areas and the step by step procedure for the user.to interact with the software. This software can be used with the PSA model of any Nuclear Power Plant. (author)

  17. Personnel Risks in Ensuring Safety of Medical Activity

    Directory of Open Access Journals (Sweden)

    O. L. Zadvornaya

    2017-01-01

    Full Text Available Purpose: modern strategies of management of the organization require the formation of special management approaches based on the analysis of the mechanisms and processes of the organization of medical activities related to possible risks in activity of medical personnel. Based on international experience and own research the authors have identified features of a system of management of personnel risk in medical activities, examined approaches showing the sequence and contents of the main practical activities of the formation, maintenance and development of the system of management of personnel risks. Emphasized is the need for further research and implementation of the system of management of personnel risk in health care organizations. Study and assessment of personnel risks affecting the security of medical activities aimed at the development of the system of personnel risk management, development of a system of identification and monitoring of HR risk indicators with a purpose to improve institutional management and increase efficiency of activity of medical organizations. Methods: in the present study, the following methods were used: systemic approach, content analysis, methods of social diagnosis (questionnaires, interviews, comparative analysis, method of expert evaluations, method of statistical processing of information. Results: approaches to predict the occurrence and development of personnel risks have been reviewed and proposed. Conclusions and Relevance: patient safety is a global issue affecting countries at all levels of development. Each year, the WHO identifies a number of systemic and technical aspects and trends in the field of patient safety related to actions of medical workers. Existing imbalances in the staffing of the health system of the Russian Federation increase the probability of potential risks in medical practice. The personnel policy of healthcare of the Russian Federation requires further improvement and

  18. Estimating and controlling workplace risk: an approach for occupational hygiene and safety professionals.

    Science.gov (United States)

    Toffel, Michael W; Birkner, Lawrence R

    2002-07-01

    The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.

  19. Why consumers behave as they do with respect to food safety and risk information

    DEFF Research Database (Denmark)

    Verbeke, Wim; Frewer, Lynn J.; Scholderer, Joachim

    2007-01-01

    rankings. The aim of this contribution is to provide a better understanding to food risk analysts of why consumers behave as they do with respect to food safety and risk information. This paper presents some cases of seemingly irrational and inconsistent consumer behaviour with respect to food safety...... and risk information and provides explanations for these behaviours based on the nature of the risk and individual psychological processes. Potential solutions for rebuilding consumer confidence in food safety and bridging between lay and expert opinions towards food risks are reviewed. These include......In recent years, it seems that consumers are generally uncertain about the safety and quality of their food and their risk perception differs substantially from that of experts. Hormone and veterinary drug residues in meat persist to occupy a high position in European consumers' food concern...

  20. Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety

    DEFF Research Database (Denmark)

    Aiassa, E.; Higgins, J.P.T.; Frampton, G. K.

    2015-01-01

    for answering questions in health care, and can be implemented to minimise biases in food and feed safety risk assessment. However, no methodological frameworks exist for refining risk assessment multi-parameter models into questions suitable for systematic review, and use of meta-analysis to estimate all......Food and feed safety risk assessment uses multi-parameter models to evaluate the likelihood of adverse events associated with exposure to hazards in human health, plant health, animal health, animal welfare and the environment. Systematic review and meta-analysis are established methods...... parameters in the risk model. This approach to planning and prioritising systematic review seems to have useful implications for producing evidence-based food and feed safety risk assessment....

  1. A risk assessment approach to evaluating food safety based on product surveillance

    NARCIS (Netherlands)

    Notermans, S.; Nauta, M.J.; Jansen, J.; Jouve, J.L.; Mead, G.C.

    1998-01-01

    This paper outlines a risk assessment approach to food safety evaluation, which is based on testing a particular type of food, or group of similar foods, for relevant microbial pathogens. The results obtained are related to possible adverse effects on the health of consumers. The paper also gives an

  2. Mastery of risks and operating safety, risks and efficiencies

    International Nuclear Information System (INIS)

    2006-01-01

    A proper management of ones risks consists in acting to exert prevention and protection capacities against the negative consequences of an event, but also by committing oneself into an offensive approach allowing to improve efficiency, quality and availability. Safety and efficiencies are mutual reinforcing goals aiming at ensuring the perenniality of industries and services. The implementation of a risk management approach in an industrial environment allows to reach a better reactiveness and to increase the efficiency of a system by the mastery of organization and processes. The activities in concern are those of industries and services: transports, energy and environment, automotive industry, petrochemistry, chemistry, food, space, health, defense industries, telecommunication, mining industry, information systems, textile industry, finances.. The topics approached during this meeting treat of: the relevance of risk-abatement resources with respect to risks criticality; the consistent management of uncertainties with respect to stakes; the mastery of components aging and the expression of aging-dependent availability, maintenance and safety policies; the expression of obsolescence-related renewing policies; the operating safety tools and methods applied to complex and computerized-controlled systems; the integration of social, organizational and human factors in technical decisions and companies management; transverse and global risk analysis and decision-aid approaches; the vigilance culture; crisis anticipation and management; the experience feedback on technical and organisational aspects; efficiency and risk mastery indicators; cost/benefit approach in risk management, and economic intelligence approaches. Nineteen presentations have been selected which deal with the mastery of risks and the operating safety at nuclear facilities. (J.S.)

  3. Economic aspects of risk assessment in chemical safety

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, M F; Shannon, H S

    1986-05-01

    This paper considers how the economic aspects of risk assessment in chemical safety can be strengthened. Its main focus is on how economic appraisal techniques, such as cost-benefit and cost-effectiveness analysis, can be adapted to the requirements of the risk-assessment process. Following a discussion of the main methodological issues raised by the use of economic appraisal, illustrated by examples from the health and safety field, a number of practical issues are discussed. These include the consideration of the distribution of costs, effects and benefits, taking account of uncertainty, risk probabilities and public perception, making the appraisal techniques useful to the early stages of the risk-assessment process and structuring the appraisal to permit continuous feedback to the participants in the risk-assessment process. It is concluded that while the way of thinking embodied in economic appraisal is highly relevant to the consideration of choices in chemical safety, the application of these principles in formal analysis of risk reduction procedures presents a more mixed picture. The main suggestions for improvement in the analyses performed are the undertaking of sensitivity analyses of study results to changes in the key assumptions, the presentation of the distribution of costs and benefits by viewpoint, the comparison of health and safety measures in terms of their incremental cost per life-year (or quality-adjusted life-year) gained and the more frequent retrospective review and revision of the economic analyses that are undertaken.

  4. Structuring a risk-informed and performance-based process for optimization of regulation for Laguna Verde NPP

    International Nuclear Information System (INIS)

    Rodriguez-Hernandez, A.

    2001-01-01

    This work describes the plan for a process to incorporate into the regulatory activities the risk information derived from probabilistic risk assessments, as well as information generated by the periodic evaluation of the Maintenance Rule (MR, 10CFR50.65). The current status of the Laguna Verde NPP (LVNPP) risk analysis, PSA Level 1, allows determining in a reliable way the accident scenarios and the involved systems having significant impact on safety. The determination of system's risk significance allows carrying out a prioritization of safety issues to be evaluated and inspected; for example, operational events, changes to technical specifications, design modifications, inspection priorities, etc. In addition, complementary and basic information are the results generated by the performance monitoring of structures, systems and components (SSCs) under the scope of the MR. The SSCs performance trends are indicatives to focus evaluation and inspection activities on important issues. Then, with the reportability in short periods the performance evaluations of SSCs and the incorporation of a process of risk management, the evaluation and inspection activities will be directed to those risk significant systems showing degraded performance. Therefore, based on systems performance results and risk information, it is feasible to have certain flexibility or a better balance between the regulatory requirements. Inside this process, a consensus is needed with the utility to establish quality attributes for the plant-specific PSA, as well as the rules to be followed in the use of this tool and the kind of information to be reported for MR results. (author)

  5. Health economics and outcomes methods in risk-based decision-making for blood safety

    NARCIS (Netherlands)

    Custer, Brian; Janssen, Mart P.

    2015-01-01

    Analytical methods appropriate for health economic assessments of transfusion safety interventions have not previously been described in ways that facilitate their use. Within the context of risk-based decision-making (RBDM), health economics can be important for optimizing decisions among competing

  6. The Two C”s of the Risk-Based Approach to Goal based Standards: Challenges and Caveats

    DEFF Research Database (Denmark)

    Kontovas, Christos A.; Psaraftis, Harilaos N.; Zachariadis, Panos

    2007-01-01

    industry has begun to move from a reactive to a proactive approach to safety through “Formal Safety Assessment” (FSA) and “Goal Based Standards” (GBS). FSA was introduced by the IMO as “a rational and systematic process for accessing the risk related to maritime safety and the protection of the marine...... environment and for evaluating the costs and benefits of IMO’s options for reducing these risks”. The recent GBS approach aims to be another proactive instrument, and there has been recent discussion in the IMO on the possible links between FSA and GBS. This paper attempts to clarify some widely used......, but confusing to many, notions such as Risk Based Rulemaking vs. Risk Based Design, and IMO's GBS Traditional Approach vs. Safety Level Approach, and the implications of their use, or misuse, to future ship rulemaking, design and safety. The paper elaborates on some identified weaknesses of the risk based...

  7. Thermonuclear generation program: risks and safety; Programa de geracao termonuclear: seus riscos e segurancas

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Alexandre Gromann de Araujo

    1999-07-01

    This work deals with the fundamental concepts of risk and safety related to nuclear power generation. In the first chapter, a general evaluation of the various systems for energy generation and their environmental impacts is made. Some definitions for safety and risk are suggested, based on the already existing regulatory processes and also on the current tendencies of risk management. Aspects regarding the safety culture are commented. The International Nuclear Event Scale (INES), a coherent and clear mechanism of communication between nuclear specialists and the general public, is analyzed. The second chapter examines the thermonuclear generation program in Brazil and the role of the National Nuclear Energy Commission. The third chapter presents national and international scenarios in terms of safety and risks, available policies and the main obstacles for future development of nuclear energy and nuclear engineering, and strategies are proposed. In the last chapter, comments about possible trends and recommendations related to practical risk management procedures, taking into account rational criteria for resources distribution and risk reduction are made, envisaging a closer integration between nuclear specialists and the society as a whole, thus decreasing the conflicts in a democratic decision-making process.

  8. Assessing Risk-Based Performance Indicators in Safety-Critical Systems for Nuclear Power Plants

    OpenAIRE

    TONT Gabriela

    2011-01-01

    The paper proposes framework for a multidisciplinary nuclear risk and safety assessment by modeling uncertainty and combining diverse evidence provided in such a way that it could be used to represent an entire argument about a system's dependability. The identified safety issues are being treated by means of probabilistic safety assessment (PSA). The behavior simulation of power plant in thepresence of risk factors is analyzed from the vulnerability, risk and functional safety viewpoints, hi...

  9. On the Regulation of Life Safety Risk

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Vrouwenvelder, A.C.W.M.

    2015-01-01

    . Starting point is taken in a short outline of what is considered to comprise the present best practice rationale for life safety and health risk regulation. Thereafter, based on selected principal examples from different application areas, inconsistencies in present best practice risk quantification...... absolute level of individual life safety risk subject to assessment of acceptability. It is highlighted that a major cause of inconsistency in risk quantifications and comparisons originates from the fact that present regulations partly address societal activities and partly address applied technologies...

  10. Implementation of a risk assessment tool based on a probabilistic safety assessment developed for radiotherapy practices

    International Nuclear Information System (INIS)

    Paz, A.; Godinez, V.; Lopez, R.

    2010-10-01

    The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)

  11. Implementation of a risk assessment tool based on a probabilistic safety assessment developed for radiotherapy practices

    Energy Technology Data Exchange (ETDEWEB)

    Paz, A.; Godinez, V.; Lopez, R., E-mail: abpaz@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-10-15

    The present work describes the implementation process and main results of the risk assessment to the radiotherapy practices with Linear Accelerators (Linac), with cobalt 60, and with brachytherapy. These evaluations were made throughout the risk assessment tool for radiotherapy practices SEVRRA (risk evaluation system for radiotherapy), developed at the Mexican National Commission in Nuclear Safety and Safeguards derived from the outcome obtained with the Probabilistic Safety Analysis developed at the Ibero-American Regulators Forum for these radiotherapy facilities. The methodology used is supported by risk matrices method, a mathematical tool that estimates the risk to the patient, radiation workers and public from mechanical failures, mis calibration of the devices, human mistakes, and so. The initiating events are defined as those undesirable events that, together with other failures, can produce a delivery of an over-dose or an under-dose of the medical prescribed dose, to the planned target volume, or a significant dose to non prescribed human organs. Initiating events frequency and reducer of its frequency (actions intended to avoid the accident) are estimated as well as robustness of barriers to those actions, such as mechanical switches, which detect and prevent the accident from occurring. The spectrum of the consequences is parameterized, and the actions performed to reduce the consequences are identified. Based on this analysis, a software tool was developed in order to simplify the evaluations to radiotherapy installations and it has been applied as a first step forward to some Mexican installations, as part of a national implementation process, the final goal is evaluation of all Mexican facilities in the near future. The main target and benefits of the SEVRRA implementation are presented in this paper. (Author)

  12. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  13. Risk analysis: opening the process

    International Nuclear Information System (INIS)

    Hubert, Ph.; Mays, C.

    1998-01-01

    This conference on risk analysis took place in Paris, 11-14 october 1999. Over 200 paper where presented in the seven following sessions: perception; environment and health; persuasive risks; objects and products; personal and collective involvement; assessment and valuation; management. A rational approach to risk analysis has been developed in the three last decades. Techniques for risk assessment have been thoroughly enhanced, risk management approaches have been developed, decision making processes have been clarified, the social dimensions of risk perception and management have been investigated. Nevertheless this construction is being challenged by recent events which reveal how deficits in stakeholder involvement, openness and democratic procedures can undermine risk management actions. Indeed, the global process most components of risk analysis may be radically called into question. Food safety has lately been a prominent issue, but now debates appear, or old debates are revisited in the domains of public health, consumer products safety, waste management, environmental risks, nuclear installations, automobile safety and pollution. To meet the growing pressures for efficiency, openness, accountability, and multi-partner communication in risk analysis, institutional changes are underway in many European countries. However, the need for stakeholders to develop better insight into the process may lead to an evolution of all the components of risks analysis, even in its most (technical' steps. For stakeholders of different professional background, political projects, and responsibilities, risk identification procedures must be rendered understandable, quantitative risk assessment must be intelligible and accommodated in action proposals, ranging from countermeasures to educational programs to insurance mechanisms. Management formats must be open to local and political input and other types of operational feedback. (authors)

  14. Probabilistic safety assessment based expert systems in support of dynamic risk assessment

    International Nuclear Information System (INIS)

    Varde, P.V.; Sharma, U.L.; Marik, S.K.; Raina, V.K.; Tikku, A.C.

    2006-01-01

    Probabilistic Safety Assessment (PSA) studies are being performed, world over as part of integrated risk assessment for Nuclear Power Plants and in many cases PSA insight is utilized in support of decision making. Though the modern plants are built with inherent safety provisions, particularly to reduce the supervisory requirements during initial period into the accident, it is always desired to develop an efficient user friendly real-time operator advisory system for handling of plant transients/emergencies which would be of immense benefit for the enhancement of operational safety of the plant. This paper discusses an integrated approach for the development of operator support system. In this approach, PSA methodology and the insight obtained from PSA has been utilized for development of knowledge based or rule based experts system. While Artificial Neural Network (ANN) approach has been employed for transient identification, rule-base expert system shell environment was used for the development of diagnostic module in this system. Attempt has been made to demonstrate that this approach offers an efficient framework for addressing requirements related to handling of real-time/dynamic scenario. (author)

  15. Risk Assessment for Bridges Safety Management during Operation Based on Fuzzy Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xia Hanyu

    2016-01-01

    Full Text Available In recent years, large span and large sea-crossing bridges are built, bridges accidents caused by improper operational management occur frequently. In order to explore the better methods for risk assessment of the bridges operation departments, the method based on fuzzy clustering algorithm is selected. Then, the implementation steps of fuzzy clustering algorithm are described, the risk evaluation system is built, and Taizhou Bridge is selected as an example, the quantitation of risk factors is described. After that, the clustering algorithm based on fuzzy equivalence is calculated on MATLAB 2010a. In the last, Taizhou Bridge operation management departments are classified and sorted according to the degree of risk, and the safety situation of operation departments is analyzed.

  16. Fuzzy-based HAZOP study for process industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junkeon; Chang, Daejun, E-mail: djchang@kaist.edu

    2016-11-05

    Highlights: • HAZOP is the important technique to evaluate system safety and its risks while process operations. • Fuzzy theory can handle the inherent uncertainties of process systems for the HAZOP. • Fuzzy-based HAZOP considers the aleatory and epistemic uncertainties and provides the risk level with less uncertainty. • Risk acceptance criteria should be considered regarding the transition region for each risk. - Abstract: This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.

  17. From aviation to medicine: applying concepts of aviation safety to risk management in ambulatory care.

    Science.gov (United States)

    Wilf-Miron, R; Lewenhoff, I; Benyamini, Z; Aviram, A

    2003-02-01

    The development of a medical risk management programme based on the aviation safety approach and its implementation in a large ambulatory healthcare organisation is described. The following key safety principles were applied: (1). errors inevitably occur and usually derive from faulty system design, not from negligence; (2). accident prevention should be an ongoing process based on open and full reporting; (3). major accidents are only the "tip of the iceberg" of processes that indicate possibilities for organisational learning. Reporting physicians were granted immunity, which encouraged open reporting of errors. A telephone "hotline" served the medical staff for direct reporting and receipt of emotional support and medical guidance. Any adverse event which had learning potential was debriefed, while focusing on the human cause of error within a systemic context. Specific recommendations were formulated to rectify processes conducive to error when failures were identified. During the first 5 years of implementation, the aviation safety concept and tools were successfully adapted to ambulatory care, fostering a culture of greater concern for patient safety through risk management while providing support to the medical staff.

  18. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  19. Conducting Clinically Based Intimate Partner Violence Research: Safety Protocol Recommendations.

    Science.gov (United States)

    Anderson, Jocelyn C; Glass, Nancy E; Campbell, Jacquelyn C

    Maintaining safety is of utmost importance during research involving participants who have experienced intimate partner violence (IPV). Limited guidance on safety protocols to protect participants is available, particularly information related to technology-based approaches to informed consent, data collection, and contacting participants during the course of a study. The purpose of the article is to provide details on the safety protocol developed and utilized with women receiving care at an urban HIV clinic and who were taking part in an observational study of IPV, mental health symptoms, and substance abuse and their relationship to HIV treatment adherence. The protocol presents the technological strategies to promote safety and allow autonomy in participant decision-making throughout the research process, including Voice over Internet Protocol telephone numbers, and tablet-based eligibility screening and data collection. Protocols for management of participants at risk for suicide and/or intimate partner homicide that included automated high-risk messaging to participants and research staff and facilitated disclosure of risk to clinical staff based on participant preferences are discussed. Use of technology and partnership with clinic staff helped to provide an environment where research regarding IPV could be conducted without undue burden or risk to participants. Utilizing tablet-based survey administration provided multiple practical and safety benefits for participants. Most women who screened into high-risk categories for suicide or intimate partner homicide did not choose to have their results shared with their healthcare providers, indicating the importance of allowing participants control over information sharing whenever possible.

  20. Security risk assessment and protection in the chemical and process industry

    OpenAIRE

    Reniers, Genserik; van Lerberghe, Paul; van Gulijk, Coen

    2014-01-01

    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including...

  1. Risk-informed decision making during Bohunice NPP safety upgrading

    International Nuclear Information System (INIS)

    Lipar, M.; Muzikova, E.; Kubanyi, J.

    2001-01-01

    The paper summarizes some facts of risk-informed regulation developments within UJD regulatory environment. Based on national as well as international operating experience and indications resulted from PSA, Nuclear Regulatory Authority of the Slovak Republic (UJD) since its constituting in 1993 has devoted an effort to use PSA technology to support the regulatory policy in Slovakia. The PSA is considered a complement, not a substitute, to the deterministic approach. Suchlike integrated approach is used in decision making processes and the final decision on scope and priorities is based on it. The paper outlines risk insights used in the decision making process concerning Bohunice NPP safety upgrading and focuses on the role of PSA results in Gradual Reconstruction of Bohunice VI NPP. Besides, two other examples of the PSA results application to the decision making process are provided: the assessment of proposal of modifications to the main power supply diagram (incorporation of generator switches) and the assessment of licensee request for motor generator AOT (Allowable Outage Time) extension. As an example of improving support of Bohunice V-2 risk-informed operations, concept of AOT calculations and Bohunice V-2 Risk Monitor Project are briefly described. (author)

  2. A fuzzy-logic-based approach to qualitative safety modelling for marine systems

    International Nuclear Information System (INIS)

    Sii, H.S.; Ruxton, Tom; Wang Jin

    2001-01-01

    Safety assessment based on conventional tools (e.g. probability risk assessment (PRA)) may not be well suited for dealing with systems having a high level of uncertainty, particularly in the feasibility and concept design stages of a maritime or offshore system. By contrast, a safety model using fuzzy logic approach employing fuzzy IF-THEN rules can model the qualitative aspects of human knowledge and reasoning processes without employing precise quantitative analyses. A fuzzy-logic-based approach may be more appropriately used to carry out risk analysis in the initial design stages. This provides a tool for working directly with the linguistic terms commonly used in carrying out safety assessment. This research focuses on the development and representation of linguistic variables to model risk levels subjectively. These variables are then quantified using fuzzy sets. In this paper, the development of a safety model using fuzzy logic approach for modelling various design variables for maritime and offshore safety based decision making in the concept design stage is presented. An example is used to illustrate the proposed approach

  3. Fusion reactor passive safety and ignitor risk-based regulation

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1995-01-01

    Passive design features are more reliable than operator action of successful operation of active safety systems. Passive safety has usually been adopted for fission. The achievement of an inventory-based passive safety is difficult if the fusion reactor uses neutronic reactions. Ignitor is a high-magnetic field tokamak designed to study the physics of ignited plasmas. The safety goal for Ignitor is classification as a mobility-based passively safe machine

  4. Occupational Health and Safety: reflection on potential risks and the safety handling of nanomaterials

    Directory of Open Access Journals (Sweden)

    Guilherme Frederico Bernardo Lenz e Silva

    2013-11-01

    Full Text Available Every day the nanotechnology, that refers to a field whose theme is the control of matter on an atomic and molecular scale working with nanometric structures (<100 nm, is more present in the development of products and industrial processes. The particle manipulation of nanometric structures has created opportunities in the development of new products and materials. However, synthesis, handling, storage, stabilization and the incorporation of these materials, with nanometric dimensions, demand a new perspective of analysis and evaluation of old manufacturing processes, procedures and industrial devices, in order to guarantee collective and individual protection to workers and society. With the increasing of scale and production of nanoestrutuctured materials, a big part of labour community starts to be in contact with different nanomaterials (forms and ways. In this work the main aspects and involved risks of manufacture, storage, synthesis, stabilization and incorporation of nanomaterials on new products are evaluated in order to reduce, decrease and eliminate chemical, physical and biological risks for the employees. A bibliographic review was conducted about risk, safety and nanotechnology based on available English literature focusing safety and environmental agencies from different countries such as USA, Canada, EU (France, UK, Germany, Den-mark, Australia and Japan.

  5. Comparison of Country Risk, Sustainability and Economic Safety Indices

    Directory of Open Access Journals (Sweden)

    Jelena Stankeviciene

    2014-03-01

    Full Text Available Country risk, sustainability an economic safety are becoming more important in the contemporary economic world. The aim of this paper is to present the importance of comparison formalisation of country risk, sustainability, and economic safety indices for strategic alignment. The work provides an analysis on the relationship between country risk, sustainability an economic safety in EU countries, based on statistical data. Investigations and calculations of rankings provided by Euromoney Country Risk Index, European Economic Sustainability Index as well as for Economic Security Index were made and the results of EU country ranking based on three criteria were provided. Furthermore, the data for the Baltic States was summarised and the corresponding index of consistency for random judgments was evaluated.

  6. Safety analysis, risk assessment, and risk acceptance criteria

    International Nuclear Information System (INIS)

    Jamali, K.

    1997-01-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities and that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, 'ensuring' plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is 'safe.' Use of RACs requires quantitative estimates of consequence frequency and magnitude

  7. Establishment of safety goal and its quantification based on risk assessment

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Muramatsu, Ken

    2017-01-01

    We must clarify the safety objectives sought by society in securing the safety of nuclear reactors and nuclear power plants. For that purpose, it is useful to utilize risk assessment. Quantitative methods including probabilistic risk assessment (PRA) are superior in terms of scientific rationality and quantitative performance compared with conventional deterministic methods, and able to indicate an objective numerical value of safety level. Consequently, quantitative methods can enhance the transparency, consistency, compliance, predictability, and explanatory power of regulatory decisions toward business operators and citizens. Business operators can explain the validity of their own safety assurance activities to regulators and citizens. The goal to be secured becomes clear by incorporating the safety goal into the specific performance goal required for the nuclear power plant from the viewpoint of deep safeguard, and it becomes easy to evaluate the effectiveness of the safety measures. It helps us greatly in judging and selecting the appropriateness of safety measures. It should be noted: the fact that the result of implementing the PRA satisfies the safety goal is not a sufficient condition in the sense of guaranteeing complete safety but a necessary condition. The nuclear power field is a region with large uncertainty, and research/efforts for accuracy improvement and evaluation validity will be required continuously. (A.O.)

  8. Safety Climate, Perceived Risk, and Involvement in Safety Management

    OpenAIRE

    Kouabenan , Dongo Rémi; Ngueutsa , Robert ,; Safiétou , Mbaye

    2015-01-01

    International audience; This article examines the relationship between safety climate, risk perception and involvement in safety management by first-line managers (FLM). Sixty-three FLMs from two French nuclear plants answered a questionnaire measuring perceived workplace safety climate, perceived risk, and involvement in safety management. We hypothesized that a positive perception of safety climate would promote substantial involvement in safety management, and that this effect would be str...

  9. An Autopsy Checklist: A Monitor of Safety and Risk Management.

    Science.gov (United States)

    Shkrum, Michael James; Kent, Jessica

    2016-09-01

    Any autopsy has safety and risk management issues, which can arise in the preautopsy, autopsy, and postautopsy phases. The London Health Sciences Department of Pathology and Laboratory Medicine Autopsy Checklist was developed to address these issues. The current study assessed 1 measure of autopsy safety: the effectiveness of the checklist in documenting pathologists' communication of the actual or potential risk of blood-borne infections to support staff. Autopsy checklists for cases done in 2012 and 2013 were reviewed. The frequency of communication, as recorded in checklists, by pathologists to staff of previously diagnosed blood-borne infections (hepatitis B/C and human immunodeficiency virus) or the risk of infection based on lifestyle (eg, intravenous drug abuse) was tabulated. These data were compared with medical histories of the deceased and circumstances of their deaths described in the final autopsy reports. Information about blood-borne infections was recorded less frequently in the checklists compared with the final reports. Of 4 known human immunodeficiency virus cases, there was no checklist documentation in 3. All 11 hand injuries were documented. None of these cases had known infectious risks. The Autopsy Checklist is a standardized means of documenting safety and risk issues arising during the autopsy process, but its effectiveness relies on accurate completion.

  10. Safe patient care - safety culture and risk management in otorhinolaryngology.

    Science.gov (United States)

    St Pierre, Michael

    2013-12-13

    Safety culture is positioned at the heart of an organization's vulnerability to error because of its role in framing organizational awareness to risk and in providing and sustaining effective strategies of risk management. Safety related attitudes of leadership and management play a crucial role in the development of a mature safety culture ("top-down process"). A type marker for organizational culture and thus a predictor for an organization's maturity in respect to safety is information flow and in particular an organization's general way of coping with information that suggests anomaly. As all values and beliefs, relationships, learning, and other aspects of organizational safety culture are about sharing and processing information, safety culture has been termed "informed culture". An informed culture is free of blame and open for information provided by incidents. "Incident reporting systems" are the backbone of a reporting culture, where good information flow is likely to support and encourage other kinds of cooperative behavior, such as problem solving, innovation, and inter-departmental bridging. Another facet of an informed culture is the free flow of information during perioperative patient care. The World Health Organization's safe surgery checklist" is the most prevalent example of a standardized information exchange aimed at preventing patient harm due to information deficit. In routine tasks mandatory standard operating procedures have gained widespread acceptance in guaranteeing the highest possible process quality. Technical and non-technical skills of healthcare professionals are the decisive human resource for an efficient and safe delivery of patient care and the avoidance of errors. The systematic enhancement of staff qualification by providing training opportunities can be a major investment in patient safety. In recent years several otorhinolaryngology departments have started to incorporate stimulation based team trainings into their

  11. [Safe patient care: safety culture and risk management in otorhinolaryngology].

    Science.gov (United States)

    St Pierre, M

    2013-04-01

    Safety culture is positioned at the heart of an organisation's vulnerability to error because of its role in framing organizational awareness to risk and in providing and sustaining effective strategies of risk management. Safety related attitudes of leadership and management play a crucial role in the development of a mature safety culture ("top-down process"). A type marker for organizational culture and thus a predictor for an organizations maturity in respect to safety is information flow and in particular an organization's general way of coping with information that suggests anomaly. As all values and beliefs, relationships, learning, and other aspects of organizational safety culture are about sharing and processing information, safety culture has been termed "informed culture". An informed culture is free of blame and open for information provided by incidents. "Incident reporting systems" are the backbone of a reporting culture, where good information flow is likely to support and encourage other kinds of cooperative behavior, such as problem solving, innovation, and inter-departmental bridging. Another facet of an informed culture is the free flow of information during perioperative patient care. The World Health Organisation's "safe surgery checklist" is the most prevalent example of a standardized information exchange aimed at preventing patient harm due to information deficit. In routine tasks mandatory standard operating procedures have gained widespread acceptance in guaranteeing the highest possible process quality.Technical and non-technical skills of healthcare professionals are the decisive human resource for an efficient and safe delivery of patient care and the avoidance of errors. The systematic enhancement of staff qualification by providing training opportunities can be a major investment in patient safety. In recent years several otorhinolaryngology departments have started to incorporate simulation based team trainings into their curriculum

  12. Software for occupational health and safety risk analysis based on a fuzzy model.

    Science.gov (United States)

    Stefanovic, Miladin; Tadic, Danijela; Djapan, Marko; Macuzic, Ivan

    2012-01-01

    Risk and safety management are very important issues in healthcare systems. Those are complex systems with many entities, hazards and uncertainties. In such an environment, it is very hard to introduce a system for evaluating and simulating significant hazards. In this paper, we analyzed different types of hazards in healthcare systems and we introduced a new fuzzy model for evaluating and ranking hazards. Finally, we presented a developed software solution, based on the suggested fuzzy model for evaluating and monitoring risk.

  13. Team based risk assessment in the South African mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.; Ashworth, G.; Webger, S.; Protheroe, B. [CSIR, Auckland Park (South Africa). MineRisk Africa Division

    1996-12-31

    Improved health and safety for the large mining workforce in South Africa is a priority. Risk Assessments will be mandatory following the promulgation of the new health and safety act, due out in mid 1996. There is also a strong demand for employee organizations for participation in regulating the work process, particularly in the aspects of health and safety. The concept of system safety is that safe production is achieved through four ingredients, being, competent and trained personnel working according to appropriate standard operating practices using fit-for-purpose equipment in a well-controlled environment. A deficiency in any one of these areas will lead to an increased chance of operating problems and consequently accidents. The Mine Risk processes for risk assessment and management provide a mechanism for adopting this concept in practical mining operations; they provide a framework for identifying the root cause of safety problems as a basis for defining changes which will contribute significantly towards improving safety. The Mine Risk processes are applied practively and systematically to identify hazards and evaluate the magnitude of the associated risk in a defined aspect of the mining operation using a participative team based approach. The team, whose membership consists of highly experienced personnel drawn from all relevant departments and from positions ranging from manager to operator, then determines practical controls to reduce priority risks to acceptable levels. Team building is a natural product of this process, and should lead to higher productivity levels which is also a cause for concern. By using this process, a number of objectives of all the stakeholders in the South African Mining industry are addressed. 3 tabs.

  14. A risk-based auditing process for pharmaceutical manufacturers.

    Science.gov (United States)

    Vargo, Susan; Dana, Bob; Rangavajhula, Vijaya; Rönninger, Stephan

    2014-01-01

    The purpose of this article is to share ideas on developing a risk-based model for the scheduling of audits (both internal and external). Audits are a key element of a manufacturer's quality system and provide an independent means of evaluating the manufacturer's or the supplier/vendor's compliance status. Suggestions for risk-based scheduling approaches are discussed in the article. Pharmaceutical manufacturers are required to establish and implement a quality system. The quality system is an organizational structure defining responsibilities, procedures, processes, and resources that the manufacturer has established to ensure quality throughout the manufacturing process. Audits are a component of the manufacturer's quality system and provide a systematic and an independent means of evaluating the manufacturer's overall quality system and compliance status. Audits are performed at defined intervals for a specified duration. The intention of the audit process is to focus on key areas within the quality system and may not cover all relevant areas during each audit. In this article, the authors provide suggestions for risk-based scheduling approaches to aid pharmaceutical manufacturers in identifying the key focus areas for an audit.

  15. Evaluation of severe accident safety system value based on averting financial risks

    International Nuclear Information System (INIS)

    Hatch, S.W.; Benjamin, A.S.; Bennett, P.R.

    1983-01-01

    The Severe Accident Risk Reduction Program is being performed to benchmark the risks from nuclear power plants and to assess the benefits and impacts of a set of severe accident safety features. This paper describes the program in general and presents some preliminary results. These results include estimates of the financial risks associated with the operation of six reference plants and the value of severe accident prevention and mitigation safety systems in averting these risks. The results represent initial calculations and will be iterated before being used to support NRC decisions

  16. From aviation to medicine: applying concepts of aviation safety to risk management in ambulatory care

    Science.gov (United States)

    Wilf-Miron, R; Lewenhoff, I; Benyamini, Z; Aviram, A

    2003-01-01

    

 The development of a medical risk management programme based on the aviation safety approach and its implementation in a large ambulatory healthcare organisation is described. The following key safety principles were applied: (1) errors inevitably occur and usually derive from faulty system design, not from negligence; (2) accident prevention should be an ongoing process based on open and full reporting; (3) major accidents are only the "tip of the iceberg" of processes that indicate possibilities for organisational learning. Reporting physicians were granted immunity, which encouraged open reporting of errors. A telephone "hotline" served the medical staff for direct reporting and receipt of emotional support and medical guidance. Any adverse event which had learning potential was debriefed, while focusing on the human cause of error within a systemic context. Specific recommendations were formulated to rectify processes conducive to error when failures were identified. During the first 5 years of implementation, the aviation safety concept and tools were successfully adapted to ambulatory care, fostering a culture of greater concern for patient safety through risk management while providing support to the medical staff. PMID:12571343

  17. Risk-based design of process plants with regard to domino effects and land use planning

    Energy Technology Data Exchange (ETDEWEB)

    Khakzad, Nima, E-mail: nkhakzad@gmail.com [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Reniers, Genserik [Safety and Security Science Group (S3G), Faculty of Technology, Policy and Management, TU Delft, Delft (Netherlands); Antwerp Research Group on Safety and Security (ARGoSS), Faculty of Applied Economics, Universiteit Antwerpen, Antwerp (Belgium); Research Group CEDON, Campus Brussels, KULeuven, Brussels (Belgium)

    2015-12-15

    Highlights: • A Bayesian network methodology has been developed to estimate the total probability of major accidents in chemical plants. • Total probability of accidents includes the probability of individual accidents and potential domino effects. • The methodology has been extended to calculate on-site and off-site risks. • The results of the risk analysis have been used in a multi-criteria decision analysis technique to risk-based design of chemical plants. - Abstract: Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum.

  18. The Development of a Risk Management System in the Field of Industrial Safety in the Republic of Kazakhstan

    OpenAIRE

    Sergey S. Kudryavtsev; Pavel V. Yemelin; Natalya K. Yemelina

    2018-01-01

    Background: The purpose of the work is to develop a system that allows processing of information for analysis and industrial risk management, to monitor the level of industrial safety and to perform necessary measures aimed at the prevention of accidents, casualties, and development of professional diseases for effective management of industrial safety at hazardous industrial sites. Methods: Risk assessment of accidents and incidents is based on expert evaluations. Based on the lists of crite...

  19. Are classical process safety concepts relevant to nanotechnology applications?

    International Nuclear Information System (INIS)

    Amyotte, Paul R

    2011-01-01

    The answer to the question posed by the title of this paper is yes - with adaptation to the specific hazards and challenges found in the field of nanotechnology. The validity of this affirmative response is demonstrated by relating key process safety concepts to various aspects of the nanotechnology industry in which these concepts are either already practised or could be further applied. This is accomplished by drawing on the current author's experience in process safety practice and education as well as a review of the relevant literature on the safety of nanomaterials and their production. The process safety concepts selected for analysis include: (i) risk management, (ii) inherently safer design, (iii) human error and human factors, (iv) safety management systems, and (v) safety culture.

  20. Train integrity detection risk analysis based on PRISM

    Science.gov (United States)

    Wen, Yuan

    2018-04-01

    GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.

  1. RISK-INFORMED BALANCING OF SAFETY, NONPROLIFERATION, AND ECONOMICS FOR THE SFR

    Energy Technology Data Exchange (ETDEWEB)

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-10-20

    A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards

  2. Risk-Informed Balancing Of Safety, Nonproliferation, And Economics For The SFR

    International Nuclear Information System (INIS)

    Apostolakis, George; Driscoll, Michael; Golay, Michael; Kadak, Andrew; Todreas, Neil; Aldmir, Tunc; Denning, Richard; Lineberry, Michael

    2011-01-01

    A substantial barrier to the implementation of Sodium-cooled Fast Reactor (SFR) technology in the short term is the perception that they would not be economically competitive with advanced light water reactors. With increased acceptance of risk-informed regulation, the opportunity exists to reduce the costs of a nuclear power plant at the design stage without applying excessive conservatism that is not needed in treating low risk events. In the report, NUREG-1860, the U.S. Nuclear Regulatory Commission describes developmental activities associated with a risk-informed, scenario-based technology neutral framework (TNF) for regulation. It provides quantitative yardsticks against which the adequacy of safety risks can be judged. We extend these concepts to treatment of proliferation risks. The objective of our project is to develop a risk-informed design process for minimizing the cost of electricity generation within constraints of adequate safety and proliferation risks. This report describes the design and use of this design optimization process within the context of reducing the capital cost and levelized cost of electricity production for a small (possibly modular) SFR. Our project provides not only an evaluation of the feasibility of a risk-informed design process but also a practical test of the applicability of the TNF to an actual advanced, non-LWR design. The report provides results of five safety related and one proliferation related case studies of innovative design alternatives. Applied to previously proposed SFR nuclear energy system concepts We find that the TNF provides a feasible initial basis for licensing new reactors. However, it is incomplete. We recommend improvements in terms of requiring acceptance standards for total safety risks, and we propose a framework for regulation of proliferation risks. We also demonstrate methods for evaluation of proliferation risks. We also suggest revisions to scenario-specific safety risk acceptance standards

  3. Risk measures in living probabilistic safety assessment

    International Nuclear Information System (INIS)

    Holmberg, J.; Niemelae, I.

    1993-05-01

    The main objectives of the study are: to define risk measures and suggested uses of them in various living PSA applications for the operational safety management and to describe specific model features required for living PSA applications. The report is based on three case studies performed within the Nordic research project Safety Evaluation by Use of Living PSA and Safety Indicators. (48 refs., 11 figs., 17 tabs.)

  4. Process safety improvement-Quality and target zero

    Energy Technology Data Exchange (ETDEWEB)

    Van Scyoc, Karl [Det Norske Veritas (U.S.A.) Inc., DNV Energy Solutions, 16340 Park Ten Place, Suite 100, Houston, TX 77084 (United States)], E-mail: karl.van.scyoc@dnv.com

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The 'plan, do, check, act' improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  5. Process safety improvement-Quality and target zero

    International Nuclear Information System (INIS)

    Van Scyoc, Karl

    2008-01-01

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The 'plan, do, check, act' improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given

  6. Process safety improvement--quality and target zero.

    Science.gov (United States)

    Van Scyoc, Karl

    2008-11-15

    Process safety practitioners have adopted quality management principles in design of process safety management systems with positive effect, yet achieving safety objectives sometimes remain a distant target. Companies regularly apply tools and methods which have roots in quality and productivity improvement. The "plan, do, check, act" improvement loop, statistical analysis of incidents (non-conformities), and performance trending popularized by Dr. Deming are now commonly used in the context of process safety. Significant advancements in HSE performance are reported after applying methods viewed as fundamental for quality management. In pursuit of continual process safety improvement, the paper examines various quality improvement methods, and explores how methods intended for product quality can be additionally applied to continual improvement of process safety. Methods such as Kaizen, Poke yoke, and TRIZ, while long established for quality improvement, are quite unfamiliar in the process safety arena. These methods are discussed for application in improving both process safety leadership and field work team performance. Practical ways to advance process safety, based on the methods, are given.

  7. The Evolution of Process Safety: Current Status and Future Direction.

    Science.gov (United States)

    Mannan, M Sam; Reyes-Valdes, Olga; Jain, Prerna; Tamim, Nafiz; Ahammad, Monir

    2016-06-07

    The advent of the industrial revolution in the nineteenth century increased the volume and variety of manufactured goods and enriched the quality of life for society as a whole. However, industrialization was also accompanied by new manufacturing and complex processes that brought about the use of hazardous chemicals and difficult-to-control operating conditions. Moreover, human-process-equipment interaction plus on-the-job learning resulted in further undesirable outcomes and associated consequences. These problems gave rise to many catastrophic process safety incidents that resulted in thousands of fatalities and injuries, losses of property, and environmental damages. These events led eventually to the necessity for a gradual development of a new multidisciplinary field, referred to as process safety. From its inception in the early 1970s to the current state of the art, process safety has come to represent a wide array of issues, including safety culture, process safety management systems, process safety engineering, loss prevention, risk assessment, risk management, and inherently safer technology. Governments and academic/research organizations have kept pace with regulatory programs and research initiatives, respectively. Understanding how major incidents impact regulations and contribute to industrial and academic technology development provides a firm foundation to address new challenges, and to continue applying science and engineering to develop and implement programs to keep hazardous materials within containment. Here the most significant incidents in terms of their impact on regulations and the overall development of the field of process safety are described.

  8. Safety analysis of tritium processing system based on PHA

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    Safety analysis on primary confinement of tritium processing system for TBM was carried out with Preliminary Hazard Analysis. Firstly, the basic PHA process was given. Then the function and safe measures with multiple confinements about tritium system were described and analyzed briefly, dividing the two kinds of boundaries of tritium transferring through, that are multiple confinement systems division and fluid loops division. Analysis on tritium releasing is the key of PHA. Besides, PHA table about tritium releasing was put forward, the causes and harmful results being analyzed, and the safety measures were put forward also. On the basis of PHA, several kinds of typical accidents were supposed to be further analyzed. And 8 factors influencing the tritium safety were analyzed, laying the foundation of evaluating quantitatively the safety grade of various nuclear facilities. (authors)

  9. From Risk Analysis to the Safety Case. Values in Risk Assessments. A Report Based on Interviews with Experts in the Nuclear Waste Programs in Sweden and Finland. A Report from the RISCOM II Project

    International Nuclear Information System (INIS)

    Drottz Sjoeberg, Britt-Marie

    2004-06-01

    The report focuses on values in risk assessment, and is based on interviews with safety assessment experts and persons working at the national authorities in Sweden and Finland working in the area of nuclear waste management. The interviews contained questions related to definitions of risk and safety, standards, constraints and degrees of freedom in the work, data collections, reliability and validity of systems and the safety assessments, as well as communication between experts, and experts and non-experts. The results pointed to an increased amount of data and relevant factors considered in the analyses over time, changing the work content and process from one of risk analysis to a multifaceted teamwork towards the assessment of 'the safety case'. The multifaceted systems approach highlighted the increased importance of investigating assumptions underlying e.g. integration of diverse systems, and simplification procedures. It also highlighted the increased reliance on consensus building processes within the extended expert group, the importance of adequate communication abilities within the extended expert group, as well as the importance of transparency and communication relative the larger society. The results are discussed with reference to e.g. Janis 'groupthink' theory and Kuhns ideas of paradigmatic developments in science. It is concluded that it is well advised, in addition to the ordinary challenges of the work, to investigate also the implicit assumptions involved in the work processes to further enhance the understanding of safety assessments

  10. From Risk Analysis to the Safety Case. Values in Risk Assessments. A Report Based on Interviews with Experts in the Nuclear Waste Programs in Sweden and Finland. A Report from the RISCOM II Project

    Energy Technology Data Exchange (ETDEWEB)

    Drottz Sjoeberg, Britt-Marie [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Psychology

    2004-06-01

    The report focuses on values in risk assessment, and is based on interviews with safety assessment experts and persons working at the national authorities in Sweden and Finland working in the area of nuclear waste management. The interviews contained questions related to definitions of risk and safety, standards, constraints and degrees of freedom in the work, data collections, reliability and validity of systems and the safety assessments, as well as communication between experts, and experts and non-experts. The results pointed to an increased amount of data and relevant factors considered in the analyses over time, changing the work content and process from one of risk analysis to a multifaceted teamwork towards the assessment of 'the safety case'. The multifaceted systems approach highlighted the increased importance of investigating assumptions underlying e.g. integration of diverse systems, and simplification procedures. It also highlighted the increased reliance on consensus building processes within the extended expert group, the importance of adequate communication abilities within the extended expert group, as well as the importance of transparency and communication relative the larger society. The results are discussed with reference to e.g. Janis 'groupthink' theory and Kuhns ideas of paradigmatic developments in science. It is concluded that it is well advised, in addition to the ordinary challenges of the work, to investigate also the implicit assumptions involved in the work processes to further enhance the understanding of safety assessments.

  11. Process value of care safety: women's willingness to pay for perinatal services.

    Science.gov (United States)

    Anezaki, Hisataka; Hashimoto, Hideki

    2017-08-01

    To evaluate the process value of care safety from the patient's view in perinatal services. Cross-sectional survey. Fifty two sites of mandated public neonatal health checkup in 6 urban cities in West Japan. Mothers who attended neonatal health checkups for their babies in 2011 (n = 1316, response rate = 27.4%). Willingness to pay (WTP) for physician-attended care compared with midwife care as the process-related value of care safety. WTP was estimated using conjoint analysis based on the participants' choice over possible alternatives that were randomly assigned from among eight scenarios considering attributes such as professional attendance, amenities, painless delivery, caesarean section rate, travel time and price. The WTP for physician-attended care over midwife care was estimated 1283 USD. Women who had experienced complications in prior deliveries had a 1.5 times larger WTP. We empirically evaluated the process value for safety practice in perinatal care that was larger than a previously reported accounting-based value. Our results indicate that measurement of process value from the patient's view is informative for the evaluation of safety care, and that it is sensitive to individual risk perception for the care process. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care.

  12. Health economics and outcomes methods in risk-based decision-making for blood safety.

    Science.gov (United States)

    Custer, Brian; Janssen, Mart P

    2015-08-01

    Analytical methods appropriate for health economic assessments of transfusion safety interventions have not previously been described in ways that facilitate their use. Within the context of risk-based decision-making (RBDM), health economics can be important for optimizing decisions among competing interventions. The objective of this review is to address key considerations and limitations of current methods as they apply to blood safety. Because a voluntary blood supply is an example of a public good, analyses should be conducted from the societal perspective when possible. Two primary study designs are recommended for most blood safety intervention assessments: budget impact analysis (BIA), which measures the cost to implement an intervention both to the blood operator but also in a broader context, and cost-utility analysis (CUA), which measures the ratio between costs and health gain achieved, in terms of reduced morbidity and mortality, by use of an intervention. These analyses often have important limitations because data that reflect specific aspects, for example, blood recipient population characteristics or complication rates, are not available. Sensitivity analyses play an important role. The impact of various uncertain factors can be studied conjointly in probabilistic sensitivity analyses. The use of BIA and CUA together provides a comprehensive assessment of the costs and benefits from implementing (or not) specific interventions. RBDM is multifaceted and impacts a broad spectrum of stakeholders. Gathering and analyzing health economic evidence as part of the RBDM process enhances the quality, completeness, and transparency of decision-making. © 2015 AABB.

  13. Improving ICU risk management and patient safety.

    Science.gov (United States)

    Kielty, Lucy Ann

    2017-06-12

    Purpose The purpose of this paper is to describe a study which aimed to develop and validate an assessment method for the International Electrotechnical Commission (IEC) 80001-1 (IEC, 2010) standard (the Standard); raise awareness; improve medical IT-network project risk management processes; and improve intensive care unit patient safety. Design/methodology/approach An assessment method was developed and piloted. A healthcare IT-network project assessment was undertaken using a semi-structured group interview with risk management stakeholders. Participants provided feedback via a questionnaire. Descriptive statistics and thematic analysis was undertaken. Findings The assessment method was validated as fit for purpose. Participants agreed (63 per cent, n=7) that assessment questions were clear and easy to understand, and participants agreed (82 per cent, n=9) that the assessment method was appropriate. Participant's knowledge of the Standard increased and non-compliance was identified. Medical IT-network project strengths, weaknesses, opportunities and threats in the risk management processes were identified. Practical implications The study raised awareness of the Standard and enhanced risk management processes that led to improved patient safety. Study participants confirmed they would use the assessment method in future projects. Originality/value Findings add to knowledge relating to IEC 80001-1 implementation.

  14. Risk informed approach and its application in Daya Bay NPP operation safety management

    International Nuclear Information System (INIS)

    He Yu; Zhang Jinlong; Bao Yukun

    2004-01-01

    The paper presents a systematic risk assessment approach based on probabilistic theory, and discusses its significance and application process in safety management. Risk informed approach that uses deterministic engineering principles and probabilistic methods is the appropriate approach to decision making at nuclear power plants. The paper also studies an actual case taken place at Daya Bay Nuclear Power Station using PSA approach to equipment maintenance. (authors)

  15. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    Energy Technology Data Exchange (ETDEWEB)

    Mahdevari, Satar, E-mail: satar.mahdevari@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriar, Kourosh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Esfahanipour, Akbar [Industrial Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  16. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    International Nuclear Information System (INIS)

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-01-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  17. New approach for risk based inspection of H2S based Process Plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Sharma, Pavan K.; Santosh, T.V.; Hari Prasad, M.; Vaze, K.K.

    2014-01-01

    Highlights: • Study looks into improving the consequence evaluation in risk based inspection. • Ways to revise the quantity factors used in qualitative approach. • New approach based on computational fluid dynamics along with probit mathematics. • Demonstrated this methodology along with a suitable case study for the said issue. - Abstract: Recent trend in risk informed and risk based approaches in life management issues have certainly put the focus on developing estimation methods for real risk. Idea of employing risk as an optimising measure for in-service inspection, termed as risk based inspection, was accepted in principle from late 80s. While applying risk based inspection, consequence of failure from each component needs to be assessed. Consequence evaluation in a Process Plant is a crucial task. It may be noted that, in general, the number of components to be considered for life management is very large and hence the consequence evaluation resulting from their failures (individually) is a laborious task. Screening of critical components is usually carried out using simplified qualitative approach, which primarily uses influence factors for categorisation. This necessitates logical formulation of influence factors and their ranges with a suitable technical basis for acceptance from regulators. This paper describes application of risk based inspection for H 2 S based Process Plant along with the approach devised for handling the influence factor related to the quantity of H 2 S released

  18. Applications of nuclear safety probabilistic risk assessment to nuclear security for optimized risk mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, S.K.; Harvey, S.B. [Amec Foster Wheeler, Toronto, Ontario (Canada)

    2016-06-15

    Critical infrastructure assets such as nuclear power generating stations are potential targets for malevolent acts. Probabilistic methodologies can be applied to evaluate the real-time security risk based upon intelligence and threat levels. By employing this approach, the application of security forces and other protective measures can be optimized. Existing probabilistic safety analysis (PSA) methodologies and tools employed. in the nuclear industry can be adapted to security applications for this purpose. Existing PSA models can also be adapted and enhanced to consider total plant risk, due to nuclear safety risks as well as security risks. By creating a Probabilistic Security Model (PSM), safety and security practitioners can maximize the safety and security of the plant while minimizing the significant costs associated with security upgrades and security forces. (author)

  19. A Framework for an Integrated Risk Informed Decision Making Process. INSAG-25. A Report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    There is general international agreement, as reflected in various IAEA Safety Standards on nuclear reactor design and operation, that both deterministic and probabilistic analyses contribute to reactor safety by providing insights, perspective, comprehension and balance. Accordingly, the integration of deterministic and probabilistic analyses is increasing to support design, safety evaluation and operations. Additionally, application of these approaches to physical security is now being considered by several Member States. Deterministic and probabilistic analyses yield outputs that are complementary to each other. There is thus a need to use a structured framework for consideration of deterministic and probabilistic techniques and findings. In this process, it is appropriate to encourage a balance between deterministic approaches, probabilistic analyses and other factors (see Section 3) in order to achieve an integrated decision making process that serves in an optimal fashion to ensure nuclear reactor safety. This report presents such a framework - a framework that is termed 'integrated risk informed decision making' (IRIDM). While the details of IRIDM methods may change with better understanding of the subject, the framework presented in this report is expected to apply for the foreseeable future. IRIDM depends on the integration of a wide variety of information, insights and perspectives, as well as the commitment of designers, operators and regulatory authorities ers, operators and regulatory authorities to use risk information in their decisions. This report thus focuses on key IRIDM aspects, as well considerations that bear on their application which should be taken into account in order to arrive at sound risk informed decisions. This report is intended to be in harmony with the IAEA Safety Standards and various INSAG reports relating to safety assessment and verification, and seeks to convey an appropriate approach to enhance nuclear reactor safety

  20. A Framework for an Integrated Risk Informed Decision Making Process. INSAG-25. A Report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2011-01-01

    There is general international agreement, as reflected in various IAEA Safety Standards on nuclear reactor design and operation, that both deterministic and probabilistic analyses contribute to reactor safety by providing insights, perspective, comprehension and balance. Accordingly, the integration of deterministic and probabilistic analyses is increasing to support design, safety evaluation and operations. Additionally, application of these approaches to physical security is now being considered by several Member States. Deterministic and probabilistic analyses yield outputs that are complementary to each other. There is thus a need to use a structured framework for consideration of deterministic and probabilistic techniques and findings. In this process, it is appropriate to encourage a balance between deterministic approaches, probabilistic analyses and other factors (see Section 3) in order to achieve an integrated decision making process that serves in an optimal fashion to ensure nuclear reactor safety. This report presents such a framework - a framework that is termed 'integrated risk informed decision making' (IRIDM). While the details of IRIDM methods may change with better understanding of the subject, the framework presented in this report is expected to apply for the foreseeable future. IRIDM depends on the integration of a wide variety of information, insights and perspectives, as well as the commitment of designers, operators and regulatory authorities to use risk information in their decisions. This report thus focuses on key IRIDM aspects, as well considerations that bear on their application which should be taken into account in order to arrive at sound risk informed decisions. This report is intended to be in harmony with the IAEA Safety Standards and various INSAG reports relating to safety assessment and verification, and seeks to convey an appropriate approach to enhance nuclear reactor safety

  1. The role of color sorting machine in reducing food safety risks

    Directory of Open Access Journals (Sweden)

    Eleonora Kecskes-Nagy

    2016-07-01

    Full Text Available It is the very difficult problem how we can decrease food safety risks in the product, which was polluted in process of cropping. According to professional literature almost the prevention is considered as an exclusive method to keep below safe level the content of DON toxin. The source of food safety in food chain is that the primary products suit the food safety requirements. It is a very difficult or sometimes it is not possible to correct food safety risk factors - which got into the products during cultivation - in the course of processing. Such factor is fusariotoxin in fodder and bread wheat. DON toxin is the most frequent toxin in cereals. The objective of the searching was to investigate, if it is possible to decrease DON toxin content of durum wheat and to minimize the food safety risk by application milling technology with good production practice and technological conditions. The samples were taken in the first phase of milling technology just before and after color sorting. According to measuring results Sortex Z+ optical sorting decreased DON toxin content of wheat. This mean that the food safety risks can be reduced by Sortex Z+ optical sorting machine. Our experiments proved if there is color sorting in the cleaning process preceding the milling of wheat then a part of the grain of wheat infected by Fusarium sp. can be selected. This improves the food safety parameters of given lot of wheat and decrease the toxin content. The flour made from contaminated grains of wheat can be a serious food safety risk. We would like to support scientifically the technical development of milling technology with our experimental data. Normal 0 21 false false false HU X-NONE X-NONE MicrosoftInternetExplorer4

  2. Risk, fear and public safety

    International Nuclear Information System (INIS)

    Siddall, E.

    1981-04-01

    Part 1 of the paper advocates a rational approach to public safety based on unbiassed quantitative assessment of overall risks and benefits of any technological activity. It shows that improved safety should be attainable at less cost than is the case at present. Part 2 offers an explanation of why so little has been achieved in this direction and outlines the major errors in present practices. Part 3 suggests what might realistically be done towards the achievement of some of the possible benefits. Factors which are important in the study of safety and evidence supporting the arguments are discussed in six appendices. It is urged that the scientific and technological community should improve its understanding of safety as a specialization and should endeavour to lead rather than follow in our present political system

  3. Intelligent monitoring-based safety system of massage robot

    Institute of Scientific and Technical Information of China (English)

    胡宁; 李长胜; 王利峰; 胡磊; 徐晓军; 邹雲鹏; 胡玥; 沈晨

    2016-01-01

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  4. Risk-maps informing land-use planning processes

    International Nuclear Information System (INIS)

    Basta, Claudia; Neuvel, Jeroen M.M.; Zlatanova, Sisi; Ale, Ben

    2007-01-01

    The definition of safety distances as required by Art 12 of the Seveso II Directive on dangerous substances (96/82/EC) is necessary to minimize the consequences of potential major accidents. As they affect the land-use destinations of involved areas, safety distances can be considered as risk tolerability criteria with a territorial reflection. Recent studies explored the suitability of using Geographical Information System technologies to support their elaboration and visual rendering. In particular, the elaboration of GIS 'risk-maps' has been recognized as functional to two objectives: connecting spatial planners and safety experts during decision making processes and communicating risk to non-experts audiences. In order to elaborate on these findings and to verify their reflection on European practices, the article presents the result of a comparative study between the United Kingdom and the Netherlands recent developments. Their land-use planning practices for areas falling under Seveso II requirements are explored. The role of GIS risk-maps within decisional processes is analyzed and the reflection on the transparency and accessibility of risk-information is commented. Recommendations for further developments are given

  5. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    1977-01-01

    The societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters (e. g., expected benefit, intensity of effect) are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce radioactivity releases and risks from nuclear power stations to ALAP (as low as practiable) levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities

  6. Geosphere process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Skagius, Kristina

    2006-09-01

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS- repository, and forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The following excerpts describe the methodology, and clarify the role of this process report in the assessment. The repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock and the biosphere in the proximity of the repository, will evolve over time. Future states of the system will depend on the initial state of the system, a number of radiation related, thermal, hydraulic, mechanical, chemical and biological processes acting within the repository system over time, and external influences acting on the system. A methodology in ten steps has been developed for SR-Can described below. Identification of factors to consider (FEP processing): This step consists of identifying all the factors that need to be included in the analysis. Experience from earlier safety assessments and KBS-specific and international databases of relevant features, events and processes influencing long-term safety are utilised. Based on the results of the FEP processing, an SR-Can FEP catalogue, containing FEPs to be handled in SR-Can, has been established. The initial state of the system is described based on the design specifications of the KBS repository, a descriptive model of the repository site and a site-specific layout of the repository. The initial state of the fuel and the engineered components is that immediately after deposition, as described in the SR-Can Initial state report. The initial state of the geosphere and the biosphere is that of the natural system prior to excavation, as described in the site descriptive models. The repository layouts adapted to the sites are provided in underground

  7. Geosphere process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, Kristina [Kemakta Konsult AB, Stockholm (SE)] (ed.)

    2006-09-15

    This report documents geosphere processes identified as relevant to the long-term safety of a KBS- repository, and forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The following excerpts describe the methodology, and clarify the role of this process report in the assessment. The repository system, broadly defined as the deposited spent nuclear fuel, the engineered barriers surrounding it, the host rock and the biosphere in the proximity of the repository, will evolve over time. Future states of the system will depend on the initial state of the system, a number of radiation related, thermal, hydraulic, mechanical, chemical and biological processes acting within the repository system over time, and external influences acting on the system. A methodology in ten steps has been developed for SR-Can described below. Identification of factors to consider (FEP processing): This step consists of identifying all the factors that need to be included in the analysis. Experience from earlier safety assessments and KBS-specific and international databases of relevant features, events and processes influencing long-term safety are utilised. Based on the results of the FEP processing, an SR-Can FEP catalogue, containing FEPs to be handled in SR-Can, has been established. The initial state of the system is described based on the design specifications of the KBS repository, a descriptive model of the repository site and a site-specific layout of the repository. The initial state of the fuel and the engineered components is that immediately after deposition, as described in the SR-Can Initial state report. The initial state of the geosphere and the biosphere is that of the natural system prior to excavation, as described in the site descriptive models. The repository layouts adapted to the sites are provided in underground

  8. Application of risk-based inspection methods for cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Risk-based Inspection (RBI) is widely applied across the world as part of Pressure Equipment Integrity Management, especially in the oil and gas industry, to generally reduce costs compared with time-based approaches and assist in assigning resources to the most critical equipment. One of the challenges in RBI is to apply it for low temperature and cryogenic applications, as there are usually no degradation mechanisms by which to determine a suitable probability of failure in the overall risk assessment. However, the assumptions used for other degradation mechanisms can be adopted to determine, qualitatively and semi-quantitatively, a consequence of failure within the risk assessment. This can assist in providing a consistent basis for the assumptions used in ensuring adequate process safety barriers and determining suitable sizing of relief devices. This presentation will discuss risk-based inspection in the context of cryogenic safety, as well as present some of the considerations for the risk assessme...

  9. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    International Nuclear Information System (INIS)

    Zubair, M; Ur Rahman, Khalil; Ul Hassan, Mehmood

    2013-01-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants

  10. An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry

    Science.gov (United States)

    Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul

    2013-12-01

    The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.

  11. Safety analysis and risk assessment handbook

    International Nuclear Information System (INIS)

    Peterson, V.L.; Colwell, R.G.; Dickey, R.L.

    1997-01-01

    This Safety Analysis and Risk Assessment Handbook (SARAH) provides guidance to the safety analyst at the Rocky Flats Environmental Technology Site (RFETS) in the preparation of safety analyses and risk assessments. Although the older guidance (the Rocky Flats Risk Assessment Guide) continues to be used for updating the Final Safety Analysis Reports developed in the mid-1980s, this new guidance is used with all new authorization basis documents. With the mission change at RFETS came the need to establish new authorization basis documents for its facilities, whose functions had changed. The methodology and databases for performing the evaluations that support the new authorization basis documents had to be standardized, to avoid the use of different approaches and/or databases for similar accidents in different facilities. This handbook presents this new standardized approach. The handbook begins with a discussion of the requirements of the different types of authorization basis documents and how to choose the one appropriate for the facility to be evaluated. It then walks the analyst through the process of identifying all the potential hazards in the facility, classifying them, and choosing the ones that need to be analyzed further. It then discusses the methods for evaluating accident initiation and progression and covers the basic steps in a safety analysis, including consequence and frequency binning and risk ranking. The handbook lays out standardized approaches for determining the source terms of the various accidents (including airborne release fractions, leakpath factors, etc.), the atmospheric dispersion factors appropriate for Rocky Flats, and the methods for radiological and chemical consequence assessments. The radiological assessments use a radiological open-quotes templateclose quotes, a spreadsheet that incorporates the standard values of parameters, whereas the chemical assessments use the standard codes ARCHIE and ALOHA

  12. Chemical process safety management within the Department of Energy

    International Nuclear Information System (INIS)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA's Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites

  13. Mastery of risks and operational safety, risks and opportunities

    International Nuclear Information System (INIS)

    2004-01-01

    Creating socially useful richness is certainly the prime reason for companies to exist. Reaching this always moving target leads to seize opportunities and to take risks at the same time. For companies, risks and opportunities are two indissociable factors. Any decision making has to deal with an uncertain environment with random events of technological, economical, biological, human, environmental or natural origin. Because of the fear of uncertainty, risk acts as a brake to initiatives. In front of this problem, companies have to adopt a prevention policy based on a global and systemic approach, by identifying, evaluating, quantifying, sorting, mastering and managing unwanted events and by communicating about the way to treat them. In front of uncertainties, the operational safety, thanks to its methods and tools, supplies an incomparable contribution in the form of an help to any decision made with uncertainties. Operational safety contributes to the evaluation of costs and makes more realistic the economical estimations by taking into account the foreseeable and unforeseeable risks. The mastery of unwanted events, of their stakes and uncertainties, allows companies to carry out their projects in non-determined contexts and in a competitive environment. This colloquium concerns all socio-economical actors: industrialists, investors, decision makers, university and laboratory staffs, etc., who need a better evaluation of risks for a better mastery of their decisions in all sectors of activity. Seventeen papers of this conference, dealing with safety analysis and risk assessment at nuclear facilities and at other energy-related facilities, have been selected for Inis. (J.S.)

  14. Understanding Risk Tolerance and Building an Effective Safety Culture

    Science.gov (United States)

    Loyd, David

    2018-01-01

    Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.

  15. Discussion on the safety production risk managmeent of uranium mines

    International Nuclear Information System (INIS)

    Liu Bin; Luo Yun; Hu Penghua; Zhu Disi

    2009-01-01

    Based on the modern safety risk management theories and according to the actual situation, risk management for work safety in uranium mines is discussed from three aspects: risk identification,risk analysis and evaluation, and risk control. Referring to the '4M(Men,Machine,Medium,Management) factors' and 'Three types of hazards' theory, the classification of uranium mine accidents and risk factors are analyzed. In addition, the types and evaluation indexes of major risks of uranium mines as well as the 'spot, line, area' model of risk identification and analysis and the 'hierarchical' risk control mechanism are also studied. (authors)

  16. A completely new design and regulatory process - A risk-based approach for new nuclear power plants. Annex 17

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2002-01-01

    In the de-regulated electric power market place that is developing in the USA, competition from alternative electric power sources has provided significant downward pressure on the costs of new construction projects. Studies by the Electric Power Research Institute have shown that, in the USA, the capital cost of new nuclear plants must be decreased by at least 35% to 40% relative to the cost of Advanced Light Water Reactors designed in the early 1990s in order to be competitive with capital costs of gas-fired electric power plants. The underlying reasons for the high capital costs estimated for some nuclear plants are (1) long construction times, (2) the high level of 'defense-in-depth' or safety margin, included throughout the design and licensing process, and (3) the use of out-dated design methods and information. Probabilistic Safety Assessments are being used to develop a more accurate assessment of real plant risk and to provide relief if it can be demonstrated that plant equipment is not providing a significant contribution to plant safety. Westinghouse addressed some of these cost drivers in the development of the AP-600 passive plant design. However, because of relatively inexpensive natural gas plant alternative, we need to reduce the costs even further. Therefore, the AP-600 design is now being up-rated to a 1000 MWe design, AP-1000. The development of AP1000 is described in another paper being presented at this meeting. Westinghouse is also managing a project, sponsored by the US Department of Energy, which is aimed at developing an all-new 'risk-based' approach to design and regulation. Methodologies being developed use risk-based information to the extent practical and 'defense-in-depth' only when necessary to address uncertainties in models and equipment performance. Early results, summarized in this paper, include (1) the initial framework for a new design and regulatory process and (2) a sample design analysis which shows that the Emergency Core

  17. Risk-based maintenance-Techniques and applications

    International Nuclear Information System (INIS)

    Arunraj, N.S.; Maiti, J.

    2007-01-01

    Plant and equipment, however well designed, will not remain safe or reliable if it is not maintained. The general objective of the maintenance process is to make use of the knowledge of failures and accidents to achieve the possible safety with the lowest possible cost. The concept of risk-based maintenance was developed to inspect the high-risk components usually with greater frequency and thoroughness and to maintain in a greater manner, to achieve tolerable risk criteria. Risk-based maintenance methodology provides a tool for maintenance planning and decision making to reduce the probability of failure of equipment and the consequences of failure. In this paper, the risk analysis and risk-based maintenance methodologies were identified and classified into suitable classes. The factors affecting the quality of risk analysis were identified and analyzed. The applications, input data and output data were studied to understand their functioning and efficiency. The review showed that there is no unique way to perform risk analysis and risk-based maintenance. The use of suitable techniques and methodologies, careful investigation during the risk analysis phase, and its detailed and structured results are necessary to make proper risk-based maintenance decisions

  18. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  19. Risk assessment of mitigated domino scenarios in process facilities

    International Nuclear Information System (INIS)

    Landucci, Gabriele; Necci, Amos; Antonioni, Giacomo; Argenti, Francesca; Cozzani, Valerio

    2017-01-01

    The propagation of accidents among process units may lead to severe cascading events or domino effects with catastrophic consequences. Prevention, mitigation and management of domino scenarios is of utmost importance and may be achieved in industrial facilities through the adoption of multiple safety layers. The present study was aimed at developing an innovative methodology to address the quantitative risk assessment (QRA) of domino scenarios accounting for the presence and role of safety barriers. Based on the expected performance of safety barriers, a dedicated event tree analysis allowed the identification and the assessment of the frequencies of the different end-point events deriving from unmitigated and partially mitigated domino chains. Specific criteria were introduced in consequence analysis to consider the mitigation effects of end-point scenarios deriving from safety barriers. Individual and societal risk indexes were calculated accounting for safety barriers and the mitigated scenarios that may result from their actions. The application of the methodology to case-studies of industrial interest proved the importance of introducing a specific systematic and quantitative analysis of safety barrier performance when addressing escalation leading to domino effect. - Highlights: • A methodology was developed to account for safety barrier performance in escalation prevention. • The methodology allows quantitative assessment accounting for safety barrier performance. • A detailed analysis of transient mitigated scenarios is allowed by the developed procedure. • The procedure allows accounting for safety barrier performance in QRA of domino scenarios. • An important reduction in the risk due to domino scenarios is evidenced when considering safety barriers.

  20. Risk management and safety culture

    International Nuclear Information System (INIS)

    Takano, K.

    2007-01-01

    Paper informs on the efforts to elaborate a feedback system for risk comprehensive evaluation and a system to improve structure safety foreseeing the possibility to control the latent risk, ensuring the qualitative evaluation of the safety level and improvement of safety culture in various branches of industry, first and foremost, in the electricity producing sector including the nuclear power industry [ru

  1. Discounting the value of safety: effects of perceived risk and effort.

    Science.gov (United States)

    Sigurdsson, Sigurdur O; Taylor, Matthew A; Wirth, Oliver

    2013-09-01

    Although falls from heights remain the most prevalent cause of fatalities in the construction industry, factors impacting safety-related choices associated with work at heights are not completely understood. Better tools are needed to identify and study the factors influencing safety-related choices and decision making. Using a computer-based task within a behavioral economics paradigm, college students were presented a choice between two hypothetical scenarios that differed in working height and effort associated with retrieving and donning a safety harness. Participants were instructed to choose the scenario in which they were more likely to wear the safety harness. Based on choice patterns, switch points were identified, indicating when the perceived risk in both scenarios was equivalent. Switch points were a systematic function of working height and effort, and the quantified relation between perceived risk and effort was described well by a hyperbolic equation. Choice patterns revealed that the perceived risk of working at heights decreased as the effort to retrieve and don a safety harness increased. Results contribute to the development of computer-based procedure for assessing risk discounting within a behavioral economics framework. Such a procedure can be used as a research tool to study factors that influence safety-related decision making with a goal of informing more effective prevention and intervention strategies. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  2. Risk-targeted safety distance of reinforced concrete buildings from natural-gas transmission pipelines

    International Nuclear Information System (INIS)

    Russo, Paola; Parisi, Fulvio

    2016-01-01

    Natural-gas pipeline accidents mostly result in major damage even to buildings located far away. Therefore, proper safety distances should be observed in land use planning to ensure target safety levels for both existing and new buildings. In this paper, a quantitative risk assessment procedure is presented for the estimation of the annual probability of direct structural damage to reinforced concrete buildings associated with high-pressure natural-gas pipeline explosions. The procedure is based on Monte Carlo simulation and takes into account physical features of blast generation and propagation, as well as damage to reinforced concrete columns. The natural-gas jet release process and the flammable cloud size are estimated through SLAB one-dimensional integral model incorporating a release rate model. The explosion effects are evaluated by a Multi-Energy Method. Damage to reinforced concrete columns is predicted by means of pressure–impulse diagrams. The conditional probability of damage was estimated at multiple pressure–impulse levels, allowing blast fragility surfaces to be derived at different performance limit states. Finally, blast risk was evaluated and allowed the estimation of minimum pipeline-to-building safety distances for risk-informed urban planning. The probabilistic procedure presented herein may be used for performance-based design/assessment of buildings and to define the path of new natural-gas pipeline networks. - Highlights: • The safety of buildings against blast loads due to pipeline accidents is assessed. • A probabilistic risk assessment procedure is presented for natural-gas pipelines. • The annual risk of collapse of reinforced concrete building columns is evaluated. • Monte Carlo simulation was carried out considering both pipeline and column features. • A risk-targeted safety distance is proposed for blast strength class 9.

  3. Development of reliability and probabilistic safety assessment program RiskA

    International Nuclear Information System (INIS)

    Wu, Yican

    2015-01-01

    Highlights: • There are four parts in the structure of RiskA. User input part lets users input the PSA model and some necessary data by GUI or model transformation tool. In calculation engine part, fault tree analysis, event tree analysis, uncertainty analysis, sensitivity analysis, importance analysis and failure mode and effects analysis are supplied. User output part outputs the analysis results, user customized reports and some other data. The last part includes reliability database, some other common tools and help documents. • RiskA has several advanced features. Extensible framework makes it easy to add any new functions, making RiskA to be a large platform of reliability and probabilistic safety assessment. It is very fast to analysis fault tree in RiskA because many advanced algorithm improvement were made. Many model formats can be imported and exported, which made the PSA model in the commercial software can be easily transformed to adapt RiskA platform. Web-based co-modeling let several users in different places work together whenever they are online. • The comparison between RiskA and other mature PSA codes (e.g. CAFTA, RiskSpectrum, XFTA) has demonstrated that the calculation and analysis of RiskA is correct and efficient. Based on the development of this code package, many applications of safety and reliability analysis of some research reactors and nuclear power plants were performed. The development of RiskA appears to be of realistic and potential value for academic research and practical operation safety management of nuclear power plants in China and abroad. - Abstract: PSA (probabilistic safety assessment) software, the indispensable tool in nuclear safety assessment, has been widely used. An integrated reliability and PSA program named RiskA has been developed by FDS Team. RiskA supplies several standard PSA modules including fault tree analysis, event tree analysis, uncertainty analysis, failure mode and effect analysis and reliability

  4. Risk assessment of safety data link and network communication in digital safety feature control system of nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Son, Kwang Seop; Jung, Wondea; Kang, Hyun Gook

    2017-01-01

    Highlights: • Safety data communication risk assessment framework and quantitative scheme were proposed. • Fault-tree model of ESFAS unavailability due to safety data communication failure was developed. • Safety data link and network risk were assessed based on various ESF-CCS design specifications. • The effect of fault-tolerant algorithm reliability of safety data network on ESFAS unavailability was assessed. - Abstract: As one of the safety-critical systems in nuclear power plants (NPPs), the Engineered Safety Feature-Component Control System (ESF-CCS) employs safety data link and network communication for the transmission of safety component actuation signals from the group controllers to loop controllers to effectively accommodate various safety-critical field controllers. Since data communication failure risk in the ESF-CCS has yet to be fully quantified, the ESF-CCS employing data communication systems have not been applied in NPPs. This study therefore developed a fault tree model to assess the data link and data network failure-induced unavailability of a system function used to generate an automated control signal for accident mitigation equipment. The current aim is to provide risk information regarding data communication failure in a digital safety feature control system in consideration of interconnection between controllers and the fault-tolerant algorithm implemented in the target system. Based on the developed fault tree model, case studies were performed to quantitatively assess the unavailability of ESF-CCS signal generation due to data link and network failure and its risk effect on safety signal generation failure. This study is expected to provide insight into the risk assessment of safety-critical data communication in a digitalized NPP instrumentation and control system.

  5. Quantitative safety goals for the regulatory process

    International Nuclear Information System (INIS)

    Joksimovic, V.; O'Donnell, L.F.

    1981-01-01

    The paper offers a brief summary of the current regulatory background in the USA, emphasizing nuclear, related to the establishment of quantitative safety goals as a way to respond to the key issue of 'how safe is safe enough'. General Atomic has taken a leading role in advocating the use of probabilistic risk assessment techniques in the regulatory process. This has led to understanding of the importance of quantitative safety goals. The approach developed by GA is discussed in the paper. It is centred around definition of quantitative safety regions. The regions were termed: design basis, safety margin or design capability and safety research. The design basis region is bounded by the frequency of 10 -4 /reactor-year and consequences of no identifiable public injury. 10 -4 /reactor-year is associated with the total projected lifetime of a commercial US nuclear power programme. Events which have a 50% chance of happening are included in the design basis region. In the safety margin region, which extends below the design basis region, protection is provided against some events whose probability of not happening during the expected course of the US nuclear power programme is within the range of 50 to 90%. Setting the lower mean frequency to this region of 10 -5 /reactor-year is equivalent to offering 90% assurance that an accident of given severity will not happen. Rare events with a mean frequency below 10 -5 can be predicted to occur. However, accidents predicted to have a probability of less than 10 -6 are 99% certain not to happen at all, and are thus not anticipated to affect public health and safety. The area between 10 -5 and 10 -6 defines the frequency portion of the safety research region. Safety goals associated with individual risk to a maximum-exposed member of public, general societal risk and property risk are proposed in the paper

  6. Risk-Based Approach for Microbiological Food Safety Management in the Dairy Industry: The Case of Listeria monocytogenes in Soft Cheese Made from Pasteurized Milk.

    Science.gov (United States)

    Tenenhaus-Aziza, Fanny; Daudin, Jean-Jacques; Maffre, Alexandre; Sanaa, Moez

    2014-01-01

    According to Codex Alimentarius Commission recommendations, management options applied at the process production level should be based on good hygiene practices, HACCP system, and new risk management metrics such as the food safety objective. To follow this last recommendation, the use of quantitative microbiological risk assessment is an appealing approach to link new risk-based metrics to management options that may be applied by food operators. Through a specific case study, Listeria monocytogenes in soft cheese made from pasteurized milk, the objective of the present article is to practically show how quantitative risk assessment could be used to direct potential intervention strategies at different food processing steps. Based on many assumptions, the model developed estimates the risk of listeriosis at the moment of consumption taking into account the entire manufacturing process and potential sources of contamination. From pasteurization to consumption, the amplification of a primo-contamination event of the milk, the fresh cheese or the process environment is simulated, over time, space, and between products, accounting for the impact of management options, such as hygienic operations and sampling plans. A sensitivity analysis of the model will help orientating data to be collected prioritarily for the improvement and the validation of the model. What-if scenarios were simulated and allowed for the identification of major parameters contributing to the risk of listeriosis and the optimization of preventive and corrective measures. © 2013 Society for Risk Analysis.

  7. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  8. Behavior based safety

    International Nuclear Information System (INIS)

    Sudhikumaran, T.V.; Mehta, S.C.; Goyal, D.K.

    2009-01-01

    Behaviour Based Safety (popularly known as BBS) is a new methodology for achieving injury free work place and total Safety Culture. BBS is successfully being implemented and is being practiced as a work methodology for achieving a loss and injury free work environment and work practice. Through BBS, it was brought out that the root causes of all Industrial accidents some how originate from the 'at risk' behaviour of some individual or group of individuals at some level. The policy of NPCIL is to excel in the field of Industrial and Fire Safety in comparison to international standards. This article indents to bring out the various parameters helping in installing BBS programme at any plant. (author)

  9. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    Science.gov (United States)

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  10. Risk-maps informing land-use planning processes

    Energy Technology Data Exchange (ETDEWEB)

    Basta, Claudia [DIRC Sustainable Urban Areas, Section of Material Science and Sustainable Construction, Delft University of Technology, Stevinweg 1, 2600 GA, Delft (Netherlands)]. E-mail: c.basta@citg.tudelft.nl; Neuvel, Jeroen M.M. [Land Use Planning, Wageningen University, Droevendaalsesteeg 3, Postbus 47, 6700 AA Wageningen (Netherlands)]. E-mail: jeroen.neuvel@wur.nl; Zlatanova, Sisi [Section GISt, OTB Research Institute for Housing, Urban and Mobility Studies, Delft University of Technology, Jaffalaan 9, P.O. Box 5030, 2600 GA, Delft (Netherlands)]. E-mail: s.zlatanova@otb.tudelft.nl; Ale, Ben [Safety Science Group, TBM Faculty, Delft University of Technology, Jaffalaan 5, 2600 GA, Delft (Netherlands)

    2007-06-25

    The definition of safety distances as required by Art 12 of the Seveso II Directive on dangerous substances (96/82/EC) is necessary to minimize the consequences of potential major accidents. As they affect the land-use destinations of involved areas, safety distances can be considered as risk tolerability criteria with a territorial reflection. Recent studies explored the suitability of using Geographical Information System technologies to support their elaboration and visual rendering. In particular, the elaboration of GIS 'risk-maps' has been recognized as functional to two objectives: connecting spatial planners and safety experts during decision making processes and communicating risk to non-experts audiences. In order to elaborate on these findings and to verify their reflection on European practices, the article presents the result of a comparative study between the United Kingdom and the Netherlands recent developments. Their land-use planning practices for areas falling under Seveso II requirements are explored. The role of GIS risk-maps within decisional processes is analyzed and the reflection on the transparency and accessibility of risk-information is commented. Recommendations for further developments are given.

  11. Impediments for the application of risk-informed decision making in nuclear safety

    International Nuclear Information System (INIS)

    Hahn, L.

    2001-01-01

    A broad application of risk-informed decision making in the regulation of safety of nuclear power plants is hindered by the lack of quantitative risk and safety standards as well as of precise instruments to demonstrate an appropriate safety. An additional severe problem is associated with the difficulty to harmonize deterministic design requirements and probabilistic safety assessment. The problem is strengthened by the vulnerability of PSA for subjective influences and the potential of misuse. Beside this scepticism the nuclear community is encouraged to intensify the efforts to improve the quality standards for probabilistic safety assessments and their quality assurance. A prerequisite for reliable risk-informed decision making processes is also a well-defined and transparent relationship between deterministic and probabilistic safety approaches. (author)

  12. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    International Nuclear Information System (INIS)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt

    2001-01-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis. In this respect there is a

  13. Safety- and Risk Analysis Activities in Chemical Industry in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kozine, Igor; Duijm, Nijs Jan; Lauridsen Kurt [Risoe National Laboratory, Roskilde (Denmark). Systems Analysis Department

    2001-07-01

    The current paper gives an overview of the legislation and the methods used in safety and risk management in the chemical industry within Europe and in particular within the European Union. The paper is based on a report that has been written for the SOS-1 project under the Nordic nuclear safety research (NKS). Safety- and risk-related matters in the process industry, in particular, in chemical, within the EU are subject to consideration at three levels: (1) EU legislation, (2) European/intemational standardisation, and (3) socio-economic analysis. EC Directives define the 'essential requirements', e.g., protection of health and safety, that must be fulfilled when goods are placed on the market or some industry is put into operation. The European standards bodies (CEN, CENELEC and ETSI) have the task of establishing the corresponding technical specifications, meeting the essential requirements of the Directives, compliance with which will provide a presumption of conformity with the essential requirements. Such specifications are referred to as 'harmonised standards'. Compliance with harmonised standards remains voluntary, and manufacturers are free to choose any other technical solution that provides compliance with the essential requirements. This view is stated in the 'New Approach' to technical harmonisation and standardisation (details can be found on the web page: http://europe.eu.int/comm/enterprise/newapproach/standardization/index .html). Standardisation as well as the regulation of technical risks is increasingly being undertaken at European or international level. The European legislator limits its role to the affirmation of overall objectives, and leaves it to the economic players to draw up the technical procedures and standards to specify in detail the ways and means of attaining them. Many countries have introduced requirements that new legislation and/or administrative regulations be subject to socio-economic analysis

  14. Do we see how they perceive risk? An integrated analysis of risk perception and its effect on workplace safety behavior.

    Science.gov (United States)

    Xia, Nini; Wang, Xueqing; Griffin, Mark A; Wu, Chunlin; Liu, Bingsheng

    2017-09-01

    While risk perception is a key factor influencing safety behavior, the academia lacks specific attention to the ways that workers perceive risk, and thus little is known about the mechanisms through which different risk perceptions influence safety behavior. Most previous research in the workplace safety domain argues that people tend to perceive risk based on rational formulations of risk criticality. However, individuals' emotions can be also useful in understanding their perceptions. Therefore, this research employs an integrated analysis concerning the rational and emotional perspectives. Specifically, it was expected that the identified three rational ways of perceiving risk, i.e., perceived probability, severity, and negative utility, would influence the direct emotional risk perception. Furthermore, these four risk perceptions were all expected to positively but differently influence safety behavior. The hypotheses were tested using a sample of 120 construction workers. It was found that all the three rational risk perceptions significantly influenced workers' direct perception of risk that is mainly based on emotions. Furthermore, safety behavior among workers relied mainly on emotional perception but not rational calculations of risk. This research contributes to workplace safety research by highlighting the importance of integrating the emotional assessment of risk, especially when workers' risk perception and behavior are concerned. Suggested avenues for improving safety behavior through improvement in risk perception include being aware of the possibility of different ways of perceiving risk, promoting experience sharing and accident simulation, and uncovering risk information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protection of environment, health and safety using risk management

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, G [Ghafari Associates, Inc. 17101 Michegan Avenue Dearborn, MI 48126-2736 (United States); Kummler, R H [Department of Chemical engineering Wayne Stae University Detroit, MI 48202 (United States); louvar, J [Research Services Basf Corporation Wyandotte, MI 48192 (United States)

    1997-12-31

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA`s PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility`s need for compliance and review the regulations for risk management.

  16. Protection of environment, health and safety using risk management

    International Nuclear Information System (INIS)

    Abraham, G.; Kummler, R.H.; louvar, J.

    1996-01-01

    Section 304 of the 1990 clean air amendments (CAAA) directed the US occupational safety and health administration (OSFA) to develop a chemical process safety standard to protect workers on-site from accidents involving hazardous substances. OSHA issued 29 CFR 1910.119, process safety management of Highly hazardous chemicals (PSM) in 1992. Section 112 r of the CAAA further mandated that a standard be developed to protect the environment from accidental releases of hazardous substances. The US environmental protection agency (EPA) proposed such a standard in 1993 (58 Fr 54190) and revised their proposal in 1995). The final rule for risk management and accidental release prevention is more comprehensive and extensive than OSHA's PSM standard. In this paper we will discuss the concepts of both programs, the classes of substances that would trigger a facility's need for compliance and review the regulations for risk management

  17. Risk-based and deterministic regulation

    International Nuclear Information System (INIS)

    Fischer, L.E.; Brown, N.W.

    1995-07-01

    Both risk-based and deterministic methods are used for regulating the nuclear industry to protect the public safety and health from undue risk. The deterministic method is one where performance standards are specified for each kind of nuclear system or facility. The deterministic performance standards address normal operations and design basis events which include transient and accident conditions. The risk-based method uses probabilistic risk assessment methods to supplement the deterministic one by (1) addressing all possible events (including those beyond the design basis events), (2) using a systematic, logical process for identifying and evaluating accidents, and (3) considering alternative means to reduce accident frequency and/or consequences. Although both deterministic and risk-based methods have been successfully applied, there is need for a better understanding of their applications and supportive roles. This paper describes the relationship between the two methods and how they are used to develop and assess regulations in the nuclear industry. Preliminary guidance is suggested for determining the need for using risk based methods to supplement deterministic ones. However, it is recommended that more detailed guidance and criteria be developed for this purpose

  18. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  19. Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ho Jin; Yoon, Ik Keun [Korea Gas Corporation, Ansan (Korea, Republic of); Choi, Soo Hyoung [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-12-15

    Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than 10{sup -4}/yr. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

  20. Risk assessment and safety regulations in offshore oil and gas ...

    African Journals Online (AJOL)

    Risk management of which risk assessment is part, and safety regulations are common in the offshore oil and gas industry management system. The process of conducting risk assessment is mostly a challenge for operational personnel assigned to perform this function. The most significant problem is the decision to use ...

  1. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  2. Increase plant safety and reduce cost by implementing risk-informed in-service inspection programs

    International Nuclear Information System (INIS)

    Billington, A.; Monette, P.

    2001-01-01

    The idea behind the program is that it is possible to 'inspect less, but inspect better'. In other words, the risk-informed In-Service Inspection (ISI) process is used to improve the effectiveness of examination of piping components, i.e. concentrate inspection resources and enhance inspection strategies on high safety significant locations, and reduce inspection requirements on others. The Westinghouse Owners Group (WOG) risk-informed ISI process has already been applied for full scope (Millstone 3, Surry 1) and limited scope (Beznau, Ringhals 4, Asco, Turkey Point 3). By examining the high safety significant piping segments for the different fluid piping systems, the total piping core damage frequency is reduced. In addition, more than 80% of the risk associated with potential pressure boundary failures is addressed with the WOG risk-informed ISI process, while typically less that 50% of this same risk is addressed by the current inspection programs. The risk-informed ISI processes are used to improve the effectiveness of inspecting safety-significant piping components, to reduce inspection requirements on other piping components, to evaluate improvements to plant availability and enhanced safety measures, including reduction of personnel radiation exposure, and to reduce overall Operation and Maintenance (O and M) costs while maintaining regulatory compliance. A description of the process as well as benefits from past projects is presented, since the methodology is applicable for WWER plant design. (author)

  3. Increase plant safety and reduce cost by implementing risk-informed In-Service Inspection programs

    International Nuclear Information System (INIS)

    Billington, A.; Monette, P.; Doumont, C.

    2000-01-01

    The idea behind the program is that it is possible to 'inspect less, but inspect better'. In other words, the risk-informed In-Service Inspection (ISI) process is used to improve the effectiveness of examination of piping components, i.e. concentrate inspection resources and enhance inspection strategies on high safety significant locations, and reduce inspection requirements on others. The Westinghouse Owners Group (WOG) risk-informed ISI process has already been applied for full scope (Millstone 3, Surry 1) and limited scope (Beznau, Ringhals 4, Asco, Turkey Point 3). By examining the high safety significant piping segments for the different fluid piping systems, the total piping core damage frequency is reduced. In addition, more than 80% of the risk associated with potential pressure boundary failures is addressed with the WOG risk-informed ISI process, while typically less than 50% of this same risk is addressed by the current inspection programs. The risk-informed ISI processes are used: to improve the effectiveness of inspecting safety-significant piping components; to reduce inspection requirements on other piping components; to evaluate improvements to plant availability and enhanced safety measures, including reduction of personnel radiation exposure; and to reduce overall Operation and Maintenance (O and M) costs while maintaining regulatory compliance. A description of the process as well as benefits of past projects is presented, since the methodology is applicable for VVER plant design. (author)

  4. Risk-Based Decision Making for Deterioration Processes Using POMDP

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; Sørensen, John Dalsgaard

    2015-01-01

    This paper proposes a method for risk-based decision making for maintenance of deteriorating components, based on the partially observable Markov decision process (POMDP). Unlike most methods, the decision polices do not need to be stationary and can vary according to seasons and near the end...

  5. Risk and Work Configuration Management as a Function of Integrated Safety Management

    International Nuclear Information System (INIS)

    Lana Buehrer; Michele Kelly; Fran Lemieux; Fred Williams

    2007-01-01

    National Security Technologies, LLC (NSTec), has established a work management program and corresponding electronic Facilities and Operations Management Information System (e-FOM) to implement Integrated Safety Management (ISM). The management of work scopes, the identification of hazards, and the establishment of implementing controls are reviewed and approved through electronic signatures. Through the execution of the program and the implementation of the electronic system, NSTec staff work within controls and utilize feedback and improvement process. The Integrated Work Control Manual further implements the five functions of ISM at the Activity level. By adding the Risk and Work Configuration Management program, NSTec establishes risk acceptance (business and physical) for liabilities within the performance direction and work management processes. Requirements, roles, and responsibilities are specifically identified in the program while e-FOM provides the interface and establishes the flowdown from the Safety Chain to work and facilities management processes to company work-related directives, and finally to Subject Matter Expert concurrence. The Program establishes, within the defined management structure, management levels for risk identification, risk mitigation (controls), and risk acceptance (business and physical) within the Safety Chain of Responsibility. The Program also implements Integrated Safeguards and Security Management within the NSTec Safety Chain of Responsibility. Once all information has been entered into e-FOM, approved, and captured as data, the information becomes searchable and sortable by hazard, location, organization, mitigating controls, etc

  6. Managing risk in healthcare: understanding your safety culture using the Manchester Patient Safety Framework (MaPSaF).

    Science.gov (United States)

    Parker, Dianne

    2009-03-01

    To provide sufficient information about the Manchester Patient Safety Framework (MaPSaF) to allow healthcare professionals to assess its potential usefulness. The assessment of safety culture is an important aspect of risk management, and one in which there is increasing interest among healthcare organizations. Manchester Patient Safety Framework offers a theory-based framework for assessing safety culture, designed specifically for use in the NHS. The framework covers multiple dimensions of safety culture, and five levels of safety culture development. This allows the generation of a profile of an organization's safety culture in terms of areas of relative strength and challenge, which can be used to identify focus issues for change and improvement. Manchester Patient Safety Framework provides a useful method for engaging healthcare professionals in assessing and improving the safety culture in their organization, as part of a programme of risk management.

  7. The Development of a Risk Management System in the Field of Industrial Safety in the Republic of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Sergey S. Kudryavtsev

    2018-03-01

    Full Text Available Background: The purpose of the work is to develop a system that allows processing of information for analysis and industrial risk management, to monitor the level of industrial safety and to perform necessary measures aimed at the prevention of accidents, casualties, and development of professional diseases for effective management of industrial safety at hazardous industrial sites. Methods: Risk assessment of accidents and incidents is based on expert evaluations. Based on the lists of criteria parameters and their possible values, provided by the experts, a unified information and analytical database is compiled, which is included in the final interrogation questionnaires. Risk assessment of industrial injuries and occupational diseases is based on statistical methods. Results: The result of the research is the creation of Guidelines for risk management on hazardous industrial sites of the Republic of Kazakhstan. The Guidelines determine the directions and methods of complex assessment of the state of industrial safety and labor protection and they could be applied as methodological basis at the development of preventive measures for emergencies, casualties, and incidents at hazardous industrial sites. Conclusion: Implementation of the information-analytical system of risk level assessment allows to analyze the state of risk of a possible accident at industrial sites, make valid management decisions aimed at the prevention of emergencies, and monitor the effectiveness of accident prevention measures. Keywords: industrial safety, industrial trauma, professional sickness rate, risk assessment, risk management

  8. An Introduction of Behavior-Based Safety Program in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lim, Hyeon Kyo

    2011-01-01

    There are many methods and approaches for a human error assessment that is valuable for investigating the causes of undesirable events and counter-plans to prevent their recurrence in the nuclear power plants (NPPs). There is behavior-based safety refers to the process of using a proactive approach to safety and health management. It either focuses on risk of behaviors that can lead to an injury, or on safe behaviors that can contribute to injury prevention. Early applications of behavior based safety included the construction and manufacturing industries, but today behavior based safety is applied to a wide variety of industries and service lines. This behavior based safety program can offer a set of significant human error countermeasures to be considered for human error in NPPs as well as other fields of industry. The current methods for the human error prevention in NPPs are several techniques such as Self-Check, Peer Check, Concurrent Verification, 3-way Communication, etc. However, it is not enough to grasp the whole human error problems in operations because the things are needed in fields are a behavior technique not a simple knowledge. Therefore, we applied a behavior based safety program on the current methods

  9. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    In the present study the societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce the radioactivity releases and risks from nuclear power stations to ALAP levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities. It is also shown that the incremental safety investments needed to further reduce the radiation doses in the environment during normal and continuous operation of nuclear plants are extravagantly high as compared to safety investments in other human activities and in other facets of human life. Considering that there is a limit to the economic means available, societal expenditures for reducing risks should by spread, as much as possible, over all human activities to get the maximum return from investments. (B.G.)

  10. Safety prediction for basic components of safety-critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2000-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  11. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  12. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    International Nuclear Information System (INIS)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.

    2017-01-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  13. Risk-based design of process plants with regard to domino effects and land use planning.

    Science.gov (United States)

    Khakzad, Nima; Reniers, Genserik

    2015-12-15

    Land use planning (LUP) as an effective and crucial safety measure has widely been employed by safety experts and decision makers to mitigate off-site risks posed by major accidents. Accordingly, the concept of LUP in chemical plants has traditionally been considered from two perspectives: (i) land developments around existing chemical plants considering potential off-site risks posed by major accidents and (ii) development of existing chemical plants considering nearby land developments and the level of additional off-site risks the land developments would be exposed to. However, the attempts made to design chemical plants with regard to LUP requirements have been few, most of which have neglected the role of domino effects in risk analysis of major accidents. To overcome the limitations of previous work, first, we developed a Bayesian network methodology to calculate both on-site and off-site risks of major accidents while taking domino effects into account. Second, we combined the results of risk analysis with Analytic Hierarchical Process to design an optimal layout for which the levels of on-site and off-site risks would be minimum. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Safety Politics and Risk Perceptions in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    Abstract The book deals with the analysis of work hazards and safety in industrial enterprises in Peninsular Malaysia, Southeast Asia. It traces the development of this theme of conflict within the context constituted by state, labour market and labour-management relations in Malaysia. The book...... and safety, when compared with the influence of local conditions? What kind of process develops, as local theory about work hazards are formed among workers. And, which are the opportunities for changing working environment institutions in Malaysia? The first part of the book discusses traditions...... by the state from Burawoy, Beronius, and Adesina about production politics and social relations in the labour process provides an integrated perspective on individual risk perceptions, safety practices in enterprises, and government regulation. The empirical data were collected during the period 1989...

  15. Qualification of FPGA-Based Safety-Related PRM System

    International Nuclear Information System (INIS)

    Miyazaki, Tadashi; Oda, Naotaka; Goto, Yasushi; Hayashi, Toshifumi

    2011-01-01

    Toshiba has developed Non-rewritable (NRW) Field Programmable Gate Array (FPGA)-based safety-related Instrumentation and Control (I and C) system. Considering application to safety-related systems, nonvolatile and non-rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. FPGA is a device which consists only of basic logic circuits, and FPGA performs defined processing which is configured by connecting the basic logic circuit inside the FPGA. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing unit (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. The system which Toshiba developed this time is Power Range Neutron Monitor (PRM). Toshiba is planning to expand application of FPGA-based technology by adopting this development process to the other safety-related systems such as RPS from now on. Toshiba developed a special design process for NRW-FPGA-based safety-related I and C systems. The design process resolves issues for many years regarding testability of the digital system for nuclear safety application. Thus, Toshiba NRW-FPGA-based safety-related I and C systems has much advantage to be a would standard of the digital systems for nuclear safety application. (author)

  16. Non-animal approaches for consumer safety risk assessments: Unilever's scientific research programme.

    Science.gov (United States)

    Carmichael, Paul; Davies, Michael; Dent, Matt; Fentem, Julia; Fletcher, Samantha; Gilmour, Nicola; MacKay, Cameron; Maxwell, Gavin; Merolla, Leona; Pease, Camilla; Reynolds, Fiona; Westmoreland, Carl

    2009-12-01

    Non-animal based approaches to risk assessment are now routinely used for assuring consumer safety for some endpoints (such as skin irritation) following considerable investment in developing and applying new methods over the past 20 years. Unilever's research programme into non-animal approaches for safety assessment is currently focused on the application of new technologies to risk assessments in the areas of skin allergy, cancer and general toxicity (including inhalation toxicity). In all of these areas, a long-term investment is essential to increase the scientific understanding of the underlying biological and chemical processes that we believe will ultimately form a sound basis for novel risk assessment approaches. Our research programme in these priority areas consists of in-house research as well as Unilever-sponsored academic research, involvement with EU-funded projects (e.g. Sens-it-iv, carcinoGENOMICS), participation in cross-industry collaborative research (e.g. COLIPA, EPAA) and ongoing involvement with other scientific initiatives on non-animal approaches to risk assessment (e.g. UK NC3Rs, US 'Human Toxicology Project' consortium). 2009 FRAME.

  17. Risk-based safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Chakraborty, S.; Prohaska, G.; Flodin, Y.; Grint, G.; Habermacher, H.; Hallman, A.; Isasia, R.; Melendez, E.; Verduras, E.; Karsa, Z.; Khatib-Rahbar, M.; Koeberlein, K.; Schwaeger, C.; Matahri, N.; Moravcik, I.; Tkac, M.; Preston, J.

    2003-01-01

    In a Concerted Action (CA), sponsored by the European Commission within its 5th Framework Program, a consortium of eleven partners from eight countries has reviewed and evaluated the application of Safety Performance Indicators (SPIs), which - in combination with other tools - can be used to monitor and improve the safety of nuclear power plants. The project was aimed at identification of methods that can be used in a risk-informed regulatory system and environment, and to exploit PSA techniques for the development and use of meaningful additional/alternative SPIs. The CA included the review of existing indicator systems, and the collection of information on the experience from indicator systems by means of a specific questionnaire. One of the most important and challenging issues for nuclear plant owners and/or regulators is to recognize early signs of deterioration in safety performance, caused by influences from management, organization and safety culture (MOSC), before actual events and/or mishaps take place. Most of the existing SPIs as proposed by various organizations are considered as 'lagging' indicators, that is, they are expected to show an impact only when a downward trend has already started. Furthermore, most of the available indicators are at a relatively high level, such that they will not provide useful information on fundamental weaknesses causing the problem in the first place. Regulators' and utilities' views on the use of a Safety Performance Indicator System have also been a part of the development of the CA. (author)

  18. Product-based Safety Certification for Medical Devices Embedded Software.

    Science.gov (United States)

    Neto, José Augusto; Figueiredo Damásio, Jemerson; Monthaler, Paul; Morais, Misael

    2015-01-01

    Worldwide medical device embedded software certification practices are currently focused on manufacturing best practices. In Brazil, the national regulatory agency does not hold a local certification process for software-intensive medical devices and admits international certification (e.g. FDA and CE) from local and international industry to operate in the Brazilian health care market. We present here a product-based certification process as a candidate process to support the Brazilian regulatory agency ANVISA in medical device software regulation. Center of Strategic Technology for Healthcare (NUTES) medical device embedded software certification is based on a solid safety quality model and has been tested with reasonable success against the Class I risk device Generic Infusion Pump (GIP).

  19. Identification of Patient Safety Risks Associated with Electronic Health Records: A Software Quality Perspective.

    Science.gov (United States)

    Virginio, Luiz A; Ricarte, Ivan Luiz Marques

    2015-01-01

    Although Electronic Health Records (EHR) can offer benefits to the health care process, there is a growing body of evidence that these systems can also incur risks to patient safety when developed or used improperly. This work is a literature review to identify these risks from a software quality perspective. Therefore, the risks were classified based on the ISO/IEC 25010 software quality model. The risks identified were related mainly to the characteristics of "functional suitability" (i.e., software bugs) and "usability" (i.e., interface prone to user error). This work elucidates the fact that EHR quality problems can adversely affect patient safety, resulting in errors such as incorrect patient identification, incorrect calculation of medication dosages, and lack of access to patient data. Therefore, the risks presented here provide the basis for developers and EHR regulating bodies to pay attention to the quality aspects of these systems that can result in patient harm.

  20. Risk perception, safety goals and regulatory decision-making

    International Nuclear Information System (INIS)

    Hoegberg, Lars

    1998-01-01

    Deciding on 'how safe is safe enough?' includes value judgements with implications of an ethical and political nature. As regulators are accountable to governments, parliaments and the general public, regulatory decision-making should be characterized by transparency with respect to how such value judgements are reflected in risk assessments and regulatory decisions. Some approaches in this respect are discussed in the paper, based on more than fifteen years of experience in nuclear regulatory decision-making. Issues discussed include: (1) risk profiles and safety goals associated with severe reactor accidents--individual health risks, societal risks and risk of losing investments; (2) risk profile-based licensing of the Swedish SFR final disposal facility for low and intermediate level radioactive waste

  1. Wireless Sensing Based on RFID and Capacitive Technologies for Safety in Marble Industry Process Control

    Directory of Open Access Journals (Sweden)

    Fabrizio Iacopetti

    2013-01-01

    Full Text Available This paper presents wireless sensing systems to increase safety and robustness in industrial process control, particularly in industrial machines for marble slab working. The process is performed by abrasive or cutting heads activated independently by the machine controller when the slab, transported on a conveyer belt, is under them. Current slab detection systems are based on electromechanical or optical devices at the machine entrance stage, suffering from deterioration and from the harsh environment. Slab displacement or break inside the machine due to the working stress may result in safety issues and damages to the conveyer belt due to incorrect driving of the working tools. The experimented contactless sensing techniques are based on four RFID and two capacitive sensing technologies and on customized hardware/software. The proposed solutions aim at overcoming some limitations of current state-of-the-art detection systems, allowing for reliable slab detection, outside and/or inside the machine, while maintaining low complexity and at the same time robustness to industrial harsh conditions. The proposed sensing devices may implement a wireless or wired sensor network feeding detection data to the machine controller. Data integrity check and process control algorithms have to be implemented for the safety and reliability of the overall industrial process.

  2. The spread model of food safety risk under the supply-demand disturbance.

    Science.gov (United States)

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.

  3. Safety prediction for basic components of safety critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2001-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  4. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  5. Risk based regulation: a convenient concept for legislation and regulation in the field of technical risks?

    International Nuclear Information System (INIS)

    Seiler, J.H.

    1998-01-01

    Legislation and regulation concerning risk activities are traditionally based on deterministic safety measures. This may lead to inefficient results: sometimes the law requires safety measures which are - from an economic viewpoint - not justified because of their poor cost-effectiveness; sometimes it does not require safety measures although they would be very efficient. The risk based regulation approach wants to make the law more efficient and to get more safety at less costs. Legislation and regulation should be based on terms of risk rather than on deterministic rules. Risk should be expressed in quantitative terms and risk regulation should be based on the cost-effectiveness of safety measures. Thus a most efficient (in the sense of the economic analysis of the law) strategy for safety and environmental law could be established. The approach is economically reasonable and theoretically convincing. Its practical implementation however raises a lot of technical and legal questions. The project 'Risk Based Regulation' (1996-1999), sponsored by the Swiss National Fund for Scientific Research, intends to evaluate the practical feasibility of the approach from a technical and a legal view. It contains a general part which describes the risk based regulation approach and its legal and technical questions, case studies which try to practically implement the risk based regulation approach; the case studies are: storage and management of explosives in the army, storage and management of explosives for non-military purposes, safety at work, accident prevention in the non-professional field (mainly road accidents), fire protection, transportation of dangerous goods, waste disposal: traditional waste, waste disposal: radioactive waste, nuclear energy (reactor safety), a synthesis with recommendations for the future legislation and regulation in the field of technical risks. The paper presents the project and its preliminary results. (author)

  6. Risk-assessment techniques and the reactor licensing process

    International Nuclear Information System (INIS)

    Levine, S.

    1979-01-01

    A brief description of the Reactor Safety Study (WASH-1400), concentrating on the engineering aspects of the contribution to reactor accident risks is followed by some comments on how we have applied the insights and techniques developed in this study to prepare a program to improve the safety of nuclear power plants. Some new work we are just beginning on the application of risk-assessment techniques to stablize the reactor licensing process is also discussed

  7. The safety monitor and RCM workstation as complementary tools in risk based maintenance optimization

    International Nuclear Information System (INIS)

    Rawson, P.D.

    2000-01-01

    Reliability Centred Maintenance (RCM) represents a proven technique for rendering maintenance activities safer, more effective, and less expensive, in terms of systems unavailability and resource management. However, it is believed that RCM can be enhanced by the additional consideration of operational plant risk. This paper discusses how two computer-based tools, i.e., the RCM Workstation and the Safety Monitor, can complement each other in helping to create a living preventive maintenance strategy. (author)

  8. Risk management and safety

    International Nuclear Information System (INIS)

    Niehaus, F.; Novegno, A.

    1985-01-01

    Risk assessment, including probabilistic analyses, has made great progress over the past decade. In spite of the inherent uncertainties it has now become possible to utilize methods and results for decision making at various levels. This paper will, therefore, review risk management in industrial installations, risk management for energy safety policy and prospects of risk management in highly industrialized areas. (orig.) [de

  9. Selection of tolerable risk criteria for dam safety decision making

    International Nuclear Information System (INIS)

    Nielsen, N.M.; Hartford, D.N.D.; MacDonald, T.F.

    1994-01-01

    Risk assessment has received increasing attention in recent years as a means of aiding decision making on dams by providing systematic and rational methods for dealing with risk and uncertainty. Risk assessment is controversial and decisions affecting risk to life are the most controversial. Tolerable criteria, based on the risks that society is prepared to accept in order to avoid excessive costs, set bounds within which risk-based decisions may be made. The components of risk associated with dam safety are addressed on an individual basis and criteria established for each component, thereby permitting flexibility in the balance between component risk and avoiding the problems of placing a monetary value on life. The guiding principle of individual risk is that dams do not impose intolerable risks on any individual. A risk to life of 1 in 10 4 per annum is generally considered the maximum tolerable risk. When considering societal risk, the safety of a dam should be proportional to the consequences of its failure. Risks of financial losses beyond the corporation's ability to finance should be so low as to be considered negligible. 17 refs., 3 figs

  10. Risk-based SMA for Cubesats

    Science.gov (United States)

    Leitner, Jesse

    2016-01-01

    This presentation conveys an approach for risk-based safety and mission assurance applied to cubesats. This presentation accompanies a NASA Goddard standard in development that provides guidance for building a mission success plan for cubesats based on the risk tolerance and resources available.

  11. Safety Cultures in Water-Based Outdoor Activities in Denmark

    DEFF Research Database (Denmark)

    Andkjær, Søren; Arvidsen, Jan

    2015-01-01

    In this paper, we report on the study Safe in Nature (Tryg i naturen) in which the aim was to analyze and discuss risk and safety related to outdoor recreation in the coastal regions of Denmark. A cultural perspective is applied to risk management and the safety cultures related to three selected...... water-based outdoor activities: small boat fishing, sea kayaking, and kite surfing. The theoretical framework used was cultural analysis and the methodological approach was mixed methods using case studies with survey and qualitative interviews. The study indicates that safety is a complex matter...... and that safety culture can be understood as the sum and interaction among six categories. The safety culture is closely related to the activity and differs widely among activities. We suggest a broad perspective be taken on risk management wherein risk and safety can be managed at different levels. Small boat...

  12. Secure Software Configuration Management Processes for nuclear safety software development environment

    International Nuclear Information System (INIS)

    Chou, I.-Hsin

    2011-01-01

    Highlights: → The proposed method emphasizes platform-independent security processes. → A hybrid process based on the nuclear SCM and security regulations is proposed. → Detailed descriptions and Process Flow Diagram are useful for software developers. - Abstract: The main difference between nuclear and generic software is that the risk factor is infinitely greater in nuclear software - if there is a malfunction in the safety system, it can result in significant economic loss, physical damage or threat to human life. However, secure software development environment have often been ignored in the nuclear industry. In response to the terrorist attacks on September 11, 2001, the US Nuclear Regulatory Commission (USNRC) revised the Regulatory Guide (RG 1.152-2006) 'Criteria for use of computers in safety systems of nuclear power plants' to provide specific security guidance throughout the software development life cycle. Software Configuration Management (SCM) is an essential discipline in the software development environment. SCM involves identifying configuration items, controlling changes to those items, and maintaining integrity and traceability of them. For securing the nuclear safety software, this paper proposes a Secure SCM Processes (S 2 CMP) which infuses regulatory security requirements into proposed SCM processes. Furthermore, a Process Flow Diagram (PFD) is adopted to describe S 2 CMP, which is intended to enhance the communication between regulators and developers.

  13. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.

    Science.gov (United States)

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-05-01

    Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. BARC-risk monitor- a tool for operational safety assessment in nuclear power plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Babar, A.K.; Hadap, Nikhil

    2000-12-01

    Probabilistic safety assessment has become a key tool as on today to identify and understand nuclear power plant vulnerabilities. As a result of the availability of these PSA studies, there is a desire to use them to enhance plant safety and to operate the nuclear stations in the most efficient manner. Risk monitor is a PC based tool, which computes the real time safety level and assists plant personnel to manage day-to-day activities. Risk monitor is a PC based user friendly software tool used for modification and re-analysis of a nuclear power plant. Operation of risk monitor is based on PSA methods for assisting in day to day applications. Risk monitoring programs can assess the risk profile and are used to optimise the operation of nuclear power plants with respect to a minimum risk level over the operating time. This report presents the background activities of risk monitor, its application areas and also gives the status of such tools in international scenarios. The software is based on the PSA model of Kaiga generating station and would be applicable to similar design configuration. (author)

  15. Risk-informed approach for safety, safeguards, and security (3S) by design

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Burr, Tom; Howell, John

    2011-01-01

    Over several decades the nuclear energy society worldwide has developed safety assessment methodology based on probabilistic risk analysis for incorporating its benefit into design and accident prevention for nuclear reactors. Although safeguards and security communities have different histories and technical aspects compared to safety, risk assessment as a supplement to their current requirements could be developed to promote synergism between Safety, Safeguards, and Security (3S) and to install effective countermeasures in the design of complex nuclear fuel cycle facilities. Since the 3S initiative was raised by G8 countries at Hokkaido Toyako-Summit in 2008, one approach to developing synergism in a 3S By Design (3SBD) process has been the application of risk-oriented assessment methodology. In the existing regulations of safeguards and security, a risk notion has already been considered for inherent threat and hazard recognition. To integrate existing metrics into a risk-oriented approach, several mathematical methods have already been surveyed, with attention to the scarcity of intentional acts in the case of safeguards and the sparseness of actual event data. A two-dimensional probability distribution composed of measurement error and incidence probabilities has been proposed to formalize inherent difficulties in the International Atomic Energy Agency (IAEA) safeguards criteria. In particular, the incidence probability that is difficult to estimate has been explained using a Markov model and game theory. In this work, a feasibility study of 3SBD is performed for an aqueous reprocessing process, and synergetic countermeasures are presented for preliminary demonstration of 3SBD. Although differences and conflicts between individual 'S' communities exist, the integrated approach would be valuable for optimization and balance between the 3S design features as well as for effective and efficient implementation under existing regulation frameworks. In addition

  16. A risk informed safety classification for a Nordic NPP

    International Nuclear Information System (INIS)

    Jaenkaelae, K.

    2002-01-01

    The report describes a study to develop a safety classification proposal or classi- fication recommendations based on risks for selected equipment of a nuclear power plant. The application plant in this work is Loviisa NPP unit 1. The safety classification proposals are to be considered as an exercise in this pilot study and do not necessarily represent final proposals in a real situation. Comparisons to original safety classifications and technical specifications were made. The study concludes that it is possible to change safety classes or safety signifi- cances as considered in technical specifications and in in-service-inspections into both directions without endangering the safety or even by improving the safety. (au)

  17. Communicating on risk and safety in terms of awareness

    International Nuclear Information System (INIS)

    Hammar, L.; Andersson, Kjell

    1999-01-01

    'Safety awareness' is proposed as a possibly constructive concept for the purpose of promoting initiatives in nuclear safety work and gaining improved understanding when communicating on nuclear safety. Safety is thus conceived as resulting essentially from and actually constituting awareness of critical factors in regard of safety. The concept aims specifically at promoting the view of 'safety' as 'awareness of required conditions for being in control of risk'. It aims as well at making clearer sense in calling for constant improvement of safety, according to practice in a safety culture. This proposed view would be expected to lead to applying the usual types of safety criteria but offers the merit of attracting due attention to 'awareness goals' in process oriented safety management which are fundamental to maintaining and improving safety. Applications are discussed in regard of communicating on nuclear safety between decision-makers and the general public, developing and maintaining safety culture, integrating specialist expert contributions in over-all safety assessment, setting safety goals and using safety indicators

  18. Risk management for existing energy facilities. A global approach to numerical safety goals

    International Nuclear Information System (INIS)

    Pate-Cornell, M.E.

    1993-01-01

    This paper presents a structured set of numerical safety goals for risk management of existing energy facilities. The rationale behind these safety goals is based on principles of equity and economic efficiency. Some of the issues involved when using probabilistic risk analyses results for safety decisions are discussed. A brief review of existing safety targets and open-quotes floating numbersclose quotes is presented, and a set of safety goals for industrial risk management is proposed. Relaxation of these standards for existing facilities, the relevance of the lifetime of the plant, the treatment of uncertainties, and problems of failure dependencies are discussed briefly. 17 refs., 1 fig

  19. Awareness and Perceptions of Food Safety Risks and Risk Management in Poultry Production and Slaughter: A Qualitative Study of Direct-Market Poultry Producers in Maryland.

    Science.gov (United States)

    Baron, Patrick; Frattaroli, Shannon

    2016-01-01

    The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1) characteristics of Maryland direct-market poultry production and processing; 2) microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3) motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain.

  20. Awareness and Perceptions of Food Safety Risks and Risk Management in Poultry Production and Slaughter: A Qualitative Study of Direct-Market Poultry Producers in Maryland

    Science.gov (United States)

    Baron, Patrick; Frattaroli, Shannon

    2016-01-01

    The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1) characteristics of Maryland direct-market poultry production and processing; 2) microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3) motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain. PMID:27341034

  1. Awareness and Perceptions of Food Safety Risks and Risk Management in Poultry Production and Slaughter: A Qualitative Study of Direct-Market Poultry Producers in Maryland.

    Directory of Open Access Journals (Sweden)

    Patrick Baron

    Full Text Available The objective of this study was to document and understand the perceptions and opinions of small-scale poultry producers who market directly to consumers about microbial food safety risks in the poultry supply chain. Between January and November 2014, we conducted semi-structured, in-depth interviews with a convenience sample of 16 owner-operators of Maryland direct-market commercial poultry farms. Three overarching thematic categories emerged from these interviews that describe: 1 characteristics of Maryland direct-market poultry production and processing; 2 microbial food safety risk awareness and risk management in small-scale poultry production, slaughter and processing; and 3 motivations for prioritizing food safety in the statewide direct-market poultry supply chain. Key informants provided valuable insights on many topics relevant to evaluating microbial food safety in the Maryland direct-market poultry supply chain, including: direct-market poultry production and processing practices and models, perspectives on issues related to food safety risk management, perspectives on direct-market agriculture economics and marketing strategies, and ideas for how to enhance food safety at the direct-market level of the Maryland poultry supply chain. The findings have policy implications and provide insights into food safety in small-scale commercial poultry production, processing, distribution and retail. In addition, the findings will inform future food safety research on the small-scale US poultry supply chain.

  2. Fuel distribution process risk analysis in East Borneo

    Directory of Open Access Journals (Sweden)

    Laksmita Raizsa

    2018-01-01

    Full Text Available Fuel distribution is an important aspect of fulfilling the customer’s need. It is risky because it can cause tardiness that can cause fuel scarcity. In the process of distribution, many risks are occurring. House of Risk is a method used for mitigating the risk. It identifies seven risk events and nine risk agents. Matrix occurrence and severity are used for eliminating the minor impact risk. House of Risk 1 is used for determining the Aggregate Risk Potential (ARP. Pareto diagram is applied to prioritize risk that must be mitigated by preventive actions based on ARP. It identifies 4 priority risks, namely A8 (Car trouble, A4 (Human Error, A3 (Error deposit via bank and underpayment, and A6 (traffic accident which should be mitigated. House of Risk 2 makes for mapping between the preventive action and risk agent. It gets the Effectiveness to Difficulty Ratio (ETD for mitigating action. Conducting safety talk routine once every three days with ETD 2088 is the primary preventive actions.

  3. Contrasting safety assessments of a runway incursion scenario: Event sequence analysis versus multi-agent dynamic risk modelling

    International Nuclear Information System (INIS)

    Stroeve, Sybert H.; Blom, Henk A.P.; Bakker, G.J.

    2013-01-01

    In the safety literature it has been argued, that in a complex socio-technical system safety cannot be well analysed by event sequence based approaches, but requires to capture the complex interactions and performance variability of the socio-technical system. In order to evaluate the quantitative and practical consequences of these arguments, this study compares two approaches to assess accident risk of an example safety critical sociotechnical system. It contrasts an event sequence based assessment with a multi-agent dynamic risk model (MA-DRM) based assessment, both of which are performed for a particular runway incursion scenario. The event sequence analysis uses the well-known event tree modelling formalism and the MA-DRM based approach combines agent based modelling, hybrid Petri nets and rare event Monte Carlo simulation. The comparison addresses qualitative and quantitative differences in the methods, attained risk levels, and in the prime factors influencing the safety of the operation. The assessments show considerable differences in the accident risk implications of the performance of human operators and technical systems in the runway incursion scenario. In contrast with the event sequence based results, the MA-DRM based results show that the accident risk is not manifest from the performance of and relations between individual human operators and technical systems. Instead, the safety risk emerges from the totality of the performance and interactions in the agent based model of the safety critical operation considered, which coincides very well with the argumentation in the safety literature.

  4. Advanced korean industrial safety and health policy with risk assessment.

    Science.gov (United States)

    Kwon, Hyuckmyun; Cho, Jae Hyun; Moon, Il; Choi, Jaewook; Park, Dooyong; Lee, Youngsoon

    2010-09-01

    This article describes a systematic roadmap master plan for advanced industrial safety and health policy in Korea, with an emphasis on. Since Korean industries had first emergence of industrial safety and health policy in 1953, enormous efforts have been made on upgrading the relevant laws in order to reflect real situation of industrial work environment in accordance with rapid changes of Korean and global business over three decades. Nevertheless, current policy has major defects; too much techniques-based articles, diverged contents in less organization, combined enforcement and punishments and finally enforcing regulations full of commands and control. These deficiencies have make it difficult to accommodate changes of social, industrial and employment environment in customized fashion. The approach to the solution must be generic at the level of paradigm-shift rather than local modifications and enhancement. The basic idea is to establish a new system integrated with a risk assessment scheme, which encourages employers to apply to their work environment under comprehensive responsibility. The risk assessment scheme is designed to enable to inspect employers' compliances afterwards. A project comprises four yearly phases based on applying zones; initially designating and operating a specified risk zone, gradually expanding the special zones during a period of 3 years (2010-2012) and the final zone expanded to entire nation. In each phase, the intermediate version of the system is updated through a process of precise and unbiased validation in terms of its operability, feasibility and sustainability with building relevant infrastructures as needed.

  5. Study on 'Safety qualification of process computers used in safety systems of nuclear power plants'

    International Nuclear Information System (INIS)

    Bertsche, K.; Hoermann, E.

    1991-01-01

    The study aims at developing safety standards for hardware and software of computer systems which are increasingly used also for important safety systems in nuclear power plants. The survey of the present state-of-the-art of safety requirements and specifications for safety-relevant systems and, additionally, for process computer systems has been compiled from national and foreign rules. In the Federal Republic of Germany the KTA safety guides and the BMI/BMU safety criteria have to be observed. For the design of future computer-aided systems in nuclear power plants it will be necessary to apply the guidelines in [DIN-880] and [DKE-714] together with [DIN-192]. With the aid of a risk graph the various functions of a system, or of a subsystem, can be evaluated with regard to their significance for safety engineering. (orig./HP) [de

  6. The Concepts of Risk, Safety, and Security: Applications in Everyday Language.

    Science.gov (United States)

    Boholm, Max; Möller, Niklas; Hansson, Sven Ove

    2016-02-01

    The concepts of risk, safety, and security have received substantial academic interest. Several assumptions exist about their nature and relation. Besides academic use, the words risk, safety, and security are frequent in ordinary language, for example, in media reporting. In this article, we analyze the concepts of risk, safety, and security, and their relation, based on empirical observation of their actual everyday use. The "behavioral profiles" of the nouns risk, safety, and security and the adjectives risky, safe, and secure are coded and compared regarding lexical and grammatical contexts. The main findings are: (1) the three nouns risk, safety, and security, and the two adjectives safe and secure, have widespread use in different senses, which will make any attempt to define them in a single unified manner extremely difficult; (2) the relationship between the central risk terms is complex and only partially confirms the distinctions commonly made between the terms in specialized terminology; (3) whereas most attempts to define risk in specialized terminology have taken the term to have a quantitative meaning, nonquantitative meanings dominate in everyday language, and numerical meanings are rare; and (4) the three adjectives safe, secure, and risky are frequently used in comparative form. This speaks against interpretations that would take them as absolute, all-or-nothing concepts. © 2015 Society for Risk Analysis.

  7. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  8. Current issues and perspectives in food safety and risk assessment.

    Science.gov (United States)

    Eisenbrand, G

    2015-12-01

    In this review, current issues and opportunities in food safety assessment are discussed. Food safety is considered an essential element inherent in global food security. Hazard characterization is pivotal within the continuum of risk assessment, but it may be conceived only within a very limited frame as a true alternative to risk assessment. Elucidation of the mode of action underlying a given hazard is vital to create a plausible basis for human toxicology evaluation. Risk assessment, to convey meaningful risk communication, must be based on appropriate and reliable consideration of both exposure and mode of action. New perspectives, provided by monitoring human exogenous and endogenous exposure biomarkers, are considered of great promise to support classical risk extrapolation from animal toxicology. © The Author(s) 2015.

  9. Safety culture' is integrating 'human' into risk assessment

    International Nuclear Information System (INIS)

    Sugimoto, Taiji

    2014-01-01

    Significance of Fukushima nuclear power accident requested reconsideration of safety standards, of which we had usually no doubt. Risk assessment standard (JIS B 9702), Which was used for repetition of database preparation and cumulative assessment, defined allowable risk and residual risk. However, work site and immediate assessment was indispensable beside such assessment so as to ensure safety. Risk of casualties was absolutely not acceptable in principle and judgments to approve allowable risk needed accountability, which was reminded by safety culture proposed by IAEA and also identified by investigation of organizational cause of Columbia accident. Actor of safety culture would be organization and individual, and mainly individual. Realization of safety culture was conducted by personnel having moral consciousness and firm sense of mission in the course of jobs and working daily with sweat pouring. Safety engineering/technology should have framework integrating human as such totality. (T. Tanaka)

  10. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  11. A model for managing cold-related health and safety risks at workplaces.

    Science.gov (United States)

    Risikko, Tanja; Mäkinen, Tiina M; Påsche, Arvid; Toivonen, Liisa; Hassi, Juhani

    2003-05-01

    Cold conditions increase health and safety risks at work in several ways. The effects of cold have not been sufficiently taken into consideration in occupational safety and health practices. A systematic model and methods were developed for managing cold-related health and safety risks at workplaces. The development work was performed, in a context-bound manner, in pilot industries and workplaces. The model can be integrated into the company's occupational health and safety management system, such as OHSAS 18001. The cold risks are identified and assessed by using a checklist. The preventive measures are systematically planned in a written form specifically produced for cold workplaces. It includes the organisational and technical preventive measures, protective clothing and personal protective equipment, as well as training and information of the personnel. According to the model, all the workers, foremen, occupational safety personnel and occupational health care personnel are trained to recognise the cold risks and to conduct preventive actions. The developed model was evaluated in the context of cold outdoor (construction) and indoor work (fish processing), and by occupational health and safety professionals. According to the feedback, the model and methods were easy to use after a one-day introduction session. The continuum between the cold risk assessment and management worked well, although there was some overlap in the documentation. The cold risk management model and its methods form an essential part of ISO CD 15743 Strategy for risk assessment, management and work practice in cold environments.

  12. Dams and Levees: Safety Risks

    Science.gov (United States)

    Carter, N. T.

    2017-12-01

    The nation's flood risk is increasing. The condition of U.S. dams and levees contributes to that risk. Dams and levee owners are responsible for the safety, maintenance, and rehabilitation of their facilities. Dams-Of the more than 90,000 dams in the United States, about 4% are federally owned and operated; 96% are owned by state and local governments, public utilities, or private companies. States regulate dams that are not federally owned. The number of high-hazard dams (i.e., dams whose failure would likely result in the loss of human life) has increased in the past decade. Roughly 1,780 state-regulated, high-hazard facilities with structural ratings of poor or unsatisfactory need rehabilitation. Levees-There are approximately 100,000 miles of levees in the nation; most levees are owned and maintained by municipalities and agricultural districts. Few states have levee safety programs. The U.S. Army Corps of Engineers (Corps) inspects 15,000 miles of levees, including levees that it owns and local levees participating in a federal program to assist with certain post-flood repairs. Information is limited on how regularly other levees are inspected. The consequence of a breach or failure is another aspect of risk. State and local governments have significant authority over land use and development, which can shape the social and economic impacts of a breach or failure; they also lead on emergency planning and related outreach. To date, federal dam and levee safety efforts have consisted primarily of (1) support for state dam safety standards and programs, (2) investments at federally owned dams and levees, and (3) since 2007, creation of a national levee database and enhanced efforts and procedures for Corps levee inspections and assessments. In Public Law 113-121, enacted in 2014, Congress (1) directed the Corps to develop voluntary guidelines for levee safety and an associated hazard potential classification system for levees, and (2) authorized support for the

  13. Risk-informed approaches to assess ecological safety of facilities with radioactive waste

    International Nuclear Information System (INIS)

    Vashchenko, V.N.; Zlochevskij, V.V.; Skalozubov, V.I.

    2011-01-01

    Ingenious risk-informed methods to assess ecological safety of facilities with radioactive waste are proposed in the paper. Probabilistic norms on lethal outcomes and reliability of safety barriers are used as safety criteria. Based on the probability measures, it is established that ecological safety conditions are met for the standard criterion of lethal outcomes

  14. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  15. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  16. Presentation of a Software Method for Use of Risk Assessment in Building Fire Safety Measure Optimization

    Directory of Open Access Journals (Sweden)

    A. R. Koohpaei

    2012-05-01

    Full Text Available Background and aims: The property loss and physical injuries due to fire events in buildings demonstrate the necessity of implementation of efficient and performance based fire safety measures. Effective and high efficiency protection is possible when design and selection of protection measures are based on risk assessment. This study aims at presenting a software method to make possible selection and design of building fire safety measures based upon quantitative risk assessment and building characteristics. Methods: based on “Fire Risk Assessment Method for Engineer (FRAME” a program in MATLB software was written. The first section of this program, according to the FRAME method and based on the specification of a building, calculates the potential risk and acceptable risk level. In the second section, according to potential risk, acceptable risk level and the fire risk level that user want, program calculate concession of protective factor for that building.Results: The prepared software make it possible to assign the fire safety measure based on quantitative risk level and all building specifications. All calculations were performed with 0.001 of precision and the accuracy of this software was assessed with handmade calculations. During the use of the software if an error occurs in calculations, it can be distinguished in the output. Conclusion: Application of quantitative risk assessment is a suitable tool for increasing of efficiency in designing and execution of fire protection measure in building. With using this software the selected fire safety measure would be more efficient and suitable since the selection of fire safety measures performed on risk assessment and particular specification of a building. Moreover fire risk in the building can be managed easily and carefully.

  17. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Toffer, H.; Crowe, R.D.

    1991-01-01

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  18. Occupational health and safety: Designing and building with MACBETH a value risk-matrix for evaluating health and safety risks

    Science.gov (United States)

    Lopes, D. F.; Oliveira, M. D.; Costa, C. A. Bana e.

    2015-05-01

    Risk matrices (RMs) are commonly used to evaluate health and safety risks. Nonetheless, they violate some theoretical principles that compromise their feasibility and use. This study describes how multiple criteria decision analysis methods have been used to improve the design and the deployment of RMs to evaluate health and safety risks at the Occupational Health and Safety Unit (OHSU) of the Regional Health Administration of Lisbon and Tagus Valley. ‘Value risk-matrices’ (VRMs) are built with the MACBETH approach in four modelling steps: a) structuring risk impacts, involving the construction of descriptors of impact that link risk events with health impacts and are informed by scientific evidence; b) generating a value measurement scale of risk impacts, by applying the MACBETH-Choquet procedure; c) building a system for eliciting subjective probabilities that makes use of a numerical probability scale that was constructed with MACBETH qualitative judgments on likelihood; d) and defining a classification colouring scheme for the VRM. A VRM built with OHSU members was implemented in a decision support system which will be used by OHSU members to evaluate health and safety risks and to identify risk mitigation actions.

  19. Utilization of a risk matrix based on Probabilistic Safety Analysis to improve nuclear safety in NPP

    International Nuclear Information System (INIS)

    Stubbe, Gerald

    2010-01-01

    The Probabilistic Safety Analysis (PSA) is a systematic and comprehensive methodology to evaluate risks associated with a complex engineered technological entity. Risk in a PSA is defined as a feasible detrimental outcome of an initiator. Those initiators can be 'classical' transient as the loss of main feedwater, loss of the secondary heat sink, etc.. or accident (LOCA - Loss Of Coolant Accident, SGTR - Steam Generator Tube Rupture, LOOP - Loss Of Offsite Power, etc..) In a PSA, risk is characterized by two quantities: the magnitude (severity) of the possible adverse consequence, the likelihood (probability) of occurrence of each consequence. Consequences are expressed numerically (for this purpose: the core damage) and their likelihoods of occurrence are expressed as probabilities or frequencies (i.e., the number of occurrences or the probability of occurrence per unit time). The total risk is the expected loss: the sum of the products of the consequences multiplied by their probabilities. This lead to the parameter CDF: The Core Damage Frequency, which is expressed by unit of time. The main advantage of this risk calculation is to have a global, integrated, overview of the plants and their systems. This allows to have an objective and quantitative point of view on the importance of the equipments, human action, or common cause failures that can challenge the plant's safety. A total PSA model is divided in three levels: Level one, which consider the core damage; Level two, which consider the robustness of the containment; Level three, which consider the impact of the radiological release on the public. For the purpose of the risk matrix, a level one PSA is needed. The scope of a PSA model is important to have a good characterization of the plant's risk. The matrix makes more sense if you have a full scope level one model, containing, furthermore the internal events, the fire and flooding, but also seismic event (if relevant). Asymmetries are also classical in the

  20. Risk as a target of safety research

    International Nuclear Information System (INIS)

    Krueger, W.

    1986-01-01

    Job creation is not the idea behind the demand for risk studies to be intensified in safety research. Risks are not only a target safety research should investigate, they are a subject that actually can be most adequately investigated by safety research. Assuming a neutral position between irrational fears and interest-minded problem minimization, that is the central approach and the ethics of a safety scientist. The Babylonian confusion of terminology experienced after the Chernobyl accident is a good example proving the necessity of fostering the neutral professionalism in safety research. (orig./DG) [de

  1. [Physical process based risk assessment of groundwater pollution in the mining area].

    Science.gov (United States)

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  2. Practicing chemical process safety: a look at the layers of protection

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2004-01-01

    This presentation will review a few public perceptions of safety in chemical plants and refineries, and will compare these plant workplace risks to some of the more traditional occupations. The central theme of this paper is to provide a 'within-the-fence' view of many of the process safety practices that world class plants perform to pro-actively protect people, property, profits as well as the environment. It behooves each chemical plant and refinery to have their story on an image-rich presentation to stress stewardship and process safety. Such a program can assure the company's employees and help convince the community that many layers of safety protection within our plants are effective, and protect all from harm

  3. Lessons Learned from Process Safety Management: A Practical Guide to Defence in Depth

    Energy Technology Data Exchange (ETDEWEB)

    Langerman, N., E-mail: neal@chemical-safety.com [Advanced Chemical Safety, Inc., San Diego (United States)

    2014-10-15

    Full text: Beginning with the experiences of Alfred Nobel, the chemical enterprise has learned from failures and implemented layers of protection to prevent unwanted incidents. Nobel developed dynamite as a more stable alternative to nitroglycerin, a process we would today call “inherently safer technology”. In recent years, the USA has issued regulations requiring formal “risk management plans” to identify and mitigate production risks. The USA set up the “Chemical Safety and Hazard Investigation Board” as an independent investigator of serious chemical enterprise incidents with a mission to issue recommendations aimed at preventing repeated incidents based on lessons learned. Following a particularly violent explosion in Texas in 1989, the US Occupational Safety and Health Administration issued the “Process Safety Management” (PSM) rule. PSM is a singular guide to defence in depth for preventing large-scale production incidents. The formalism is equally applicable to the chemical enterprise and the nuclear installation enterprise. This presentation will discuss the key elements of PSM and offer suggestions on using PSM as a guide to developing multiple layers of protection. The methods of PSM are applicable to Nuclear Generating Stations, research reactors, fuel reprocessing plants and fissile material storage and handling. Examples from both the chemical and nuclear enterprises will be used to illustrate key points. (author)

  4. Effects of a Workplace Intervention Targeting Psychosocial Risk Factors on Safety and Health Outcomes

    Science.gov (United States)

    Hammer, Leslie B.; Truxillo, Donald M.; Bodner, Todd; Rineer, Jennifer; Pytlovany, Amy C.; Richman, Amy

    2015-01-01

    The goal of this study was to test the effectiveness of a workplace intervention targeting work-life stress and safety-related psychosocial risk factors on health and safety outcomes. Data were collected over time using a randomized control trial design with 264 construction workers employed in an urban municipal department. The intervention involved family- and safety-supportive supervisor behavior training (computer-based), followed by two weeks of behavior tracking and a four-hour, facilitated team effectiveness session including supervisors and employees. A significant positive intervention effect was found for an objective measure of blood pressure at the 12-month follow-up. However, no significant intervention results were found for self-reported general health, safety participation, or safety compliance. These findings suggest that an intervention focused on supervisor support training and a team effectiveness process for planning and problem solving should be further refined and utilized in order to improve employee health with additional research on the beneficial effects on worker safety. PMID:26557703

  5. Effects of a Workplace Intervention Targeting Psychosocial Risk Factors on Safety and Health Outcomes

    Directory of Open Access Journals (Sweden)

    Leslie B. Hammer

    2015-01-01

    Full Text Available The goal of this study was to test the effectiveness of a workplace intervention targeting work-life stress and safety-related psychosocial risk factors on health and safety outcomes. Data were collected over time using a randomized control trial design with 264 construction workers employed in an urban municipal department. The intervention involved family- and safety-supportive supervisor behavior training (computer-based, followed by two weeks of behavior tracking and a four-hour, facilitated team effectiveness session including supervisors and employees. A significant positive intervention effect was found for an objective measure of blood pressure at the 12-month follow-up. However, no significant intervention results were found for self-reported general health, safety participation, or safety compliance. These findings suggest that an intervention focused on supervisor support training and a team effectiveness process for planning and problem solving should be further refined and utilized in order to improve employee health with additional research on the beneficial effects on worker safety.

  6. Implementation of cold risk management in occupational safety, occupational health and quality practices. Evaluation of a development process and its effects at the finnish maritime administration.

    Science.gov (United States)

    Risikko, Tanja; Remes, Jouko; Hassi, Juhani

    2008-01-01

    Cold is a typical environmental risk factor in outdoor work in northern regions. It should be taken into account in a company's occupational safety, health and quality systems. A development process for improving cold risk management at the Finnish Maritime Administration (FMA) was carried out by FMA and external experts. FMA was to implement it. Three years after the development phase, the outcomes and implementation were evaluated. The study shows increased awareness about cold work and few concrete improvements. Concrete improvements in occupational safety and health practices could be seen in the pilot group. However, organization-wide implementation was insufficient, the main reasons being no organization-wide practices, unclear process ownership, no resources and a major reorganization process. The study shows a clear need for expertise supporting implementation. The study also presents a matrix for analyzing the process.

  7. Risk-based inspection in the context of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington A.; Vasconcelos, Vanderley de; Rabello, Emerson G., E-mail: soaresw@cdtn.br, E-mail: vasconv@cdtn.br, E-mail: egr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Nuclear power plant owners have to consider several aspects like safety, availability, costs and radiation exposure during operation of nuclear power plants. They also need to demonstrate to regulatory bodies that risk assessment and inspection planning processes are being implemented in effective and appropriate manner. Risk-Based Inspection (RBI) is a methodology that, unlike time-based inspection, involves a quantitative assessment of both failure probability and consequence associated with each safety-related item. A correctly implemented RBI program classifies individual equipment by its risks and prioritizes inspection efforts based on this classification. While in traditional deterministic approach, the inspection frequencies are constant, in the RBI approach the inspection interval for each item depends on the risk level. Regularly, inspection intervals from RBI result in risk levels lower or equal than deterministic inspection intervals. According to the literature, RBI solutions improve integrity and reduce costs through a more effective inspection. Risk-Informed In-service Inspection (RI-ISI) is the equivalent term used in the nuclear area. Its use in nuclear power plants around world is briefly reviewed in this paper. Identification of practice methodologies for performing risk-based analyses presented in this paper can help both Brazilian nuclear power plant operator and regulatory body in evaluating the RI-ISI technique feasibility as a tool for optimizing inspections within nuclear plants. (author)

  8. Risk-based inspection in the context of nuclear power plants

    International Nuclear Information System (INIS)

    Soares, Wellington A.; Vasconcelos, Vanderley de; Rabello, Emerson G.

    2015-01-01

    Nuclear power plant owners have to consider several aspects like safety, availability, costs and radiation exposure during operation of nuclear power plants. They also need to demonstrate to regulatory bodies that risk assessment and inspection planning processes are being implemented in effective and appropriate manner. Risk-Based Inspection (RBI) is a methodology that, unlike time-based inspection, involves a quantitative assessment of both failure probability and consequence associated with each safety-related item. A correctly implemented RBI program classifies individual equipment by its risks and prioritizes inspection efforts based on this classification. While in traditional deterministic approach, the inspection frequencies are constant, in the RBI approach the inspection interval for each item depends on the risk level. Regularly, inspection intervals from RBI result in risk levels lower or equal than deterministic inspection intervals. According to the literature, RBI solutions improve integrity and reduce costs through a more effective inspection. Risk-Informed In-service Inspection (RI-ISI) is the equivalent term used in the nuclear area. Its use in nuclear power plants around world is briefly reviewed in this paper. Identification of practice methodologies for performing risk-based analyses presented in this paper can help both Brazilian nuclear power plant operator and regulatory body in evaluating the RI-ISI technique feasibility as a tool for optimizing inspections within nuclear plants. (author)

  9. Leadership, safety climate, and continuous quality improvement: impact on process quality and patient safety.

    Science.gov (United States)

    McFadden, Kathleen L; Stock, Gregory N; Gowen, Charles R

    2014-10-01

    Successful amelioration of medical errors represents a significant problem in the health care industry. There is a need for greater understanding of the factors that lead to improved process quality and patient safety outcomes in hospitals. We present a research model that shows how transformational leadership, safety climate, and continuous quality improvement (CQI) initiatives are related to objective quality and patient safety outcome measures. The proposed framework is tested using structural equation modeling, based on data collected for 204 hospitals, and supplemented with objective outcome data from the Centers for Medicare and Medicaid Services. The results provide empirical evidence that a safety climate, which is connected to the chief executive officer's transformational leadership style, is related to CQI initiatives, which are linked to improved process quality. A unique finding of this study is that, although CQI initiatives are positively associated with improved process quality, they are also associated with higher hospital-acquired condition rates, a measure of patient safety. Likewise, safety climate is directly related to improved patient safety outcomes. The notion that patient safety climate and CQI initiatives are not interchangeable or universally beneficial is an important contribution to the literature. The results confirm the importance of using CQI to effectively enhance process quality in hospitals, and patient safety climate to improve patient safety outcomes. The overall pattern of findings suggests that simultaneous implementation of CQI initiatives and patient safety climate produces greater combined benefits.

  10. Test process for the safety-critical embedded software

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju; Lee, Jangsoo

    2004-01-01

    Digitalization of nuclear Instrumentation and Control (I and C) system requires high reliability of not only hardware but also software. Verification and Validation (V and V) process is recommended for software reliability. But a more quantitative method is necessary such as software testing. Most of software in the nuclear I and C system is safety-critical embedded software. Safety-critical embedded software is specified, verified and developed according to V and V process. Hence two types of software testing techniques are necessary for the developed code. First, code-based software testing is required to examine the developed code. Second, after code-based software testing, software testing affected by hardware is required to reveal the interaction fault that may cause unexpected results. We call the testing of hardware's influence on software, an interaction testing. In case of safety-critical embedded software, it is also important to consider the interaction between hardware and software. Even if no faults are detected when testing either hardware or software alone, combining these components may lead to unexpected results due to the interaction. In this paper, we propose a software test process that embraces test levels, test techniques, required test tasks and documents for safety-critical embedded software. We apply the proposed test process to safety-critical embedded software as a case study, and show the effectiveness of it. (author)

  11. Using a quantitative risk register to promote learning from a patient safety reporting system.

    Science.gov (United States)

    Mansfield, James G; Caplan, Robert A; Campos, John S; Dreis, David F; Furman, Cathie

    2015-02-01

    Patient safety reporting systems are now used in most health care delivery organizations. These systems, such as the one in use at Virginia Mason (Seattle) since 2002, can provide valuable reports of risk and harm from the front lines of patient care. In response to the challenge of how to quantify and prioritize safety opportunities, a risk register system was developed and implemented. Basic risk register concepts were refined to provide a systematic way to understand risks reported by staff. The risk register uses a comprehensive taxonomy of patient risk and algorithmically assigns each patient safety report to 1 of 27 risk categories in three major domains (Evaluation, Treatment, and Critical Interactions). For each category, a composite score was calculated on the basis of event rate, harm, and cost. The composite scores were used to identify the "top five" risk categories, and patient safety reports in these categories were analyzed in greater depth to find recurrent patterns of risk and associated opportunities for improvement. The top five categories of risk were easy to identify and had distinctive "profiles" of rate, harm, and cost. The ability to categorize and rank risks across multiple dimensions yielded insights not previously available. These results were shared with leadership and served as input for planning quality and safety initiatives. This approach provided actionable input for the strategic planning process, while at the same time strengthening the Virginia Mason culture of safety. The quantitative patient safety risk register serves as one solution to the challenge of extracting valuable safety lessons from large numbers of incident reports and could profitably be adopted by other organizations.

  12. Postural risk assessment of mechanised firewood processing.

    Science.gov (United States)

    Spinelli, Raffaele; Aminti, Giovanni; De Francesco, Fabio

    2017-03-01

    The study assessed the postural risk of mechanised firewood processing with eight machines, representing the main technology solutions available on the market. Assessment was conducted with the Ovako Working posture Analysis System (OWAS) on 1000 still frames randomly extracted from videotaped work samples. The postural risk associated with firewood processing was variable and associated with technology type. Simple, manually operated new machines incurred a higher postural risk compared with semi- or fully automatic machines. In contrast, new semi-automatic and automatic machines were generally free from postural risk. In all cases, attention should be paid to postural risk that may occur during blockage resolution. The study did not cover the postural risk of firewood processing sites as a whole. The study provided useful information for selecting firewood processing machinery and for improving firewood machinery design, as part of a more articulate strategy aimed at enhancing the safety of firewood processing work sites. Practitioner Summary: The postural risk associated with mechanised firewood processing (eg cutting and splitting) depends on the type of equipment. Postural risk is highest (OWAS Action Category 2) with new in-line machines, designed for operation by a single worker. Fully automatic machines present minimum postural risk, except during blockage resolution.

  13. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  14. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  15. Risk-Based Fire Safety Experiment Definition for Manned Spacecraft

    Science.gov (United States)

    Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.

    1989-01-01

    Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.

  16. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond.

    Science.gov (United States)

    Falenski, Alexander; Weiser, Armin A; Thöns, Christian; Appel, Bernd; Käsbohrer, Annemarie; Filter, Matthias

    2015-01-01

    In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations.

  17. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  18. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    International Nuclear Information System (INIS)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-01-01

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  19. Advanced Korean Industrial Safety and Health Policy with Risk Assessment

    Directory of Open Access Journals (Sweden)

    Hyuckmyun Kwon

    2010-09-01

    Full Text Available This article describes a systematic roadmap master plan for advanced industrial safety and health policy in Korea, with an emphasis on. Since Korean industries had first emergence of industrial safety and health policy in 1953, enormous efforts have been made on upgrading the relevant laws in order to reflect real situation of industrial work environment in accordance with rapid changes of Korean and global business over three decades. Nevertheless, current policy has major defects; too much techniques-based articles, diverged contents in less organization, combined enforcement and punishments and finally enforcing regulations full of commands and control. These deficiencies have make it difficult to accommodate changes of social, industrial and employment environment in customized fashion. The approach to the solution must be generic at the level of paradigm- shift rather than local modifications and enhancement. The basic idea is to establish a new system integrated with a risk assessment scheme, which encourages employers to apply to their work environment under comprehensive responsibility. The risk assessment scheme is designed to enable to inspect employers’ compliances afterwards. A project comprises four yearly phases based on applying zones; initially designating and operating a specified risk zone, gradually expanding the special zones during a period of 3 years (2010-2012 and the final zone expanded to entire nation. In each phase, the intermediate version of the system is updated through a process of precise and unbiased validation in terms of its operability, feasibility and sustainability with building relevant infrastructures as needed.

  20. Concept of risk: risk assessment and nuclear safety

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1980-01-01

    The dissertation is a critical examination of risk assessment and its role in public policy. Nuclear power safety safety issues are selected as the primary source of illustrations and examples. The dissertation examines how risk assessment studies develop a concept of risk which becomes decisive for policy choices. Risk-assessment techniques are interpreted as instruments which secure an evaluation of risk which, in turn, figures prominently in technical reports on nuclear power. The philosophical critique is mounted on two levels. First, an epistemological critique surveys distinctions between the technical concept of risk and more familiar senses of risk. The critique shows that utilization of risk assessment re-structures the concept of risk. The technical concept is contrasted to the function of risk within a decision-maker's conceptual agenda and hierarchy of values. Second, an ethical critique exposes the value commitments of risk assessment recommendations. Although some of these values might be defended for policy decisions, the technical character of risk assessment obfuscates normative issues. Risk assessment is shown to be a form of factual enquiry which, nonetheless, represents a commitment to a specific selection of ethical and social values. Risk assessment should not be interpreted as a primary guide to decision unless the specific values incorporated into its concept of risk are stated explicitly and justified philosophically. Such a statement would allow value questions which have been sublimated by the factual tone of the analytic techniques to be debated on clear, social and ethical grounds

  1. Risk assessment of safety violations for coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Megan Orsulaka; Vladislav Kecojevicb; Larry Graysona; Antonio Nietoa [Pennsylvania State University, University Park, PA (United States). Dept of Energy and Mineral Engineering

    2010-09-15

    This article presents an application of a risk assessment approach in characterising the risks associated with safety violations in underground bituminous mines in Pennsylvania using the Mine Safety and Health Administration (MSHA) citation database. The MSHA database on citations provides an opportunity to assess risks in mines through scrutiny of violations of mandatory safety standards. In this study, quantitative risk assessment is performed, which allows determination of the frequency of occurrence of safety violations (through associated citations) as well as the consequences of them in terms of penalty assessments. Focus is on establishing risk matrices on citation experiences of mines, which can give early indication of emerging potentially serious problems. The resulting frequency, consequence and risk rankings present valuable tools for prioritising resource allocations, determining control strategies, and could potentially contribute to more proactive prevention of incidents and injuries.

  2. Bowtie Risk Management methodology and Modern Nuclear Safety Reports

    International Nuclear Information System (INIS)

    Ilizastigui Pérez, F.

    2016-01-01

    The Safety Report (SR) plays a crucial role within the nuclear licensing regime as the principal means for demonstrating the adequacy of safety analysis for a nuclear facility to ensure that it can be constructed, operated, maintained, shut down, and decommissioned safely and in compliance with applicable laws and regulations. It serves as the basis for granting authorizations for the commencement of the main stages of the facility’s life cycle as well as decision-making processes related to safety. Historically, the majority of nuclear safety reports have operated under rather prescriptive regimes, with emphasis placed on demonstrations of the robustness of the facility’s design (design safety) against prescriptive technical requirements set by the regulatory body, and less attention paid to demonstrating the adequacy and effectiveness of Operator’s management system for managing risks to daily operation.

  3. Risk perception, risk management and safety assessment: what can governments do to increase public confidence in their vaccine system?

    Science.gov (United States)

    MacDonald, Noni E; Smith, Jennifer; Appleton, Mary

    2012-09-01

    For decades vaccine program managers and governments have devoted many resources to addressing public vaccine concerns, vaccine risk perception, risk management and safety assessment. Despite ever growing evidence that vaccines are safe and effective, public concerns continue. Education and evidence based scientific messages have not ended concerns. How can governments and programs more effectively address the public's vaccine concerns and increase confidence in the vaccine safety system? Vaccination hesitation has been attributed to concerns about vaccine safety, perceptions of high vaccine risks and low disease risk and consequences. Even when the public believes vaccines are important for protection many still have concerns about vaccine safety. This overview explores how heuristics affect public perception of vaccines and vaccine safety, how the public finds and uses vaccine information, and then proposes strategies for changes in the approach to vaccine safety communications. Facts and evidence confirming the safety of vaccines are not enough. Vaccine beliefs and behaviours must be shaped. This will require a shift in the what, when, how and why of vaccine risk and benefit communication content and practice. A change to a behavioural change strategy such as the WHO COMBI program that has been applied to disease eradication efforts is suggested. Copyright © 2011. Published by Elsevier Ltd.. All rights reserved.

  4. Problems of making decisions with account of risk and safety factors

    Energy Technology Data Exchange (ETDEWEB)

    Larichev, O I

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis.

  5. Problems of making decisions with account of risk and safety factors

    International Nuclear Information System (INIS)

    Larichev, O.I.

    1987-01-01

    New trends in making decisions on accidents when using large-scale technologies-NPPs, chemical plants etc., are considered. Three main directions in the investigations in this field are distinguished. One of them consists in risk measuring (its perception by people, ways of its quantitative determination). The second direction consists in increasing the safety of large-scale production systems. Here the following questions are considered: risk assessment (the safety standard statement), site selection for new systems, man-machine interaction problems, development of safer technologies, cost benefit safety analysis. The third direction is connected with the problem of accidents and their analysis. This direction includes considering the reasons and process of the accident development, preparing for the possible accidents, monitoring under extreme conditions, accident effect analysis

  6. Benchmarking Global Food Safety Performances: The Era of Risk Intelligence.

    Science.gov (United States)

    Valleé, Jean-Charles Le; Charlebois, Sylvain

    2015-10-01

    Food safety data segmentation and limitations hamper the world's ability to select, build up, monitor, and evaluate food safety performance. Currently, there is no metric that captures the entire food safety system, and performance data are not collected strategically on a global scale. Therefore, food safety benchmarking is essential not only to help monitor ongoing performance but also to inform continued food safety system design, adoption, and implementation toward more efficient and effective food safety preparedness, responsiveness, and accountability. This comparative study identifies and evaluates common elements among global food safety systems. It provides an overall world ranking of food safety performance for 17 Organisation for Economic Co-Operation and Development (OECD) countries, illustrated by 10 indicators organized across three food safety risk governance domains: risk assessment (chemical risks, microbial risks, and national reporting on food consumption), risk management (national food safety capacities, food recalls, food traceability, and radionuclides standards), and risk communication (allergenic risks, labeling, and public trust). Results show all countries have very high food safety standards, but Canada and Ireland, followed by France, earned excellent grades relative to their peers. However, any subsequent global ranking study should consider the development of survey instruments to gather adequate and comparable national evidence on food safety.

  7. Safety assessment of the liquid-fed ceramic melter process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Partain, W.L.

    1980-08-01

    As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment

  8. The role of engineering judgement, safety culture, and organizational factors in risk assessment

    International Nuclear Information System (INIS)

    Muzumdar, Ajit; Professor, Visiting

    1996-01-01

    This paper reviews the role of engineering judgement, safety culture, and organizational factors in risk assessment by examining the reasons for human-based error. The need for more emphasis on producing engineers with good engineering judgement is described. The progress in quantifying the role of safety culture and organizational factors in risk assessment studies is summarized

  9. Enhancing the effectiveness of IST through risk-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, S.D.

    1996-12-01

    Current IST requirements were developed mainly through deterministic-based methods. While this approach has resulted in an adequate level of safety and reliability for pumps and valves, insights from probabilistic safety assessments suggest a better safety focus can be achieved at lower costs. That is, some high safety impact pumps and valves are currently not tested under the IST program and should be added, while low safety impact valves could be tested at significantly greater intervals than allowed by the current IST program. The nuclear utility industry, through the Nuclear Energy Institute (NEI), has developed a draft guideline for applying risk-based techniques to focus testing on those pumps and valves with a high safety impact while reducing test frequencies on low safety impact pumps and valves. The guideline is being validated through an industry pilot application program that is being reviewed by the U.S. Nuclear Regulatory Commission. NEI and the ASME maintain a dialogue on the two groups` activities related to risk-based IST. The presenter will provide an overview of the NEI guideline, discuss the methodological approach for applying risk-based technology to IST and provide the status of the industry pilot plant effort.

  10. Organizational processes and nuclear power plant safety

    International Nuclear Information System (INIS)

    Landy, F.J.; Jacobs, R.R.; Mathieu, J.

    1991-01-01

    The paper describes the effects organizational factors have on the risk associated with the operation of nuclear power plants. The described research project addresses three methods for identifying the organizational factors that impact safety. The first method consists of an elaborate theory-based protocol dealing with decision making procedures, interdepartmental coordination of activities, and communications. The second, known as goals/means/measures protocol, deals with identifying safey related goals. The third method is known as behaviorally anchored rating scale development. The paper discusses the importance of the convergence of these three methods to identify organizational factors essential to reactor safety

  11. Evaluating Process Effectiveness to Reduce Risk

    Science.gov (United States)

    Shepherd, Christena C.

    2017-01-01

    It is well documented that government agencies do not have the same incentive as the private sector to focus on process effectiveness and continual improvement of those processes. It is also well documented whenever government agencies fail to deliver efficient, effective, consistent, and fair services to the citizens. In spite of the various "reinventing government" and "effectiveness initiatives" of the past decades, and in spite of the efforts on the part of many agencies to improve, government in general still lags behind industry in creating a culture of effective processes and systems. While the tragic events that unfolded recently in Flint, Michigan, teach us that running government "like a business" does not always take the needs of the citizenry into account, there are many lessons and techniques from the private sector that government agencies can use to improve. The incentive to improve, while mandated by various administrations1, needs to come from within the workforce, in order to effectively take root. The best, most effective incentive is to reduce, control or eliminate risk. Government agencies face some of the same risks as the private sector, while some are unique. While ISO 310002 has been around since 2009, risk has taken on increased visibility within the private sector with the advent of the emphasis on risk-based thinking in ISO 9001:20153. The relationship between risk-based thinking and effective processes is simple and direct. Those processes that are well thought out and standardized (i.e. Plan-Do-Check-Act), will have taken into account the applicable policy, statutory, regulatory, safety, quality and technical parameters, which may not occur to someone performing the process with minimal experience or training; and thus protect the employees, the public and the agency from statutory and regulatory violations; delay in providing services; non-delivery of services; harm to public or employee safety and health; cost overruns; breaches in

  12. Risk-based design of process systems using discrete-time Bayesian networks

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2013-01-01

    Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.

  13. Keys to effective third-party process safety audits

    International Nuclear Information System (INIS)

    Birkmire, John C.; Lay, James R.; McMahon, Mona C.

    2007-01-01

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally

  14. Study Of Safety Management By Using Gis In Coimbatore

    Directory of Open Access Journals (Sweden)

    S. Kanchana

    2015-08-01

    Full Text Available The safety management is very important in the process of construction .The traditional methods of construction safety control cannot meet the construction of big project. To ensure the safety of construction and reduce accidents in the process of construction the current situation and problems we face in construction safety management should be studied first. And then the project risk warning mechanism based on the GIS is constructed according to the problems we faced to achieve visual monitoring and warning of construction safety risk management and to provide decision support for construction. This project aims to develop a web-based spatial decision support system model for proactive health and safety management in linear construction projects. 5 Currently health and safety management is usually performed reactively instead of proactive management since hazard identification and risk assessment is mostly performed on paper based documents that are not effectively used at site. An information system relates to a chain of operations lead to planning the observation and collection of data to storage and analysis of data to the use of derived information in decision-making processes. To create a web-based free and open sourced GIS that can work with different data formats by exchanging and presenting data as a real-time map on web.

  15. Reducing the risk, managing safety.

    Science.gov (United States)

    Aldridge, Peter

    2016-02-01

    Fire safety in healthcare premises has always been a challenge to those that discharge this duty. Statutory compliance should be a matter of course, but in an ever increasingly challenged NHS, even this is not a given. While the NHS is driven by managing very complex risk to deliver cutting edge healthcare, providers cannot be risk averse. Which risk, however, takes priority? Here Peter Aldridge, fire and corporate services manager at Leeds Teaching Hospitals NHS Trust, and Secretary to the National Association of Healthcare Fire Officers (NAHFO)--which will this month and next jointly stage fire safety seminars with IHEEM; see page 8--considers the key issues, with input from a fire officer at a leading mental health and community Trust.

  16. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  17. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  18. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  19. Issues regarding Risk Effect Analysis of Digitalized Safety Systems and Main Risk Contributors

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2008-01-01

    Risk factors of safety-critical digital systems affect overall plant risk. In order to assess this risk effect, a risk model of a digitalized safety system is required. This article aims to provide an overview of the issues when developing a risk model and demonstrate their effect on plant risk quantitatively. Research activities in Korea for addressing these various issues, such as the software failure probability and the fault coverage of self monitoring mechanism are also described. The main risk contributors related to the digitalized safety system were determined in a quantitative manner. Reactor protection system and engineered safety feature component control system designed as part of the Korean Nuclear I and C System project are used as example systems. Fault-tree models were developed to assess the failure probability of a system function which is designed to generate an automated signal for actuating both of the reactor trip and the complicated accident-mitigation actions. The developed fault trees were combined with a plant risk model to evaluate the effect of a digitalized system's failure on the plant risk. (authors)

  20. Assessing safety risk in electricity distribution processes using ET & BA improved technique and its ranking by VIKOR and TOPSIS models in fuzzy environment

    OpenAIRE

    S. Rahmani; M. Omidvari

    2016-01-01

    Introduction: Electrical industries are among high risk industries. The present study aimed to assess safety risk in electricity distribution processes using  ET&BA technique and also to compare with both VIKOR & TOPSIS methods in fuzzy environments.   Material and Methods: The present research is a descriptive study and ET&BA worksheet is the main data collection tool. Both Fuzzy TOPSIS and Fuzzy VIKOR methods were used for the worksheet analysis.   Result: Findi...

  1. Improving construction site safety through leader-based verbal safety communication.

    Science.gov (United States)

    Kines, Pete; Andersen, Lars P S; Spangenberg, Soren; Mikkelsen, Kim L; Dyreborg, Johnny; Zohar, Dov

    2010-10-01

    The construction industry is one of the most injury-prone industries, in which production is usually prioritized over safety in daily on-site communication. Workers have an informal and oral culture of risk, in which safety is rarely openly expressed. This paper tests the effect of increasing leader-based on-site verbal safety communication on the level of safety and safety climate at construction sites. A pre-post intervention-control design with five construction work gangs is carried out. Foremen in two intervention groups are coached and given bi-weekly feedback about their daily verbal safety communications with their workers. Foremen-worker verbal safety exchanges (experience sampling method, n=1,693 interviews), construction site safety level (correct vs. incorrect, n=22,077 single observations), and safety climate (seven dimensions, n=105 questionnaires) are measured over a period of up to 42 weeks. Baseline measurements in the two intervention and three control groups reveal that foremen speak with their workers several times a day. Workers perceive safety as part of their verbal communication with their foremen in only 6-16% of exchanges, and the levels of safety at the sites range from 70-87% (correct observations). Measurements from baseline to follow-up in the two intervention groups reveal that safety communication between foremen and workers increases significantly in one of the groups (factor 7.1 increase), and a significant yet smaller increase is found when the two intervention groups are combined (factor 4.6). Significant increases in the level of safety are seen in both intervention groups (7% and 12% increases, respectively), particularly in regards to 'access ways' and 'railings and coverings' (39% and 84% increases, respectively). Increases in safety climate are seen in only one of the intervention groups with respect to their 'attention to safety.' No significant trend changes are seen in the three control groups on any of the three measures

  2. Safety methodology and risk targets

    International Nuclear Information System (INIS)

    Kazimi, M.S.

    1983-01-01

    In assessing the potential safety concerns of fusion, the experience from other energy sources lead to a variety of safety assessment approaches. The available approaches are: (1) The maximum possible accident approach; (2) The maximum credible accident approach; (3) The probabilistic total risk assessment. In the first approach, the mechanistic development of the events leading to the safety concern is ignored. Instead, the total radioactivity of the plant is assumed accessible to the public. Such an approach is obviously conservative and unrealistic. In the second approach a selection is made among the most severe of the possible accidents, and the progression of the accident is modeled as mechanistically as possible. In this case, the passive and active accident mitigation capabilities of the plant are taken into consideration. The result is expected to be that none or only a fraction of the total radioactivity can be released to the public. The adverse effect of this approach is to concentrate attention on a particular accident class, and perhaps not allow for other classes, a judgement that may later become undesirable. The probabilistic risk assessment requires the safety analysts to consider all classes of accidents and estimate both the probabilities of their occurrences and their consequences. Thus, the plant design in fact is subjected to a thorough investigation and the impact of alterations in design can be reflected in the total risk estimate. The disadvantage of this approach lies in the absence of well defined acceptable risk criteria as well as the large effect of public perception factors on the accepted risk. This paper will review the impact of application of these approaches in determination of the level of protection needed against activation product release to the atmosphere. (author)

  3. Big Data Risk Analysis for Rail Safety?

    OpenAIRE

    Van Gulijk, Coen; Hughes, Peter; Figueres-Esteban, Miguel; Dacre, Marcus; Harrison, Chris; HUD; RSSB

    2015-01-01

    Computer scientists believe that the enormous amounts of data in the internet will unchain a management revolution of uncanny proportions. Yet, to date, the potential benefit of this revolution is scantily investigated for safety and risk management. This paper gives a brief overview of a research programme that investigates how the new internet-driven data-revolution could benefit safety and risk management for railway safety in the UK. The paper gives a brief overview the current activities...

  4. Risk-based prioritization at Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Hesser, W.A.; Mosely, M.T.

    1995-11-01

    This paper describes the method used to incorporate risk-based decision making into the Hanford resource allocation process. This method, the Revised Priority Planning Grid, is used as a tool to calculate benefits and benefit-to-cost ratios for comparison of environmental cleanup activities. The tool is based on Hanford Site objectives. Benefits are determined by estimating the impact on those objectives resulting from funding specific environmental management activities. Impacts are also a function of the weights associated with the objectives. These weights in the Revised Priority Planning Grid reflect US Development of Energy management values, which were obtained through a formal value-elicitation process. With modification to the objectives and weights, the Revised Priority Planning Grid could be used in different situations. By factoring in environmental, safety, and health risk and assigning higher scores to those activities that provide the most benefit, the Revised Priority Planning Grid is a reproducible, scientific way of scoring competing activities or interests

  5. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  6. Safety and security risk assessments--now demystified!

    Science.gov (United States)

    White, Donald E

    2011-01-01

    Safety/security risk assessments no longer need to spook nor baffle healthcare safety/security managers. This grid template provides at-at-glance quick lookup of the possible threats, the affected people and things, a priority ranking of these risks, and a workable solution for each risk. Using the standard document, spreadsheet, or graphics software already available on your computer, you can easily use a scientific method to produce professional looking risk assessments that get quickly understood by both senior managers and first responders alike!

  7. The Implementation and Maintenance of a Behavioral Safety Process in a Petroleum Refinery

    Science.gov (United States)

    Myers, Wanda V.; McSween, Terry E.; Medina, Rixio E.; Rost, Kristen; Alvero, Alicia M.

    2010-01-01

    A values-centered and team-based behavioral safety process was implemented in a petroleum oil refinery. Employee teams defined the refinery's safety values and related practices, which were used to guide the process design and implementation. The process included (a) a safety assessment; (b) the clarification of safety-related values and related…

  8. Demonstration of risk-based approaches to nuclear plant regulation

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Darling, S.S.; Oddo, J.M.

    1993-01-01

    This paper describes generic technical support EPRI is providing to the nuclear power industry relative to its recent initiatives in the area of risk-based regulations (RBR). A risk-based regulatory approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate safety resources commensurate with the risk posed by nuclear plant operations. This approach will reduce O ampersand M costs, and also improve nuclear plant safety. In order to enhance industry, Nuclear Regulatory Commission (NRC) and public confidence in RBR, three things need to be shown: (1) manpower/resource savings are significant for both NRC and industry; (2) the process is doable in a reasonable amount of time; and (3) the process, if uniformly applied, results in demonstrably cheaper power and safer plants. In 1992, EPRI performed a qualitative study of the key RBR issues contributing to high O ampersand M costs. The results are given on Table 1. This study is being followed up by an in-depth quantitative cost/benefit study to focus technical work on producing guidelines/procedures for licensing submittals to NRC. The guidelines/procedures necessarily will be developed from successful demonstration projects such as the Fitzpatrick pilot plant study proposed by the New York Power Authority and other generic applications. This paper presents three examples: two motor operated valve projects performed by QUADREX Energy Services Corporation working with utilities in responding to NRC Generic Letter 89-10, and a third project working with Yankee Atomic Electric Company on service water systems at a plant in its service system. These demonstration projects aim to show the following: (1) the relative ease of putting together a technical case based on RBR concepts; (2) clarity in differentiating the various risk trade-offs, and in communicating overall reductions in risk with NRC; and (3) improved prioritization of NRC directives

  9. Risk-informed regulation: handling uncertainty for a rational management of safety

    International Nuclear Information System (INIS)

    Zio, Enrico

    2008-01-01

    A risk-informed regulatory approach implies that risk insights be used as supplement of deterministic information for safety decision-making purposes. In this view, the use of risk assessment techniques is expected to lead to improved safety and a more rational allocation of the limited resources available. On the other hand, it is recognized that uncertainties affect both the deterministic safety analyses and the risk assessments. In order for the risk-informed decision making process to be effective, the adequate representation and treatment of such uncertainties is mandatory. In this paper, the risk-informed regulatory framework is considered under the focus of the uncertainty issue. Traditionally, probability theory has provided the language and mathematics for the representation and treatment of uncertainty. More recently, other mathematical structures have been introduced. In particular, the Dempster-Shafer theory of evidence is here illustrated as a generalized framework encompassing probability theory and possibility theory. The special case of probability theory is only addressed as term of comparison, given that it is a well known subject. On the other hand, the special case of possibility theory is amply illustrated. An example of the combination of probability and possibility for treating the uncertainty in the parameters of an event tree is illustrated

  10. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    Science.gov (United States)

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  11. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  12. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    International Nuclear Information System (INIS)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept

  13. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.

    Science.gov (United States)

    Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting

    2016-12-01

    Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in

  14. Study of a risk-based piping inspection guideline system.

    Science.gov (United States)

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  15. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  16. Risk Communication: A Key for Fostering a More Resilient Safety Culture

    International Nuclear Information System (INIS)

    Nishizawa, M.

    2016-01-01

    It is widely agreed that the accident of the Fukushima Daiichi nuclear power plant was not only triggered by natural events combined with technical failures, but was a human induced disaster. From the bitter lessons, we have learned that human and organizational factors associated with emergency planning, response and decision-making for nuclear safety need to be more carefully reviewed and enhanced. Elements of social sciences, especially, risk management and risk communication here play a key role. Risk communication is an established concept within risk analysis frameworks. It is a vital tool to convey the meaning of scientific assessment and risk management, share safety related information, and exchange views and values amongst varying stakeholder groups. Risk communication aims at building trust through this process and human interactions. However, it would not be an overstatement that the essence of risk communication is not fully understood. As a result, it is either partially integrated into risk management practice or remains unconducive. The marginalisation of risk communication is observed in a variety of risk communication practices, or more evidently, in perception gaps between lays and experts about risks.

  17. Application of risk-based methods to inservice testing of check valves

    Energy Technology Data Exchange (ETDEWEB)

    Closky, N.B.; Balkey, K.R.; McAllister, W.J. [and others

    1996-12-01

    Research efforts have been underway in the American Society of Mechanical Engineers (ASME) and industry to define appropriate methods for the application of risk-based technology in the development of inservice testing (IST) programs for pumps and valves in nuclear steam supply systems. This paper discusses a pilot application of these methods to the inservice testing of check valves in the emergency core cooling system of Georgia Power`s Vogtle nuclear power station. The results of the probabilistic safety assessment (PSA) are used to divide the check valves into risk-significant and less-risk-significant groups. This information is reviewed by a plant expert panel along with the consideration of appropriate deterministic insights to finally categorize the check valves into more safety-significant and less safety-significant component groups. All of the more safety-significant check valves are further evaluated in detail using a failure modes and causes analysis (FMCA) to assist in defining effective IST strategies. A template has been designed to evaluate how effective current and emerging tests for check valves are in detecting failures or in finding significant conditions that are precursors to failure for the likely failure causes. This information is then used to design and evaluate appropriate IST strategies that consider both the test method and frequency. A few of the less safety-significant check valves are also evaluated using this process since differences exist in check valve design, function, and operating conditions. Appropriate test strategies are selected for each check valve that has been evaluated based on safety and cost considerations. Test strategies are inferred from this information for the other check valves based on similar check valve conditions. Sensitivity studies are performed using the PSA model to arrive at an overall IST program that maintains or enhances safety at the lowest achievable cost.

  18. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond

    Directory of Open Access Journals (Sweden)

    Alexander Falenski

    2015-01-01

    Full Text Available In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations.

  19. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  20. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  1. U.S. Nuclear Regulatory Commission Process for Risk-Informing the Nuclear Waste Arena

    International Nuclear Information System (INIS)

    Leslie, B. W.

    2003-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is increasing the use of risk insights and information in its regulation of nuclear materials and waste. The objective of this risk-informed regulatory effort is to improve the effectiveness and efficiency of the agency, while maintaining or increasing its focus on safety. The agency's Office of Nuclear Material Safety and Safeguards (NMSS) proposed a five-step process to carry out a framework for increasing the use of risk information and insights in its regulation of nuclear materials and waste. The office is carrying out the five-step process to risk-inform the nuclear materials and waste arenas. NMSS's actions included forming a Risk Task Group and the use of case studies to test and complete screening criteria for identifying candidate regulatory applications amenable for risk-informing. Other actions included involving stakeholders through enhanced public participation, developing safety goals for materials and waste regulatory applications, and establishing a risk training program for staff. Through the case studies, NRC staff found the draft screening criteria to be effective in deciding regulatory areas that may be amenable to an increased use of risk insights. NRC staff also found that risk information may have the potential to reduce regulatory burden and improve staff's efficiency in making decisions, while maintaining safety. Finally, staff found that it would be possible to develop safety goals for the nuclear materials and waste arenas

  2. Proposal for an integrated risk informed decision making process for German regulators

    International Nuclear Information System (INIS)

    Einarsson, Svante; Wielenberg, Andreas

    2013-01-01

    Regulatory decisions for German nuclear power plants (NPP) have traditionally been based on deterministic safety analyses. However, the IRRS-Mission of IAEA in 2008 proposed, among others, in 'Suggestion 25' to develop a national policy 'on the use of risk insights in the regulatory framework and decision making'. Consequently, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) launched a project with the goal of developing a proposal for a uniform federal approach on using risk information in decision making. To this end, the state of the application of probabilistic and risk informed methods has been investigated both on an international and a national level. On the international level, the concept of Integrated Risk Informed Decision Making (IRIDM) has been defined in INSAG-25. It is a structured process, in which all knowledge and requirements relevant to the issue in question are to be considered in a decision. Such knowledge and other requirements are e.g. deterministic and probabilistic safety analyses, regulatory requirements and other applicable findings (including cost-benefit analyses). The IRIDM concept according to INSAG-25 is the cornerstone of the proposal for a uniform federal German approach for IRIDM in the regulatory framework for nuclear installations in Germany. (orig.)

  3. Can we use IEC 61850 for safety related functions?

    Directory of Open Access Journals (Sweden)

    Luca Rocca

    2016-08-01

    Full Text Available Safety is an essential issue for processes that present high risk for human beings and environment. An acceptable level of risk is obtained both with actions on the process itself (risk reduction and with the use of special safety systems that switch the process into safe mode when a fault or an abnormal operation mode happens. These safety systems are today based on digital devices that communicate through digital networks. The IEC 61508 series specifies the safety requirements of all the devices that are involved in a safety function, including the communication network. Also electrical generation and distribution systems are processes that may have a significant level of risk, so the criteria stated by the IEC 61508 applies. Starting from this consideration, the paper analyzes the safety requirement for the communication network and compare them with the services of the communication protocol IEC 61850 that represents the most used protocol for automation of electrical plants. The goal of this job is to demonstrate that, from the technical point of view, IEC 61850 can be used for implementing safety-related functions, even if a formal safety certification is still missing.

  4. Integration of laboratory bioassays into the risk-based corrective action process

    International Nuclear Information System (INIS)

    Edwards, D.; Messina, F.; Clark, J.

    1995-01-01

    Recent data generated by the Gas Research Institute (GRI) and others indicate that residual hydrocarbon may be bound/sequestered in soil such that it is unavailable for microbial degradation, and thus possibly not bioavailable to human/ecological receptors. A reduction in bioavailability would directly equate to reduced exposure and, therefore, potentially less-conservative risk-based cleanup soil goals. Laboratory bioassays which measure bioavailability/toxicity can be cost-effectively integrated into the risk-based corrective action process. However, in order to maximize the cost-effective application of bioassays several site-specific parameters should be addressed up front. This paper discusses (1) the evaluation of parameters impacting the application of bioassays to soils contaminated with metals and/or petroleum hydrocarbons and (2) the cost-effective integration of bioassays into a tiered ASTM type framework for risk-based corrective action

  5. [Process management in the hospital pharmacy for the improvement of the patient safety].

    Science.gov (United States)

    Govindarajan, R; Perelló-Juncá, A; Parès-Marimòn, R M; Serrais-Benavente, J; Ferrandez-Martí, D; Sala-Robinat, R; Camacho-Calvente, A; Campabanal-Prats, C; Solà-Anderiu, I; Sanchez-Caparrós, S; Gonzalez-Estrada, J; Martinez-Olalla, P; Colomer-Palomo, J; Perez-Mañosas, R; Rodríguez-Gallego, D

    2013-01-01

    To define a process management model for a hospital pharmacy in order to measure, analyse and make continuous improvements in patient safety and healthcare quality. In order to implement process management, Igualada Hospital was divided into different processes, one of which was the Hospital Pharmacy. A multidisciplinary management team was given responsibility for each process. For each sub-process one person was identified to be responsible, and a working group was formed under his/her leadership. With the help of each working group, a risk analysis using failure modes and effects analysis (FMEA) was performed, and the corresponding improvement actions were implemented. Sub-process indicators were also identified, and different process management mechanisms were introduced. The first risk analysis with FMEA produced more than thirty preventive actions to improve patient safety. Later, the weekly analysis of errors, as well as the monthly analysis of key process indicators, permitted us to monitor process results and, as each sub-process manager participated in these meetings, also to assume accountability and responsibility, thus consolidating the culture of excellence. The introduction of different process management mechanisms, with the participation of people responsible for each sub-process, introduces a participative management tool for the continuous improvement of patient safety and healthcare quality. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.

  6. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  7. Food safety in the domestic environment: the effect of consumer risk information on human disease risks.

    Science.gov (United States)

    Nauta, Maarten J; Fischer, Arnout R H; van Asselt, Esther D; de Jong, Aarieke E I; Frewer, Lynn J; de Jonge, Rob

    2008-02-01

    The improvement of food safety in the domestic environment requires a transdisciplinary approach, involving interaction between both the social and natural sciences. This approach is applied in a study on risks associated with Campylobacter on broiler meat. First, some web-based information interventions were designed and tested on participant motivation and intentions to cook more safely. Based on these self-reported measures, the intervention supported by the emotion "disgust" was selected as the most promising information intervention. Its effect on microbial cross-contamination was tested by recruiting a set of participants who prepared a salad with chicken breast fillet carrying a known amount of tracer bacteria. The amount of tracer that could be recovered from the salad revealed the transfer and survival of Campylobacter and was used as a measure of hygiene. This was introduced into an existing risk model on Campylobacter in the Netherlands to assess the effect of the information intervention both at the level of exposure and the level of human disease risk. We showed that the information intervention supported by the emotion "disgust" alone had no measurable effect on the health risk. However, when a behavioral cue was embedded within the instruction for the salad preparation, the risk decreased sharply. It is shown that a transdisciplinary approach, involving research on risk perception, microbiology, and risk assessment, is successful in evaluating the efficacy of an information intervention in terms of human health risks. The approach offers a novel tool for science-based risk management in the area of food safety.

  8. Keys to effective third-party process safety audits

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, John C. [Tourgee and Associates Inc., 11459 Cronhill Drive, Suite A, Owings Mills, MD 21117 (United States)]. E-mail: jbirkmire@taiengineering.com; Lay, James R. [5644 High Tor Hill, Columbia, MD 21045 (United States)]. E-mail: jim.lay21045@gmail.com; McMahon, Mona C. [General Physics Corporation, 6095 Marshalee Drive, Suite 300, Elkridge, MD 21075 (United States)]. E-mail: mmcmahon@gpworldwide.com

    2007-04-11

    The Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) regulation was promulgated in 1992. The U.S. Environmental Protection Agency's (EPA's) corresponding Risk Management Program (RMP) rule followed in 1996. Both programs include requirements for triennial compliance audits. Effective compliance audits are critical in identifying program weaknesses and ensuring the safety of facility personnel and the surrounding public. Large companies with corporate and facility health, safety, and environmental groups typically have the resources and experience to conduct audits internally, either through a corporate audit team or the sharing of personnel between multiple facilities. Small to medium sized businesses frequently do not have the expertise or the resources to perform compliance audits, and rely on third-party consultants to provide these services. This paper will discuss the observations of the authors in performing audits and working with PSM/RMP programs across a number of market sectors (e.g. chemical, petrochemical, pharmaceutical, food and beverage, water treatment), including effective practices, hurdles to successful implementation and execution of programs, and typical program shortcomings. The paper will also discuss steps to improve the audit process and increase effectiveness whether performed by a third party or internally.

  9. Projective goals - concepts and pragmatic aspects based on the terminology and methodology of safety science

    International Nuclear Information System (INIS)

    Compes, P.C.

    1991-01-01

    Protective goals set the line of orientation of tasks and activities in the field of accident prevention. They have to be based on safety-science methods in order to develop from the conceptual idea to the practically feasible solution, while using the scientific methods to take into account the facts and the capabilities of a situation and, proceeding from them, finding an efficient and rational, optimal pragmatic approach by way of various strategies or tactics. In this process, the activities of defining, informing, thinking and developing need the proper terminology. Safety is absence of danger, protection is limitation of danger and prevention of damage. So it is protection what is needed with danger being given, and risks have to be minimized. Riskology is a novel method of safety science, combining risk analysis and risk control into a systematic concept which is practice-oriented. Applying this to the field of nuclear engineering, the hitherto achieved should receive new impulses. (orig.) [de

  10. Drug safety in pregnancy: utopia or achievable prospect? Risk information, risk research and advocacy in Teratology Information Services.

    Science.gov (United States)

    Schaefer, Christof

    2011-03-01

    Even though from preclinical testing to drug risk labeling, the situation with drugs in pregnancy has improved substantially since the thalidomide scandal, there is still an increasing need to provide healthcare professionals and patients with updated individualized risk information for clinical decision making. For the majority of drugs, clinical experience is still insufficient with respect to their safety in pregnancy. There is often uncertainty in how to interpret the available scientific data. Based on 20 years of experience with Teratology Information Services (TIS) cooperating in the European Network of Teratology Information Services (ENTIS) methods of risk interpretation, follow-up of exposed pregnancies through the consultation process and their evaluation is discussed. Vitamin K antagonists, isotretinoin and angiotensin (AT) II-receptor-antagonists are presented as examples of misinterpretation of drug risks and subjects of research based on observational clinical data recorded in TIS. As many TIS are poorly funded, advocacy is necessary by establishing contacts with decision makers in health politics and administration, informing them of the high return in terms of health outcomes and cost savings provided by TIS as reference institutions in clinical teratology. © 2011 The Author. Congenital Anomalies © 2011 Japanese Teratology Society.

  11. The spread model of food safety risk under the supply-demand disturbance

    OpenAIRE

    Wang, Jining; Chen, Tingqiang

    2016-01-01

    In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors? influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of c...

  12. Safety cases and siting processes

    International Nuclear Information System (INIS)

    Metlay, Daniel; Ewing, Rodney

    2014-01-01

    Central to any process for building a deep-mined geologic repository for high-activity radioactive waste is the development of a safety case. To date, such cases, in various forms have been elaborated for a variety of concepts for geologic disposal, including in salt, clay, argillite, crystalline rock (granite and gneiss) and volcanic tuff formations. In addition to the technical effort required to develop a safety case, increasingly nations have come to believe that it is also critical to obtain the consent of the region or community where the facility might be located. The purpose of this paper is to explore issues associated with just one aspect of consent-based siting: How can such a process be designed so that willingness to accept a site for a repository continues to be meaningful even as new technical knowledge and insights emerge during site characterisation? In short, what is the meaning of 'informed consent' in the context of repository development? (authors)

  13. Risk-based priority scoring for Brookhaven National Laboratory environmental restoration programs

    International Nuclear Information System (INIS)

    Morris, S.C.; Meinhold, A.F.

    1995-05-01

    This report describes the process of estimating the risk associated with environmental restoration programs under the Brookhaven National Laboratory Office of Environmental Restoration. The process was part of an effort across all Department of Energy facilities to provide a consistent framework to communicate risk information about the facilities to senior managers in the DOE Office of Environmental Management to foster understanding of risk activities across programs. the risk evaluation was a qualitative exercise. Categories considered included: Public health and safety; site personnel safety and health; compliance; mission impact; cost-effective risk management; environmental protection; inherent worker risk; environmental effects of clean-up; and social, cultural, political, and economic impacts

  14. Electronics and data processing for safety

    International Nuclear Information System (INIS)

    1995-01-01

    Industrial installations, and in particular installations involving risk, are more and more monitored and controlled by computerized systems. The use of such systems raises questions about their contribution to the installation safety and about the qualities required in these systems to avoid additional risk. The February 1995 Electronics Days were organized by the CEA-LETI Department of Electronics and Nuclear Instrumentation to try to answer these questions. Four sessions were organized on the following topics: computerized systems and functioning safety, components and architectures, softwares and norms, and tools and methods. Only the communications dealing with the safety of computerized systems and components involved in nuclear applications have been retained (17 over 36). (J.S.)

  15. Safety assessment in development and operation of modular continuous-flow processes

    NARCIS (Netherlands)

    Kockmann, N.; Thenée, P.; Fleischer-Trebes, C.; Laudadio, G.; Noël, T.

    2017-01-01

    Improved safety is one of the main drivers for microreactor application in chemical process development and small-scale production. Typical examples of hazardous chemistry are presented indicating potential risks also in miniaturized equipment. Energy balance and kinetic parameters describe the heat

  16. Assessment on the Development of Occupational Health and Safety Management Based on OHSAS 18001

    International Nuclear Information System (INIS)

    Sigit Santoso

    2006-01-01

    This paper focused on the safety of a workplace, while the majority of the discussion is emphasized in the development of occupational health and safety management of the process system. The assessment on a development of occupational health and safety management based on the OHSAS 18001 has been done. The result indicates that OHSAS 18001 as an assessment specification for occupational health and safety management systems can be applied to any type of organization and industry, eventhough it does not give detailed specifications for design in a management system. The extent of the application depend on such factors as the OH&S policy of the organization, the nature of its activities and the risks and complexity of its operations. (author)

  17. Study on the evaluation system for the coal safety management based on risk pre-control

    Institute of Scientific and Technical Information of China (English)

    LI Xin-chun; XU Hai-xia; WANG Pei; SONG Xue-feng

    2009-01-01

    The new type of risk management is process management.First,the hazard sources are identified before coal mine accidents occur,and then the pre-control measure and information monitoring method based on classifying the hidden hazard sources are given.Lastly,the risk pre-alarm and risk control method are confirmed,the management standard and management measure are used to eliminate the hidden hazard sources.In this study,an evaluation system is built to evaluate the result of risk management.

  18. Risk concepts in UK nuclear safety decision-making

    International Nuclear Information System (INIS)

    Brighton, P.W.M.

    2001-01-01

    This paper discusses the concept of risk as understood in the UK, with particular reference to the use of probabilistic safety assessment (PSA) in nuclear safety decision making. The way 'risk' appears in UK fundamental legislation means that the concept cannot be limited to evaluation of numerical probabilities of physical harm. Rather the focus is on doing all that is reasonably practicable to reduce risks: this entails applying relevant good practice and then seeking further safety measures until the money, time and trouble required are grossly disproportionate to the residual risk. PSA is used to inform rather than dictate such decisions. This approach is reinforced by considering how far any practical PSA can be said to measure risk. The behaviour of complex socio-technical systems such as nuclear power stations does not meet the conditions under which probability theory can be applied in an absolutely objective statistical sense. Risk is not an intrinsic real property of such systems. Rather PSA is a synthesis of data and subjective expert judgements, dependent on the extent of detailed knowledge of the plant. There are many other aspects of engineering judgement involved in safety decisions which cannot be so captured. (author)

  19. Quantified reliability and risk assessment methodology in safety evaluation and licensing: survey of practice and trends in E.C. countries; partial contribution in decision making, perpective of safety goals

    International Nuclear Information System (INIS)

    Vinck, W.F.

    1982-01-01

    Quantified reliability analysis of structures and systems and the quantified risk-concept is increasingly developed and applied in safety evaluation and in the licensing/regulatory process where deterministic approaches are however still predominant. A description of the types of application and a survey of the diversified opinions and the problem areas (e.g. the validity of input data, uncertainties in consequence modelling, human factors, common mode failures, etc.) are given. The significance of quantified risk assessment and comparisons, as one of the contributors in the solution to acceptability of modern technology such as nuclear power production, is discussed. Other contributions, such as benefit assessment and cost-efficiency of risk reduction, are also put into perspective within the decision-making process and in the problem of actual acceptance of new technologies. The growing need of developing and agreeing on overall safety objectives (how safe is safe enough) is finally discussed, in the light of the increasing diversity of approaches in the interconnected areas of accident hypotheses/sequences, siting parameters and technical bases for emergency planning; the latter problem being also closely connected to decisional processes for acceptability and to actual acceptance

  20. On the Risk Management and Auditing of SOA Based Business Processes

    Science.gov (United States)

    Orriens, Bart; Heuvel, Willem-Jan V./D.; Papazoglou, Mike

    SOA-enabled business processes stretch across many cooperating and coordinated systems, possibly crossing organizational boundaries, and technologies like XML and Web services are used for making system-to-system interactions commonplace. Business processes form the foundation for all organizations, and as such, are impacted by industry regulations. This requires organizations to review their business processes and ensure that they meet the compliance standards set forth in legislation. In this paper we sketch a SOA-based service risk management and auditing methodology including a compliance enforcement and verification system that assures verifiable business process compliance. This is done on the basis of a knowledge-based system that allows integration of internal control systems into business processes conform pre-defined compliance rules, monitor both the normal process behavior and those of the control systems during process execution, and log these behaviors to facilitate retrospective auditing.

  1. Risk-informed decision making a keystone in advanced safety assessment

    International Nuclear Information System (INIS)

    Reinhart, M.

    2007-01-01

    Probabilistic Safety Assessment (PSA) has provided extremely valuable complementary insight, perspective, comprehension, and balance to deterministic nuclear reactor safety assessment. This integrated approach of risk-informed management and decision making has been called Risk-Informed Decision Making (RIDM). RIDM provides enhanced safety, reliability, operational flexibility, reduced radiological exposure, and improved fiscal economy. Applications of RIDM continuously increase. Current applications are in the areas of design, construction, licensing, operations, and security. Operational phase safety applications include the following: technical specifications improvement, risk-monitors and configuration control, maintenance planning, outage planning and management, in-service inspection, inservice testing, graded quality assurance, reactor oversight and inspection, inspection finding significance determination, operational events assessment, and rulemaking. Interestingly there is a significant spectrum of approaches, methods, programs, controls, data bases, and standards. The quest of many is to assimilate the full compliment of PSA and RIDM information and to achieve a balanced international harmony. The goal is to focus the best of the best, so to speak, for the benefit of all. Accordingly, this presentation will address the principles, benefits, and applications of RIDM. It will also address some of the challenges and areas to improve. Finally it will highlight efforts by the IAEA and others to capture the international thinking, experience, successes, challenges, and lessons in RIDM. (authors)

  2. A scenario-based procedure for seismic risk analysis

    International Nuclear Information System (INIS)

    Kluegel, J.-U.; Mualchin, L.; Panza, G.F.

    2006-12-01

    A new methodology for seismic risk analysis based on probabilistic interpretation of deterministic or scenario-based hazard analysis, in full compliance with the likelihood principle and therefore meeting the requirements of modern risk analysis, has been developed. The proposed methodology can easily be adjusted to deliver its output in a format required for safety analysts and civil engineers. The scenario-based approach allows the incorporation of all available information collected in a geological, seismotectonic and geotechnical database of the site of interest as well as advanced physical modelling techniques to provide a reliable and robust deterministic design basis for civil infrastructures. The robustness of this approach is of special importance for critical infrastructures. At the same time a scenario-based seismic hazard analysis allows the development of the required input for probabilistic risk assessment (PRA) as required by safety analysts and insurance companies. The scenario-based approach removes the ambiguity in the results of probabilistic seismic hazard analysis (PSHA) which relies on the projections of Gutenberg-Richter (G-R) equation. The problems in the validity of G-R projections, because of incomplete to total absence of data for making the projections, are still unresolved. Consequently, the information from G-R must not be used in decisions for design of critical structures or critical elements in a structure. The scenario-based methodology is strictly based on observable facts and data and complemented by physical modelling techniques, which can be submitted to a formalised validation process. By means of sensitivity analysis, knowledge gaps related to lack of data can be dealt with easily, due to the limited amount of scenarios to be investigated. The proposed seismic risk analysis can be used with confidence for planning, insurance and engineering applications. (author)

  3. Risk-based regulation: A regulatory perspective

    International Nuclear Information System (INIS)

    Scarborough, J.C.

    1993-01-01

    In the early development of regulations for nuclear power plants, risk was implicitly considered through qualitative assessments and engineering reliability principles and practices. Examples included worst case analysis, defense in depth, and the single failure criterion. However, the contributions of various systems, structures, components and operator actions to plant safety were not explicitly assessed since a methodology for this purpose had not been developed. As a consequence of the TMI accident, the use of more quantitative risk methodology and information in regulation such as probabilistic risk analysis (PRA) increased. The use of both qualitative and quantitative consideration of risk in regulation has been a set of regulations and regulatory guides and practices that ensure adequate protection of public health and safety. Presently, the development of PRA techniques has developed to the point that safety goals, expressed in terms of risk, have been established to help guide further regulatory decision making. This paper presents the personal opinions of the author as regards the use of risk today in nuclear power plant regulation, areas of further information needs, and necessary plans for moving toward a more systematic use of risk-based information in regulatory initiatives in the future

  4. 40 CFR 68.65 - Process safety information.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.65 Process safety... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process safety information. 68.65... compilation of written process safety information before conducting any process hazard analysis required by...

  5. University building safety index measurement using risk and implementation matrix

    Science.gov (United States)

    Rahman, A.; Arumsari, F.; Maryani, A.

    2018-04-01

    Many high rise building constructed in several universities in Indonesia. The high-rise building management must provide the safety planning and proper safety equipment in each part of the building. Unfortunately, most of the university in Indonesia have not been applying safety policy yet and less awareness on treating safety facilities. Several fire accidents in university showed that some significant risk should be managed by the building management. This research developed a framework for measuring the high rise building safety index in university The framework is not only assessed the risk magnitude but also designed modular building safety checklist for measuring the safety implementation level. The safety checklist has been developed for 8 types of the university rooms, i.e.: office, classroom, 4 type of laboratories, canteen, and library. University building safety index determined using risk-implementation matrix by measuring the risk magnitude and assessing the safety implementation level. Building Safety Index measurement has been applied in 4 high rise buildings in ITS Campus. The building assessment showed that the rectorate building in secure condition and chemical department building in beware condition. While the library and administration center building was in less secure condition.

  6. Safety issues of tooth whitening using peroxide-based materials.

    Science.gov (United States)

    Li, Y; Greenwall, L

    2013-07-01

    In-office tooth whitening using hydrogen peroxide (H₂O₂) has been practised in dentistry without significant safety concerns for more than a century. While few disputes exist regarding the efficacy of peroxide-based at-home whitening since its first introduction in 1989, its safety has been the cause of controversy and concern. This article reviews and discusses safety issues of tooth whitening using peroxide-based materials, including biological properties and toxicology of H₂O₂, use of chlorine dioxide, safety studies on tooth whitening, and clinical considerations of its use. Data accumulated during the last two decades demonstrate that, when used properly, peroxide-based tooth whitening is safe and effective. The most commonly seen side effects are tooth sensitivity and gingival irritation, which are usually mild to moderate and transient. So far there is no evidence of significant health risks associated with tooth whitening; however, potential adverse effects can occur with inappropriate application, abuse, or the use of inappropriate whitening products. With the knowledge on peroxide-based whitening materials and the recognition of potential adverse effects associated with the procedure, dental professionals are able to formulate an effective and safe tooth whitening regimen for individual patients to achieve maximal benefits while minimising potential risks.

  7. In prospect: role of safety assessment and risk regulation

    International Nuclear Information System (INIS)

    Novegno, A.; Askulaj, Eh.

    1987-01-01

    Problems of accident prevention in industry and power engineering are considered for the sake of environment and human health protection. Investigations into comparison of power system risks are conducted; based on the data obtained a possibility to control the risk has appeared. The IAEA provides an active assistance in realization of a program of coordinated investigations on the risk assessment using the cost-benefit method. For each NPP investigation into all types of its effect on the environment (risk for personnel and population under normal radioactivity releases and in case of accidents), is conducted. Two approaches to calculating the impacts of accidents at NPPs-'determination' one, based on the designed accident and safety probability evaluation exist. Regional approach appears to be the best one when solving the problems of risk control. Attention is paid to a joint project of the IAEA-UNO and WHO related to risk assessment and control for human health and environment protection at power and other complex commercial systems

  8. Safety, Liveness and Run-time Refinement for Modular Process-Aware Information Systems with Dynamic Sub Processes

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2015-01-01

    and verification of flexible, run-time adaptable process-aware information systems, moved into practice via the Dynamic Condition Response (DCR) Graphs notation co-developed with our industrial partner. Our key contributions are: (1) A formal theory of dynamic sub-process instantiation for declarative, event......We study modularity, run-time adaptation and refinement under safety and liveness constraints in event-based process models with dynamic sub-process instantiation. The study is part of a larger programme to provide semantically well-founded technologies for modelling, implementation......-based processes under safety and liveness constraints, given as the DCR* process language, equipped with a compositional operational semantics and conservatively extending the DCR Graphs notation; (2) an expressiveness analysis revealing that the DCR* process language is Turing-complete, while the fragment cor...

  9. A Framework for Seismic Design of Items in Safety-Critical Facilities for Implementing a Risk-Informed Defense-in-Depth-Based Concept

    Directory of Open Access Journals (Sweden)

    Tatsuya Itoi

    2017-05-01

    Full Text Available Recently, especially after the 2011 off the Pacific coast of Tohoku earthquake and the Fukushima Daiichi nuclear power plant accident, the need for treating residual risks and cliff-edge effects in safety-critical facilities has been widely recognized as an extremely important issue. In this article, the sophistication of seismic designs in safety-critical facilities is discussed from the viewpoint of mitigating the consequences of accidents, such as the avoidance of cliff-edge effects. For this purpose, the implementation of a risk-informed defense-in-depth-based framework is proposed in this study. A basic framework that utilizes diversity in the dynamic characteristics of items and also provides additional seismic margin to items important for safety when needed is proposed to prevent common cause failure and to avoid cliff-edge effects as far as practicable. The proposed method is demonstrated to be effective using an example calculation.

  10. A risk characterization of safety research areas for integral fast reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tibbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of integral fast reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure to critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR safety and related base technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorities

  11. A risk characterization of safety research areas for Integral Fast Reactor program planning

    International Nuclear Information System (INIS)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites

  12. Application of risk assessment in upgrading safety and quality of radiochemical operations

    International Nuclear Information System (INIS)

    Lin, K.H.; Hightower, J.R.; Vaughen, V.C.A.

    1990-01-01

    A Comprehensive Safety Assessment and Upgrade Program (CSAUP) was commenced by the Chemical Technology Division (Chem Tech) at Oak Ridge National Laboratory (ORNL) to achieve excellence in the safety and quality of its operations and condition of its facilities. In the course of conducting CSAUP, a number of issues of concern were identified. The safety risk of these issues has been assessed, and planned actions were prepared for those issues that require corrective actions or improvement/upgrading. The planned actions were evaluated on consideration for the uniqueness of Chem Tech facilities and operations to determine the risks (high, moderate or low) involved by failure to implement the actions. The risk was defined in terms of the frequency and severity of impact. Priority of categorized actions was based on the urgency of the actions. 2 refs., 1 fig., 3 tabs

  13. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  14. A 'Toolbox' Equivalent Process for Safety Analysis Software

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Eng, Tony

    2004-01-01

    Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1 (Quality Assurance for Safety-Related Software) identified a number of quality assurance issues on the use of software in Department of Energy (DOE) facilities for analyzing hazards, and designing and operating controls that prevent or mitigate potential accidents. The development and maintenance of a collection, or 'toolbox', of multiple-site use, standard solution, Software Quality Assurance (SQA)-compliant safety software is one of the major improvements identified in the associated DOE Implementation Plan (IP). The DOE safety analysis toolbox will contain a set of appropriately quality-assured, configuration-controlled, safety analysis codes, recognized for DOE-broad, safety basis applications. Currently, six widely applied safety analysis computer codes have been designated for toolbox consideration. While the toolbox concept considerably reduces SQA burdens among DOE users of these codes, many users of unique, single-purpose, or single-site software may still have sufficient technical justification to continue use of their computer code of choice, but are thwarted by the multiple-site condition on toolbox candidate software. The process discussed here provides a roadmap for an equivalency argument, i.e., establishing satisfactory SQA credentials for single-site software that can be deemed ''toolbox-equivalent''. The process is based on the model established to meet IP Commitment 4.2.1.2: Establish SQA criteria for the safety analysis ''toolbox'' codes. Implementing criteria that establish the set of prescriptive SQA requirements are based on implementation plan/procedures from the Savannah River Site, also incorporating aspects of those from the Waste Isolation Pilot Plant (SNL component) and the Yucca Mountain Project. The major requirements are met with evidence of a software quality assurance plan, software requirements and design documentation, user's instructions, test report, a

  15. [Communication on health and safety risk control in contemporary society: an interdisciplinary approach].

    Science.gov (United States)

    Rangel-S, Maria Ligia

    2007-01-01

    This paper discusses communication as a technology for risk control with health and safety protection and promotion, within the context of a "risk society". As a component of Risk Analysis, risk communication is a technology that appears in risk literature, with well defined objectives, principles and models. These aspects are described and the difficulties are stressed, taking into consideration the multiple rationales related to risks in the culture and the many different aspects of risk regulation and control in the so-called "late modernity". Consideration is also given to the complexity of the communications process, guided by theoretical and methodological discussions in the field. In order to understand the true value of the communications field for risk control with health and safety protection and promotion, this paper also offers an overview of communication theories that support discussions of this matter, proposing a critical approach to models that include the dimensions of power and culture in the context of a capitalist society.

  16. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  17. Methodology for assessment of safety risk due to potential accidents in US gaseous diffusion plants

    International Nuclear Information System (INIS)

    Turner, J.H.; O'Kain, D.U.

    1991-01-01

    Gaseous diffusion plants that operate in the United States represent a unique combination of nuclear and chemical hazards. Assessing and controlling the health, safety, and environmental risks that can result from natural phenomena events, process upset conditions, and operator errors require a unique methodology. Such a methodology has been developed for the diffusion plants and is being utilized to assess and control the risk of operating the plants. A summary of the methodology developed to assess the unique safety risks at the US gaseous diffusion plants is presented in this paper

  18. Impact of shutdown risk on risk-based assessment of technical specifications

    International Nuclear Information System (INIS)

    Deriot, S.

    1992-10-01

    This paper describes the current work performed by the Research and Development Division of EDF concerning risk-based assessment of Operating Technical Specifications (OTS). The current risk-based assessment of OTS at EDF is presented. Then, the level 1 Probabilistic Safety Assessment of unit 3 of the Paluel nuclear power station (called PSA 1300) is described. It is fully computerized and takes into account the risk in shutdown states. A case study is presented. It shows that the fact of considering shutdown risk suggests that the current OTS should be modified

  19. Risk management: integration of social and technical risk variables into safety assessments of LWR'S

    International Nuclear Information System (INIS)

    Turnage, J.J.; Husseiny, A.A.

    1980-01-01

    A risk management methodology is developed here to formalize the acceptability levels of commercial LWR power plants via the estimation of risk levels acceptable to the public and the integration of such estimates into risk-benefit analysis. Utility theory is used for developing preference models based on value trade-offs among multiple objectives and uncertainties about the impact of alternatives. The method involves reducing the various variables affecting safety acceptability decisions to a single function that provides a metric for acceptability levels. The function accomondates for technical criteria related to design and licensing decisions, as well as public reactions to certain choices

  20. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety

    International Nuclear Information System (INIS)

    Coppens, Patrick; Fernandes da Silva, Miguel; Pettman, Simon

    2006-01-01

    This article describes the legislation that is relevant in the marketing of functional foods in the European Union (EU), how this legislation was developed as well as some practical consequences for manufacturers, marketers and consumers. It also addresses some concrete examples of how the EU's safety requirements for food products have impacted a range of product categories. In the late nineties, research into functional ingredients was showing promising prospects for the use of such ingredients in foodstuffs. Due mainly to safety concerns, these new scientific developments were accompanied by an urgent call for legislation. The European Commission 2000 White Paper on Food Safety announced some 80 proposals for new and improved legislation in this field. Among others, it foresaw the establishment of a General Food Law Regulation, laying down the principles of food law and the creation of an independent Food Authority endowed with the task of giving scientific advice on issues based upon scientific risk assessment with clearly separated responsibilities for risk assessment, risk management and risk communication. Since then, more than 90% of the White Paper proposals have been implemented. However, there is not, as such, a regulatory framework for 'functional foods' or 'nutraceuticals' in EU Food Law. The rules to be applied are numerous and depend on the nature of the foodstuff. The rules of the general food law Regulation are applicable to all foods. In addition, legislation on dietetic foods, on food supplements or on novel foods may also be applicable to functional foods depending on the nature of the product and on their use. Finally, the two proposals on nutrition and health claims and on the addition of vitamins and minerals and other substances to foods, which are currently in the legislative process, will also be an important factor in the future marketing of 'nutraceuticals' in Europe. The cornerstone of EU legislation on food products, including

  1. Clinical risk management and patient safety education for nurses: a critique.

    Science.gov (United States)

    Johnstone, Megan-Jane; Kanitsaki, Olga

    2007-04-01

    Nurses have a pivotal role to play in clinical risk management (CRM) and promoting patient safety in health care domains. Accordingly, nurses need to be prepared educationally to manage clinical risk effectively when delivering patient care. Just what form the CRM and safety education of nurses should take, however, remains an open question. A recent search of the literature has revealed a surprising lack of evidence substantiating models of effective CRM and safety education for nurses. In this paper, a critical discussion is advanced on the question of CRM and safety education for nurses and the need for nurse education in this area to be reviewed and systematically researched as a strategic priority, nationally and internationally. It is a key contention of this paper that without 'good' safety education research it will not be possible to ensure that the educational programs that are being offered to nurses in this area are evidence-based and designed in a manner that will enable nurses to develop the capabilities they need to respond effectively to the multifaceted and complex demands that are inherent in their ethical and professional responsibilities to promote and protect patient safety and quality care in health care domains.

  2. Nuclear station safety standardization from a risk concept

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1986-01-01

    This paper presents a method of standardizing safety-system reliability on an entirely new basis: all hypothetical accidents are approximated as groups, for each of which one proposes permissible frequencies on the basis of the risk concept. In this risk concept, the ''average person'' is a person living near a nuclear station or working in it, who is of average age, average state of health, and so on. Therefore, the risk can be found by summing the estimated individual risks for a particular group in the population followed by division by the number of people in that group. Basic assumptions in deriving permissible safety-system reliability are presented. Estimated permissible failure probabilities are given to illustrate the proposed method and to refine the initial data. The probabilities may also be used to lay down the reliability requirements for safety systems in particular nuclear stations on the risk basis

  3. Road Infrastructure Safety Management in Poland

    Science.gov (United States)

    Budzynski, Marcin; Jamroz, Kazimierz; Kustra, Wojciech; Michalski, Lech; Gaca, Stanislaw

    2017-10-01

    The objective of road safety infrastructure management is to ensure that when roads are planned, designed, built and used road risks can be identified, assessed and mitigated. Road transport safety is significantly less developed than that of rail, water and air transport. The average individual risk of being a fatality in relation to the distance covered is thirty times higher in road transport that in the other modes. This is mainly because the different modes have a different approach to safety management and to the use of risk management methods and tools. In recent years Poland has had one of the European Union’s highest road death numbers. In 2016 there were 3026 fatalities on Polish roads with 40,766 injuries. Protecting road users from the risk of injury and death should be given top priority. While Poland’s national and regional road safety programmes address this problem and are instrumental in systematically reducing the number of casualties, the effects are far from the expectations. Modern approaches to safety focus on three integrated elements: infrastructure measures, safety management and safety culture. Due to its complexity, the process of road safety management requires modern tools to help with identifying road user risks, assess and evaluate the safety of road infrastructure and select effective measures to improve road safety. One possible tool for tackling this problem is the risk-based method for road infrastructure safety management. European Union Directive 2008/96/EC regulates and proposes a list of tools for managing road infrastructure safety. Road safety tools look at two criteria: the life cycle of a road structure and the process of risk management. Risk can be minimized through the application of the proposed interventions during design process as reasonable. The proposed methods of risk management bring together two stages: risk assessment and risk response occurring within the analyzed road structure (road network, road

  4. Safety assessment as basis for the decision making process

    International Nuclear Information System (INIS)

    Ilie, P.; Didita, L.; Danchiv, A.

    2005-01-01

    This paper deals with the safety assessment for a new near surface repository, particularly for the early stage of repository development using ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) safety assessment methodology. In this stage of the repository life cycle the main purpose of the safety assessment is to demonstrate that the plant is capable to be constructed and operated safely. The paper is based on development of the ASAM (Application of the Safety Assessment Methodologies for Near-Surface Disposal Facilities) Decision Support Subgroup of the Common Aspects Working Group. The implications of decision making for the application of the ISAM methodology on post-closure safety assessment are analysed. Some important elements of the decision-making process with impact on key components of the ISAM process are described. Following the development of Decision Support Subgroup of the ASAM Common Aspects Working Group the proposed change of ISAM methodology is analysed. This approach puts all activities in a decision context where the first iteration of the safety assessment is based on the existing state of knowledge and the initial engineering design. Confidence in the process is accomplished through the direct inclusion of all decision makers and stakeholders in the formulation of decisions, the definition of the state of knowledge, and decision making activities. The decision process is developed in context of undertaking assessments with little site-specific information, this situation is specifically for new planned repository. Limited site-specific information can result in a high degree of uncertainty, therefore it is important first of all to identify the sources of uncertainty arising from the limited nature of the site-specific information and then to apply appropriate approaches to manage the uncertainties and to determine whether the uncertainties are important to the overall safety of the disposal facility

  5. Strategies and criteria for risk-based configuration control

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1991-01-01

    A configuration, as used here, is a set of component operability or statuses that define the state of a nuclear power plant. Risk-based configuration control is the management of component configurations using a risk perspective to control risk and assure safety. If the component configurations that have high risk implications do not occur then the risk from the operation of nuclear power plants would be minimal. The control of component configurations, i.e., the management of component statuses, so that the risk from components being unavailable is minimized, becomes difficult because the status of a standby safety system component is often not apparent unless it is tested. In this paper, we discuss the strategies and criteria for risk-based configuration control in nuclear power plants. In developing these strategies and criteria, the primary objective is to obtain more direct risk control but the added benefit is the effective use of plant resources. Implementation of such approaches can result in replacement/modification of parts of Technical Specifications. Specifically, the risk impact or safety impact of a configuration depends upon four factors: (1) The configuration components which are simultaneously down (i.e., inoperable); (2) the backup components which are known to be up (i.e., operable); (3) the duration of time the configuration exists (the outage time); and (4) the frequency at which the configuration occurs. Risk-based configuration control involves managing these factors using risk analyses and risk insights. In this paper, we discuss each of the factors and illustrate how they can be controlled. The information and the tools needed in implementing configuration control are also discussed. The risk-based calculation requirements in achieving the control are also delineated. 4 refs., 4 figs., 1 tab

  6. Safety control and risk management

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1987-01-01

    The acceptable probability of major accidents in nuclear power is very small, and can not be determined from direct empirical evidence. Therefore, control of the level of safety is a complex problem. The difficulty is related to the fact that a variable, 'safety', which is not accessible to direct measurement, is to be tightly controlled. Control, therefore, depends on a systematic, analytical prediction of the target state, i.e., the level of safety, from indirect evidence. From a control theoretic point of view this means that safety is controlled by a system which includes openloop as well as closed loop control paths. The aim of the paper is to take a general systems view on the complex mechanisms involved in the control of safety of industrial installations like nuclear power. From this, the role of probabilistic risk analysis is evaluated and needs for further development discussed. (author)

  7. Product, not process! Explaining a basic concept in agricultural biotechnologies and food safety.

    Science.gov (United States)

    Tagliabue, Giovanni

    2017-12-01

    Most life scientists have relentlessly recommended any evaluative approach of agri-food products to be based on examination of the phenotype, i.e. the actual characteristics of the food, feed and fiber varieties: the effects of any new cultivar (or micro-organism, animal) on our health are not dependent on the process(es), the techniques used to obtain it.The so-called "genetically modified organisms" ("GMOs"), on the other hand, are commonly framed as a group with special properties - most frequently seen as dubious, or even harmful.Some social scientists still believe that considering the process is a correct background for science-based understanding and regulation. To show that such an approach is utterly wrong, and to invite scientists, teachers and science communicators to explain this mistake to students, policy-makers and the public at large, we imagined a dialogue between a social scientist, who has a positive opinion about a certain weight that a process-based orientation should have in the risk assessment, and a few experts who offer plenty of arguments against that view. The discussion focuses on new food safety.

  8. Selection and ranking of occupational safety indicators based on fuzzy AHP: A case study in road construction companies

    Directory of Open Access Journals (Sweden)

    Janackovic, Goran Lj.

    2013-11-01

    Full Text Available This paper presents the factors, performance, and indicators of occupational safety, as well as a method to select and rank occupational safety indicators based on the expert evaluation method and the fuzzy analytic hierarchy process (fuzzy AHP. A case study is done on road construction companies in Serbia. The key safety performance indicators for the road construction industry are identified and ranked according to the results of a survey that included experts who assessed occupational safety risks in these companies. The case study confirmed that organisational factors have a dominant effect on the quality of the occupational health and safety management system in Serbian road construction companies.

  9. Tolerability of risk, safety assessment principles and their implications for probabilistic safety analysis

    International Nuclear Information System (INIS)

    Ewing, D.J.F.; Campbell, J.F.

    1994-01-01

    This paper gives a regulatory view of probabilistic safety assessment as seen by the Nuclear Installations Inspectorate (NII) and in the light of the general regulatory risk aims set out in the Health and Safety Executive's (HSE) The tolerability of risk from nuclear power stations (TOR) and in Safety assessment principles for nuclear plants (SAPs), prepared by NII on behalf of the HSE. Both of these publications were revised and republished in 1992. This paper describes the SAPs, together with the historical background, the motivation for review, the effects of the Sizewell and Hinkley Point C public inquiries, changes since the original versions, comparison with international standards and use in assessment. For new plant, probabilistic safety analysis (PSA) is seen as an essential tool in balancing the safety of the design and in demonstrating compliance with TOR and the SAPs. (Author)

  10. [Post-marketing drug safety-risk management plan(RMP)].

    Science.gov (United States)

    Ezaki, Asami; Hori, Akiko

    2013-03-01

    The Guidance for Risk Management Plan(RMP)was released by the Ministry of Health, Labour and Welfare in April 2012. The RMP consists of safety specifications, pharmacovigilance plans and risk minimization action plans. In this paper, we outline post-marketing drug safety operations in PMDA and the RMP, with examples of some anticancer drugs.

  11. A UMLS-based spell checker for natural language processing in vaccine safety

    Directory of Open Access Journals (Sweden)

    Liu Fang

    2007-02-01

    Full Text Available Abstract Background The Institute of Medicine has identified patient safety as a key goal for health care in the United States. Detecting vaccine adverse events is an important public health activity that contributes to patient safety. Reports about adverse events following immunization (AEFI from surveillance systems contain free-text components that can be analyzed using natural language processing. To extract Unified Medical Language System (UMLS concepts from free text and classify AEFI reports based on concepts they contain, we first needed to clean the text by expanding abbreviations and shortcuts and correcting spelling errors. Our objective in this paper was to create a UMLS-based spelling error correction tool as a first step in the natural language processing (NLP pipeline for AEFI reports. Methods We developed spell checking algorithms using open source tools. We used de-identified AEFI surveillance reports to create free-text data sets for analysis. After expansion of abbreviated clinical terms and shortcuts, we performed spelling correction in four steps: (1 error detection, (2 word list generation, (3 word list disambiguation and (4 error correction. We then measured the performance of the resulting spell checker by comparing it to manual correction. Results We used 12,056 words to train the spell checker and tested its performance on 8,131 words. During testing, sensitivity, specificity, and positive predictive value (PPV for the spell checker were 74% (95% CI: 74–75, 100% (95% CI: 100–100, and 47% (95% CI: 46%–48%, respectively. Conclusion We created a prototype spell checker that can be used to process AEFI reports. We used the UMLS Specialist Lexicon as the primary source of dictionary terms and the WordNet lexicon as a secondary source. We used the UMLS as a domain-specific source of dictionary terms to compare potentially misspelled words in the corpus. The prototype sensitivity was comparable to currently available

  12. Categorization of reactor safety issues from a risk perspective

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the results of an effort to identify and rank reactor safety and risk issues identified from past Probabilistic Risk Assessments (PRAs) and other safety analyses. Because of the varied scope of these analyses, the list of issues may be incomplete. Nevertheless, those studies comprised ordered analyses to whatever their respective depths; hence, they warranted scrutiny for whatever insights they could reveal with respect to issue importance. The top-ranked issues in terms of their contribution to the uncertainty in risk are described in some detail. All of these risk issues are compared to the generic safety issues for completeness and omissions

  13. Safety guides development process in Spain

    International Nuclear Information System (INIS)

    Butragueno, J.L.; Perello, M.

    1979-01-01

    Safety guides have become a major factor in the licensing process of nuclear power plants and related nuclear facilities of the fuel cycle. As far as the experience corroborates better and better engineering methodologies and procedures, the results of these are settled down in form of standards, guides, and similar issues. This paper presents the actual Spanish experience in nuclear standards and safety guides development. The process to develop a standard or safety guide is shown. Up to date list of issued and on development nuclear safety guides is included and comments on the future role of nuclear standards in the licensing process are made. (author)

  14. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias, E-mail: amandaraso@hotmail.com, E-mail: vasconv@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: soaresw@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serviço de Tecnologia de Reatores

    2017-07-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  15. Use of reliability engineering tools in safety and risk assessment of nuclear facilities

    International Nuclear Information System (INIS)

    Raso, Amanda Laureano; Vasconcelos, Vanderley de; Marques, Raíssa Oliveira; Soares, Wellington Antonio; Mesquita, Amir Zacarias

    2017-01-01

    Safety, reliability and availability are fundamental criteria in design, construction and operation of nuclear facilities, as nuclear power plants. Deterministic and probabilistic risk assessments of such facilities are required by regulatory authorities in order to meet licensing regulations, contributing to assure safety, as well as reduce costs and environmental impacts. Probabilistic Risk Assessment has become an important part of licensing requirements of the nuclear power plants in Brazil and in the world. Risk can be defined as a qualitative and/or quantitative assessment of accident sequence frequencies (or probabilities) and their consequences. Risk management is a systematic application of management policies, procedures and practices to identify, analyze, plan, implement, control, communicate and document risks. Several tools and computer codes must be combined, in order to estimate both probabilities and consequences of accidents. Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Reliability Block Diagrams (RBD), and Markov models are examples of evaluation tools that can support the safety and risk assessment for analyzing process systems, identifying potential accidents, and estimating consequences. Because of complexity of such analyzes, specialized computer codes are required, such as the reliability engineering software develop by Reliasoft® Corporation. BlockSim (FTA, RBD and Markov models), RENO (ETA and consequence assessment), Weibull++ (life data and uncertainty analysis), and Xfmea (qualitative risk assessment) are some codes that can be highlighted. This work describes an integrated approach using these tools and software to carry out reliability, safety, and risk assessment of nuclear facilities, as well as, and application example. (author)

  16. Food Safety in the Domestic Environment: The Effect of Consumer Risk Information on Human Disease Risks

    NARCIS (Netherlands)

    Nauta, M.J.; Fischer, A.R.H.; Asselt, van E.D.; Jong, de A.E.I.; Frewer, L.J.; Jonge, de R.

    2008-01-01

    The improvement of food safety in the domestic environment requires a transdisciplinary approach, involving interaction between both the social and natural sciences. This approach is applied in a study on risks associated with Campylobacter on broiler meat. First, some web-based information

  17. Safety evaluation by living probabilistic safety assessment. Procedures and applications for planning of operational activities and analysis of operating experience

    International Nuclear Information System (INIS)

    Johanson, Gunnar; Holmberg, J.

    1994-01-01

    Living Probabilistic Safety Assessment (PSA) is a daily safety management system and it is based on a plant-specific PSA and supporting information systems. In the living use of PSA, plant status knowledge is used to represent actual plant safety status in monitoring or follow-up perspective. The PSA model must be able to express the risk at a given time and plant configuration. The process, to update the PSA model to represent the current or planned configuration and to use the model to evaluate and direct the changes in the configuration, is called living PSA programme. The main purposes to develop and increase the usefulness of living PSA are: Long term safety planning: To continue the risk assessment process started with the basic PSA by extending and improving the basic models and data to provide a general risk evaluation tool for analyzing the safety effects of changes in plant design and procedures. Risk planning of operational activities: To support the operational management by providing means for searching optimal operational maintenance and testing strategies from the safety point of view. The results provide support for risk decision making in the short term or in a planning mode. The operational limits and conditions given by technical specifications can be analyzed by evaluating the risk effects of alternative requirements in order to balance the requirements with respect to operational flexibility and plant economy. Risk analysis of operating experience: To provide a general risk evaluation tool for analyzing the safety effects of incidents and plant status changes. The analyses are used to: identify possible high risk situations, rank the occurred events from safety point of view, and get feedback from operational events for the identification of risk contributors. This report describes the methods, models and applications required to continue the process towards a living use of PSA. 19 tabs, 20 figs

  18. Safety Goal, Multi-unit Risk and PSA Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon-Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The safety goal is an answer of each country to the question 'How safe is safe enough?'. Table 1 shows some examples of the safety goal. However, many countries including Korea do not have the official safety goal for NPPs up to now since the establishment of safety goal is not just a technical issue but a very complex socio-technical issue. In establishing the safety goal for nuclear facilities, we have to consider various factors including not only technical aspects but also social, cultural ones. Recently, Korea is trying to establish the official safety goal. In this paper, we will review the relationship between the safety goal and Probabilistic Safety Assessment (PSA). We will also address some important technical issues to be considered in establishing the safety goal for NPPs from PSA point of view, i.e. a multi-unit risk issue and the uncertainty of PSA. In this paper, we reviewed some issues related to the safety goal and PSA. We believe that the safety goal is to be established in Korea considering the multi-unit risk. In addition, the relationship between the safety goal and PSA should be also defined clearly since PSA is the only way to answer to the question 'How safe is safe enough?'.

  19. Real-time risk monitoring in business processes : a sensor-based approach

    NARCIS (Netherlands)

    Conforti, R.; La Rosa, M.; Fortino, G.; Hofstede, ter A.H.M.; Recker, J.; Adams, M.

    2013-01-01

    This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis,

  20. A 3S Risk ?3SR? Assessment Approach for Nuclear Power: Safety Security and Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert; Reinhardt, Jason Christian; Wheeler, Timothy A.; Williams, Adam David

    2017-11-01

    Safety-focused risk analysis and assessment approaches struggle to adequately include malicious, deliberate acts against the nuclear power industry's fissile and waste material, infrastructure, and facilities. Further, existing methods do not adequately address non- proliferation issues. Treating safety, security, and safeguards concerns independently is inefficient because, at best, it may not take explicit advantage of measures that provide benefits against multiple risk domains, and, at worst, it may lead to implementations that increase overall risk due to incompatibilities. What is needed is an integrated safety, security and safeguards risk (or "3SR") framework for describing and assessing nuclear power risks that can enable direct trade-offs and interactions in order to inform risk management processes -- a potential paradigm shift in risk analysis and management. These proceedings of the Sandia ePRA Workshop (held August 22-23, 2017) are an attempt to begin the discussions and deliberations to extend and augment safety focused risk assessment approaches to include security concerns and begin moving towards a 3S Risk approach. Safeguards concerns were not included in this initial workshop and are left to future efforts. This workshop focused on four themes in order to begin building out a the safety and security portions of the 3S Risk toolkit: 1. Historical Approaches and Tools 2. Current Challenges 3. Modern Approaches 4. Paths Forward and Next Steps This report is organized along the four areas described above, and concludes with a summary of key points. 2 Contact: rforres@sandia.gov; +1 (925) 294-2728

  1. The safety culture change process performed in Polish research reactor MARIA

    International Nuclear Information System (INIS)

    Golab, Andrzej

    2002-01-01

    The Safety Culture Change Process Performed in research reactor MARIA is described in this paper. The essential issues fulfilled in realization of the Safety Culture Enhancement Programme are related to the attitude and behaviour of top management, co-operating groups, operational personnel, relations between the operating organization and the supervising and advising organizations. Realization of this programme is based on changing the employees understanding of safety, changing their attitudes and behaviours by means of adequate training, requalification process and performing the broad self-assessment programme. Also a high level Quality Assurance Programme helps in development of the Safety Culture. (author)

  2. A systems approach to risk management through leading safety indicators

    International Nuclear Information System (INIS)

    Leveson, Nancy

    2015-01-01

    The goal of leading indicators for safety is to identify the potential for an accident before it occurs. Past efforts have focused on identifying general leading indicators, such as maintenance backlog, that apply widely in an industry or even across industries. Other recommendations produce more system-specific leading indicators, but start from system hazard analysis and thus are limited by the causes considered by the traditional hazard analysis techniques. Most rely on quantitative metrics, often based on probabilistic risk assessments. This paper describes a new and different approach to identifying system-specific leading indicators and provides guidance in designing a risk management structure to generate, monitor and use the results. The approach is based on the STAMP (System-Theoretic Accident Model and Processes) model of accident causation and tools that have been designed to build on that model. STAMP extends current accident causality to include more complex causes than simply component failures and chains of failure events or deviations from operational expectations. It incorporates basic principles of systems thinking and is based on systems theory rather than traditional reliability theory. - Highlights: • Much effort has gone into developing leading indicators with only limited success. • A systems-theoretic, assumption-based approach may be more successful. • Leading indicators are warning signals of an assumption’s changing vulnerability. • Heuristic biases can be controlled by using plausibility rather than likelihood

  3. Driving behaviours, traffic risk and road safety: comparative study between Malaysia and Singapore.

    Science.gov (United States)

    Khan, Saif ur Rehman; Khalifah, Zainab Binti; Munir, Yasin; Islam, Talat; Nazir, Tahira; Khan, Hashim

    2015-01-01

    The present study aims to investigate differences in road safety attitude, driver behaviour and traffic risk perception between Malaysia and Singapore. A questionnaire-based survey was conducted among a sample of Singaporean (n = 187) and Malaysian (n = 313) road users. The data was analysed using confirmatory factor analysis and structural equation modelling applied to measure comparative fit indices of Malaysian and Singaporean respondents. The results show that the perceived traffic risk of Malaysian respondents is higher than Singaporean counterparts. Moreover, the structural equation modelling has confirmed perceived traffic risk performing the role of full mediation between perceived driving skills and perceived road safety for both the countries, while perceived traffic skills was found to perform the role of partial mediation between aggression and anxiety, on one hand, and road safety, on the other hand, in Malaysia and Singapore. In addition, in both countries, a weak correlation between perceived driving skills, aggression and anxiety with perceived road safety was found, while a strong correlation exists with traffic risk perception. The findings of this study have been discussed in terms of theoretical, practical and conceptual implications for both scholars and policy-makers to better understand the young drivers' attitude and behaviour relationship towards road safety measures with a view to future research.

  4. Applications of probabilistic risk analysis in nuclear criticality safety design

    International Nuclear Information System (INIS)

    Chang, J.K.

    1992-01-01

    Many documents have been prepared that try to define the scope of the criticality analysis and that suggest adding probabilistic risk analysis (PRA) to the deterministic safety analysis. The report of the US Department of Energy (DOE) AL 5481.1B suggested that an accident is credible if the occurrence probability is >1 x 10 -6 /yr. The draft DOE 5480 safety analysis report suggested that safety analyses should include the application of methods such as deterministic safety analysis, risk assessment, reliability engineering, common-cause failure analysis, human reliability analysis, and human factor safety analysis techniques. The US Nuclear Regulatory Commission (NRC) report NRC SG830.110 suggested that major safety analysis methods should include but not be limited to risk assessment, reliability engineering, and human factor safety analysis. All of these suggestions have recommended including PRA in the traditional criticality analysis

  5. Safety vs. reputation: risk controversies in emerging policy networks regarding school safety in the Netherlands

    NARCIS (Netherlands)

    Binkhorst, J.; Kingma, S.F.

    2012-01-01

    This article deals with risk controversies in emerging policy networks regarding school safety in the Netherlands. It offers a grounded account of the interpretations of school risks and safety measures by the various stakeholders of the policy network, in particular, schools, local government and

  6. Job safety and awareness analysis of safety implementation among electrical workers in airport service company

    Directory of Open Access Journals (Sweden)

    Putra Perdana Suteja

    2018-01-01

    Full Text Available Electrical is a fundamental process in the company that has high risk and responsibility especially in public service company such as an airport. Hence, the company that operates activities in the airport has to identify and control the safety activities of workers. On the safety implementation, the lack of workers’ awareness is fundamental aspects to the safety failure. Therefore, this study aimed to analyse the safety awareness and identify risk in the electrical workplace. Safety awareness questionnaires are distributed to ten workers in order to analyse their awareness. Job safety analysis method used to identify the risk in the electrical workplace. The preliminary study stated that workers were not aware of personal protective equipment usage so that the awareness and behavioural need to be analysed. The result is the hazard was found such as electrical shock and noise for various intensity in the workplace. While electrical workers were aware of safety implementation but less of safety behaviour. Furthermore, the recommendation can be implemented are the implementation of behaviour-based safety (BBS, 5S implementation and accident report list.

  7. A systematic review of human factors and ergonomics (HFE)-based healthcare system redesign for quality of care and patient safety.

    Science.gov (United States)

    Xie, Anping; Carayon, Pascale

    2015-01-01

    Healthcare systems need to be redesigned to provide care that is safe, effective and efficient, and meets the multiple needs of patients. This systematic review examines how human factors and ergonomics (HFE) is applied to redesign healthcare work systems and processes and improve quality and safety of care. We identified 12 projects representing 23 studies and addressing different physical, cognitive and organisational HFE issues in a variety of healthcare systems and care settings. Some evidence exists for the effectiveness of HFE-based healthcare system redesign in improving process and outcome measures of quality and safety of care. We assessed risk of bias in 16 studies reporting the impact of HFE-based healthcare system redesign and found varying quality across studies. Future research should further assess the impact of HFE on quality and safety of care, and clearly define the mechanisms by which HFE-based system redesign can improve quality and safety of care.

  8. A risk analysis for production processes with disposable bioreactors.

    Science.gov (United States)

    Merseburger, Tobias; Pahl, Ina; Müller, Daniel; Tanner, Markus

    2014-01-01

    : Quality management systems are, as a rule, tightly defined systems that conserve existing processes and therefore guarantee compliance with quality standards. But maintaining quality also includes introducing new enhanced production methods and making use of the latest findings of bioscience. The advances in biotechnology and single-use manufacturing methods for producing new drugs especially impose new challenges on quality management, as quality standards have not yet been set. New methods to ensure patient safety have to be established, as it is insufficient to rely only on current rules. A concept of qualification, validation, and manufacturing procedures based on risk management needs to be established and realized in pharmaceutical production. The chapter starts with an introduction to the regulatory background of the manufacture of medicinal products. It then continues with key methods of risk management. Hazards associated with the production of medicinal products with single-use equipment are described with a focus on bioreactors, storage containers, and connecting devices. The hazards are subsequently evaluated and criteria for risk evaluation are presented. This chapter concludes with aspects of industrial application of quality risk management.

  9. A Proposed Set of Metrics to Reduce Patient Safety Risk From Within the Anatomic Pathology Laboratory.

    Science.gov (United States)

    Banks, Peter; Brown, Richard; Laslowski, Alex; Daniels, Yvonne; Branton, Phil; Carpenter, John; Zarbo, Richard; Forsyth, Ramses; Liu, Yan-Hui; Kohl, Shane; Diebold, Joachim; Masuda, Shinobu; Plummer, Tim; Dennis, Eslie

    2017-05-01

    Anatomic pathology laboratory workflow consists of 3 major specimen handling processes. Among the workflow are preanalytic, analytic, and postanalytic phases that contain multistep subprocesses with great impact on patient care. A worldwide representation of experts came together to create a system of metrics, as a basis for laboratories worldwide, to help them evaluate and improve specimen handling to reduce patient safety risk. Members of the Initiative for Anatomic Pathology Laboratory Patient Safety (IAPLPS) pooled their extensive expertise to generate a list of metrics highlighting processes with high and low risk for adverse patient outcomes. : Our group developed a universal, comprehensive list of 47 metrics for patient specimen handling in the anatomic pathology laboratory. Steps within the specimen workflow sequence are categorized as high or low risk. In general, steps associated with the potential for specimen misidentification correspond to the high-risk grouping and merit greater focus within quality management systems. Primarily workflow measures related to operational efficiency can be considered low risk. Our group intends to advance the widespread use of these metrics in anatomic pathology laboratories to reduce patient safety risk and improve patient care with development of best practices and interlaboratory error reporting programs. © American Society for Clinical Pathology 2017.

  10. Risk-based analysis for prioritization and processing in the Los Alamos National Laboratory 94-1 program

    International Nuclear Information System (INIS)

    Boerigter, S.T.; DeMuth, N.S.; Tietjen, G.

    1996-10-01

    A previous report, open-quotes Analysis of LANL Options for Processing Plutonium Legacy Materials,close quotes LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing

  11. The use of a basic safety investment model in a practical risk management context

    International Nuclear Information System (INIS)

    Aven, Terje; Hiriart, Yolande

    2011-01-01

    We consider a basic model in economic safety analysis: a firm is willing to invest an amount x in safety measures to avoid an accident A, which in the case of occurrence, leads to a loss of size L. The probability of an accident is a function of x. The optimal value of x is determined by minimizing the expected costs. In the paper, we re-examine this model by adopting a practical risk/safety management perspective. We question how this model can be used for guiding the firm and regulators in determining the proper level of investment in safety. Attention is given to issues like how to determine the probability of an accident and how to take into account uncertainties that extend beyond the expected value. It is concluded that the model, with suitable extensions and if properly implemented, provides a valuable decision support tool. By focusing on investment levels and stimulating thereby the generation of alternative risk-reducing measures, the model is considered particularly useful in risk reduction (ALARP) processes. - Highlights: → It is shown how to use a basic investment model in a practical risk management setting. → The model may be a valuable decision support tool if properly implemented. → It guides decision makers on risk reduction and how to determine what is ALARP. → The model stimulates the generation of alternative risk-reducing measures.

  12. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  13. Process-based project proposal risk management

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2016-12-01

    Full Text Available We all are aware of the organizational omnipresence. Projects within the organizations are ubiquitous too. Projects achieve their goals successfully if they are planned, scheduled, controlled and implemented well. The project lifecycle of initiating, planning, scheduling, controlling and implementing are very well-planned by project managers and the organizations. Successful projects have well-developed risk management plans to deal with situations impacting projects. Like any other organisation, a university does try to access funds for different purposes too. For such organisations, running a project is not the issue, rather getting a project proposal approved to fund a project is the key. Project proposal processing is done by the nodal office in every organisation. Usually, these nodal offices help in administration and submission of a project proposal for accessing funds. Seldom are these nodal project offices within the organizations facilitate a project proposal approval by proactively reaching out to the project managers. And as project managers prepare project proposals, little or no attention is made to prepare a project proposal risk plan so as to maximise project acquisition. Risk plans are submitted while preparing proposals but these risk plans cater to a requirement to address actual projects upon approval. Hence, a risk management plan for project proposal is either missing or very little effort is made to treat the risks inherent in project acquisition. This paper is an integral attempt to highlight the importance of risk treatment for project proposal stage as an extremely important step to preparing the risk management plan made for projects corresponding to their lifecycle phases. Several tools and techniques have been proposed in the paper to help and guide either the project owner (proposer or the main organisational unit responsible for project management. Development of tools and techniques to further enhance project

  14. Safety evaluation model of urban cross-river tunnel based on driving simulation.

    Science.gov (United States)

    Ma, Yingqi; Lu, Linjun; Lu, Jian John

    2017-09-01

    Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.

  15. Safety in relation to risk and benefit

    International Nuclear Information System (INIS)

    Siddall, E.

    1985-01-01

    The proper definition and quantification of human safety is discussed and from this basis the historical development of our present very high standard of safety is traced. It is shown that increased safety is closely associated with increased wealth, and the quantitative relationship between then is derived from different sources of evidence. When this factor is applied to the production of wealth by industry, a safety benefit is indicated which exceeds the asserted risks by orders of magnitude. It is concluded that present policies and attitudes in respect to the safety of industry may be diametrically wrong. (orig.) [de

  16. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Cui Weimin

    2007-01-01

    To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained

  17. Probabilistic safety assessment as a standpoint for decision making

    International Nuclear Information System (INIS)

    Cepin, M.

    2001-01-01

    This paper focuses on the role of probabilistic safety assessment in decision-making. The prerequisites for use of the results of probabilistic safety assessment and the criteria for the decision-making based on probabilistic safety assessment are discussed. The decision-making process is described. It provides a risk evaluation of impact of the issue under investigation. Selected examples are discussed, which highlight the described process. (authors)

  18. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    Science.gov (United States)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  19. Application of a risk management system to improve drinking water safety.

    Science.gov (United States)

    Jayaratne, Asoka

    2008-12-01

    The use of a comprehensive risk management framework is considered a very effective means of managing water quality risks. There are many risk-based systems available to water utilities such as ISO 9001 and Hazard Analysis and Critical Control Point (HACCP). In 2004, the World Health Organization's (WHO) Guidelines for Drinking Water Quality recommended the use of preventive risk management approaches to manage water quality risks. This paper describes the framework adopted by Yarra Valley Water for the development of its Drinking Water Quality Risk Management Plan incorporating HACCP and ISO 9001 systems and demonstrates benefits of Water Safety Plans such as HACCP. Copyright IWA Publishing 2008.

  20. The role of risk assessment and safety analysis in integrated safety assessments

    International Nuclear Information System (INIS)

    Niall, R.; Hunt, M.; Wierman, T.E.

    1990-01-01

    To ensure that the design and operation of both nuclear and non- nuclear hazardous facilities is acceptable, and meets all societal safety expectations, a rigorous deterministic and probabilistic assessment is necessary. An approach is introduced, founded on the concept of an ''Integrated Safety Assessment.'' It merges the commonly performed safety and risk analyses and uses them in concert to provide decision makers with the necessary depth of understanding to achieve ''adequacy.'' 3 refs., 1 fig

  1. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    International Nuclear Information System (INIS)

    Dinh, Nam; Szilard, Ronaldo

    2009-01-01

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons

  2. Risk analysis methods: their importance for safety assessment of practices using radiation

    International Nuclear Information System (INIS)

    Dumenigo, C; Vilaragut, J.J.; Ferro, R.; Guillen, A.; Ramirez, M.L.; Ortiz Lopez, P.; Rodriguez, M.; McDonnell, J.D.; Papadopulos, S.; Pereira, P.P.; Goncalvez, M.; Morales, J.; Larrinaga, E.; Lopez Morones, R.; Sanchez, R.; Delgado, J.M.; Sanchez, C.; Somoano, F.

    2008-01-01

    Radiation safety has been based for many years on verification of compliance with regulatory requirements, codes of practice and international standards, which can be considered prescriptive methods. Accident analyses have been published, lessons have been learned and safety assessments have incorporated the need to check whether a facility is ready to avoid accidents similar to the reported ones. These approaches can be also called 'reactive methods'. They have in common the fundamental limitation of being restricted to reported experience, but do not take into account other potential events, which were never published or never happened, i.e. latent risks. Moreover, they focus on accident sequences with major consequences and low probability but may not pay enough attention to other sequences leading to lower, but still significant consequences with higher probability. More proactive approaches are, therefore, needed, to assess risk in radiation facilities. They aim at identifying all potential equipment faults and human error, which can lead to predefined unwanted consequences and are based on the general risk equation: Risk = Probability of occurrence of an accidental sequence * magnitude of the consequences. In this work, a review is given of the experience obtained by the countries of the Ibero American Forum of Nuclear and Radiation Safety Regulatory Organizations, by applying proactive methods to radiotherapy practice. In particular, probabilistic safety assessment (PSA) used for external beam treatments with linear electron accelerators and two studies, on cobalt 60 therapy and brachytherapy using the risk-matrix approach are presented. The work has identified event sequences, their likelihood of occurrence, the consequences, the efficiency of interlocks and control checks and the global importance in terms of overall risk, to facilitate decision making and implementation of preventive measures. A comparison is presented of advantages and limitations of

  3. Challenges in Risk Assessment: Quantitative Risk Assessment

    OpenAIRE

    Jacxsens, Liesbeth; Uyttendaele, Mieke; De Meulenaer, Bruno

    2016-01-01

    The process of risk analysis consists out of three components, risk assessment, risk management and risk communication. These components are internationally well spread by Codex Alimentarius Commission as being the basis for setting science based standards, criteria on food safety hazards, e.g. setting maximum limits of mycotoxins in foodstuffs. However, the technical component risk assessment is hard to elaborate and to understand. Key in a risk assessment is the translation of biological or...

  4. Review of Risk Reduction Methods using Probabilistic Safety Assessment Insights and Improved Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Choi, Byung-Pil [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    As seen in the process of the periodic safety review of domestic nuclear power plants, the risk management objectives such as core damage frequency and large early release frequency are not easy to be met without continuous safety improvements and the integratoin of the improved technologies into the PSA evaluation methodologies. Because external event analyses have a protion of uncertainty factors in the current analysis methodologies, the technical efforts in various perspectives.

  5. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  6. WE-B-BRC-00: Concepts in Risk-Based Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. We therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology

  7. WE-B-BRC-00: Concepts in Risk-Based Assessment

    International Nuclear Information System (INIS)

    2016-01-01

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. We therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology

  8. Demonstration of Risk Profiling for promoting safety in SME´s

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Duijm, Nijs Jan; Troen, Hanne

    2011-01-01

    Purpose – The purpose of this paper is to identify and assess the risks and potential risks that may lead to accidents. It aims to look at how to improve risk assessment within SMEs for the benefit of all staff. Design/methodology/approach – The research included results from a Dutch project which...... identifies accident risks and safety barriers that are presented in a huge database and risk calculator. The method was first to develop a simple way of accessing this enormous amount of data, second, to develop a tool to observe risks and safety barriers in SMEs and to investigate the usefulness...... of the developed tools in real life, third, to collect data on risks and safety barriers in SMEs for two occupations by following 20 people for three days each and to create a risk profile for each occupations. Findings – The result is a simple way to go through all types of risks for accidents – a tool for risk...

  9. Development of the Risk-Based Inspection Techniques and Pilot Plant Activities

    International Nuclear Information System (INIS)

    Phillips, J.H.

    1997-01-01

    Risk-based techniques have been developed for commercial nuclear power plants. System boundaries and success criteria is defined using the probabilistic risk analysis or probabilistic safety analysis developed to meet the individual plant evaluation. Final ranking of components is by a plant expert panel similar to the one developed for maintenance rule. Components are identified as being high risk-significant or low-risk significant. Maintenance and resources are focused on those components that have the highest risk-significance. The techniques have been developed and applied at a number of pilot plants. Results from the first risk-based inspection pilot plant indicates that safety due to pipe failure can be doubled while the inspection reduced to about 80% when compared with current inspection programs. The reduction in inspection reduces the person-rem exposure resulting in further increases in safety. These techniques have been documented in publication by the ASME CRTD

  10. Atomic risk insurance. Risk policy, safety production and expertise in Germany and the USA 1945 - 1986

    International Nuclear Information System (INIS)

    Wehner, Christoph

    2017-01-01

    The book covers the following chapters: (I) Between threat and promise: Political change and the corporate perception, the burden of the atomic bomb, promise of nuclear energy risk criticism in the pre-ecological phase, nuclear risk as investment restraint; (II) Risk policy at the insurability limit: hazard knowledge, safety production and insurance expertise in the German nuclear policy (1955-1962); (III) Risk policy beyond the catastrophe, insurability interpretation, concepts and conflicts (1957-1968); (IV) Scandalization of risk policy: safety production, confidence and expertise in the nuclear controversial debate (1969 - 1979); (V) Nuclear risk policy and the challenge of the ''risk society'' (1975-1986); (VI) From safety production to hazard probe: atomic energy And the change of insurance.

  11. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    Science.gov (United States)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  12. Risk-informing safety reviews for non-reactor nuclear facilities: an example application

    International Nuclear Information System (INIS)

    Mubayi, V.; Yue, M.; Bari, R.A.; Azarm, M.A.; Mukaddam, W.; Good, G.; Gonzalez, F.

    2013-01-01

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction can be useful to help to risk-inform a safety review process and assess compliance with regulatory requirements. (authors)

  13. [Safety monitoring of cell-based medicinal products (CBMPs)].

    Science.gov (United States)

    Funk, Markus B; Frech, Marion; Spranger, Robert; Keller-Stanislawski, Brigitte

    2015-11-01

    Cell-based medicinal products (CBMPs), a category of advanced-therapy medicinal products (ATMPs), are authorised for the European market by the European Commission by means of the centralized marketing authorisation. By conforming to the German Medicinal Products Act (Sec. 4b AMG), national authorisation can be granted by the Paul-Ehrlich-Institut in Germany exclusively for ATMPs not based on a routine manufacturing procedure. In both procedures, quality, efficacy, and safety are evaluated and the risk-benefit balance is assessed. For the centralised procedure, mainly controlled clinical trial data must be submitted, whereas the requirements for national procedures could be modified corresponding to the stage of development of the ATMP. After marketing authorization, the marketing authorization/license holder is obligated to report all serious adverse reactions to the competent authority and to provide periodic safety update reports. If necessary, post-authorization safety studies could be imposed. On the basis of these regulatory measures, the safety of advanced therapies can be monitored and improved.

  14. MATHEMATICAL APPARATUS FOR KNOWLEDGE BASE PROJECT MANAGEMENT OF OCCUPATIONAL SAFETY

    Directory of Open Access Journals (Sweden)

    Валентина Николаевна ПУРИЧ

    2015-05-01

    Full Text Available The occupational safety project (OSP management is aimed onto a rational choice implementation. With respect to the subjectivity of management goals the project selection is considered as a minimum formalization level information process, The proposed project selection model relies upon the enterprise’s occupational and industrial safety assessment using fuzzy logic and linguistic variables based on occupational safety knowledge base.

  15. Integrating risk management and safety culture in a framework for risk informed decision making

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2009-01-01

    Operators and regulators of nuclear power plants agree on the importance of maintaining safety and controlling accident risks. Effective safety and risk management requires treatment of both technical and organizational components. Probabilistic Risk Assessment (PRA) provides tools for technical risk management. However, organizational factors are not treated in PRA, but are addressed using different approaches. To bring both components together, a framework of Risk Informed Decision Making (RIDM) is needed. The objective tree structure of the International Atomic Energy Agency (IAEA) is a promising approach to combine both elements. Effective collaboration involving regulatory and industry groups is needed to accomplish the integration. (author)

  16. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  17. Safety from physical viewpoint: ''two-risk model in multiple risk problem''

    International Nuclear Information System (INIS)

    Kuz'Min, I.I.; Akimov, V.A.

    1998-01-01

    Full text of publication follows: the problem of safety provision for people and environment within the framework of a certain socio-economic system (SES) as a problem of managing a great number of interacting risks characterizing numerous hazards (natural, manmade, social, economic once, etc.) inherent in the certain SES has been discussed. From the physical point of view, it can be considered a problem of interaction of many bodies which has no accurate mathematical solution even if the laws of interaction of this bodies are known. In physics, to solve this problem, an approach based on the reduction of the above-mentioned problem of the problem of two-body interaction which can be solved accurately in mathematics has been used. The report presents a similar approach to the problem of risk management in the SES. This approach includes the subdivision of numerous hazards inherent within the framework of the SES into two classes of hazards, so that each of the classes could be considered an integrated whole one, each of them being characterized by the appropriate risk. Consequently, problem of 'multiple-risk' management (i.e. the problem of many bodies, as represented in physics) can be reduced to the 'two-risk' management problem (that is, to the problem two-bodies). Within the framework of the two-risk model the optimization of costs to reduce the two kinds of risk, that is, the risk inherent in the SES as a whole, as well as the risk potentially provoked by lots of activities to be introduced in the SES economy has been described. The model has made it possible to formulate and prove the theorem of equilibrium in risk management. Using the theorem, a relatively simple and practically applicable procedure of optimizing the threshold costs to reduce diverse kinds of risk has been elaborated. The procedure provides to assess the minimum value of the cost that can be achieved regarding the socio-economic factors typical of the SES under discussion. The aimed

  18. Handbook of methods for risk-based analysis of technical specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1994-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: Quantitatively evaluate the risk and justify changes based on objective risk arguments; Provide a defensible basis for these requirements for regulatory applications. The US NRC Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  19. Handbook of methods for risk-based analysis of Technical Specification requirements

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.

    1993-01-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements were based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while others may not be conducive to safety. Improvements in these requirements are facilitated by the availability of plant specific Probabilistic Safety Assessments (PSAs). The use of risk and reliability-based methods to improve TS requirements has gained wide interest because these methods can: quantitatively evaluate the risk impact and justify changes based on objective risk arguments. Provide a defensible basis for these requirements for regulatory applications. The United States Nuclear Regulatory Commission (USNRC) Office of Research is sponsoring research to develop systematic risk-based methods to improve various aspects of TS requirements. The handbook of methods, which is being prepared, summarizes such risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), defenses against common-cause failures, managing plant configurations, and scheduling maintenances. For each topic, the handbook summarizes methods of analysis and data needs, outlines the insights to be gained, lists additional references, and presents examples of evaluations

  20. Overview of the U. S. flight safety process for space nuclear power

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1981-01-01

    The two current types of nuclear power sources used in U. S. spacecraft are described along with the flight safety philosophies governing their use. In the case of radioisotope thermoelectric generators, the design philosophy consists of containment, immobilization, and recovery of the nuclear materials. For reactors, the emphasis is on maintaining a subcritical configuration in all credible accident environments. To document the safety activities, a safety analysis report is prepared for each mission. These reports, which are based on the probabilistic risk assessment methodology pioneered by the space nuclear safety community, are subjected to an interagency safety review before a recommendation is made to approve the launch of a nuclear-powered spacecraft

  1. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  2. A risk-based review of Instrument Air systems at nuclear power plants

    International Nuclear Information System (INIS)

    DeMoss, G.; Lofgren, E.; Rothleder, B.; Villeran, M.; Ruger, C.

    1990-01-01

    The broad objective of this analysis was to provide risk-based information to help focus regulatory actions related to Instrument Air (IA) systems at operating nuclear power plants. We first created an extensive data base of summarized and characterized IA-related events that gave a qualitative indication of the nature and severity of these events. Additionally, this data base was used to calculate the frequencies of certain events, which were used in the risk analysis. The risk analysis consisted of reviewing published PRAs and NRC Accident Sequence Precursor reports for IA-initiated accident sequences, IA interactions with frontline systems, and IA-related risk significant events. Sensitivity calculations were performed when possible. Generically, IA was found to contribute less to total risk than many safety systems; however, specific design weaknesses in safety systems, non-safety systems, and the IA system were found to be significant in risk. 22 refs., 13 figs., 24 tabs

  3. Therapeutic risk management of the suicidal patient: safety planning.

    Science.gov (United States)

    Matarazzo, Bridget B; Homaifar, Beeta Y; Wortzel, Hal S

    2014-05-01

    This column is the fourth in a series describing a model for therapeutic risk management of the suicidal patient. Previous columns presented an overview of the therapeutic risk management model, provided recommendations for how to augment risk assessment using structured assessments, and discussed the importance of risk stratification in terms of both severity and temporality. This final column in the series discusses the safety planning intervention as a critical component of therapeutic risk management of suicide risk. We first present concerns related to the relatively common practice of using no-suicide contracts to manage risk. We then present the safety planning intervention as an alternative approach and provide recommendations for how to use this innovative strategy to therapeutically mitigate risk in the suicidal patient.

  4. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  5. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  6. A generic standard for assessing and managing activities with significant risk to health and safety

    International Nuclear Information System (INIS)

    Wilde, T.S.; Sandquist, G.M.

    2005-01-01

    Some operations and activities in industry, business, and government can present an unacceptable risk to health and safety if not performed according to established safety practices and documented procedures. The nuclear industry has extensive experience and commitment to assessing and controlling such risks. This paper provides a generic standard based upon DOE Standard DOE-STD-3007- 93, Nov 1993, Change Notice No. 1, Sep 1998. This generic standard can be used to assess practices and procedures employed by any industrial and government entity to ensure that an acceptable level of safety and control prevail for such operations. When any activity and operation is determined to involve significant risk to health and safety to workers or the public, the organization should adopt and establish an appropriate standard and methodology to ensure that adequate health and safety prevail. This paper uses DOE experience and standards to address activities with recognized potential for impact upon health and safety. Existing and future assessments of health and safety issues can be compared and evaluated against this generic standard for insuring that proper planning, analysis, review, and approval have been made. (authors)

  7. Optimization of safety equipment outages improves safety

    International Nuclear Information System (INIS)

    Cepin, Marko

    2002-01-01

    Testing and maintenance activities of safety equipment in nuclear power plants are an important potential for risk and cost reduction. An optimization method is presented based on the simulated annealing algorithm. The method determines the optimal schedule of safety equipment outages due to testing and maintenance based on minimization of selected risk measure. The mean value of the selected time dependent risk measure represents the objective function of the optimization. The time dependent function of the selected risk measure is obtained from probabilistic safety assessment, i.e. the fault tree analysis at the system level and the fault tree/event tree analysis at the plant level, both extended with inclusion of time requirements. Results of several examples showed that it is possible to reduce risk by application of the proposed method. Because of large uncertainties in the probabilistic safety assessment, the most important result of the method may not be a selection of the most suitable schedule of safety equipment outages among those, which results in similarly low risk. But, it may be a prevention of such schedules of safety equipment outages, which result in high risk. Such finding increases the importance of evaluation speed versus the requirement of getting always the global optimum no matter if it is only slightly better that certain local one

  8. Applying Sensor-Based Technology to Improve Construction Safety Management.

    Science.gov (United States)

    Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng

    2017-08-11

    Construction sites are dynamic and complicated systems. The movement and interaction of people, goods and energy make construction safety management extremely difficult. Due to the ever-increasing amount of information, traditional construction safety management has operated under difficult circumstances. As an effective way to collect, identify and process information, sensor-based technology is deemed to provide new generation of methods for advancing construction safety management. It makes the real-time construction safety management with high efficiency and accuracy a reality and provides a solid foundation for facilitating its modernization, and informatization. Nowadays, various sensor-based technologies have been adopted for construction safety management, including locating sensor-based technology, vision-based sensing and wireless sensor networks. This paper provides a systematic and comprehensive review of previous studies in this field to acknowledge useful findings, identify the research gaps and point out future research directions.

  9. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  10. Patient safety in the operating room: an intervention study on latent risk factors

    Directory of Open Access Journals (Sweden)

    van Beuzekom Martie

    2012-06-01

    Full Text Available Abstract Background Patient safety is one of the greatest challenges in healthcare. In the operating room errors are frequent and often consequential. This article describes an approach to a successful implementation of a patient safety program in the operating room, focussing on latent risk factors that influence patient safety. We performed an intervention to improve these latent risk factors (LRFs and increase awareness of patient safety issues amongst OR staff. Methods Latent risk factors were studied using a validated questionnaire applied to the OR staff before and after an intervention. A pre-test/post-test control group design with repeated measures was used to evaluate the effects of the interventions. The staff from one operating room of an university hospital acted as the intervention group. Controls consisted of the staff of the operating room in another university hospital. The outcomes were the changes in LRF scores, perceived incident rate, and changes in incident reports between pre- and post-intervention. Results Based on pre-test scores and participants’ key concerns about organizational factors affecting patient safety in their department the intervention focused on the following LRFs: Material Resources, Training and Staffing Recourses. After the intervention, the intervention operating room - compared to the control operating room - reported significantly fewer problems on Material Resources and Staffing Resources and a significantly lower score on perceived incident rate. The contribution of technical factors to incident causation decreased significantly in the intervention group after the intervention. Conclusion The change of state of latent risk factors can be measured using a patient safety questionnaire aimed at these factors. The change of the relevant risk factors (Material and Staffing resources concurred with a decrease in perceived and reported incident rates in the relevant categories. We conclude that

  11. Occupational safety and health management and risk governance

    NARCIS (Netherlands)

    Dijkman, A.; Terwoert, J.

    2014-01-01

    The advancement in new technologies, substances and new ways of working make it necessary to look beyond traditional methods of risk management. General drivers to emerging occupational safety and health (OSH) risks are: globalisation; demographic changes; technical innovations; changes in risk

  12. Safety and human factors impacts of introducing quality management into high-risk industries: A field study

    International Nuclear Information System (INIS)

    Chollet, M.G.; Normier, C.; Girault, M.; Tasset, D.

    2002-01-01

    The Institute for Radiological Protection and Nuclear Safety has undertaken a study for getting a better understanding, especially in terms of Safety and Human Factors, of the changes caused by the progressive deployment of the Quality Management in French high risk industries. This study is based on both theoretical elements from the human sciences and management and practical elements from the field, collected from interviews in large French industrial sites involved in integrating this management method. The results show frequent discrepancies between theory, which is very positive and production-oriented, and reality, which is more complex and subtle, ever looking for trade-offs between production requirements and safety constraints. Thus, each step forward announced in the literature may be matched by possible steps backward in terms of safety on the ground. Where, in theory, processes enable practices to be mastered, in practice they can reduce autonomy and fossilize know-how. Where theoretically continuous improvement stimulates and strengthens performances, in reality it can also generate stress and deadlock. Where theoretically personal commitment and collective responsibility work towards all-out performance, in reality they can also operate to conceal safety deviations and infringements. The assessment of Quality Management processes in the nuclear field will benefit from these results raised from theoretical review and confirmed by similar management changes. (author)

  13. [Study on building index system of risk assessment of post-marketing Chinese patent medicine based on AHP-fuzzy neural network].

    Science.gov (United States)

    Li, Yuanyuan; Xie, Yanming; Fu, Yingkun

    2011-10-01

    Currently massive researches have been launched about the safety, efficiency and economy of post-marketing Chinese patent medicine (CPM) proprietary Chinese medicine, but it was lack of a comprehensive interpretation. Establishing the risk evaluation index system and risk assessment model of CPM is the key to solve drug safety problems and protect people's health. The clinical risk factors of CPM exist similarities with the Western medicine, can draw lessons from foreign experience, but also have itself multi-factor multivariate multi-level complex features. Drug safety risk assessment for the uncertainty and complexity, using analytic hierarchy process (AHP) to empower the index weights, AHP-based fuzzy neural network to build post-marketing CPM risk evaluation index system and risk assessment model and constantly improving the application of traditional Chinese medicine characteristic is accord with the road and feasible beneficial exploration.

  14. Software Quality Assurance for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Sparkman, D R; Lagdon, R

    2004-01-01

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: (sm b ullet) Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe (sm b ullet) Considers the larger system that uses the software and its impacts (sm b ullet) Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  15. Achieving safety/risk goals for less ATR backup power upgrades

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1995-01-01

    The Advanced Test Reactor probabilistic risk assessment for internal fire and flood events defined a relatively high risk for a total loss of electric power possibly leading to core damage. Backup power sources were disabled due to fire and flooding in the diesel generator area with propagation of the flooding to a common switchgear room. The ATR risk assessment was employed to define options for relocation of backup power system components to achieve needed risk reduction while minimizing costs. The risk evaluations were performed using sensitivity studies and importance measures. The risk-based evaluations of relocation options for backup power systems saved over $3 million from what might have been otherwise considered open-quotes necessaryclose quotes for safety/risk improvement. The ATR experience shows that the advantages of a good risk assessment are to define risk significance, risk specifics, and risk solutions which enable risk goals to be achieved at the lowest cost

  16. Risk-based analysis of business process executions

    NARCIS (Netherlands)

    Alizadeh, M.; Zannone, N.

    2016-01-01

    Organizations need to monitor their business processes to ensure that what actually happens in the system is compliant with the prescribed behavior. Deviations from the prescribed behavior may correspond to violations of security requirements and expose organizations to severe risks. Thus, it is

  17. The Process of Risk Management for a Project to Extract Shale Gas

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, A.; Eguilior, S.; Recreo, F.

    2014-07-01

    There is no human activity without risk. Accordingly, so neither is the extraction of shale gas. In fact this technology has a risk level similar to any other type of industrial activity and particularly those related to oil and gas industry. It is important to highlight the need to properly address these risks, among other reasons, for its influence on public acceptance of this technology, a key element for the commercial scale implementation. At present, risk management is a generally accepted tool for decision making and control of the risks that come from a wide variety of both industrial and not industrial human activities. It is an important element for the implementation of a large number of safety regulations, corporate policies and good industry practice . Thus, for example, chemical and petroleum, nuclear industries, aviation and aerospace or waste management make use of risk management as a central tool to identification the risks, to establish the importance and ranking of the estimated risks, to estimate the cost/benefit ratio in reducing these risks, and to carry out political and institutional processes to manage them. Risk management provides a broad framework to aid decision-making through the identification, analysis, and evaluation and control of risks, including, of course, those for health and safety. A key aspect is the need to ensure the identification of all significant risks, from which it may take appropriate measures (risk analysis). An unidentified risk allows or evaluation or its monitoring, reduction, acceptance or cancellation. After the analysis stage it may be considered for assessment, that is, the risk quantification, to classify them (acceptable, unacceptable, etc. risk). These actions are determined based on a balance between risk control strategies, their effectiveness and cost, and the needs, problems and concerns of those who may be affected, or stake holders, an essential element in the strategic planning of any activity or

  18. The Process of Risk Management for a Project to Extract Shale Gas

    International Nuclear Information System (INIS)

    Hurtado, A.; Eguilior, S.; Recreo, F.

    2014-01-01

    There is no human activity without risk. Accordingly, so neither is the extraction of shale gas. In fact this technology has a risk level similar to any other type of industrial activity and particularly those related to oil and gas industry. It is important to highlight the need to properly address these risks, among other reasons, for its influence on public acceptance of this technology, a key element for the commercial scale implementation. At present, risk management is a generally accepted tool for decision making and control of the risks that come from a wide variety of both industrial and not industrial human activities. It is an important element for the implementation of a large number of safety regulations, corporate policies and good industry practice . Thus, for example, chemical and petroleum, nuclear industries, aviation and aerospace or waste management make use of risk management as a central tool to identification the risks, to establish the importance and ranking of the estimated risks, to estimate the cost/benefit ratio in reducing these risks, and to carry out political and institutional processes to manage them. Risk management provides a broad framework to aid decision-making through the identification, analysis, and evaluation and control of risks, including, of course, those for health and safety. A key aspect is the need to ensure the identification of all significant risks, from which it may take appropriate measures (risk analysis). An unidentified risk allows or evaluation or its monitoring, reduction, acceptance or cancellation. After the analysis stage it may be considered for assessment, that is, the risk quantification, to classify them (acceptable, unacceptable, etc. risk). These actions are determined based on a balance between risk control strategies, their effectiveness and cost, and the needs, problems and concerns of those who may be affected, or stake holders, an essential element in the strategic planning of any activity or

  19. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    International Nuclear Information System (INIS)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z.

    2015-01-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  20. Application of probabilistic risk assessment in nuclear and environmental licensing processes of nuclear reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jonatas F.C. da; Vasconcelos, Vanderley de; Mesquita, Amir Z., E-mail: jonatasfmata@yahoo.com.br, E-mail: vasconv@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The nuclear accident at Fukushima Daiichi, occurred in Japan in 2011, brought reflections, worldwide, on the management of nuclear and environmental licensing processes of existing nuclear reactors. One of the key lessons learned in this matter, is that the studies of Probabilistic Safety Assessment and Severe Accidents are becoming essential, even in the early stage of a nuclear development project. In Brazil, Brazilian Nuclear Energy Commission, CNEN, conducts the nuclear licensing. The organism responsible for the environmental licensing is Brazilian Institute of Environment and Renewable Natural Resources, IBAMA. In the scope of the licensing processes of these two institutions, the safety analysis is essentially deterministic, complemented by probabilistic studies. The Probabilistic Safety Assessment (PSA) is the study performed to evaluate the behavior of the nuclear reactor in a sequence of events that may lead to the melting of its core. It includes both probability and consequence estimation of these events, which are called Severe Accidents, allowing to obtain the risk assessment of the plant. Thus, the possible shortcomings in the design of systems are identified, providing basis for safety assessment and improving safety. During the environmental licensing, a Quantitative Risk Analysis (QRA), including probabilistic evaluations, is required in order to support the development of the Risk Analysis Study, the Risk Management Program and the Emergency Plan. This article aims to provide an overview of probabilistic risk assessment methodologies and their applications in nuclear and environmental licensing processes of nuclear reactors in Brazil. (author)

  1. Nuclear safety: risks and regulation

    International Nuclear Information System (INIS)

    Wood, W.C.

    1983-01-01

    Taking a fresh look at nuclear safety regulations, this study finds that the mandate and organization of the Nuclear Regulatory Commission (NRC) militate against its making sound decisions. The author criticizes failures to make hard decisions on societal risk, to clarify responsibility, and to implement cost-effective safety measures. Among his recommendations are reorganization of the NRC under a single authoritative administrator, separation of technical issues from social ones, and reform of the Price-Anderson Act. The author concludes that the worst eventuality would be to continue the current state of indecision. 161 references, 6 figures, 4 tables

  2. Using the Job Demands-Resources model to investigate risk perception, safety climate and job satisfaction in safety critical organizations.

    Science.gov (United States)

    Nielsen, Morten Birkeland; Mearns, Kathryn; Matthiesen, Stig Berge; Eid, Jarle

    2011-10-01

    Using the Job Demands-Resources model (JD-R) as a theoretical framework, this study investigated the relationship between risk perception as a job demand and psychological safety climate as a job resource with regard to job satisfaction in safety critical organizations. In line with the JD-R model, it was hypothesized that high levels of risk perception is related to low job satisfaction and that a positive perception of safety climate is related to high job satisfaction. In addition, it was hypothesized that safety climate moderates the relationship between risk perception and job satisfaction. Using a sample of Norwegian offshore workers (N = 986), all three hypotheses were supported. In summary, workers who perceived high levels of risk reported lower levels of job satisfaction, whereas this effect diminished when workers perceived their safety climate as positive. Follow-up analyses revealed that this interaction was dependent on the type of risks in question. The results of this study supports the JD-R model, and provides further evidence for relationships between safety-related concepts and work-related outcomes indicating that organizations should not only develop and implement sound safety procedures to reduce the effects of risks and hazards on workers, but can also enhance other areas of organizational life through a focus on safety. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.

  3. Risk management for industrial safety

    International Nuclear Information System (INIS)

    Novogno, A.

    1989-01-01

    The catastrophic accidents which have occurred in the last decade, in both developed and developing countries, have drawn the attention of decision-makers in the safety area to the urgent necessity to assess and manage risks from hazardous industrial activities which are concentrated in large industrialized areas. The aim of this paper is to review experience gained in conducting studies in the area of 'comparisons of risks in energy systems' and on the practical application of 'cost effectiveness of risk reduction analysis among different energy systems' (case studies). It is also the aim of the paper to discuss and propose a general framework for defining an 'integrated approach' to risk assessment and management in highly industrialized regions within a country. (author)

  4. Food safety challenges associated with traditional foods of Turkey

    Directory of Open Access Journals (Sweden)

    Arzu CAGRI-MEHMETOGLU

    Full Text Available Abstract Consumer food safety concerns are continually increasing in Turkey, with consumer demand for safer foods becoming an important challenge for the industry. Most traditional foods in Turkey are produced under different requirements, and food safety risk management and risk assessment are conducted primarily by the government. Based on risk assessment, safety regulations and standards for traditional foods (e.g. Turkish white cheese, doner, helva have been established. In this paper, safety concerns surrounding the commercialization of traditional Turkish foods and related studies to identify and minimize potential hazards are discussed along with pathogen contamination in raw meat balls and aflatoxin in helva and white cheese. Based on this review, additional national risk analysis experts and related databases are urgently needed. In addition, the manufacturing processes for traditional foods need to be standardized and harmonized with international standards, such as CODEX.

  5. A software engineering process for safety-critical software application

    International Nuclear Information System (INIS)

    Kang, Byung Heon; Kim, Hang Bae; Chang, Hoon Seon; Jeon, Jong Sun

    1995-01-01

    Application of computer software to safety-critical systems in on the increase. To be successful, the software must be designed and constructed to meet the functional and performance requirements of the system. For safety reason, the software must be demonstrated not only to meet these requirements, but also to operate safely as a component within the system. For longer-term cost consideration, the software must be designed and structured to ease future maintenance and modifications. This paper presents a software engineering process for the production of safety-critical software for a nuclear power plant. The presentation is expository in nature of a viable high quality safety-critical software development. It is based on the ideas of a rational design process and on the experience of the adaptation of such process in the production of the safety-critical software for the shutdown system number two of Wolsung 2, 3 and 4 nuclear power generation plants. This process is significantly different from a conventional process in terms of rigorous software development phases and software design techniques, The process covers documentation, design, verification and testing using mathematically precise notations and highly reviewable tabular format to specify software requirements and software requirements and software requirements and code against software design using static analysis. The software engineering process described in this paper applies the principle of information-hiding decomposition in software design using a modular design technique so that when a change is required or an error is detected, the affected scope can be readily and confidently located. it also facilitates a sense of high degree of confidence in the 'correctness' of the software production, and provides a relatively simple and straightforward code implementation effort. 1 figs., 10 refs. (Author)

  6. Physicians' and nurses' perceptions of patient safety risks in the emergency department.

    Science.gov (United States)

    Källberg, Ann-Sofie; Ehrenberg, Anna; Florin, Jan; Östergren, Jan; Göransson, Katarina E

    2017-07-01

    The emergency department has been described as a high-risk area for errors. It is also known that working conditions such as a high workload and shortage off staff in the healthcare field are common factors that negatively affect patient safety. A limited amount of research has been conducted with regard to patient safety in Swedish emergency departments. Additionally, there is a lack of knowledge about clinicians' perceptions of patient safety risks. Therefore, the purpose of this study was to describe emergency department clinicians' experiences with regard to patient safety risks. Semi-structured interviews were conducted with 10 physicians and 10 registered nurses from two emergency departments. Interviews were analysed by inductive content analysis. The experiences reflect the complexities involved in the daily operation of a professional practice, and the perception of risks due to a high workload, lack of control, communication and organizational failures. The results reflect a complex system in which high workload was perceived as a risk for patient safety and that, in a combination with other risks, was thought to further jeopardize patient safety. Emergency department staff should be involved in the development of patient safety procedures in order to increase knowledge regarding risk factors as well as identify strategies which can facilitate the maintenance of patient safety during periods in which the workload is high. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Miscommunication as a risk focus in patient safety : Work process analysis in prehospital emergency care].

    Science.gov (United States)

    Wilk, S; Siegl, L; Siegl, K; Hohenstein, C

    2018-04-01

    In an analysis of a critical incident reporting system (CIRS) in out-of-hospital emergency medicine, it was demonstrated that in 30% of cases deficient communication led to a threat to patients; however, the analysis did not show what exactly the most dangerous work processes are. Current research shows the impact of poor communication on patient safety. An out-of-hospital workflow analysis collects data about key work processes and risk areas. The analysis points out confounding factors for a sufficient communication. Almost 70% of critical incidents are based on human factors. Factors, such as communication and teamwork have an impact but fatigue, noise levels and illness also have a major influence. (I) CIRS database analysis The workflow analysis was based on 247 CIRS cases. This was completed by participant observation and interviews with emergency doctors and paramedics. The 247 CIRS cases displayed 282 communication incidents, which are categorized into 6 subcategories of miscommunication. One CIRS case can be classified into different categories if more communication incidents were validated by the reviewers and four experienced emergency physicians sorted these cases into six subcategories. (II) Workflow analysis The workflow analysis was carried out between 2015 and 2016 in Jena and Berlin, Germany. The focal point of research was to find accumulation of communication risks in different parts of prehospital patient care. During 30 h driving with emergency ambulances, the author interviewed 12 members of the emergency medical service of which 5 were emergency physicians and 7 paramedics. A total of 11 internal medicine cases and one automobile accident were monitored. After patient care the author asked in a 15-min interview if miscommunication or communication incidents occurred. (I) CIRS analysis Between 2005 and 2015, 845 reports were reported to the database. The experts identified 247 incident reports with communication failure. All

  8. A risk-informed perspective on deterministic safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Wan, P.T.

    2009-01-01

    In this work, the deterministic safety analysis (DSA) approach to nuclear safety is examined from a risk-informed perspective. One objective of safety analysis of a nuclear power plant is to demonstrate via analysis that the risks to the public from events or accidents that are within the design basis of the power plant are within acceptable levels with a high degree of assurance. This nuclear safety analysis objective can be translated into two requirements on the risk estimates of design basis events or accidents: the nominal risk estimate to the public must be shown to be within acceptable levels, and the uncertainty in the risk estimates must be shown to be small on an absolute or relative basis. The DSA approach combined with the defense-in-depth (DID) principle is a simplified safety analysis approach that attempts to achieve the above safety analysis objective in the face of potentially large uncertainties in the risk estimates of a nuclear power plant by treating the various uncertainty contributors using a stylized conservative binary (yes-no) approach, and applying multiple overlapping physical barriers and defense levels to protect against the release of radioactivity from the reactor. It is shown that by focusing on the consequence aspect of risk, the previous two nuclear safety analysis requirements on risk can be satisfied with the DSA-DID approach to nuclear safety. It is also shown the use of multiple overlapping physical barriers and defense levels in the traditional DSA-DID approach to nuclear safety is risk-informed in the sense that it provides a consistently high level of confidence in the validity of the safety analysis results for various design basis events or accidents with a wide range of frequency of occurrence. It is hoped that by providing a linkage between the consequence analysis approach in DSA with a risk-informed perspective, greater understanding of the limitation and capability of the DSA approach is obtained. (author)

  9. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    authorities' previous review comments. Furthermore, definitions are given of terms and abbreviations used in SAR- 08, General Part 2, 'Long-term safety'. Chapter 2 Method. The chapter provides an overall description of the method used for the safety assessment and some aspects of the methodology are presented, such as time periods, safety principles, management of uncertainties, quality assurance and risk management. Chapter 3 Identification, ranking and handling of FEPs. The chapter systematically describes the factors to be taken into account in the assessment in the form of features, events and processes (FEPs). Interaction matrices are used to structure the information. Chapter 4 Initial state in the repository and its environs. The chapter describes the initial state, defined as the expected state of the repository and its environs, at closure in 2040. The description of the initial state is based on the technical design of the repository, present-day knowledge concerning conditions in the repository and its environs, and the expected evolution of the repository up until 2040. Chapter 5 Safety functions and safety performance indicators. Safety functions and safety performance indicators are identified and described in this chapter. A safety function is a role by means of which a repository component contributes to safety. Chapter 6 Reference evolution for the repository and its environs. This chapter describes the reference evolution of the repository and its environs and how the safety functions of the repository can be affected by this evolution up until 100,000 years after closure. Chapter 7 Selection of scenarios. This chapter describes how scenarios are selected based on safety performance indicators and interaction matrices. The selected scenarios illustrate the most important processes leading to the migration of radionuclides in the repository and to exposure of man and environment. The description of the processes is based on the evolution of the repository

  10. Safety analysis SFR 1. Long-term safety

    International Nuclear Information System (INIS)

    2008-12-01

    authorities' previous review comments. Furthermore, definitions are given of terms and abbreviations used in SAR- 08, General Part 2, 'Long-term safety'. Chapter 2 Method. The chapter provides an overall description of the method used for the safety assessment and some aspects of the methodology are presented, such as time periods, safety principles, management of uncertainties, quality assurance and risk management. Chapter 3 Identification, ranking and handling of FEPs. The chapter systematically describes the factors to be taken into account in the assessment in the form of features, events and processes (FEPs). Interaction matrices are used to structure the information. Chapter 4 Initial state in the repository and its environs. The chapter describes the initial state, defined as the expected state of the repository and its environs, at closure in 2040. The description of the initial state is based on the technical design of the repository, present-day knowledge concerning conditions in the repository and its environs, and the expected evolution of the repository up until 2040. Chapter 5 Safety functions and safety performance indicators. Safety functions and safety performance indicators are identified and described in this chapter. A safety function is a role by means of which a repository component contributes to safety. Chapter 6 Reference evolution for the repository and its environs. This chapter describes the reference evolution of the repository and its environs and how the safety functions of the repository can be affected by this evolution up until 100,000 years after closure. Chapter 7 Selection of scenarios. This chapter describes how scenarios are selected based on safety performance indicators and interaction matrices. The selected scenarios illustrate the most important processes leading to the migration of radionuclides in the repository and to exposure of man and environment. The description of the processes is based on the evolution of the repository

  11. Safety analysis SFR 1. Long-term safety

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-15

    regulatory authorities' previous review comments. Furthermore, definitions are given of terms and abbreviations used in SAR- 08, General Part 2, 'Long-term safety'. Chapter 2 Method. The chapter provides an overall description of the method used for the safety assessment and some aspects of the methodology are presented, such as time periods, safety principles, management of uncertainties, quality assurance and risk management. Chapter 3 Identification, ranking and handling of FEPs. The chapter systematically describes the factors to be taken into account in the assessment in the form of features, events and processes (FEPs). Interaction matrices are used to structure the information. Chapter 4 Initial state in the repository and its environs. The chapter describes the initial state, defined as the expected state of the repository and its environs, at closure in 2040. The description of the initial state is based on the technical design of the repository, present-day knowledge concerning conditions in the repository and its environs, and the expected evolution of the repository up until 2040. Chapter 5 Safety functions and safety performance indicators. Safety functions and safety performance indicators are identified and described in this chapter. A safety function is a role by means of which a repository component contributes to safety. Chapter 6 Reference evolution for the repository and its environs. This chapter describes the reference evolution of the repository and its environs and how the safety functions of the repository can be affected by this evolution up until 100,000 years after closure. Chapter 7 Selection of scenarios. This chapter describes how scenarios are selected based on safety performance indicators and interaction matrices. The selected scenarios illustrate the most important processes leading to the migration of radionuclides in the repository and to exposure of man and environment. The description of the processes is based on the

  12. Theories of risk and safety: what is their relevance to nursing?

    Science.gov (United States)

    Cooke, Hannah

    2009-03-01

    The aim of this paper is to review key theories of risk and safety and their implications for nursing. The concept of of patient safety has only recently risen to prominence as an organising principle in healthcare. The paper considers the wider social context in which contemporary concepts of risk and safety have developed. In particular it looks at sociological debates about the rise of risk culture and the risk society and their influence on the patient safety movement. The paper discusses three bodies of theory which have attempted to explain the management of risk and safety in organisations: normal accident theory, high reliability theory, and grid-group cultural theory. It examine debates between these theories and their implications for healthcare. It discusses reasons for the dominance of high reliability theory in healthcare and its strengths and limitations. The paper suggest that high reliability theory has particular difficulties in explaining some aspects of organisational culture. It also suggest that the implementation of high reliability theory in healthcare has involved over reliance on numerical indicators. It suggests that patient safety could be improved by openness to a wider range of theoretical perspectives.

  13. Evolution of International Space Station Program Safety Review Processes and Tools

    Science.gov (United States)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on

  14. The development of safety requirements

    International Nuclear Information System (INIS)

    Jorel, M.

    2009-01-01

    This document describes the safety approach followed in France for the design of nuclear reactors. This safety approach is based on safety principles from which stem safety requirements that set limiting values for specific parameters. The improvements in computerized simulation, the use of more adequate new materials, a better knowledge of the concerned physical processes, the changes in the reactor operations (higher discharge burnups for instance) have to be taken into account for the definition of safety criteria and the setting of limiting values. The developments of the safety criteria linked to the risks of cladding failure and loss of primary coolant are presented. (A.C.)

  15. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Science.gov (United States)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  16. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    International Nuclear Information System (INIS)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-01-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  17. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    Energy Technology Data Exchange (ETDEWEB)

    Prayogo, Galang Sandy, E-mail: gasandylang@live.com; Haryadi, Gunawan Dwi; Ismail, Rifky [Department of Mechanical Engineering, Diponegoro University, Semarang (Indonesia); Kim, Seon Jin [Department of Mechanical & Automotive Engineering of Pukyong National University (Korea, Republic of)

    2016-04-19

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  18. Processing and storage of blood components: strategies to improve patient safety

    Directory of Open Access Journals (Sweden)

    Pietersz RNI

    2015-08-01

    Full Text Available Ruby NI Pietersz, Pieter F van der Meer Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands Abstract: This review focuses on safety improvements of blood processing of various blood components and their respective storage. A solid quality system to ensure safe and effective blood components that are traceable from a donor to the patient is the foundation of a safe blood supply. To stimulate and guide this process, National Health Authorities should develop guidelines for blood transfusion, including establishment of a quality system. Blood component therapy enabled treatment of patients with blood constituents that were missing, only thus preventing reactions to unnecessarily transfused elements. Leukoreduction prevents many adverse reactions and also improves the quality of the blood components during storage. The safety of red cells and platelets is improved by replacement of plasma with preservative solutions, which results in the reduction of isoantibodies and plasma proteins. Automation of blood collection, separation of whole blood into components, and consecutive processing steps, such as preparation of platelet concentrate from multiple donations, improves the consistent composition of blood components. Physicians can better prescribe the number of transfusions and therewith reduce donor exposure and/or the risk of pathogen transmission. Pathogen reduction in cellular blood components is the latest development in improving the safety of blood transfusions for patients. Keywords: blood components, red cell concentrates, platelet concentrates, plasma, transfusion, safety 

  19. Safety Risk Knowledge Elicitation in Support of Aeronautical R and D Portfolio Management: A Case Study

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.

    2012-01-01

    Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.

  20. NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation

    Science.gov (United States)

    Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert

    2011-01-01

    System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual

  1. An approach for risk informed safety culture assessment for Canadian nuclear power stations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2010-01-01

    One of the most important components of effective safety and risk management for nuclear power stations is a healthy safety culture. DNV has developed an approach for risk informed safety culture assessment that combines two complementary paradigms for safety and risk management: loss prevention - for preventing and intervening in accidents; and critical function management - for achieving safety and performance goals. Combining these two paradigms makes it possible to provide more robust systems for safety management and to support a healthy safety culture. This approach is being applied to safety culture assessment in partnership with a Canadian nuclear utility. (author)

  2. Taking up national safety alerts to improve patient safety in hospitals: The perspective of healthcare quality and risk managers.

    Science.gov (United States)

    Pfeiffer, Yvonne; Schwappach, David

    2016-01-01

    National safety alert systems publish relevant information to improve patient safety in hospitals. However, the information has to be transformed into local action to have an effect on patient safety. We studied three research questions: How do Swiss healthcare quality and risk managers (qm/rm(1)) see their own role in learning from safety alerts issued by the Swiss national voluntary reporting and analysis system? What are their attitudes towards and evaluations of the alerts, and which types of improvement actions were fostered by the safety alerts? A survey was developed and applied to Swiss healthcare risk and quality managers, with a response rate of 39 % (n=116). Descriptive statistics are presented. The qm/rm disseminate and communicate with a broad variety of professional groups about the alerts. While most respondents felt that they should know the alerts and their contents, only a part of them felt responsible for driving organizational change based on the recommendations. However, most respondents used safety alerts to back up their own patient safety goals. The alerts were evaluated positively on various dimensions such as usefulness and were considered as standards of good practice by the majority of the respondents. A range of organizational responses was applied, with disseminating information being the most common. An active role is related to using safety alerts for backing up own patient safety goals. To support an active role of qm/rm in their hospital's learning from safety alerts, appropriate organizational structures should be developed. Furthermore, they could be given special information or training to act as an information hub on the issues discussed in the alerts. Copyright © 2016. Published by Elsevier GmbH.

  3. RISK LOAN PORTFOLIO OPTIMIZATION MODEL BASED ON CVAR RISK MEASURE

    Directory of Open Access Journals (Sweden)

    Ming-Chang LEE

    2015-07-01

    Full Text Available In order to achieve commercial banks liquidity, safety and profitability objective requirements, loan portfolio risk analysis based optimization decisions are rational allocation of assets.  The risk analysis and asset allocation are the key technology of banking and risk management.  The aim of this paper, build a loan portfolio optimization model based on risk analysis.  Loan portfolio rate of return by using Value-at-Risk (VaR and Conditional Value-at-Risk (CVaR constraint optimization decision model reflects the bank's risk tolerance, and the potential loss of direct control of the bank.  In this paper, it analyze a general risk management model applied to portfolio problems with VaR and CVaR risk measures by using Using the Lagrangian Algorithm.  This paper solves the highly difficult problem by matrix operation method.  Therefore, the combination of this paper is easy understanding the portfolio problems with VaR and CVaR risk model is a hyperbola in mean-standard deviation space.  It is easy calculation in proposed method.

  4. Quantitative risk assessment of digitalized safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Min; Lee, Sang Hun; Kang, Hym Gook [KAIST, Daejeon (Korea, Republic of); Lee, Seung Jun [UNIST, Ulasn (Korea, Republic of)

    2016-05-15

    A report published by the U.S. National Research Council indicates that appropriate methods for assessing reliability are key to establishing the acceptability of digital instrumentation and control (I and C) systems in safety-critical plants such as NPPs. Since the release of this issue, the methodology for the probabilistic safety assessment (PSA) of digital I and C systems has been studied. However, there is still no widely accepted method. Kang and Sung found three critical factors for safety assessment of digital systems: detection coverage of fault-tolerant techniques, software reliability quantification, and network communication risk. In reality the various factors composing digitalized I and C systems are not independent of each other but rather closely connected. Thus, from a macro point of view, a method that can integrate risk factors with different characteristics needs to be considered together with the micro approaches to address the challenges facing each factor.

  5. Needs for evidence-based road safety decision making in Europe.

    NARCIS (Netherlands)

    Dupont, E. Muhlrad, N. Buttler, I. Gitelman, V. Giustiniani, G. Jähi, H. Machata, K. Martensen, H. Papadimitriou, E. Persia, L. Talbot, R. Vallet, G. Wijnen, W. & Yannis, G.

    2012-01-01

    The objective of this research is the assessment of current needs for evidence-based road safety decision making in Europe, through the consultation of a panel of road safety experts. The members of this Experts Panel have extensive knowledge of road safety management processes and needs in their

  6. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Directory of Open Access Journals (Sweden)

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  7. TU-FG-201-12: Designing a Risk-Based Quality Assurance Program for a Newly Implemented Y-90 Microspheres Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Vile, D; Zhang, L; Cuttino, L; Kim, S; Palta, J [Virginia Commonwealth University, Richmond, VA (United States)

    2016-06-15

    Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity. These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.

  8. TU-FG-201-12: Designing a Risk-Based Quality Assurance Program for a Newly Implemented Y-90 Microspheres Procedure

    International Nuclear Information System (INIS)

    Vile, D; Zhang, L; Cuttino, L; Kim, S; Palta, J

    2016-01-01

    Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity. These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.

  9. Development of FPGA-based safety-related instrumentation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Oda, N.; Tanaka, A.; Izumi, M.; Tarumi, T.; Sato, T. [Toshiba Corporation, Isogo Nuclear Engineering Center, Yokohama (Japan)

    2004-07-01

    Toshiba has developed systems which perform signal processing by field programmable gate arrays (FPGA) for safety-related instrumentation and control systems. FPGA is a device which consists only of defined digital circuit: hardware, which performs defined processing. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing units (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. Considering application to safety-related systems, nonvolatile and non rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. The systems which Toshiba developed this time are Power range Monitor (PRM) and Trip Module (TM). These systems are compatible with the conventional analog-based systems and the CPU-based systems. Therefore, requested cost for upgrading will be minimized. Toshiba is planning to expand application of FPGA-based technology by adopting this development method to the other safety-related systems from now on. (authors)

  10. Crash risk and aberrant driving behaviors among bus drivers: the role of personality and attitudes towards traffic safety.

    Science.gov (United States)

    Mallia, Luca; Lazuras, Lambros; Violani, Cristiano; Lucidi, Fabio

    2015-06-01

    Several studies have shown that personality traits and attitudes toward traffic safety predict aberrant driving behaviors and crash involvement. However, this process has not been adequately investigated in professional drivers, such as bus drivers. The present study used a personality-attitudes model to assess whether personality traits predicted aberrant self-reported driving behaviors (driving violations, lapses, and errors) both directly and indirectly, through the effects of attitudes towards traffic safety in a large sample of bus drivers. Additionally, the relationship between aberrant self-reported driving behaviors and crash risk was also assessed. Three hundred and one bus drivers (mean age=39.1, SD=10.7 years) completed a structured and anonymous questionnaire measuring personality traits, attitudes toward traffic safety, self-reported aberrant driving behaviors (i.e., errors, lapses, and traffic violations), and accident risk in the last 12 months. Structural equation modeling analysis revealed that personality traits were associated to aberrant driving behaviors both directly and indirectly. In particular altruism, excitement seeking, and normlessness directly predicted bus drivers' attitudes toward traffic safety which, in turn, were negatively associated with the three types of self-reported aberrant driving behaviors. Personality traits relevant to emotionality directly predicted bus drivers' aberrant driving behaviors, without any mediation of attitudes. Finally, only self-reported violations were related to bus drivers' accident risk. The present findings suggest that the hypothesized personality-attitudes model accounts for aberrant driving behaviors in bus drivers, and provide the empirical basis for evidence-based road safety interventions in the context of public transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Safety analyses for reprocessing and waste processing

    International Nuclear Information System (INIS)

    1983-03-01

    Presentation of an incident analysis of process steps of the RP, simplified considerations concerning safety, and safety analyses of the storage and solidification facilities of the RP. A release tree method is developed and tested. An incident analysis of process steps, the evaluation of the SRL-study and safety analyses of the storage and solidification facilities of the RP are performed in particular. (DG) [de

  12. Prescribing safety, negotiating expertise

    International Nuclear Information System (INIS)

    Rolina, Gregory

    2010-01-01

    Owing to their presumed impact on the safety of high-risk installations, the interactions between regulators and the regulated are a major but seldom explored subject of research in risk management. A study by experts on human and organizational factors in nuclear safety sheds light on the various phases (and their effects) of the process whereby experts produce assessments. Light is shed on a 'negotiated expertise' typical of the French style of safety regulations in nuclear installations. It is based on an ongoing technical dialog between experts and operators ('French cooking' for Anglo-Saxons). This analysis of 'expertise' and thus of the 'logics of action' implemented by experts proposes a typology of actions that can be transposed to other sorts of risk or other fields of activity. It hands us the keys for understanding a very contemporary activity. (author)

  13. The Decision Making Trial and Evaluation Laboratory (Dematel) and Analytic Network Process (ANP) for Safety Management System Evaluation Performance

    Science.gov (United States)

    Rolita, Lisa; Surarso, Bayu; Gernowo, Rahmat

    2018-02-01

    In order to improve airport safety management system (SMS) performance, an evaluation system is required to improve on current shortcomings and maximize safety. This study suggests the integration of the DEMATEL and ANP methods in decision making processes by analyzing causal relations between the relevant criteria and taking effective analysis-based decision. The DEMATEL method builds on the ANP method in identifying the interdependencies between criteria. The input data consists of questionnaire data obtained online and then stored in an online database. Furthermore, the questionnaire data is processed using DEMATEL and ANP methods to obtain the results of determining the relationship between criteria and criteria that need to be evaluated. The study cases on this evaluation system were Adi Sutjipto International Airport, Yogyakarta (JOG); Ahmad Yani International Airport, Semarang (SRG); and Adi Sumarmo International Airport, Surakarta (SOC). The integration grades SMS performance criterion weights in a descending order as follow: safety and destination policy, safety risk management, healthcare, and safety awareness. Sturges' formula classified the results into nine grades. JOG and SMG airports were in grade 8, while SOG airport was in grade 7.

  14. Development of FPGA-based safety-related I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Y.; Oda, N.; Miyazaki, T.; Hayashi, T.; Sato, T.; Igawa, S. [08, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); 1, Toshiba-cho, Fuchu, Tokyo 183-8511 (Japan)

    2006-07-01

    Toshiba has developed Non-rewritable (NRW) Field Programmable Gate Array (FPGA)-based safety-related Instrumentation and Control (I and C) system [1]. Considering application to safety-related systems, nonvolatile and non-rewritable FPGA which is impossible to be changed after once manufactured has been adopted in Toshiba FPGA-based system. FPGA is a device which consists only of defined digital circuit: hardware, which performs defined processing. FPGA-based system solves issues existing both in the conventional systems operated by analog circuits (analog-based system) and the systems operated by central processing unit (CPU-based system). The advantages of applying FPGA are to keep the long-life supply of products, improving testability (verification), and to reduce the drift which may occur in analog-based system. The system which Toshiba developed this time is Power Range Monitor (PRM). Toshiba is planning to expand application of FPGA-based technology by adopting this development method to the other safety-related systems from now on. (authors)

  15. Expert evaluation in NPP safety important systems licensing process

    International Nuclear Information System (INIS)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N.

    2001-01-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  16. Expert evaluation in NPP safety important systems licensing process

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N. [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety (Ukraine)

    2001-07-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  17. Food safety management systems performance in African food processing companies: a review of deficiencies and possible improvement strategies.

    Science.gov (United States)

    Kussaga, Jamal B; Jacxsens, Liesbeth; Tiisekwa, Bendantunguka Pm; Luning, Pieternel A

    2014-08-01

    This study seeks to provide insight into current deficiencies in food safety management systems (FSMS) in African food-processing companies and to identify possible strategies for improvement so as to contribute to African countries' efforts to provide safe food to both local and international markets. This study found that most African food products had high microbiological and chemical contamination levels exceeding the set (legal) limits. Relative to industrialized countries, the study identified various deficiencies at government, sector/branch, retail and company levels which affect performance of FSMS in Africa. For instance, very few companies (except exporting and large companies) have implemented HACCP and ISO 22000:2005. Various measures were proposed to be taken at government (e.g. construction of risk-based legislative frameworks, strengthening of food safety authorities, recommend use of ISO 22000:2005, and consumers' food safety training), branch/sector (e.g. sector-specific guidelines and third-party certification), retail (develop stringent certification standards and impose product specifications) and company levels (improving hygiene, strict raw material control, production process efficacy, and enhancing monitoring systems, assurance activities and supportive administrative structures). By working on those four levels, FSMS of African food-processing companies could be better designed and tailored towards their production processes and specific needs to ensure food safety. © 2014 Society of Chemical Industry.

  18. Hazard Identification and Risk Assessment of Health and Safety Approach JSA (Job Safety Analysis) in Plantation Company

    Science.gov (United States)

    Sugarindra, Muchamad; Ragil Suryoputro, Muhammad; Tiya Novitasari, Adi

    2017-06-01

    Plantation company needed to identify hazard and perform risk assessment as an Identification of Hazard and Risk Assessment Crime and Safety which was approached by using JSA (Job Safety Analysis). The identification was aimed to identify the potential hazards that might be the risk of workplace accidents so that preventive action could be taken to minimize the accidents. The data was collected by direct observation to the workers concerned and the results were recorded on a Job Safety Analysis form. The data were as forklift operator, macerator worker, worker’s creeper, shredder worker, workers’ workshop, mechanical line worker, trolley cleaning workers and workers’ crepe decline. The result showed that shredder worker value was 30 and had the working level with extreme risk with the risk value range was above 20. So to minimize the accidents could provide Personal Protective Equipment (PPE) which were appropriate, information about health and safety, the company should have watched the activities of workers, and rewards for the workers who obey the rules that applied in the plantation.

  19. The affect heuristic in occupational safety.

    Science.gov (United States)

    Savadori, Lucia; Caovilla, Jessica; Zaniboni, Sara; Fraccaroli, Franco

    2015-07-08

    The affect heuristic is a rule of thumb according to which, in the process of making a judgment or decision, people use affect as a cue. If a stimulus elicits positive affect then risks associated to that stimulus are viewed as low and benefits as high; conversely, if the stimulus elicits negative affect, then risks are perceived as high and benefits as low. The basic tenet of this study is that affect heuristic guides worker's judgment and decision making in a risk situation. The more the worker likes her/his organization the less she/he will perceive the risks as high. A sample of 115 employers and 65 employees working in small family agricultural businesses completed a questionnaire measuring perceived safety costs, psychological safety climate, affective commitment and safety compliance. A multi-sample structural analysis supported the thesis that safety compliance can be explained through an affect-based heuristic reasoning, but only for employers. Positive affective commitment towards their family business reduced employers' compliance with safety procedures by increasing the perceived cost of implementing them.

  20. Risk and safety perception on urban and rural roads: Effects of environmental features, driver age and risk sensitivity.

    Science.gov (United States)

    Cox, Jolene A; Beanland, Vanessa; Filtness, Ashleigh J

    2017-10-03

    The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity. Sixty-three licensed drivers aged 18-70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors. Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high-risk

  1. Management of safety and risk at the HFIR [High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Glovier, H.A.

    1990-01-01

    This paper discusses the management of safety and risk at the High-Flux Isotope Reactor (HFIR), a category A research reactor at Oak Ridge National Laboratory (ORNL). The HFIR went critical in 1966 and operated at its designed 100 MW for 20 yr until it was shut down on November 14, 1986. It operated at a >90% availability and without significant event during this period. The result was a complacent management program lacking rigor. This complacency came to an end with the Chernobyl accident, which led to the appointment of an internal committee to assess the safety of ORNL reactor operations. This committee found that HFIR pressure vessel material specimens removed several years earlier had not been analyzed. This issue led to a general review of management practices that were found lacking in quality assurance, safety documentation, training process, and emergency planning, among others. Management accountability was lacking, as shown by design basis and safety analyses that were not up to data and by the fact that reactor operators whose requalification examinations had not been graded were allowed to continue operating the reactor over a long period of time. Between shutdown in 1986 and restart in April 1989, significant management changes and initiatives were made in the area of risk and safety management of ORNL reactors. These are presented briefly in this paper

  2. Application of Risk Assessment Tools in the Continuous Risk Management (CRM) Process

    Science.gov (United States)

    Ray, Paul S.

    2002-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) is currently implementing the Continuous Risk Management (CRM) Program developed by the Carnegie Mellon University and recommended by NASA as the Risk Management (RM) implementation approach. The four most frequently used risk assessment tools in the center are: (a) Failure Modes and Effects Analysis (FMEA), Hazard Analysis (HA), Fault Tree Analysis (FTA), and Probabilistic Risk Analysis (PRA). There are some guidelines for selecting the type of risk assessment tools during the project formulation phase of a project, but there is not enough guidance as to how to apply these tools in the Continuous Risk Management process (CRM). But the ways the safety and risk assessment tools are used make a significant difference in the effectiveness in the risk management function. Decisions regarding, what events are to be included in the analysis, to what level of details should the analysis be continued, make significant difference in the effectiveness of risk management program. Tools of risk analysis also depends on the phase of a project e.g. at the initial phase of a project, when not much data are available on hardware, standard FMEA cannot be applied; instead a functional FMEA may be appropriate. This study attempted to provide some directives to alleviate the difficulty in applying FTA, PRA, and FMEA in the CRM process. Hazard Analysis was not included in the scope of the study due to the short duration of the summer research project.

  3. [Adolescents, risk situations and road safety].

    Science.gov (United States)

    Meneses Falcón, Carmen; Gil García, Eugenia; Romo Avilés, Nuria

    2010-09-01

    Describe the risk behaviour relationships with road safety in adolescents. Cross-sectional descriptive study. Madrid and Andalusia Regions, representative samples. The sample included 3,612 in secondary school pupils from Madrid (n=1708) and Andalusia (n=1904). The survey was carried out during May and June 2007. The data collected included sociodemographic areas (age, sex, grade, father's profession, birth place, etc.) and risk situation and behaviour (risk behaviour as driver or passenger). 16.2% of the adolescents have been involved in a dangerous situation with motorcycles during the last year. 16.7% never use a helmet when riding a motorcycle and 62% do not wear one when riding a bicycle on the road; 17.4% frequently ride a motorcycle over the speed limit and 24.5% when driving a car. There are significant differences regarding sex, grade and region (Madrid or Andalusia). There are four factors which explain 62% of the variance: drug factor, speed factor, security factor and passenger factor. Two of these have twice the probability of having a dangerous situation when riding a motorcycle: drug factor (OR=1.96; 95% CI, 1.77-2.18) and the speed factor ((OR=2.13; 95% CI, 1.92-2.36). Adolescents in higher grades and living in Andalusia were less road safety conscious. This pattern should be taken into account when designing preventive actions in Road Safety Education. 2009 Elsevier España, S.L. All rights reserved.

  4. Cost Risk Analysis Based on Perception of the Engineering Process

    Science.gov (United States)

    Dean, Edwin B.; Wood, Darrell A.; Moore, Arlene A.; Bogart, Edward H.

    1986-01-01

    In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable to present predicted cost as a range of possible costs rather than a single predicted cost. A cost risk analysis generates a range of cost for a project and assigns a probability level to each cost value in the range. Constructing a cost risk curve requires a good estimate of the expected cost of a project. It must also include a good estimate of expected variance of the cost. Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in the past. In a common scenario, a manager or engineer, asked to estimate the cost of a project in his area of expertise, will gather historical cost data from a similar completed project. The cost of the completed project is adjusted using the perceived technical and economic differences between the two projects. This allows errors from at least three sources. The historical cost data may be in error by some unknown amount. The managers' evaluation of the new project and its similarity to the old project may be in error. The factors used to adjust the cost of the old project may not correctly reflect the differences. Some risk analyses are based on untested hypotheses about the form of the statistical distribution that underlies the distribution of possible cost. The usual problem is not just to come up with an estimate of the cost of a project, but to predict the range of values into which the cost may fall and with what level of confidence the prediction is made. Risk analysis techniques that assume the shape of the underlying cost distribution and derive the risk curve from a single estimate plus and minus some amount usually fail to take into account the actual magnitude of the uncertainty in cost due to technical factors in the project itself. This paper addresses a cost risk method that is based on parametric estimates of the technical factors involved in the project being costed. The engineering

  5. Nuclear insurance risk assessment using risk-based methodology

    International Nuclear Information System (INIS)

    Wendland, W.G.

    1992-01-01

    This paper presents American Nuclear Insurers' (ANI's) and Mutual Atomic Energy Liability Underwriters' (MAELU's) process and experience for conducting nuclear insurance risk assessments using a risk-based methodology. The process is primarily qualitative and uses traditional insurance risk assessment methods and an approach developed under the auspices of the American Society of Mechanical Engineers (ASME) in which ANI/MAELU is an active sponsor. This process assists ANI's technical resources in identifying where to look for insurance risk in an industry in which insurance exposure tends to be dynamic and nonactuarial. The process is an evolving one that also seeks to minimize the impact on insureds while maintaining a mutually agreeable risk tolerance

  6. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  7. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    Science.gov (United States)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  8. 77 FR 65000 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-24

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... Use (ETASU) before CDER's Drug Safety and Risk Management Advisory Committee (DSaRM). The Agency plans...

  9. 78 FR 30929 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-23

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... (REMS) with elements to assure safe use (ETASU) before its Drug Safety and Risk Management Advisory...

  10. Causal Loop-based Modeling on System Dynamics for Risk Communication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Ju [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kang, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models.

  11. Causal Loop-based Modeling on System Dynamics for Risk Communication

    International Nuclear Information System (INIS)

    Lee, Chang Ju; Kang, Kyung Min

    2009-01-01

    It is true that a national policy should be based on public confidence, analyzing their recognition and attitude on life safety, since they have very special risk perception characteristics. For achieving effective public consensus regarding a national policy such as nuclear power, we have to utilize a risk communication (hereafter, calls RiCom) process. However, domestic research models on RiCom process do not provide a practical guideline, because most of them are still superficial and stick on an administrative aspect. Also, most of current models have no experience in terms of verification and validation for effective applications to diverse stake holders. This study focuses on public's dynamic mechanism through the modeling on system dynamics, basically utilizing casual loop diagram (CLD) and stock flow diagram (SFD), which regards as a critical technique for decision making in many industrial RiCom models

  12. Bridging the Divide between Safety and Risk Management for your Project or Program

    Science.gov (United States)

    Lutomski, Mike

    2005-01-01

    This presentation will bridge the divide between these separate but overlapping disciplines and help explain how to use Risk Management as an effective management decision support tool that includes safety. Risk Management is an over arching communication tool used by management to prioritize and effectively mitigate potential problems before they concur. Risk Management encompasses every kind of potential problem that can occur on a program or project. Some of these are safety issues such as hazards that have a specific likelihood and consequence that need to be controlled and included to show an integrated picture of accepted) mitigated, and residual risk. Integrating safety and other assurance disciplines is paramount to accurately representing a program s or projects risk posture. Risk is made up of several components such as technical) cost, schedule, or supportability. Safety should also be a consideration for every risk. The safety component can also have an impact on the technical, cost, and schedule aspect of a given risk. The current formats used for communication of safety and risk issues are not consistent or integrated. The presentation will explore the history of these disciplines, current work to integrate them, and suggestions for integration for the future.

  13. Overall risk estimation for nonreactor nuclear facilities and implementation of safety goals

    International Nuclear Information System (INIS)

    Kim, Kyo S.; Bradley, R.F.

    1992-01-01

    A typical safety analysis report (SAR) contains estimated frequencies and consequences of various design basis accident (DBA) analyses. However, the results are organized and presented in such a way that they are not conducive for summing up with mathematical rigor to give total or overall risk. This paper describes a simple protocol and mathematical formalism to derive overall risk indicators. These indicators provide some insight into the capability of confinement barriers with characteristics of source terms, and provide comparison to the Safety Goals. The protocol makes maximum use of the results of DBA analyses typically available from an SAR. The mathematical formalism is based on the cumulative complementary distribution function (CCDF) or exceedance probability of radioactivity release fraction and individual radiation dose. An example case analysis is presented to illustrate how to use the proposed protocol and mathematical formalism. A discussion of the result is also presented in terms of confinement characteristic and compliance to Safety Goals

  14. Investigation and consideration on the framework of oversight-based safety regulation. U.S. NRC 'Risk-Informed, Performance-Based' Regulation

    International Nuclear Information System (INIS)

    Saji, Gen

    2001-01-01

    Regulation on safety, environment and health in Japan has before today been intended to correspond with an accident at forms of reinforcement of national standards and monitoring, if any. However, as it was thought that such regulation reinforcement was afraid to bring some social rigidity, and to weaken independent responsibility, as a result, because of anxiety of losing peoples' merits inversely, some fundamental directivity such as respect of self-responsibility principle' and 'necessary and least limit of regulation' were selected as a part of political innovation. On the other hand, at a background of wide improvements on various indexing values showing operation results of nuclear power stations in U.S.A., private independent effort on upgrading of safety is told to largely affect at beginning of INPO (Institute of Nuclear Power Operations), without regulation reinforcement of NRC side. This is a proof of concrete effect of transfer to oversight-based safety regulation. Here were introduced on nuclear safety in U.S.A. at a base of some references obtained on entering the 'MIT summer specialist program. Nuclear system safety', on focussing at new safety regulation of NRC and its effect and so on, and adding some considerations based on some knowledge thereafter. (G.K.)

  15. Risk-based environmental assessment for uranium mines – some Canadian and Australian experience

    International Nuclear Information System (INIS)

    Phaneuf, M.; Woods, P.; McKee, M.

    2014-01-01

    The uranium producing countries of Canada and Australia have independently developed regulatory frameworks emphasising the importance of human health and ecological risk assessments as core tools for ensuring protection of the environment and public. The value of such an approach is presented as well as practical lessons learned through recent applications of this regulatory model. In May 2000, the Canadian Atomic Energy Control Act was replaced by the Nuclear Safety and Control Act (NSCA). This law created the Canadian Nuclear Safety Commission, whose mission is to protect the health, safety and security of persons and the environment; and to implement Canada’s international commitments on the peaceful use of nuclear energy. From an environmental perspective, the new law added a requirement for the protection of the environment and non-human biota, and a responsibility over hazardous substances in addition to nuclear ones. The NSCA requires the prevention of unreasonable risk to, and adequate provision for the protection of, the environment and the health and safety of the public. It was decided that environmental and public protection would recognize the principles of pollution prevention and ALARA, and that it would be risk based. For Class 1 facilities and uranium mines and mills, Ecological and Human Health Risk Assessments are the core of both the Environmental Assessment process and the licensing process under the Nuclear Safety and Control Act. The Ecological Risk Assessment informs the Effluent and Environmental Monitoring Programs with the resultant monitoring data used to reinforce the risk assessments on a cyclical basis throughout the lifespan of the facility. A number of standards and regulatory documents have been completed supporting this environmental protection framework. In this presentation, a case study is used to illustrate the use of ERA for decision making. In the last decade or so in Australia uranium mining proposals normally require

  16. Handbook of methods for risk-based analyses of technical specifications

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Mankamo, T.; Vesely, W.E.

    1994-12-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while a few may not be conducive to safety. The US Nuclear Regulatory Commission (USNRC) Office of Research has sponsored research to develop systematic risk-based methods to improve various aspects of TS requirements. This handbook summarizes these risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), scheduled or preventive maintenance, action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), and management of plant configurations resulting from outages of systems, or components. For each topic, the handbook summarizes analytic methods with data needs, outlines the insights to be gained, lists additional references, and gives examples of evaluations

  17. Handbook of methods for risk-based analyses of technical specifications

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, P.K.; Kim, I.S. [Brookhaven National Lab., Upton, NY (United States); Mankamo, T. [Avaplan Oy, Espoo (Finland); Vesely, W.E. [Science Applications International Corp., Dublin, OH (United States)

    1994-12-01

    Technical Specifications (TS) requirements for nuclear power plants define the Limiting Conditions for Operation (LCOs) and Surveillance Requirements (SRs) to assure safety during operation. In general, these requirements are based on deterministic analysis and engineering judgments. Experiences with plant operation indicate that some elements of the requirements are unnecessarily restrictive, while a few may not be conducive to safety. The US Nuclear Regulatory Commission (USNRC) Office of Research has sponsored research to develop systematic risk-based methods to improve various aspects of TS requirements. This handbook summarizes these risk-based methods. The scope of the handbook includes reliability and risk-based methods for evaluating allowed outage times (AOTs), scheduled or preventive maintenance, action statements requiring shutdown where shutdown risk may be substantial, surveillance test intervals (STIs), and management of plant configurations resulting from outages of systems, or components. For each topic, the handbook summarizes analytic methods with data needs, outlines the insights to be gained, lists additional references, and gives examples of evaluations.

  18. Probabilistic Causal Analysis for System Safety Risk Assessments in Commercial Air Transport

    Science.gov (United States)

    Luxhoj, James T.

    2003-01-01

    Aviation is one of the critical modes of our national transportation system. As such, it is essential that new technologies be continually developed to ensure that a safe mode of transportation becomes even safer in the future. The NASA Aviation Safety Program (AvSP) is managing the development of new technologies and interventions aimed at reducing the fatal aviation accident rate by a factor of 5 by year 2007 and by a factor of 10 by year 2022. A portfolio assessment is currently being conducted to determine the projected impact that the new technologies and/or interventions may have on reducing aviation safety system risk. This paper reports on advanced risk analytics that combine the use of a human error taxonomy, probabilistic Bayesian Belief Networks, and case-based scenarios to assess a relative risk intensity metric. A sample case is used for illustrative purposes.

  19. Food safety and organic meats.

    Science.gov (United States)

    Van Loo, Ellen J; Alali, Walid; Ricke, Steven C

    2012-01-01

    The organic meat industry in the United States has grown substantially in the past decade in response to consumer demand for nonconventionally produced products. Consumers are often not aware that the United States Department of Agriculture (USDA) organic standards are based only on the methods used for production and processing of the product and not on the product's safety. Food safety hazards associated with organic meats remain unclear because of the limited research conducted to determine the safety of organic meat from farm-to-fork. The objective of this review is to provide an overview of the published results on the microbiological safety of organic meats. In addition, antimicrobial resistance of microbes in organic food animal production is addressed. Determining the food safety risks associated with organic meat production requires systematic longitudinal studies that quantify the risks of microbial and nonmicrobial hazards from farm-to-fork.

  20. 77 FR 75176 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-19

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug... being rescheduled due to the postponement of the October 29-30, 2012, Drug Safety and Risk Management... Committee: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...