WorldWideScience

Sample records for risk prediction models

  1. Melanoma Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  2. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  3. Prostate Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  4. Colorectal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  5. Esophageal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  6. Bladder Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  7. Lung Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  8. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  9. Pancreatic Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  10. Ovarian Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  11. Liver Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  12. Testicular Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  13. Cervical Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  14. Risk terrain modeling predicts child maltreatment.

    Science.gov (United States)

    Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye

    2016-12-01

    As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Korean risk assessment model for breast cancer risk prediction.

    Science.gov (United States)

    Park, Boyoung; Ma, Seung Hyun; Shin, Aesun; Chang, Myung-Chul; Choi, Ji-Yeob; Kim, Sungwan; Han, Wonshik; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee; Yoo, Keun-Young; Park, Sue K

    2013-01-01

    We evaluated the performance of the Gail model for a Korean population and developed a Korean breast cancer risk assessment tool (KoBCRAT) based upon equations developed for the Gail model for predicting breast cancer risk. Using 3,789 sets of cases and controls, risk factors for breast cancer among Koreans were identified. Individual probabilities were projected using Gail's equations and Korean hazard data. We compared the 5-year and lifetime risk produced using the modified Gail model which applied Korean incidence and mortality data and the parameter estimators from the original Gail model with those produced using the KoBCRAT. We validated the KoBCRAT based on the expected/observed breast cancer incidence and area under the curve (AUC) using two Korean cohorts: the Korean Multicenter Cancer Cohort (KMCC) and National Cancer Center (NCC) cohort. The major risk factors under the age of 50 were family history, age at menarche, age at first full-term pregnancy, menopausal status, breastfeeding duration, oral contraceptive usage, and exercise, while those at and over the age of 50 were family history, age at menarche, age at menopause, pregnancy experience, body mass index, oral contraceptive usage, and exercise. The modified Gail model produced lower 5-year risk for the cases than for the controls (p = 0.017), while the KoBCRAT produced higher 5-year and lifetime risk for the cases than for the controls (pKorean women, especially urban women.

  16. Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery.

    Science.gov (United States)

    Stenberg, Erik; Cao, Yang; Szabo, Eva; Näslund, Erik; Näslund, Ingmar; Ottosson, Johan

    2018-01-12

    Factors associated with risk for adverse outcome are important considerations in the preoperative assessment of patients for bariatric surgery. As yet, prediction models based on preoperative risk factors have not been able to predict adverse outcome sufficiently. This study aimed to identify preoperative risk factors and to construct a risk prediction model based on these. Patients who underwent a bariatric surgical procedure in Sweden between 2010 and 2014 were identified from the Scandinavian Obesity Surgery Registry (SOReg). Associations between preoperative potential risk factors and severe postoperative complications were analysed using a logistic regression model. A multivariate model for risk prediction was created and validated in the SOReg for patients who underwent bariatric surgery in Sweden, 2015. Revision surgery (standardized OR 1.19, 95% confidence interval (CI) 1.14-0.24, p prediction model. Despite high specificity, the sensitivity of the model was low. Revision surgery, high age, low BMI, large waist circumference, and dyspepsia/GERD were associated with an increased risk for severe postoperative complication. The prediction model based on these factors, however, had a sensitivity that was too low to predict risk in the individual patient case.

  17. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  18. Risk predictive modelling for diabetes and cardiovascular disease.

    Science.gov (United States)

    Kengne, Andre Pascal; Masconi, Katya; Mbanya, Vivian Nchanchou; Lekoubou, Alain; Echouffo-Tcheugui, Justin Basile; Matsha, Tandi E

    2014-02-01

    Absolute risk models or clinical prediction models have been incorporated in guidelines, and are increasingly advocated as tools to assist risk stratification and guide prevention and treatments decisions relating to common health conditions such as cardiovascular disease (CVD) and diabetes mellitus. We have reviewed the historical development and principles of prediction research, including their statistical underpinning, as well as implications for routine practice, with a focus on predictive modelling for CVD and diabetes. Predictive modelling for CVD risk, which has developed over the last five decades, has been largely influenced by the Framingham Heart Study investigators, while it is only ∼20 years ago that similar efforts were started in the field of diabetes. Identification of predictive factors is an important preliminary step which provides the knowledge base on potential predictors to be tested for inclusion during the statistical derivation of the final model. The derived models must then be tested both on the development sample (internal validation) and on other populations in different settings (external validation). Updating procedures (e.g. recalibration) should be used to improve the performance of models that fail the tests of external validation. Ultimately, the effect of introducing validated models in routine practice on the process and outcomes of care as well as its cost-effectiveness should be tested in impact studies before wide dissemination of models beyond the research context. Several predictions models have been developed for CVD or diabetes, but very few have been externally validated or tested in impact studies, and their comparative performance has yet to be fully assessed. A shift of focus from developing new CVD or diabetes prediction models to validating the existing ones will improve their adoption in routine practice.

  19. Calibration plots for risk prediction models in the presence of competing risks

    DEFF Research Database (Denmark)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-01-01

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks...... prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves...

  20. Risk assessment and remedial policy evaluation using predictive modeling

    International Nuclear Information System (INIS)

    Linkov, L.; Schell, W.R.

    1996-01-01

    As a result of nuclear industry operation and accidents, large areas of natural ecosystems have been contaminated by radionuclides and toxic metals. Extensive societal pressure has been exerted to decrease the radiation dose to the population and to the environment. Thus, in making abatement and remediation policy decisions, not only economic costs but also human and environmental risk assessments are desired. This paper introduces a general framework for risk assessment and remedial policy evaluation using predictive modeling. Ecological risk assessment requires evaluation of the radionuclide distribution in ecosystems. The FORESTPATH model is used for predicting the radionuclide fate in forest compartments after deposition as well as for evaluating the efficiency of remedial policies. Time of intervention and radionuclide deposition profile was predicted as being crucial for the remediation efficiency. Risk assessment conducted for a critical group of forest users in Belarus shows that consumption of forest products (berries and mushrooms) leads to about 0.004% risk of a fatal cancer annually. Cost-benefit analysis for forest cleanup suggests that complete removal of organic layer is too expensive for application in Belarus and a better methodology is required. In conclusion, FORESTPATH modeling framework could have wide applications in environmental remediation of radionuclides and toxic metals as well as in dose reconstruction and, risk-assessment

  1. Lung cancer in never smokers Epidemiology and risk prediction models

    Science.gov (United States)

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  2. A risk prediction model for xerostomia: a retrospective cohort study.

    Science.gov (United States)

    Villa, Alessandro; Nordio, Francesco; Gohel, Anita

    2016-12-01

    We investigated the prevalence of xerostomia in dental patients and built a xerostomia risk prediction model by incorporating a wide range of risk factors. Socio-demographic data, past medical history, self-reported dry mouth and related symptoms were collected retrospectively from January 2010 to September 2013 for all new dental patients. A logistic regression framework was used to build a risk prediction model for xerostomia. External validation was performed using an independent data set to test the prediction power. A total of 12 682 patients were included in this analysis (54.3%, females). Xerostomia was reported by 12.2% of patients. The proportion of people reporting xerostomia was higher among those who were taking more medications (OR = 1.11, 95% CI = 1.08-1.13) or recreational drug users (OR = 1.4, 95% CI = 1.1-1.9). Rheumatic diseases (OR = 2.17, 95% CI = 1.88-2.51), psychiatric diseases (OR = 2.34, 95% CI = 2.05-2.68), eating disorders (OR = 2.28, 95% CI = 1.55-3.36) and radiotherapy (OR = 2.00, 95% CI = 1.43-2.80) were good predictors of xerostomia. For the test model performance, the ROC-AUC was 0.816 and in the external validation sample, the ROC-AUC was 0.799. The xerostomia risk prediction model had high accuracy and discriminated between high- and low-risk individuals. Clinicians could use this model to identify the classes of medications and systemic diseases associated with xerostomia. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  3. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  4. Predictive Modelling Risk Calculators and the Non Dialysis Pathway.

    Science.gov (United States)

    Robins, Jennifer; Katz, Ivor

    2013-04-16

    This guideline will review the current prediction models and survival/mortality scores available for decision making in patients with advanced kidney disease who are being considered for a non-dialysis treatment pathway. Risk prediction is gaining increasing attention with emerging literature suggesting improved patient outcomes through individualised risk prediction (1). Predictive models help inform the nephrologist and the renal palliative care specialists in their discussions with patients and families about suitability or otherwise of dialysis. Clinical decision making in the care of end stage kidney disease (ESKD) patients on a non-dialysis treatment pathway is currently governed by several observational trials (3). Despite the paucity of evidence based medicine in this field, it is becoming evident that the survival advantages associated with renal replacement therapy in these often elderly patients with multiple co-morbidities and limited functional status may be negated by loss of quality of life (7) (6), further functional decline (5, 8), increased complications and hospitalisations. This article is protected by copyright. All rights reserved.

  5. Calibration plots for risk prediction models in the presence of competing risks.

    Science.gov (United States)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-08-15

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks such as death due to other causes. For personalized medicine and patient counseling, it is necessary to check that the model is calibrated in the sense that it provides reliable predictions for all subjects. There are three often encountered practical problems when the aim is to display or test if a risk prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves for competing risks models based on jackknife pseudo-values that are combined with a nearest neighborhood smoother and a cross-validation approach to deal with all three problems. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance.

    Science.gov (United States)

    Sahle, Berhe W; Owen, Alice J; Chin, Ken Lee; Reid, Christopher M

    2017-09-01

    Numerous models predicting the risk of incident heart failure (HF) have been developed; however, evidence of their methodological rigor and reporting remains unclear. This study critically appraises the methods underpinning incident HF risk prediction models. EMBASE and PubMed were searched for articles published between 1990 and June 2016 that reported at least 1 multivariable model for prediction of HF. Model development information, including study design, variable coding, missing data, and predictor selection, was extracted. Nineteen studies reporting 40 risk prediction models were included. Existing models have acceptable discriminative ability (C-statistics > 0.70), although only 6 models were externally validated. Candidate variable selection was based on statistical significance from a univariate screening in 11 models, whereas it was unclear in 12 models. Continuous predictors were retained in 16 models, whereas it was unclear how continuous variables were handled in 16 models. Missing values were excluded in 19 of 23 models that reported missing data, and the number of events per variable was models. Only 2 models presented recommended regression equations. There was significant heterogeneity in discriminative ability of models with respect to age (P prediction models that had sufficient discriminative ability, although few are externally validated. Methods not recommended for the conduct and reporting of risk prediction modeling were frequently used, and resulting algorithms should be applied with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks.

    Science.gov (United States)

    Coiera, Enrico; Wang, Ying; Magrabi, Farah; Concha, Oscar Perez; Gallego, Blanca; Runciman, William

    2014-05-21

    Current prognostic models factor in patient and disease specific variables but do not consider cumulative risks of hospitalization over time. We developed risk models of the likelihood of death associated with cumulative exposure to hospitalization, based on time-varying risks of hospitalization over any given day, as well as day of the week. Model performance was evaluated alone, and in combination with simple disease-specific models. Patients admitted between 2000 and 2006 from 501 public and private hospitals in NSW, Australia were used for training and 2007 data for evaluation. The impact of hospital care delivered over different days of the week and or times of the day was modeled by separating hospitalization risk into 21 separate time periods (morning, day, night across the days of the week). Three models were developed to predict death up to 7-days post-discharge: 1/a simple background risk model using age, gender; 2/a time-varying risk model for exposure to hospitalization (admission time, days in hospital); 3/disease specific models (Charlson co-morbidity index, DRG). Combining these three generated a full model. Models were evaluated by accuracy, AUC, Akaike and Bayesian information criteria. There was a clear diurnal rhythm to hospital mortality in the data set, peaking in the evening, as well as the well-known 'weekend-effect' where mortality peaks with weekend admissions. Individual models had modest performance on the test data set (AUC 0.71, 0.79 and 0.79 respectively). The combined model which included time-varying risk however yielded an average AUC of 0.92. This model performed best for stays up to 7-days (93% of admissions), peaking at days 3 to 5 (AUC 0.94). Risks of hospitalization vary not just with the day of the week but also time of the day, and can be used to make predictions about the cumulative risk of death associated with an individual's hospitalization. Combining disease specific models with such time varying- estimates appears to

  8. Acute Myocardial Infarction Readmission Risk Prediction Models: A Systematic Review of Model Performance.

    Science.gov (United States)

    Smith, Lauren N; Makam, Anil N; Darden, Douglas; Mayo, Helen; Das, Sandeep R; Halm, Ethan A; Nguyen, Oanh Kieu

    2018-01-01

    Hospitals are subject to federal financial penalties for excessive 30-day hospital readmissions for acute myocardial infarction (AMI). Prospectively identifying patients hospitalized with AMI at high risk for readmission could help prevent 30-day readmissions by enabling targeted interventions. However, the performance of AMI-specific readmission risk prediction models is unknown. We systematically searched the published literature through March 2017 for studies of risk prediction models for 30-day hospital readmission among adults with AMI. We identified 11 studies of 18 unique risk prediction models across diverse settings primarily in the United States, of which 16 models were specific to AMI. The median overall observed all-cause 30-day readmission rate across studies was 16.3% (range, 10.6%-21.0%). Six models were based on administrative data; 4 on electronic health record data; 3 on clinical hospital data; and 5 on cardiac registry data. Models included 7 to 37 predictors, of which demographics, comorbidities, and utilization metrics were the most frequently included domains. Most models, including the Centers for Medicare and Medicaid Services AMI administrative model, had modest discrimination (median C statistic, 0.65; range, 0.53-0.79). Of the 16 reported AMI-specific models, only 8 models were assessed in a validation cohort, limiting generalizability. Observed risk-stratified readmission rates ranged from 3.0% among the lowest-risk individuals to 43.0% among the highest-risk individuals, suggesting good risk stratification across all models. Current AMI-specific readmission risk prediction models have modest predictive ability and uncertain generalizability given methodological limitations. No existing models provide actionable information in real time to enable early identification and risk-stratification of patients with AMI before hospital discharge, a functionality needed to optimize the potential effectiveness of readmission reduction interventions

  9. Driving Strategic Risk Planning With Predictive Modelling For Managerial Accounting

    DEFF Research Database (Denmark)

    Nielsen, Steen; Pontoppidan, Iens Christian

    for managerial accounting and shows how it can be used to determine the impact of different types of risk assessment input parameters on the variability of important outcome measures. The purpose is to: (i) point out the theoretical necessity of a stochastic risk framework; (ii) present a stochastic framework......Currently, risk management in management/managerial accounting is treated as deterministic. Although it is well-known that risk estimates are necessarily uncertain or stochastic, until recently the methodology required to handle stochastic risk-based elements appear to be impractical and too...... mathematical. The ultimate purpose of this paper is to “make the risk concept procedural and analytical” and to argue that accountants should now include stochastic risk management as a standard tool. Drawing on mathematical modelling and statistics, this paper methodically develops risk analysis approach...

  10. Dynamic Bayesian modeling for risk prediction in credit operations

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andres

    2015-01-01

    Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context...

  11. Risk Prediction Models for Other Cancers or Multiple Sites

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing other multiple cancers over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  12. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer

    NARCIS (Netherlands)

    Petersen, Japke F.; Stuiver, Martijn M.; Timmermans, Adriana J.; Chen, Amy; Zhang, Hongzhen; O'Neill, James P.; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T.; Koch, Wayne; van den Brekel, Michiel W. M.

    2017-01-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442

  13. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach.

    Science.gov (United States)

    Fernandes, G S; Bhattacharya, A; McWilliams, D F; Ingham, S L; Doherty, M; Zhang, W

    2017-03-20

    Twenty-five percent of the British population over the age of 50 years experiences knee pain. Knee pain can limit physical ability and cause distress and bears significant socioeconomic costs. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiative (OAI) cohort. A total of 1822 participants from the Nottingham community who were at risk for knee pain were followed for 12 years. Of this cohort, two-thirds (n = 1203) were used to develop the risk prediction model, and one-third (n = 619) were used to validate the model. Incident knee pain was defined as pain on most days for at least 1 month in the past 12 months. Predictors were age, sex, body mass index, pain elsewhere, prior knee injury and knee alignment. A Bayesian logistic regression model was used to determine the probability of an OR >1. The Hosmer-Lemeshow χ 2 statistic (HLS) was used for calibration, and ROC curve analysis was used for discrimination. The OAI cohort from the United States was also used to examine the performance of the model. A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration, with an HLS of 7.17 (p = 0.52) and moderate discriminative ability (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p prediction model for knee pain, regardless of underlying structural changes of knee osteoarthritis, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in individuals with a higher risk for knee osteoarthritis, and it may provide a convenient tool for use in primary care to predict the risk of knee pain in the general population.

  14. Long‐Term Post‐CABG Survival: Performance of Clinical Risk Models Versus Actuarial Predictions

    Science.gov (United States)

    Carr, Brendan M.; Romeiser, Jamie; Ruan, Joyce; Gupta, Sandeep; Seifert, Frank C.; Zhu, Wei

    2015-01-01

    Abstract Background/aim Clinical risk models are commonly used to predict short‐term coronary artery bypass grafting (CABG) mortality but are less commonly used to predict long‐term mortality. The added value of long‐term mortality clinical risk models over traditional actuarial models has not been evaluated. To address this, the predictive performance of a long‐term clinical risk model was compared with that of an actuarial model to identify the clinical variable(s) most responsible for any differences observed. Methods Long‐term mortality for 1028 CABG patients was estimated using the Hannan New York State clinical risk model and an actuarial model (based on age, gender, and race/ethnicity). Vital status was assessed using the Social Security Death Index. Observed/expected (O/E) ratios were calculated, and the models' predictive performances were compared using a nested c‐index approach. Linear regression analyses identified the subgroup of risk factors driving the differences observed. Results Mortality rates were 3%, 9%, and 17% at one‐, three‐, and five years, respectively (median follow‐up: five years). The clinical risk model provided more accurate predictions. Greater divergence between model estimates occurred with increasing long‐term mortality risk, with baseline renal dysfunction identified as a particularly important driver of these differences. Conclusions Long‐term mortality clinical risk models provide enhanced predictive power compared to actuarial models. Using the Hannan risk model, a patient's long‐term mortality risk can be accurately assessed and subgroups of higher‐risk patients can be identified for enhanced follow‐up care. More research appears warranted to refine long‐term CABG clinical risk models. doi: 10.1111/jocs.12665 (J Card Surg 2016;31:23–30) PMID:26543019

  15. Predicting the risk of rheumatoid arthritis and its age of onset through modelling genetic risk variants with smoking.

    Directory of Open Access Journals (Sweden)

    Ian C Scott

    Full Text Available The improved characterisation of risk factors for rheumatoid arthritis (RA suggests they could be combined to identify individuals at increased disease risks in whom preventive strategies may be evaluated. We aimed to develop an RA prediction model capable of generating clinically relevant predictive data and to determine if it better predicted younger onset RA (YORA. Our novel modelling approach combined odds ratios for 15 four-digit/10 two-digit HLA-DRB1 alleles, 31 single nucleotide polymorphisms (SNPs and ever-smoking status in males to determine risk using computer simulation and confidence interval based risk categorisation. Only males were evaluated in our models incorporating smoking as ever-smoking is a significant risk factor for RA in men but not women. We developed multiple models to evaluate each risk factor's impact on prediction. Each model's ability to discriminate anti-citrullinated protein antibody (ACPA-positive RA from controls was evaluated in two cohorts: Wellcome Trust Case Control Consortium (WTCCC: 1,516 cases; 1,647 controls; UK RA Genetics Group Consortium (UKRAGG: 2,623 cases; 1,500 controls. HLA and smoking provided strongest prediction with good discrimination evidenced by an HLA-smoking model area under the curve (AUC value of 0.813 in both WTCCC and UKRAGG. SNPs provided minimal prediction (AUC 0.660 WTCCC/0.617 UKRAGG. Whilst high individual risks were identified, with some cases having estimated lifetime risks of 86%, only a minority overall had substantially increased odds for RA. High risks from the HLA model were associated with YORA (P<0.0001; ever-smoking associated with older onset disease. This latter finding suggests smoking's impact on RA risk manifests later in life. Our modelling demonstrates that combining risk factors provides clinically informative RA prediction; additionally HLA and smoking status can be used to predict the risk of younger and older onset RA, respectively.

  16. Clinical Prediction Model and Tool for Assessing Risk of Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Meretoja, Tuomo J; Andersen, Kenneth Geving; Bruce, Julie

    2017-01-01

    are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity......), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC......-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen...

  17. Identification of the high risk emergency surgical patient: Which risk prediction model should be used?

    Science.gov (United States)

    Stonelake, Stephen; Thomson, Peter; Suggett, Nigel

    2015-09-01

    National guidance states that all patients having emergency surgery should have a mortality risk assessment calculated on admission so that the 'high risk' patient can receive the appropriate seniority and level of care. We aimed to assess if peri-operative risk scoring tools could accurately calculate mortality and morbidity risk. Mortality risk scores for 86 consecutive emergency laparotomies, were calculated using pre-operative (ASA, Lee index) and post-operative (POSSUM, P-POSSUM and CR-POSSUM) risk calculation tools. Morbidity risk scores were calculated using the POSSUM predicted morbidity and compared against actual morbidity according to the Clavien-Dindo classification. The actual mortality was 10.5%. The average predicted risk scores for all laparotomies were: ASA 26.5%, Lee Index 2.5%, POSSUM 29.5%, P-POSSUM 18.5%, CR-POSSUM 10.5%. Complications occurred following 67 laparotomies (78%). The majority (51%) of complications were classified as Clavien-Dindo grade 2-3 (non-life-threatening). Patients having a POSSUM morbidity risk of greater than 50% developed significantly more life-threatening complications (CD 4-5) compared with those who predicted less than or equal to 50% morbidity risk (P = 0.01). Pre-operative risk stratification remains a challenge because the Lee Index under-predicts and ASA over-predicts mortality risk. Post-operative risk scoring using the CR-POSSUM is more accurate and we suggest can be used to identify patients who require intensive care post-operatively. In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the 'high-risk' patient.

  18. Development and Validation of a Prediction Model to Estimate Individual Risk of Pancreatic Cancer.

    Science.gov (United States)

    Yu, Ami; Woo, Sang Myung; Joo, Jungnam; Yang, Hye-Ryung; Lee, Woo Jin; Park, Sang-Jae; Nam, Byung-Ho

    2016-01-01

    There is no reliable screening tool to identify people with high risk of developing pancreatic cancer even though pancreatic cancer represents the fifth-leading cause of cancer-related death in Korea. The goal of this study was to develop an individualized risk prediction model that can be used to screen for asymptomatic pancreatic cancer in Korean men and women. Gender-specific risk prediction models for pancreatic cancer were developed using the Cox proportional hazards model based on an 8-year follow-up of a cohort study of 1,289,933 men and 557,701 women in Korea who had biennial examinations in 1996-1997. The performance of the models was evaluated with respect to their discrimination and calibration ability based on the C-statistic and Hosmer-Lemeshow type χ2 statistic. A total of 1,634 (0.13%) men and 561 (0.10%) women were newly diagnosed with pancreatic cancer. Age, height, BMI, fasting glucose, urine glucose, smoking, and age at smoking initiation were included in the risk prediction model for men. Height, BMI, fasting glucose, urine glucose, smoking, and drinking habit were included in the risk prediction model for women. Smoking was the most significant risk factor for developing pancreatic cancer in both men and women. The risk prediction model exhibited good discrimination and calibration ability, and in external validation it had excellent prediction ability. Gender-specific risk prediction models for pancreatic cancer were developed and validated for the first time. The prediction models will be a useful tool for detecting high-risk individuals who may benefit from increased surveillance for pancreatic cancer.

  19. Extensions of the Rosner-Colditz breast cancer prediction model to include older women and type-specific predicted risk.

    Science.gov (United States)

    Glynn, Robert J; Colditz, Graham A; Tamimi, Rulla M; Chen, Wendy Y; Hankinson, Susan E; Willett, Walter W; Rosner, Bernard

    2017-08-01

    A breast cancer risk prediction rule previously developed by Rosner and Colditz has reasonable predictive ability. We developed a re-fitted version of this model, based on more than twice as many cases now including women up to age 85, and further extended it to a model that distinguished risk factor prediction of tumors with different estrogen/progesterone receptor status. We compared the calibration and discriminatory ability of the original, the re-fitted, and the type-specific models. Evaluation used data from the Nurses' Health Study during the period 1980-2008, when 4384 incident invasive breast cancers occurred over 1.5 million person-years. Model development used two-thirds of study subjects and validation used one-third. Predicted risks in the validation sample from the original and re-fitted models were highly correlated (ρ = 0.93), but several parameters, notably those related to use of menopausal hormone therapy and age, had different estimates. The re-fitted model was well-calibrated and had an overall C-statistic of 0.65. The extended, type-specific model identified several risk factors with varying associations with occurrence of tumors of different receptor status. However, this extended model relative to the prediction of any breast cancer did not meaningfully reclassify women who developed breast cancer to higher risk categories, nor women remaining cancer free to lower risk categories. The re-fitted Rosner-Colditz model has applicability to risk prediction in women up to age 85, and its discrimination is not improved by consideration of varying associations across tumor subtypes.

  20. Recent development of risk-prediction models for incident hypertension: An updated systematic review.

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    Full Text Available Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative.Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc.From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI, age, smoking, blood pressure (BP level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%.The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.

  1. An updated prediction model of the global risk of cardiovascular disease in HIV-positive persons

    DEFF Research Database (Denmark)

    Friis-Møller, Nina; Ryom, Lene; Smith, Colette

    2016-01-01

    ,663 HIV-positive persons from 20 countries in Europe and Australia, who were free of CVD at entry into the Data-collection on Adverse Effects of Anti-HIV Drugs (D:A:D) study. Cox regression models (full and reduced) were developed that predict the risk of a global CVD endpoint. The predictive performance...... significantly predicted risk more accurately than the recalibrated Framingham model (Harrell's c-statistic of 0.791, 0.783 and 0.766 for the D:A:D full, D:A:D reduced, and Framingham models respectively; p models also more accurately predicted five-year CVD-risk for key prognostic subgroups...... to quantify risk and to guide preventive care....

  2. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  3. Predictive risk modelling under different data access scenarios: who is identified as high risk and for how long?

    Science.gov (United States)

    Johnson, Tracy L; Kaldor, Jill; Sutherland, Kim; Humphries, Jacob; Jorm, Louisa R; Levesque, Jean-Frederic

    2018-01-01

    Objective This observational study critically explored the performance of different predictive risk models simulating three data access scenarios, comparing: (1) sociodemographic and clinical profiles; (2) consistency in high-risk designation across models; and (3) persistence of high-risk status over time. Methods Cross-sectional health survey data (2006–2009) for more than 260 000 Australian adults 45+ years were linked to longitudinal individual hospital, primary care, pharmacy and mortality data. Three risk models predicting acute emergency hospitalisations were explored, simulating conditions where data are accessed through primary care practice management systems, or through hospital-based electronic records, or through a hypothetical ‘full’ model using a wider array of linked data. High-risk patients were identified using different risk score thresholds. Models were reapplied monthly for 24 months to assess persistence in high-risk categorisation. Results The three models displayed similar statistical performance. Three-quarters of patients in the high-risk quintile from the ‘full’ model were also identified using the primary care or hospital-based models, with the remaining patients differing according to age, frailty, multimorbidity, self-rated health, polypharmacy, prior hospitalisations and imminent mortality. The use of higher risk prediction thresholds resulted in lower levels of agreement in high-risk designation across models and greater morbidity and mortality in identified patient populations. Persistence of high-risk status varied across approaches according to updated information on utilisation history, with up to 25% of patients reassessed as lower risk within 1 year. Conclusion/implications Small differences in risk predictors or risk thresholds resulted in comparatively large differences in who was classified as high risk and for how long. Pragmatic predictive risk modelling design decisions based on data availability or projected

  4. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  5. Testing the Predictive Validity of the Hendrich II Fall Risk Model.

    Science.gov (United States)

    Jung, Hyesil; Park, Hyeoun-Ae

    2018-03-01

    Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.

  6. Mortality Risk Prediction in Scleroderma-Related Interstitial Lung Disease: The SADL Model.

    Science.gov (United States)

    Morisset, Julie; Vittinghoff, Eric; Elicker, Brett M; Hu, Xiaowen; Le, Stephanie; Ryu, Jay H; Jones, Kirk D; Haemel, Anna; Golden, Jeffrey A; Boin, Francesco; Ley, Brett; Wolters, Paul J; King, Talmadge E; Collard, Harold R; Lee, Joyce S

    2017-11-01

    Interstitial lung disease (ILD) is an important cause of morbidity and mortality in patients with scleroderma (Scl). Risk prediction and prognostication in patients with Scl-ILD are challenging because of heterogeneity in the disease course. We aimed to develop a clinical mortality risk prediction model for Scl-ILD. Patients with Scl-ILD were identified from two ongoing longitudinal cohorts: 135 patients at the University of California, San Francisco (derivation cohort) and 90 patients at the Mayo Clinic (validation cohort). Using these two separate cohorts, a mortality risk prediction model was developed and validated by testing every potential candidate Cox model, each including three or four variables of a possible 19 clinical predictors, for time to death. Model discrimination was assessed using the C-index. Three variables were included in the final risk prediction model (SADL): ever smoking history, age, and diffusing capacity of the lung for carbon monoxide (% predicted). This continuous model had similar performance in the derivation (C-index, 0.88) and validation (C-index, 0.84) cohorts. We created a point scoring system using the combined cohort (C-index, 0.82) and used it to identify a classification with low, moderate, and high mortality risk at 3 years. The SADL model uses simple, readily accessible clinical variables to predict all-cause mortality in Scl-ILD. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer.

    Science.gov (United States)

    Petersen, Japke F; Stuiver, Martijn M; Timmermans, Adriana J; Chen, Amy; Zhang, Hongzhen; O'Neill, James P; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T; Koch, Wayne; van den Brekel, Michiel W M

    2018-05-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442 patients with T3T4N0N+M0 larynx cancer. The model was internally validated using bootstrapping samples and externally validated on patient data from five external centers (n = 770). The main outcome was performance of the model as tested by discrimination, calibration, and the ability to distinguish risk groups based on tertiles from the derivation dataset. The model performance was compared to a model based on T and N classification only. We included age, gender, T and N classification, and subsite as prognostic variables in the standard model. After external validation, the standard model had a significantly better fit than a model based on T and N classification alone (C statistic, 0.59 vs. 0.55, P statistic to 0.68. A risk prediction model for patients with advanced larynx cancer, consisting of readily available clinical variables, gives more accurate estimations of the estimated 5-year survival rate when compared to a model based on T and N classification alone. 2c. Laryngoscope, 128:1140-1145, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Peak Pc Prediction in Conjunction Analysis: Conjunction Assessment Risk Analysis. Pc Behavior Prediction Models

    Science.gov (United States)

    Vallejo, J.J.; Hejduk, M.D.; Stamey, J. D.

    2015-01-01

    Satellite conjunction risk typically evaluated through the probability of collision (Pc). Considers both conjunction geometry and uncertainties in both state estimates. Conjunction events initially discovered through Joint Space Operations Center (JSpOC) screenings, usually seven days before Time of Closest Approach (TCA). However, JSpOC continues to track objects and issue conjunction updates. Changes in state estimate and reduced propagation time cause Pc to change as event develops. These changes a combination of potentially predictable development and unpredictable changes in state estimate covariance. Operationally useful datum: the peak Pc. If it can reasonably be inferred that the peak Pc value has passed, then risk assessment can be conducted against this peak value. If this value is below remediation level, then event intensity can be relaxed. Can the peak Pc location be reasonably predicted?

  9. Predictive Accuracy of a Cardiovascular Disease Risk Prediction Model in Rural South India – A Community Based Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Farah N Fathima

    2015-03-01

    Full Text Available Background: Identification of individuals at risk of developing cardiovascular diseases by risk stratification is the first step in primary prevention. Aims & Objectives: To assess the five year risk of developing a cardiovascular event from retrospective data and to assess the predictive accuracy of the non laboratory based National Health and Nutrition Examination Survey (NHANES risk prediction model among individuals in a rural South Indian population. Materials & Methods: A community based retrospective cohort study was conducted in three villages where risk stratification was done for all eligible adults aged between 35-74 years at the time of initial assessment using the NHANES risk prediction charts. Household visits were made after a period of five years by trained doctors to determine cardiovascular outcomes. Results: 521 people fulfilled the eligibility criteria of whom 486 (93.3% could be traced after five years. 56.8% were in low risk, 36.6% were in moderate risk and 6.6% were in high risk categories. 29 persons (5.97% had had cardiovascular events over the last five years of which 24 events (82.7% were nonfatal and five (17.25% were fatal. The mean age of the people who developed cardiovascular events was 57.24 ± 9.09 years. The odds ratios for the three levels of risk showed a linear trend with the odds ratios for the moderate risk and high risk category being 1.35 and 1.94 respectively with the low risk category as baseline. Conclusion: The non laboratory based NHANES charts did not accurately predict the occurrence of cardiovascular events in any of the risk categories.

  10. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.

    Science.gov (United States)

    Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T

    2017-05-01

    We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large

  11. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    Science.gov (United States)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  12. Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models.

    Science.gov (United States)

    Campbell, William; Ganna, Andrea; Ingelsson, Erik; Janssens, A Cecile J W

    2016-01-01

    We propose a new measure of assessing the performance of risk models, the area under the prediction impact curve (auPIC), which quantifies the performance of risk models in terms of their average health impact in the population. Using simulated data, we explain how the prediction impact curve (PIC) estimates the percentage of events prevented when a risk model is used to assign high-risk individuals to an intervention. We apply the PIC to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its application toward prevention of coronary heart disease. We estimated that if the ARIC cohort received statins at baseline, 5% of events would be prevented when the risk model was evaluated at a cutoff threshold of 20% predicted risk compared to 1% when individuals were assigned to the intervention without the use of a model. By calculating the auPIC, we estimated that an average of 15% of events would be prevented when considering performance across the entire interval. We conclude that the PIC is a clinically meaningful measure for quantifying the expected health impact of risk models that supplements existing measures of model performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Predictive Model for Estimation Risk of Proliferative Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Dong-Ni Chen

    2018-01-01

    Conclusion: This study developed and validated a model including demographic and clinical indices to evaluate the probability of presenting proliferative LN to guide therapeutic decisions and outcomes.

  14. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups

    OpenAIRE

    Marschollek, Michael; Gövercin, Mehmet; Rust, Stefan; Gietzelt, Matthias; Schulze, Mareike; Wolf, Klaus-Hendrik; Steinhagen-Thiessen, Elisabeth

    2012-01-01

    Abstract Background Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). Methods A ...

  15. Validation of a risk prediction model for Barrett's esophagus in an Australian population.

    Science.gov (United States)

    Ireland, Colin J; Gordon, Andrea L; Thompson, Sarah K; Watson, David I; Whiteman, David C; Reed, Richard L; Esterman, Adrian

    2018-01-01

    Esophageal adenocarcinoma is a disease that has a high mortality rate, the only known precursor being Barrett's esophagus (BE). While screening for BE is not cost-effective at the population level, targeted screening might be beneficial. We have developed a risk prediction model to identify people with BE, and here we present the external validation of this model. A cohort study was undertaken to validate a risk prediction model for BE. Individuals with endoscopy and histopathology proven BE completed a questionnaire containing variables previously identified as risk factors for this condition. Their responses were combined with data from a population sample for analysis. Risk scores were derived for each participant. Overall performance of the risk prediction model in terms of calibration and discrimination was assessed. Scores from 95 individuals with BE and 636 individuals from the general population were analyzed. The Brier score was 0.118, suggesting reasonable overall performance. The area under the receiver operating characteristic was 0.83 (95% CI 0.78-0.87). The Hosmer-Lemeshow statistic was p =0.14. Minimizing false positives and false negatives, the model achieved a sensitivity of 74% and a specificity of 73%. This study has validated a risk prediction model for BE that has a higher sensitivity than previous models.

  16. A new risk prediction model for critical care: the Intensive Care National Audit & Research Centre (ICNARC) model.

    Science.gov (United States)

    Harrison, David A; Parry, Gareth J; Carpenter, James R; Short, Alasdair; Rowan, Kathy

    2007-04-01

    To develop a new model to improve risk prediction for admissions to adult critical care units in the UK. Prospective cohort study. The setting was 163 adult, general critical care units in England, Wales, and Northern Ireland, December 1995 to August 2003. Patients were 216,626 critical care admissions. None. The performance of different approaches to modeling physiologic measurements was evaluated, and the best methods were selected to produce a new physiology score. This physiology score was combined with other information relating to the critical care admission-age, diagnostic category, source of admission, and cardiopulmonary resuscitation before admission-to develop a risk prediction model. Modeling interactions between diagnostic category and physiology score enabled the inclusion of groups of admissions that are frequently excluded from risk prediction models. The new model showed good discrimination (mean c index 0.870) and fit (mean Shapiro's R 0.665, mean Brier's score 0.132) in 200 repeated validation samples and performed well when compared with recalibrated versions of existing published risk prediction models in the cohort of patients eligible for all models. The hypothesis of perfect fit was rejected for all models, including the Intensive Care National Audit & Research Centre (ICNARC) model, as is to be expected in such a large cohort. The ICNARC model demonstrated better discrimination and overall fit than existing risk prediction models, even following recalibration of these models. We recommend it be used to replace previously published models for risk adjustment in the UK.

  17. Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.

    Science.gov (United States)

    Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K

    2017-07-27

    Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.

  18. Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: Development and external validation of a prediction model.

    Science.gov (United States)

    Schroeder, Emily B; Xu, Stan; Goodrich, Glenn K; Nichols, Gregory A; O'Connor, Patrick J; Steiner, John F

    2017-07-01

    To develop and externally validate a prediction model for the 6-month risk of a severe hypoglycemic event among individuals with pharmacologically treated diabetes. The development cohort consisted of 31,674 Kaiser Permanente Colorado members with pharmacologically treated diabetes (2007-2015). The validation cohorts consisted of 38,764 Kaiser Permanente Northwest members and 12,035 HealthPartners members. Variables were chosen that would be available in electronic health records. We developed 16-variable and 6-variable models, using a Cox counting model process that allows for the inclusion of multiple 6-month observation periods per person. Across the three cohorts, there were 850,992 6-month observation periods, and 10,448 periods with at least one severe hypoglycemic event. The six-variable model contained age, diabetes type, HgbA1c, eGFR, history of a hypoglycemic event in the prior year, and insulin use. Both prediction models performed well, with good calibration and c-statistics of 0.84 and 0.81 for the 16-variable and 6-variable models, respectively. In the external validation cohorts, the c-statistics were 0.80-0.84. We developed and validated two prediction models for predicting the 6-month risk of hypoglycemia. The 16-variable model had slightly better performance than the 6-variable model, but in some practice settings, use of the simpler model may be preferred. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A Risk Prediction Model for In-hospital Mortality in Patients with Suspected Myocarditis.

    Science.gov (United States)

    Xu, Duo; Zhao, Ruo-Chi; Gao, Wen-Hui; Cui, Han-Bin

    2017-04-05

    Myocarditis is an inflammatory disease of the myocardium that may lead to cardiac death in some patients. However, little is known about the predictors of in-hospital mortality in patients with suspected myocarditis. Thus, the aim of this study was to identify the independent risk factors for in-hospital mortality in patients with suspected myocarditis by establishing a risk prediction model. A retrospective study was performed to analyze the clinical medical records of 403 consecutive patients with suspected myocarditis who were admitted to Ningbo First Hospital between January 2003 and December 2013. A total of 238 males (59%) and 165 females (41%) were enrolled in this study. We divided the above patients into two subgroups (survival and nonsurvival), according to their clinical in-hospital outcomes. To maximize the effectiveness of the prediction model, we first identified the potential risk factors for in-hospital mortality among patients with suspected myocarditis, based on data pertaining to previously established risk factors and basic patient characteristics. We subsequently established a regression model for predicting in-hospital mortality using univariate and multivariate logistic regression analyses. Finally, we identified the independent risk factors for in-hospital mortality using our risk prediction model. The following prediction model for in-hospital mortality in patients with suspected myocarditis, including creatinine clearance rate (Ccr), age, ventricular tachycardia (VT), New York Heart Association (NYHA) classification, gender and cardiac troponin T (cTnT), was established in the study: P = ea/(1 + ea) (where e is the exponential function, P is the probability of in-hospital death, and a = -7.34 + 2.99 × [Ccr model demonstrated that a Ccr prediction model for in-hospital mortality in patients with suspected myocarditis. In addition, sufficient life support during the early stage of the disease might improve the prognoses of patients with

  20. Development of a Breast Cancer Risk Prediction Model for Women in Nigeria.

    Science.gov (United States)

    Wang, Shengfeng; Ogundiran, Temidayo O; Ademola, Adeyinka; Oluwasola, Olayiwola A; Adeoye, Adewunmi O; Sofoluwe, Adenike; Morhason-Bello, Imran; Odedina, Stella O; Agwai, Imaria; Adebamowo, Clement; Obajimi, Millicent; Ojengbede, Oladosu; Olopade, Olufunmilayo I; Huo, Dezheng

    2018-04-20

    Risk prediction models have been widely used to identify women at higher risk of breast cancer. We aim to develop a model for absolute breast cancer risk prediction for Nigerian women. A total of 1,811 breast cancer cases and 2,225 controls from the Nigerian Breast Cancer Study (NBCS, 1998~2015) were included. Subjects were randomly divided into the training and validation sets. Incorporating local incidence rates, multivariable logistic regressions were used to develop the model. The NBCS model included age, age at menarche, parity, duration of breast feeding, family history of breast cancer, height, body mass index, benign breast diseases and alcohol consumption. The model developed in the training set performed well in the validation set. The discriminating accuracy of the NBCS model (area under ROC curve [AUC]=0.703, 95% confidence interval [CI]: 0.687-0.719) was better than the Black Women's Health Study (BWHS) model (AUC=0.605, 95% CI: 0.586-0.624), Gail model for White population (AUC=0.551, 95% CI: 0.531-0.571), and Gail model for Black population (AUC=0.545, 95% CI: 0.525-0.565). Compared to the BWHS, two Gail models, the net reclassification improvement of the NBCS model were 8.26%, 13.45% and 14.19%, respectively. We have developed a breast cancer risk prediction model specific to women in Nigeria, which provides a promising and indispensable tool to identify women in need of breast cancer early detection in SSA populations. Our model is the first breast cancer risk prediction model in Africa. It can be used to identify women at high-risk for breast cancer screening. Copyright ©2018, American Association for Cancer Research.

  1. Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported.

    Science.gov (United States)

    Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D

    2018-05-18

    Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.

  2. Application of cardiovascular disease risk prediction models and the relevance of novel biomarkers to risk stratification in Asian Indians.

    Science.gov (United States)

    Kanjilal, S; Rao, V S; Mukherjee, M; Natesha, B K; Renuka, K S; Sibi, K; Iyengar, S S; Kakkar, Vijay V

    2008-01-01

    The increasing pressure on health resources has led to the emergence of risk assessment as an essential tool in the management of cardiovascular disease (CVD). Concern exists regarding the validity of their generalization to all populations. Existing risk scoring models do not incorporate emerging 'novel' risk factors. In this context, the aim of the study was to examine the relevance of British, European, and Framingham predictive CVD risk scores to the asymptomatic high risk Indian population. Blood samples drawn from the participants were analyzed for various 'traditional' and 'novel' biomarkers, and their CVD risk factor profiling was also done. The Framingham model defined only 5% of the study cohort to be at high risk, which appears to be an underestimation of CVD risk in this genetically predisposed population. These subjects at high risk had significantly elevated levels of lipid, pro-inflammatory, pro-thrombotic, and serological markers. It is more relevant to develop risk predictive scores for application to the Indian population. This study substantiates the argument that alternative approaches to risk stratification are required in order to make them more adaptable and applicable to different populations with varying risk factor and disease patterns.

  3. Predicting the Risk of Attrition for Undergraduate Students with Time Based Modelling

    Science.gov (United States)

    Chai, Kevin E. K.; Gibson, David

    2015-01-01

    Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist…

  4. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction.

    Science.gov (United States)

    Chen, Chia-Yen; Han, Jiali; Hunter, David J; Kraft, Peter; Price, Alkes L

    2015-09-01

    Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color (HC), tanning ability (TA), and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRSs) and best linear unbiased prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10-fold cross-validation using the PRS approach, the R(2) for HC increased by 66% (0.0456-0.0755; P ancestry, which prevents ancestry effects from entering into each SNP effect and being overweighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be underweighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction. © 2015 WILEY PERIODICALS, INC.

  5. Development of a disease risk prediction model for downy mildew (Peronospora sparsa) in boysenberry.

    Science.gov (United States)

    Kim, Kwang Soo; Beresford, Robert M; Walter, Monika

    2014-01-01

    Downy mildew caused by Peronospora sparsa has resulted in serious production losses in boysenberry (Rubus hybrid), blackberry (Rubus fruticosus), and rose (Rosa sp.) in New Zealand, Mexico, and the United States and the United Kingdom, respectively. Development of a model to predict downy mildew risk would facilitate development and implementation of a disease warning system for efficient fungicide spray application in the crops affected by this disease. Because detailed disease observation data were not available, a two-step approach was applied to develop an empirical risk prediction model for P. sparsa. To identify the weather patterns associated with a high incidence of downy mildew berry infections (dryberry disease) and derive parameters for the empirical model, classification and regression tree (CART) analysis was performed. Then, fuzzy sets were applied to develop a simple model to predict the disease risk based on the parameters derived from the CART analysis. High-risk seasons with a boysenberry downy mildew incidence >10% coincided with months when the number of hours per day with temperature of 15 to 20°C averaged >9.8 over the month and the number of days with rainfall in the month was >38.7%. The Fuzzy Peronospora Sparsa (FPS) model, developed using fuzzy sets, defined relationships among high-risk events, temperature, and rainfall conditions. In a validation study, the FPS model provided correct identification of both seasons with high downy mildew risk for boysenberry, blackberry, and rose and low risk in seasons when no disease was observed. As a result, the FPS model had a significant degree of agreement between predicted and observed risks of downy mildew for those crops (P = 0.002).

  6. Cardiovascular disease risk score prediction models for women and its applicability to Asians

    Directory of Open Access Journals (Sweden)

    Goh LGH

    2014-03-01

    Full Text Available Louise GH Goh,1 Satvinder S Dhaliwal,1 Timothy A Welborn,2 Peter L Thompson,2–4 Bruce R Maycock,1 Deborah A Kerr,1 Andy H Lee,1 Dean Bertolatti,1 Karin M Clark,1 Rakhshanda Naheed,1 Ranil Coorey,1 Phillip R Della5 1School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; 2Sir Charles Gairdner Hospital, Nedlands, Perth, WA, Australia; 3School of Population Health, University of Western Australia, Perth, WA, Australia; 4Harry Perkins Institute for Medical Research, Perth, WA, Australia; 5School of Nursing and Midwifery, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia Purpose: Although elevated cardiovascular disease (CVD risk factors are associated with a higher risk of developing heart conditions across all ethnic groups, variations exist between groups in the distribution and association of risk factors, and also risk levels. This study assessed the 10-year predicted risk in a multiethnic cohort of women and compared the differences in risk between Asian and Caucasian women. Methods: Information on demographics, medical conditions and treatment, smoking behavior, dietary behavior, and exercise patterns were collected. Physical measurements were also taken. The 10-year risk was calculated using the Framingham model, SCORE (Systematic COronary Risk Evaluation risk chart for low risk and high risk regions, the general CVD, and simplified general CVD risk score models in 4,354 females aged 20–69 years with no heart disease, diabetes, or stroke at baseline from the third Australian Risk Factor Prevalence Study. Country of birth was used as a surrogate for ethnicity. Nonparametric statistics were used to compare risk levels between ethnic groups. Results: Asian women generally had lower risk of CVD when compared to Caucasian women. The 10-year predicted risk was, however, similar between Asian and Australian women, for some models. These findings were

  7. Developing risk prediction models for kidney injury and assessing incremental value for novel biomarkers.

    Science.gov (United States)

    Kerr, Kathleen F; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R

    2014-08-07

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients' risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. Copyright © 2014 by the American Society of Nephrology.

  8. Exploring the predictive power of interaction terms in a sophisticated risk equalization model using regression trees.

    Science.gov (United States)

    van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A

    2018-02-01

    This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Predictive model for risk of cesarean section in pregnant women after induction of labor.

    Science.gov (United States)

    Hernández-Martínez, Antonio; Pascual-Pedreño, Ana I; Baño-Garnés, Ana B; Melero-Jiménez, María R; Tenías-Burillo, José M; Molina-Alarcón, Milagros

    2016-03-01

    To develop a predictive model for risk of cesarean section in pregnant women after induction of labor. A retrospective cohort study was conducted of 861 induced labors during 2009, 2010, and 2011 at Hospital "La Mancha-Centro" in Alcázar de San Juan, Spain. Multivariate analysis was used with binary logistic regression and areas under the ROC curves to determine predictive ability. Two predictive models were created: model A predicts the outcome at the time the woman is admitted to the hospital (before the decision to of the method of induction); and model B predicts the outcome at the time the woman is definitely admitted to the labor room. The predictive factors in the final model were: maternal height, body mass index, nulliparity, Bishop score, gestational age, macrosomia, gender of fetus, and the gynecologist's overall cesarean section rate. The predictive ability of model A was 0.77 [95% confidence interval (CI) 0.73-0.80] and model B was 0.79 (95% CI 0.76-0.83). The predictive ability for pregnant women with previous cesarean section with model A was 0.79 (95% CI 0.64-0.94) and with model B was 0.80 (95% CI 0.64-0.96). For a probability of estimated cesarean section ≥80%, the models A and B presented a positive likelihood ratio (+LR) for cesarean section of 22 and 20, respectively. Also, for a likelihood of estimated cesarean section ≤10%, the models A and B presented a +LR for vaginal delivery of 13 and 6, respectively. These predictive models have a good discriminative ability, both overall and for all subgroups studied. This tool can be useful in clinical practice, especially for pregnant women with previous cesarean section and diabetes.

  10. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results.

    Science.gov (United States)

    Boursi, Ben; Mamtani, Ronac; Hwang, Wei-Ting; Haynes, Kevin; Yang, Yu-Xiao

    2016-07-01

    Current risk scores for colorectal cancer (CRC) are based on demographic and behavioral factors and have limited predictive values. To develop a novel risk prediction model for sporadic CRC using clinical and laboratory data in electronic medical records. We conducted a nested case-control study in a UK primary care database. Cases included those with a diagnostic code of CRC, aged 50-85. Each case was matched with four controls using incidence density sampling. CRC predictors were examined using univariate conditional logistic regression. Variables with p value CRC prediction models which included age, sex, height, obesity, ever smoking, alcohol dependence, and previous screening colonoscopy had an AUC of 0.58 (0.57-0.59) with poor goodness of fit. A laboratory-based model including hematocrit, MCV, lymphocytes, and neutrophil-lymphocyte ratio (NLR) had an AUC of 0.76 (0.76-0.77) and a McFadden's R2 of 0.21 with a NRI of 47.6 %. A combined model including sex, hemoglobin, MCV, white blood cells, platelets, NLR, and oral hypoglycemic use had an AUC of 0.80 (0.79-0.81) with a McFadden's R2 of 0.27 and a NRI of 60.7 %. Similar results were shown in an internal validation set. A laboratory-based risk model had good predictive power for sporadic CRC risk.

  11. Risk score prediction model for dementia in patients with type 2 diabetes.

    Science.gov (United States)

    Li, Chia-Ing; Li, Tsai-Chung; Liu, Chiu-Shong; Liao, Li-Na; Lin, Wen-Yuan; Lin, Chih-Hsueh; Yang, Sing-Yu; Chiang, Jen-Huai; Lin, Cheng-Chieh

    2018-03-30

    No study established a prediction dementia model in the Asian populations. This study aims to develop a prediction model for dementia in Chinese type 2 diabetes patients. This retrospective cohort study included 27,540 Chinese type 2 diabetes patients (aged 50-94 years) enrolled in Taiwan National Diabetes Care Management Program. Participants were randomly allocated into derivation and validation sets at 2:1 ratio. Cox proportional hazards regression models were used to identify risk factors for dementia in the derivation set. Steps proposed by Framingham Heart Study were used to establish a prediction model with a scoring system. The average follow-up was 8.09 years, with a total of 853 incident dementia cases in derivation set. Dementia risk score summed up the individual scores (from 0 to 20). The areas under curve of 3-, 5-, and 10-year dementia risks were 0.82, 0.79, and 0.76 in derivation set and 0.84, 0.80, and 0.75 in validation set, respectively. The proposed score system is the first dementia risk prediction model for Chinese type 2 diabetes patients in Taiwan. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. A Novel Risk prediction Model for Patients with Combined Hepatocellular-Cholangiocarcinoma.

    Science.gov (United States)

    Tian, Meng-Xin; He, Wen-Jun; Liu, Wei-Ren; Yin, Jia-Cheng; Jin, Lei; Tang, Zheng; Jiang, Xi-Fei; Wang, Han; Zhou, Pei-Yun; Tao, Chen-Yang; Ding, Zhen-Bin; Peng, Yuan-Fei; Dai, Zhi; Qiu, Shuang-Jian; Zhou, Jian; Fan, Jia; Shi, Ying-Hong

    2018-01-01

    Backgrounds: Regarding the difficulty of CHC diagnosis and potential adverse outcomes or misuse of clinical therapies, an increasing number of patients have undergone liver transplantation, transcatheter arterial chemoembolization (TACE) or other treatments. Objective: To construct a convenient and reliable risk prediction model for identifying high-risk individuals with combined hepatocellular-cholangiocarcinoma (CHC). Methods: 3369 patients who underwent surgical resection for liver cancer at Zhongshan Hospital were enrolled in this study. The epidemiological and clinical characteristics of the patients were collected at the time of tumor diagnosis. Variables ( P model discrimination. Calibration was performed using the Hosmer-Lemeshow test and a calibration curve. Internal validation was performed using a bootstrapping approach. Results: Among the entire study population, 250 patients (7.42%) were pathologically defined with CHC. Age, HBcAb, red blood cells (RBC), blood urea nitrogen (BUN), AFP, CEA and portal vein tumor thrombus (PVTT) were included in the final risk prediction model (area under the curve, 0.69; 95% confidence interval, 0.51-0.77). Bootstrapping validation presented negligible optimism. When the risk threshold of the prediction model was set at 20%, 2.73% of the patients diagnosed with liver cancer would be diagnosed definitely, which could identify CHC patients with 12.40% sensitivity, 98.04% specificity, and a positive predictive value of 33.70%. Conclusions: Herein, the study established a risk prediction model which incorporates the clinical risk predictors and CT/MRI-presented PVTT status that could be adopted to facilitate the diagnosis of CHC patients preoperatively.

  13. EVALUATING RISK-PREDICTION MODELS USING DATA FROM ELECTRONIC HEALTH RECORDS.

    Science.gov (United States)

    Wang, L E; Shaw, Pamela A; Mathelier, Hansie M; Kimmel, Stephen E; French, Benjamin

    2016-03-01

    The availability of data from electronic health records facilitates the development and evaluation of risk-prediction models, but estimation of prediction accuracy could be limited by outcome misclassification, which can arise if events are not captured. We evaluate the robustness of prediction accuracy summaries, obtained from receiver operating characteristic curves and risk-reclassification methods, if events are not captured (i.e., "false negatives"). We derive estimators for sensitivity and specificity if misclassification is independent of marker values. In simulation studies, we quantify the potential for bias in prediction accuracy summaries if misclassification depends on marker values. We compare the accuracy of alternative prognostic models for 30-day all-cause hospital readmission among 4548 patients discharged from the University of Pennsylvania Health System with a primary diagnosis of heart failure. Simulation studies indicate that if misclassification depends on marker values, then the estimated accuracy improvement is also biased, but the direction of the bias depends on the direction of the association between markers and the probability of misclassification. In our application, 29% of the 1143 readmitted patients were readmitted to a hospital elsewhere in Pennsylvania, which reduced prediction accuracy. Outcome misclassification can result in erroneous conclusions regarding the accuracy of risk-prediction models.

  14. Business model risk analysis: predicting the probability of business network profitability

    NARCIS (Netherlands)

    Johnson, Pontus; Iacob, Maria Eugenia; Valja, Margus; van Sinderen, Marten J.; Magnusson, Christer; Ladhe, Tobias; van Sinderen, Marten J.; Oude Luttighuis, P.H.W.M.; Folmer, Erwin Johan Albert; Bosems, S.

    In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly

  15. Systematic Review of Health Economic Impact Evaluations of Risk Prediction Models : Stop Developing, Start Evaluating

    NARCIS (Netherlands)

    van Giessen, Anoukh; Peters, Jaime; Wilcher, Britni; Hyde, Chris; Moons, Carl; de Wit, Ardine; Koffijberg, Erik

    2017-01-01

    Background: Although health economic evaluations (HEEs) are increasingly common for therapeutic interventions, they appear to be rare for the use of risk prediction models (PMs). Objectives: To evaluate the current state of HEEs of PMs by performing a comprehensive systematic review. Methods: Four

  16. Using Predictive Modelling to Identify Students at Risk of Poor University Outcomes

    Science.gov (United States)

    Jia, Pengfei; Maloney, Tim

    2015-01-01

    Predictive modelling is used to identify students at risk of failing their first-year courses and not returning to university in the second year. Our aim is twofold. Firstly, we want to understand the factors that lead to poor first-year experiences at university. Secondly, we want to develop simple, low-cost tools that would allow universities to…

  17. A clinical prediction model to assess the risk of operative delivery

    NARCIS (Netherlands)

    Schuit, E.; Kwee, A.; Westerhuis, M. E. M. H.; van Dessel, H. J. H. M.; Graziosi, G. C. M.; van Lith, J. M. M.; Nijhuis, J. G.; Oei, S. G.; Oosterbaan, H. P.; Schuitemaker, N. W. E.; Wouters, M. G. A. J.; Visser, G. H. A.; Mol, B. W. J.; Moons, K. G. M.; Groenwold, R. H. H.

    2012-01-01

    Please cite this paper as: Schuit E, Kwee A, Westerhuis M, Van Dessel H, Graziosi G, Van Lith J, Nijhuis J, Oei S, Oosterbaan H, Schuitemaker N, Wouters M, Visser G, Mol B, Moons K, Groenwold R. A clinical prediction model to assess the risk of operative delivery. BJOG 2012;119:915923. Objective To

  18. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups.

    Science.gov (United States)

    Marschollek, Michael; Gövercin, Mehmet; Rust, Stefan; Gietzelt, Matthias; Schulze, Mareike; Wolf, Klaus-Hendrik; Steinhagen-Thiessen, Elisabeth

    2012-03-14

    Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified

  19. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups

    Directory of Open Access Journals (Sweden)

    Marschollek Michael

    2012-03-01

    Full Text Available Abstract Background Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1, and to identify high-risk subgroups from the data (aim#2. Methods A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493. A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. Results The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Conclusions Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack

  20. Handling Uncertainty in Social Lending Credit Risk Prediction with a Choquet Fuzzy Integral Model

    OpenAIRE

    Namvar, Anahita; Naderpour, Mohsen

    2018-01-01

    As one of the main business models in the financial technology field, peer-to-peer (P2P) lending has disrupted traditional financial services by providing an online platform for lending money that has remarkably reduced financial costs. However, the inherent uncertainty in P2P loans can result in huge financial losses for P2P platforms. Therefore, accurate risk prediction is critical to the success of P2P lending platforms. Indeed, even a small improvement in credit risk prediction would be o...

  1. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  2. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  3. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Science.gov (United States)

    King, Michael; Marston, Louise; Švab, Igor; Maaroos, Heidi-Ingrid; Geerlings, Mirjam I; Xavier, Miguel; Benjamin, Vicente; Torres-Gonzalez, Francisco; Bellon-Saameno, Juan Angel; Rotar, Danica; Aluoja, Anu; Saldivia, Sandra; Correa, Bernardo; Nazareth, Irwin

    2011-01-01

    Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women. 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  4. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Directory of Open Access Journals (Sweden)

    Michael King

    Full Text Available Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL for the development of hazardous drinking in safe drinkers.A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women.69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873. The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51. External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846 and Hedge's g of 0.68 (95% CI 0.57, 0.78.The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  5. Risk assessment models to predict caries recurrence after oral rehabilitation under general anaesthesia: a pilot study.

    Science.gov (United States)

    Lin, Yai-Tin; Kalhan, Ashish Chetan; Lin, Yng-Tzer Joseph; Kalhan, Tosha Ashish; Chou, Chein-Chin; Gao, Xiao Li; Hsu, Chin-Ying Stephen

    2018-05-08

    Oral rehabilitation under general anaesthesia (GA), commonly employed to treat high caries-risk children, has been associated with high economic and individual/family burden, besides high post-GA caries recurrence rates. As there is no caries prediction model available for paediatric GA patients, this study was performed to build caries risk assessment/prediction models using pre-GA data and to explore mid-term prognostic factors for early identification of high-risk children prone to caries relapse post-GA oral rehabilitation. Ninety-two children were identified and recruited with parental consent before oral rehabilitation under GA. Biopsychosocial data collection at baseline and the 6-month follow-up were conducted using questionnaire (Q), microbiological assessment (M) and clinical examination (C). The prediction models constructed using data collected from Q, Q + M and Q + M + C demonstrated an accuracy of 72%, 78% and 82%, respectively. Furthermore, of the 83 (90.2%) patients recalled 6 months after GA intervention, recurrent caries was identified in 54.2%, together with reduced bacterial counts, lower plaque index and increased percentage of children toothbrushing for themselves (all P < 0.05). Additionally, meal-time and toothbrushing duration were shown, through bivariate analyses, to be significant prognostic determinants for caries recurrence (both P < 0.05). Risk assessment/prediction models built using pre-GA data may be promising in identifying high-risk children prone to post-GA caries recurrence, although future internal and external validation of predictive models is warranted. © 2018 FDI World Dental Federation.

  6. Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

    Science.gov (United States)

    Wen, Yalu; Shen, Xiaoxi; Lu, Qing

    2018-05-31

    With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea.

    Directory of Open Access Journals (Sweden)

    Aesun Shin

    Full Text Available PURPOSE: Incidence and mortality rates of colorectal cancer have been rapidly increasing in Korea during last few decades. Development of risk prediction models for colorectal cancer in Korean men and women is urgently needed to enhance its prevention and early detection. METHODS: Gender specific five-year risk prediction models were developed for overall colorectal cancer, proximal colon cancer, distal colon cancer, colon cancer and rectal cancer. The model was developed using data from a population of 846,559 men and 479,449 women who participated in health examinations by the National Health Insurance Corporation. Examinees were 30-80 years old and free of cancer in the baseline years of 1996 and 1997. An independent population of 547,874 men and 415,875 women who participated in 1998 and 1999 examinations was used to validate the model. Model validation was done by evaluating its performance in terms of discrimination and calibration ability using the C-statistic and Hosmer-Lemeshow-type chi-square statistics. RESULTS: Age, body mass index, serum cholesterol, family history of cancer, and alcohol consumption were included in all models for men, whereas age, height, and meat intake frequency were included in all models for women. Models showed moderately good discrimination ability with C-statistics between 0.69 and 0.78. The C-statistics were generally higher in the models for men, whereas the calibration abilities were generally better in the models for women. CONCLUSIONS: Colorectal cancer risk prediction models were developed from large-scale, population-based data. Those models can be used for identifying high risk groups and developing preventive intervention strategies for colorectal cancer.

  8. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea.

    Science.gov (United States)

    Shin, Aesun; Joo, Jungnam; Yang, Hye-Ryung; Bak, Jeongin; Park, Yunjin; Kim, Jeongseon; Oh, Jae Hwan; Nam, Byung-Ho

    2014-01-01

    Incidence and mortality rates of colorectal cancer have been rapidly increasing in Korea during last few decades. Development of risk prediction models for colorectal cancer in Korean men and women is urgently needed to enhance its prevention and early detection. Gender specific five-year risk prediction models were developed for overall colorectal cancer, proximal colon cancer, distal colon cancer, colon cancer and rectal cancer. The model was developed using data from a population of 846,559 men and 479,449 women who participated in health examinations by the National Health Insurance Corporation. Examinees were 30-80 years old and free of cancer in the baseline years of 1996 and 1997. An independent population of 547,874 men and 415,875 women who participated in 1998 and 1999 examinations was used to validate the model. Model validation was done by evaluating its performance in terms of discrimination and calibration ability using the C-statistic and Hosmer-Lemeshow-type chi-square statistics. Age, body mass index, serum cholesterol, family history of cancer, and alcohol consumption were included in all models for men, whereas age, height, and meat intake frequency were included in all models for women. Models showed moderately good discrimination ability with C-statistics between 0.69 and 0.78. The C-statistics were generally higher in the models for men, whereas the calibration abilities were generally better in the models for women. Colorectal cancer risk prediction models were developed from large-scale, population-based data. Those models can be used for identifying high risk groups and developing preventive intervention strategies for colorectal cancer.

  9. Development of Health Parameter Model for Risk Prediction of CVD Using SVM

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan

    2016-01-01

    Full Text Available Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD. The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model.

  10. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study.

    Directory of Open Access Journals (Sweden)

    Kevin Ten Haaf

    2017-04-01

    Full Text Available Selection of candidates for lung cancer screening based on individual risk has been proposed as an alternative to criteria based on age and cumulative smoking exposure (pack-years. Nine previously established risk models were assessed for their ability to identify those most likely to develop or die from lung cancer. All models considered age and various aspects of smoking exposure (smoking status, smoking duration, cigarettes per day, pack-years smoked, time since smoking cessation as risk predictors. In addition, some models considered factors such as gender, race, ethnicity, education, body mass index, chronic obstructive pulmonary disease, emphysema, personal history of cancer, personal history of pneumonia, and family history of lung cancer.Retrospective analyses were performed on 53,452 National Lung Screening Trial (NLST participants (1,925 lung cancer cases and 884 lung cancer deaths and 80,672 Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO ever-smoking participants (1,463 lung cancer cases and 915 lung cancer deaths. Six-year lung cancer incidence and mortality risk predictions were assessed for (1 calibration (graphically by comparing the agreement between the predicted and the observed risks, (2 discrimination (area under the receiver operating characteristic curve [AUC] between individuals with and without lung cancer (death, and (3 clinical usefulness (net benefit in decision curve analysis by identifying risk thresholds at which applying risk-based eligibility would improve lung cancer screening efficacy. To further assess performance, risk model sensitivities and specificities in the PLCO were compared to those based on the NLST eligibility criteria. Calibration was satisfactory, but discrimination ranged widely (AUCs from 0.61 to 0.81. The models outperformed the NLST eligibility criteria over a substantial range of risk thresholds in decision curve analysis, with a higher sensitivity for all models and a

  11. Risk predicting of macropore flow using pedotransfer functions, textural maps and modeling

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Børgesen, Christen Duus; Lægdsmand, Mette

    2011-01-01

    of this study were first to develop pedotransfer functions (PTFs) predicting near-saturated [k(−1)] and saturated (Ks) hydraulic conductivity using simple soil parameters as predictors and second to use this information and a newly developed rasterbased soil property map of Denmark to identify risk areas...... modeling were used to construct a new map dividing Denmark into risk categories for macropore flow. This map can be combined with other tools to identify areas where there is a high risk of contaminants leaching out of the root zone....

  12. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    Science.gov (United States)

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  13. Validation of a risk prediction model for Barrett’s esophagus in an Australian population

    Directory of Open Access Journals (Sweden)

    Ireland CJ

    2018-03-01

    Full Text Available Colin J Ireland,1 Andrea L Gordon,2 Sarah K Thompson,3 David I Watson,4 David C Whiteman,5 Richard L Reed,6 Adrian Esterman1,7 1School of Nursing and Midwifery, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia; 2School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia; 3Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia; 4Department of Surgery, Flinders University, Bedford Park, SA, Australia; 5Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; 6Discipline of General Practice, Flinders University, Bedford Park, SA, Australia; 7Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia Background: Esophageal adenocarcinoma is a disease that has a high mortality rate, the only known precursor being Barrett’s esophagus (BE. While screening for BE is not cost-effective at the population level, targeted screening might be beneficial. We have developed a risk prediction model to identify people with BE, and here we present the external validation of this model. Materials and methods: A cohort study was undertaken to validate a risk prediction model for BE. Individuals with endoscopy and histopathology proven BE completed a questionnaire containing variables previously identified as risk factors for this condition. Their responses were combined with data from a population sample for analysis. Risk scores were derived for each participant. Overall performance of the risk prediction model in terms of calibration and discrimination was assessed. Results: Scores from 95 individuals with BE and 636 individuals from the general population were analyzed. The Brier score was 0.118, suggesting reasonable overall performance. The area under the receiver operating characteristic was 0.83 (95% CI 0.78–0.87. The Hosmer–Lemeshow statistic was p=0

  14. An RES-Based Model for Risk Assessment and Prediction of Backbreak in Bench Blasting

    Science.gov (United States)

    Faramarzi, F.; Ebrahimi Farsangi, M. A.; Mansouri, H.

    2013-07-01

    Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation ( R 2) and root mean square error (RMSE) of the model were calculated ( R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.

  15. Development of a flood-induced health risk prediction model for Africa

    Science.gov (United States)

    Lee, D.; Block, P. J.

    2017-12-01

    Globally, many floods occur in developing or tropical regions where the impact on public health is substantial, including death and injury, drinking water, endemic disease, and so on. Although these flood impacts on public health have been investigated, integrated management of floods and flood-induced health risks is technically and institutionally limited. Specifically, while the use of climatic and hydrologic forecasts for disaster management has been highlighted, analogous predictions for forecasting the magnitude and impact of health risks are lacking, as is the infrastructure for health early warning systems, particularly in developing countries. In this study, we develop flood-induced health risk prediction model for African regions using season-ahead flood predictions with climate drivers and a variety of physical and socio-economic information, such as local hazard, exposure, resilience, and health vulnerability indicators. Skillful prediction of flood and flood-induced health risks can contribute to practical pre- and post-disaster responses in both local- and global-scales, and may eventually be integrated into multi-hazard early warning systems for informed advanced planning and management. This is especially attractive for areas with limited observations and/or little capacity to develop flood-induced health risk warning systems.

  16. Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

    Directory of Open Access Journals (Sweden)

    Khaled Halteh

    2018-05-01

    Full Text Available Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

  17. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  18. Development of a risk prediction model for Barrett's esophagus in an Australian population.

    Science.gov (United States)

    Ireland, C J; Fielder, A L; Thompson, S K; Laws, T A; Watson, D I; Esterman, A

    2017-11-01

    Esophageal adenocarcinoma has poor 5-year survival rates. Increased survival might be achieved with earlier treatment, but requires earlier identification of the precursor, Barrett's esophagus. Population screening is not cost effective, this may be improved by targeted screening directed at individuals more likely to have Barrett's esophagus. To develop a risk prediction tool for Barrett's esophagus, this study compared individuals with Barrett's esophagus against population controls. Participants completed a questionnaire comprising 35 questions addressing medical history, symptom history, lifestyle factors, anthropomorphic measures, and demographic details. Statistical analysis addressed differences between cases and controls, and entailed initial variable selection, checking of model assumptions, and establishing calibration and discrimination. The area under the curve (AUC) was used to assess overall accuracy. One hundred and twenty individuals with Barrett's esophagus and 235 population controls completed the questionnaire. Significant differences were identified for age, gender, reflux history, family reflux history, history of hypertension, alcoholic drinks per week, and body mass index. These were used to develop a risk prediction model. The AUC was 0.82 (95% CI 0.78-0.87). Good calibration between predicted and observed risk was noted (Hosmer-Lemeshow test P = 0.67). At the point minimizing false positives and false negatives, the model achieved a sensitivity of 84.96% and a specificity of 66%. A well-calibrated risk prediction model with good discrimination has been developed to identify patients with Barrett's esophagus. The model needs to be externally validated before consideration for clinical practice. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  20. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    Science.gov (United States)

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  1. Comparison of three lifecourse models of poverty in predicting cardiovascular disease risk in youth.

    Science.gov (United States)

    Kakinami, Lisa; Séguin, Louise; Lambert, Marie; Gauvin, Lise; Nikiema, Béatrice; Paradis, Gilles

    2013-08-01

    Childhood poverty heightens the risk of adulthood cardiovascular disease (CVD), but the underlying pathways are poorly understood. Three lifecourse models have been proposed but have never been tested among youth. We assessed the longitudinal association of childhood poverty with CVD risk factors in 10-year-old youth according to the timing, accumulation, and mobility models. The Québec Longitudinal Study of Child Development birth cohort was established in 1998 (n = 2120). Poverty was defined as annual income below the low-income thresholds defined by Statistics Canada. Multiple imputation was used for missing data. Multivariable linear regression models adjusted for gender, pubertal stage, parental education, maternal age, whether the household was a single parent household, whether the child was overweight or obese, the child's physical activity in the past week, and family history. Approximately 40% experienced poverty at least once, 16% throughout childhood, and 25% intermittently. Poverty was associated with significantly elevated triglycerides and insulin according to the timing and accumulation models, although the timing model was superior for predicting insulin and the accumulation model was superior for predicting triglycerides. Early and prolonged exposure to poverty significantly increases CVD risk among 10-year-old youth. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Lucky eMehra

    2016-03-01

    Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early

  3. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  4. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes.

    Science.gov (United States)

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities' preparedness and response capabilities and to mitigate future consequences. An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model's algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.

  5. Beyond discrimination: A comparison of calibration methods and clinical usefulness of predictive models of readmission risk.

    Science.gov (United States)

    Walsh, Colin G; Sharman, Kavya; Hripcsak, George

    2017-12-01

    Prior to implementing predictive models in novel settings, analyses of calibration and clinical usefulness remain as important as discrimination, but they are not frequently discussed. Calibration is a model's reflection of actual outcome prevalence in its predictions. Clinical usefulness refers to the utilities, costs, and harms of using a predictive model in practice. A decision analytic approach to calibrating and selecting an optimal intervention threshold may help maximize the impact of readmission risk and other preventive interventions. To select a pragmatic means of calibrating predictive models that requires a minimum amount of validation data and that performs well in practice. To evaluate the impact of miscalibration on utility and cost via clinical usefulness analyses. Observational, retrospective cohort study with electronic health record data from 120,000 inpatient admissions at an urban, academic center in Manhattan. The primary outcome was thirty-day readmission for three causes: all-cause, congestive heart failure, and chronic coronary atherosclerotic disease. Predictive modeling was performed via L1-regularized logistic regression. Calibration methods were compared including Platt Scaling, Logistic Calibration, and Prevalence Adjustment. Performance of predictive modeling and calibration was assessed via discrimination (c-statistic), calibration (Spiegelhalter Z-statistic, Root Mean Square Error [RMSE] of binned predictions, Sanders and Murphy Resolutions of the Brier Score, Calibration Slope and Intercept), and clinical usefulness (utility terms represented as costs). The amount of validation data necessary to apply each calibration algorithm was also assessed. C-statistics by diagnosis ranged from 0.7 for all-cause readmission to 0.86 (0.78-0.93) for congestive heart failure. Logistic Calibration and Platt Scaling performed best and this difference required analyzing multiple metrics of calibration simultaneously, in particular Calibration

  6. Spatial model for risk prediction and sub-national prioritization to aid poliovirus eradication in Pakistan.

    Science.gov (United States)

    Mercer, Laina D; Safdar, Rana M; Ahmed, Jamal; Mahamud, Abdirahman; Khan, M Muzaffar; Gerber, Sue; O'Leary, Aiden; Ryan, Mike; Salet, Frank; Kroiss, Steve J; Lyons, Hil; Upfill-Brown, Alexander; Chabot-Couture, Guillaume

    2017-10-11

    Pakistan is one of only three countries where poliovirus circulation remains endemic. For the Pakistan Polio Eradication Program, identifying high risk districts is essential to target interventions and allocate limited resources. Using a hierarchical Bayesian framework we developed a spatial Poisson hurdle model to jointly model the probability of one or more paralytic polio cases, and the number of cases that would be detected in the event of an outbreak. Rates of underimmunization, routine immunization, and population immunity, as well as seasonality and a history of cases were used to project future risk of cases. The expected number of cases in each district in a 6-month period was predicted using indicators from the previous 6-months and the estimated coefficients from the model. The model achieves an average of 90% predictive accuracy as measured by area under the receiver operating characteristic (ROC) curve, for the past 3 years of cases. The risk of poliovirus has decreased dramatically in many of the key reservoir areas in Pakistan. The results of this model have been used to prioritize sub-national areas in Pakistan to receive additional immunization activities, additional monitoring, or other special interventions.

  7. [Predicting value of 2014 European guidelines risk prediction model for sudden cardiac death (HCM Risk-SCD) in Chinese patients with hypertrophic cardiomyopathy].

    Science.gov (United States)

    Li, W X; Liu, L W; Wang, J; Zuo, L; Yang, F; Kang, N; Lei, C H

    2017-12-24

    Objective: To evaluate the predicting value of the 2014 European Society of Cardiology (ESC) guidelines risk prediction model for sudden cardiac death (HCM Risk-SCD) in Chinese patients with hypertrophic cardiomyopathy (HCM), and to explore the predictors of adverse cardiovascular events in Chinese HCM patients. Methods: The study population consisted of a consecutive 207 HCM patients admitted in our center from October 2014 to October 2016. All patients were followed up to March 2017. The 5-year SCD probability of each patient was estimated using HCM Risk-SCD model based on electrocardiogram, echocardiography and cardiac magnetic resonance (CMR) examination results. The primary, second, and composite endpoints were recorded. The primary endpoint included SCD and appropriate ICD therapy, identical to the HCM Risk-SCD endpoint. The second endpoint included acute myocardial infarction, hospitalization for heart failure, thrombus embolism and end-stage HCM. The composite endpoint was either the primary or the second endpoint. Patients were divided into the 3 categories according to 5-year SCD probability assessed by HCM Risk-SCD model: low risk grouprisk group ≥4% torisk group≥6%. Results: (1) Prevalence of endpoints: All 207 HCM patients completed the follow-up (350 (230, 547) days). During follow-up, 8 (3.86%) patients reached the primary endpoints (3 cases of SCD, 3 cases of survival after defibrillation, and 2 cases of appropriate ICD discharge); 21 (10.14%) patients reached the second endpoints (1 case of acute myocardial infarction, 16 cases of heart failure hospitalization, 2 cases of thromboembolism, and 2 cases of end-stage HCM). (2) Predicting value of HCM Risk-SCD model: Patients with primary endpoints had higher prevalence of syncope and intermediate-high risk of 5-year SCD, as compared to those without primary endpoints (both Pvalue of HCM Risk-SCD model: The low risk group included 122 patients (59%), the intermediate risk group 42 (20%), and the

  8. Developing and evaluating polygenic risk prediction models for stratified disease prevention.

    Science.gov (United States)

    Chatterjee, Nilanjan; Shi, Jianxin; García-Closas, Montserrat

    2016-07-01

    Knowledge of genetics and its implications for human health is rapidly evolving in accordance with recent events, such as discoveries of large numbers of disease susceptibility loci from genome-wide association studies, the US Supreme Court ruling of the non-patentability of human genes, and the development of a regulatory framework for commercial genetic tests. In anticipation of the increasing relevance of genetic testing for the assessment of disease risks, this Review provides a summary of the methodologies used for building, evaluating and applying risk prediction models that include information from genetic testing and environmental risk factors. Potential applications of models for primary and secondary disease prevention are illustrated through several case studies, and future challenges and opportunities are discussed.

  9. Fall risk in community-dwelling elderly cancer survivors: a predictive model for gerontological nurses.

    Science.gov (United States)

    Spoelstra, Sandra; Given, Barbara; von Eye, Alexander; Given, Charles

    2010-02-01

    The aim of this predictive study was to test a structural model to establish predictors of fall risk in elderly cancer survivors. An aging and nursing model of care was synthesized and used to examine the Minimum Data Set for 6,912 low-income older adult participants in a community setting in the midwestern United States. Data analysis established relationships among fall risk and age, race/ethnicity, history of a previous fall, depression, pain, activities of daily living, instrumental activities of daily living, incontinence, vision, and cognitive status. Factors leading to fall risk can direct nursing activities that have the potential to prevent falls, thus improving older adults' quality of life. Copyright 2010, SLACK Incorporated.

  10. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  11. Developing a risk prediction model for the functional outcome after hip arthroscopy.

    Science.gov (United States)

    Stephan, Patrick; Röling, Maarten A; Mathijssen, Nina M C; Hannink, Gerjon; Bloem, Rolf M

    2018-04-19

    Hip arthroscopic treatment is not equally beneficial for every patient undergoing this procedure. Therefore, the purpose of this study was to develop a clinical prediction model for functional outcome after surgery based on preoperative factors. Prospective data was collected on a cohort of 205 patients having undergone hip arthroscopy between 2011 and 2015. Demographic and clinical variables and patient reported outcome (PRO) scores were collected, and considered as potential predictors. Successful outcome was defined as either a Hip Outcome Score (HOS)-ADL score of over 80% or improvement of 23%, defined by the minimal clinical important difference, 1 year after surgery. The prediction model was developed using backward logistic regression. Regression coefficients were converted into an easy to use prediction rule. The analysis included 203 patients, of which 74% had a successful outcome. Female gender (OR: 0.37 (95% CI 0.17-0.83); p = 0.02), pincer impingement (OR: 0.47 (95% CI 0.21-1.09); p = 0.08), labral tear (OR: 0.46 (95% CI 0.20-1.06); p = 0.07), HOS-ADL score (IQR OR: 2.01 (95% CI 0.99-4.08); p = 0.05), WHOQOL physical (IQR OR: 0.43 (95% CI 0.22-0.87); p = 0.02) and WHOQOL psychological (IQR OR: 2.40 (95% CI 1.38-4.18); p = prediction model of successful functional outcome 1 year after hip arthroscopy. The model's discriminating accuracy turned out to be fair, as 71% (95% CI: 64-80%) of the patients were classified correctly. The developed prediction model can predict the functional outcome of patients that are considered for a hip arthroscopic intervention, containing six easy accessible preoperative risk factors. The model can be further improved trough external validation and/or adding additional potential predictors.

  12. Risk prediction models for mortality in patients with ventilator-associated pneumonia

    DEFF Research Database (Denmark)

    Larsson, Johan E; Itenov, Theis Skovsgaard; Bestle, Morten Heiberg

    2017-01-01

    the receiver operator characteristic curve (AUC). RESULTS: We identified 19 articles studying 7 different models' ability to predict mortality in VAP patients. The models were Acute Physiology and Chronic Health Evaluation (APACHE) II (9 studies, n = 1398); Clinical Pulmonary Infection Score (4 studies, n...... = 303); "Immunodeficiency, Blood pressure, Multilobular infiltrates on chest radiograph, Platelets and hospitalization 10 days before onset of VAP" (3 studies, n = 406); "VAP Predisposition, Insult Response and Organ dysfunction" (2 studies, n = 589); Sequential Organ Failure Assessment (7 studies, n......: The PubMed and EMBASE were searched in February 2016. We included studies in English that evaluated models' ability to predict the risk of mortality in patients with VAP. The reported mortality with the longest follow-up was used in the meta-analysis. Prognostic accuracy was measured with the area under...

  13. Development of a risk prediction model among professional hockey players with visible signs of concussion.

    Science.gov (United States)

    Bruce, Jared M; Echemendia, Ruben J; Meeuwisse, Willem; Hutchison, Michael G; Aubry, Mark; Comper, Paul

    2017-04-04

    Little research examines how to best identify concussed athletes. The purpose of the present study was to develop a preliminary risk decision model that uses visible signs (VS) and mechanisms of injury (MOI) to predict the likelihood of subsequent concussion diagnosis. Coders viewed and documented VS and associated MOI for all NHL games over the course of the 2013-2014 and 2014-2015 regular seasons. After coding was completed, player concussions were identified from the NHL injury surveillance system and it was determined whether players exhibiting VS were subsequently diagnosed with concussions by club medical staff as a result of the coded event. Among athletes exhibiting VS, suspected loss of consciousness, motor incoordination or balance problems, being in a fight, having an initial hit from another player's shoulder and having a secondary hit on the ice were all associated with increased risk of subsequent concussion diagnosis. In contrast, having an initial hit with a stick was associated with decreased risk of subsequent concussion diagnosis. A risk prediction model using a combination of the above VS and MOI was superior to approaches that relied on individual VS and associated MOI (sensitivity=81%, specificity=72%, positive predictive value=26%). Combined use of VS and MOI significantly improves a clinician's ability to identify players who need to be evaluated for possible concussion. A preliminary concussion prediction log has been developed from these data. Pending prospective validation, the use of these methods may improve early concussion detection and evaluation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A simple model for prediction postpartum PTSD in high-risk pregnancies.

    Science.gov (United States)

    Shlomi Polachek, Inbal; Dulitzky, Mordechai; Margolis-Dorfman, Lilia; Simchen, Michal J

    2016-06-01

    This study aimed to examine the prevalence and possible antepartum risk factors of complete and partial post-traumatic stress disorder (PTSD) among women with complicated pregnancies and to define a predictive model for postpartum PTSD in this population. Women attending the high-risk pregnancy outpatient clinics at Sheba Medical Center completed the Edinburgh Postnatal Depression Scale (EPDS) and a questionnaire regarding demographic variables, history of psychological and psychiatric treatment, previous trauma, previous childbirth, current pregnancy medical and emotional complications, fears from childbirth, and expected pain. One month after delivery, women were requested to repeat the EPDS and complete the Post-traumatic Stress Diagnostic Scale (PDS) via telephone interview. The prevalence rates of postpartum PTSD (9.9 %) and partial PTSD (11.9 %) were relatively high. PTSD and partial PTSD were associated with sadness or anxiety during past pregnancy or childbirth, previous very difficult birth experiences, preference for cesarean section in future childbirth, emotional crises during pregnancy, increased fear of childbirth, higher expected intensity of pain, and depression during pregnancy. We created a prediction model for postpartum PTSD which shows a linear growth in the probability for developing postpartum PTSD when summing these seven antenatal risk factors. Postpartum PTSD is extremely prevalent after complicated pregnancies. A simple questionnaire may aid in identifying at-risk women before childbirth. This presents a potential for preventing or minimizing postpartum PTSD in this population.

  15. Combined prediction model for supply risk in nuclear power equipment manufacturing industry based on support vector machine and decision tree

    International Nuclear Information System (INIS)

    Shi Chunsheng; Meng Dapeng

    2011-01-01

    The prediction index for supply risk is developed based on the factor identifying of nuclear equipment manufacturing industry. The supply risk prediction model is established with the method of support vector machine and decision tree, based on the investigation on 3 important nuclear power equipment manufacturing enterprises and 60 suppliers. Final case study demonstrates that the combination model is better than the single prediction model, and demonstrates the feasibility and reliability of this model, which provides a method to evaluate the suppliers and measure the supply risk. (authors)

  16. [Application of Competing Risks Model in Predicting Smoking Relapse Following Ischemic Stroke].

    Science.gov (United States)

    Hou, Li-Sha; Li, Ji-Jie; Du, Xu-Dong; Yan, Pei-Jing; Zhu, Cai-Rong

    2017-07-01

    To determine factors associated with smoking relapse in men who survived from their first stroke. Data were collected through face to face interviews with stroke patients in the hospital, and then repeated every three months via telephone over the period from 2010 to 2014. Kaplan-Meier method and competing risk model were adopted to estimate and predict smoking relapse rates. The Kaplan-Meier method estimated a higher relapse rate than the competing risk model. The four-year relapse rate was 43.1% after adjustment of competing risk. Exposure to environmental tobacco smoking outside of home and workplace (such as bars and restaurants) ( P =0.01), single ( P <0.01), and prior history of smoking at least 20 cigarettes per day ( P =0.02) were significant predictors of smoking relapse. When competing risks exist, competing risks model should be used in data analyses. Smoking interventions should give priorities to those without a spouse and those with a heavy smoking history. Smoking ban in public settings can reduce smoking relapse in stroke patients.

  17. Linking spring phenology with mechanistic models of host movement to predict disease transmission risk

    Science.gov (United States)

    Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.

    2018-01-01

    Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate

  18. A decision model to predict the risk of the first fall onset.

    Science.gov (United States)

    Deschamps, Thibault; Le Goff, Camille G; Berrut, Gilles; Cornu, Christophe; Mignardot, Jean-Baptiste

    2016-08-01

    Miscellaneous features from various domains are accepted to be associated with the risk of falling in the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall onset. A model that would objectively and easily evaluate the risk of a first fall occurrence in the coming year still needs to be built. We developed a model based on machine learning, which might help the medical staff predict the risk of the first fall onset in a one-year time window. Overall, 426 older adults who had never fallen were assessed on 73 variables, comprising medical, social and physical outcomes, at t0. Each fall was recorded at a prospective 1-year follow-up. A decision tree was built on a randomly selected training subset of the cohort (80% of the full-set) and validated on an independent test set. 82 participants experienced a first fall during the follow-up. The machine learning process independently extracted 13 powerful parameters and built a model showing 89% of accuracy for the overall classification with 83%-82% of true positive fallers and 96%-61% of true negative non-fallers (training set vs. independent test set). This study provides a pilot tool that could easily help the gerontologists refine the evaluation of the risk of the first fall onset and prioritize the effective prevention strategies. The study also offers a transparent framework for future, related investigation that would validate the clinical relevance of the established model by independently testing its accuracy on larger cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.

    Science.gov (United States)

    Schoop, Rotraut; Beyersmann, Jan; Schumacher, Martin; Binder, Harald

    2011-02-01

    Prognostic models for time-to-event data play a prominent role in therapy assignment, risk stratification and inter-hospital quality assurance. The assessment of their prognostic value is vital not only for responsible resource allocation, but also for their widespread acceptance. The additional presence of competing risks to the event of interest requires proper handling not only on the model building side, but also during assessment. Research into methods for the evaluation of the prognostic potential of models accounting for competing risks is still needed, as most proposed methods measure either their discrimination or calibration, but do not examine both simultaneously. We adapt the prediction error proposal of Graf et al. (Statistics in Medicine 1999, 18, 2529–2545) and Gerds and Schumacher (Biometrical Journal 2006, 48, 1029–1040) to handle models with competing risks, i.e. more than one possible event type, and introduce a consistent estimator. A simulation study investigating the behaviour of the estimator in small sample size situations and for different levels of censoring together with a real data application follows.

  20. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China.

    Directory of Open Access Journals (Sweden)

    Hong-Lian Ruan

    Full Text Available To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC relies on the sero-status of the Epstein-Barr virus (EBV. By contrast, the risk assessment models proposed here include environmental risk factors, family history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic curves (AUC. To compare the discriminatory improvement of models with and without genetic information, we estimated the net reclassification improvement (NRI and integrated discrimination index (IDI. Well-established environmental risk factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years. The environmental model alone shows modest discriminatory ability (AUC = 0.68; 95% CI: 0.66, 0.70, which is only slightly increased by the addition of data on family history of NPC (AUC = 0.70; 95% CI: 0.68, 0.72. With the addition of data on genetic variants, however, our model's discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76. The improvements in NRI and IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data from NPC-endemic areas could well lead to earlier detection of NPC.

  1. Beyond the first episode: candidate factors for a risk prediction model of schizophrenia.

    Science.gov (United States)

    Murphy, Brendan P

    2010-01-01

    Many early psychosis services are financially compromised and cannot offer a full tenure of care to all patients. To maintain viability of services it is important that those with schizophrenia are identified early to maximize long-term outcomes, as are those with better prognoses who can be discharged early. The duration of untreated psychosis remains the mainstay in determining those who will benefit from extended care, yet its ability to inform on prognosis is modest in both the short and medium term. There are a number of known or putative genetic and environmental risk factors that have the potential to improve prognostication, though a multivariate risk prediction model combining them with clinical characteristics has yet to be developed. Candidate risk factors for such a model are presented, with an emphasis on environmental risk factors. More work is needed to corroborate many putative factors and to determine which of the established factors are salient and which are merely proxy measures. Future research should help clarify how gene-environment and environment-environment interactions occur and whether risk factors are dose-dependent, or if they act additively or synergistically, or are redundant in the presence (or absence) of other factors.

  2. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    Science.gov (United States)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  3. Identification of the high risk emergency surgical patient: Which risk prediction model should be used?

    Directory of Open Access Journals (Sweden)

    Stephen Stonelake

    2015-09-01

    Conclusions: In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the ‘high-risk’ patient.

  4. Determining the optimal screening interval for type 2 diabetes mellitus using a risk prediction model.

    Directory of Open Access Journals (Sweden)

    Andrei Brateanu

    Full Text Available Progression to diabetes mellitus (DM is variable and the screening time interval not well defined. The American Diabetes Association and US Preventive Services Task Force suggest screening every 3 years, but evidence is limited. The objective of the study was to develop a model to predict the probability of developing DM and suggest a risk-based screening interval.We included non-diabetic adult patients screened for DM in the Cleveland Clinic Health System if they had at least two measurements of glycated hemoglobin (HbA1c, an initial one less than 6.5% (48 mmol/mol in 2008, and another between January, 2009 and December, 2013. Cox proportional hazards models were created. The primary outcome was DM defined as HbA1C greater than 6.4% (46 mmol/mol. The optimal rescreening interval was chosen based on the predicted probability of developing DM.Of 5084 participants, 100 (4.4% of the 2281 patients with normal HbA1c and 772 (27.5% of the 2803 patients with prediabetes developed DM within 5 years. Factors associated with developing DM included HbA1c (HR per 0.1 units increase 1.20; 95%CI, 1.13-1.27, family history (HR 1.31; 95%CI, 1.13-1.51, smoking (HR 1.18; 95%CI, 1.03-1.35, triglycerides (HR 1.01; 95%CI, 1.00-1.03, alanine aminotransferase (HR 1.07; 95%CI, 1.03-1.11, body mass index (HR 1.06; 95%CI, 1.01-1.11, age (HR 0.95; 95%CI, 0.91-0.99 and high-density lipoproteins (HR 0.93; 95% CI, 0.90-0.95. Five percent of patients in the highest risk tertile developed DM within 8 months, while it took 35 months for 5% of the middle tertile to develop DM. Only 2.4% percent of the patients in the lowest tertile developed DM within 5 years.A risk prediction model employing commonly available data can be used to guide screening intervals. Based on equal intervals for equal risk, patients in the highest risk category could be rescreened after 8 months, while those in the intermediate and lowest risk categories could be rescreened after 3 and 5 years

  5. Application of predictive modelling techniques in industry: from food design up to risk assessment.

    Science.gov (United States)

    Membré, Jeanne-Marie; Lambert, Ronald J W

    2008-11-30

    In this communication, examples of applications of predictive microbiology in industrial contexts (i.e. Nestlé and Unilever) are presented which cover a range of applications in food safety from formulation and process design to consumer safety risk assessment. A tailor-made, private expert system, developed to support safe product/process design assessment is introduced as an example of how predictive models can be deployed for use by non-experts. Its use in conjunction with other tools and software available in the public domain is discussed. Specific applications of predictive microbiology techniques are presented relating to investigations of either growth or limits to growth with respect to product formulation or process conditions. An example of a probabilistic exposure assessment model for chilled food application is provided and its potential added value as a food safety management tool in an industrial context is weighed against its disadvantages. The role of predictive microbiology in the suite of tools available to food industry and some of its advantages and constraints are discussed.

  6. Predictive validity of the Hendrich fall risk model II in an acute geriatric unit.

    Science.gov (United States)

    Ivziku, Dhurata; Matarese, Maria; Pedone, Claudio

    2011-04-01

    Falls are the most common adverse events reported in acute care hospitals, and older patients are the most likely to fall. The risk of falling cannot be completely eliminated, but it can be reduced through the implementation of a fall prevention program. A major evidence-based intervention to prevent falls has been the use of fall-risk assessment tools. Many tools have been increasingly developed in recent years, but most instruments have not been investigated regarding reliability, validity and clinical usefulness. This study intends to evaluate the predictive validity and inter-rater reliability of Hendrich fall risk model II (HFRM II) in order to identify older patients at risk of falling in geriatric units and recommend its use in clinical practice. A prospective descriptive design was used. The study was carried out in a geriatric acute care unit of an Italian University hospital. All over 65 years old patients consecutively admitted to a geriatric acute care unit of an Italian University hospital over 8-month period were enrolled. The patients enrolled were screened for the falls risk by nurses with the HFRM II within 24h of admission. The falls occurring during the patient's hospital stay were registered. Inter-rater reliability, area under the ROC curve, sensitivity, specificity, positive and negative predictive values and time for the administration were evaluated. 179 elderly patients were included. The inter-rater reliability was 0.87 (95% CI 0.71-1.00). The administration time was about 1min. The most frequently reported risk factors were depression, incontinence, vertigo. Sensitivity and specificity were respectively 86% and 43%. The optimal cut-off score for screening at risk patients was 5 with an area under the ROC curve of 0.72. The risk factors more strongly associated with falls were confusion and depression. As falls of older patients are a common problem in acute care settings it is necessary that the nurses use specific validate and reliable

  7. The potential of large studies for building genetic risk prediction models

    Science.gov (United States)

    NCI scientists have developed a new paradigm to assess hereditary risk prediction in common diseases, such as prostate cancer. This genetic risk prediction concept is based on polygenic analysis—the study of a group of common DNA sequences, known as singl

  8. Evaluation of the white finger risk prediction model in ISO 5349 suggests need for prospective studies.

    Science.gov (United States)

    Gemne, G; Lundström, R

    1996-05-01

    The risk prediction model for white fingers in Annex A of ISO 5349 is not likely to offer protection from all tools and all work processes. It is also probable that some work place changes it has initiated are either redundant or lack the intended effect. The main reasons for these shortcomings are the following. The often demonstrated disagreement between predicted and observed white fingers occurrence may be related to the fact that the model is based on latency data. This leads to an overestimation, to an unknown extent, of true group risks. A possible healthy worker effect, resulting in underestimation, has not been considered, and uncertainty because of recall bias is connected with using latency as effect variable in a slowly developing disorder like white fingers. The diagnostic criteria for white fingers have varied over the years, causing a possible inclusion of circulatory disturbances other than those induced by vibration. Among insufficiently clarified matters unrelated to vibration are variations in individual susceptibility and other host factors that modify vibration effects, uncertainty concerning daily or total effective exposure, and the fact that variation in work methods and processes as well as ergonomic factors other than vibration tend to make different groups incomparable form the viewpoint of risk of injury. Lack of sufficient data on vibration measurements and employment durations add to the uncertainty, as do variations in tool conditions (grinder wheels, etc) and inherent difficulties in measurement. Finally, the ISO 5349 frequency-weighting curve only relates to acute sensory effects rather than chronic effects on vascular functions like white fingers, and directional difference in sensitivity has not been incorporated in the curve. Data on exposure-response relationships are needed from prospective studies that monitor the dose of exposure to special vibration types and all relevant environmental agents, employ diagnostics with good

  9. [Acute kidney injury after pediatric cardiac surgery: risk factors and outcomes. Proposal for a predictive model].

    Science.gov (United States)

    Cardoso, Bárbara; Laranjo, Sérgio; Gomes, Inês; Freitas, Isabel; Trigo, Conceição; Fragata, Isabel; Fragata, José; Pinto, Fátima

    2016-02-01

    To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Of the 325 patients included, median age three years (1 day-18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients' age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients. Copyright © 2015 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  10. Predictive modeling of complications.

    Science.gov (United States)

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  11. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde M.; van Riel, Sarah J.; Saghir, Zaigham

    2015-01-01

    Objectives: Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. Methods: From...... the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were...... used to evaluate risk discrimination. Results: AUCs of 0.826–0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer...

  12. Quantifying prognosis with risk predictions.

    Science.gov (United States)

    Pace, Nathan L; Eberhart, Leopold H J; Kranke, Peter R

    2012-01-01

    Prognosis is a forecast, based on present observations in a patient, of their probable outcome from disease, surgery and so on. Research methods for the development of risk probabilities may not be familiar to some anaesthesiologists. We briefly describe methods for identifying risk factors and risk scores. A probability prediction rule assigns a risk probability to a patient for the occurrence of a specific event. Probability reflects the continuum between absolute certainty (Pi = 1) and certified impossibility (Pi = 0). Biomarkers and clinical covariates that modify risk are known as risk factors. The Pi as modified by risk factors can be estimated by identifying the risk factors and their weighting; these are usually obtained by stepwise logistic regression. The accuracy of probabilistic predictors can be separated into the concepts of 'overall performance', 'discrimination' and 'calibration'. Overall performance is the mathematical distance between predictions and outcomes. Discrimination is the ability of the predictor to rank order observations with different outcomes. Calibration is the correctness of prediction probabilities on an absolute scale. Statistical methods include the Brier score, coefficient of determination (Nagelkerke R2), C-statistic and regression calibration. External validation is the comparison of the actual outcomes to the predicted outcomes in a new and independent patient sample. External validation uses the statistical methods of overall performance, discrimination and calibration and is uniformly recommended before acceptance of the prediction model. Evidence from randomised controlled clinical trials should be obtained to show the effectiveness of risk scores for altering patient management and patient outcomes.

  13. Living donor risk model for predicting kidney allograft and patient survival in an emerging economy.

    Science.gov (United States)

    Zafar, Mirza Naqi; Wong, Germaine; Aziz, Tahir; Abbas, Khawar; Adibul Hasan Rizvi, S

    2018-03-01

    Living donor kidney is the main source of donor organs in low to middle income countries. We aimed to develop a living donor risk model that predicts graft and patient survival in an emerging economy. We used data from the Sindh Institute of Urology and Transplantation (SIUT) database (n = 2283 recipients and n = 2283 living kidney donors, transplanted between 1993 and 2009) and conducted Cox proportional hazard analyses to develop a composite score that predicts graft and patient survivals. Donor factors age, creatinine clearance, nephron dose (estimated by donor/recipient body weight ratio) and human leukocyte antigen (HLA) match were included in the living donor risk model. The adjusted hazard ratios (HRs) for graft failures among those who received a kidney with living donor scores (reference to donor score of zero) of 1, 2, 3 and 4 were 1.14 (95%CI: 0.94-1.39), 1.24 (95%CI:1.03-1.49), 1.25 (95%CI:1.03-1.51) and 1.36 (95%CI:1.08-1.72) (P-value for trend =0.05). Similar findings were observed for patient survival. Similar to findings in high income countries, our study suggests that donor characteristics such as age, nephron dose, creatinine clearance and HLA match are important factors that determine the long-term patient and graft survival in low income countries. However, other crucial but undefined factors may play a role in determining the overall risk of graft failure and mortality in living kidney donor transplant recipients. © 2016 Asian Pacific Society of Nephrology.

  14. Predictive risk modelling in the Spanish population: a cross-sectional study.

    Science.gov (United States)

    Orueta, Juan F; Nuño-Solinis, Roberto; Mateos, Maider; Vergara, Itziar; Grandes, Gonzalo; Esnaola, Santiago

    2013-07-09

    An increase in chronic conditions is currently the greatest threat to human health and to the sustainability of health systems. Risk adjustment systems may enable population stratification programmes to be developed and become instrumental in implementing new models of care.The objectives of this study are to evaluate the capability of ACG-PM, DCG-HCC and CRG-based models to predict healthcare costs and identify patients that will be high consumers and to analyse changes to predictive capacity when socio-economic variables are added. This cross-sectional study used data of all Basque Country citizens over 14 years of age (n = 1,964,337) collected in a period of 2 years. Data from the first 12 months (age, sex, area deprivation index, diagnoses, procedures, prescriptions and previous cost) were used to construct the explanatory variables. The ability of models to predict healthcare costs in the following 12 months was assessed using the coefficient of determination and to identify the patients with highest costs by means of receiver operating characteristic (ROC) curve analysis. The coefficients of determination ranged from 0.18 to 0.21 for diagnosis-based models, 0.17-0.18 for prescription-based and 0.21-0.24 for the combination of both. The observed area under the ROC curve was 0.78-0.86 (identifying patients with a cost higher than P-95) and 0.83-0.90 (P-99). The values of the DCG-HCC models are slightly higher and those of the CRG models are lower, although prescription information could not be used in the latter. On adding previous cost data, differences between the three systems decrease appreciably. Inclusion of the deprivation index led to only marginal improvements in explanatory power. The case-mix systems developed in the USA can be useful in a publicly financed healthcare system with universal coverage to identify people at risk of high health resource consumption and whose situation is potentially preventable through proactive interventions.

  15. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

    International Nuclear Information System (INIS)

    Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong; Wu, Chun-Gen; Fang, Wen; Chen, Li; Guo, Jin-He; Deng, Gang; Zhu, Guang-Yu; Teng, Gao-Jun

    2017-01-01

    PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.

  16. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong [Southeast University, Department of Radiology, Medical School, Zhongda Hospital (China); Wu, Chun-Gen [Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Diagnostic and Interventional Radiology (China); Fang, Wen; Chen, Li; Guo, Jin-He; Deng, Gang; Zhu, Guang-Yu; Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Southeast University, Department of Radiology, Medical School, Zhongda Hospital (China)

    2017-02-15

    PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.

  17. Developing and validating a new precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension prediction model (JG model).

    Science.gov (United States)

    Kanegae, Hiroshi; Oikawa, Takamitsu; Suzuki, Kenji; Okawara, Yukie; Kario, Kazuomi

    2018-03-31

    No integrated risk assessment tools that include lifestyle factors and uric acid have been developed. In accordance with the Industrial Safety and Health Law in Japan, a follow-up examination of 63 495 normotensive individuals (mean age 42.8 years) who underwent a health checkup in 2010 was conducted every year for 5 years. The primary endpoint was new-onset hypertension (systolic blood pressure [SBP]/diastolic blood pressure [DBP] ≥ 140/90 mm Hg and/or the initiation of antihypertensive medications with self-reported hypertension). During the mean 3.4 years of follow-up, 7402 participants (11.7%) developed hypertension. The prediction model included age, sex, body mass index (BMI), SBP, DBP, low-density lipoprotein cholesterol, uric acid, proteinuria, current smoking, alcohol intake, eating rate, DBP by age, and BMI by age at baseline and was created by using Cox proportional hazards models to calculate 3-year absolute risks. The derivation analysis confirmed that the model performed well both with respect to discrimination and calibration (n = 63 495; C-statistic = 0.885, 95% confidence interval [CI], 0.865-0.903; χ 2 statistic = 13.6, degree of freedom [df] = 7). In the external validation analysis, moreover, the model performed well both in its discrimination and calibration characteristics (n = 14 168; C-statistic = 0.846; 95%CI, 0.775-0.905; χ 2 statistic = 8.7, df = 7). Adding LDL cholesterol, uric acid, proteinuria, alcohol intake, eating rate, and BMI by age to the base model yielded a significantly higher C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement, especially NRI non-event (NRI = 0.127, 95%CI = 0.100-0.152; NRI non-event  = 0.108, 95%CI = 0.102-0.117). In conclusion, a highly precise model with good performance was developed for predicting incident hypertension using the new parameters of eating rate, uric acid, proteinuria, and BMI by age. ©2018 Wiley Periodicals, Inc.

  18. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.

    Science.gov (United States)

    Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman

    2016-04-01

    Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR

  19. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance.

    Science.gov (United States)

    Meads, Catherine; Ahmed, Ikhlaaq; Riley, Richard D

    2012-04-01

    A risk prediction model is a statistical tool for estimating the probability that a currently healthy individual with specific risk factors will develop a condition in the future such as breast cancer. Reliably accurate prediction models can inform future disease burdens, health policies and individual decisions. Breast cancer prediction models containing modifiable risk factors, such as alcohol consumption, BMI or weight, condom use, exogenous hormone use and physical activity, are of particular interest to women who might be considering how to reduce their risk of breast cancer and clinicians developing health policies to reduce population incidence rates. We performed a systematic review to identify and evaluate the performance of prediction models for breast cancer that contain modifiable factors. A protocol was developed and a sensitive search in databases including MEDLINE and EMBASE was conducted in June 2010. Extensive use was made of reference lists. Included were any articles proposing or validating a breast cancer prediction model in a general female population, with no language restrictions. Duplicate data extraction and quality assessment were conducted. Results were summarised qualitatively, and where possible meta-analysis of model performance statistics was undertaken. The systematic review found 17 breast cancer models, each containing a different but often overlapping set of modifiable and other risk factors, combined with an estimated baseline risk that was also often different. Quality of reporting was generally poor, with characteristics of included participants and fitted model results often missing. Only four models received independent validation in external data, most notably the 'Gail 2' model with 12 validations. None of the models demonstrated consistently outstanding ability to accurately discriminate between those who did and those who did not develop breast cancer. For example, random-effects meta-analyses of the performance of the

  20. Enhanced risk prediction model for emergency department use and hospitalizations in patients in a primary care medical home.

    Science.gov (United States)

    Takahashi, Paul Y; Heien, Herbert C; Sangaralingham, Lindsey R; Shah, Nilay D; Naessens, James M

    2016-07-01

    With the advent of healthcare payment reform, identifying high-risk populations has become more important to providers. Existing risk-prediction models often focus on chronic conditions. This study sought to better understand other factors to improve identification of the highest risk population. A retrospective cohort study of a paneled primary care population utilizing 2010 data to calibrate a risk prediction model of hospital and emergency department (ED) use in 2011. Data were randomly split into development and validation data sets. We compared the enhanced model containing the additional risk predictors with the Minnesota medical tiering model. The study was conducted in the primary care practice of an integrated delivery system at an academic medical center in Rochester, Minnesota. The study focus was primary care medical home patients in 2010 and 2011 (n = 84,752), with the primary outcome of subsequent hospitalization or ED visit. A total of 42,384 individuals derived the enhanced risk-prediction model and 42,368 individuals validated the model. Predictors included Adjusted Clinical Groups-based Minnesota medical tiering, patient demographics, insurance status, and prior year healthcare utilization. Additional variables included specific mental and medical conditions, use of high-risk medications, and body mass index. The area under the curve in the enhanced model was 0.705 (95% CI, 0.698-0.712) compared with 0.662 (95% CI, 0.656-0.669) in the Minnesota medical tiering-only model. New high-risk patients in the enhanced model were more likely to have lack of health insurance, presence of Medicaid, diagnosed depression, and prior ED utilization. An enhanced model including additional healthcare-related factors improved the prediction of risk of hospitalization or ED visit.

  1. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin.

    Science.gov (United States)

    Luque, M J; Tapia, J L; Villarroel, L; Marshall, G; Musante, G; Carlo, W; Kattan, J

    2014-01-01

    Develop a risk prediction model for severe intraventricular hemorrhage (IVH) in very low birth weight infants (VLBWI). Prospectively collected data of infants with birth weight 500 to 1249 g born between 2001 and 2010 in centers from the Neocosur Network were used. Forward stepwise logistic regression model was employed. The model was tested in the 2011 cohort and then applied to the population of VLBWI that received prophylactic indomethacin to analyze its effect in the risk of severe IVH. Data from 6538 VLBWI were analyzed. The area under ROC curve for the model was 0.79 and 0.76 when tested in the 2011 cohort. The prophylactic indomethacin group had lower incidence of severe IVH, especially in the highest-risk groups. A model for early severe IVH prediction was developed and tested in our population. Prophylactic indomethacin was associated with a lower risk-adjusted incidence of severe IVH.

  2. Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening.

    Science.gov (United States)

    Katki, Hormuzd A; Kovalchik, Stephanie A; Petito, Lucia C; Cheung, Li C; Jacobs, Eric; Jemal, Ahmedin; Berg, Christine D; Chaturvedi, Anil K

    2018-05-15

    Lung cancer screening guidelines recommend using individualized risk models to refer ever-smokers for screening. However, different models select different screening populations. The performance of each model in selecting ever-smokers for screening is unknown. To compare the U.S. screening populations selected by 9 lung cancer risk models (the Bach model; the Spitz model; the Liverpool Lung Project [LLP] model; the LLP Incidence Risk Model [LLPi]; the Hoggart model; the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012 [PLCOM2012]; the Pittsburgh Predictor; the Lung Cancer Risk Assessment Tool [LCRAT]; and the Lung Cancer Death Risk Assessment Tool [LCDRAT]) and to examine their predictive performance in 2 cohorts. Population-based prospective studies. United States. Models selected U.S. screening populations by using data from the National Health Interview Survey from 2010 to 2012. Model performance was evaluated using data from 337 388 ever-smokers in the National Institutes of Health-AARP Diet and Health Study and 72 338 ever-smokers in the CPS-II (Cancer Prevention Study II) Nutrition Survey cohort. Model calibration (ratio of model-predicted to observed cases [expected-observed ratio]) and discrimination (area under the curve [AUC]). At a 5-year risk threshold of 2.0%, the models chose U.S. screening populations ranging from 7.6 million to 26 million ever-smokers. These disagreements occurred because, in both validation cohorts, 4 models (the Bach model, PLCOM2012, LCRAT, and LCDRAT) were well-calibrated (expected-observed ratio range, 0.92 to 1.12) and had higher AUCs (range, 0.75 to 0.79) than 5 models that generally overestimated risk (expected-observed ratio range, 0.83 to 3.69) and had lower AUCs (range, 0.62 to 0.75). The 4 best-performing models also had the highest sensitivity at a fixed specificity (and vice versa) and similar discrimination at a fixed risk threshold. These models showed better agreement on size of the

  3. An etiologic prediction model incorporating biomarkers to predict the bladder cancer risk associated with occupational exposure to aromatic amines: a pilot study

    OpenAIRE

    Mastrangelo, Giuseppe; Carta, Angela; Arici, Cecilia; Pavanello, Sofia; Porru, Stefano

    2017-01-01

    Background No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk associated with occupational exposure to aromatic amines. Methods Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; th...

  4. External validation of models predicting the individual risk of metachronous peritoneal carcinomatosis from colon and rectal cancer.

    Science.gov (United States)

    Segelman, J; Akre, O; Gustafsson, U O; Bottai, M; Martling, A

    2016-04-01

    To externally validate previously published predictive models of the risk of developing metachronous peritoneal carcinomatosis (PC) after resection of nonmetastatic colon or rectal cancer and to update the predictive model for colon cancer by adding new prognostic predictors. Data from all patients with Stage I-III colorectal cancer identified from a population-based database in Stockholm between 2008 and 2010 were used. We assessed the concordance between the predicted and observed probabilities of PC and utilized proportional-hazard regression to update the predictive model for colon cancer. When applied to the new validation dataset (n = 2011), the colon and rectal cancer risk-score models predicted metachronous PC with a concordance index of 79% and 67%, respectively. After adding the subclasses of pT3 and pT4 stage and mucinous tumour to the colon cancer model, the concordance index increased to 82%. In validation of external and recent cohorts, the predictive accuracy was strong in colon cancer and moderate in rectal cancer patients. The model can be used to identify high-risk patients for planned second-look laparoscopy/laparotomy for possible subsequent cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  5. Simple Decision-Analytic Functions of the AUC for Ruling Out a Risk Prediction Model and an Added Predictor.

    Science.gov (United States)

    Baker, Stuart G

    2018-02-01

    When using risk prediction models, an important consideration is weighing performance against the cost (monetary and harms) of ascertaining predictors. The minimum test tradeoff (MTT) for ruling out a model is the minimum number of all-predictor ascertainments per correct prediction to yield a positive overall expected utility. The MTT for ruling out an added predictor is the minimum number of added-predictor ascertainments per correct prediction to yield a positive overall expected utility. An approximation to the MTT for ruling out a model is 1/[P (H(AUC model )], where H(AUC) = AUC - {½ (1-AUC)} ½ , AUC is the area under the receiver operating characteristic (ROC) curve, and P is the probability of the predicted event in the target population. An approximation to the MTT for ruling out an added predictor is 1 /[P {(H(AUC Model:2 ) - H(AUC Model:1 )], where Model 2 includes an added predictor relative to Model 1. The latter approximation requires the Tangent Condition that the true positive rate at the point on the ROC curve with a slope of 1 is larger for Model 2 than Model 1. These approximations are suitable for back-of-the-envelope calculations. For example, in a study predicting the risk of invasive breast cancer, Model 2 adds to the predictors in Model 1 a set of 7 single nucleotide polymorphisms (SNPs). Based on the AUCs and the Tangent Condition, an MTT of 7200 was computed, which indicates that 7200 sets of SNPs are needed for every correct prediction of breast cancer to yield a positive overall expected utility. If ascertaining the SNPs costs $500, this MTT suggests that SNP ascertainment is not likely worthwhile for this risk prediction.

  6. Modeling infection transmission in primate networks to predict centrality-based risk.

    Science.gov (United States)

    Romano, Valéria; Duboscq, Julie; Sarabian, Cécile; Thomas, Elodie; Sueur, Cédric; MacIntosh, Andrew J J

    2016-07-01

    Social structure can theoretically regulate disease risk by mediating exposure to pathogens via social proximity and contact. Investigating the role of central individuals within a network may help predict infectious agent transmission as well as implement disease control strategies, but little is known about such dynamics in real primate networks. We combined social network analysis and a modeling approach to better understand transmission of a theoretical infectious agent in wild Japanese macaques, highly social animals which form extended but highly differentiated social networks. We collected focal data from adult females living on the islands of Koshima and Yakushima, Japan. Individual identities as well as grooming networks were included in a Markov graph-based simulation. In this model, the probability that an individual will transmit an infectious agent depends on the strength of its relationships with other group members. Similarly, its probability of being infected depends on its relationships with already infected group members. We correlated: (i) the percentage of subjects infected during a latency-constrained epidemic; (ii) the mean latency to complete transmission; (iii) the probability that an individual is infected first among all group members; and (iv) each individual's mean rank in the chain of transmission with different individual network centralities (eigenvector, strength, betweenness). Our results support the hypothesis that more central individuals transmit infections in a shorter amount of time and to more subjects but also become infected more quickly than less central individuals. However, we also observed that the spread of infectious agents on the Yakushima network did not always differ from expectations of spread on random networks. Generalizations about the importance of observed social networks in pathogen flow should thus be made with caution, since individual characteristics in some real world networks appear less relevant than

  7. The Evolution of a Malignancy Risk Prediction Model for Thyroid Nodules Using the Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Shahram Paydar

    2016-01-01

    fine needle aspiration and surgical histopathology results. The results matched in 63.5% of subjects. On the other hand, fine needle aspiration biopsy results falsely predicted malignant thyroid nodules in 16% of cases (false-negative. In 20.5% of subjects, fine needle aspiration was falsely positive for thyroid malignancy. The Resilient back Propagation (RP training algorithm lead to acceptable accuracy in prediction for the designed artificial neural network (64.66% by the cross- validation method. Under the cross-validation method, a back propagation algorithm that used the resilient back propagation protocol - the accuracy in prediction for the trained artificial neural network was 64.66%. Conclusion: An extensive bio-statistically validated artificial neural network of certain clinical, paraclinical and individual given inputs (predictors has the capability to stratify the malignancy risk of a thyroid nodule in order to individualize patient care. This risk assessment model (tool can virtually minimize unnecessary diagnostic thyroid surgeries as well as FNA misleading.

  8. Predictive accuracy of the PanCan lung cancer risk prediction model - external validation based on CT from the Danish Lung Cancer Screening Trial

    International Nuclear Information System (INIS)

    Winkler Wille, Mathilde M.; Dirksen, Asger; Riel, Sarah J. van; Jacobs, Colin; Scholten, Ernst T.; Ginneken, Bram van; Saghir, Zaigham; Pedersen, Jesper Holst; Hohwue Thomsen, Laura; Skovgaard, Lene T.

    2015-01-01

    Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. From the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were used to evaluate risk discrimination. AUCs of 0.826-0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer; in fact opposing effects of sex were observed in the two cohorts. Thus, female sex appeared to lower the risk (p = 0.047 and p = 0.040) in the DLCST. High risk discrimination was validated in the DLCST cohort, mainly determined by nodule size. Age and family history of lung cancer were significant predictors and could be included in the parsimonious model. Sex appears to be a less useful predictor. (orig.)

  9. Predictive accuracy of the PanCan lung cancer risk prediction model - external validation based on CT from the Danish Lung Cancer Screening Trial

    Energy Technology Data Exchange (ETDEWEB)

    Winkler Wille, Mathilde M.; Dirksen, Asger [Gentofte Hospital, Department of Respiratory Medicine, Hellerup (Denmark); Riel, Sarah J. van; Jacobs, Colin; Scholten, Ernst T.; Ginneken, Bram van [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Saghir, Zaigham [Herlev Hospital, Department of Respiratory Medicine, Herlev (Denmark); Pedersen, Jesper Holst [Copenhagen University Hospital, Department of Thoracic Surgery, Rigshospitalet, Koebenhavn Oe (Denmark); Hohwue Thomsen, Laura [Hvidovre Hospital, Department of Respiratory Medicine, Hvidovre (Denmark); Skovgaard, Lene T. [University of Copenhagen, Department of Biostatistics, Koebenhavn Oe (Denmark)

    2015-10-15

    Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. From the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were used to evaluate risk discrimination. AUCs of 0.826-0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer; in fact opposing effects of sex were observed in the two cohorts. Thus, female sex appeared to lower the risk (p = 0.047 and p = 0.040) in the DLCST. High risk discrimination was validated in the DLCST cohort, mainly determined by nodule size. Age and family history of lung cancer were significant predictors and could be included in the parsimonious model. Sex appears to be a less useful predictor. (orig.)

  10. Predictive value and modeling analysis of MSCT signs in gastrointestinal stromal tumors (GISTs) to pathological risk degree.

    Science.gov (United States)

    Wang, J-K

    2017-03-01

    By analyzing MSCT (multi-slice computed tomography) signs with different risks in gastrointestinal stromal tumors, this paper aimed to discuss the predictive value and modeling analysis of MSCT signs in GISTs (gastrointestinal stromal tumor) to pathological risk degree. 100 cases of primary GISTs with abdominal and pelvic MSCT scan were involved in this study. All MSCT scan findings and enhanced findings were analyzed and compared among cases with different risk degree of pathology. Then GISTs diagnostic model was established by using support vector machine (SVM) algorithm, and its diagnostic value was evaluated as well. All lesions were solitary, among which there were 46 low-risk cases, 24 medium-risk cases and 30 high-risk cases. For all high-risk, medium-risk and low-risk GISTs, there were statistical differences in tumor growth pattern, size, shape, fat space, with or without calcification, ulcer, enhancement method and peritumoral and intratumoral vessels (pvalue at each period (plain scan, arterial phase, venous phase) (p>0.05). The apparent difference lied in plain scan, arterial phase and venous phase for each risk degree. The diagnostic accuracy of SVM diagnostic model established with 10 imaging features as indexes was 70.0%, and it was especially reliable when diagnosing GISTs of high or low risk. Preoperative analysis of MSCT features is clinically significant for its diagnosis of risk degree and prognosis; GISTs diagnostic model established on the basis of SVM possesses high diagnostic value.

  11. A discriminant analysis prediction model of non-syndromic cleft lip with or without cleft palate based on risk factors.

    Science.gov (United States)

    Li, Huixia; Luo, Miyang; Luo, Jiayou; Zheng, Jianfei; Zeng, Rong; Du, Qiyun; Fang, Junqun; Ouyang, Na

    2016-11-23

    A risk prediction model of non-syndromic cleft lip with or without cleft palate (NSCL/P) was established by a discriminant analysis to predict the individual risk of NSCL/P in pregnant women. A hospital-based case-control study was conducted with 113 cases of NSCL/P and 226 controls without NSCL/P. The cases and the controls were obtained from 52 birth defects' surveillance hospitals in Hunan Province, China. A questionnaire was administered in person to collect the variables relevant to NSCL/P by face to face interviews. Logistic regression models were used to analyze the influencing factors of NSCL/P, and a stepwise Fisher discriminant analysis was subsequently used to construct the prediction model. In the univariate analysis, 13 influencing factors were related to NSCL/P, of which the following 8 influencing factors as predictors determined the discriminant prediction model: family income, maternal occupational hazards exposure, premarital medical examination, housing renovation, milk/soymilk intake in the first trimester of pregnancy, paternal occupational hazards exposure, paternal strong tea drinking, and family history of NSCL/P. The model had statistical significance (lambda = 0.772, chi-square = 86.044, df = 8, P Self-verification showed that 83.8 % of the participants were correctly predicted to be NSCL/P cases or controls with a sensitivity of 74.3 % and a specificity of 88.5 %. The area under the receiver operating characteristic curve (AUC) was 0.846. The prediction model that was established using the risk factors of NSCL/P can be useful for predicting the risk of NSCL/P. Further research is needed to improve the model, and confirm the validity and reliability of the model.

  12. Incidence of atrial fibrillation and its risk prediction model based on a prospective urban Han Chinese cohort.

    Science.gov (United States)

    Ding, L; Li, J; Wang, C; Li, X; Su, Q; Zhang, G; Xue, F

    2017-09-01

    Prediction models of atrial fibrillation (AF) have been developed; however, there was no AF prediction model validated in Chinese population. Therefore, we aimed to investigate the incidence of AF in urban Han Chinese health check-up population, as well as to develop AF prediction models using behavioral, anthropometric, biochemical, electrocardiogram (ECG) markers, as well as visit-to-visit variability (VVV) in blood pressures available in the routine health check-up. A total of 33 186 participants aged 45-85 years and free of AF at baseline were included in this cohort, to follow up for incident AF with an annually routine health check-up. Cox regression models were used to develop AF prediction model and 10-fold cross-validation was used to test the discriminatory accuracy of prediction model. We developed three prediction models, with age, sex, history of coronary heart disease (CHD), hypertension as predictors for simple model, with left high-amplitude waves, premature beats added for ECG model, and with age, sex, history of CHD and VVV in systolic and diabolic blood pressures as predictors for VVV model, to estimate risk of incident AF. The calibration of our models ranged from 1.001 to 1.004 (P for Hosmer Lemeshow test >0.05). The area under receiver operator characteristics curve were 78%, 80% and 82%, respectively, for predicting risk of AF. In conclusion, we have identified predictors of incident AF and developed prediction models for AF with variables readily available in routine health check-up.

  13. Long-Term Survival Prediction for Coronary Artery Bypass Grafting: Validation of the ASCERT Model Compared With The Society of Thoracic Surgeons Predicted Risk of Mortality.

    Science.gov (United States)

    Lancaster, Timothy S; Schill, Matthew R; Greenberg, Jason W; Ruaengsri, Chawannuch; Schuessler, Richard B; Lawton, Jennifer S; Maniar, Hersh S; Pasque, Michael K; Moon, Marc R; Damiano, Ralph J; Melby, Spencer J

    2018-05-01

    The recently developed American College of Cardiology Foundation-Society of Thoracic Surgeons (STS) Collaboration on the Comparative Effectiveness of Revascularization Strategy (ASCERT) Long-Term Survival Probability Calculator is a valuable addition to existing short-term risk-prediction tools for cardiac surgical procedures but has yet to be externally validated. Institutional data of 654 patients aged 65 years or older undergoing isolated coronary artery bypass grafting between 2005 and 2010 were reviewed. Predicted survival probabilities were calculated using the ASCERT model. Survival data were collected using the Social Security Death Index and institutional medical records. Model calibration and discrimination were assessed for the overall sample and for risk-stratified subgroups based on (1) ASCERT 7-year survival probability and (2) the predicted risk of mortality (PROM) from the STS Short-Term Risk Calculator. Logistic regression analysis was performed to evaluate additional perioperative variables contributing to death. Overall survival was 92.1% (569 of 597) at 1 year and 50.5% (164 of 325) at 7 years. Calibration assessment found no significant differences between predicted and actual survival curves for the overall sample or for the risk-stratified subgroups, whether stratified by predicted 7-year survival or by PROM. Discriminative performance was comparable between the ASCERT and PROM models for 7-year survival prediction (p validated for prediction of long-term survival after coronary artery bypass grafting in all risk groups. The widely used STS PROM performed comparably as a predictor of long-term survival. Both tools provide important information for preoperative decision making and patient counseling about potential outcomes after coronary artery bypass grafting. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. An etiologic prediction model incorporating biomarkers to predict the bladder cancer risk associated with occupational exposure to aromatic amines: a pilot study.

    Science.gov (United States)

    Mastrangelo, Giuseppe; Carta, Angela; Arici, Cecilia; Pavanello, Sofia; Porru, Stefano

    2017-01-01

    No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk associated with occupational exposure to aromatic amines. Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; the area under the curve was used to evaluate discriminatory ability of models. Area under the curve was 0.93 for the full model (including age, smoking and coffee habits, DNA adducts, 12 genotypes) and 0.86 for the short model (including smoking, DNA adducts, 3 genotypes). Using the "best cut-off" of predicted probability of a positive outcome, percentage of cases correctly classified was 92% (full model) against 75% (short model). Cancers classified as "positive outcome" are those to be referred for evaluation by an occupational physician for etiological diagnosis; these patients were 28 (full model) or 60 (short model). Using 3 genotypes instead of 12 can double the number of patients with suspect of aromatic amine related cancer, thus increasing costs of etiologic appraisal. Integrating clinical, laboratory and genetic factors, we developed the first etiologic prediction model for aromatic amine related bladder cancer. Discriminatory ability was excellent, particularly for the full model, allowing individualized predictions. Validation of our model in external populations is essential for practical use in the clinical setting.

  15. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk

    Directory of Open Access Journals (Sweden)

    Juan Guillermo eDiaz Ochoa

    2013-01-01

    Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.

  16. Developmental dyslexia: predicting individual risk.

    Science.gov (United States)

    Thompson, Paul A; Hulme, Charles; Nash, Hannah M; Gooch, Debbie; Hayiou-Thomas, Emma; Snowling, Margaret J

    2015-09-01

    Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited to three groups: children at family risk of dyslexia, children with concerns regarding speech, and language development at 3;06 years and controls considered to be typically developing. At 8 years, children were classified as 'dyslexic' or not. Logistic regression models were used to predict the individual risk of dyslexia and to investigate how risk factors accumulate to predict poor literacy outcomes. Family-risk status was a stronger predictor of dyslexia at 8 years than low language in preschool. Additional predictors in the preschool years include letter knowledge, phonological awareness, rapid automatized naming, and executive skills. At the time of school entry, language skills become significant predictors, and motor skills add a small but significant increase to the prediction probability. We present classification accuracy using different probability cutoffs for logistic regression models and ROC curves to highlight the accumulation of risk factors at the individual level. Dyslexia is the outcome of multiple risk factors and children with language difficulties at school entry are at high risk. Family history of dyslexia is a predictor of literacy outcome from the preschool years. However, screening does not reach an acceptable clinical level until close to school entry when letter knowledge, phonological awareness, and RAN, rather than family risk, together provide good sensitivity and specificity as a screening battery. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by

  17. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study

    NARCIS (Netherlands)

    K. ten Haaf (Kevin); J. Jeon (Jihyoun); M.C. Tammemagi (Martin); S.S. Han (Summer); C.Y. Kong (Chung Yin); S.K. Plevritis (Sylvia); E. Feuer (Eric); H.J. de Koning (Harry); E.W. Steyerberg (Ewout W.); R. Meza (Rafael)

    2017-01-01

    textabstractBackground: Selection of candidates for lung cancer screening based on individual risk has been proposed as an alternative to criteria based on age and cumulative smoking exposure (pack-years). Nine previously established risk models were assessed for their ability to identify those most

  18. Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer

    Directory of Open Access Journals (Sweden)

    Solène Desmée

    2017-07-01

    Full Text Available Abstract Background Joint models of longitudinal and time-to-event data are increasingly used to perform individual dynamic prediction of a risk of event. However the difficulty to perform inference in nonlinear models and to calculate the distribution of individual parameters has long limited this approach to linear mixed-effect models for the longitudinal part. Here we use a Bayesian algorithm and a nonlinear joint model to calculate individual dynamic predictions. We apply this approach to predict the risk of death in metastatic castration-resistant prostate cancer (mCRPC patients with frequent Prostate-Specific Antigen (PSA measurements. Methods A joint model is built using a large population of 400 mCRPC patients where PSA kinetics is described by a biexponential function and the hazard function is a PSA-dependent function. Using Hamiltonian Monte Carlo algorithm implemented in Stan software and the estimated population parameters in this population as priors, the a posteriori distribution of the hazard function is computed for a new patient knowing his PSA measurements until a given landmark time. Time-dependent area under the ROC curve (AUC and Brier score are derived to assess discrimination and calibration of the model predictions, first on 200 simulated patients and then on 196 real patients that are not included to build the model. Results Satisfying coverage probabilities of Monte Carlo prediction intervals are obtained for longitudinal and hazard functions. Individual dynamic predictions provide good predictive performances for landmark times larger than 12 months and horizon time of up to 18 months for both simulated and real data. Conclusions As nonlinear joint models can characterize the kinetics of biomarkers and their link with a time-to-event, this approach could be useful to improve patient’s follow-up and the early detection of most at risk patients.

  19. [Establishment of risk evaluation model of peritoneal metastasis in gastric cancer and its predictive value].

    Science.gov (United States)

    Zhao, Junjie; Zhou, Rongjian; Zhang, Qi; Shu, Ping; Li, Haojie; Wang, Xuefei; Shen, Zhenbin; Liu, Fenglin; Chen, Weidong; Qin, Jing; Sun, Yihong

    2017-01-25

    To establish an evaluation model of peritoneal metastasis in gastric cancer, and to assess its clinical significance. Clinical and pathologic data of the consecutive cases of gastric cancer admitted between April 2015 and December 2015 in Department of General Surgery, Zhongshan Hospital of Fudan University were analyzed retrospectively. A total of 710 patients were enrolled in the study after 18 patients with other distant metastasis were excluded. The correlations between peritoneal metastasis and different factors were studied through univariate (Pearson's test or Fisher's exact test) and multivariate analyses (Binary Logistic regression). Independent predictable factors for peritoneal metastasis were combined to establish a risk evaluation model (nomogram). The nomogram was created with R software using the 'rms' package. In the nomogram, each factor had different scores, and every patient could have a total score by adding all the scores of each factor. A higher total score represented higher risk of peritoneal metastasis. Receiver operating characteristic (ROC) curve analysis was used to compare the sensitivity and specificity of the established nomogram. Delong. Delong. Clarke-Pearson test was used to compare the difference of the area under the curve (AUC). The cut-off value was determined by the AUC, when the ROC curve had the biggest AUC, the model had the best sensitivity and specificity. Among 710 patients, 47 patients had peritoneal metastasis (6.6%), including 30 male (30/506, 5.9%) and 17 female (17/204, 8.3%); 31 were ≥ 60 years old (31/429, 7.2%); 38 had tumor ≥ 3 cm(38/461, 8.2%). Lauren classification indicated that 2 patients were intestinal type(2/245, 0.8%), 8 patients were mixed type(8/208, 3.8%), 11 patients were diffuse type(11/142, 7.7%), and others had no associated data. CA19-9 of 13 patients was ≥ 37 kU/L(13/61, 21.3%); CA125 of 11 patients was ≥ 35 kU/L(11/36, 30.6%); CA72-4 of 11 patients was ≥ 10 kU/L(11/39, 28

  20. Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients.

    Science.gov (United States)

    Ahmed, Anwar E; Alshukairi, Abeer N; Al-Jahdali, Hamdan; Alaqeel, Mody; Siddiq, Salma S; Alsaab, Hanan A; Sakr, Ezzeldin A; Alyahya, Hamed A; Alandonisi, Munzir M; Subedar, Alaa T; Aloudah, Nouf M; Baharoon, Salim; Alsalamah, Majid A; Al Johani, Sameera; Alghamdi, Mohammed G

    2018-04-14

    Introduction The Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause transmission clusters and high mortality in hemodialysis facilities. We attempted to develop a risk-prediction model to assess the early risk of MERS-CoV infection in dialysis patients. Methods This two-center retrospective cohort study included 104 dialysis patients who were suspected of MERS-CoV infection and diagnosed with rRT-PCR between September 2012 and June 2016 at King Fahd General Hospital in Jeddah and King Abdulaziz Medical City in Riyadh. We retrieved data on demographic, clinical, and radiological findings, and laboratory indices of each patient. Findings A risk-prediction model to assess early risk for MERS-CoV in dialysis patients has been developed. Independent predictors of MERS-CoV infection were identified, including chest pain (OR = 24.194; P = 0.011), leukopenia (OR = 6.080; P = 0.049), and elevated aspartate aminotransferase (AST) (OR = 11.179; P = 0.013). The adequacy of this prediction model was good (P = 0.728), with a high predictive utility (area under curve [AUC] = 76.99%; 95% CI: 67.05% to 86.38%). The prediction of the model had optimism-corrected bootstrap resampling AUC of 71.79%. The Youden index yielded a value of 0.439 or greater as the best cut-off for high risk of MERS infection. Discussion This risk-prediction model in dialysis patients appears to depend markedly on chest pain, leukopenia, and elevated AST. The model accurately predicts the high risk of MERS-CoV infection in dialysis patients. This could be clinically useful in applying timely intervention and control measures to prevent clusters of infections in dialysis facilities or other health care settings. The predictive utility of the model warrants further validation in external samples and prospective studies. © 2018 International Society for Hemodialysis.

  1. Development of a Coronary Heart Disease Risk Prediction Model for Type 1 Diabetes: The Pittsburgh CHD in Type 1 Diabetes Risk Mode

    NARCIS (Netherlands)

    Zgibor, J.C.; Ruppert, K.; Orchard, T.J.; Soedamah-Muthu, S.S.; Fuller, J.H.; Chaturvedi, N.; Roberts, M.S.

    2010-01-01

    Aim - To create a coronary heart disease (CHD) risk prediction model specific to type 1 diabetes. Methods - Development of the model used data from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). EDC subjects had type 1 diabetes diagnosed between 1950 and 1980, received their

  2. Tail Risk Premia and Return Predictability

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor; Xu, Lai

    The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may be attribu......The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may......-varying economic uncertainty and changes in risk aversion, or market fears, respectively....

  3. DIAGNOSIS OF BUSINESS AND PREDICTIVE MODELS OF BANCRUPTCY RISK – A MODEL DESIGN

    Directory of Open Access Journals (Sweden)

    Sorin Nicolae Borlea

    2004-09-01

    Full Text Available In this paper we propose the development of a deterministic model for diagnosis the business performances, based on the current needs imposed by the requirements of a sustainable development economy. The beginning of the XXIst century brings new approaches to organization performance, so performance begins to be defined according to the value it creates for all stakeholders. The proposed model is based on assessing a FESG score type (based on four pillars of sustainable development (Economic/Financial, Environmental, Social and Governance. So, we extend the Triple Bottom Line approach introduced by Elkington (2002 with Quadruple Bottom Line, by adding in our score besides the economic / financial, environmental and social dimensions, a fourth dimension which is corporate governance. Maximizing economic, social and environment performances can be done only in the context of good collaboration at the level of corporate governance structures through which conflicts of interest are diminished. In our model we used SWOT method (Strength,Weakness, Opportunities and Threats combined with the evaluation grids method (based on Likert scale with five levels. Also we have in mind the credit rating methodology used by Standards & Poors or Fitch agencies.

  4. Predicting Young Adults Binge Drinking in Nightlife Scenes: An Evaluation of the D-ARIANNA Risk Estimation Model.

    Science.gov (United States)

    Crocamo, Cristina; Bartoli, Francesco; Montomoli, Cristina; Carrà, Giuseppe

    2018-05-25

    Binge drinking (BD) among young people has significant public health implications. Thus, there is the need to target users most at risk. We estimated the discriminative accuracy of an innovative model nested in a recently developed e-Health app (Digital-Alcohol RIsk Alertness Notifying Network for Adolescents and young adults [D-ARIANNA]) for BD in young people, examining its performance to predict short-term BD episodes. We consecutively recruited young adults in pubs, discos, or live music events. Participants self-administered the app D-ARIANNA, which incorporates an evidence-based risk estimation model for the dependent variable BD. They were re-evaluated after 2 weeks using a single-item BD behavior as reference. We estimated D-ARIANNA discriminative ability through measures of sensitivity and specificity, and also likelihood ratios. ROC curve analyses were carried out, exploring variability of discriminative ability across subgroups. The analyses included 507 subjects, of whom 18% reported at least 1 BD episode at follow-up. The majority of these had been identified as at high/moderate or high risk (65%) at induction. Higher scores from the D-ARIANNA risk estimation model reflected an increase in the likelihood of BD. Additional risk factors such as high pocket money availability and alcohol expectancies influence the predictive ability of the model. The D-ARIANNA model showed an appreciable, though modest, predictive ability for subsequent BD episodes. Post-hoc model showed slightly better predictive properties. Using up-to-date technology, D-ARIANNA appears an innovative and promising screening tool for BD among young people. Long-term impact remains to be established, and also the role of additional social and environmental factors.

  5. Predictive Modeling and Concentration of the Risk of Suicide: Implications for Preventive Interventions in the US Department of Veterans Affairs.

    Science.gov (United States)

    McCarthy, John F; Bossarte, Robert M; Katz, Ira R; Thompson, Caitlin; Kemp, Janet; Hannemann, Claire M; Nielson, Christopher; Schoenbaum, Michael

    2015-09-01

    The Veterans Health Administration (VHA) evaluated the use of predictive modeling to identify patients at risk for suicide and to supplement ongoing care with risk-stratified interventions. Suicide data came from the National Death Index. Predictors were measures from VHA clinical records incorporating patient-months from October 1, 2008, to September 30, 2011, for all suicide decedents and 1% of living patients, divided randomly into development and validation samples. We used data on all patients alive on September 30, 2010, to evaluate predictions of suicide risk over 1 year. Modeling demonstrated that suicide rates were 82 and 60 times greater than the rate in the overall sample in the highest 0.01% stratum for calculated risk for the development and validation samples, respectively; 39 and 30 times greater in the highest 0.10%; 14 and 12 times greater in the highest 1.00%; and 6.3 and 5.7 times greater in the highest 5.00%. Predictive modeling can identify high-risk patients who were not identified on clinical grounds. VHA is developing modeling to enhance clinical care and to guide the delivery of preventive interventions.

  6. Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework

    Science.gov (United States)

    Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria

    2012-01-01

    This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122

  7. Predictors of incident heart failure in patients after an acute coronary syndrome: The LIPID heart failure risk-prediction model.

    Science.gov (United States)

    Driscoll, Andrea; Barnes, Elizabeth H; Blankenberg, Stefan; Colquhoun, David M; Hunt, David; Nestel, Paul J; Stewart, Ralph A; West, Malcolm J; White, Harvey D; Simes, John; Tonkin, Andrew

    2017-12-01

    Coronary heart disease is a major cause of heart failure. Availability of risk-prediction models that include both clinical parameters and biomarkers is limited. We aimed to develop such a model for prediction of incident heart failure. A multivariable risk-factor model was developed for prediction of first occurrence of heart failure death or hospitalization. A simplified risk score was derived that enabled subjects to be grouped into categories of 5-year risk varying from 20%. Among 7101 patients from the LIPID study (84% male), with median age 61years (interquartile range 55-67years), 558 (8%) died or were hospitalized because of heart failure. Older age, history of claudication or diabetes mellitus, body mass index>30kg/m 2 , LDL-cholesterol >2.5mmol/L, heart rate>70 beats/min, white blood cell count, and the nature of the qualifying acute coronary syndrome (myocardial infarction or unstable angina) were associated with an increase in heart failure events. Coronary revascularization was associated with a lower event rate. Incident heart failure increased with higher concentrations of B-type natriuretic peptide >50ng/L, cystatin C>0.93nmol/L, D-dimer >273nmol/L, high-sensitivity C-reactive protein >4.8nmol/L, and sensitive troponin I>0.018μg/L. Addition of biomarkers to the clinical risk model improved the model's C statistic from 0.73 to 0.77. The net reclassification improvement incorporating biomarkers into the clinical model using categories of 5-year risk was 23%. Adding a multibiomarker panel to conventional parameters markedly improved discrimination and risk classification for future heart failure events. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Enteric disease episodes and the risk of acquiring a future sexually transmitted infection: a prediction model in Montreal residents.

    Science.gov (United States)

    Caron, Melissa; Allard, Robert; Bédard, Lucie; Latreille, Jérôme; Buckeridge, David L

    2016-11-01

    The sexual transmission of enteric diseases poses an important public health challenge. We aimed to build a prediction model capable of identifying individuals with a reported enteric disease who could be at risk of acquiring future sexually transmitted infections (STIs). Passive surveillance data on Montreal residents with at least 1 enteric disease report was used to construct the prediction model. Cases were defined as all subjects with at least 1 STI report following their initial enteric disease episode. A final logistic regression prediction model was chosen using forward stepwise selection. The prediction model with the greatest validity included age, sex, residential location, number of STI episodes experienced prior to the first enteric disease episode, type of enteric disease acquired, and an interaction term between age and male sex. This model had an area under the curve of 0.77 and had acceptable calibration. A coordinated public health response to the sexual transmission of enteric diseases requires that a distinction be made between cases of enteric diseases transmitted through sexual activity from those transmitted through contaminated food or water. A prediction model can aid public health officials in identifying individuals who may have a higher risk of sexually acquiring a reportable disease. Once identified, these individuals could receive specialized intervention to prevent future infection. The information produced from a prediction model capable of identifying higher risk individuals can be used to guide efforts in investigating and controlling reported cases of enteric diseases and STIs. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. WE-E-BRE-05: Ensemble of Graphical Models for Predicting Radiation Pneumontis Risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Ybarra, N; Jeyaseelan, K; El Naqa, I [McGill University, Montreal, Quebec (Canada); Faria, S; Kopek, N [Montreal General Hospital, Montreal, Quebec (Canada)

    2014-06-15

    Purpose: We propose a prior knowledge-based approach to construct an interaction graph of biological and dosimetric radiation pneumontis (RP) covariates for the purpose of developing a RP risk classifier. Methods: We recruited 59 NSCLC patients who received curative radiotherapy with minimum 6 month follow-up. 16 RP events was observed (CTCAE grade ≥2). Blood serum was collected from every patient before (pre-RT) and during RT (mid-RT). From each sample the concentration of the following five candidate biomarkers were taken as covariates: alpha-2-macroglobulin (α2M), angiotensin converting enzyme (ACE), transforming growth factor β (TGF-β), interleukin-6 (IL-6), and osteopontin (OPN). Dose-volumetric parameters were also included as covariates. The number of biological and dosimetric covariates was reduced by a variable selection scheme implemented by L1-regularized logistic regression (LASSO). Posterior probability distribution of interaction graphs between the selected variables was estimated from the data under the literature-based prior knowledge to weight more heavily the graphs that contain the expected associations. A graph ensemble was formed by averaging the most probable graphs weighted by their posterior, creating a Bayesian Network (BN)-based RP risk classifier. Results: The LASSO selected the following 7 RP covariates: (1) pre-RT concentration level of α2M, (2) α2M level mid- RT/pre-RT, (3) pre-RT IL6 level, (4) IL6 level mid-RT/pre-RT, (5) ACE mid-RT/pre-RT, (6) PTV volume, and (7) mean lung dose (MLD). The ensemble BN model achieved the maximum sensitivity/specificity of 81%/84% and outperformed univariate dosimetric predictors as shown by larger AUC values (0.78∼0.81) compared with MLD (0.61), V20 (0.65) and V30 (0.70). The ensembles obtained by incorporating the prior knowledge improved classification performance for the ensemble size 5∼50. Conclusion: We demonstrated a probabilistic ensemble method to detect robust associations between

  10. A risk-based model for predicting the impact of using condoms on the spread of sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Asma Azizi

    2017-02-01

    Full Text Available We create and analyze a mathematical model to understand the impact of condom-use and sexual behavior on the prevalence and spread of Sexually Transmitted Infections (STIs. STIs remain significant public health challenges globally with a high burden of some Sexually Transmitted Diseases (STDs in both developed and undeveloped countries. Although condom-use is known to reduce the transmission of STIs, there are a few quantitative population-based studies on the protective role of condom-use in reducing the incidence of STIs. The number of concurrent partners is correlated with their risk of being infectious by an STI such as chlamydia, gonorrhea, or syphilis. We develop a Susceptible-Infectious-Susceptible (SIS model that stratifies the population based on the number of concurrent partners. The model captures the multi-level heterogeneous mixing through a combination of biased (preferential and random (proportional mixing processes between individuals with distinct risk levels, and accounts for differences in condom-use in the low- and high-risk populations. We use sensitivity analysis to assess the relative impact of high-risk people using condom as a prophylactic intervention to reduce their chance of being infectious, or infecting others. The model predicts the STI prevalence as a function of the number of partners of an individual, and quantifies how this distribution of effective partners changes as a function of condom-use. Our results show that when the mixing is random, then increasing the condom-use in the high-risk population is more effective in reducing the prevalence than when many of the partners of high-risk people have high risk. The model quantifies how the risk of being infected increases for people who have more partners, and the need for high-risk people to consistently use condoms to reduce their risk of infection. Keywords: Mathematical modeling, Sexually transmitted infection (STI, Biased (preferential mixing, Random

  11. Models to Predict the Burden of Cardiovascular Disease Risk in a Rural Mountainous Region of Vietnam

    NARCIS (Netherlands)

    Nguyen, Thi Phuong Lan; Schuiling-Veninga, Nynke; Nguyen, Thi Bach Yen; Hang, Vu Thi Thu; Wright, E. Pamela; Postma, M.J.

    2014-01-01

    Objective: To compare and identify the most appropriate model to predict cardiovascular disease (CVD) in a rural area in Northern Vietnam, using data on hypertension from the communities. Methods: A cross-sectional survey was conducted including all residents in selected communities, aged 34 to 65

  12. The Surgical Mortality Probability Model: derivation and validation of a simple risk prediction rule for noncardiac surgery.

    Science.gov (United States)

    Glance, Laurent G; Lustik, Stewart J; Hannan, Edward L; Osler, Turner M; Mukamel, Dana B; Qian, Feng; Dick, Andrew W

    2012-04-01

    To develop a 30-day mortality risk index for noncardiac surgery that can be used to communicate risk information to patients and guide clinical management at the "point-of-care," and that can be used by surgeons and hospitals to internally audit their quality of care. Clinicians rely on the Revised Cardiac Risk Index to quantify the risk of cardiac complications in patients undergoing noncardiac surgery. Because mortality from noncardiac causes accounts for many perioperative deaths, there is also a need for a simple bedside risk index to predict 30-day all-cause mortality after noncardiac surgery. Retrospective cohort study of 298,772 patients undergoing noncardiac surgery during 2005 to 2007 using the American College of Surgeons National Surgical Quality Improvement Program database. The 9-point S-MPM (Surgical Mortality Probability Model) 30-day mortality risk index was derived empirically and includes three risk factors: ASA (American Society of Anesthesiologists) physical status, emergency status, and surgery risk class. Patients with ASA physical status I, II, III, IV or V were assigned either 0, 2, 4, 5, or 6 points, respectively; intermediate- or high-risk procedures were assigned 1 or 2 points, respectively; and emergency procedures were assigned 1 point. Patients with risk scores less than 5 had a predicted risk of mortality less than 0.50%, whereas patients with a risk score of 5 to 6 had a risk of mortality between 1.5% and 4.0%. Patients with a risk score greater than 6 had risk of mortality more than 10%. S-MPM exhibited excellent discrimination (C statistic, 0.897) and acceptable calibration (Hosmer-Lemeshow statistic 13.0, P = 0.023) in the validation data set. Thirty-day mortality after noncardiac surgery can be accurately predicted using a simple and accurate risk score based on information readily available at the bedside. This risk index may play a useful role in facilitating shared decision making, developing and implementing risk

  13. A new risk scoring model for prediction of poor coronary collateral circulation in acute non-ST-elevation myocardial infarction.

    Science.gov (United States)

    İleri, Mehmet; Güray, Ümit; Yetkin, Ertan; Gürsoy, Havva Tuğba; Bayır, Pınar Türker; Şahin, Deniz; Elalmış, Özgül Uçar; Büyükaşık, Yahya

    2016-01-01

    We aimed to investigate the clinical features associated with development of coronary collateral circulation (CCC) in patients with acute non-ST-elevation myocardial infarction (NSTEMI) and to develop a scoring model for predicting poor collateralization at hospital admission. The study enrolled 224 consecutive patients with NSTEMI admitted to our coronary care unit. Patients were divided into poor (grade 0 and 1) and good (grade 2 and 3) CCC groups. In logistic regression analysis, presence of diabetes mellitus, total white blood cell (WBC) and neutrophil counts and neutrophil to lymphocyte ratio (NLR) were found as independent positive predictors of poor CCC, whereas older age (≥ 70 years) emerged as a negative indicator. The final scoring model was based on 5 variables which were significant at p risk score ≤ 1, 29 had good CCC (with a 97% negative predictive value). On the other hand, 139 patients had risk score ≥ 4; out of whom, 130 (with a 93.5% positive predictive value) had poor collateralization. Sensitivity and specificity of the model in predicting poor collateralization in patients with scores ≤ 1 and ≥ 4 were 99.2% (130/131) and +76.3 (29/38), respectively. This study represents the first prediction model for degree of coronary collateralization in patients with acute NSTEMI.

  14. Development and validation of a predictive risk model for all-cause mortality in type 2 diabetes.

    Science.gov (United States)

    Robinson, Tom E; Elley, C Raina; Kenealy, Tim; Drury, Paul L

    2015-06-01

    Type 2 diabetes is common and is associated with an approximate 80% increase in the rate of mortality. Management decisions may be assisted by an estimate of the patient's absolute risk of adverse outcomes, including death. This study aimed to derive a predictive risk model for all-cause mortality in type 2 diabetes. We used primary care data from a large national multi-ethnic cohort of patients with type 2 diabetes in New Zealand and linked mortality records to develop a predictive risk model for 5-year risk of mortality. We then validated this model using information from a separate cohort of patients with type 2 diabetes. 26,864 people were included in the development cohort with a median follow up time of 9.1 years. We developed three models initially using demographic information and then progressively more clinical detail. The final model, which also included markers of renal disease, proved to give best prediction of all-cause mortality with a C-statistic of 0.80 in the development cohort and 0.79 in the validation cohort (7610 people) and was well calibrated. Ethnicity was a major factor with hazard ratios of 1.37 for indigenous Maori, 0.41 for East Asian and 0.55 for Indo Asian compared with European (P<0.001). We have developed a model using information usually available in primary care that provides good assessment of patient's risk of death. Results are similar to models previously published from smaller cohorts in other countries and apply to a wider range of patient ethnic groups. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. A Risk Prediction Model Based on Lymph-Node Metastasis in Poorly Differentiated-Type Intramucosal Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Jeung Hui Pyo

    Full Text Available Endoscopic submucosal dissection (ESD for undifferentiated type early gastric cancer is regarded as an investigational treatment. Few studies have tried to identify the risk factors that predict lymph-node metastasis (LNM in intramucosal poorly differentiated adenocarcinomas (PDC. This study was designed to develop a risk scoring system (RSS for predicting LNM in intramucosal PDC.From January 2002 to July 2015, patients diagnosed with mucosa-confined PDC, among those who underwent curative gastrectomy with lymph node dissection were reviewed. A risk model based on independent predicting factors of LNM was developed, and its performance was internally validated using a split sample approach.Overall, LNM was observed in 5.2% (61 of 1169 patients. Four risk factors [Female sex, tumor size ≥ 3.2 cm, muscularis mucosa (M3 invasion, and lymphatic-vascular involvement] were significantly associated with LNM, which were incorporated into the RSS. The area under the receiver operating characteristic curve for predicting LNM after internal validation was 0.69 [95% confidence interval (CI, 0.59-0.79]. A total score of 2 points corresponded to the optimal RSS threshold with a discrimination of 0.75 (95% CI 0.69-0.81. The LNM rates were 1.6% for low risk (<2 points and 8.9% for high-risk (≥2 points patients, with a negative predictive value of 98.6% (95% CI 0.98-1.00.A RSS could be useful in clinical practice to determine which patients with intramucosal PDC have low risk of LNM.

  16. A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine

    International Nuclear Information System (INIS)

    Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang

    2016-01-01

    Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.

  17. Bayesian predictive risk modeling of microbial criteria for Campylobacter in broilers

    DEFF Research Database (Denmark)

    Nauta, Maarten; Ranta, J.; Mikkelä, A.

    Microbial Criteria define the acceptability of food products, based on the presence or detected number of microorganisms in samples. The criteria are applied at the level of defined food lots. Generally, these are interpreted as statistical batches representing the production [1]. The batches...... be assessed by computing posterior distribution of the parameters - a Bayesian evidence synthesis. The outcome of a defined Microbial Criterion (MC) for a batch provides additional evidence concerning the batch. Posterior predictive consumer risk (probability of illness) was computed for such batch...

  18. Validation of a new mortality risk prediction model for people 65 years and older in northwest Russia: The Crystal risk score.

    Science.gov (United States)

    Turusheva, Anna; Frolova, Elena; Bert, Vaes; Hegendoerfer, Eralda; Degryse, Jean-Marie

    2017-07-01

    Prediction models help to make decisions about further management in clinical practice. This study aims to develop a mortality risk score based on previously identified risk predictors and to perform internal and external validations. In a population-based prospective cohort study of 611 community-dwelling individuals aged 65+ in St. Petersburg (Russia), all-cause mortality risks over 2.5 years follow-up were determined based on the results obtained from anthropometry, medical history, physical performance tests, spirometry and laboratory tests. C-statistic, risk reclassification analysis, integrated discrimination improvement analysis, decision curves analysis, internal validation and external validation were performed. Older adults were at higher risk for mortality [HR (95%CI)=4.54 (3.73-5.52)] when two or more of the following components were present: poor physical performance, low muscle mass, poor lung function, and anemia. If anemia was combined with high C-reactive protein (CRP) and high B-type natriuretic peptide (BNP) was added the HR (95%CI) was slightly higher (5.81 (4.73-7.14)) even after adjusting for age, sex and comorbidities. Our models were validated in an external population of adults 80+. The extended model had a better predictive capacity for cardiovascular mortality [HR (95%CI)=5.05 (2.23-11.44)] compared to the baseline model [HR (95%CI)=2.17 (1.18-4.00)] in the external population. We developed and validated a new risk prediction score that may be used to identify older adults at higher risk for mortality in Russia. Additional studies need to determine which targeted interventions improve the outcomes of these at-risk individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modelling of spatial prediction of fire ignition risk in the Antalya-Manavgat district

    Directory of Open Access Journals (Sweden)

    Coşkun Okan Güney

    2016-07-01

    Full Text Available The aim of this study was to present the fire ignition risk for Manavgat-Antalya District to enable the planning of firefighting sources in a more qualified way. From sites within the study area, where forest fires broke out or not during the past five years, we obtained geographical coordinates, climate data, topographical data and variables like bedrock, stand types, settlement areas, roads and power lines and prepared them with geographical information systems. For all variables we performed Wilcoxon rank-sum test, interspecific correlation analysis and logistic regression analysis and obtained 4 different models. When ROC analysis was applied to these models, model 4 was determined as the most significant model and therefore used to prepare the fire ignition risk map for the Manavgat-Antalya District. According to this map, ignition risk within the study area was highest in and around settlement areas where roads and power lines concentrate and Turkish red pine is distributed, but it was lowest afar of settlement areas without roads and where species apart from Turkish red pine are distributed. According to the results some suggestions were made.

  20. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study

    Science.gov (United States)

    Nijman, Ruud G; Vergouwe, Yvonne; Thompson, Matthew; van Veen, Mirjam; van Meurs, Alfred H J; van der Lei, Johan; Steyerberg, Ewout W; Moll, Henriette A

    2013-01-01

    Objective To derive, cross validate, and externally validate a clinical prediction model that assesses the risks of different serious bacterial infections in children with fever at the emergency department. Design Prospective observational diagnostic study. Setting Three paediatric emergency care units: two in the Netherlands and one in the United Kingdom. Participants Children with fever, aged 1 month to 15 years, at three paediatric emergency care units: Rotterdam (n=1750) and the Hague (n=967), the Netherlands, and Coventry (n=487), United Kingdom. A prediction model was constructed using multivariable polytomous logistic regression analysis and included the predefined predictor variables age, duration of fever, tachycardia, temperature, tachypnoea, ill appearance, chest wall retractions, prolonged capillary refill time (>3 seconds), oxygen saturation rule out the presence of other SBIs. Discriminative ability (C statistic) to predict pneumonia was 0.81 (95% confidence interval 0.73 to 0.88); for other SBIs this was even better: 0.86 (0.79 to 0.92). Risk thresholds of 10% or more were useful to identify children with serious bacterial infections; risk thresholds less than 2.5% were useful to rule out the presence of serious bacterial infections. External validation showed good discrimination for the prediction of pneumonia (0.81, 0.69 to 0.93); discriminative ability for the prediction of other SBIs was lower (0.69, 0.53 to 0.86). Conclusion A validated prediction model, including clinical signs, symptoms, and C reactive protein level, was useful for estimating the likelihood of pneumonia and other SBIs in children with fever, such as septicaemia/meningitis and urinary tract infections. PMID:23550046

  1. Mortality Risk After Transcatheter Aortic Valve Implantation: Analysis of the Predictive Accuracy of the Transcatheter Valve Therapy Registry Risk Assessment Model.

    Science.gov (United States)

    Codner, Pablo; Malick, Waqas; Kouz, Remi; Patel, Amisha; Chen, Cheng-Han; Terre, Juan; Landes, Uri; Vahl, Torsten Peter; George, Isaac; Nazif, Tamim; Kirtane, Ajay J; Khalique, Omar K; Hahn, Rebecca T; Leon, Martin B; Kodali, Susheel

    2018-05-08

    Risk assessment tools currently used to predict mortality in transcatheter aortic valve implantation (TAVI) were designed for patients undergoing cardiac surgery. We aim to assess the accuracy of the TAVI dedicated American College of Cardiology / Transcatheter Valve Therapies (ACC/TVT) risk score in predicting mortality outcomes. Consecutive patients (n=1038) undergoing TAVI at a single institution from 2014 to 2016 were included. The ACC/TVT registry mortality risk score, the Society of Thoracic Surgeons - Patient Reported Outcomes (STS-PROM) score and the EuroSCORE II were calculated for all patients. In hospital and 30-day all-cause mortality rates were 1.3% and 2.9%, respectively. The ACC/TVT risk stratification tool scored higher for patients who died in-hospital than in those who survived the index hospitalization (6.4 ± 4.6 vs. 3.5 ± 1.6, p = 0.03; respectively). The ACC/TVT score showed a high level of discrimination, C-index for in-hospital mortality 0.74, 95% CI [0.59 - 0.88]. There were no significant differences between the performance of the ACC/TVT registry risk score, the EuroSCORE II and the STS-PROM for in hospital and 30-day mortality rates. The ACC/TVT registry risk model is a dedicated tool to aid in the prediction of in-hospital mortality risk after TAVI.

  2. A point-based prediction model for cardiovascular risk in orthotopic liver transplantation: The CAR-OLT score.

    Science.gov (United States)

    VanWagner, Lisa B; Ning, Hongyan; Whitsett, Maureen; Levitsky, Josh; Uttal, Sarah; Wilkins, John T; Abecassis, Michael M; Ladner, Daniela P; Skaro, Anton I; Lloyd-Jones, Donald M

    2017-12-01

    Cardiovascular disease (CVD) complications are important causes of morbidity and mortality after orthotopic liver transplantation (OLT). There is currently no preoperative risk-assessment tool that allows physicians to estimate the risk for CVD events following OLT. We sought to develop a point-based prediction model (risk score) for CVD complications after OLT, the Cardiovascular Risk in Orthotopic Liver Transplantation risk score, among a cohort of 1,024 consecutive patients aged 18-75 years who underwent first OLT in a tertiary-care teaching hospital (2002-2011). The main outcome measures were major 1-year CVD complications, defined as death from a CVD cause or hospitalization for a major CVD event (myocardial infarction, revascularization, heart failure, atrial fibrillation, cardiac arrest, pulmonary embolism, and/or stroke). The bootstrap method yielded bias-corrected 95% confidence intervals for the regression coefficients of the final model. Among 1,024 first OLT recipients, major CVD complications occurred in 329 (32.1%). Variables selected for inclusion in the model (using model optimization strategies) included preoperative recipient age, sex, race, employment status, education status, history of hepatocellular carcinoma, diabetes, heart failure, atrial fibrillation, pulmonary or systemic hypertension, and respiratory failure. The discriminative performance of the point-based score (C statistic = 0.78, bias-corrected C statistic = 0.77) was superior to other published risk models for postoperative CVD morbidity and mortality, and it had appropriate calibration (Hosmer-Lemeshow P = 0.33). The point-based risk score can identify patients at risk for CVD complications after OLT surgery (available at www.carolt.us); this score may be useful for identification of candidates for further risk stratification or other management strategies to improve CVD outcomes after OLT. (Hepatology 2017;66:1968-1979). © 2017 by the American Association for the Study of Liver

  3. Development of a risk prediction model for lung cancer: The Japan Public Health Center-based Prospective Study.

    Science.gov (United States)

    Charvat, Hadrien; Sasazuki, Shizuka; Shimazu, Taichi; Budhathoki, Sanjeev; Inoue, Manami; Iwasaki, Motoki; Sawada, Norie; Yamaji, Taiki; Tsugane, Shoichiro

    2018-03-01

    Although the impact of tobacco consumption on the occurrence of lung cancer is well-established, risk estimation could be improved by risk prediction models that consider various smoking habits, such as quantity, duration, and time since quitting. We constructed a risk prediction model using a population of 59 161 individuals from the Japan Public Health Center (JPHC) Study Cohort II. A parametric survival model was used to assess the impact of age, gender, and smoking-related factors (cumulative smoking intensity measured in pack-years, age at initiation, and time since cessation). Ten-year cumulative probability of lung cancer occurrence estimates were calculated with consideration of the competing risk of death from other causes. Finally, the model was externally validated using 47 501 individuals from JPHC Study Cohort I. A total of 1210 cases of lung cancer occurred during 986 408 person-years of follow-up. We found a dose-dependent effect of tobacco consumption with hazard ratios for current smokers ranging from 3.78 (2.00-7.16) for cumulative consumption ≤15 pack-years to 15.80 (9.67-25.79) for >75 pack-years. Risk decreased with time since cessation. Ten-year cumulative probability of lung cancer occurrence estimates ranged from 0.04% to 11.14% in men and 0.07% to 6.55% in women. The model showed good predictive performance regarding discrimination (cross-validated c-index = 0.793) and calibration (cross-validated χ 2 = 6.60; P-value = .58). The model still showed good discrimination in the external validation population (c-index = 0.772). In conclusion, we developed a prediction model to estimate the probability of developing lung cancer based on age, gender, and tobacco consumption. This model appears useful in encouraging high-risk individuals to quit smoking and undergo increased surveillance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research.

    Science.gov (United States)

    Wulsin, Lawson; Herman, James; Thayer, Julian F

    2018-03-01

    Devising novel prevention strategies for metabolic disorders will depend in part on the careful elucidation of the common pathways for developing metabolic risks. The neurovisceral integration model has proposed that autonomic imbalance plays an important role in the pathway from acute and chronic stress to cardiovascular disease. Though generally overlooked by clinicians, autonomic imbalance (sympathetic overactivity and/or parasympathetic underactivity) can be measured and modified by methods that are available in primary care. This review applies the neurovisceral integration concept to the clinical setting by proposing that autonomic imbalance plays a primary role in the development of metabolic risks. We present a testable model, a systematic review of the evidence in support of autonomic imbalance as a predictor for metabolic risks, and specific approaches to test this model as a guide to future research on the role of stress in metabolic disorders. We propose that autonomic imbalance deserves consideration by researchers, clinicians, and policymakers as a target for early interventions to prevent metabolic disorders. Published by Elsevier Ltd.

  5. The development and implementation of stroke risk prediction model in National Health Insurance Service's personal health record.

    Science.gov (United States)

    Lee, Jae-Woo; Lim, Hyun-Sun; Kim, Dong-Wook; Shin, Soon-Ae; Kim, Jinkwon; Yoo, Bora; Cho, Kyung-Hee

    2018-01-01

    The purpose of this study was to build a 10-year stroke prediction model and categorize a probability of stroke using the Korean national health examination data. Then it intended to develop the algorithm to provide a personalized warning on the basis of each user's level of stroke risk and a lifestyle correction message about the stroke risk factors. Subject to national health examinees in 2002-2003, the stroke prediction model identified when stroke was first diagnosed by following-up the cohort until 2013 and estimated a 10-year probability of stroke. It sorted the user's individual probability of stroke into five categories - normal, slightly high, high, risky, very risky, according to the five ranges of average probability of stroke in comparison to total population - less than 50 percentile, 50-70, 70-90, 90-99.9, more than 99.9 percentile, and constructed the personalized warning and lifestyle correction messages by each category. Risk factors in stroke risk model include the age, BMI, cholesterol, hypertension, diabetes, smoking status and intensity, physical activity, alcohol drinking, past history (hypertension, coronary heart disease) and family history (stroke, coronary heart disease). The AUC values of stroke risk prediction model from the external validation data set were 0.83 in men and 0.82 in women, which showed a high predictive power. The probability of stroke within 10 years for men in normal group (less than 50 percentile) was less than 3.92% and those in very risky group (top 0.01 percentile) was 66.2% and over. The women's probability of stroke within 10 years was less than 3.77% in normal group (less than 50 percentile) and 55.24% and over in very risky group. This study developed the stroke risk prediction model and the personalized warning and the lifestyle correction message based on the national health examination data and uploaded them to the personal health record service called My Health Bank in the health information website - Health

  6. Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Yun-Tao Shi

    2018-01-01

    Full Text Available Wind energy has been drawing considerable attention in recent years. However, due to the random nature of wind and high failure rate of wind energy conversion systems (WECSs, how to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model predictive control (SMPC fault-tolerant controller with the Conditional Value at Risk (CVaR objective function is proposed in this paper. First, the Markov jump linear model is used to describe the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is used as the controller to address the control problem of the WECS. With this controller, all the possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control performance of the SMPC controller. CVaR can provide a balance between the performance and random failure risks of the system. The Min-Max performance index is introduced to compare the fault-tolerant control performance with the proposed controller. The comparison results show that the proposed method has better fault-tolerant control performance.

  7. Using Clinical Factors and Mammographic Breast Density to Estimate Breast Cancer Risk: Development and Validation of a New Predictive Model

    Science.gov (United States)

    Tice, Jeffrey A.; Cummings, Steven R.; Smith-Bindman, Rebecca; Ichikawa, Laura; Barlow, William E.; Kerlikowske, Karla

    2009-01-01

    Background Current models for assessing breast cancer risk are complex and do not include breast density, a strong risk factor for breast cancer that is routinely reported with mammography. Objective To develop and validate an easy-to-use breast cancer risk prediction model that includes breast density. Design Empirical model based on Surveillance, Epidemiology, and End Results incidence, and relative hazards from a prospective cohort. Setting Screening mammography sites participating in the Breast Cancer Surveillance Consortium. Patients 1 095 484 women undergoing mammography who had no previous diagnosis of breast cancer. Measurements Self-reported age, race or ethnicity, family history of breast cancer, and history of breast biopsy. Community radiologists rated breast density by using 4 Breast Imaging Reporting and Data System categories. Results During 5.3 years of follow-up, invasive breast cancer was diagnosed in 14 766 women. The breast density model was well calibrated overall (expected–observed ratio, 1.03 [95% CI, 0.99 to 1.06]) and in racial and ethnic subgroups. It had modest discriminatory accuracy (concordance index, 0.66 [CI, 0.65 to 0.67]). Women with low-density mammograms had 5-year risks less than 1.67% unless they had a family history of breast cancer and were older than age 65 years. Limitation The model has only modest ability to discriminate between women who will develop breast cancer and those who will not. Conclusion A breast cancer prediction model that incorporates routinely reported measures of breast density can estimate 5-year risk for invasive breast cancer. Its accuracy needs to be further evaluated in independent populations before it can be recommended for clinical use. PMID:18316752

  8. Identifying at-risk employees: A behavioral model for predicting potential insider threats

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Kangas, Lars J.; Noonan, Christine F.; Dalton, Angela C.

    2010-09-01

    A psychosocial model was developed to assess an employee’s behavior associated with an increased risk of insider abuse. The model is based on case studies and research literature on factors/correlates associated with precursor behavioral manifestations of individuals committing insider crimes. In many of these crimes, managers and other coworkers observed that the offenders had exhibited signs of stress, disgruntlement, or other issues, but no alarms were raised. Barriers to using such psychosocial indicators include the inability to recognize the signs and the failure to record the behaviors so that they could be assessed by a person experienced in psychosocial evaluations. We have developed a model using a Bayesian belief network with the help of human resources staff, experienced in evaluating behaviors in staff. We conducted an experiment to assess its agreement with human resources and management professionals, with positive results. If implemented in an operational setting, the model would be part of a set of management tools for employee assessment that can raise an alarm about employees who pose higher insider threat risks. In separate work, we combine this psychosocial model’s assessment with computer workstation behavior to raise the efficacy of recognizing an insider crime in the making.

  9. Three-tiered risk stratification model to predict progression in Barrett's esophagus using epigenetic and clinical features.

    Directory of Open Access Journals (Sweden)

    Fumiaki Sato

    2008-04-01

    Full Text Available Barrett's esophagus predisposes to esophageal adenocarcinoma. However, the value of endoscopic surveillance in Barrett's esophagus has been debated because of the low incidence of esophageal adenocarcinoma in Barrett's esophagus. Moreover, high inter-observer and sampling-dependent variation in the histologic staging of dysplasia make clinical risk assessment problematic. In this study, we developed a 3-tiered risk stratification strategy, based on systematically selected epigenetic and clinical parameters, to improve Barrett's esophagus surveillance efficiency.We defined high-grade dysplasia as endpoint of progression, and Barrett's esophagus progressor patients as Barrett's esophagus patients with either no dysplasia or low-grade dysplasia who later developed high-grade dysplasia or esophageal adenocarcinoma. We analyzed 4 epigenetic and 3 clinical parameters in 118 Barrett's esophagus tissues obtained from 35 progressor and 27 non-progressor Barrett's esophagus patients from Baltimore Veterans Affairs Maryland Health Care Systems and Mayo Clinic. Based on 2-year and 4-year prediction models using linear discriminant analysis (area under the receiver-operator characteristic (ROC curve: 0.8386 and 0.7910, respectively, Barrett's esophagus specimens were stratified into high-risk (HR, intermediate-risk (IR, or low-risk (LR groups. This 3-tiered stratification method retained both the high specificity of the 2-year model and the high sensitivity of the 4-year model. Progression-free survivals differed significantly among the 3 risk groups, with p = 0.0022 (HR vs. IR and p<0.0001 (HR or IR vs. LR. Incremental value analyses demonstrated that the number of methylated genes contributed most influentially to prediction accuracy.This 3-tiered risk stratification strategy has the potential to exert a profound impact on Barrett's esophagus surveillance accuracy and efficiency.

  10. Modelling characteristics to predict Legionella contamination risk - Surveillance of drinking water plumbing systems and identification of risk areas.

    Science.gov (United States)

    Völker, Sebastian; Schreiber, Christiane; Kistemann, Thomas

    2016-01-01

    For the surveillance of drinking water plumbing systems (DWPS) and the identification of risk factors, there is a need for an early estimation of the risk of Legionella contamination within a building, using efficient and assessable parameters to estimate hazards and to prioritize risks. The precision, accuracy and effectiveness of ways of estimating the risk of higher Legionella numbers (temperature, stagnation, pipe materials, etc.) have only rarely been empirically assessed in practice, although there is a broad consensus about the impact of these risk factors. We collected n = 807 drinking water samples from 9 buildings which had had Legionella spp. occurrences of >100 CFU/100mL within the last 12 months, and tested for Legionella spp., L. pneumophila, HPC 20°C and 36°C (culture-based). Each building was sampled for 6 months under standard operating conditions in the DWPS. We discovered high variability (up to 4 log(10) steps) in the presence of Legionella spp. (CFU/100 mL) within all buildings over a half year period as well as over the course of a day. Occurrences were significantly correlated with temperature, pipe length measures, and stagnation. Logistic regression modelling revealed three parameters (temperature after flushing until no significant changes in temperatures can be obtained, stagnation (low withdrawal, qualitatively assessed), pipe length proportion) to be the best predictors of Legionella contamination (>100 CFU/100 mL) at single outlets (precision = 66.7%; accuracy = 72.1%; F(0.5) score = 0.59). Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. A predictive model to identify patients with suspected acute coronary syndromes at high risk of cardiac arrest or in-hospital mortality: An IMMEDIATE Trial sub-study

    Directory of Open Access Journals (Sweden)

    Madhab Ray

    2015-12-01

    Conclusions: The multivariable predictive model developed identified patients with very early ACS at high risk of cardiac arrest or death. Using this model could assist treating those with greatest potential benefit from GIK.

  12. Cardiovascular risk prediction

    DEFF Research Database (Denmark)

    Graversen, Peter; Abildstrøm, Steen Z.; Jespersen, Lasse

    2016-01-01

    Aim European society of cardiology (ESC) guidelines recommend that cardiovascular disease (CVD) risk stratification in asymptomatic individuals is based on the Systematic Coronary Risk Evaluation (SCORE) algorithm, which estimates individual 10-year risk of death from CVD. We assessed the potential...

  13. A contemporary risk model for predicting 30-day mortality following percutaneous coronary intervention in England and Wales.

    Science.gov (United States)

    McAllister, Katherine S L; Ludman, Peter F; Hulme, William; de Belder, Mark A; Stables, Rodney; Chowdhary, Saqib; Mamas, Mamas A; Sperrin, Matthew; Buchan, Iain E

    2016-05-01

    The current risk model for percutaneous coronary intervention (PCI) in the UK is based on outcomes of patients treated in a different era of interventional cardiology. This study aimed to create a new model, based on a contemporary cohort of PCI treated patients, which would: predict 30 day mortality; provide good discrimination; and be well calibrated across a broad risk-spectrum. The model was derived from a training dataset of 336,433 PCI cases carried out between 2007 and 2011 in England and Wales, with 30 day mortality provided by record linkage. Candidate variables were selected on the basis of clinical consensus and data quality. Procedures in 2012 were used to perform temporal validation of the model. The strongest predictors of 30-day mortality were: cardiogenic shock; dialysis; and the indication for PCI and the degree of urgency with which it was performed. The model had an area under the receiver operator characteristic curve of 0.85 on the training data and 0.86 on validation. Calibration plots indicated a good model fit on development which was maintained on validation. We have created a contemporary model for PCI that encompasses a range of clinical risk, from stable elective PCI to emergency primary PCI and cardiogenic shock. The model is easy to apply and based on data reported in national registries. It has a high degree of discrimination and is well calibrated across the risk spectrum. The examination of key outcomes in PCI audit can be improved with this risk-adjusted model. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Timing of delivery in a high-risk obstetric population: a clinical prediction model.

    Science.gov (United States)

    De Silva, Dane A; Lisonkova, Sarka; von Dadelszen, Peter; Synnes, Anne R; Magee, Laura A

    2017-06-29

    The efficacy of antenatal corticosteroid treatment for women with threatened preterm birth depends on timely administration within 7 days before delivery. We modelled the probability of delivery within 7 days of admission to hospital among women presenting with threatened preterm birth, using routinely collected clinical characteristics. Data from the Canadian Perinatal Network (CPN) were used, 2005-11, including women admitted to hospital with preterm labour, preterm pre-labour rupture of membranes, short cervix without contractions, or dilated cervix or prolapsed membranes without contractions at preterm gestation. Women with fetal anomaly, intrauterine fetal demise, twin-to-twin transfusion syndrome, and quadruplets were excluded. Logistic regression was undertaken to create a predictive model that was assessed for its calibration capacity, stratification ability, and classification accuracy (ROC curve). We included 3012 women admitted at 24-28 weeks gestation, or readmitted at up to 34 weeks gestation, to 16 tertiary-care CPN hospitals. Of these, 1473 (48.9%) delivered within 7 days of admission. Significant predictors of early delivery included maternal age, parity, gestational age at admission, smoking, preterm labour, prolapsed membranes, preterm pre-labour rupture of membranes, and antepartum haemorrhage. The area under the ROC curve was 0.724 (95% CI 0.706-0.742). We propose a useful tool to improve prediction of delivery within 7 days after admission among women with threatened preterm birth. This information is important for optimal corticosteroid treatment.

  15. Construction and evaluation of FiND, a fall risk prediction model of inpatients from nursing data.

    Science.gov (United States)

    Yokota, Shinichiroh; Ohe, Kazuhiko

    2016-04-01

    To construct and evaluate an easy-to-use fall risk prediction model based on the daily condition of inpatients from secondary use electronic medical record system data. The present authors scrutinized electronic medical record system data and created a dataset for analysis by including inpatient fall report data and Intensity of Nursing Care Needs data. The authors divided the analysis dataset into training data and testing data, then constructed the fall risk prediction model FiND from the training data, and tested the model using the testing data. The dataset for analysis contained 1,230,604 records from 46,241 patients. The sensitivity of the model constructed from the training data was 71.3% and the specificity was 66.0%. The verification result from the testing dataset was almost equivalent to the theoretical value. Although the model's accuracy did not surpass that of models developed in previous research, the authors believe FiND will be useful in medical institutions all over Japan because it is composed of few variables (only age, sex, and the Intensity of Nursing Care Needs items), and the accuracy for unknown data was clear. © 2016 Japan Academy of Nursing Science.

  16. Prospective validation of a predictive model that identifies homeless people at risk of re-presentation to the emergency department.

    Science.gov (United States)

    Moore, Gaye; Hepworth, Graham; Weiland, Tracey; Manias, Elizabeth; Gerdtz, Marie Frances; Kelaher, Margaret; Dunt, David

    2012-02-01

    To prospectively evaluate the accuracy of a predictive model to identify homeless people at risk of representation to an emergency department. A prospective cohort analysis utilised one month of data from a Principal Referral Hospital in Melbourne, Australia. All visits involving people classified as homeless were included, excluding those who died. Homelessness was defined as living on the streets, in crisis accommodation, in boarding houses or residing in unstable housing. Rates of re-presentation, defined as the total number of visits to the same emergency department within 28 days of discharge from hospital, were measured. Performance of the risk screening tool was assessed by calculating sensitivity, specificity, positive and negative predictive values and likelihood ratios. Over the study period (April 1, 2009 to April 30, 2009), 3298 presentations from 2888 individuals were recorded. The homeless population accounted for 10% (n=327) of all visits and 7% (n=211) of all patients. A total of 90 (43%) homeless people re-presented to the emergency department. The predictive model included nine variables and achieved 98% (CI, 0.92-0.99) sensitivity and 66% (CI, 0.57-0.74) specificity. The positive predictive value was 68% and the negative predictive value was 98%. The positive likelihood ratio 2.9 (CI, 2.2-3.7) and the negative likelihood ratio was 0.03 (CI, 0.01-0.13). The high emergency department re-presentation rate for people who were homeless identifies unresolved psychosocial health needs. The emergency department remains a vital access point for homeless people, particularly after hours. The risk screening tool is key to identify medical and social aspects of a homeless patient's presentation to assist early identification and referral. Copyright © 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  17. High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision.

    Science.gov (United States)

    Bahl, Manisha; Barzilay, Regina; Yedidia, Adam B; Locascio, Nicholas J; Yu, Lili; Lehman, Constance D

    2018-03-01

    Purpose To develop a machine learning model that allows high-risk breast lesions (HRLs) diagnosed with image-guided needle biopsy that require surgical excision to be distinguished from HRLs that are at low risk for upgrade to cancer at surgery and thus could be surveilled. Materials and Methods Consecutive patients with biopsy-proven HRLs who underwent surgery or at least 2 years of imaging follow-up from June 2006 to April 2015 were identified. A random forest machine learning model was developed to identify HRLs at low risk for upgrade to cancer. Traditional features such as age and HRL histologic results were used in the model, as were text features from the biopsy pathologic report. Results One thousand six HRLs were identified, with a cancer upgrade rate of 11.4% (115 of 1006). A machine learning random forest model was developed with 671 HRLs and tested with an independent set of 335 HRLs. Among the most important traditional features were age and HRL histologic results (eg, atypical ductal hyperplasia). An important text feature from the pathologic reports was "severely atypical." Instead of surgical excision of all HRLs, if those categorized with the model to be at low risk for upgrade were surveilled and the remainder were excised, then 97.4% (37 of 38) of malignancies would have been diagnosed at surgery, and 30.6% (91 of 297) of surgeries of benign lesions could have been avoided. Conclusion This study provides proof of concept that a machine learning model can be applied to predict the risk of upgrade of HRLs to cancer. Use of this model could decrease unnecessary surgery by nearly one-third and could help guide clinical decision making with regard to surveillance versus surgical excision of HRLs. © RSNA, 2017.

  18. [Risk Prediction Using Routine Data: Development and Validation of Multivariable Models Predicting 30- and 90-day Mortality after Surgical Treatment of Colorectal Cancer].

    Science.gov (United States)

    Crispin, Alexander; Strahwald, Brigitte; Cheney, Catherine; Mansmann, Ulrich

    2018-06-04

    Quality control, benchmarking, and pay for performance (P4P) require valid indicators and statistical models allowing adjustment for differences in risk profiles of the patient populations of the respective institutions. Using hospital remuneration data for measuring quality and modelling patient risks has been criticized by clinicians. Here we explore the potential of prediction models for 30- and 90-day mortality after colorectal cancer surgery based on routine data. Full census of a major statutory health insurer. Surgical departments throughout the Federal Republic of Germany. 4283 and 4124 insurants with major surgery for treatment of colorectal cancer during 2013 and 2014, respectively. Age, sex, primary and secondary diagnoses as well as tumor locations as recorded in the hospital remuneration data according to §301 SGB V. 30- and 90-day mortality. Elixhauser comorbidities, Charlson conditions, and Charlson scores were generated from the ICD-10 diagnoses. Multivariable prediction models were developed using a penalized logistic regression approach (logistic ridge regression) in a derivation set (patients treated in 2013). Calibration and discrimination of the models were assessed in an internal validation sample (patients treated in 2014) using calibration curves, Brier scores, receiver operating characteristic curves (ROC curves) and the areas under the ROC curves (AUC). 30- and 90-day mortality rates in the learning-sample were 5.7 and 8.4%, respectively. The corresponding values in the validation sample were 5.9% and once more 8.4%. Models based on Elixhauser comorbidities exhibited the highest discriminatory power with AUC values of 0.804 (95% CI: 0.776 -0.832) and 0.805 (95% CI: 0.782-0.828) for 30- and 90-day mortality. The Brier scores for these models were 0.050 (95% CI: 0.044-0.056) and 0.067 (95% CI: 0.060-0.074) and similar to the models based on Charlson conditions. Regardless of the model, low predicted probabilities were well calibrated, while

  19. Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units.

    Science.gov (United States)

    Yun Chen; Hui Yang

    2014-01-01

    The rapid advancements of biomedical instrumentation and healthcare technology have resulted in data-rich environments in hospitals. However, the meaningful information extracted from rich datasets is limited. There is a dire need to go beyond current medical practices, and develop data-driven methods and tools that will enable and help (i) the handling of big data, (ii) the extraction of data-driven knowledge, (iii) the exploitation of acquired knowledge for optimizing clinical decisions. This present study focuses on the prediction of mortality rates in Intensive Care Units (ICU) using patient-specific healthcare recordings. It is worth mentioning that postsurgical monitoring in ICU leads to massive datasets with unique properties, e.g., variable heterogeneity, patient heterogeneity, and time asyncronization. To cope with the challenges in ICU datasets, we developed the postsurgical decision support system with a series of analytical tools, including data categorization, data pre-processing, feature extraction, feature selection, and predictive modeling. Experimental results show that the proposed data-driven methodology outperforms traditional approaches and yields better results based on the evaluation of real-world ICU data from 4000 subjects in the database. This research shows great potentials for the use of data-driven analytics to improve the quality of healthcare services.

  20. Comparison of four contemporary risk models at predicting mortality after aortic valve replacement.

    Science.gov (United States)

    Wang, Tom Kai Ming; Choi, David H M; Stewart, Ralph; Gamble, Greg; Haydock, David; Ruygrok, Peter

    2015-02-01

    Risk stratification for aortic valve replacement (AVR) is desirable given the increased demand for intervention and the introduction of transcatheter aortic valve implantation. We compared the prognostic utility of the European System for Cardiac Operative Risk Evaluation (EuroSCORE), EuroSCORE II, Society of Thoracic Surgeons (STS) score, and an Australasian model (Aus-AVR score) for AVR. We retrospectively calculated the 4 risk scores for patients undergoing isolated AVR at Auckland City Hospital from 2005 to 2012 and assessed their discrimination and calibration for short- and long-term mortality. A total of 620 patients were followed up for 3.8 ± 2.4 years, with an operative mortality of 2.9% (n = 18). The mean EuroSCORE, EuroSCORE II, STS score, and Aus-AVR score was 8.7% ± 8.3%, 3.8% ± 4.7%, 2.8% ± 2.7%, and 3.2% ± 4.8%, respectively. The corresponding C-statistics for operative mortality were 0.752 (95% confidence interval [CI], 0.652-0.852), 0.711 (95% CI, 0.607-0.815), 0.716 (95% CI, 0.593-0.837), and 0.684 (95% CI, 0.557-0.811). The corresponding Hosmer-Lemeshow test P and chi-square values for calibration were .007 and 21.1, .125 and 12.6, .753 and 5.0, and .468 and 7.7. The corresponding Brier scores were 0.0348, 0.0278, 0.0276, and 0.0294. Independent predictors of operative mortality included critical preoperative state, atrial fibrillation, extracardiac arteriopathy, and mitral stenosis. The log-rank test P values were all <.001 for mortality during follow-up for all 4 scores, stratified by quintile. All 4 risk scores discriminated operative mortality after isolated AVR. The EuroSCORE had poor calibration, overestimating operative mortality, although the other 3 scores fitted well with contemporary outcomes. The STS score was the best calibrated in the highest quintile of operative risk. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  1. Feasibility and predictive performance of the Hendrich Fall Risk Model II in a rehabilitation department: a prospective study.

    Science.gov (United States)

    Campanini, Isabella; Mastrangelo, Stefano; Bargellini, Annalisa; Bassoli, Agnese; Bosi, Gabriele; Lombardi, Francesco; Tolomelli, Stefano; Lusuardi, Mirco; Merlo, Andrea

    2018-01-11

    Falls are a common adverse event in both elderly inpatients and patients admitted to rehabilitation units. The Hendrich Fall Risk Model II (HIIFRM) has been already tested in all hospital wards with high fall rates, with the exception of the rehabilitation setting. This study's aim is to address the feasibility and predictive performances of HIIFRM in a hospital rehabilitation department. A 6 months prospective study in a Italian rehabilitation department with patients from orthopaedic, pulmonary, and neurological rehabilitation wards. All admitted patients were enrolled and assessed within 24 h of admission by means of the HIIFRM. The occurrence of falls was checked and recorded daily. HIIFRM feasibility was assessed as the percentage of successful administrations at admission. HIIFRM predictive performance was determined in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC), best cutoff, sensitivity, specificity, positive and negative predictive values, along with their asymptotic 95% confidence intervals (95% CI). One hundred ninety-one patents were admitted. HIIFRM was feasible in 147 cases (77%), 11 of which suffered a fall (7.5%). Failures in administration were mainly due to bedridden patients (e.g. minimally conscious state, vegetative state). AUC was 0.779(0.685-0.873). The original HIIFRM cutoff of 5 led to a sensitivity of 100% with a mere specificity of 49%(40-57%), thus suggesting using higher cutoffs. Moreover, the median score for non-fallers at rehabilitation units was higher than that reported in literature for geriatric non fallers. The best trade-off between sensitivity and specificity was obtained by using a cutoff of 8. This lead to sensitivity = 73%(46-99%), specificity = 72%(65-80%), positive predictive value = 17% and negative predictive value = 97%. These results support the use of the HIIFRM as a predictive tool. The HIIFRM showed satisfactory feasibility and predictive performances in

  2. Lipoprotein metabolism indicators improve cardiovascular risk prediction.

    Directory of Open Access Journals (Sweden)

    Daniël B van Schalkwijk

    Full Text Available BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC and by risk reclassification (Net Reclassification Improvement (NRI and Integrated Discrimination Improvement (IDI. Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.

  3. Costs, effects and implementation of routine data emergency admission risk prediction models in primary care for patients with, or at risk of, chronic conditions: a systematic review protocol.

    Science.gov (United States)

    Kingston, Mark Rhys; Evans, Bridie Angela; Nelson, Kayleigh; Hutchings, Hayley; Russell, Ian; Snooks, Helen

    2016-03-01

    Emergency admission risk prediction models are increasingly used to identify patients, typically with one or more chronic conditions, for proactive management in primary care to avoid admissions, save costs and improve patient experience. To identify and review the published evidence on the costs, effects and implementation of emergency admission risk prediction models in primary care for patients with, or at risk of, chronic conditions. We shall search for studies of healthcare interventions using routine data-generated emergency admission risk models. We shall report: the effects on emergency admissions and health costs; clinician and patient views; and implementation findings. We shall search ASSIA, CINAHL, the Cochrane Library, HMIC, ISI Web of Science, MEDLINE and Scopus from 2005, review references in and citations of included articles, search key journals and contact experts. Study selection, data extraction and quality assessment will be performed by two independent reviewers. No ethical permissions are required for this study using published data. Findings will be disseminated widely, including publication in a peer-reviewed journal and through conferences in primary and emergency care and chronic conditions. We judge our results will help a wide audience including primary care practitioners and commissioners, and policymakers. CRD42015016874; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Predicting the risk of cucurbit downy mildew in the eastern United States using an integrated aerobiological model

    Science.gov (United States)

    Neufeld, K. N.; Keinath, A. P.; Gugino, B. K.; McGrath, M. T.; Sikora, E. J.; Miller, S. A.; Ivey, M. L.; Langston, D. B.; Dutta, B.; Keever, T.; Sims, A.; Ojiambo, P. S.

    2017-11-01

    Cucurbit downy mildew caused by the obligate oomycete, Pseudoperonospora cubensis, is considered one of the most economically important diseases of cucurbits worldwide. In the continental United States, the pathogen overwinters in southern Florida and along the coast of the Gulf of Mexico. Outbreaks of the disease in northern states occur annually via long-distance aerial transport of sporangia from infected source fields. An integrated aerobiological modeling system has been developed to predict the risk of disease occurrence and to facilitate timely use of fungicides for disease management. The forecasting system, which combines information on known inoculum sources, long-distance atmospheric spore transport and spore deposition modules, was tested to determine its accuracy in predicting risk of disease outbreak. Rainwater samples at disease monitoring sites in Alabama, Georgia, Louisiana, New York, North Carolina, Ohio, Pennsylvania and South Carolina were collected weekly from planting to the first appearance of symptoms at the field sites during the 2013, 2014, and 2015 growing seasons. A conventional PCR assay with primers specific to P. cubensis was used to detect the presence of sporangia in rain water samples. Disease forecasts were monitored and recorded for each site after each rain event until initial disease symptoms appeared. The pathogen was detected in 38 of the 187 rainwater samples collected during the study period. The forecasting system correctly predicted the risk of disease outbreak based on the presence of sporangia or appearance of initial disease symptoms with an overall accuracy rate of 66 and 75%, respectively. In addition, the probability that the forecasting system correctly classified the presence or absence of disease was ≥ 73%. The true skill statistic calculated based on the appearance of disease symptoms in cucurbit field plantings ranged from 0.42 to 0.58, indicating that the disease forecasting system had an acceptable to good

  5. Predicting the microbial exposure risks in urban floods using GIS, building simulation, and microbial models.

    Science.gov (United States)

    Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man

    2013-01-01

    London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Suicide detection in Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders

    Directory of Open Access Journals (Sweden)

    Jorge Barros

    Full Text Available Objective: To analyze suicidal behavior and build a predictive model for suicide risk using data mining (DM analysis. Methods: A study of 707 Chilean mental health patients (with and without suicide risk was carried out across three healthcare centers in the Metropolitan Region of Santiago, Chile. Three hundred forty-three variables were studied using five questionnaires. DM and machine-learning tools were used via the support vector machine technique. Results: The model selected 22 variables that, depending on the circumstances in which they all occur, define whether a person belongs in a suicide risk zone (accuracy = 0.78, sensitivity = 0.77, and specificity = 0.79. Being in a suicide risk zone means patients are more vulnerable to suicide attempts or are thinking about suicide. The interrelationship between these variables is highly nonlinear, and it is interesting to note the particular ways in which they are configured for each case. The model shows that the variables of a suicide risk zone are related to individual unrest, personal satisfaction, and reasons for living, particularly those related to beliefs in one’s own capacities and coping abilities. Conclusion: These variables can be used to create an assessment tool and enables us to identify individual risk and protective factors. This may also contribute to therapeutic intervention by strengthening feelings of personal well-being and reasons for staying alive. Our results prompted the design of a new clinical tool, which is fast and easy to use and aids in evaluating the trajectory of suicide risk at a given moment.

  7. Clinical Risk Scoring Models for Prediction of Acute Kidney Injury after Living Donor Liver Transplantation: A Retrospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Mi Hye Park

    Full Text Available Acute kidney injury (AKI is a frequent complication of liver transplantation and is associated with increased mortality. We identified the incidence and modifiable risk factors for AKI after living-donor liver transplantation (LDLT and constructed risk scoring models for AKI prediction. We retrospectively reviewed 538 cases of LDLT. Multivariate logistic regression analysis was used to evaluate risk factors for the prediction of AKI as defined by the RIFLE criteria (RIFLE = risk, injury, failure, loss, end stage. Three risk scoring models were developed in the retrospective cohort by including all variables that were significant in univariate analysis, or variables that were significant in multivariate analysis by backward or forward stepwise variable selection. The risk models were validated by way of cross-validation. The incidence of AKI was 27.3% (147/538 and 6.3% (34/538 required postoperative renal replacement therapy. Independent risk factors for AKI by multivariate analysis of forward stepwise variable selection included: body-mass index >27.5 kg/m2 [odds ratio (OR 2.46, 95% confidence interval (CI 1.32-4.55], serum albumin 20 (OR 2.01, 95%CI 1.17-3.44, operation time >600 min (OR 1.81, 95%CI 1.07-3.06, warm ischemic time >40 min (OR 2.61, 95%CI 1.55-4.38, postreperfusion syndrome (OR 2.96, 95%CI 1.55-4.38, mean blood glucose during the day of surgery >150 mg/dl (OR 1.66, 95%CI 1.01-2.70, cryoprecipitate > 6 units (OR 4.96, 95%CI 2.84-8.64, blood loss/body weight >60 ml/kg (OR 4.05, 95%CI 2.28-7.21, and calcineurin inhibitor use without combined mycophenolate mofetil (OR 1.87, 95%CI 1.14-3.06. Our risk models performed better than did a previously reported score by Utsumi et al. in our study cohort. Doses of calcineurin inhibitor should be reduced by combined use of mycophenolate mofetil to decrease postoperative AKI. Prospective randomized trials are required to address whether artificial modification of hypoalbuminemia, hyperglycemia

  8. Predictors of outcome after elective endovascular abdominal aortic aneurysm repair and external validation of a risk prediction model.

    Science.gov (United States)

    Wisniowski, Brendan; Barnes, Mary; Jenkins, Jason; Boyne, Nicholas; Kruger, Allan; Walker, Philip J

    2011-09-01

    Endovascular abdominal aortic aneurysm (AAA) repair (EVAR) has been associated with lower operative mortality and morbidity than open surgery but comparable long-term mortality and higher delayed complication and reintervention rates. Attention has therefore been directed to identifying preoperative and operative variables that influence outcomes after EVAR. Risk-prediction models, such as the EVAR Risk Assessment (ERA) model, have also been developed to help surgeons plan EVAR procedures. The aims of this study were (1) to describe outcomes of elective EVAR at the Royal Brisbane and Women's Hospital (RBWH), (2) to identify preoperative and operative variables predictive of outcomes after EVAR, and (3) to externally validate the ERA model. All elective EVAR procedures at the RBWH before July 1, 2009, were reviewed. Descriptive analyses were performed to determine the outcomes. Univariate and multivariate analyses were performed to identify preoperative and operative variables predictive of outcomes after EVAR. Binomial logistic regression analyses were used to externally validate the ERA model. Before July 1, 2009, 197 patients (172 men), who were a mean age of 72.8 years, underwent elective EVAR at the RBWH. Operative mortality was 1.0%. Survival was 81.1% at 3 years and 63.2% at 5 years. Multivariate analysis showed predictors of survival were age (P = .0126), American Society of Anesthesiologists (ASA) score (P = .0180), and chronic obstructive pulmonary disease (P = .0348) at 3 years and age (P = .0103), ASA score (P = .0006), renal failure (P = .0048), and serum creatinine (P = .0022) at 5 years. Aortic branch vessel score was predictive of initial (30-day) type II endoleak (P = .0015). AAA tortuosity was predictive of midterm type I endoleak (P = .0251). Female sex was associated with lower rates of initial clinical success (P = .0406). The ERA model fitted RBWH data well for early death (C statistic = .906), 3-year survival (C statistic = .735), 5-year

  9. External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland.

    Science.gov (United States)

    Harrison, David A; Lone, Nazir I; Haddow, Catriona; MacGillivray, Moranne; Khan, Angela; Cook, Brian; Rowan, Kathryn M

    2014-01-01

    Risk prediction models are used in critical care for risk stratification, summarising and communicating risk, supporting clinical decision-making and benchmarking performance. However, they require validation before they can be used with confidence, ideally using independently collected data from a different source to that used to develop the model. The aim of this study was to validate the Intensive Care National Audit & Research Centre (ICNARC) model using independently collected data from critical care units in Scotland. Data were extracted from the Scottish Intensive Care Society Audit Group (SICSAG) database for the years 2007 to 2009. Recoding and mapping of variables was performed, as required, to apply the ICNARC model (2009 recalibration) to the SICSAG data using standard computer algorithms. The performance of the ICNARC model was assessed for discrimination, calibration and overall fit and compared with that of the Acute Physiology And Chronic Health Evaluation (APACHE) II model. There were 29,626 admissions to 24 adult, general critical care units in Scotland between 1 January 2007 and 31 December 2009. After exclusions, 23,269 admissions were included in the analysis. The ICNARC model outperformed APACHE II on measures of discrimination (c index 0.848 versus 0.806), calibration (Hosmer-Lemeshow chi-squared statistic 18.8 versus 214) and overall fit (Brier's score 0.140 versus 0.157; Shapiro's R 0.652 versus 0.621). Model performance was consistent across the three years studied. The ICNARC model performed well when validated in an external population to that in which it was developed, using independently collected data.

  10. OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach

    Directory of Open Access Journals (Sweden)

    Battilani Paola

    2015-08-01

    Full Text Available Ochratoxin A (OTA is a fungal metabolite dangerous for human and animal health due to its nephrotoxic, immunotoxic, mutagenic, teratogenic and carcinogenic effects, classified by the International Agency for Research on Cancer in group 2B, possible human carcinogen. This toxin has been stated as a wine contaminant since 1996. The aim of this study was to develop a conceptual model for the dynamic simulation of the A. carbonarius life cycle in grapes along the growing season, including OTA production in berries. Functions describing the role of weather parameters in each step of the infection cycle were developed and organized in a prototype model called OTA-grapes. Modelling the influence of temperature on OTA production, it emerged that fungal strains can be shared in two different clusters, based on the dynamic of OTA production and according to the optimal temperature. Therefore, two functions were developed, and based on statistical data analysis, it was assumed that the two types of strains contribute equally to the population. Model validation was not possible because of poor OTA contamination data, but relevant differences in OTA-I, the output index of the model, were noticed between low and high risk areas. To our knowledge, this is the first attempt to assess/model A. carbonarius in order to predict the risk of OTA contamination in grapes.

  11. The cardiovascular event reduction tool (CERT)--a simplified cardiac risk prediction model developed from the West of Scotland Coronary Prevention Study (WOSCOPS).

    Science.gov (United States)

    L'Italien, G; Ford, I; Norrie, J; LaPuerta, P; Ehreth, J; Jackson, J; Shepherd, J

    2000-03-15

    The clinical decision to treat hypercholesterolemia is premised on an awareness of patient risk, and cardiac risk prediction models offer a practical means of determining such risk. However, these models are based on observational cohorts where estimates of the treatment benefit are largely inferred. The West of Scotland Coronary Prevention Study (WOSCOPS) provides an opportunity to develop a risk-benefit prediction model from the actual observed primary event reduction seen in the trial. Five-year Cox model risk estimates were derived from all WOSCOPS subjects (n = 6,595 men, aged 45 to 64 years old at baseline) using factors previously shown to be predictive of definite fatal coronary heart disease or nonfatal myocardial infarction. Model risk factors included age, diastolic blood pressure, total cholesterol/ high-density lipoprotein ratio (TC/HDL), current smoking, diabetes, family history of fatal coronary heart disease, nitrate use or angina, and treatment (placebo/ 40-mg pravastatin). All risk factors were expressed as categorical variables to facilitate risk assessment. Risk estimates were incorporated into a simple, hand-held slide rule or risk tool. Risk estimates were identified for 5-year age bands (45 to 65 years), 4 categories of TC/HDL ratio ( or = 7.5), 2 levels of diastolic blood pressure ( or = 90 mm Hg), from 0 to 3 additional risk factors (current smoking, diabetes, family history of premature fatal coronary heart disease, nitrate use or angina), and pravastatin treatment. Five-year risk estimates ranged from 2% in very low-risk subjects to 61% in the very high-risk subjects. Risk reduction due to pravastatin treatment averaged 31%. Thus, the Cardiovascular Event Reduction Tool (CERT) is a risk prediction model derived from the WOSCOPS trial. Its use will help physicians identify patients who will benefit from cholesterol reduction.

  12. A risk prediction score model for predicting occurrence of post-PCI vasovagal reflex syndrome: a single center study in Chinese population.

    Science.gov (United States)

    Li, Hai-Yan; Guo, Yu-Tao; Tian, Cui; Song, Chao-Qun; Mu, Yang; Li, Yang; Chen, Yun-Dai

    2017-08-01

    The vasovagal reflex syndrome (VVRS) is common in the patients undergoing percutaneous coronary intervention (PCI). However, prediction and prevention of the risk for the VVRS have not been completely fulfilled. This study was conducted to develop a Risk Prediction Score Model to identify the determinants of VVRS in a large Chinese population cohort receiving PCI. From the hospital electronic medical database, we identified 3550 patients who received PCI (78.0% males, mean age 60 years) in Chinese PLA General Hospital from January 1, 2000 to August 30, 2016. The multivariate analysis and receiver operating characteristic (ROC) analysis were performed. The adverse events of VVRS in the patients were significantly increased after PCI procedure than before the operation (all P PCI was 4.5% (4.1%-5.6%). Compared to the patients suffering no VVRS, incidence of VVRS involved the following factors, namely female gender, primary PCI, hypertension, over two stents implantation in the left anterior descending (LAD), and the femoral puncture site. The multivariate analysis suggested that they were independent risk factors for predicting the incidence of VVRS (all P PCI (c-statistic 0.76, 95% CI: 0.72-0.79, P PCI whose diastolic blood pressure dropped by more than 30 mmHg and heart rate reduced by 10 times per minute (AUC: 0.84, 95% CI: 0.81-0.87, P PCI. In which, the following factors may be involved, the femoral puncture site, female gender, hypertension, primary PCI, and over 2 stents implanted in LAD.

  13. A predictive model to estimate the risk of serious bacterial infections in febrile infants

    NARCIS (Netherlands)

    Berger, RMF; Berger, MY; vanSteenselMoll, HA; DzoljicDanilovic, G; DerksenLubsen, G

    Low risk criteria have been defined to identify febrile infants unlikely to have serious bacterial infection (SBI). Using these criteria approximately 40% of all febrile infants can be defined as being at low risk. Of the remaining infants (60%) only 10%-20% have an SBI. No adequate criteria exists

  14. The Surgical Site Infection Risk Score (SSIRS: A Model to Predict the Risk of Surgical Site Infections.

    Directory of Open Access Journals (Sweden)

    Carl van Walraven

    Full Text Available Surgical site infections (SSI are an important cause of peri-surgical morbidity with risks that vary extensively between patients and surgeries. Quantifying SSI risk would help identify candidates most likely to benefit from interventions to decrease the risk of SSI.We randomly divided all surgeries recorded in the National Surgical Quality Improvement Program from 2010 into a derivation and validation population. We used multivariate logistic regression to determine the independent association of patient and surgical covariates with the risk of any SSI (including superficial, deep, and organ space SSI within 30 days of surgery. To capture factors particular to specific surgeries, we developed a surgical risk score specific to all surgeries having a common first 3 numbers of their CPT code.Derivation (n = 181 894 and validation (n = 181 146 patients were similar for all demographics, past medical history, and surgical factors. Overall SSI risk was 3.9%. The SSI Risk Score (SSIRS found that risk increased with patient factors (smoking, increased body mass index, certain comorbidities (peripheral vascular disease, metastatic cancer, chronic steroid use, recent sepsis, and operative characteristics (surgical urgency; increased ASA class; longer operation duration; infected wounds; general anaesthesia; performance of more than one procedure; and CPT score. In the validation population, the SSIRS had good discrimination (c-statistic 0.800, 95% CI 0.795-0.805 and calibration.SSIRS can be calculated using patient and surgery information to estimate individual risk of SSI for a broad range of surgery types.

  15. D-dimer levels over time and the risk of recurrent venous thromboembolism: an update of the Vienna prediction model.

    Science.gov (United States)

    Eichinger, Sabine; Heinze, Georg; Kyrle, Paul A

    2014-01-02

    Patients with unprovoked venous thromboembolism (VTE) can be stratified according to their recurrence risk based on their sex, the VTE location, and D-dimer measured 3 weeks after anticoagulation by the Vienna Prediction Model. We aimed to expand the model to also assess the recurrence risk from later points on. Five hundred and fifty-three patients with a first VTE were followed for a median of 68 months. We excluded patients with VTE provoked by a transient risk factor or female hormone intake, with a natural inhibitor deficiency, the lupus anticoagulant, or cancer. The study end point was recurrent VTE, which occurred in 150 patients. D-dimer levels did not substantially increase over time. Subdistribution hazard ratios (95% confidence intervals) dynamically changed from 2.43 (1.57 to 3.77) at 3 weeks to 2.27 (1.48 to 3.48), 1.98 (1.30 to 3.02) , and 1.73 (1.11 to 2.69) at 3, 9, and 15 months in men versus women, from 1.84 (1.00 to 3.43) to 1.68 (0.91 to 3.10), 1.49 (0.79 to 2.81) , and 1.44 (0.76 to 2.72) in patients with proximal deep vein thrombosis or pulmonary embolism compared with calf vein thrombosis, and from 1.30 (1.07 to 1.58) to 1.27 (1.06 to 1.51), 1.20 (1.02 to 1.41), and 1.13 (0.95 to 1.36) per doubling D-dimer. Using a dynamic landmark competing risks regression approach, we generated nomograms and a web-based calculator to calculate risk scores and recurrence rates from multiple times after anticoagulation. Risk of recurrent VTE after discontinuation of anticoagulation can be predicted from multiple random time points by integrating the patient's sex, location of first VTE, and serial D-dimer measurements.

  16. A clinical prediction model to assess the risk of operative delivery

    NARCIS (Netherlands)

    Schuit, E.; Kwee, A.; Westerhuis, M.E.M.H.; Dessel, van H.J.H.M.; Graziosi, G.C.M.; Lith, van J.M.M.; Nijhuis, J.G.; Oei, S.G.; Oosterbaan, H.P.; Schuitemaker, N.W.E.; Wouters, M.G.A.J.; Visser, G.H.A.; Mol, B.W.J.; Moons, K.G.M.; Groenwold, R.H.H.

    2012-01-01

    Objective To predict instrumental vaginal delivery or caesarean section for suspected fetal distress or failure to progress. Design Secondary analysis of a randomised trial. Setting Three academic and six non-academic teaching hospitals in the Netherlands. Population 5667 labouring women with a

  17. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.

  18. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study.

    Science.gov (United States)

    Lamain-de Ruiter, Marije; Kwee, Anneke; Naaktgeboren, Christiana A; de Groot, Inge; Evers, Inge M; Groenendaal, Floris; Hering, Yolanda R; Huisjes, Anjoke J M; Kirpestein, Cornel; Monincx, Wilma M; Siljee, Jacqueline E; Van 't Zelfde, Annewil; van Oirschot, Charlotte M; Vankan-Buitelaar, Simone A; Vonk, Mariska A A W; Wiegers, Therese A; Zwart, Joost J; Franx, Arie; Moons, Karel G M; Koster, Maria P H

    2016-08-30

     To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy.  External validation of all published prognostic models in large scale, prospective, multicentre cohort study.  31 independent midwifery practices and six hospitals in the Netherlands.  Women recruited in their first trimester (diabetes mellitus of any type were excluded.  Discrimination of the prognostic models was assessed by the C statistic, and calibration assessed by calibration plots.  3723 women were included for analysis, of whom 181 (4.9%) developed gestational diabetes mellitus in pregnancy. 12 prognostic models for the disorder could be validated in the cohort. C statistics ranged from 0.67 to 0.78. Calibration plots showed that eight of the 12 models were well calibrated. The four models with the highest C statistics included almost all of the following predictors: maternal age, maternal body mass index, history of gestational diabetes mellitus, ethnicity, and family history of diabetes. Prognostic models had a similar performance in a subgroup of nulliparous women only. Decision curve analysis showed that the use of these four models always had a positive net benefit.  In this external validation study, most of the published prognostic models for gestational diabetes mellitus show acceptable discrimination and calibration. The four models with the highest discriminative abilities in this study cohort, which also perform well in a subgroup of nulliparous women, are easy models to apply in clinical practice and therefore deserve further evaluation regarding their clinical impact. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Mark E Sherman

    Full Text Available Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown.Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC for 37,939 invasive breast cancers (1996-2007, we estimated 5-year breast cancer risk (<1%; 1-1.66%; ≥1.67% with three models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions; Breast Cancer Risk Assessment Tool (BCRAT; and BCSC 5-year risk model (BCSC-5. Breast cancer-specific mortality post-diagnosis (range: 1-13 years; median: 5.4-5.6 years was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35-44; 45-54; 55-69; 70-89 years models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years.Of 6,021 deaths, 2,993 (49.7% were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus <1.0% was associated with lower risk of breast cancer death; BCSC-1: hazard ratio (HR = 0.82 (95% CI = 0.75-0.90; BCRAT: HR = 0.72 (95% CI = 0.65-0.81 and BCSC-5: HR = 0.84 (95% CI = 0.75-0.94. Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55-69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35-44 years.Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering women counseling, it may be useful to note that high

  20. Social-Relational Risk Factors for Predicting Elder Physical Abuse: An Ecological Bi-Focal Model

    Science.gov (United States)

    von Heydrich, Levente; Schiamberg, Lawrence B.; Chee, Grace

    2012-01-01

    Annually in the United States, 1 to 5 million older adults, 65 and above, are physically or sexually injured or mistreated by their caregivers in family settings. This study examined the prevalence and risk factors involved in elder physical abuse by adult child caregivers, moving from the immediate elderly parent/adult child relationship context…

  1. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    Science.gov (United States)

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  2. A growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models.

    Science.gov (United States)

    Haydock, L A J; Pomroy, W E; Stevenson, M A; Lawrence, K E

    2016-09-15

    Infections of ruminants with Fasciola hepatica are considered to be of regional importance within New Zealand but there is very little recent information on its prevalence or severity other than anecdotal reports. Generally they are considered to be of secondary importance compared to gastrointestinal nematode infections. Utilizing data from Virtual Climate Stations (n=11491) distributed on a 5km grid around New Zealand a growing degree-day model was used to describe the risk of infection with liver fluke from 1972 to 2012 and then to apply the predictions to estimate the risk of fluke infections within New Zealand for the years 2040 and 2090. The growing degree-day model was validated against the most recent survey of infection within New Zealand in 1984. A strong positive linear relationship for 1984 between F. hepatica prevalence in lambs and infection risk (prisk values from 14 regions in New Zealand for 1972-2012 did not show any discernible change in risk of infection over this time period (p>0.05). Post-hoc comparisons indicate the risk in Westland was found to be substantially higher (prisk in 2040 and 2090 were detected although they did vary between different climate change scenarios. The highest average percentage changes in infection risk were found in regions with low initial risk values such as Canterbury and Otago; in these regions 2090 infection risk is expected to rise by an average of 186% and 184%, respectively. Despite the already high levels of infection risk in Westland, values are expected to rise by a further 76% by 2090. The model does show some areas with little change with Taranaki predicted to experience only very minor increases in infection risk with average 2040 and 2090 predicted changes of 0% and 29%, respectively. Overall, these results suggest the significance of F. hepatica in New Zealand farming systems is probably underestimated and that this risk will generally increase with global warming following climate change. Copyright

  3. Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes.

    Science.gov (United States)

    Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke

    2017-11-01

    It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.

    Science.gov (United States)

    New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C; Runge, Michael C

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6

  5. Multisite external validation of a risk prediction model for the diagnosis of blood stream infections in febrile pediatric oncology patients without severe neutropenia.

    Science.gov (United States)

    Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L

    2017-10-01

    Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.

  6. Understanding the Effects of Sampling on Healthcare Risk Modeling for the Prediction of Future High-Cost Patients

    Science.gov (United States)

    Moturu, Sai T.; Liu, Huan; Johnson, William G.

    Rapidly rising healthcare costs represent one of the major issues plaguing the healthcare system. Data from the Arizona Health Care Cost Containment System, Arizona's Medicaid program provide a unique opportunity to exploit state-of-the-art machine learning and data mining algorithms to analyze data and provide actionable findings that can aid cost containment. Our work addresses specific challenges in this real-life healthcare application with respect to data imbalance in the process of building predictive risk models for forecasting high-cost patients. We survey the literature and propose novel data mining approaches customized for this compelling application with specific focus on non-random sampling. Our empirical study indicates that the proposed approach is highly effective and can benefit further research on cost containment in the healthcare industry.

  7. Modelo de previsão de value at risk utilizando volatilidade de longo prazo = Value at Risk prediction model using long term volatility

    Directory of Open Access Journals (Sweden)

    Vinicius Mothé Maia

    2016-07-01

    Full Text Available Tendo em vista a importância do Value at Risk (VaR como medida de risco para instituições financeiras e agências de risco, o presente estudo avaliou se o modelo ARLS é mais preciso no cálculo do VaR de longo prazo que os modelos tradicionais, dada sua maior adequação para a previsão da volatilidade. Considerando a utilização do VaR pelos agentes de mercado como medida de risco para o gerenciamento de portfólios é importante sua adequada mensuração. A partir de dados diários dos mercados de ações e cambial dos BRICS (Brasil, Rússia, Índia, China e África do Sul foram calculadas as volatilidades futuras para 15 dias, 1 mês e 3 meses. Em seguida, calculou-se as medidas tradicionais de avaliação da precisão do VaR. Os resultados sugerem a superioridade do modelo ARLS para a previsão da volatilidade cambial, capaz de prever corretamente o número de violações em 33% dos casos, enquanto os modelos tradicionais não obtiveram um bom desempenho. Com relação ao mercado acionário, os modelos GARCH e ARLS apresentaram desempenho similar. O modelo GARCH é superior considerando a perda média quadrática. Esses resultados apontam para a escolha do modelo ARLS no cálculo do VaR de portfólios cambiais devido a maior precisão alcançada. Ajuda assim os agentes de mercado a melhor gerirem o risco de suas carteiras. Em relação ao mercado acionário, em função do desempenho similar dos modelos GARCH e ARLS, o modelo GARCH é o mais indicado devido a sua maior simplicidade e fácil implementação computacional. Having in mind the importance of Value at Risk (VaR as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio

  8. Predicting disease Risk by Transformation Models in the Presence of Unspecified Subgroup Membership.

    Science.gov (United States)

    Wang, Qianqian; Ma, Yanyuan; Wang, Yuanjia

    2017-10-01

    Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution of the group membership and the covariates, we model the relation between the disease onset time and the covariates through transformation models in each sub-population, and develop a nonparametric maximum likelihood based estimation implemented through EM algorithm along with its inference procedure. We further propose methods to identify the covariates that have different effects or common effects in distinct populations, which enables parsimonious modeling and better understanding of the difference across populations. The methods are illustrated through extensive simulation studies and a real data example.

  9. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    Science.gov (United States)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  10. Geo-environmental model for the prediction of potential transmission risk of Dirofilaria in an area with dry climate and extensive irrigated crops. The case of Spain.

    Science.gov (United States)

    Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando

    2014-03-01

    Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modelo Preditivo para Cesariana com Uso de Fatores de Risco Predictive Model using Risk Factors for Cesarean Section

    Directory of Open Access Journals (Sweden)

    Alfredo de Almeida Cunha

    2002-01-01

    dependent variable was cesarean section (c-section. Independent variables were antepartum factors related to c-section. Logistic regression was used to develop a predictive model. Results: our model showed risk of c-section according to the following variables: maternal age under 20 years (OR = 0.396 and over 28 years (OR = 2.133; previous vaginal deliveries (OR = 0.626; previous c-section (OR = 4.576; prenatal care (OR = 2.346; breech presentation (OR = 4.174; twin pregnancies (OR = 14.065; late obstetrical hemorrhage (OR = 28.189; mild preeclampsia (OR = 2.180; severe preeclampsia OR=16.738; chronic hypertension OR=4.927 and other clinical problems (OR = 2.012. The predictive model had a concordance of 82.3% between probabilities and responses. Conclusions: our study identified 12 antepartum factors related to c-section. It was possible to develop a cesarean section predictive model taking into account all previously identified antepartum risk factors.

  12. Archaeological predictive model set.

    Science.gov (United States)

    2015-03-01

    This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...

  13. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study.

    NARCIS (Netherlands)

    Lamain-de Ruiter, M.; Kwee, A.; Naaktgeboren, C.A.; Groot, I. de; Evers, I.M.; Groenendaal, F.; Hering, Y.R.; Huisjes, A.J.M.; Kirpestein, C.; Monincx, W.M.; Siljee, J.E.; Zelfde, A. van't; Oirschot, C.M. van; Vankan-Buitelaar, S.A.; Vonk, M.A.A.W.; Wiegers, T.A.; Zwart, J.J.; Franx, A.; Moons, K.G.M.; Koster, M.P.H.

    2016-01-01

    Objective: To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy. Design: External validation of all published prognostic models in

  14. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  15. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study.

    Science.gov (United States)

    Zhang, Li-Xia; Sun, Yang; Zhao, Hai; Zhu, Na; Sun, Xing-De; Jin, Xing; Zou, Ai-Min; Mi, Yang; Xu, Ji-Ru

    2017-10-20

    Preterm premature rupture of membrane (PPROM) can lead to serious consequences such as intrauterine infection, prolapse of the umbilical cord, and neonatal respiratory distress syndrome. Genital infection is a very important risk which closely related with PPROM. The preliminary study only made qualitative research on genital infection, but there was no deep and clear judgment about the effects of pathogenic bacteria. This study was to analyze the association of infections with PPROM in pregnant women in Shaanxi, China, and to establish Bayesian stepwise discriminant analysis to predict the incidence of PPROM. In training group, the 112 pregnant women with PPROM were enrolled in the case subgroup, and 108 normal pregnant women in the control subgroup using an unmatched case-control method. The sociodemographic characteristics of these participants were collected by face-to-face interviews. Vaginal excretions from each participant were sampled at 28-36+6 weeks of pregnancy using a sterile swab. DNA corresponding to Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Candida albicans, group B streptococci (GBS), herpes simplex virus-1 (HSV-1), and HSV-2 were detected in each participant by real-time polymerase chain reaction. A model of Bayesian discriminant analysis was established and then verified by a multicenter validation group that included 500 participants in the case subgroup and 500 participants in the control subgroup from five different hospitals in the Shaanxi province, respectively. The sociological characteristics were not significantly different between the case and control subgroups in both training and validation groups (all P > 0.05). In training group, the infection rates of UU (11.6% vs. 3.7%), CT (17.0% vs. 5.6%), and GBS (22.3% vs. 6.5%) showed statistically different between the case and control subgroups (all P case and control subgroups (P case and control subgroup were 84.1% and 86.8% in the training and validation groups, respectively

  16. Modelling bankruptcy prediction models in Slovak companies

    Directory of Open Access Journals (Sweden)

    Kovacova Maria

    2017-01-01

    Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.

  17. Estimating the risk of gestational diabetes mellitus : a clinical prediction model based on patient characteristics and medical history

    NARCIS (Netherlands)

    van Leeuwen, M.; Opmeer, B. C.; Zweers, E. J. K.; van Ballegooie, E.; ter Brugge, H. G.; de Valk, H. W.; Visser, G. H. A.; Mol, B. W. J.

    Objective To develop a clinical prediction rule that can help the clinician to identify women at high and low risk for gestational diabetes mellitus (GDM) early in pregnancy in order to improve the efficiency of GDM screening. Design We used data from a prospective cohort study to develop the

  18. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  19. Cardiovascular risk prediction in HIV-infected patients: comparing the Framingham, atherosclerotic cardiovascular disease risk score (ASCVD), Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) and Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) risk prediction models.

    Science.gov (United States)

    Krikke, M; Hoogeveen, R C; Hoepelman, A I M; Visseren, F L J; Arends, J E

    2016-04-01

    The aim of the study was to compare the predictions of five popular cardiovascular disease (CVD) risk prediction models, namely the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) model, the Framingham Heart Study (FHS) coronary heart disease (FHS-CHD) and general CVD (FHS-CVD) models, the American Heart Association (AHA) atherosclerotic cardiovascular disease risk score (ASCVD) model and the Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) model. A cross-sectional design was used to compare the cumulative CVD risk predictions of the models. Furthermore, the predictions of the general CVD models were compared with those of the HIV-specific D:A:D model using three categories ( 20%) to categorize the risk and to determine the degree to which patients were categorized similarly or in a higher/lower category. A total of 997 HIV-infected patients were included in the study: 81% were male and they had a median age of 46 [interquartile range (IQR) 40-52] years, a known duration of HIV infection of 6.8 (IQR 3.7-10.9) years, and a median time on ART of 6.4 (IQR 3.0-11.5) years. The D:A:D, ASCVD and SCORE-NL models gave a lower cumulative CVD risk, compared with that of the FHS-CVD and FHS-CHD models. Comparing the general CVD models with the D:A:D model, the FHS-CVD and FHS-CHD models only classified 65% and 79% of patients, respectively, in the same category as did the D:A:D model. However, for the ASCVD and SCORE-NL models, this percentage was 89% and 87%, respectively. Furthermore, FHS-CVD and FHS-CHD attributed a higher CVD risk to 33% and 16% of patients, respectively, while this percentage was D:A:D, ASCVD and SCORE-NL models. This could have consequences regarding overtreatment, drug-related adverse events and drug-drug interactions. © 2015 British HIV Association.

  20. Prediction of eyespot infection risks

    Directory of Open Access Journals (Sweden)

    M. Váòová

    2012-12-01

    Full Text Available The objective of the study was to design a prediction model for eyespot (Tapesia yallundae infection based on climatic factors (temperature, precipitation, air humidity. Data from experiment years 1994-2002 were used to study correlations between the eyespot infection index and individual weather characteristics. The model of prediction was constructed using multiple regression when a separate parameter is assigned to each factor, i.e. the frequency of days with optimum temperatures, humidity, and precipitation. The correlation between relative air humidity and precipitation and the infection index is significant.

  1. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom.

    Science.gov (United States)

    Harrison, David A; Griggs, Kathryn A; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E; Hutchinson, Peter J A; Menon, David K; Rowan, Kathryn M

    2015-10-01

    This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT "Lab" model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research.

  2. Liver stiffness value-based risk estimation of late recurrence after curative resection of hepatocellular carcinoma: development and validation of a predictive model.

    Directory of Open Access Journals (Sweden)

    Kyu Sik Jung

    Full Text Available Preoperative liver stiffness (LS measurement using transient elastography (TE is useful for predicting late recurrence after curative resection of hepatocellular carcinoma (HCC. We developed and validated a novel LS value-based predictive model for late recurrence of HCC.Patients who were due to undergo curative resection of HCC between August 2006 and January 2010 were prospectively enrolled and TE was performed prior to operations by study protocol. The predictive model of late recurrence was constructed based on a multiple logistic regression model. Discrimination and calibration were used to validate the model.Among a total of 139 patients who were finally analyzed, late recurrence occurred in 44 patients, with a median follow-up of 24.5 months (range, 12.4-68.1. We developed a predictive model for late recurrence of HCC using LS value, activity grade II-III, presence of multiple tumors, and indocyanine green retention rate at 15 min (ICG R15, which showed fairly good discrimination capability with an area under the receiver operating characteristic curve (AUROC of 0.724 (95% confidence intervals [CIs], 0.632-0.816. In the validation, using a bootstrap method to assess discrimination, the AUROC remained largely unchanged between iterations, with an average AUROC of 0.722 (95% CIs, 0.718-0.724. When we plotted a calibration chart for predicted and observed risk of late recurrence, the predicted risk of late recurrence correlated well with observed risk, with a correlation coefficient of 0.873 (P<0.001.A simple LS value-based predictive model could estimate the risk of late recurrence in patients who underwent curative resection of HCC.

  3. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Vriesendorp, Pieter A; Schinkel, Arend F L; Liebregts, Max; Theuns, Dominic A M J; van Cleemput, Johan; Ten Cate, Folkert J; Willems, Rik; Michels, Michelle

    2015-08-01

    The recently released 2014 European Society of Cardiology guidelines of hypertrophic cardiomyopathy (HCM) use a new clinical risk prediction model for sudden cardiac death (SCD), based on the HCM Risk-SCD study. Our study is the first external and independent validation of this new risk prediction model. The study population consisted of a consecutive cohort of 706 patients with HCM without prior SCD event, from 2 tertiary referral centers. The primary end point was a composite of SCD and appropriate implantable cardioverter-defibrillator therapy, identical to the HCM Risk-SCD end point. The 5-year SCD risk was calculated using the HCM Risk-SCD formula. Receiver operating characteristic curves and C-statistics were calculated for the 2014 European Society of Cardiology guidelines, and risk stratification methods of the 2003 American College of Cardiology/European Society of Cardiology guidelines and 2011 American College of Cardiology Foundation/American Heart Association guidelines. During follow-up of 7.7±5.3 years, SCD occurred in 42 (5.9%) of 706 patients (ages 49±16 years; 34% women). The C-statistic of the new model was 0.69 (95% CI, 0.57-0.82; P=0.008), which performed significantly better than the conventional risk factor models based on the 2003 guidelines (C-statistic of 0.55: 95% CI, 0.47-0.63; P=0.3), and 2011 guidelines (C-statistic of 0.60: 95% CI, 0.50-0.70; P=0.07). The HCM Risk-SCD model improves the risk stratification of patients with HCM for primary prevention of SCD, and calculating an individual risk estimate contributes to the clinical decision-making process. Improved risk stratification is important for the decision making before implantable cardioverter-defibrillator implantation for the primary prevention of SCD. © 2015 American Heart Association, Inc.

  4. Adverse events related to gastrointestinal endoscopic procedures in pediatric patients under anesthesia care and a predictive risk model (AEGEP Study).

    Science.gov (United States)

    Ariza, F; Montilla-Coral, D; Franco, O; González, L F; Lozano, L C; Torres, A M; Jordán, J; Blanco, L F; Suárez, L; Cruz, G; Cepeda, M

    2014-01-01

    Multiple studies have analyzed perioperative factors related to adverse events (AEs) in children who require gastrointestinal endoscopic procedures (GEP) in settings where deep sedation is the preferred anesthetic technique over general anesthesia (GA) but not for the opposite case. We reviewed our anesthesia institutional database, seeking children less than 12 years who underwent GEP over a 5-year period. A logistic regression was used to determine significant associations between preoperative conditions, characteristics of the procedure, airway management, anesthetic approaches and the presence of serious and non-serious AEs. GA was preferred over deep sedation [77.8% vs. 22.2% in 2178 GEP under anesthesia care (n=1742)]. We found 96 AEs reported in 77 patients, including hypoxemia (1.82%), bronchospasm (1.14%) and laryngospasm (0.91%) as the most frequent. There were 2 cases of severe bradycardia related to laryngospasm/hypoxemia and a case of aspiration resulting in unplanned hospitalization, but there were no cases of intra- or postoperative deaths. Final predictive model for perioperative AEs included age risk factors and ventilation by facial mask as a protector against these events (prisk factors for AEs in these patients. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  5. Comparison between frailty index of deficit accumulation and phenotypic model to predict risk of falls: data from the global longitudinal study of osteoporosis in women (GLOW Hamilton cohort.

    Directory of Open Access Journals (Sweden)

    Guowei Li

    Full Text Available To compare the predictive accuracy of the frailty index (FI of deficit accumulation and the phenotypic frailty (PF model in predicting risks of future falls, fractures and death in women aged ≥55 years.Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW 3-year Hamilton cohort (n = 3,985, we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1 investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20% of the FI and PF; (2 trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail which were defined by the PF; (3 categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures.The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56 in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs for falls (AUCs ≥ 0.68 and death (AUCs ≥ 0.79, and c-indices for fractures (c-indices ≥ 0.69 respectively.The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings.

  6. Comparison between frailty index of deficit accumulation and phenotypic model to predict risk of falls: data from the global longitudinal study of osteoporosis in women (GLOW) Hamilton cohort.

    Science.gov (United States)

    Li, Guowei; Thabane, Lehana; Ioannidis, George; Kennedy, Courtney; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-01-01

    To compare the predictive accuracy of the frailty index (FI) of deficit accumulation and the phenotypic frailty (PF) model in predicting risks of future falls, fractures and death in women aged ≥55 years. Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort (n = 3,985), we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1) investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20%) of the FI and PF; (2) trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail) which were defined by the PF; (3) categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures. The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56) in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs) for falls (AUCs ≥ 0.68) and death (AUCs ≥ 0.79), and c-indices for fractures (c-indices ≥ 0.69) respectively. The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings.

  7. A coronary heart disease risk model for predicting the effect of potent antiretroviral therapy in HIV-1 infected men

    DEFF Research Database (Denmark)

    May, Margaret; Sterne, Jonathan A C; Shipley, Martin

    2007-01-01

    Many HIV-infected patients on highly active antiretroviral therapy (HAART) experience metabolic complications including dyslipidaemia and insulin resistance, which may increase their coronary heart disease (CHD) risk. We developed a prognostic model for CHD tailored to the changes in risk factors...

  8. Inverse and Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.

  9. Prostate Cancer Predictive Simulation Modelling, Assessing the Risk Technique (PCP-SMART): Introduction and Initial Clinical Efficacy Evaluation Data Presentation of a Simple Novel Mathematical Simulation Modelling Method, Devised to Predict the Outcome of Prostate Biopsy on an Individual Basis.

    Science.gov (United States)

    Spyropoulos, Evangelos; Kotsiris, Dimitrios; Spyropoulos, Katherine; Panagopoulos, Aggelos; Galanakis, Ioannis; Mavrikos, Stamatios

    2017-02-01

    We developed a mathematical "prostate cancer (PCa) conditions simulating" predictive model (PCP-SMART), from which we derived a novel PCa predictor (prostate cancer risk determinator [PCRD] index) and a PCa risk equation. We used these to estimate the probability of finding PCa on prostate biopsy, on an individual basis. A total of 371 men who had undergone transrectal ultrasound-guided prostate biopsy were enrolled in the present study. Given that PCa risk relates to the total prostate-specific antigen (tPSA) level, age, prostate volume, free PSA (fPSA), fPSA/tPSA ratio, and PSA density and that tPSA ≥ 50 ng/mL has a 98.5% positive predictive value for a PCa diagnosis, we hypothesized that correlating 2 variables composed of 3 ratios (1, tPSA/age; 2, tPSA/prostate volume; and 3, fPSA/tPSA; 1 variable including the patient's tPSA and the other, a tPSA value of 50 ng/mL) could operate as a PCa conditions imitating/simulating model. Linear regression analysis was used to derive the coefficient of determination (R 2 ), termed the PCRD index. To estimate the PCRD index's predictive validity, we used the χ 2 test, multiple logistic regression analysis with PCa risk equation formation, calculation of test performance characteristics, and area under the receiver operating characteristic curve analysis using SPSS, version 22 (P regression revealed the PCRD index as an independent PCa predictor, and the formulated risk equation was 91% accurate in predicting the probability of finding PCa. On the receiver operating characteristic analysis, the PCRD index (area under the curve, 0.926) significantly (P < .001) outperformed other, established PCa predictors. The PCRD index effectively predicted the prostate biopsy outcome, correctly identifying 9 of 10 men who were eventually diagnosed with PCa and correctly ruling out PCa for 9 of 10 men who did not have PCa. Its predictive power significantly outperformed established PCa predictors, and the formulated risk equation

  10. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial

    NARCIS (Netherlands)

    Wille, M.M.W.; Riel, S.J. van; Saghir, Z.; Dirksen, A.; Pedersen, J.H.; Jacobs, C.; Thomsen, L.H.u.; Scholten, E.T.; Skovgaard, L.T.; Ginneken, B. van

    2015-01-01

    Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models.From the DLCST database, 1,152

  11. Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validation

    NARCIS (Netherlands)

    Lammers, R.J.M.; Hendriks, J.C.M.; Rodriguez Faba, O.; Witjes, W.P.J.; Palou, J.; Witjes, J.A.

    2016-01-01

    PURPOSE: To develop a model to predict recurrence for patients with intermediate-risk (IR) non-muscle-invasive bladder cancer (NMIBC) treated with intravesical chemotherapy which can be challenging because of the heterogeneous characteristics of these patients. METHODS: Data from three Dutch trials

  12. External validation of Vascular Study Group of New England risk predictive model of mortality after elective abdominal aorta aneurysm repair in the Vascular Quality Initiative and comparison against established models.

    Science.gov (United States)

    Eslami, Mohammad H; Rybin, Denis V; Doros, Gheorghe; Siracuse, Jeffrey J; Farber, Alik

    2018-01-01

    The purpose of this study is to externally validate a recently reported Vascular Study Group of New England (VSGNE) risk predictive model of postoperative mortality after elective abdominal aortic aneurysm (AAA) repair and to compare its predictive ability across different patients' risk categories and against the established risk predictive models using the Vascular Quality Initiative (VQI) AAA sample. The VQI AAA database (2010-2015) was queried for patients who underwent elective AAA repair. The VSGNE cases were excluded from the VQI sample. The external validation of a recently published VSGNE AAA risk predictive model, which includes only preoperative variables (age, gender, history of coronary artery disease, chronic obstructive pulmonary disease, cerebrovascular disease, creatinine levels, and aneurysm size) and planned type of repair, was performed using the VQI elective AAA repair sample. The predictive value of the model was assessed via the C-statistic. Hosmer-Lemeshow method was used to assess calibration and goodness of fit. This model was then compared with the Medicare, Vascular Governance Northwest model, and Glasgow Aneurysm Score for predicting mortality in VQI sample. The Vuong test was performed to compare the model fit between the models. Model discrimination was assessed in different risk group VQI quintiles. Data from 4431 cases from the VSGNE sample with the overall mortality rate of 1.4% was used to develop the model. The internally validated VSGNE model showed a very high discriminating ability in predicting mortality (C = 0.822) and good model fit (Hosmer-Lemeshow P = .309) among the VSGNE elective AAA repair sample. External validation on 16,989 VQI cases with an overall 0.9% mortality rate showed very robust predictive ability of mortality (C = 0.802). Vuong tests yielded a significant fit difference favoring the VSGNE over then Medicare model (C = 0.780), Vascular Governance Northwest (0.774), and Glasgow Aneurysm Score (0

  13. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review

    NARCIS (Netherlands)

    van Dieren, S.; Beulens, J. W. J.; Kengne, A. P.; Peelen, L. M.; Rutten, G. E. H. M.; Woodward, M.; van der Schouw, Y. T.; Moons, K. G. M.

    2012-01-01

    A recent overview of all CVD models applicable to diabetes patients is not available. To review the primary prevention studies that focused on the development, validation and impact assessment of a cardiovascular risk model, scores or rules that can be applied to patients with type 2 diabetes.

  14. Risk Factors and Predictive Model Development of Thirty-Day Post-Operative Surgical Site Infection in the Veterans Administration Surgical Population.

    Science.gov (United States)

    Li, Xinli; Nylander, William; Smith, Tracy; Han, Soonhee; Gunnar, William

    2018-04-01

    Surgical site infection (SSI) complicates approximately 2% of surgeries in the Veterans Affairs (VA) hospitals. Surgical site infections are responsible for increased morbidity, length of hospital stay, cost, and mortality. Surgical site infection can be minimized by modifying risk factors. In this study, we identified risk factors and developed accurate predictive surgical specialty-specific SSI risk prediction models for the Veterans Health Administration (VHA) surgery population. In a retrospective observation study, surgical patients who underwent surgery from October 2013 to September 2016 from 136 VA hospitals were included. The Veteran Affairs Surgical Quality Improvement Program (VASQIP) database was used for the pre-operative demographic and clinical characteristics, intra-operative characteristics, and 30-day post-operative outcomes. The study population represents 11 surgical specialties: neurosurgery, urology, podiatry, otolaryngology, general, orthopedic, plastic, thoracic, vascular, cardiac coronary artery bypass graft (CABG), and cardiac valve/other surgery. Multivariable logistic regression models were developed for the 30-day post-operative SSIs. Among 354,528 surgical procedures, 6,538 (1.8%) had SSIs within 30 days. Surgical site infection rates varied among surgical specialty (0.7%-3.0%). Surgical site infection rates were higher in emergency procedures, procedures with long operative duration, greater complexity, and higher relative value units. Other factors associated with increased SSI risk were high level of American Society of Anesthesiologists (ASA) classification (level 4 and 5), dyspnea, open wound/infection, wound classification, ascites, bleeding disorder, chemotherapy, smoking, history of severe chronic obstructive pulmonary disease (COPD), radiotherapy, steroid use for chronic conditions, and weight loss. Each surgical specialty had a distinct combination of risk factors. Accurate SSI risk-predictive surgery specialty

  15. Effects of Different Missing Data Imputation Techniques on the Performance of Undiagnosed Diabetes Risk Prediction Models in a Mixed-Ancestry Population of South Africa.

    Directory of Open Access Journals (Sweden)

    Katya L Masconi

    Full Text Available Imputation techniques used to handle missing data are based on the principle of replacement. It is widely advocated that multiple imputation is superior to other imputation methods, however studies have suggested that simple methods for filling missing data can be just as accurate as complex methods. The objective of this study was to implement a number of simple and more complex imputation methods, and assess the effect of these techniques on the performance of undiagnosed diabetes risk prediction models during external validation.Data from the Cape Town Bellville-South cohort served as the basis for this study. Imputation methods and models were identified via recent systematic reviews. Models' discrimination was assessed and compared using C-statistic and non-parametric methods, before and after recalibration through simple intercept adjustment.The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously diagnosed diabetes. Of the final 1083 individuals, 329 (30.4% had missing data. Family history had the highest proportion of missing data (25%. Imputation of the outcome, undiagnosed diabetes, was highest in stochastic regression imputation (163 individuals. Overall, deletion resulted in the lowest model performances while simple imputation yielded the highest C-statistic for the Cambridge Diabetes Risk model, Kuwaiti Risk model, Omani Diabetes Risk model and Rotterdam Predictive model. Multiple imputation only yielded the highest C-statistic for the Rotterdam Predictive model, which were matched by simpler imputation methods.Deletion was confirmed as a poor technique for handling missing data. However, despite the emphasized disadvantages of simpler imputation methods, this study showed that implementing these methods results in similar predictive utility for undiagnosed diabetes when compared to multiple imputation.

  16. Five year experience in management of perforated peptic ulcer and validation of common mortality risk prediction models - are existing models sufficient? A retrospective cohort study.

    Science.gov (United States)

    Anbalakan, K; Chua, D; Pandya, G J; Shelat, V G

    2015-02-01

    Emergency surgery for perforated peptic ulcer (PPU) is associated with significant morbidity and mortality. Accurate and early risk stratification is important. The primary aim of this study is to validate the various existing MRPMs and secondary aim is to audit our experience of managing PPU. 332 patients who underwent emergency surgery for PPU at a single intuition from January 2008 to December 2012 were studied. Clinical and operative details were collected. Four MRPMs: American Society of Anesthesiology (ASA) score, Boey's score, Mannheim peritonitis index (MPI) and Peptic ulcer perforation (PULP) score were validated. Median age was 54.7 years (range 17-109 years) with male predominance (82.5%). 61.7% presented within 24 h of onset of abdominal pain. Median length of stay was 7 days (range 2-137 days). Intra-abdominal collection, leakage, re-operation and 30-day mortality rates were 8.1%, 2.1%, 1.2% and 7.2% respectively. All the four MRPMs predicted intra-abdominal collection and mortality; however, only MPI predicted leak (p = 0.01) and re-operation (p = 0.02) rates. The area under curve for predicting mortality was 75%, 72%, 77.2% and 75% for ASA score, Boey's score, MPI and PULP score respectively. Emergency surgery for PPU has low morbidity and mortality in our experience. MPI is the only scoring system which predicts all - intra-abdominal collection, leak, reoperation and mortality. All four MRPMs had a similar and fair accuracy to predict mortality, however due to geographic and demographic diversity and inherent weaknesses of exiting MRPMs, quest for development of an ideal model should continue. Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Risk Factors Analysis and Death Prediction in Some Life-Threatening Ailments Using Chi-Square Case-Based Reasoning (χ2 CBR) Model.

    Science.gov (United States)

    Adeniyi, D A; Wei, Z; Yang, Y

    2018-01-30

    A wealth of data are available within the health care system, however, effective analysis tools for exploring the hidden patterns in these datasets are lacking. To alleviate this limitation, this paper proposes a simple but promising hybrid predictive model by suitably combining the Chi-square distance measurement with case-based reasoning technique. The study presents the realization of an automated risk calculator and death prediction in some life-threatening ailments using Chi-square case-based reasoning (χ 2 CBR) model. The proposed predictive engine is capable of reducing runtime and speeds up execution process through the use of critical χ 2 distribution value. This work also showcases the development of a novel feature selection method referred to as frequent item based rule (FIBR) method. This FIBR method is used for selecting the best feature for the proposed χ 2 CBR model at the preprocessing stage of the predictive procedures. The implementation of the proposed risk calculator is achieved through the use of an in-house developed PHP program experimented with XAMP/Apache HTTP server as hosting server. The process of data acquisition and case-based development is implemented using the MySQL application. Performance comparison between our system, the NBY, the ED-KNN, the ANN, the SVM, the Random Forest and the traditional CBR techniques shows that the quality of predictions produced by our system outperformed the baseline methods studied. The result of our experiment shows that the precision rate and predictive quality of our system in most cases are equal to or greater than 70%. Our result also shows that the proposed system executes faster than the baseline methods studied. Therefore, the proposed risk calculator is capable of providing useful, consistent, faster, accurate and efficient risk level prediction to both the patients and the physicians at any time, online and on a real-time basis.

  18. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  19. Application of discriminant analysis-based model for prediction of risk of low back disorders due to workplace design in industrial jobs.

    Science.gov (United States)

    Ganga, G M D; Esposto, K F; Braatz, D

    2012-01-01

    The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.

  20. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention.

    Directory of Open Access Journals (Sweden)

    Hitinder S Gurm

    Full Text Available BACKGROUND: Transfusion is a common complication of Percutaneous Coronary Intervention (PCI and is associated with adverse short and long term outcomes. There is no risk model for identifying patients most likely to receive transfusion after PCI. The objective of our study was to develop and validate a tool for predicting receipt of blood transfusion in patients undergoing contemporary PCI. METHODS: Random forest models were developed utilizing 45 pre-procedural clinical and laboratory variables to estimate the receipt of transfusion in patients undergoing PCI. The most influential variables were selected for inclusion in an abbreviated model. Model performance estimating transfusion was evaluated in an independent validation dataset using area under the ROC curve (AUC, with net reclassification improvement (NRI used to compare full and reduced model prediction after grouping in low, intermediate, and high risk categories. The impact of procedural anticoagulation on observed versus predicted transfusion rates were assessed for the different risk categories. RESULTS: Our study cohort was comprised of 103,294 PCI procedures performed at 46 hospitals between July 2009 through December 2012 in Michigan of which 72,328 (70% were randomly selected for training the models, and 30,966 (30% for validation. The models demonstrated excellent calibration and discrimination (AUC: full model  = 0.888 (95% CI 0.877-0.899, reduced model AUC = 0.880 (95% CI, 0.868-0.892, p for difference 0.003, NRI = 2.77%, p = 0.007. Procedural anticoagulation and radial access significantly influenced transfusion rates in the intermediate and high risk patients but no clinically relevant impact was noted in low risk patients, who made up 70% of the total cohort. CONCLUSIONS: The risk of transfusion among patients undergoing PCI can be reliably calculated using a novel easy to use computational tool (https://bmc2.org/calculators/transfusion. This risk prediction

  1. Factors Affecting Retention Behavior: A Model To Predict At-Risk Students. AIR 1997 Annual Forum Paper.

    Science.gov (United States)

    Sadler, William E.; Cohen, Frederic L.; Kockesen, Levent

    This paper describes a methodology used in an on-going retention study at New York University (NYU) to identify a series of easily measured factors affecting student departure decisions. Three logistic regression models for predicting student retention were developed, each containing data available at three distinct times during the first…

  2. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait--a cohort study.

    Science.gov (United States)

    Farran, Bassam; Channanath, Arshad Mohamed; Behbehani, Kazem; Thanaraj, Thangavel Alphonse

    2013-05-14

    to the predictive models. Risk assessments need to be developed using regional data as we demonstrate the applicability of the American Diabetes Association online calculator on data from Kuwait.

  3. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control.

    Science.gov (United States)

    Phung, Dung; Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Chu, Cordia

    2016-10-01

    To develop a prediction score scheme useful for prevention practitioners and authorities to implement dengue preparedness and controls in the Mekong Delta region (MDR). We applied a spatial scan statistic to identify high-risk dengue clusters in the MDR and used generalised linear-distributed lag models to examine climate-dengue associations using dengue case records and meteorological data from 2003 to 2013. The significant predictors were collapsed into categorical scales, and the β-coefficients of predictors were converted to prediction scores. The score scheme was validated for predicting dengue outbreaks using ROC analysis. The north-eastern MDR was identified as the high-risk cluster. A 1 °C increase in temperature at lag 1-4 and 5-8 weeks increased the dengue risk 11% (95% CI, 9-13) and 7% (95% CI, 6-8), respectively. A 1% rise in humidity increased dengue risk 0.9% (95% CI, 0.2-1.4) at lag 1-4 and 0.8% (95% CI, 0.2-1.4) at lag 5-8 weeks. Similarly, a 1-mm increase in rainfall increased dengue risk 0.1% (95% CI, 0.05-0.16) at lag 1-4 and 0.11% (95% CI, 0.07-0.16) at lag 5-8 weeks. The predicted scores performed with high accuracy in diagnosing the dengue outbreaks (96.3%). This study demonstrates the potential usefulness of a dengue prediction score scheme derived from complex statistical models for high-risk dengue clusters. We recommend a further study to examine the possibility of incorporating such a score scheme into the dengue early warning system in similar climate settings. © 2016 John Wiley & Sons Ltd.

  4. A Validated Clinical Risk Prediction Model for Lung Cancer in Smokers of All Ages and Exposure Types

    DEFF Research Database (Denmark)

    Markaki, Maria; Tsamardinos, Ioannis; Langhammer, Arnulf

    2018-01-01

    Lung cancer causes >1·6 million deaths annually, with early diagnosis being paramount to effective treatment. Here we present a validated risk assessment model for lung cancer screening. The prospective HUNT2 population study in Norway examined 65,237 people aged >20years in 1995-97. After a median...

  5. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale

    Czech Academy of Sciences Publication Activity Database

    Thuiller, W.; Richardson, D. M.; Pyšek, Petr; Midgley, G. F.; Hughes, G. O.; Rouget, M.

    2005-01-01

    Roč. 11, - (2005), s. 2234-2250 ISSN 1354-1013 R&D Projects: GA ČR GA206/03/1216 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioclimatic modelling * biological invasions * risk assessment Subject RIV: EF - Botanics Impact factor: 4.075, year: 2005

  6. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    Science.gov (United States)

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  7. Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model

    Science.gov (United States)

    Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo

    2017-01-01

    Background Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. Methods The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. Results The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. Conclusion The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients. PMID:29020031

  8. Methods for assessing fracture risk prediction models: experience with FRAX in a large integrated health care delivery system.

    Science.gov (United States)

    Pressman, Alice R; Lo, Joan C; Chandra, Malini; Ettinger, Bruce

    2011-01-01

    Area under the receiver operating characteristics (AUROC) curve is often used to evaluate risk models. However, reclassification tests provide an alternative assessment of model performance. We performed both evaluations on results from FRAX (World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK), a fracture risk tool, using Kaiser Permanente Northern California women older than 50yr with bone mineral density (BMD) measured during 1997-2003. We compared FRAX performance with and without BMD in the model. Among 94,489 women with mean follow-up of 6.6yr, 1579 (1.7%) sustained a hip fracture. Overall, AUROCs were 0.83 and 0.84 for FRAX without and with BMD, suggesting that BMD did not contribute to model performance. AUROC decreased with increasing age, and BMD contributed significantly to higher AUROC among those aged 70yr and older. Using an 81% sensitivity threshold (optimum level from receiver operating characteristic curve, corresponding to 1.2% cutoff), 35% of those categorized above were reassigned below when BMD was added. In contrast, only 10% of those categorized below were reassigned to the higher risk category when BMD was added. The net reclassification improvement was 5.5% (p<0.01). Two versions of this risk tool have similar AUROCs, but alternative assessments indicate that addition of BMD improves performance. Multiple methods should be used to evaluate risk tool performance with less reliance on AUROC alone. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Outcome prediction in plasmacytoma of bone: a risk model utilizing bone marrow flow cytometry and light-chain analysis.

    Science.gov (United States)

    Hill, Quentin A; Rawstron, Andy C; de Tute, Ruth M; Owen, Roger G

    2014-08-21

    The purpose of this study was to use multiparameter flow cytometry to detect occult marrow disease (OMD) in patients with solitary plasmacytoma of bone and assess its value in predicting outcome. Aberrant phenotype plasma cells were demonstrable in 34 of 50 (68%) patients and comprised a median of 0.52% of bone marrow leukocytes. With a median follow-up of 3.7 years, 28 of 50 patients have progressed with a median time to progression (TTP) of 18 months. Progression was documented in 72% of patients with OMD vs 12.5% without (median TTP, 26 months vs not reached; P = .003). Monoclonal urinary light chains (ULC) were similarly predictive of outcome because progression was documented in 91% vs 44% without (median TTP, 16 vs 82 months; P < .001). By using both parameters, it was possible to define patients with an excellent outcome (lacking both OMD and ULC, 7.7% progression) and high-risk patients (OMD and/or ULC, 75% progression; P = .001). Trials of systemic therapy are warranted in high-risk patients. © 2014 by The American Society of Hematology.

  10. Stroke survivors' endorsement of a "stress belief model" of stroke prevention predicts control of risk factors for recurrent stroke.

    Science.gov (United States)

    Phillips, L Alison; Tuhrim, Stanley; Kronish, Ian M; Horowitz, Carol R

    2014-01-01

    Perceptions that stress causes and stress-reduction controls hypertension have been associated with poorer blood pressure (BP) control in hypertension populations. The current study investigated these "stress-model perceptions" in stroke survivors regarding prevention of recurrent stroke and the influence of these perceptions on patients' stroke risk factor control. Stroke and transient ischemic attack survivors (N=600) participated in an in-person interview in which they were asked about their beliefs regarding control of future stroke; BP and cholesterol were measured directly after the interview. Counter to expectations, patients who endorsed a "stress-model" but not a "medication-model" of stroke prevention were in better control of their stroke risk factors (BP and cholesterol) than those who endorsed a medication-model but not a stress-model of stroke prevention (OR for poor control=.54, Wald statistic=6.07, p=.01). This result was not explained by between group differences in patients' reported medication adherence. The results have implications for theory and practice, regarding the role of stress belief models and acute cardiac events, compared to chronic hypertension.

  11. Identification of patients at high risk for Clostridium difficile infection : Development and validation of a risk prediction model in hospitalized patients treated with antibiotics

    NARCIS (Netherlands)

    van Werkhoven, C. H.; van der Tempel, J.; Jajou, R.; Thijsen, S. F T; Diepersloot, R. J A; Bonten, M. J M; Postma, D. F.; Oosterheert, J. J.

    2015-01-01

    To develop and validate a prediction model for Clostridium difficile infection (CDI) in hospitalized patients treated with systemic antibiotics, we performed a case-cohort study in a tertiary (derivation) and secondary care hospital (validation). Cases had a positive Clostridium test and were

  12. Cultural Resource Predictive Modeling

    Science.gov (United States)

    2017-10-01

    CR cultural resource CRM cultural resource management CRPM Cultural Resource Predictive Modeling DoD Department of Defense ESTCP Environmental...resource management ( CRM ) legal obligations under NEPA and the NHPA, military installations need to demonstrate that CRM decisions are based on objective...maxim “one size does not fit all,” and demonstrate that DoD installations have many different CRM needs that can and should be met through a variety

  13. Globally-Applicable Predictive Wildfire Model   a Temporal-Spatial GIS Based Risk Analysis Using Data Driven Fuzzy Logic Functions

    Science.gov (United States)

    van den Dool, G.

    2017-11-01

    This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.

  14. Prediction models : the right tool for the right problem

    NARCIS (Netherlands)

    Kappen, Teus H.; Peelen, Linda M.

    2016-01-01

    PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to

  15. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....

  16. Risk factors and a prediction model for lower limb lymphedema following lymphadenectomy in gynecologic cancer: a hospital-based retrospective cohort study.

    Science.gov (United States)

    Kuroda, Kenji; Yamamoto, Yasuhiro; Yanagisawa, Manami; Kawata, Akira; Akiba, Naoya; Suzuki, Kensuke; Naritaka, Kazutoshi

    2017-07-25

    Lower limb lymphedema (LLL) is a chronic and incapacitating condition afflicting patients who undergo lymphadenectomy for gynecologic cancer. This study aimed to identify risk factors for LLL and to develop a prediction model for its occurrence. Pelvic lymphadenectomy (PLA) with or without para-aortic lymphadenectomy (PALA) was performed on 366 patients with gynecologic malignancies at Yaizu City Hospital between April 2002 and July 2014; we retrospectively analyzed 264 eligible patients. The intervals between surgery and diagnosis of LLL were calculated; the prevalence and risk factors were evaluated using the Kaplan-Meier and Cox proportional hazards methods. We developed a prediction model with which patients were scored and classified as low-risk or high-risk. The cumulative incidence of LLL was 23.1% at 1 year, 32.8% at 3 years, and 47.7% at 10 years post-surgery. LLL developed after a median 13.5 months. Using regression analysis, body mass index (BMI) ≥25 kg/m 2 (hazard ratio [HR], 1.616; 95% confidence interval [CI], 1.030-2.535), PLA + PALA (HR, 2.323; 95% CI, 1.126-4.794), postoperative radiation therapy (HR, 2.469; 95% CI, 1.148-5.310), and lymphocyst formation (HR, 1.718; 95% CI, 1.120-2.635) were found to be independently associated with LLL; age, type of cancer, number of lymph nodes, retroperitoneal suture, chemotherapy, lymph node metastasis, herbal medicine, self-management education, or infection were not associated with LLL. The predictive score was based on the 4 associated variables; patients were classified as high-risk (scores 3-6) and low-risk (scores 0-2). LLL incidence was significantly greater in the high-risk group than in the low-risk group (HR, 2.19; 95% CI, 1.440-3.324). The cumulative incidence at 5 years was 52.1% [95% CI, 42.9-62.1%] for the high-risk group and 28.9% [95% CI, 21.1-38.7%] for the low-risk group. The area under the receiver operator characteristics curve for the prediction model was 0.631 at 1 year, 0

  17. An antenatal prediction model for adverse birth outcomes in an urban population: The contribution of medical and non-medical risks.

    Science.gov (United States)

    Posthumus, A G; Birnie, E; van Veen, M J; Steegers, E A P; Bonsel, G J

    2016-07-01

    in the Netherlands the perinatal mortality rate is high compared to other European countries. Around eighty percent of perinatal mortality cases is preceded by being small for gestational age (SGA), preterm birth and/or having a low Apgar-score at 5 minutes after birth. Current risk detection in pregnancy focusses primarily on medical risks. However, non-medical risk factors may be relevant too. Both non-medical and medical risk factors are incorporated in the Rotterdam Reproductive Risk Reduction (R4U) scorecard. We investigated the associations between R4U risk factors and preterm birth, SGA and a low Apgar score. a prospective cohort study under routine practice conditions. six midwifery practices and two hospitals in Rotterdam, the Netherlands. 836 pregnant women. the R4U scorecard was filled out at the booking visit. after birth, the follow-up data on pregnancy outcomes were collected. Multivariate logistic regression was used to fit models for the prediction of any adverse outcome (preterm birth, SGA and/or a low Apgar score), stratified for ethnicity and socio-economic status (SES). factors predicting any adverse outcome for Western women were smoking during the first trimester and over-the-counter medication. For non-Western women risk factors were teenage pregnancy, advanced maternal age and an obstetric history of SGA. Risk factors for high SES women were low family income, no daily intake of vegetables and a history of preterm birth. For low SES women risk factors appeared to be low family income, non-Western ethnicity, smoking during the first trimester and a history of SGA. the presence of both medical and non-medical risk factors early in pregnancy predict the occurrence of adverse outcomes at birth. Furthermore the risk profiles for adverse outcomes differed according to SES and ethnicity. to optimise effective risk selection, both medical and non-medical risk factors should be taken into account in midwifery and obstetric care at the booking visit

  18. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team.

    Science.gov (United States)

    Harrison, David A; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Nolan, Jerry P; Rowan, Kathryn M

    2014-08-01

    The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Risk models for two outcomes-return of spontaneous circulation (ROSC) for greater than 20min and survival to hospital discharge-were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC>20min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC>20min (c index 0.81 versus 0.72). Validated risk models for ROSC>20min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team☆

    Science.gov (United States)

    Harrison, David A.; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B.; Gwinnutt, Carl; Nolan, Jerry P.; Rowan, Kathryn M.

    2014-01-01

    Aim The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Methods Risk models for two outcomes—return of spontaneous circulation (ROSC) for greater than 20 min and survival to hospital discharge—were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. Results 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC > 20 min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC > 20 min (c index 0.81 versus 0.72). Conclusions Validated risk models for ROSC > 20 min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. PMID:24830872

  20. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  1. Validation of mathematical models for the prediction of organs-at-risk dosimetric metrics in high-dose-rate gynecologic interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, Antonio L.; Viswanathan, Akila N.; Cormack, Robert A. [Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts 02115 (United States)

    2013-10-15

    Purpose: Given the complicated nature of an interstitial gynecologic brachytherapy treatment plan, the use of a quantitative tool to evaluate the quality of the achieved metrics compared to clinical practice would be advantageous. For this purpose, predictive mathematical models to predict the D{sub 2cc} of rectum and bladder in interstitial gynecologic brachytherapy are discussed and validated.Methods: Previous plans were used to establish the relationship between D2cc and the overlapping volume of the organ at risk with the targeted area (C0) or a 1-cm expansion of the target area (C1). Three mathematical models were evaluated: D{sub 2cc}=α*C{sub 1}+β (LIN); D{sub 2cc}=α– exp(–β*C{sub 0}) (EXP); and a mixed approach (MIX), where both C{sub 0} and C{sub 1} were inputs of the model. The parameters of the models were optimized on a training set of patient data, and the predictive error of each model (predicted D{sub 2cc}− real D{sub 2cc}) was calculated on a validation set of patient data. The data of 20 patients were used to perform a K-fold cross validation analysis, with K = 2, 4, 6, 8, 10, and 20.Results: MIX was associated with the smallest mean prediction error <6.4% for an 18-patient training set; LIN had an error <8.5%; EXP had an error <8.3%. Best case scenario analysis shows that an error ≤5% can be achieved for a ten-patient training set with MIX, an error ≤7.4% for LIN, and an error ≤6.9% for EXP. The error decreases with the increase in training set size, with the most marked decrease observed for MIX.Conclusions: The MIX model can predict the D{sub 2cc} of the organs at risk with an error lower than 5% with a training set of ten patients or greater. The model can be used in the development of quality assurance tools to identify treatment plans with suboptimal sparing of the organs at risk. It can also be used to improve preplanning and in the development of real-time intraoperative planning tools.

  2. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  3. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2011-07-01

    Full Text Available Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction,have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR and near infrared (NIR channels of satellite sensors have been employed for detecting live fuel moisture content (FMC, and the Normalized Difference Water Index (NDWI was used for evaluating the forest vegetation condition and its moisture status.

  4. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  5. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  6. Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the 'Black Box' of Machine Learning.

    Science.gov (United States)

    Gillingham, Philip

    2016-06-01

    Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can 'learn', it has been claimed that it is possible to develop tools that can predict which individual children within a population are most likely to be maltreated. The proposed benefit is that interventions can then be targeted to the most vulnerable children and their families to prevent maltreatment from occurring. As expertise in predictive modelling increases, the approach may also be applied in other areas of social work to predict and prevent adverse outcomes for vulnerable service users. In this article, a glimpse inside the 'black box' of predictive tools is provided to demonstrate how their development for use in social work may not be straightforward, given the nature of the data recorded about service users and service activity. The development of predictive risk modelling (PRM) in New Zealand is focused on as an example as it may be the first such tool to be applied as part of ongoing reforms to child protection services.

  7. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  8. An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study.

    Science.gov (United States)

    Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun

    2017-02-01

    An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio  = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0

  9. Impact of Age on the Risk of Advanced Colorectal Neoplasia in a Young Population: An Analysis Using the Predicted Probability Model.

    Science.gov (United States)

    Jung, Yoon Suk; Park, Chan Hyuk; Kim, Nam Hee; Lee, Mi Yeon; Park, Dong Il

    2017-09-01

    The incidence of colorectal cancer is decreasing in adults aged ≥50 years and increasing in those aged probability models for ACRN in a population aged 30-49 years. Of 96,235 participants, 57,635 and 38,600 were included in the derivation and validation cohorts, respectively. The predicted probability model considered age, sex, body mass index, family history of colorectal cancer, and smoking habits, as follows: Y ACRN  = -8.755 + 0.080·X age  - 0.055·X male  + 0.041·X BMI  + 0.200·X family_history_of_CRC  + 0.218·X former_smoker  + 0.644·X current_smoker . The optimal cutoff value for the predicted probability of ACRN by Youden index was 1.14%. The area under the receiver-operating characteristic curve (AUROC) values of our model for ACRN were higher than those of the previously established Asia-Pacific Colorectal Screening (APCS), Korean Colorectal Screening (KCS), and Kaminski's scoring models [AUROC (95% confidence interval): model in the current study, 0.673 (0.648-0.697); vs. APCS, 0.588 (0.564-0.611), P probability model can assess the risk of ACRN more accurately than existing models, including the APCS, KCS, and Kaminski's scoring models.

  10. Developmental Dyslexia: Predicting Individual Risk

    Science.gov (United States)

    Thompson, Paul A.; Hulme, Charles; Nash, Hannah M.; Gooch, Debbie; Hayiou-Thomas, Emma; Snowling, Margaret J.

    2015-01-01

    Background: Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. Methods: The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6…

  11. Poster - 47: A parametrized prediction model of rectal toxicity in focal SBRT of low risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Todd; Bauman, Glenn [Saint John Regional Hospital, London Regional Cancer Program (Canada)

    2016-08-15

    There has been a recent trend towards watchful waiting in place of intervention for early stage prostate cancer (CaP). However, this approach can allow for disease progression, and subsequent whole-gland therapies such as prostatectomy and whole gland irradiation can result in functional deficits or rectal toxicities or both. A controversial alternative approach for this patient cohort is the use of focal therapy, where the treatment is focussed on an identified dominant index lesion (DIL). This work aims to investigate the treatment parameters for focal SBRT of the prostate under which clinically acceptable rectal NTCP levels can be achieved. For each of 25 low risk CaP patients, a hypothetical 2 cc DIL was modeled in the right-posterior quadrant of the prostate, and was used to build a PTV as the target for SBRT simulation. An SBRT prescriptions of 41 Gy and 37 Gy in 5 fractions were chosen, corresponding to the boost levels used in previous CaP dose escalation studies. DVH data were exported and used to calculate rectal NTCP values based on the Lyman-Kutcher-Burman (LKB) model using the QUANTEC reccommended model parameters. Rectal NTCP dependence on DIL-to-rectum separation, dose level, and DIL volume were investigated. The final goal of this ongoing work is to create a map of the maximum allowable prescription dose for a given patient geometry that achieves a clinically acceptable rectal NTCP level.

  12. Predicting Risk of Cognitive Decline in Very Old Adults Using Three Models: The Framingham Stroke Risk Profile; the Cardiovascular Risk Factors, Aging, and Dementia Model; and Oxi-Inflammatory Biomarkers.

    Science.gov (United States)

    Harrison, Stephanie L; de Craen, Anton J M; Kerse, Ngaire; Teh, Ruth; Granic, Antoneta; Davies, Karen; Wesnes, Keith A; den Elzen, Wendy P J; Gussekloo, Jacobijn; Kirkwood, Thomas B L; Robinson, Louise; Jagger, Carol; Siervo, Mario; Stephan, Blossom C M

    2017-02-01

    To examine the Framingham Stroke Risk Profile (FSRP); the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) risk score, and oxi-inflammatory load (cumulative risk score of three blood biomarkers-homocysteine, interleukin-6, C-reactive protein) for associations with cognitive decline using three cohort studies of very old adults and to examine whether incorporating these biomarkers with the risk scores can affect the association with cognitive decline. Three longitudinal, population-based cohort studies. Newcastle-upon-Tyne, United Kingdom; Leiden, the Netherlands; and Lakes and Bay of Plenty District Health Board areas, New Zealand. Newcastle 85+ Study participants (n = 616), Leiden 85-plus Study participants (n = 444), and Life and Living in Advanced Age, a Cohort Study in New Zealand (LiLACS NZ Study) participants (n = 396). FSRP, CAIDE risk score, oxi-inflammatory load, FSRP incorporating oxi-inflammatory load, and CAIDE risk score incorporating oxi-inflammatory load. Oxi-inflammatory load could be calculated only in the Newcastle 85+ and the Leiden 85-plus studies. Measures of global cognitive function were available for all three data sets. Domain-specific measures were available for the Newcastle 85+ and the Leiden 85-plus studies. Meta-analysis of pooled results showed greater risk of incident global cognitive impairment with higher FSRP (hazard ratio (HR) = 1.46, 95% confidence interval (CI) = 1.08-1.98), CAIDE (HR = 1.53, 95% CI = 1.09-2.14), and oxi-inflammatory load (HR = 1.73, 95% CI = 1.04-2.88) scores. Adding oxi-inflammatory load to the risk scores increased the risk of cognitive impairment for the FSRP (HR = 1.65, 95% CI = 1.17-2.33) and the CAIDE model (HR = 1.93, 95% CI = 1.39-2.67). Adding oxi-inflammatory load to cardiovascular risk scores may be useful for determining risk of cognitive impairment in very old adults. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  13. Transcriptome and DNA Methylome Analysis in a Mouse Model of Diet-Induced Obesity Predicts Increased Risk of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ruifang Li

    2018-01-01

    Full Text Available Colorectal cancer (CRC tends to occur at older age; however, CRC incidence rates have been rising sharply among young age groups. The increasing prevalence of obesity is recognized as a major risk, yet the mechanistic underpinnings remain poorly understood. Using a diet-induced obesity mouse model, we identified obesity-associated molecular changes in the colonic epithelium of young and aged mice, and we further investigated whether the changes were reversed after weight loss. Transcriptome analysis indicated that obesity-related colonic cellular metabolic switch favoring long-chain fatty acid oxidation happened in young mice, while obesity-associated downregulation of negative feedback regulators of pro-proliferative signaling pathways occurred in older mice. Strikingly, colonic DNA methylome was pre-programmed by obesity at young age, priming for a tumor-prone gene signature after aging. Furthermore, obesity-related changes were substantially preserved after short-term weight loss, but they were largely reversed after long-term weight loss. We provided mechanistic insights into increased CRC risk in obesity.

  14. Validation of the 2014 European Society of Cardiology Sudden Cardiac Death Risk Prediction Model in Hypertrophic Cardiomyopathy in a Reference Center in South America.

    Science.gov (United States)

    Fernández, Adrián; Quiroga, Alejandro; Ochoa, Juan Pablo; Mysuta, Mauricio; Casabé, José Horacio; Biagetti, Marcelo; Guevara, Eduardo; Favaloro, Liliana E; Fava, Agostina M; Galizio, Néstor

    2016-07-01

    Sudden cardiac death (SCD) is a common cause of death in hypertrophic cardiomyopathy (HC). Our aim was to conduct an external and independent validation in South America of the 2014 European Society of Cardiology (ESC) SCD risk prediction model to identify patients requiring an implantable cardioverter defibrillator. This study included 502 consecutive patients with HC followed from March, 1993 to December, 2014. A combined end point of SCD or appropriate implantable cardioverter defibrillator therapy was assessed. For the quantitative estimation of individual 5-year SCD risk, we used the formula: 1 - 0.998(exp(Prognostic index)). Our database also included the abnormal blood pressure response to exercise as a risk marker. We analyzed the 3 categories of 5-year risk proposed by the ESC: low risk (LR) validated in our population and represents an improvement compared with previous approaches. A larger multicenter, independent and external validation of the model with long-term follow-up would be advisable. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models

    Directory of Open Access Journals (Sweden)

    Testa Antonia C

    2010-10-01

    Full Text Available Abstract Background Hitherto, risk prediction models for preoperative ultrasound-based diagnosis of ovarian tumors were dichotomous (benign versus malignant. We develop and validate polytomous models (models that predict more than two events to diagnose ovarian tumors as benign, borderline, primary invasive or metastatic invasive. The main focus is on how different types of models perform and compare. Methods A multi-center dataset containing 1066 women was used for model development and internal validation, whilst another multi-center dataset of 1938 women was used for temporal and external validation. Models were based on standard logistic regression and on penalized kernel-based algorithms (least squares support vector machines and kernel logistic regression. We used true polytomous models as well as combinations of dichotomous models based on the 'pairwise coupling' technique to produce polytomous risk estimates. Careful variable selection was performed, based largely on cross-validated c-index estimates. Model performance was assessed with the dichotomous c-index (i.e. the area under the ROC curve and a polytomous extension, and with calibration graphs. Results For all models, between 9 and 11 predictors were selected. Internal validation was successful with polytomous c-indexes between 0.64 and 0.69. For the best model dichotomous c-indexes were between 0.73 (primary invasive vs metastatic and 0.96 (borderline vs metastatic. On temporal and external validation, overall discrimination performance was good with polytomous c-indexes between 0.57 and 0.64. However, discrimination between primary and metastatic invasive tumors decreased to near random levels. Standard logistic regression performed well in comparison with advanced algorithms, and combining dichotomous models performed well in comparison with true polytomous models. The best model was a combination of dichotomous logistic regression models. This model is available online

  16. A Novel Stress-Diathesis Model to Predict Risk of Post-operative Delirium: Implications for Intra-operative Management

    Directory of Open Access Journals (Sweden)

    Renée El-Gabalawy

    2017-08-01

    Full Text Available Introduction: Risk assessment for post-operative delirium (POD is poorly developed. Improved metrics could greatly facilitate peri-operative care as costs associated with POD are staggering. In this preliminary study, we develop a novel stress-diathesis model based on comprehensive pre-operative psychiatric and neuropsychological testing, a blood oxygenation level-dependent (BOLD magnetic resonance imaging (MRI carbon dioxide (CO2 stress test, and high fidelity measures of intra-operative parameters that may interact facilitating POD.Methods: The study was approved by the ethics board at the University of Manitoba and registered at clinicaltrials.gov as NCT02126215. Twelve patients were studied. Pre-operative psychiatric symptom measures and neuropsychological testing preceded MRI featuring a BOLD MRI CO2 stress test whereby BOLD scans were conducted while exposing participants to a rigorously controlled CO2 stimulus. During surgery the patient had hemodynamics and end-tidal gases downloaded at 0.5 hz. Post-operatively, the presence of POD and POD severity was comprehensively assessed using the Confusion Assessment Measure –Severity (CAM-S scoring instrument on days 0 (surgery through post-operative day 5, and patients were followed up at least 1 month post-operatively.Results: Six of 12 patients had no evidence of POD (non-POD. Three patients had POD and 3 had clinically significant confusional states (referred as subthreshold POD; ST-POD (score ≥ 5/19 on the CAM-S. Average severity for delirium was 1.3 in the non-POD group, 3.2 in ST-POD, and 6.1 in POD (F-statistic = 15.4, p < 0.001. Depressive symptoms, and cognitive measures of semantic fluency and executive functioning/processing speed were significantly associated with POD. Second level analysis revealed an increased inverse BOLD responsiveness to CO2 pre-operatively in ST-POD and marked increase in the POD groups when compared to the non-POD group. An association was also noted for

  17. Cardiovascular risk prediction in the Netherlands

    NARCIS (Netherlands)

    Dis, van S.J.

    2011-01-01

    Background: In clinical practice, Systematic COronary Risk Evaluation (SCORE) risk prediction functions and charts are used to identify persons at high risk for cardiovascular diseases (CVD), who are considered eligible for drug treatment of elevated blood pressure and serum cholesterol. These

  18. Multicenter external validation of two malignancy risk prediction models in patients undergoing 18F-FDG-PET for solitary pulmonary nodule evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Perandini, Simone; Soardi, G.A.; Signorini, M.; Motton, M.; Montemezzi, S. [Azienda Ospedaliera Universitaria Integrata di Verona, UOC Radiologia, Ospedale Maggiore di Borgo Trento, Verona (Italy); Larici, A.R.; Del Ciello, A. [Universita Cattolica del Sacro Cuore, Dipartimento di Scienze Radiologiche, Roma (Italy); Rizzardi, G. [Ospedale Humanitas Gavazzeni, UO Chirurgia Toracica, Bergamo (Italy); Solazzo, A. [Ospedale Humanitas Gavazzeni, UO Radiologia, Bergamo (Italy); Mancino, L.; Zeraj, F. [Ospedale dell' Angelo di Mestre, UO Pneumologia, Venezia (Italy); Bernhart, M. [Ospedale dell' Angelo di Mestre, UO Radiologia, Venezia (Italy)

    2017-05-15

    To achieve multicentre external validation of the Herder and Bayesian Inference Malignancy Calculator (BIMC) models. Two hundred and fifty-nine solitary pulmonary nodules (SPNs) collected from four major hospitals which underwent 18-FDG-PET characterization were included in this multicentre retrospective study. The Herder model was tested on all available lesions (group A). A subgroup of 180 SPNs (group B) was used to provide unbiased comparison between the Herder and BIMC models. Receiver operating characteristic (ROC) area under the curve (AUC) analysis was performed to assess diagnostic accuracy. Decision analysis was performed by adopting the risk threshold stated in British Thoracic Society (BTS) guidelines. Unbiased comparison performed In Group B showed a ROC AUC for the Herder model of 0.807 (95 % CI 0.742-0.862) and for the BIMC model of 0.822 (95 % CI 0.758-0.875). Both the Herder and the BIMC models were proven to accurately predict the risk of malignancy when tested on a large multicentre external case series. The BIMC model seems advantageous on the basis of a more favourable decision analysis. (orig.)

  19. Multicenter external validation of two malignancy risk prediction models in patients undergoing 18F-FDG-PET for solitary pulmonary nodule evaluation

    International Nuclear Information System (INIS)

    Perandini, Simone; Soardi, G.A.; Signorini, M.; Motton, M.; Montemezzi, S.; Larici, A.R.; Del Ciello, A.; Rizzardi, G.; Solazzo, A.; Mancino, L.; Zeraj, F.; Bernhart, M.

    2017-01-01

    To achieve multicentre external validation of the Herder and Bayesian Inference Malignancy Calculator (BIMC) models. Two hundred and fifty-nine solitary pulmonary nodules (SPNs) collected from four major hospitals which underwent 18-FDG-PET characterization were included in this multicentre retrospective study. The Herder model was tested on all available lesions (group A). A subgroup of 180 SPNs (group B) was used to provide unbiased comparison between the Herder and BIMC models. Receiver operating characteristic (ROC) area under the curve (AUC) analysis was performed to assess diagnostic accuracy. Decision analysis was performed by adopting the risk threshold stated in British Thoracic Society (BTS) guidelines. Unbiased comparison performed In Group B showed a ROC AUC for the Herder model of 0.807 (95 % CI 0.742-0.862) and for the BIMC model of 0.822 (95 % CI 0.758-0.875). Both the Herder and the BIMC models were proven to accurately predict the risk of malignancy when tested on a large multicentre external case series. The BIMC model seems advantageous on the basis of a more favourable decision analysis. (orig.)

  20. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  1. Pitfalls in Prediction Modeling for Normal Tissue Toxicity in Radiation Therapy: An Illustration With the Individual Radiation Sensitivity and Mammary Carcinoma Risk Factor Investigation Cohorts

    Energy Technology Data Exchange (ETDEWEB)

    Mbah, Chamberlain, E-mail: chamberlain.mbah@ugent.be [Department of Basic Medical Sciences, Faculty of Health Sciences, Ghent University, Ghent (Belgium); Department of Mathematical Modeling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent (Belgium); Thierens, Hubert [Department of Basic Medical Sciences, Faculty of Health Sciences, Ghent University, Ghent (Belgium); Thas, Olivier [Department of Mathematical Modeling, Statistics, and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Ghent (Belgium); National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, New South Wales (Australia); De Neve, Jan [Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent (Belgium); Chang-Claude, Jenny; Seibold, Petra; Botma, Akke [Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg (Germany); West, Catharine [Translational Radiobiology Group, Institute of Cancer Sciences, Radiotherapy Related Research, Christie Hospital NHS Trust, University of Manchester, Manchester (United Kingdom); De Ruyck, Kim [Department of Basic Medical Sciences, Faculty of Health Sciences, Ghent University, Ghent (Belgium)

    2016-08-01

    Purpose: To identify the main causes underlying the failure of prediction models for radiation therapy toxicity to replicate. Methods and Materials: Data were used from two German cohorts, Individual Radiation Sensitivity (ISE) (n=418) and Mammary Carcinoma Risk Factor Investigation (MARIE) (n=409), of breast cancer patients with similar characteristics and radiation therapy treatments. The toxicity endpoint chosen was telangiectasia. The LASSO (least absolute shrinkage and selection operator) logistic regression method was used to build a predictive model for a dichotomized endpoint (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer score 0, 1, or ≥2). Internal areas under the receiver operating characteristic curve (inAUCs) were calculated by a naïve approach whereby the training data (ISE) were also used for calculating the AUC. Cross-validation was also applied to calculate the AUC within the same cohort, a second type of inAUC. Internal AUCs from cross-validation were calculated within ISE and MARIE separately. Models trained on one dataset (ISE) were applied to a test dataset (MARIE) and AUCs calculated (exAUCs). Results: Internal AUCs from the naïve approach were generally larger than inAUCs from cross-validation owing to overfitting the training data. Internal AUCs from cross-validation were also generally larger than the exAUCs, reflecting heterogeneity in the predictors between cohorts. The best models with largest inAUCs from cross-validation within both cohorts had a number of common predictors: hypertension, normalized total boost, and presence of estrogen receptors. Surprisingly, the effect (coefficient in the prediction model) of hypertension on telangiectasia incidence was positive in ISE and negative in MARIE. Other predictors were also not common between the 2 cohorts, illustrating that overcoming overfitting does not solve the problem of replication failure of prediction models completely

  2. On Modeling Risk Shocks

    OpenAIRE

    Dorofeenko, Victor; Lee, Gabriel; Salyer, Kevin; Strobel, Johannes

    2016-01-01

    Within the context of a financial accelerator model, we model time-varying uncertainty (i.e. risk shocks) through the use of a mixture Normal model with time variation in the weights applied to the underlying distributions characterizing entrepreneur productivity. Specifically, we model capital producers (i.e. the entrepreneurs) as either low-risk (relatively small second moment for productivity) and high-risk (relatively large second moment for productivity) and the fraction of both types is...

  3. Polybrominated Diphenyl Ethers in Human Milk and Serum from the U.S. EPA MAMA Study: Modeled Predictions of Infant Exposure and Considerations for Risk Assessment

    Science.gov (United States)

    Marchitti, Satori A.; Fenton, Suzanne E.; Mendola, Pauline; Kenneke, John F.; Hines, Erin P.

    2016-01-01

    Background: Serum concentrations of polybrominated diphenyl ethers (PBDEs) in U.S. women are believed to be among the world’s highest; however, little information exists on the partitioning of PBDEs between serum and breast milk and how this may affect infant exposure. Objectives: Paired milk and serum samples were measured for PBDE concentrations in 34 women who participated in the U.S. EPA MAMA Study. Computational models for predicting milk PBDE concentrations from serum were evaluated. Methods: Samples were analyzed using gas chromatography isotope-dilution high-resolution mass spectrometry. Observed milk PBDE concentrations were compared with model predictions, and models were applied to NHANES serum data to predict milk PBDE concentrations and infant intakes for the U.S. population. Results: Serum and milk samples had detectable concentrations of most PBDEs. BDE-47 was found in the highest concentrations (median serum: 18.6; milk: 31.5 ng/g lipid) and BDE-28 had the highest milk:serum partitioning ratio (2.1 ± 0.2). No evidence of depuration was found. Models demonstrated high reliability and, as of 2007–2008, predicted U.S. milk concentrations of BDE-47, BDE-99, and BDE-100 appear to be declining but BDE-153 may be rising. Predicted infant intakes (ng/kg/day) were below threshold reference doses (RfDs) for BDE-99 and BDE-153 but above the suggested RfD for BDE-47. Conclusions: Concentrations and partitioning ratios of PBDEs in milk and serum from women in the U.S. EPA MAMA Study are presented for the first time; modeled predictions of milk PBDE concentrations using serum concentrations appear to be a valid method for estimating PBDE exposure in U.S. infants. Citation: Marchitti SA, Fenton SE, Mendola P, Kenneke JF, Hines EP. 2017. Polybrominated diphenyl ethers in human milk and serum from the U.S. EPA MAMA Study: modeled predictions of infant exposure and considerations for risk assessment. Environ Health Perspect 125:706–713; http://dx.doi.org/10

  4. Adapting the Information-Motivation-Behavioral Skills Model: Predicting HIV-Related Sexual Risk among Sexual Minority Youth

    Science.gov (United States)

    Fisher, Colleen M.

    2012-01-01

    Young sexual minority males are among those at highest risk for HIV infection, yet we know relatively little about the impact of sexual identity development on HIV risk. This study used cross-sectional data to investigate factors associated with HIV-related sexual risk among a sample of sexual minority males (n = 156), ages 14 to 21 years, using…

  5. Developing predictive models for return to work using the Military Power, Performance and Prevention (MP3) musculoskeletal injury risk algorithm: a study protocol for an injury risk assessment programme.

    Science.gov (United States)

    Rhon, Daniel I; Teyhen, Deydre S; Shaffer, Scott W; Goffar, Stephen L; Kiesel, Kyle; Plisky, Phil P

    2018-02-01

    Musculoskeletal injuries are a primary source of disability in the US Military, and low back pain and lower extremity injuries account for over 44% of limited work days annually. History of prior musculoskeletal injury increases the risk for future injury. This study aims to determine the risk of injury after returning to work from a previous injury. The objective is to identify criteria that can help predict likelihood for future injury or re-injury. There will be 480 active duty soldiers recruited from across four medical centres. These will be patients who have sustained a musculoskeletal injury in the lower extremity or lumbar/thoracic spine, and have now been cleared to return back to work without any limitations. Subjects will undergo a battery of physical performance tests and fill out sociodemographic surveys. They will be followed for a year to identify any musculoskeletal injuries that occur. Prediction algorithms will be derived using regression analysis from performance and sociodemographic variables found to be significantly different between injured and non-injured subjects. Due to the high rates of injuries, injury prevention and prediction initiatives are growing. This is the first study looking at predicting re-injury rates after an initial musculoskeletal injury. In addition, multivariate prediction models appear to have move value than models based on only one variable. This approach aims to validate a multivariate model used in healthy non-injured individuals to help improve variables that best predict the ability to return to work with lower risk of injury, after a recent musculoskeletal injury. NCT02776930. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Predicting 6- and 12-Month Risk of Mortality in Patients With Platinum-Resistant Advanced-Stage Ovarian Cancer: Prognostic Model to Guide Palliative Care Referrals.

    Science.gov (United States)

    Foote, Jonathan; Lopez-Acevedo, Micael; Samsa, Gregory; Lee, Paula S; Kamal, Arif H; Alvarez Secord, Angeles; Havrilesky, Laura J

    2018-02-01

    Predictive models are increasingly being used in clinical practice. The aim of the study was to develop a predictive model to identify patients with platinum-resistant ovarian cancer with a prognosis of less than 6 to 12 months who may benefit from immediate referral to hospice care. A retrospective chart review identified patients with platinum-resistant epithelial ovarian cancer who were treated at our institution between 2000 and 2011. A predictive model for survival was constructed based on the time from development of platinum resistance to death. Multivariate logistic regression modeling was used to identify significant survival predictors and to develop a predictive model. The following variables were included: time from diagnosis to platinum resistance, initial stage, debulking status, number of relapses, comorbidity score, albumin, hemoglobin, CA-125 levels, liver/lung metastasis, and the presence of a significant clinical event (SCE). An SCE was defined as a malignant bowel obstruction, pleural effusion, or ascites occurring on or before the diagnosis of platinum resistance. One hundred sixty-four patients met inclusion criteria. In the regression analysis, only an SCE and the presence of liver or lung metastasis were associated with poorer short-term survival (P < 0.001). Nine percent of patients with an SCE or liver or lung metastasis survived 6 months or greater and 0% survived 12 months or greater, compared with 85% and 67% of patients without an SCE or liver or lung metastasis, respectively. Patients with platinum-resistant ovarian cancer who have experienced an SCE or liver or lung metastasis have a high risk of death within 6 months and should be considered for immediate referral to hospice care.

  7. Machine learning application in online lending risk prediction

    OpenAIRE

    Yu, Xiaojiao

    2017-01-01

    Online leading has disrupted the traditional consumer banking sector with more effective loan processing. Risk prediction and monitoring is critical for the success of the business model. Traditional credit score models fall short in applying big data technology in building risk model. In this manuscript, data with various format and size were collected from public website, third-parties and assembled with client's loan application information data. Ensemble machine learning models, random fo...

  8. Confidence scores for prediction models

    DEFF Research Database (Denmark)

    Gerds, Thomas Alexander; van de Wiel, MA

    2011-01-01

    In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation,...

  9. Predicting falls using two instruments (the Hendrich Fall Risk Model and the Morse Fall Scale) in an acute care setting in Lebanon.

    Science.gov (United States)

    Nassar, Nada; Helou, Nancy; Madi, Chantal

    2014-06-01

    To assess the predictive value of two instruments (the Morse Fall Scale (MFS) and the Heindrich II Fall Risk Model (HFRM)] in a Middle Eastern country (Lebanon) and to evaluate the factors that are related to falls. A prospective observational cross-sectional design was used. Falls and fall-related injuries in the acute care settings contribute a substantial health and economic burden on patients and organisations. Preventing falls is a priority for most healthcare organisations. While the risk of falling cannot be eliminated, it can be significantly reduced through accurate assessment of patients' risk of falling. Data from 1815 inpatients at the American University of Beirut Medical Center (AUBMC) in Lebanon were evaluated using two instruments to predict falls: the MFS and the HFRM. The incidence of falls was 2·7% in one year. The results indicate that while the instruments were significantly correlated, the HFRM was more sensitive in predicting falls than the MFS. The internal consistency of both scales was moderate, but inter-rater reliability was high. Patients using antiepileptic drugs and assistance devises had higher odds of falling. Although both instruments were easy to use in a Middle Eastern country, the HFRM rather than the MFS is recommended for inpatients in an acute care setting as it had higher sensitivity and specificity. It is recommended that while the HFRM had adequate sensitivity, it is not seamless, and as such, nurses should not rely entirely on it. Rather, nurses should use their expert clinical judgement, their ethical obligations and cultural considerations to implement a safer environment of care for the patient. © 2013 John Wiley & Sons Ltd.

  10. PREDICTED PERCENTAGE DISSATISFIED (PPD) MODEL ...

    African Journals Online (AJOL)

    HOD

    their low power requirements, are relatively cheap and are environment friendly. ... PREDICTED PERCENTAGE DISSATISFIED MODEL EVALUATION OF EVAPORATIVE COOLING ... The performance of direct evaporative coolers is a.

  11. Predictive Models, How good are they?

    DEFF Research Database (Denmark)

    Kasch, Helge

    The WAD grading system has been used for more than 20 years by now. It has shown long-term viability, but with strengths and limitations. New bio-psychosocial assessment of the acute whiplash injured subject may provide better prediction of long-term disability and pain. Furthermore, the emerging......-up. It is important to obtain prospective identification of the relevant risk underreported disability could, if we were able to expose these hidden “risk-factors” during our consultations, provide us with better predictive models. New data from large clinical studies will present exciting new genetic risk markers...

  12. An overview of techniques for linking high-dimensional molecular data to time-to-event endpoints by risk prediction models.

    Science.gov (United States)

    Binder, Harald; Porzelius, Christine; Schumacher, Martin

    2011-03-01

    Analysis of molecular data promises identification of biomarkers for improving prognostic models, thus potentially enabling better patient management. For identifying such biomarkers, risk prediction models can be employed that link high-dimensional molecular covariate data to a clinical endpoint. In low-dimensional settings, a multitude of statistical techniques already exists for building such models, e.g. allowing for variable selection or for quantifying the added value of a new biomarker. We provide an overview of techniques for regularized estimation that transfer this toward high-dimensional settings, with a focus on models for time-to-event endpoints. Techniques for incorporating specific covariate structure are discussed, as well as techniques for dealing with more complex endpoints. Employing gene expression data from patients with diffuse large B-cell lymphoma, some typical modeling issues from low-dimensional settings are illustrated in a high-dimensional application. First, the performance of classical stepwise regression is compared to stage-wise regression, as implemented by a component-wise likelihood-based boosting approach. A second issues arises, when artificially transforming the response into a binary variable. The effects of the resulting loss of efficiency and potential bias in a high-dimensional setting are illustrated, and a link to competing risks models is provided. Finally, we discuss conditions for adequately quantifying the added value of high-dimensional gene expression measurements, both at the stage of model fitting and when performing evaluation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Checking the predictive accuracy of basic symptoms against ultra high-risk criteria and testing of a multivariable prediction model: Evidence from a prospective three-year observational study of persons at clinical high-risk for psychosis.

    Science.gov (United States)

    Hengartner, M P; Heekeren, K; Dvorsky, D; Walitza, S; Rössler, W; Theodoridou, A

    2017-09-01

    The aim of this study was to critically examine the prognostic validity of various clinical high-risk (CHR) criteria alone and in combination with additional clinical characteristics. A total of 188 CHR positive persons from the region of Zurich, Switzerland (mean age 20.5 years; 60.2% male), meeting ultra high-risk (UHR) and/or basic symptoms (BS) criteria, were followed over three years. The test battery included the Structured Interview for Prodromal Syndromes (SIPS), verbal IQ and many other screening tools. Conversion to psychosis was defined according to ICD-10 criteria for schizophrenia (F20) or brief psychotic disorder (F23). Altogether n=24 persons developed manifest psychosis within three years and according to Kaplan-Meier survival analysis, the projected conversion rate was 17.5%. The predictive accuracy of UHR was statistically significant but poor (area under the curve [AUC]=0.65, Pthinking of binary at-risk criteria is necessary in order to improve the prognosis of psychotic disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    Science.gov (United States)

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (Plogistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fingerprint verification prediction model in hand dermatitis.

    Science.gov (United States)

    Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah

    2015-07-01

    Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.

  16. A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk multi-country prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Beth A Payne

    2014-01-01

    Full Text Available Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs. We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications.From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous; gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC of 0.768 (95% CI 0.735-0.801 with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658-0.768. A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability.The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be

  17. Soil pH Errors Propagation from Measurements to Spatial Predictions - Cost Benefit Analysis and Risk Assessment Implications for Practitioners and Modelers

    Science.gov (United States)

    Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.

    2017-12-01

    The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that

  18. A Science for Citizenship Model: Assessing the Effects of Benefits, Risks, and Trust for Predicting Students' Interest in and Understanding of Science-Related Content

    Science.gov (United States)

    Jack, Brady Michael; Lee, Ling; Yang, Kuay-Keng; Lin, Huann-shyang

    2017-10-01

    This study showcases the Science for Citizenship Model (SCM) as a new instructional methodology for presenting, to secondary students, science-related technology content related to the use of science in society not taught in the science curriculum, and a new approach for assessing the intercorrelations among three independent variables (benefits, risks, and trust) to predict the dependent variable of triggered interest in learning science. Utilizing a 50-minute instructional presentation on nanotechnology for citizenship, data were collected from 301 Taiwanese high school students. Structural equation modeling (SEM) and paired-samples t-tests were used to analyze the fitness of data to SCM and the extent to which a 50-minute class presentation of nanotechnology for citizenship affected students' awareness of benefits, risks, trust, and triggered interest in learning science. Results of SCM on pre-tests and post-tests revealed acceptable model fit to data and demonstrated that the strongest predictor of students' triggered interest in nanotechnology was their trust in science. Paired-samples t-test results on students' understanding of nanotechnology and their self-evaluated awareness of the benefits and risks of nanotechology, trust in scientists, and interest in learning science revealed low significant differences between pre-test and post-test. These results provide evidence that a short 50-minute presentation on an emerging science not normally addressed within traditional science curriculum had a significant yet limited impact on students' learning of nanotechnology in the classroom. Finally, we suggest why the results of this study may be important to science education instruction and research for understanding how the integration into classroom science education of short presentations of cutting-edge science and emerging technologies in support of the science for citizenship enterprise might be accomplished through future investigations.

  19. Brief Report: Bifactor Modeling of General vs. Specific Factors of Religiousness Differentially Predicting Substance Use Risk in Adolescence

    OpenAIRE

    Kim-Spoon, Jungmeen; Longo, Gregory S.; Holmes, Christopher J.

    2015-01-01

    Religiousness is important to adolescents in the U.S., and the significant link between high religiousness and low substance use is well known. There is a debate between multidimensional and unidimensional perspectives of religiousness (Gorsuch, 1984); yet, no empirical study has tested this hierarchical model of religiousness related to adolescent health outcomes. The current study presents the first attempt to test a bifactor model of religiousness related to substance use among adolescents...

  20. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  1. Brief report: Bifactor modeling of general vs. specific factors of religiousness differentially predicting substance use risk in adolescence.

    Science.gov (United States)

    Kim-Spoon, Jungmeen; Longo, Gregory S; Holmes, Christopher J

    2015-08-01

    Religiousness is important to adolescents in the U.S., and the significant link between high religiousness and low substance use is well known. There is a debate between multidimensional and unidimensional perspectives of religiousness (Gorsuch, 1984); yet, no empirical study has tested this hierarchical model of religiousness related to adolescent health outcomes. The current study presents the first attempt to test a bifactor model of religiousness related to substance use among adolescents (N = 220, 45% female). Our bifactor model using structural equation modeling suggested the multidimensional nature of religiousness as well as the presence of a superordinate general religiousness factor directly explaining the covariation among the specific factors including organizational and personal religiousness and religious social support. The general religiousness factor was inversely related to substance use. After accounting for the contribution of the general religiousness factor, high organizational religiousness related to low substance use, whereas personal religiousness and religious support were positively related to substance use. The findings present the first evidence that supports hierarchical structures of adolescent religiousness that contribute differentially to adolescent substance use. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  2. MODEL PREDICTIVE CONTROL FUNDAMENTALS

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.

  3. Subclinical organ damage and cardiovascular risk prediction

    DEFF Research Database (Denmark)

    Sehestedt, Thomas; Olsen, Michael H

    2010-01-01

    Traditional cardiovascular risk factors have poor prognostic value for individuals and screening for subclinical organ damage has been recommended in hypertension in recent guidelines. The aim of this review was to investigate the clinical impact of the additive prognostic information provided...... by measuring subclinical organ damage. We have (i) reviewed recent studies linking markers of subclinical organ damage in the heart, blood vessels and kidney to cardiovascular risk; (ii) discussed the evidence for improvement in cardiovascular risk prediction using markers of subclinical organ damage; (iii...

  4. Credit Risk Modeling

    DEFF Research Database (Denmark)

    Lando, David

    Credit risk is today one of the most intensely studied topics in quantitative finance. This book provides an introduction and overview for readers who seek an up-to-date reference to the central problems of the field and to the tools currently used to analyze them. The book is aimed at researchers...... and students in finance, at quantitative analysts in banks and other financial institutions, and at regulators interested in the modeling aspects of credit risk. David Lando considers the two broad approaches to credit risk analysis: that based on classical option pricing models on the one hand...

  5. External validation of two prediction models identifying employees at risk of high sickness absence : cohort study with 1-year follow-up

    NARCIS (Netherlands)

    Roelen, Corne A. M.; Bultmann, Ute; van Rhenen, Willem; van der Klink, Jac J. L.; Twisk, Jos W. R.; Heymans, Martijn W.

    2013-01-01

    Background: Two models including age, self-rated health (SRH) and prior sickness absence (SA) were found to predict high SA in health care workers. The present study externally validated these prediction models in a population of office workers and investigated the effect of adding gender as a

  6. Methodology to predict long-term cancer survival from short-term data using Tobacco Cancer Risk and Absolute Cancer Cure models

    International Nuclear Information System (INIS)

    Mould, R F; Lederman, M; Tai, P; Wong, J K M

    2002-01-01

    Three parametric statistical models have been fully validated for cancer of the larynx for the prediction of long-term 15, 20 and 25 year cancer-specific survival fractions when short-term follow-up data was available for just 1-2 years after the end of treatment of the last patient. In all groups of cases the treatment period was only 5 years. Three disease stage groups were studied, T1N0, T2N0 and T3N0. The models are the Standard Lognormal (SLN) first proposed by Boag (1949 J. R. Stat. Soc. Series B 11 15-53) but only ever fully validated for cancer of the cervix, Mould and Boag (1975 Br. J. Cancer 32 529-50), and two new models which have been termed Tobacco Cancer Risk (TCR) and Absolute Cancer Cure (ACC). In each, the frequency distribution of survival times of defined groups of cancer deaths is lognormally distributed: larynx only (SLN), larynx and lung (TCR) and all cancers (ACC). All models each have three unknown parameters but it was possible to estimate a value for the lognormal parameter S a priori. By reduction to two unknown parameters the model stability has been improved. The material used to validate the methodology consisted of case histories of 965 patients, all treated during the period 1944-1968 by Dr Manuel Lederman of the Royal Marsden Hospital, London, with follow-up to 1988. This provided a follow-up range of 20- 44 years and enabled predicted long-term survival fractions to be compared with the actual survival fractions, calculated by the Kaplan and Meier (1958 J. Am. Stat. Assoc. 53 457-82) method. The TCR and ACC models are better than the SLN model and for a maximum short-term follow-up of 6 years, the 20 and 25 year survival fractions could be predicted. Therefore the numbers of follow-up years saved are respectively 14 years and 19 years. Clinical trial results using the TCR and ACC models can thus be analysed much earlier than currently possible. Absolute cure from cancer was also studied, using not only the prediction models which

  7. Predictive models of moth development

    Science.gov (United States)

    Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...

  8. Predictive Models and Computational Embryology

    Science.gov (United States)

    EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...

  9. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    Science.gov (United States)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary

  10. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    the expectations hypothesis (EH) out-ofsample: the forecasts do not add economic value compared to using the average historical excess return as an EH-consistent estimate of constant risk premia. We show that in general statistical signicance does not necessarily translate into economic signicance because EH...... deviations mainly matter at short horizons and standard predictability metrics are not compatible with common measures of economic value. Overall, the EH remains the benchmark for investment decisions and should be considered an economic prior in models of bond risk premia.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for bond investors. We show that ane term structure models (ATSMs) estimated by jointly tting yields and bond excess returns capture this predictive information otherwise hidden...

  11. Predictive Modeling in Race Walking

    Directory of Open Access Journals (Sweden)

    Krzysztof Wiktorowicz

    2015-01-01

    Full Text Available This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.

  12. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Graaf, A.A. de; Tsivtsivadze, E.; Parnell, L.D.; Werff-van der Vat, B.J.C. van der; Ommen, B. van; Greef, J. van der; Ordovás, J.M.

    2014-01-01

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to

  13. Development of a new risk model for predicting cardiovascular events among hemodialysis patients: Population-based hemodialysis patients from the Japan Dialysis Outcome and Practice Patterns Study (J-DOPPS.

    Directory of Open Access Journals (Sweden)

    Yukiko Matsubara

    Full Text Available Cardiovascular (CV events are the primary cause of death and becoming bedridden among hemodialysis (HD patients. The Framingham risk score (FRS is useful for predicting incidence of CV events in the general population, but is considerd to be unsuitable for the prediction of the incidence of CV events in HD patients, given their characteristics due to atypical relationships between conventional risk factors and outcomes. We therefore aimed to develop a new prognostic prediction model for prevention and early detection of CV events among hemodialysis patients.We enrolled 3,601 maintenance HD patients based on their data from the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS, phases 3 and 4. We longitudinaly assessed the association between several potential candidate predictors and composite CV events in the year after study initiation. Potential candidate predictors included the component factors of FRS and other HD-specific risk factors. We used multivariable logistic regression with backward stepwise selection to develop our new prediction model and generated a calibration plot. Additinially, we performed bootstrapping to assess the internal validity.We observed 328 composite CV events during 1-year follow-up. The final prediction model contained six variables: age, diabetes status, history of CV events, dialysis time per session, and serum phosphorus and albumin levels. The new model showed significantly better discrimination than the FRS, in both men (c-statistics: 0.76 for new model, 0.64 for FRS and women (c-statistics: 0.77 for new model, 0.60 for FRS. Additionally, we confirmed the consistency between the observed results and predicted results using the calibration plot. Further, we found similar discrimination and calibration to the derivation model in the bootstrapping cohort.We developed a new risk model consisting of only six predictors. Our new model predicted CV events more accurately than the FRS.

  14. Cabin Environment Physics Risk Model

    Science.gov (United States)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  15. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.

    Science.gov (United States)

    Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M

    2015-07-01

    Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.

  16. Investigation on Cardiovascular Risk Prediction Using Physiological Parameters

    Directory of Open Access Journals (Sweden)

    Wan-Hua Lin

    2013-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. Early prediction of CVD is urgently important for timely prevention and treatment. Incorporation or modification of new risk factors that have an additional independent prognostic value of existing prediction models is widely used for improving the performance of the prediction models. This paper is to investigate the physiological parameters that are used as risk factors for the prediction of cardiovascular events, as well as summarizing the current status on the medical devices for physiological tests and discuss the potential implications for promoting CVD prevention and treatment in the future. The results show that measures extracted from blood pressure, electrocardiogram, arterial stiffness, ankle-brachial blood pressure index (ABI, and blood glucose carry valuable information for the prediction of both long-term and near-term cardiovascular risk. However, the predictive values should be further validated by more comprehensive measures. Meanwhile, advancing unobtrusive technologies and wireless communication technologies allow on-site detection of the physiological information remotely in an out-of-hospital setting in real-time. In addition with computer modeling technologies and information fusion. It may allow for personalized, quantitative, and real-time assessment of sudden CVD events.

  17. Risk prediction of hepatotoxicity in paracetamol poisoning.

    Science.gov (United States)

    Wong, Anselm; Graudins, Andis

    2017-09-01

    Paracetamol (acetaminophen) poisoning is the most common cause of acute liver failure in the developed world. A paracetamol treatment nomogram has been used for over four decades to help determine whether patients will develop hepatotoxicity without acetylcysteine treatment, and thus indicates those needing treatment. Despite this, a small proportion of patients still develop hepatotoxicity. More accurate risk predictors would be useful to increase the early detection of patients with the potential to develop hepatotoxicity despite acetylcysteine treatment. Similarly, there would be benefit in early identification of those with a low likelihood of developing hepatotoxicity, as this group may be safely treated with an abbreviated acetylcysteine regimen. To review the current literature related to risk prediction tools that can be used to identify patients at increased risk of hepatotoxicity. A systematic literature review was conducted using the search terms: "paracetamol" OR "acetaminophen" AND "overdose" OR "toxicity" OR "risk prediction rules" OR "hepatotoxicity" OR "psi parameter" OR "multiplication product" OR "half-life" OR "prothrombin time" OR "AST/ALT (aspartate transaminase/alanine transaminase)" OR "dose" OR "biomarkers" OR "nomogram". The search was limited to human studies without language restrictions, of Medline (1946 to May 2016), PubMed and EMBASE. Original articles pertaining to the theme were identified from January 1974 to May 2016. Of the 13,975 articles identified, 60 were relevant to the review. Paracetamol treatment nomograms: Paracetamol treatment nomograms have been used for decades to help decide the need for acetylcysteine, but rarely used to determine the risk of hepatotoxicity with treatment. Reported paracetamol dose and concentration: A dose ingestion >12 g or serum paracetamol concentration above the treatment thresholds on the paracetamol nomogram are associated with a greater risk of hepatotoxicity. Paracetamol elimination half

  18. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  19. Shoulder dystocia: risk factors, predictability, and preventability.

    Science.gov (United States)

    Mehta, Shobha H; Sokol, Robert J

    2014-06-01

    Shoulder dystocia remains an unpredictable obstetric emergency, striking fear in the hearts of obstetricians both novice and experienced. While outcomes that lead to permanent injury are rare, almost all obstetricians with enough years of practice have participated in a birth with a severe shoulder dystocia and are at least aware of cases that have resulted in significant neurologic injury or even neonatal death. This is despite many years of research trying to understand the risk factors associated with it, all in an attempt primarily to characterize when the risk is high enough to avoid vaginal delivery altogether and prevent a shoulder dystocia, whose attendant morbidities are estimated to be at a rate as high as 16-48%. The study of shoulder dystocia remains challenging due to its generally retrospective nature, as well as dependence on proper identification and documentation. As a result, the prediction of shoulder dystocia remains elusive, and the cost of trying to prevent one by performing a cesarean delivery remains high. While ultimately it is the injury that is the key concern, rather than the shoulder dystocia itself, it is in the presence of an identified shoulder dystocia that occurrence of injury is most common. The majority of shoulder dystocia cases occur without major risk factors. Moreover, even the best antenatal predictors have a low positive predictive value. Shoulder dystocia therefore cannot be reliably predicted, and the only preventative measure is cesarean delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evaluating Predictive Models of Software Quality

    Science.gov (United States)

    Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.

    2014-06-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  1. Evaluating predictive models of software quality

    International Nuclear Information System (INIS)

    Ciaschini, V; Canaparo, M; Ronchieri, E; Salomoni, D

    2014-01-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  2. [Risk factor analysis of the patients with solitary pulmonary nodules and establishment of a prediction model for the probability of malignancy].

    Science.gov (United States)

    Wang, X; Xu, Y H; Du, Z Y; Qian, Y J; Xu, Z H; Chen, R; Shi, M H

    2018-02-23

    Objective: This study aims to analyze the relationship among the clinical features, radiologic characteristics and pathological diagnosis in patients with solitary pulmonary nodules, and establish a prediction model for the probability of malignancy. Methods: Clinical data of 372 patients with solitary pulmonary nodules who underwent surgical resection with definite postoperative pathological diagnosis were retrospectively analyzed. In these cases, we collected clinical and radiologic features including gender, age, smoking history, history of tumor, family history of cancer, the location of lesion, ground-glass opacity, maximum diameter, calcification, vessel convergence sign, vacuole sign, pleural indentation, speculation and lobulation. The cases were divided to modeling group (268 cases) and validation group (104 cases). A new prediction model was established by logistic regression analying the data from modeling group. Then the data of validation group was planned to validate the efficiency of the new model, and was compared with three classical models(Mayo model, VA model and LiYun model). With the calculated probability values for each model from validation group, SPSS 22.0 was used to draw the receiver operating characteristic curve, to assess the predictive value of this new model. Results: 112 benign SPNs and 156 malignant SPNs were included in modeling group. Multivariable logistic regression analysis showed that gender, age, history of tumor, ground -glass opacity, maximum diameter, and speculation were independent predictors of malignancy in patients with SPN( P prediction model for the probability of malignancy as follow: p =e(x)/(1+ e(x)), x=-4.8029-0.743×gender+ 0.057×age+ 1.306×history of tumor+ 1.305×ground-glass opacity+ 0.051×maximum diameter+ 1.043×speculation. When the data of validation group was added to the four-mathematical prediction model, The area under the curve of our mathematical prediction model was 0.742, which is greater

  3. New methods for fall risk prediction.

    Science.gov (United States)

    Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim

    2014-09-01

    Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.

  4. Prediction of Drug Attitude in Adolescents Based on Family Training Risk Factors for Mental Health in Society: Designing a Model for Prevention of Addiction

    Directory of Open Access Journals (Sweden)

    M Parsian

    2015-06-01

    Full Text Available Background & objectives: Substance abuse is one of the worst humanitarian issues in recent years which undermines the base and foundations of human society. Its prevention requires the application of multiple theories in various disciplines together with diverse methods and techniques. Several studies have been emphasized on the role of personal and familial variables as risk factors for substance use . However, this study was done in order to predict drug addiction attitude in adolescents according to the family training risk factors to prevent substance abuse and to design a model for the prevention of addiction .   Methods: This study is a descriptive and survey research performed on a sample of 373 male and female students selected randomly among the five high school students in Ghaemshahr city. Then a questionnaire including parenting styles, attitude to addiction and social problem solving skill as well as a socioeconomic questionnaire distributed among the students. For data analysis, the statistical method of descriptive statistics and path analysis has been used.   Results: Results of this study have shown that the component of parenting styles has a direct and positive impact on attitudes to drug addiction. In addition, there was a direct and positive non-significant relationship between the adaptive social problem solving skills and attitude to drug addiction and also direct and negative significant relationship between the non-adaptive social problem solving skills on this attitudes. A direct and negative significant relationship was also seen between parenting styles and attitude to drug addiction.   Conclusions: Based on the results of present study, the components of parenting styles have a direct and negative impact on attitudes to drug addiction. Also there is a direct and significant relationship between the components of non-adaptive social problem solving skills and the variable of social attitude in adolescents . But the

  5. Nonparametric predictive pairwise comparison with competing risks

    International Nuclear Information System (INIS)

    Coolen-Maturi, Tahani

    2014-01-01

    In reliability, failure data often correspond to competing risks, where several failure modes can cause a unit to fail. This paper presents nonparametric predictive inference (NPI) for pairwise comparison with competing risks data, assuming that the failure modes are independent. These failure modes could be the same or different among the two groups, and these can be both observed and unobserved failure modes. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. The focus is on the lower and upper probabilities for the event that the lifetime of a future unit from one group, say Y, is greater than the lifetime of a future unit from the second group, say X. The paper also shows how the two groups can be compared based on particular failure mode(s), and the comparison of the two groups when some of the competing risks are combined is discussed

  6. The prediction of the bankruptcy risk

    Directory of Open Access Journals (Sweden)

    Gheorghe DUMITRESCU

    2010-04-01

    Full Text Available The study research results of the bankruptcy risk in the actual economic crisis are very weak. This issue is very important for the economy of every country, no matter what their actual development level.The necessity of bankruptcy risk prediction appears in every company,but also in the related institutions like financial companies, investors, suppliers, customers.The bankruptcy risk made and makes the object of many studies of research that want to identify: the moment of the appearance of the bankruptcy, the factors that compete at the reach of this state, the indicators that express the best this orientation (to the bankruptcy.The threats to the firms impose the knowledge by the managers,permanently of the economic-financial situations, of the vulnerable areas and of those with potential of development. Thus, these must identify and gesture the threats that would stop the fulfillment of the established purposes.

  7. Interaction of Reward Seeking and Self-Regulation in the Prediction of Risk Taking: A Cross-National Test of the Dual Systems Model

    Science.gov (United States)

    Duell, Natasha; Steinberg, Laurence; Chein, Jason; Al-Hassan, Suha M.; Bacchini, Dario; Lei, Chang; Chaudhary, Nandita; Di Giunta, Laura; Dodge, Kenneth A.; Fanti, Kostas A.; Lansford, Jennifer E.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Alampay, Liane Peña

    2016-01-01

    In the present analysis, we test the dual systems model of adolescent risk taking in a cross-national sample of over 5,200 individuals aged 10 through 30 (M = 17.05 years, SD = 5.91) from 11 countries. We examine whether reward seeking and self-regulation make independent, additive, or interactive contributions to risk taking, and ask whether…

  8. Modelling the predictive performance of credit scoring

    Directory of Open Access Journals (Sweden)

    Shi-Wei Shen

    2013-07-01

    Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.

  9. Predicting disease risk using bootstrap ranking and classification algorithms.

    Directory of Open Access Journals (Sweden)

    Ohad Manor

    Full Text Available Genome-wide association studies (GWAS are widely used to search for genetic loci that underlie human disease. Another goal is to predict disease risk for different individuals given their genetic sequence. Such predictions could either be used as a "black box" in order to promote changes in life-style and screening for early diagnosis, or as a model that can be studied to better understand the mechanism of the disease. Current methods for risk prediction typically rank single nucleotide polymorphisms (SNPs by the p-value of their association with the disease, and use the top-associated SNPs as input to a classification algorithm. However, the predictive power of such methods is relatively poor. To improve the predictive power, we devised BootRank, which uses bootstrapping in order to obtain a robust prioritization of SNPs for use in predictive models. We show that BootRank improves the ability to predict disease risk of unseen individuals in the Wellcome Trust Case Control Consortium (WTCCC data and results in a more robust set of SNPs and a larger number of enriched pathways being associated with the different diseases. Finally, we show that combining BootRank with seven different classification algorithms improves performance compared to previous studies that used the WTCCC data. Notably, diseases for which BootRank results in the largest improvements were recently shown to have more heritability than previously thought, likely due to contributions from variants with low minimum allele frequency (MAF, suggesting that BootRank can be beneficial in cases where SNPs affecting the disease are poorly tagged or have low MAF. Overall, our results show that improving disease risk prediction from genotypic information may be a tangible goal, with potential implications for personalized disease screening and treatment.

  10. A mathematical prediction model incorporating molecular subtype for risk of non-sentinel lymph node metastasis in sentinel lymph node-positive breast cancer patients: a retrospective analysis and nomogram development.

    Science.gov (United States)

    Wang, Na-Na; Yang, Zheng-Jun; Wang, Xue; Chen, Li-Xuan; Zhao, Hong-Meng; Cao, Wen-Feng; Zhang, Bin

    2018-04-25

    Molecular subtype of breast cancer is associated with sentinel lymph node status. We sought to establish a mathematical prediction model that included breast cancer molecular subtype for risk of positive non-sentinel lymph nodes in breast cancer patients with sentinel lymph node metastasis and further validate the model in a separate validation cohort. We reviewed the clinicopathologic data of breast cancer patients with sentinel lymph node metastasis who underwent axillary lymph node dissection between June 16, 2014 and November 16, 2017 at our hospital. Sentinel lymph node biopsy was performed and patients with pathologically proven sentinel lymph node metastasis underwent axillary lymph node dissection. Independent risks for non-sentinel lymph node metastasis were assessed in a training cohort by multivariate analysis and incorporated into a mathematical prediction model. The model was further validated in a separate validation cohort, and a nomogram was developed and evaluated for diagnostic performance in predicting the risk of non-sentinel lymph node metastasis. Moreover, we assessed the performance of five different models in predicting non-sentinel lymph node metastasis in training cohort. Totally, 495 cases were eligible for the study, including 291 patients in the training cohort and 204 in the validation cohort. Non-sentinel lymph node metastasis was observed in 33.3% (97/291) patients in the training cohort. The AUC of MSKCC, Tenon, MDA, Ljubljana, and Louisville models in training cohort were 0.7613, 0.7142, 0.7076, 0.7483, and 0.671, respectively. Multivariate regression analysis indicated that tumor size (OR = 1.439; 95% CI 1.025-2.021; P = 0.036), sentinel lymph node macro-metastasis versus micro-metastasis (OR = 5.063; 95% CI 1.111-23.074; P = 0.036), the number of positive sentinel lymph nodes (OR = 2.583, 95% CI 1.714-3.892; P model based on the results of multivariate analysis was established to predict the risk of non

  11. Models of Credit Risk Measurement

    OpenAIRE

    Hagiu Alina

    2011-01-01

    Credit risk is defined as that risk of financial loss caused by failure by the counterparty. According to statistics, for financial institutions, credit risk is much important than market risk, reduced diversification of the credit risk is the main cause of bank failures. Just recently, the banking industry began to measure credit risk in the context of a portfolio along with the development of risk management started with models value at risk (VAR). Once measured, credit risk can be diversif...

  12. Modelo predictivo de "score" de calcio alto en pacientes con factores de riesgo cardiovascular Predictive model of high calcium score in patients with cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Gloria Franco

    2007-12-01

    prueba del score de calcio coronario a un paciente con factores de riesgo cardiovascular. Se puede observar que muchos de los factores de riesgo que se correlacionan con un valor elevado de "score" de calcio coronario pueden ser modificables: cesar el hábito de fumar o realizar ejercicio.Introduction: it has been found through multiple studies that coronary calcium score is a good predictor of coronary disease in asymptomatic individuals with one or more cardiovascular risk factors; therefore it would be ideal to perform this test in order to stratify its risk, but due to economic factors this is not possible in most cases. The model presented allows predicting the probability that a patient may have a high coronary calcium score by means of his cardiovascular risk factors. The originality of the model is that it also comprises "protector" factors that diminish such probability. Methods: study of cases and controls in asymptomatic patients with cardiovascular risk factors to whom a PCC had been performed. The cases are patients with coronary calcium score greater than percentile 75 for his age and gender; the control case relationship is 2:1. Results: ages ranged between 35 and 75 years; 14.4% were female; 44.4% had family history of CHD; 34.4% were hypertensive; 38.9% had high total cholesterol; 24.4% had HDL cholesterol under 40 mg/dl; 33.3% had LDL cholesterol greater than 160 mg/dl; 25.6% were cigarette smokers; 23.3% were sedentary; 13.3% were periodical alcohol consumers; 15.6% were obese (BMI > 30; 18.9% exercised periodically and 34.4% received statins. Cardiovascular risk factors correlated with high coronary calcium score are recorded in table 1. In the logistic regression model, factors having a p table 2 are obtained. Expression for the model would be: The values of ci values are 1, if the factor is present and 0 if it is not. Conclusions: this model does not pretend to replace stratification through Framinghan model; on the contrary, it is a complement that

  13. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  14. Risk prediction of major complications in individuals with diabetes: the Atherosclerosis Risk in Communities Study.

    Science.gov (United States)

    Parrinello, C M; Matsushita, K; Woodward, M; Wagenknecht, L E; Coresh, J; Selvin, E

    2016-09-01

    To develop a prediction equation for 10-year risk of a combined endpoint (incident coronary heart disease, stroke, heart failure, chronic kidney disease, lower extremity hospitalizations) in people with diabetes, using demographic and clinical information, and a panel of traditional and non-traditional biomarkers. We included in the study 654 participants in the Atherosclerosis Risk in Communities (ARIC) study, a prospective cohort study, with diagnosed diabetes (visit 2; 1990-1992). Models included self-reported variables (Model 1), clinical measurements (Model 2), and glycated haemoglobin (Model 3). Model 4 tested the addition of 12 blood-based biomarkers. We compared models using prediction and discrimination statistics. Successive stages of model development improved risk prediction. The C-statistics (95% confidence intervals) of models 1, 2, and 3 were 0.667 (0.64, 0.70), 0.683 (0.65, 0.71), and 0.694 (0.66, 0.72), respectively (p < 0.05 for differences). The addition of three traditional and non-traditional biomarkers [β-2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR] to Model 3 significantly improved discrimination (C-statistic = 0.716; p = 0.003) and accuracy of 10-year risk prediction for major complications in people with diabetes (midpoint percentiles of lowest and highest deciles of predicted risk changed from 18-68% to 12-87%). These biomarkers, particularly those of kidney filtration, may help distinguish between people at low versus high risk of long-term major complications. © 2016 John Wiley & Sons Ltd.

  15. Prediction and validation of pool fire development in enclosures by means of CFD Models for risk assessment of nuclear power plants (Poolfire) - Report year 2

    International Nuclear Information System (INIS)

    Van Hees, P.; Wahlqvist, J.; Kong, D.; Hostikka, S.; Sikanen, T.; Husted, B.; Magnusson, T.; Joerud, F.

    2013-05-01

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)

  16. Prediction and validation of pool fire development in enclosures by means of CFD Models for risk assessment of nuclear power plants (Poolfire) - Report year 2

    Energy Technology Data Exchange (ETDEWEB)

    van Hees, P.; Wahlqvist, J.; Kong, D. [Lund Univ., Lund (Sweden); Hostikka, S.; Sikanen, T. [VTT Technical Research Centre of Finland (Finland); Husted, B. [Haugesund Univ. College, Stord (Norway); Magnusson, T. [Ringhals AB, Vaeroebacka (Sweden); Joerud, F. [European Spallation Source (ESS), Lund (Sweden)

    2013-05-15

    Fires in nuclear power plants can be an important hazard for the overall safety of the facility. One of the typical fire sources is a pool fire. It is therefore important to have good knowledge on the fire behaviour of pool fire and be able to predict the heat release rate by prediction of the mass loss rate. This project envisages developing a pyrolysis model to be used in CFD models. In this report the activities for second year are reported, which is an overview of the experiments conducted, further development and validation of models and cases study to be selected in year 3. (Author)

  17. Indoor Tanning and the MC1R Genotype: Risk Prediction for Basal Cell Carcinoma Risk in Young People

    OpenAIRE

    Molinaro, Annette M.; Ferrucci, Leah M.; Cartmel, Brenda; Loftfield, Erikka; Leffell, David J.; Bale, Allen E.; Mayne, Susan T.

    2015-01-01

    Basal cell carcinoma (BCC) incidence is increasing, particularly in young people, and can be associated with significant morbidity and treatment costs. To identify young individuals at risk of BCC, we assessed existing melanoma or overall skin cancer risk prediction models and built a novel risk prediction model, with a focus on indoor tanning and the melanocortin 1 receptor gene, MC1R. We evaluated logistic regression models among 759 non-Hispanic whites from a case-control study of patients...

  18. A cytogenetic model predicts relapse risk and survival in patients with acute myeloid leukemia undergoing hematopoietic stem cell transplantation in morphologic complete remission.

    Science.gov (United States)

    Rashidi, Armin; Cashen, Amanda F

    2015-01-01

    Up to 30% of patients with acute myeloid leukemia (AML) and abnormal cytogenetics have persistent cytogenetic abnormalities (pCytAbnl) at morphologic complete remission (mCR). We hypothesized that the prognostic significance of pCytAbnl in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) in mCR varies with cytogenetic risk group. We analyzed the data on 118 patients with AML and abnormal cytogenetics who underwent HSCT in mCR, and developed a risk stratification model based on pCytAbnl and cytogenetic risk group. The model distinguished three groups of patients (Pcytogenetics (n=25) had the shortest median time to relapse (TTR; 5 months), relapse-free survival (RFS; 3 months), and overall survival (OS; 7 months). The group with favorable/intermediate risk cytogenetics and without pCytAbnl (n=43) had the longest median TTR (not reached), RFS (57 months), and OS (57 months). The group with pCytAbnl and favorable/intermediate risk cytogenetics, or, without pCytAbnl but with unfavorable risk cytogenetics (n=50) experienced intermediate TTR (18 months), RFS (9 months), and OS (18 months). In conclusion, a cytogenetic risk model identifies patients with AML in mCR with distinct rates of relapse and survival following HSCT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    NARCIS (Netherlands)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest

  20. Habitat Modeling and Preferences of Marine Mammals as Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions

    Science.gov (United States)

    2011-09-30

    evaluate WEC projects in the perspective of the environmental cost-benefit analysis. Proceedings of the ISOPE 2011, Maui, Hawaii, USA 19-24 June, 2011...Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions Dr...detections) and the available environmental predictors; - Creating the knowledge-based background about potential mitigation measures appropriate for

  1. How to make predictions about future infectious disease risks

    Science.gov (United States)

    Woolhouse, Mark

    2011-01-01

    Formal, quantitative approaches are now widely used to make predictions about the likelihood of an infectious disease outbreak, how the disease will spread, and how to control it. Several well-established methodologies are available, including risk factor analysis, risk modelling and dynamic modelling. Even so, predictive modelling is very much the ‘art of the possible’, which tends to drive research effort towards some areas and away from others which may be at least as important. Building on the undoubted success of quantitative modelling of the epidemiology and control of human and animal diseases such as AIDS, influenza, foot-and-mouth disease and BSE, attention needs to be paid to developing a more holistic framework that captures the role of the underlying drivers of disease risks, from demography and behaviour to land use and climate change. At the same time, there is still considerable room for improvement in how quantitative analyses and their outputs are communicated to policy makers and other stakeholders. A starting point would be generally accepted guidelines for ‘good practice’ for the development and the use of predictive models. PMID:21624924

  2. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  3. Machine learning derived risk prediction of anorexia nervosa.

    Science.gov (United States)

    Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon

    2016-01-20

    Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.

  4. Interaction of reward seeking and self-regulation in the prediction of risk taking: A cross-national test of the dual systems model.

    Science.gov (United States)

    Duell, Natasha; Steinberg, Laurence; Chein, Jason; Al-Hassan, Suha M; Bacchini, Dario; Lei, Chang; Chaudhary, Nandita; Di Giunta, Laura; Dodge, Kenneth A; Fanti, Kostas A; Lansford, Jennifer E; Malone, Patrick S; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Alampay, Liane Peña

    2016-10-01

    In the present analysis, we test the dual systems model of adolescent risk taking in a cross-national sample of over 5,200 individuals aged 10 through 30 (M = 17.05 years, SD = 5.91) from 11 countries. We examine whether reward seeking and self-regulation make independent, additive, or interactive contributions to risk taking, and ask whether these relations differ as a function of age and culture. To compare across cultures, we conduct 2 sets of analyses: 1 comparing individuals from Asian and Western countries, and 1 comparing individuals from low- and high-GDP countries. Results indicate that reward seeking and self-regulation have largely independent associations with risk taking and that the influences of each variable on risk taking are not unique to adolescence, but that their link to risk taking varies across cultures. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    2016-01-01

    evaluation. More specifically, the model mostly generates positive (negative) economic value during times of high (low) macroeconomic uncertainty. Overall, the expectations hypothesis remains a useful benchmark for investment decisions in bond markets, especially in low uncertainty states.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for investors. We propose a novel estimation strategy for affine term structure models that jointly fits yields and bond excess returns, thereby capturing predictive information...... otherwise hidden to standard estimations. The model predicts excess returns with high regression R2s and high forecast accuracy but cannot outperform the expectations hypothesis out-of-sample in terms of economic value, showing a general contrast between statistical and economic metrics of forecast...

  6. MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-07-01

    Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.

  7. Providing access to risk prediction tools via the HL7 XML-formatted risk web service.

    Science.gov (United States)

    Chipman, Jonathan; Drohan, Brian; Blackford, Amanda; Parmigiani, Giovanni; Hughes, Kevin; Bosinoff, Phil

    2013-07-01

    Cancer risk prediction tools provide valuable information to clinicians but remain computationally challenging. Many clinics find that CaGene or HughesRiskApps fit their needs for easy- and ready-to-use software to obtain cancer risks; however, these resources may not fit all clinics' needs. The HughesRiskApps Group and BayesMendel Lab therefore developed a web service, called "Risk Service", which may be integrated into any client software to quickly obtain standardized and up-to-date risk predictions for BayesMendel tools (BRCAPRO, MMRpro, PancPRO, and MelaPRO), the Tyrer-Cuzick IBIS Breast Cancer Risk Evaluation Tool, and the Colorectal Cancer Risk Assessment Tool. Software clients that can convert their local structured data into the HL7 XML-formatted family and clinical patient history (Pedigree model) may integrate with the Risk Service. The Risk Service uses Apache Tomcat and Apache Axis2 technologies to provide an all Java web service. The software client sends HL7 XML information containing anonymized family and clinical history to a Dana-Farber Cancer Institute (DFCI) server, where it is parsed, interpreted, and processed by multiple risk tools. The Risk Service then formats the results into an HL7 style message and returns the risk predictions to the originating software client. Upon consent, users may allow DFCI to maintain the data for future research. The Risk Service implementation is exemplified through HughesRiskApps. The Risk Service broadens the availability of valuable, up-to-date cancer risk tools and allows clinics and researchers to integrate risk prediction tools into their own software interface designed for their needs. Each software package can collect risk data using its own interface, and display the results using its own interface, while using a central, up-to-date risk calculator. This allows users to choose from multiple interfaces while always getting the latest risk calculations. Consenting users contribute their data for future

  8. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic ...... risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management....

  9. Minimally invasive prediction of ScvO2 in high-risk surgery : The introduction of a model Index of Oxygenation

    NARCIS (Netherlands)

    de Grooth, Harm-Jan S.; Vos, Jaap Jan; Scheeren, Thomas; van Beest, Paul

    2014-01-01

    INTRODUCTION: The purpose of this study was to examine the trilateral relationship between cardiac index (CI), tissue oxygen saturation (StO2) and central venous oxygen saturation (ScvO2) and subsequently develop a model to predict ScvO2 on minimal invasive manner in patients undergoing major

  10. Towards personalized follow-up : a conditional prediction model and nomogram for risk of locoregional recurrence in early breast cancer patients

    NARCIS (Netherlands)

    Witteveen, Annemieke; Vliegen, Ingrid; Sonke, G.S.; Klaase, J.M.; IJzerman, Maarten Joost; Siesling, Sabine

    2015-01-01

    Background The objective of this study was to develop and validate a conditional logistic regression model for the prediction of locoregional recurrence (LRR) of breast cancer. To make a translation to clinical practice a web based nomogram was made. Methods Women first diagnosed with early breast

  11. Water erosion risk prediction in eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Mayesse Aparecida da Silva

    2014-04-01

    Full Text Available Eucalyptus plantations are normally found in vulnerable ecosystems such as steep slope, soil with low natural fertility and lands that were degraded by agriculture. The objective of this study was to obtain Universal Soil Loss Equation (USLE factors and use them to estimate water erosion risk in regions with eucalyptus planted. The USLE factors were obtained in field plots under natural rainfall in the Rio Doce Basin, MG, Brazil, and the model applied to assess erosion risk using USLE in a Geographic Information System. The study area showed rainfall-runoff erosivity values from 10,721 to 10,642 MJ mm ha-1 h-1 yr-1. Some soils (Latosols had very low erodibility values (2.0 x 10-4 and 1.0 x 10-4t h MJ-1 mm-1, the topographic factor ranged from 0.03 to 10.57 and crop and management factor values obtained for native forest, eucalyptus and planted pasture were 0.09, 0.12 and 0.22, respectively. Water erosion risk estimates for current land use indicated that the areas where should receive more attention were mainly areas with greater topographic factors and those with Cambisols. Planning of forestry activities in this region should consider implementation of other conservation practices beyond those already used, reducing areas with a greater risk of soil erosion and increasing areas with very low risk.

  12. Shallow landslide prediction and analysis with risk assessment using a spatial model in the coastal region in the state of São Paulo, Brazil

    Science.gov (United States)

    Camarinha, P. I. M.; Canavesi, V.; Alvalá, R. C. S.

    2013-10-01

    In Brazil, most of the disasters involving landslide occur in coastal regions, with population density concentrated on steep slopes. Thus, different approaches have been used to evaluate the landslide risk, although the greatest difficulty is related to the scarcity of spatial data with good quality. In this context, four cities located on the southeast coast of Brazil - Santos, Cubatão, Caraguatatuba and Ubatuba - in a region with the rough reliefs of the Serra do Mar and with a history of natural disasters were evaluated. Spatial prediction by fuzzy gamma technique was used for the landslide susceptibility mapping, considering environmental variables from data and software in the public domain. To validate the susceptibility mapping results, it was overlapped with risk sectors provided by the Geological Survey of Brazil (CPRM). A positive correlation was observed between the classes most susceptible and the location of these sectors. The results were also analyzed from the categorization of risk levels provided by CPRM. To compare the approach with other studies using landslide-scar maps, correlated indexes were evaluated, which also showed satisfactory results, thus indicating that the methodology presented is appropriate for risk assessment in urban areas and can be replicated to municipalities that do not have risk areas mapped.

  13. Scientific reporting is suboptimal for aspects that characterize genetic risk prediction studies: a review of published articles based on the Genetic RIsk Prediction Studies statement.

    Science.gov (United States)

    Iglesias, Adriana I; Mihaescu, Raluca; Ioannidis, John P A; Khoury, Muin J; Little, Julian; van Duijn, Cornelia M; Janssens, A Cecile J W

    2014-05-01

    Our main objective was to raise awareness of the areas that need improvements in the reporting of genetic risk prediction articles for future publications, based on the Genetic RIsk Prediction Studies (GRIPS) statement. We evaluated studies that developed or validated a prediction model based on multiple DNA variants, using empirical data, and were published in 2010. A data extraction form based on the 25 items of the GRIPS statement was created and piloted. Forty-two studies met our inclusion criteria. Overall, more than half of the evaluated items (34 of 62) were reported in at least 85% of included articles. Seventy-seven percentage of the articles were identified as genetic risk prediction studies through title assessment, but only 31% used the keywords recommended by GRIPS in the title or abstract. Seventy-four percentage mentioned which allele was the risk variant. Overall, only 10% of the articles reported all essential items needed to perform external validation of the risk model. Completeness of reporting in genetic risk prediction studies is adequate for general elements of study design but is suboptimal for several aspects that characterize genetic risk prediction studies such as description of the model construction. Improvements in the transparency of reporting of these aspects would facilitate the identification, replication, and application of genetic risk prediction models. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  15. Characterizing Tumor Heterogeneity With Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Huang Zhibin; Wang, Jian Z.; Lo, Simon S.; Fan, Joline M.; Grecula, John C.; Sammet, Steffen; Sammet, Christina L.; Jia Guang; Zhang Jun; Knopp, Michael V.; Yuh, William T.C.

    2012-01-01

    Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB 2 –IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the total volume of tumor voxels with critically low DCE signal intensity ( 20, >13, and >5 cm 3 , respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 × 10 −8 , 2.0 × 10 −8 ) and disease-specific survival (p = 1.9 × 10 −4 , 2.1 × 10 −6 , 2.5 × 10 −7 , respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2–5 weeks into treatment.

  16. Risk determination after an acute myocardial infarction: review of 3 clinical risk prediction tools.

    Science.gov (United States)

    Scruth, Elizabeth Ann; Page, Karen; Cheng, Eugene; Campbell, Michelle; Worrall-Carter, Linda

    2012-01-01

    The objective of the study was to provide comprehensive information for the clinical nurse specialist (CNS) on commonly used clinical prediction (risk assessment) tools used to estimate risk of a secondary cardiac or noncardiac event and mortality in patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI). The evolution and widespread adoption of primary PCI represent major advances in the treatment of acute myocardial infarction, specifically STEMI. The American College of Cardiology and the American Heart Association have recommended early risk stratification for patients presenting with acute coronary syndromes using several clinical risk scores to identify patients' mortality and secondary event risk after PCI. Clinical nurse specialists are integral to any performance improvement strategy. Their knowledge and understandings of clinical prediction tools will be essential in carrying out important assessment, identifying and managing risk in patients who have sustained a STEMI, and enhancing discharge education including counseling on medications and lifestyle changes. Over the past 2 decades, risk scores have been developed from clinical trials to facilitate risk assessment. There are several risk scores that can be used to determine in-hospital and short-term survival. This article critiques the most common tools: the Thrombolytic in Myocardial Infarction risk score, the Global Registry of Acute Coronary Events risk score, and the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications risk score. The importance of incorporating risk screening assessment tools (that are important for clinical prediction models) to guide therapeutic management of patients cannot be underestimated. The ability to forecast secondary risk after a STEMI will assist in determining which patients would require the most aggressive level of treatment and monitoring postintervention including

  17. Validated predictive modelling of the environmental resistome.

    Science.gov (United States)

    Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-06-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.

  18. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach.

    Science.gov (United States)

    Journy, Neige; Ancelet, Sophie; Rehel, Jean-Luc; Mezzarobba, Myriam; Aubert, Bernard; Laurier, Dominique; Bernier, Marie-Odile

    2014-03-01

    The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose-response models estimated in the Japanese atomic bomb survivors' dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1-55) brain/CNS cancers and four (90 % UI 1-14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9-101) thyroid cancers, 55 (90 % UI 20-158) breast cancers, and one (90 % UI risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5-10 % of CT examinations would be related to risks 1.4-3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1-10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.

  19. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  20. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  1. Comparison of traditional cardiovascular risk models and coronary atherosclerotic plaque as detected by computed tomography for prediction of acute coronary syndrome in patients with acute chest pain.

    Science.gov (United States)

    Ferencik, Maros; Schlett, Christopher L; Bamberg, Fabian; Truong, Quynh A; Nichols, John H; Pena, Antonio J; Shapiro, Michael D; Rogers, Ian S; Seneviratne, Sujith; Parry, Blair Alden; Cury, Ricardo C; Brady, Thomas J; Brown, David F; Nagurney, John T; Hoffmann, Udo

    2012-08-01

    The objective was to determine the association of four clinical risk scores and coronary plaque burden as detected by computed tomography (CT) with the outcome of acute coronary syndrome (ACS) in patients with acute chest pain. The hypothesis was that the combination of risk scores and plaque burden improved the discriminatory capacity for the diagnosis of ACS. The study was a subanalysis of the Rule Out Myocardial Infarction Using Computer-Assisted Tomography (ROMICAT) trial-a prospective observational cohort study. The authors enrolled patients presenting to the emergency department (ED) with a chief complaint of acute chest pain, inconclusive initial evaluation (negative biomarkers, nondiagnostic electrocardiogram [ECG]), and no history of coronary artery disease (CAD). Patients underwent contrast-enhanced 64-multidetector-row cardiac CT and received standard clinical care (serial ECG, cardiac biomarkers, and subsequent diagnostic testing, such as exercise treadmill testing, nuclear stress perfusion imaging, and/or invasive coronary angiography), as deemed clinically appropriate. The clinical providers were blinded to CT results. The chest pain score was calculated and the results were dichotomized to ≥10 (high-risk) and modeling was performed to examine the association of risk scores and coronary plaque burden to the outcome of ACS. Unadjusted models were individually fitted for the coronary plaque burden and for Goldman, Sanchis, TIMI, and chest pain scores. In adjusted analyses, the authors tested whether the association between risk scores and ACS persisted after controlling for the coronary plaque burden. The prognostic discriminatory capacity of the risk scores and plaque burden for ACS was assessed using c-statistics. The differences in area under the receiver-operating characteristic curve (AUC) and c-statistics were tested by performing the -2 log likelihood ratio test of nested models. A p value capacity for the diagnosis of ACS. Plaque burden was

  2. Characterizing Tumor Heterogeneity With Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Nina A., E-mail: Nina.Mayr@osumc.edu [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Huang Zhibin [Department of Radiation Oncology and Department of Physics, East Carolina University, Greenville, NC (United States); Wang, Jian Z. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Lo, Simon S. [Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH (United States); Fan, Joline M. [Department of Molecular Biology, Stanford University, Stanford, CA (United States); Grecula, John C. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Sammet, Steffen [Department of Radiology, University of Chicago, Chicago, IL (United States); Department of Radiology, Ohio State University, Columbus, OH (United States); Sammet, Christina L. [Department of Radiology, University of Chicago, Chicago, IL (United States); Jia Guang; Zhang Jun; Knopp, Michael V.; Yuh, William T.C. [Department of Radiology, Ohio State University, Columbus, OH (United States)

    2012-07-01

    Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB{sub 2}-IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the total volume of tumor voxels with critically low DCE signal intensity (<2.1 compared with precontrast image, determined by previous receiver operator characteristic analysis). FRVs were correlated with treatment outcome (follow-up: 0.2-9.4, mean 6.8 years) and compared with ATVs (Mann-Whitney, Kaplan-Meier, and multivariate analyses). Results: Before and during therapy at 2-2.5 and 4-5 weeks of RT, FRVs >20, >13, and >5 cm{sup 3}, respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 Multiplication-Sign 10{sup -8}, 2.0 Multiplication-Sign 10{sup -8}) and disease-specific survival (p = 1.9 Multiplication-Sign 10{sup -4}, 2.1 Multiplication-Sign 10{sup -6}, 2.5 Multiplication-Sign 10{sup -7}, respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2

  3. Development of an attrition risk prediction tool.

    Science.gov (United States)

    Fowler, John; Norrie, Peter

    To review lecturers' and students' perceptions of the factors that may lead to attrition from pre-registration nursing and midwifery programmes and to identify ways to reduce the impact of such factors on the student's experience. Comparable attrition rates for nursing and midwifery students across various universities are difficult to monitor accurately; however, estimates that there is approximately a 25% national attrition rate are not uncommon. The financial and human implications of this are significant and worthy of investigation. A study was carried out in one medium-sized UK school of nursing and midwifery, aimed at identifying perceived factors associated with attrition and retention. Thirty-five lecturers were interviewed individually; 605 students completed a questionnaire, and of these, 10 were individually interviewed. Attrition data kept by the student service department were reviewed. Data were collected over an 18-month period in 2007-2008. Regression analysis of the student data identified eight significant predictors. Four of these were 'positive' factors in that they aided student retention and four were 'negative' in that they were associated with students' thoughts of resigning. Student attrition and retention is multifactorial, and, as such, needs to be managed holistically. One aspect of this management could be an attrition risk prediction tool.

  4. Custom v. Standardized Risk Models

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-05-01

    Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.

  5. [ACG model can predict large consumers of health care. Health care resources can be used more wisely, individuals at risk can receive better care].

    Science.gov (United States)

    Fredriksson, Martin; Edenström, Marcus; Lundahl, Anneth; Björkman, Lars

    2015-03-17

    We describe a method, which uses already existent administrative data to identify individuals with a high risk of a large need of healthcare in the coming year. The model is based on the ACG (Adjusted Clinical Groups) system to identify the high-risk patients. We have set up a model where we combine the ACG system stratification analysis tool RUB (Resource Utilization Band) and Probability High Total Cost >0.5. We tested the method with historical data, using 2 endpoints, either >19 physical visits anywhere in the healthcare system in the coming 12 months or more than 2 hospital admissions in the coming 12 months. In the region of Västra Götaland with 1.6 million inhabitants, 5.6% of the population had >19 physical visits during a 12 month period and 1.2% more than 2 hospital admissions. Our model identified approximately 24,000 individuals of whom 25.7% had >19 physical visits and 11.6% had more than 2 hospital admissions in the coming 12 months. We now plan a small test in ten primary care centers to evaluate if the model should be introduced in the entire Västra Götaland region.

  6. Predicting risk behaviors: development and validation of a diagnostic scale.

    Science.gov (United States)

    Witte, K; Cameron, K A; McKeon, J K; Berkowitz, J M

    1996-01-01

    The goal of this study was to develop and validate the Risk Behavior Diagnosis (RBD) Scale for use by health care providers and practitioners interested in promoting healthy behaviors. Theoretically guided by the Extended Parallel Process Model (EPPM; a fear appeal theory), the RBD scale was designed to work in conjunction with an easy-to-use formula to determine which types of health risk messages would be most appropriate for a given individual or audience. Because some health risk messages promote behavior change and others backfire, this type of scale offers guidance to practitioners on how to develop the best persuasive message possible to motivate healthy behaviors. The results of the study demonstrate the RBD scale to have a high degree of content, construct, and predictive validity. Specific examples and practical suggestions are offered to facilitate use of the scale for health practitioners.

  7. Model Risk in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    David Stefanovits

    2014-08-01

    Full Text Available We consider a one-period portfolio optimization problem under model uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical results for this measure of model risk in the mean-variance problem assuming we have observations drawn from a normal variance mixture model. This model allows for heavy tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust the sample covariance matrix in order to reduce model risk.

  8. Predicting Vaccination Intention and Benefit and Risk Perceptions: The Incorporation of Affect, Trust, and Television Influence in a Dual-Mode Model.

    Science.gov (United States)

    Chen, Nien-Tsu Nancy

    2015-07-01

    Major health behavior change models tend to consider health decisions as primarily resulting from a systematic appraisal of relevant beliefs, such as the perceived benefits and risks of a pharmacological intervention. Drawing on research from the disciplines of risk management, communication, and psychology, this study proposed the inclusion of a heuristic route in established theory and tested the direction of influence between heuristic and systematic process variables. Affect and social trust were included as key heuristics in the proposed dual-mode framework of health decision making. Furthermore, exposure to health-related coverage on television was considered potentially influential over both heuristic and systematic process variables. To test this framework, data were collected from a national probability sample of 584 adults in the United States in 2012 regarding their decision to vaccinate against a hypothetical avian flu. The results provided some support for the bidirectional influence between heuristic and systematic processing. Affect toward flu vaccination and trust in the Food and Drug Administration were found to be powerful predictors of vaccination intention, enhancing intention both directly and indirectly via certain systematic process variables. The direction of influence between perceived susceptibility and severity, on the one hand, and affect, on the other, is less clear, suggesting the need for further research. Contrary to the opinion of media critics, exposure to televised health coverage was negatively associated with the perceived risks of vaccination. Results from this study carry theoretical and practical implications, and applying this model to the acceptance of different health interventions constitutes an area for future inquiries. © 2015 Society for Risk Analysis.

  9. Predictive analytics for supply chain collaboration, risk management ...

    African Journals Online (AJOL)

    kirstam

    management, and (2) supply chain risk management predicted financial .... overhead costs, delivery of ever-increasing customer value, flexibility with superior ... risk exposure, relationship longevity, trust and communication are considered as.

  10. Predicting epidemic risk from past temporal contact data.

    Directory of Open Access Journals (Sweden)

    Eugenio Valdano

    2015-03-01

    Full Text Available Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.

  11. Risk based modelling

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Baker, A.E.

    1993-01-01

    Risk based analysis is a tool becoming available to both engineers and managers to aid decision making concerning plant matters such as In-Service Inspection (ISI). In order to develop a risk based method, some form of Structural Reliability Risk Assessment (SRRA) needs to be performed to provide a probability of failure ranking for all sites around the plant. A Probabilistic Risk Assessment (PRA) can then be carried out to combine these possible events with the capability of plant safety systems and procedures, to establish the consequences of failure for the sites. In this way the probability of failures are converted into a risk based ranking which can be used to assist the process of deciding which sites should be included in an ISI programme. This paper reviews the technique and typical results of a risk based ranking assessment carried out for nuclear power plant pipework. (author)

  12. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    Science.gov (United States)

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Elderly fall risk prediction using static posturography

    Science.gov (United States)

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity—0.114 x Eyes Closed Vector Sum Magnitude Velocity—2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older

  14. Elderly fall risk prediction using static posturography.

    Science.gov (United States)

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E

    2017-01-01

    Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older

  15. Elderly fall risk prediction using static posturography.

    Directory of Open Access Journals (Sweden)

    Jennifer Howcroft

    Full Text Available Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP and medial-lateral (ML center of pressure (CoP motion; AP and ML CoP root mean square distance from mean (RMS; and AP, ML, and vector sum magnitude (VSM CoP velocity were calculated. Romberg Quotients (RQ were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24, prospective all fallers (42, prospective fallers (22 single, 6 multiple, and prospective non-fallers (47. Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for

  16. Use of threshold-specific energy model for the prediction of effects of smoking and radon exposure on the risk of lung cancer

    International Nuclear Information System (INIS)

    Boehm, R.; Bulko, M.; Holy, K.; Sedlak, A.

    2014-01-01

    Lung cancer is the leading cause of cancer death in both men and women. Smoking causes 80-90 % of cases of lung cancer. In this study, an attempt was made to assess the impact of cigarette smoking on the risk of lung cancer by the so-called threshold-specific energy model. This model allows to analyse the biological effects of radon daughter products on the lung tissue, and is based on the assumption that the biological effect (i.e. cell inactivation) will manifest itself after the threshold-specific energy z0 deposited in the sensitive volume of the cell is exceeded. Cigarette smoking causes, among others, an increase in the synthesis of the surviving protein that protects cells from apoptosis and thereby reduces their radiosensitivity. Based on these facts, an attempt was made to estimate the shape of the curves describing the increase in the oncological effect of radiation as a function of daily cigarette consumption. (authors)

  17. Prediction of Chemical Function: Model Development and ...

    Science.gov (United States)

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (HT) screening-level exposures developed under ExpoCast can be combined with HT screening (HTS) bioactivity data for the risk-based prioritization of chemicals for further evaluation. The functional role (e.g. solvent, plasticizer, fragrance) that a chemical performs can drive both the types of products in which it is found and the concentration in which it is present and therefore impacting exposure potential. However, critical chemical use information (including functional role) is lacking for the majority of commercial chemicals for which exposure estimates are needed. A suite of machine-learning based models for classifying chemicals in terms of their likely functional roles in products based on structure were developed. This effort required collection, curation, and harmonization of publically-available data sources of chemical functional use information from government and industry bodies. Physicochemical and structure descriptor data were generated for chemicals with function data. Machine-learning classifier models for function were then built in a cross-validated manner from the descriptor/function data using the method of random forests. The models were applied to: 1) predict chemi

  18. Risk modelling study for carotid endarterectomy.

    Science.gov (United States)

    Kuhan, G; Gardiner, E D; Abidia, A F; Chetter, I C; Renwick, P M; Johnson, B F; Wilkinson, A R; McCollum, P T

    2001-12-01

    The aims of this study were to identify factors that influence the risk of stroke or death following carotid endarterectomy (CEA) and to develop a model to aid in comparative audit of vascular surgeons and units. A series of 839 CEAs performed by four vascular surgeons between 1992 and 1999 was analysed. Multiple logistic regression analysis was used to model the effect of 15 possible risk factors on the 30-day risk of stroke or death. Outcome was compared for four surgeons and two units after adjustment for the significant risk factors. The overall 30-day stroke or death rate was 3.9 per cent (29 of 741). Heart disease, diabetes and stroke were significant risk factors. The 30-day predicted stroke or death rates increased with increasing risk scores. The observed 30-day stroke or death rate was 3.9 per cent for both vascular units and varied from 3.0 to 4.2 per cent for the four vascular surgeons. Differences in the outcomes between the surgeons and vascular units did not reach statistical significance after risk adjustment. Diabetes, heart disease and stroke are significant risk factors for stroke or death following CEA. The risk score model identified patients at higher risk and aided in comparative audit.

  19. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk)

    DEFF Research Database (Denmark)

    Hajifathalian, Kaveh; Ueda, Peter; Lu, Yuan

    2015-01-01

    BACKGROUND: Treatment of cardiovascular risk factors based on disease risk depends on valid risk prediction equations. We aimed to develop, and apply in example countries, a risk prediction equation for cardiovascular disease (consisting here of coronary heart disease and stroke) that can be reca...

  20. Wildfire Risk Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The model combines three modeled fire behavior parameters (rate of spread, flame length, crown fire potential) and one modeled ecological health measure (fire regime...

  1. Model Prediction Control For Water Management Using Adaptive Prediction Accuracy

    NARCIS (Netherlands)

    Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.

    2014-01-01

    In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for

  2. Drug response prediction in high-risk multiple myeloma

    DEFF Research Database (Denmark)

    Vangsted, A J; Helm-Petersen, S; Cowland, J B

    2018-01-01

    from high-risk patients by GEP70 at diagnosis from Total Therapy 2 and 3A to predict the response by the DRP score of drugs used in the treatment of myeloma patients. The DRP score stratified patients further. High-risk myeloma with a predicted sensitivity to melphalan by the DRP score had a prolonged...

  3. Risk stratification in upper gastrointestinal bleeding; prediction, prevention and prognosis

    NARCIS (Netherlands)

    de Groot, N.L.

    2013-01-01

    In the first part of this thesis we developed a novel prediction score for predicting upper gastrointestinal (GI) bleeding in both NSAID and low-dose aspirin users. Both for NSAIDs and low-dose aspirin use risk scores were developed by identifying the five most dominant predictors. The risk of upper

  4. A Novel Risk Scoring System Reliably Predicts Readmission Following Pancreatectomy

    Science.gov (United States)

    Valero, Vicente; Grimm, Joshua C.; Kilic, Arman; Lewis, Russell L.; Tosoian, Jeffrey J.; He, Jin; Griffin, James; Cameron, John L.; Weiss, Matthew J.; Vollmer, Charles M.; Wolfgang, Christopher L.

    2015-01-01

    Background Postoperative readmissions have been proposed by Medicare as a quality metric and may impact provider reimbursement. Since readmission following pancreatectomy is common, we sought to identify factors associated with readmission in order to establish a predictive risk scoring system (RSS). Study Design A retrospective analysis of 2,360 pancreatectomies performed at nine, high-volume pancreatic centers between 2005 and 2011 was performed. Forty-five factors strongly associated with readmission were identified. To derive and validate a RSS, the population was randomly divided into two cohorts in a 4:1 fashion. A multivariable logistic regression model was constructed and scores were assigned based on the relative odds ratio of each independent predictor. A composite Readmission After Pancreatectomy (RAP) score was generated and then stratified to create risk groups. Results Overall, 464 (19.7%) patients were readmitted within 90-days. Eight pre- and postoperative factors, including prior myocardial infarction (OR 2.03), ASA Class ≥ 3 (OR 1.34), dementia (OR 6.22), hemorrhage (OR 1.81), delayed gastric emptying (OR 1.78), surgical site infection (OR 3.31), sepsis (OR 3.10) and short length of stay (OR 1.51), were independently predictive of readmission. The 32-point RAP score generated from the derivation cohort was highly predictive of readmission in the validation cohort (AUC 0.72). The low (0-3), intermediate (4-7) and high risk (>7) groups correlated to 11.7%, 17.5% and 45.4% observed readmission rates, respectively (preadmission following pancreatectomy. Identification of patients with increased risk of readmission using the RAP score will allow efficient resource allocation aimed to attenuate readmission rates. It also has potential to serve as a new metric for comparative research and quality assessment. PMID:25797757

  5. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  6. Iowa calibration of MEPDG performance prediction models.

    Science.gov (United States)

    2013-06-01

    This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...

  7. Modelling allergenic risk

    DEFF Research Database (Denmark)

    Birot, Sophie

    combines second order Monte-Carlo simulations with Bayesian inferences [13]. An alternative method using second order Monte-Carlo simulations was proposed to take into account the uncertainty from the inputs. The uncertainty propagation from the inputs to the risk of allergic reaction was also evaluated...... countries is proposed. Thus, the allergen risk assessment can be performed cross-nationally and for the correct food group. Then the two probabilistic risk assessment methods usually used were reviewed and compared. First order Monte-Carlo simulations are used in one method [14], whereas the other one......Up to 20 million Europeans suffer from food allergies. Due to the lack of knowledge about why food allergies developed or how to protect allergic consumers from the offending food, food allergy management is mainly based on food allergens avoidance. The iFAAM project (Integrated approaches to Food...

  8. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  9. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models

    Science.gov (United States)

    Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L.; Huffman, Jennifer E.; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S.

    2015-01-01

    We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167

  10. Predictability of cardiovascular risks by psychological measures

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Iva; Kebza, V.

    2008-01-01

    Roč. 23, č. 1 (2008), s. 241-241 ISSN 0887-0446 R&D Projects: GA ČR GA406/06/0747 Institutional research plan: CEZ:AV0Z70250504 Keywords : CVD risks * psychological measures * physiological risks Subject RIV: AN - Psychology

  11. Predicting risk of cancer during HIV infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Silverberg, Michael J; Wentworth, Deborah

    2013-01-01

    To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection.......To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection....

  12. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  13. Development and validation of a prognostic model to predict death in patients with traumatic bleeding, and evaluation of the effect of tranexamic acid on mortality according to baseline risk: a secondary analysis of a randomised controlled trial.

    Science.gov (United States)

    Perel, P; Prieto-Merino, D; Shakur, H; Roberts, I

    2013-06-01

    Severe bleeding accounts for about one-third of in-hospital trauma deaths. Patients with a high baseline risk of death have the most to gain from the use of life-saving treatments. An accurate and user-friendly prognostic model to predict mortality in bleeding trauma patients could assist doctors and paramedics in pre-hospital triage and could shorten the time to diagnostic and life-saving procedures such as surgery and tranexamic acid (TXA). The aim of the study was to develop and validate a prognostic model for early mortality in patients with traumatic bleeding and to examine whether or not the effect of TXA on the risk of death and thrombotic events in bleeding adult trauma patients varies according to baseline risk. Multivariable logistic regression and risk-stratified analysis of a large international cohort of trauma patients. Two hundred and seventy-four hospitals in 40 high-, medium- and low-income countries. We derived prognostic models in a large placebo-controlled trial of the effects of early administration of a short course of TXA [Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage (CRASH-2) trial]. The trial included 20,127 trauma patients with, or at risk of, significant bleeding, within 8 hours of injury. We externally validated the model on 14,220 selected trauma patients from the Trauma Audit and Research Network (TARN), which included mainly patients from the UK. We examined the effect of TXA on all-cause mortality, death due to bleeding and thrombotic events (fatal and non-fatal myocardial infarction, stroke, deep-vein thrombosis and pulmonary embolism) within risk strata in the CRASH-2 trial data set and we estimated the proportion of premature deaths averted by applying the odds ratio (OR) from the CRASH-2 trial to each of the risk strata in TARN. For the stratified analysis according baseline risk we considered the intervention TXA (1 g over 10 minutes followed by 1 g over 8 hours) or matching placebo. For the

  14. Complex versus simple models: ion-channel cardiac toxicity prediction.

    Science.gov (United States)

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  15. Complex versus simple models: ion-channel cardiac toxicity prediction

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry

    2018-02-01

    Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  16. Value of multiple risk factors in predicting coronary artery disease

    International Nuclear Information System (INIS)

    Zhu Zhengbin; Zhang Ruiyan; Zhang Qi; Yang Zhenkun; Hu Jian; Zhang Jiansheng; Shen Weifeng

    2008-01-01

    Objective: This study sought to assess the relationship between correlative comprehension risk factors and coronary arterial disease and to build up a simple mathematical model to evaluate the extension of coronary artery lesion in patients with stable angina. Methods: A total of 1024 patients with chest pain who underwent coronary angiography were divided into CAD group(n=625)and control group(n=399) based on at least one significant coronary artery narrowing more than 50% in diameter. Independent risk factors for CAD were evaluated and multivariate logistic regression model and receiver-operating characteristic(ROC) curves were used to estimate the independent influence factor for CAD and built up a simple formula for clinical use. Results: Multivariate regression analysis revealed that UACR > 7.25 μg/mg(OR=3.6; 95% CI 2.6-4.9; P 20 mmol/L(OR=3.2; 95% CI 2.3-4.4; P 2 (OR=2.3; 95% CI 1.4-3.8; P 2.6 mmol/L (OR 2.141; 95% CI 1.586-2.890; P 7.25 μg/mg + 1.158 x hsCRP > 20 mmol/L + 0.891 GFR 2 + 0.831 x LVEF 2.6 mmol/L + 0.676 x smoking history + 0.594 x male + 0.459 x diabetes + 0.425 x hypertension). Area under the curve was 0.811 (P < 0.01), and the optimal probability value for predicting severe stage of CAD was 0.977 (sensitivity 49.0%, specificity 92.7% ). Conclusions: Risk factors including renal insufficiency were the main predictors for CAD. The logistic regression model is the non-invasive method of choice for predicting the extension of coronary artery lesion in patients with stable agiana. (authors)

  17. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  18. Staying Power of Churn Prediction Models

    NARCIS (Netherlands)

    Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.

    In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging

  19. Predictive user modeling with actionable attributes

    NARCIS (Netherlands)

    Zliobaite, I.; Pechenizkiy, M.

    2013-01-01

    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target

  20. Predictive risk factors for persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Gmaehle, Eliza; Hansen, Jeanette B

    2010-01-01

    BACKGROUND: Persistent postherniotomy pain (PPP) affects everyday activities in 5-10% of patients. Identification of predisposing factors may help to identify the risk groups and guide anesthetic or surgical procedures in reducing risk for PPP. METHODS: A prospective study was conducted in 464...... patients undergoing open or laparoscopic transabdominal preperitoneal elective groin hernia repair. Primary outcome was identification of risk factors for substantial pain-related functional impairment at 6 months postoperatively assessed by the validated Activity Assessment Scale (AAS). Data on potential...... risk factors for PPP were collected preoperatively (pain from the groin hernia, preoperative AAS score, pain from other body regions, and psychometric assessment). Pain scores were collected on days 7 and 30 postoperatively. Sensory functions including pain response to tonic heat stimulation were...

  1. Develop mental dyslexia: predicting individual risk

    OpenAIRE

    Thompson, PA; Hulme, C; Nash, HM; Gooch, Deborah; Hayiou-Thomas, E; Snowling, MJ

    2015-01-01

    Background Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. Methods The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited...

  2. Uncertainty estimation and risk prediction in air quality

    International Nuclear Information System (INIS)

    Garaud, Damien

    2011-01-01

    This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr

  3. Prediction Model for Gastric Cancer Incidence in Korean Population.

    Directory of Open Access Journals (Sweden)

    Bang Wool Eom

    Full Text Available Predicting high risk groups for gastric cancer and motivating these groups to receive regular checkups is required for the early detection of gastric cancer. The aim of this study is was to develop a prediction model for gastric cancer incidence based on a large population-based cohort in Korea.Based on the National Health Insurance Corporation data, we analyzed 10 major risk factors for gastric cancer. The Cox proportional hazards model was used to develop gender specific prediction models for gastric cancer development, and the performance of the developed model in terms of discrimination and calibration was also validated using an independent cohort. Discrimination ability was evaluated using Harrell's C-statistics, and the calibration was evaluated using a calibration plot and slope.During a median of 11.4 years of follow-up, 19,465 (1.4% and 5,579 (0.7% newly developed gastric cancer cases were observed among 1,372,424 men and 804,077 women, respectively. The prediction models included age, BMI, family history, meal regularity, salt preference, alcohol consumption, smoking and physical activity for men, and age, BMI, family history, salt preference, alcohol consumption, and smoking for women. This prediction model showed good accuracy and predictability in both the developing and validation cohorts (C-statistics: 0.764 for men, 0.706 for women.In this study, a prediction model for gastric cancer incidence was developed that displayed a good performance.

  4. EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH

    OpenAIRE

    Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.

    2014-01-01

    The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain, which...

  5. Serological and biochemical follow-up in cattle naturally infected with Fasciola hepatica, and comparison with a climate model for predicting risks of fasciolosis.

    Science.gov (United States)

    Bossaert, K; Lonneux, J F; Godeau, J M; Peeters, J; Losson, B

    1999-01-01

    Several biological parameters were measured in 31 heifers naturally infected with Fasciola hepatica during one grazing season in the Belgian Ardennes. A forecast model based on daily temperature used to assess the risk of fasciolosis was fitted to this assay. Cattle were turned out to two pastures. Each pasture was divided into two plots: one was treated with calcium cyanamide and the other was left untreated. The Lymnaea truncatula snails were counted on three different occasions. The results indicated a poor molluscicide efficiency. Body weight gains, anti-Fasciola antibody levels, faecal egg counts, levels of sorbitol dehydrogenase (SDH) and gamma-glutamyl transferase (gamma GT), packed cell volumes, white blood cells and differential leucocyte counts were determined monthly. No statistically significant difference was observed between animals from the two plots regardless of the recorded data. No correlation was found between body weight gains and other biological data. The sampling date had a significant effect on the antibody responses within a same group, and on the enzymatic levels for all groups combined. The forecast results were consistent with the recorded data. Temperature was a major bioclimatic constraint on the transmission of life cycle, and risk of infection occurred mainly in late spring (May/June) and in early September. Current results might be used to issue advice on the need for flukicide treatment of cattle. The indicators of the infection considered alone were useless and it is concluded that herd diagnosis of fasciolosis may rely on the rise of specific antibody levels, possibly associated with an increase in hepatic enzyme activities.

  6. Prediction Models and Decision Support: Chances and Challenges

    NARCIS (Netherlands)

    Kappen, T.H.

    2015-01-01

    A clinical prediction model can assist doctors in arriving at the most likely diagnosis or estimating the prognosis. By utilizing various patient- and disease-related properties, such models can yield objective estimations of the risk of a disease or the probability of a certain disease course for

  7. Predicting Risk of Suicide Attempt Using History of Physical Illnesses From Electronic Medical Records

    Science.gov (United States)

    Luo, Wei; Tran, Truyen; Berk, Michael; Venkatesh, Svetha

    2016-01-01

    Background Although physical illnesses, routinely documented in electronic medical records (EMR), have been found to be a contributing factor to suicides, no automated systems use this information to predict suicide risk. Objective The aim of this study is to quantify the impact of physical illnesses on suicide risk, and develop a predictive model that captures this relationship using EMR data. Methods We used history of physical illnesses (except chapter V: Mental and behavioral disorders) from EMR data over different time-periods to build a lookup table that contains the probability of suicide risk for each chapter of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes. The lookup table was then used to predict the probability of suicide risk for any new assessment. Based on the different lengths of history of physical illnesses, we developed six different models to predict suicide risk. We tested the performance of developed models to predict 90-day risk using historical data over differing time-periods ranging from 3 to 48 months. A total of 16,858 assessments from 7399 mental health patients with at least one risk assessment was used for the validation of the developed model. The performance was measured using area under the receiver operating characteristic curve (AUC). Results The best predictive results were derived (AUC=0.71) using combined data across all time-periods, which significantly outperformed the clinical baseline derived from routine risk assessment (AUC=0.56). The proposed approach thus shows potential to be incorporated in the broader risk assessment processes used by clinicians. Conclusions This study provides a novel approach to exploit the history of physical illnesses extracted from EMR (ICD-10 codes without chapter V-mental and behavioral disorders) to predict suicide risk, and this model outperforms existing clinical assessments of suicide risk. PMID:27400764

  8. The utility of absolute risk prediction using FRAX® and Garvan Fracture Risk Calculator in daily practice.

    Science.gov (United States)

    van Geel, Tineke A C M; Eisman, John A; Geusens, Piet P; van den Bergh, Joop P W; Center, Jacqueline R; Dinant, Geert-Jan

    2014-02-01

    There are two commonly used fracture risk prediction tools FRAX(®) and Garvan Fracture Risk Calculator (GARVAN-FRC). The objective of this study was to investigate the utility of these tools in daily practice. A prospective population-based 5-year follow-up study was conducted in ten general practice centres in the Netherlands. For the analyses, the FRAX(®) and GARVAN-FRC 10-year absolute risks (FRAX(®) does not have 5-year risk prediction) for all fractures were used. Among 506 postmenopausal women aged ≥60 years (mean age: 67.8±5.8 years), 48 (9.5%) sustained a fracture during follow-up. Both tools, using BMD values, distinguish between women who did and did not fracture (10.2% vs. 6.8%, respectively for FRAX(®) and 32.4% vs. 39.1%, respectively for GARVAN-FRC, pbetter for women who sustained a fracture (higher sensitivity) and FRAX(®) for women who did not sustain a fracture (higher specificity). Similar results were obtained using age related cut off points. The discriminant value of both models is at least as good as models used in other medical conditions; hence they can be used to communicate the fracture risk to patients. However, given differences in the estimated risks between FRAX(®) and GARVAN-FRC, the significance of the absolute risk must be related to country-specific recommended intervention thresholds to inform the patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Multilevel joint competing risk models

    Science.gov (United States)

    Karunarathna, G. H. S.; Sooriyarachchi, M. R.

    2017-09-01

    Joint modeling approaches are often encountered for different outcomes of competing risk time to event and count in many biomedical and epidemiology studies in the presence of cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in hospital utilization due to the benchmark measurement for measuring multiple terminations such as discharge, transferred, dead and patients who have not completed the event of interest at the follow up period (censored) during hospitalizations. Competing risk models provide a method of addressing such multiple destinations since classical time to event models yield biased results when there are multiple events. In this study, the concept of joint modeling has been applied to the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key approaches have been applied to build up the joint scenario. In the first approach, modeling each competing risk separately using the binary logistic model, treating all other events as censored under the multilevel discrete time to event model, while the platelet counts are assumed to follow a lognormal regression model. The second approach is based on the endogeneity effect in the multilevel competing risks and count model. Model parameters were estimated using maximum likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling approach yield more precise results compared to fitting two separate univariate models, in terms of AIC (Akaike Information Criterion).

  10. Robust predictions of the interacting boson model

    International Nuclear Information System (INIS)

    Casten, R.F.; Koeln Univ.

    1994-01-01

    While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data

  11. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...

  12. Comparison of Simple Versus Performance-Based Fall Prediction Models

    Directory of Open Access Journals (Sweden)

    Shekhar K. Gadkaree BS

    2015-05-01

    Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.

  13. Predicting risk and the emergence of schizophrenia.

    LENUS (Irish Health Repository)

    Clarke, Mary C

    2012-09-01

    This article gives an overview of genetic and environmental risk factors for schizophrenia. The presence of certain molecular, biological, and psychosocial factors at certain points in the life span, has been linked to later development of schizophrenia. All need to be considered in the context of schizophrenia as a lifelong brain disorder. Research interest in schizophrenia is shifting to late childhood\\/early adolescence for screening and preventative measures. This article discusses those environmental risk factors for schizophrenia for which there is the largest evidence base.

  14. Risk modelling in portfolio optimization

    Science.gov (United States)

    Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-09-01

    Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.

  15. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  16. Predictive modeling of emergency cesarean delivery.

    Directory of Open Access Journals (Sweden)

    Carlos Campillo-Artero

    Full Text Available To increase discriminatory accuracy (DA for emergency cesarean sections (ECSs.We prospectively collected data on and studied all 6,157 births occurring in 2014 at four public hospitals located in three different autonomous communities of Spain. To identify risk factors (RFs for ECS, we used likelihood ratios and logistic regression, fitted a classification tree (CTREE, and analyzed a random forest model (RFM. We used the areas under the receiver-operating-characteristic (ROC curves (AUCs to assess their DA.The magnitude of the LR+ for all putative individual RFs and ORs in the logistic regression models was low to moderate. Except for parity, all putative RFs were positively associated with ECS, including hospital fixed-effects and night-shift delivery. The DA of all logistic models ranged from 0.74 to 0.81. The most relevant RFs (pH, induction, and previous C-section in the CTREEs showed the highest ORs in the logistic models. The DA of the RFM and its most relevant interaction terms was even higher (AUC = 0.94; 95% CI: 0.93-0.95.Putative fetal, maternal, and contextual RFs alone fail to achieve reasonable DA for ECS. It is the combination of these RFs and the interactions between them at each hospital that make it possible to improve the DA for the type of delivery and tailor interventions through prediction to improve the appropriateness of ECS indications.

  17. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks

    DEFF Research Database (Denmark)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie

    2015-01-01

    to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands...

  18. Risk assessment methodologies for predicting phosphorus losses

    NARCIS (Netherlands)

    Schoumans, O.F.; Chardon, W.J.

    2003-01-01

    Risk assessment parameters are needed to assess the contribution of phosphorus (P) losses from soil to surface water, and the effectiveness of nutrient and land management strategies for the reduction of P loss. These parameters need to take into account the large temporal and spatial variation in P

  19. Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium.

    Science.gov (United States)

    Fischer, Christine; Kuchenbäcker, Karoline; Engel, Christoph; Zachariae, Silke; Rhiem, Kerstin; Meindl, Alfons; Rahner, Nils; Dikow, Nicola; Plendl, Hansjörg; Debatin, Irmgard; Grimm, Tiemo; Gadzicki, Dorothea; Flöttmann, Ricarda; Horvath, Judit; Schröck, Evelin; Stock, Friedrich; Schäfer, Dieter; Schwaab, Ira; Kartsonaki, Christiana; Mavaddat, Nasim; Schlegelberger, Brigitte; Antoniou, Antonis C; Schmutzler, Rita

    2013-06-01

    Risk predic