WorldWideScience

Sample records for risk prediction models

  1. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  2. Risk terrain modeling predicts child maltreatment.

    Science.gov (United States)

    Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye

    2016-12-01

    As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  4. Calibration plots for risk prediction models in the presence of competing risks

    DEFF Research Database (Denmark)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-01-01

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks...... prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves...

  5. Risk Prediction Model for Severe Postoperative Complication in Bariatric Surgery.

    Science.gov (United States)

    Stenberg, Erik; Cao, Yang; Szabo, Eva; Näslund, Erik; Näslund, Ingmar; Ottosson, Johan

    2018-01-12

    Factors associated with risk for adverse outcome are important considerations in the preoperative assessment of patients for bariatric surgery. As yet, prediction models based on preoperative risk factors have not been able to predict adverse outcome sufficiently. This study aimed to identify preoperative risk factors and to construct a risk prediction model based on these. Patients who underwent a bariatric surgical procedure in Sweden between 2010 and 2014 were identified from the Scandinavian Obesity Surgery Registry (SOReg). Associations between preoperative potential risk factors and severe postoperative complications were analysed using a logistic regression model. A multivariate model for risk prediction was created and validated in the SOReg for patients who underwent bariatric surgery in Sweden, 2015. Revision surgery (standardized OR 1.19, 95% confidence interval (CI) 1.14-0.24, p prediction model. Despite high specificity, the sensitivity of the model was low. Revision surgery, high age, low BMI, large waist circumference, and dyspepsia/GERD were associated with an increased risk for severe postoperative complication. The prediction model based on these factors, however, had a sensitivity that was too low to predict risk in the individual patient case.

  6. Calibration plots for risk prediction models in the presence of competing risks.

    Science.gov (United States)

    Gerds, Thomas A; Andersen, Per K; Kattan, Michael W

    2014-08-15

    A predicted risk of 17% can be called reliable if it can be expected that the event will occur to about 17 of 100 patients who all received a predicted risk of 17%. Statistical models can predict the absolute risk of an event such as cardiovascular death in the presence of competing risks such as death due to other causes. For personalized medicine and patient counseling, it is necessary to check that the model is calibrated in the sense that it provides reliable predictions for all subjects. There are three often encountered practical problems when the aim is to display or test if a risk prediction model is well calibrated. The first is lack of independent validation data, the second is right censoring, and the third is that when the risk scale is continuous, the estimation problem is as difficult as density estimation. To deal with these problems, we propose to estimate calibration curves for competing risks models based on jackknife pseudo-values that are combined with a nearest neighborhood smoother and a cross-validation approach to deal with all three problems. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Acute Myocardial Infarction Readmission Risk Prediction Models: A Systematic Review of Model Performance.

    Science.gov (United States)

    Smith, Lauren N; Makam, Anil N; Darden, Douglas; Mayo, Helen; Das, Sandeep R; Halm, Ethan A; Nguyen, Oanh Kieu

    2018-01-01

    Hospitals are subject to federal financial penalties for excessive 30-day hospital readmissions for acute myocardial infarction (AMI). Prospectively identifying patients hospitalized with AMI at high risk for readmission could help prevent 30-day readmissions by enabling targeted interventions. However, the performance of AMI-specific readmission risk prediction models is unknown. We systematically searched the published literature through March 2017 for studies of risk prediction models for 30-day hospital readmission among adults with AMI. We identified 11 studies of 18 unique risk prediction models across diverse settings primarily in the United States, of which 16 models were specific to AMI. The median overall observed all-cause 30-day readmission rate across studies was 16.3% (range, 10.6%-21.0%). Six models were based on administrative data; 4 on electronic health record data; 3 on clinical hospital data; and 5 on cardiac registry data. Models included 7 to 37 predictors, of which demographics, comorbidities, and utilization metrics were the most frequently included domains. Most models, including the Centers for Medicare and Medicaid Services AMI administrative model, had modest discrimination (median C statistic, 0.65; range, 0.53-0.79). Of the 16 reported AMI-specific models, only 8 models were assessed in a validation cohort, limiting generalizability. Observed risk-stratified readmission rates ranged from 3.0% among the lowest-risk individuals to 43.0% among the highest-risk individuals, suggesting good risk stratification across all models. Current AMI-specific readmission risk prediction models have modest predictive ability and uncertain generalizability given methodological limitations. No existing models provide actionable information in real time to enable early identification and risk-stratification of patients with AMI before hospital discharge, a functionality needed to optimize the potential effectiveness of readmission reduction interventions

  8. Risk predictive modelling for diabetes and cardiovascular disease.

    Science.gov (United States)

    Kengne, Andre Pascal; Masconi, Katya; Mbanya, Vivian Nchanchou; Lekoubou, Alain; Echouffo-Tcheugui, Justin Basile; Matsha, Tandi E

    2014-02-01

    Absolute risk models or clinical prediction models have been incorporated in guidelines, and are increasingly advocated as tools to assist risk stratification and guide prevention and treatments decisions relating to common health conditions such as cardiovascular disease (CVD) and diabetes mellitus. We have reviewed the historical development and principles of prediction research, including their statistical underpinning, as well as implications for routine practice, with a focus on predictive modelling for CVD and diabetes. Predictive modelling for CVD risk, which has developed over the last five decades, has been largely influenced by the Framingham Heart Study investigators, while it is only ∼20 years ago that similar efforts were started in the field of diabetes. Identification of predictive factors is an important preliminary step which provides the knowledge base on potential predictors to be tested for inclusion during the statistical derivation of the final model. The derived models must then be tested both on the development sample (internal validation) and on other populations in different settings (external validation). Updating procedures (e.g. recalibration) should be used to improve the performance of models that fail the tests of external validation. Ultimately, the effect of introducing validated models in routine practice on the process and outcomes of care as well as its cost-effectiveness should be tested in impact studies before wide dissemination of models beyond the research context. Several predictions models have been developed for CVD or diabetes, but very few have been externally validated or tested in impact studies, and their comparative performance has yet to be fully assessed. A shift of focus from developing new CVD or diabetes prediction models to validating the existing ones will improve their adoption in routine practice.

  9. Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.

    Science.gov (United States)

    Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K

    2017-07-27

    Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.

  10. Long‐Term Post‐CABG Survival: Performance of Clinical Risk Models Versus Actuarial Predictions

    Science.gov (United States)

    Carr, Brendan M.; Romeiser, Jamie; Ruan, Joyce; Gupta, Sandeep; Seifert, Frank C.; Zhu, Wei

    2015-01-01

    Abstract Background/aim Clinical risk models are commonly used to predict short‐term coronary artery bypass grafting (CABG) mortality but are less commonly used to predict long‐term mortality. The added value of long‐term mortality clinical risk models over traditional actuarial models has not been evaluated. To address this, the predictive performance of a long‐term clinical risk model was compared with that of an actuarial model to identify the clinical variable(s) most responsible for any differences observed. Methods Long‐term mortality for 1028 CABG patients was estimated using the Hannan New York State clinical risk model and an actuarial model (based on age, gender, and race/ethnicity). Vital status was assessed using the Social Security Death Index. Observed/expected (O/E) ratios were calculated, and the models' predictive performances were compared using a nested c‐index approach. Linear regression analyses identified the subgroup of risk factors driving the differences observed. Results Mortality rates were 3%, 9%, and 17% at one‐, three‐, and five years, respectively (median follow‐up: five years). The clinical risk model provided more accurate predictions. Greater divergence between model estimates occurred with increasing long‐term mortality risk, with baseline renal dysfunction identified as a particularly important driver of these differences. Conclusions Long‐term mortality clinical risk models provide enhanced predictive power compared to actuarial models. Using the Hannan risk model, a patient's long‐term mortality risk can be accurately assessed and subgroups of higher‐risk patients can be identified for enhanced follow‐up care. More research appears warranted to refine long‐term CABG clinical risk models. doi: 10.1111/jocs.12665 (J Card Surg 2016;31:23–30) PMID:26543019

  11. Korean risk assessment model for breast cancer risk prediction.

    Science.gov (United States)

    Park, Boyoung; Ma, Seung Hyun; Shin, Aesun; Chang, Myung-Chul; Choi, Ji-Yeob; Kim, Sungwan; Han, Wonshik; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee; Yoo, Keun-Young; Park, Sue K

    2013-01-01

    We evaluated the performance of the Gail model for a Korean population and developed a Korean breast cancer risk assessment tool (KoBCRAT) based upon equations developed for the Gail model for predicting breast cancer risk. Using 3,789 sets of cases and controls, risk factors for breast cancer among Koreans were identified. Individual probabilities were projected using Gail's equations and Korean hazard data. We compared the 5-year and lifetime risk produced using the modified Gail model which applied Korean incidence and mortality data and the parameter estimators from the original Gail model with those produced using the KoBCRAT. We validated the KoBCRAT based on the expected/observed breast cancer incidence and area under the curve (AUC) using two Korean cohorts: the Korean Multicenter Cancer Cohort (KMCC) and National Cancer Center (NCC) cohort. The major risk factors under the age of 50 were family history, age at menarche, age at first full-term pregnancy, menopausal status, breastfeeding duration, oral contraceptive usage, and exercise, while those at and over the age of 50 were family history, age at menarche, age at menopause, pregnancy experience, body mass index, oral contraceptive usage, and exercise. The modified Gail model produced lower 5-year risk for the cases than for the controls (p = 0.017), while the KoBCRAT produced higher 5-year and lifetime risk for the cases than for the controls (pKorean women, especially urban women.

  12. Risk Prediction Models for Incident Heart Failure: A Systematic Review of Methodology and Model Performance.

    Science.gov (United States)

    Sahle, Berhe W; Owen, Alice J; Chin, Ken Lee; Reid, Christopher M

    2017-09-01

    Numerous models predicting the risk of incident heart failure (HF) have been developed; however, evidence of their methodological rigor and reporting remains unclear. This study critically appraises the methods underpinning incident HF risk prediction models. EMBASE and PubMed were searched for articles published between 1990 and June 2016 that reported at least 1 multivariable model for prediction of HF. Model development information, including study design, variable coding, missing data, and predictor selection, was extracted. Nineteen studies reporting 40 risk prediction models were included. Existing models have acceptable discriminative ability (C-statistics > 0.70), although only 6 models were externally validated. Candidate variable selection was based on statistical significance from a univariate screening in 11 models, whereas it was unclear in 12 models. Continuous predictors were retained in 16 models, whereas it was unclear how continuous variables were handled in 16 models. Missing values were excluded in 19 of 23 models that reported missing data, and the number of events per variable was models. Only 2 models presented recommended regression equations. There was significant heterogeneity in discriminative ability of models with respect to age (P prediction models that had sufficient discriminative ability, although few are externally validated. Methods not recommended for the conduct and reporting of risk prediction modeling were frequently used, and resulting algorithms should be applied with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Risk assessment and remedial policy evaluation using predictive modeling

    International Nuclear Information System (INIS)

    Linkov, L.; Schell, W.R.

    1996-01-01

    As a result of nuclear industry operation and accidents, large areas of natural ecosystems have been contaminated by radionuclides and toxic metals. Extensive societal pressure has been exerted to decrease the radiation dose to the population and to the environment. Thus, in making abatement and remediation policy decisions, not only economic costs but also human and environmental risk assessments are desired. This paper introduces a general framework for risk assessment and remedial policy evaluation using predictive modeling. Ecological risk assessment requires evaluation of the radionuclide distribution in ecosystems. The FORESTPATH model is used for predicting the radionuclide fate in forest compartments after deposition as well as for evaluating the efficiency of remedial policies. Time of intervention and radionuclide deposition profile was predicted as being crucial for the remediation efficiency. Risk assessment conducted for a critical group of forest users in Belarus shows that consumption of forest products (berries and mushrooms) leads to about 0.004% risk of a fatal cancer annually. Cost-benefit analysis for forest cleanup suggests that complete removal of organic layer is too expensive for application in Belarus and a better methodology is required. In conclusion, FORESTPATH modeling framework could have wide applications in environmental remediation of radionuclides and toxic metals as well as in dose reconstruction and, risk-assessment

  14. Predicting the risk of rheumatoid arthritis and its age of onset through modelling genetic risk variants with smoking.

    Directory of Open Access Journals (Sweden)

    Ian C Scott

    Full Text Available The improved characterisation of risk factors for rheumatoid arthritis (RA suggests they could be combined to identify individuals at increased disease risks in whom preventive strategies may be evaluated. We aimed to develop an RA prediction model capable of generating clinically relevant predictive data and to determine if it better predicted younger onset RA (YORA. Our novel modelling approach combined odds ratios for 15 four-digit/10 two-digit HLA-DRB1 alleles, 31 single nucleotide polymorphisms (SNPs and ever-smoking status in males to determine risk using computer simulation and confidence interval based risk categorisation. Only males were evaluated in our models incorporating smoking as ever-smoking is a significant risk factor for RA in men but not women. We developed multiple models to evaluate each risk factor's impact on prediction. Each model's ability to discriminate anti-citrullinated protein antibody (ACPA-positive RA from controls was evaluated in two cohorts: Wellcome Trust Case Control Consortium (WTCCC: 1,516 cases; 1,647 controls; UK RA Genetics Group Consortium (UKRAGG: 2,623 cases; 1,500 controls. HLA and smoking provided strongest prediction with good discrimination evidenced by an HLA-smoking model area under the curve (AUC value of 0.813 in both WTCCC and UKRAGG. SNPs provided minimal prediction (AUC 0.660 WTCCC/0.617 UKRAGG. Whilst high individual risks were identified, with some cases having estimated lifetime risks of 86%, only a minority overall had substantially increased odds for RA. High risks from the HLA model were associated with YORA (P<0.0001; ever-smoking associated with older onset disease. This latter finding suggests smoking's impact on RA risk manifests later in life. Our modelling demonstrates that combining risk factors provides clinically informative RA prediction; additionally HLA and smoking status can be used to predict the risk of younger and older onset RA, respectively.

  15. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Science.gov (United States)

    King, Michael; Marston, Louise; Švab, Igor; Maaroos, Heidi-Ingrid; Geerlings, Mirjam I; Xavier, Miguel; Benjamin, Vicente; Torres-Gonzalez, Francisco; Bellon-Saameno, Juan Angel; Rotar, Danica; Aluoja, Anu; Saldivia, Sandra; Correa, Bernardo; Nazareth, Irwin

    2011-01-01

    Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women. 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  16. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Directory of Open Access Journals (Sweden)

    Michael King

    Full Text Available Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL for the development of hazardous drinking in safe drinkers.A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women.69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873. The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51. External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846 and Hedge's g of 0.68 (95% CI 0.57, 0.78.The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  17. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach.

    Science.gov (United States)

    Fernandes, G S; Bhattacharya, A; McWilliams, D F; Ingham, S L; Doherty, M; Zhang, W

    2017-03-20

    Twenty-five percent of the British population over the age of 50 years experiences knee pain. Knee pain can limit physical ability and cause distress and bears significant socioeconomic costs. The objectives of this study were to develop and validate the first risk prediction model for incident knee pain in the Nottingham community and validate this internally within the Nottingham cohort and externally within the Osteoarthritis Initiative (OAI) cohort. A total of 1822 participants from the Nottingham community who were at risk for knee pain were followed for 12 years. Of this cohort, two-thirds (n = 1203) were used to develop the risk prediction model, and one-third (n = 619) were used to validate the model. Incident knee pain was defined as pain on most days for at least 1 month in the past 12 months. Predictors were age, sex, body mass index, pain elsewhere, prior knee injury and knee alignment. A Bayesian logistic regression model was used to determine the probability of an OR >1. The Hosmer-Lemeshow χ 2 statistic (HLS) was used for calibration, and ROC curve analysis was used for discrimination. The OAI cohort from the United States was also used to examine the performance of the model. A risk prediction model for knee pain incidence was developed using a Bayesian approach. The model had good calibration, with an HLS of 7.17 (p = 0.52) and moderate discriminative ability (ROC 0.70) in the community. Individual scenarios are given using the model. However, the model had poor calibration (HLS 5866.28, p prediction model for knee pain, regardless of underlying structural changes of knee osteoarthritis, in the community using a Bayesian modelling approach. The model appears to work well in a community-based population but not in individuals with a higher risk for knee osteoarthritis, and it may provide a convenient tool for use in primary care to predict the risk of knee pain in the general population.

  18. Extensions of the Rosner-Colditz breast cancer prediction model to include older women and type-specific predicted risk.

    Science.gov (United States)

    Glynn, Robert J; Colditz, Graham A; Tamimi, Rulla M; Chen, Wendy Y; Hankinson, Susan E; Willett, Walter W; Rosner, Bernard

    2017-08-01

    A breast cancer risk prediction rule previously developed by Rosner and Colditz has reasonable predictive ability. We developed a re-fitted version of this model, based on more than twice as many cases now including women up to age 85, and further extended it to a model that distinguished risk factor prediction of tumors with different estrogen/progesterone receptor status. We compared the calibration and discriminatory ability of the original, the re-fitted, and the type-specific models. Evaluation used data from the Nurses' Health Study during the period 1980-2008, when 4384 incident invasive breast cancers occurred over 1.5 million person-years. Model development used two-thirds of study subjects and validation used one-third. Predicted risks in the validation sample from the original and re-fitted models were highly correlated (ρ = 0.93), but several parameters, notably those related to use of menopausal hormone therapy and age, had different estimates. The re-fitted model was well-calibrated and had an overall C-statistic of 0.65. The extended, type-specific model identified several risk factors with varying associations with occurrence of tumors of different receptor status. However, this extended model relative to the prediction of any breast cancer did not meaningfully reclassify women who developed breast cancer to higher risk categories, nor women remaining cancer free to lower risk categories. The re-fitted Rosner-Colditz model has applicability to risk prediction in women up to age 85, and its discrimination is not improved by consideration of varying associations across tumor subtypes.

  19. Predictive risk modelling under different data access scenarios: who is identified as high risk and for how long?

    Science.gov (United States)

    Johnson, Tracy L; Kaldor, Jill; Sutherland, Kim; Humphries, Jacob; Jorm, Louisa R; Levesque, Jean-Frederic

    2018-01-01

    Objective This observational study critically explored the performance of different predictive risk models simulating three data access scenarios, comparing: (1) sociodemographic and clinical profiles; (2) consistency in high-risk designation across models; and (3) persistence of high-risk status over time. Methods Cross-sectional health survey data (2006–2009) for more than 260 000 Australian adults 45+ years were linked to longitudinal individual hospital, primary care, pharmacy and mortality data. Three risk models predicting acute emergency hospitalisations were explored, simulating conditions where data are accessed through primary care practice management systems, or through hospital-based electronic records, or through a hypothetical ‘full’ model using a wider array of linked data. High-risk patients were identified using different risk score thresholds. Models were reapplied monthly for 24 months to assess persistence in high-risk categorisation. Results The three models displayed similar statistical performance. Three-quarters of patients in the high-risk quintile from the ‘full’ model were also identified using the primary care or hospital-based models, with the remaining patients differing according to age, frailty, multimorbidity, self-rated health, polypharmacy, prior hospitalisations and imminent mortality. The use of higher risk prediction thresholds resulted in lower levels of agreement in high-risk designation across models and greater morbidity and mortality in identified patient populations. Persistence of high-risk status varied across approaches according to updated information on utilisation history, with up to 25% of patients reassessed as lower risk within 1 year. Conclusion/implications Small differences in risk predictors or risk thresholds resulted in comparatively large differences in who was classified as high risk and for how long. Pragmatic predictive risk modelling design decisions based on data availability or projected

  20. A Novel Risk prediction Model for Patients with Combined Hepatocellular-Cholangiocarcinoma.

    Science.gov (United States)

    Tian, Meng-Xin; He, Wen-Jun; Liu, Wei-Ren; Yin, Jia-Cheng; Jin, Lei; Tang, Zheng; Jiang, Xi-Fei; Wang, Han; Zhou, Pei-Yun; Tao, Chen-Yang; Ding, Zhen-Bin; Peng, Yuan-Fei; Dai, Zhi; Qiu, Shuang-Jian; Zhou, Jian; Fan, Jia; Shi, Ying-Hong

    2018-01-01

    Backgrounds: Regarding the difficulty of CHC diagnosis and potential adverse outcomes or misuse of clinical therapies, an increasing number of patients have undergone liver transplantation, transcatheter arterial chemoembolization (TACE) or other treatments. Objective: To construct a convenient and reliable risk prediction model for identifying high-risk individuals with combined hepatocellular-cholangiocarcinoma (CHC). Methods: 3369 patients who underwent surgical resection for liver cancer at Zhongshan Hospital were enrolled in this study. The epidemiological and clinical characteristics of the patients were collected at the time of tumor diagnosis. Variables ( P model discrimination. Calibration was performed using the Hosmer-Lemeshow test and a calibration curve. Internal validation was performed using a bootstrapping approach. Results: Among the entire study population, 250 patients (7.42%) were pathologically defined with CHC. Age, HBcAb, red blood cells (RBC), blood urea nitrogen (BUN), AFP, CEA and portal vein tumor thrombus (PVTT) were included in the final risk prediction model (area under the curve, 0.69; 95% confidence interval, 0.51-0.77). Bootstrapping validation presented negligible optimism. When the risk threshold of the prediction model was set at 20%, 2.73% of the patients diagnosed with liver cancer would be diagnosed definitely, which could identify CHC patients with 12.40% sensitivity, 98.04% specificity, and a positive predictive value of 33.70%. Conclusions: Herein, the study established a risk prediction model which incorporates the clinical risk predictors and CT/MRI-presented PVTT status that could be adopted to facilitate the diagnosis of CHC patients preoperatively.

  1. A risk prediction model for xerostomia: a retrospective cohort study.

    Science.gov (United States)

    Villa, Alessandro; Nordio, Francesco; Gohel, Anita

    2016-12-01

    We investigated the prevalence of xerostomia in dental patients and built a xerostomia risk prediction model by incorporating a wide range of risk factors. Socio-demographic data, past medical history, self-reported dry mouth and related symptoms were collected retrospectively from January 2010 to September 2013 for all new dental patients. A logistic regression framework was used to build a risk prediction model for xerostomia. External validation was performed using an independent data set to test the prediction power. A total of 12 682 patients were included in this analysis (54.3%, females). Xerostomia was reported by 12.2% of patients. The proportion of people reporting xerostomia was higher among those who were taking more medications (OR = 1.11, 95% CI = 1.08-1.13) or recreational drug users (OR = 1.4, 95% CI = 1.1-1.9). Rheumatic diseases (OR = 2.17, 95% CI = 1.88-2.51), psychiatric diseases (OR = 2.34, 95% CI = 2.05-2.68), eating disorders (OR = 2.28, 95% CI = 1.55-3.36) and radiotherapy (OR = 2.00, 95% CI = 1.43-2.80) were good predictors of xerostomia. For the test model performance, the ROC-AUC was 0.816 and in the external validation sample, the ROC-AUC was 0.799. The xerostomia risk prediction model had high accuracy and discriminated between high- and low-risk individuals. Clinicians could use this model to identify the classes of medications and systemic diseases associated with xerostomia. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  2. EVALUATING RISK-PREDICTION MODELS USING DATA FROM ELECTRONIC HEALTH RECORDS.

    Science.gov (United States)

    Wang, L E; Shaw, Pamela A; Mathelier, Hansie M; Kimmel, Stephen E; French, Benjamin

    2016-03-01

    The availability of data from electronic health records facilitates the development and evaluation of risk-prediction models, but estimation of prediction accuracy could be limited by outcome misclassification, which can arise if events are not captured. We evaluate the robustness of prediction accuracy summaries, obtained from receiver operating characteristic curves and risk-reclassification methods, if events are not captured (i.e., "false negatives"). We derive estimators for sensitivity and specificity if misclassification is independent of marker values. In simulation studies, we quantify the potential for bias in prediction accuracy summaries if misclassification depends on marker values. We compare the accuracy of alternative prognostic models for 30-day all-cause hospital readmission among 4548 patients discharged from the University of Pennsylvania Health System with a primary diagnosis of heart failure. Simulation studies indicate that if misclassification depends on marker values, then the estimated accuracy improvement is also biased, but the direction of the bias depends on the direction of the association between markers and the probability of misclassification. In our application, 29% of the 1143 readmitted patients were readmitted to a hospital elsewhere in Pennsylvania, which reduced prediction accuracy. Outcome misclassification can result in erroneous conclusions regarding the accuracy of risk-prediction models.

  3. Development and Validation of a Prediction Model to Estimate Individual Risk of Pancreatic Cancer.

    Science.gov (United States)

    Yu, Ami; Woo, Sang Myung; Joo, Jungnam; Yang, Hye-Ryung; Lee, Woo Jin; Park, Sang-Jae; Nam, Byung-Ho

    2016-01-01

    There is no reliable screening tool to identify people with high risk of developing pancreatic cancer even though pancreatic cancer represents the fifth-leading cause of cancer-related death in Korea. The goal of this study was to develop an individualized risk prediction model that can be used to screen for asymptomatic pancreatic cancer in Korean men and women. Gender-specific risk prediction models for pancreatic cancer were developed using the Cox proportional hazards model based on an 8-year follow-up of a cohort study of 1,289,933 men and 557,701 women in Korea who had biennial examinations in 1996-1997. The performance of the models was evaluated with respect to their discrimination and calibration ability based on the C-statistic and Hosmer-Lemeshow type χ2 statistic. A total of 1,634 (0.13%) men and 561 (0.10%) women were newly diagnosed with pancreatic cancer. Age, height, BMI, fasting glucose, urine glucose, smoking, and age at smoking initiation were included in the risk prediction model for men. Height, BMI, fasting glucose, urine glucose, smoking, and drinking habit were included in the risk prediction model for women. Smoking was the most significant risk factor for developing pancreatic cancer in both men and women. The risk prediction model exhibited good discrimination and calibration ability, and in external validation it had excellent prediction ability. Gender-specific risk prediction models for pancreatic cancer were developed and validated for the first time. The prediction models will be a useful tool for detecting high-risk individuals who may benefit from increased surveillance for pancreatic cancer.

  4. Recent development of risk-prediction models for incident hypertension: An updated systematic review.

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    Full Text Available Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative.Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc.From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI, age, smoking, blood pressure (BP level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%.The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.

  5. A new risk prediction model for critical care: the Intensive Care National Audit & Research Centre (ICNARC) model.

    Science.gov (United States)

    Harrison, David A; Parry, Gareth J; Carpenter, James R; Short, Alasdair; Rowan, Kathy

    2007-04-01

    To develop a new model to improve risk prediction for admissions to adult critical care units in the UK. Prospective cohort study. The setting was 163 adult, general critical care units in England, Wales, and Northern Ireland, December 1995 to August 2003. Patients were 216,626 critical care admissions. None. The performance of different approaches to modeling physiologic measurements was evaluated, and the best methods were selected to produce a new physiology score. This physiology score was combined with other information relating to the critical care admission-age, diagnostic category, source of admission, and cardiopulmonary resuscitation before admission-to develop a risk prediction model. Modeling interactions between diagnostic category and physiology score enabled the inclusion of groups of admissions that are frequently excluded from risk prediction models. The new model showed good discrimination (mean c index 0.870) and fit (mean Shapiro's R 0.665, mean Brier's score 0.132) in 200 repeated validation samples and performed well when compared with recalibrated versions of existing published risk prediction models in the cohort of patients eligible for all models. The hypothesis of perfect fit was rejected for all models, including the Intensive Care National Audit & Research Centre (ICNARC) model, as is to be expected in such a large cohort. The ICNARC model demonstrated better discrimination and overall fit than existing risk prediction models, even following recalibration of these models. We recommend it be used to replace previously published models for risk adjustment in the UK.

  6. Predictive Modelling Risk Calculators and the Non Dialysis Pathway.

    Science.gov (United States)

    Robins, Jennifer; Katz, Ivor

    2013-04-16

    This guideline will review the current prediction models and survival/mortality scores available for decision making in patients with advanced kidney disease who are being considered for a non-dialysis treatment pathway. Risk prediction is gaining increasing attention with emerging literature suggesting improved patient outcomes through individualised risk prediction (1). Predictive models help inform the nephrologist and the renal palliative care specialists in their discussions with patients and families about suitability or otherwise of dialysis. Clinical decision making in the care of end stage kidney disease (ESKD) patients on a non-dialysis treatment pathway is currently governed by several observational trials (3). Despite the paucity of evidence based medicine in this field, it is becoming evident that the survival advantages associated with renal replacement therapy in these often elderly patients with multiple co-morbidities and limited functional status may be negated by loss of quality of life (7) (6), further functional decline (5, 8), increased complications and hospitalisations. This article is protected by copyright. All rights reserved.

  7. Validation of a risk prediction model for Barrett's esophagus in an Australian population.

    Science.gov (United States)

    Ireland, Colin J; Gordon, Andrea L; Thompson, Sarah K; Watson, David I; Whiteman, David C; Reed, Richard L; Esterman, Adrian

    2018-01-01

    Esophageal adenocarcinoma is a disease that has a high mortality rate, the only known precursor being Barrett's esophagus (BE). While screening for BE is not cost-effective at the population level, targeted screening might be beneficial. We have developed a risk prediction model to identify people with BE, and here we present the external validation of this model. A cohort study was undertaken to validate a risk prediction model for BE. Individuals with endoscopy and histopathology proven BE completed a questionnaire containing variables previously identified as risk factors for this condition. Their responses were combined with data from a population sample for analysis. Risk scores were derived for each participant. Overall performance of the risk prediction model in terms of calibration and discrimination was assessed. Scores from 95 individuals with BE and 636 individuals from the general population were analyzed. The Brier score was 0.118, suggesting reasonable overall performance. The area under the receiver operating characteristic was 0.83 (95% CI 0.78-0.87). The Hosmer-Lemeshow statistic was p =0.14. Minimizing false positives and false negatives, the model achieved a sensitivity of 74% and a specificity of 73%. This study has validated a risk prediction model for BE that has a higher sensitivity than previous models.

  8. Development of a Breast Cancer Risk Prediction Model for Women in Nigeria.

    Science.gov (United States)

    Wang, Shengfeng; Ogundiran, Temidayo O; Ademola, Adeyinka; Oluwasola, Olayiwola A; Adeoye, Adewunmi O; Sofoluwe, Adenike; Morhason-Bello, Imran; Odedina, Stella O; Agwai, Imaria; Adebamowo, Clement; Obajimi, Millicent; Ojengbede, Oladosu; Olopade, Olufunmilayo I; Huo, Dezheng

    2018-04-20

    Risk prediction models have been widely used to identify women at higher risk of breast cancer. We aim to develop a model for absolute breast cancer risk prediction for Nigerian women. A total of 1,811 breast cancer cases and 2,225 controls from the Nigerian Breast Cancer Study (NBCS, 1998~2015) were included. Subjects were randomly divided into the training and validation sets. Incorporating local incidence rates, multivariable logistic regressions were used to develop the model. The NBCS model included age, age at menarche, parity, duration of breast feeding, family history of breast cancer, height, body mass index, benign breast diseases and alcohol consumption. The model developed in the training set performed well in the validation set. The discriminating accuracy of the NBCS model (area under ROC curve [AUC]=0.703, 95% confidence interval [CI]: 0.687-0.719) was better than the Black Women's Health Study (BWHS) model (AUC=0.605, 95% CI: 0.586-0.624), Gail model for White population (AUC=0.551, 95% CI: 0.531-0.571), and Gail model for Black population (AUC=0.545, 95% CI: 0.525-0.565). Compared to the BWHS, two Gail models, the net reclassification improvement of the NBCS model were 8.26%, 13.45% and 14.19%, respectively. We have developed a breast cancer risk prediction model specific to women in Nigeria, which provides a promising and indispensable tool to identify women in need of breast cancer early detection in SSA populations. Our model is the first breast cancer risk prediction model in Africa. It can be used to identify women at high-risk for breast cancer screening. Copyright ©2018, American Association for Cancer Research.

  9. Mortality Risk Prediction in Scleroderma-Related Interstitial Lung Disease: The SADL Model.

    Science.gov (United States)

    Morisset, Julie; Vittinghoff, Eric; Elicker, Brett M; Hu, Xiaowen; Le, Stephanie; Ryu, Jay H; Jones, Kirk D; Haemel, Anna; Golden, Jeffrey A; Boin, Francesco; Ley, Brett; Wolters, Paul J; King, Talmadge E; Collard, Harold R; Lee, Joyce S

    2017-11-01

    Interstitial lung disease (ILD) is an important cause of morbidity and mortality in patients with scleroderma (Scl). Risk prediction and prognostication in patients with Scl-ILD are challenging because of heterogeneity in the disease course. We aimed to develop a clinical mortality risk prediction model for Scl-ILD. Patients with Scl-ILD were identified from two ongoing longitudinal cohorts: 135 patients at the University of California, San Francisco (derivation cohort) and 90 patients at the Mayo Clinic (validation cohort). Using these two separate cohorts, a mortality risk prediction model was developed and validated by testing every potential candidate Cox model, each including three or four variables of a possible 19 clinical predictors, for time to death. Model discrimination was assessed using the C-index. Three variables were included in the final risk prediction model (SADL): ever smoking history, age, and diffusing capacity of the lung for carbon monoxide (% predicted). This continuous model had similar performance in the derivation (C-index, 0.88) and validation (C-index, 0.84) cohorts. We created a point scoring system using the combined cohort (C-index, 0.82) and used it to identify a classification with low, moderate, and high mortality risk at 3 years. The SADL model uses simple, readily accessible clinical variables to predict all-cause mortality in Scl-ILD. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  10. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  11. Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks.

    Science.gov (United States)

    Coiera, Enrico; Wang, Ying; Magrabi, Farah; Concha, Oscar Perez; Gallego, Blanca; Runciman, William

    2014-05-21

    Current prognostic models factor in patient and disease specific variables but do not consider cumulative risks of hospitalization over time. We developed risk models of the likelihood of death associated with cumulative exposure to hospitalization, based on time-varying risks of hospitalization over any given day, as well as day of the week. Model performance was evaluated alone, and in combination with simple disease-specific models. Patients admitted between 2000 and 2006 from 501 public and private hospitals in NSW, Australia were used for training and 2007 data for evaluation. The impact of hospital care delivered over different days of the week and or times of the day was modeled by separating hospitalization risk into 21 separate time periods (morning, day, night across the days of the week). Three models were developed to predict death up to 7-days post-discharge: 1/a simple background risk model using age, gender; 2/a time-varying risk model for exposure to hospitalization (admission time, days in hospital); 3/disease specific models (Charlson co-morbidity index, DRG). Combining these three generated a full model. Models were evaluated by accuracy, AUC, Akaike and Bayesian information criteria. There was a clear diurnal rhythm to hospital mortality in the data set, peaking in the evening, as well as the well-known 'weekend-effect' where mortality peaks with weekend admissions. Individual models had modest performance on the test data set (AUC 0.71, 0.79 and 0.79 respectively). The combined model which included time-varying risk however yielded an average AUC of 0.92. This model performed best for stays up to 7-days (93% of admissions), peaking at days 3 to 5 (AUC 0.94). Risks of hospitalization vary not just with the day of the week but also time of the day, and can be used to make predictions about the cumulative risk of death associated with an individual's hospitalization. Combining disease specific models with such time varying- estimates appears to

  12. A Risk Prediction Model for In-hospital Mortality in Patients with Suspected Myocarditis.

    Science.gov (United States)

    Xu, Duo; Zhao, Ruo-Chi; Gao, Wen-Hui; Cui, Han-Bin

    2017-04-05

    Myocarditis is an inflammatory disease of the myocardium that may lead to cardiac death in some patients. However, little is known about the predictors of in-hospital mortality in patients with suspected myocarditis. Thus, the aim of this study was to identify the independent risk factors for in-hospital mortality in patients with suspected myocarditis by establishing a risk prediction model. A retrospective study was performed to analyze the clinical medical records of 403 consecutive patients with suspected myocarditis who were admitted to Ningbo First Hospital between January 2003 and December 2013. A total of 238 males (59%) and 165 females (41%) were enrolled in this study. We divided the above patients into two subgroups (survival and nonsurvival), according to their clinical in-hospital outcomes. To maximize the effectiveness of the prediction model, we first identified the potential risk factors for in-hospital mortality among patients with suspected myocarditis, based on data pertaining to previously established risk factors and basic patient characteristics. We subsequently established a regression model for predicting in-hospital mortality using univariate and multivariate logistic regression analyses. Finally, we identified the independent risk factors for in-hospital mortality using our risk prediction model. The following prediction model for in-hospital mortality in patients with suspected myocarditis, including creatinine clearance rate (Ccr), age, ventricular tachycardia (VT), New York Heart Association (NYHA) classification, gender and cardiac troponin T (cTnT), was established in the study: P = ea/(1 + ea) (where e is the exponential function, P is the probability of in-hospital death, and a = -7.34 + 2.99 × [Ccr model demonstrated that a Ccr prediction model for in-hospital mortality in patients with suspected myocarditis. In addition, sufficient life support during the early stage of the disease might improve the prognoses of patients with

  13. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.

    Science.gov (United States)

    Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T

    2017-05-01

    We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large

  14. Risk score prediction model for dementia in patients with type 2 diabetes.

    Science.gov (United States)

    Li, Chia-Ing; Li, Tsai-Chung; Liu, Chiu-Shong; Liao, Li-Na; Lin, Wen-Yuan; Lin, Chih-Hsueh; Yang, Sing-Yu; Chiang, Jen-Huai; Lin, Cheng-Chieh

    2018-03-30

    No study established a prediction dementia model in the Asian populations. This study aims to develop a prediction model for dementia in Chinese type 2 diabetes patients. This retrospective cohort study included 27,540 Chinese type 2 diabetes patients (aged 50-94 years) enrolled in Taiwan National Diabetes Care Management Program. Participants were randomly allocated into derivation and validation sets at 2:1 ratio. Cox proportional hazards regression models were used to identify risk factors for dementia in the derivation set. Steps proposed by Framingham Heart Study were used to establish a prediction model with a scoring system. The average follow-up was 8.09 years, with a total of 853 incident dementia cases in derivation set. Dementia risk score summed up the individual scores (from 0 to 20). The areas under curve of 3-, 5-, and 10-year dementia risks were 0.82, 0.79, and 0.76 in derivation set and 0.84, 0.80, and 0.75 in validation set, respectively. The proposed score system is the first dementia risk prediction model for Chinese type 2 diabetes patients in Taiwan. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. An updated prediction model of the global risk of cardiovascular disease in HIV-positive persons

    DEFF Research Database (Denmark)

    Friis-Møller, Nina; Ryom, Lene; Smith, Colette

    2016-01-01

    ,663 HIV-positive persons from 20 countries in Europe and Australia, who were free of CVD at entry into the Data-collection on Adverse Effects of Anti-HIV Drugs (D:A:D) study. Cox regression models (full and reduced) were developed that predict the risk of a global CVD endpoint. The predictive performance...... significantly predicted risk more accurately than the recalibrated Framingham model (Harrell's c-statistic of 0.791, 0.783 and 0.766 for the D:A:D full, D:A:D reduced, and Framingham models respectively; p models also more accurately predicted five-year CVD-risk for key prognostic subgroups...... to quantify risk and to guide preventive care....

  16. [Predicting value of 2014 European guidelines risk prediction model for sudden cardiac death (HCM Risk-SCD) in Chinese patients with hypertrophic cardiomyopathy].

    Science.gov (United States)

    Li, W X; Liu, L W; Wang, J; Zuo, L; Yang, F; Kang, N; Lei, C H

    2017-12-24

    Objective: To evaluate the predicting value of the 2014 European Society of Cardiology (ESC) guidelines risk prediction model for sudden cardiac death (HCM Risk-SCD) in Chinese patients with hypertrophic cardiomyopathy (HCM), and to explore the predictors of adverse cardiovascular events in Chinese HCM patients. Methods: The study population consisted of a consecutive 207 HCM patients admitted in our center from October 2014 to October 2016. All patients were followed up to March 2017. The 5-year SCD probability of each patient was estimated using HCM Risk-SCD model based on electrocardiogram, echocardiography and cardiac magnetic resonance (CMR) examination results. The primary, second, and composite endpoints were recorded. The primary endpoint included SCD and appropriate ICD therapy, identical to the HCM Risk-SCD endpoint. The second endpoint included acute myocardial infarction, hospitalization for heart failure, thrombus embolism and end-stage HCM. The composite endpoint was either the primary or the second endpoint. Patients were divided into the 3 categories according to 5-year SCD probability assessed by HCM Risk-SCD model: low risk grouprisk group ≥4% torisk group≥6%. Results: (1) Prevalence of endpoints: All 207 HCM patients completed the follow-up (350 (230, 547) days). During follow-up, 8 (3.86%) patients reached the primary endpoints (3 cases of SCD, 3 cases of survival after defibrillation, and 2 cases of appropriate ICD discharge); 21 (10.14%) patients reached the second endpoints (1 case of acute myocardial infarction, 16 cases of heart failure hospitalization, 2 cases of thromboembolism, and 2 cases of end-stage HCM). (2) Predicting value of HCM Risk-SCD model: Patients with primary endpoints had higher prevalence of syncope and intermediate-high risk of 5-year SCD, as compared to those without primary endpoints (both Pvalue of HCM Risk-SCD model: The low risk group included 122 patients (59%), the intermediate risk group 42 (20%), and the

  17. Testing the Predictive Validity of the Hendrich II Fall Risk Model.

    Science.gov (United States)

    Jung, Hyesil; Park, Hyeoun-Ae

    2018-03-01

    Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.

  18. Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

    Science.gov (United States)

    Wen, Yalu; Shen, Xiaoxi; Lu, Qing

    2018-05-31

    With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer

    NARCIS (Netherlands)

    Petersen, Japke F.; Stuiver, Martijn M.; Timmermans, Adriana J.; Chen, Amy; Zhang, Hongzhen; O'Neill, James P.; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T.; Koch, Wayne; van den Brekel, Michiel W. M.

    2017-01-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442

  20. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results.

    Science.gov (United States)

    Boursi, Ben; Mamtani, Ronac; Hwang, Wei-Ting; Haynes, Kevin; Yang, Yu-Xiao

    2016-07-01

    Current risk scores for colorectal cancer (CRC) are based on demographic and behavioral factors and have limited predictive values. To develop a novel risk prediction model for sporadic CRC using clinical and laboratory data in electronic medical records. We conducted a nested case-control study in a UK primary care database. Cases included those with a diagnostic code of CRC, aged 50-85. Each case was matched with four controls using incidence density sampling. CRC predictors were examined using univariate conditional logistic regression. Variables with p value CRC prediction models which included age, sex, height, obesity, ever smoking, alcohol dependence, and previous screening colonoscopy had an AUC of 0.58 (0.57-0.59) with poor goodness of fit. A laboratory-based model including hematocrit, MCV, lymphocytes, and neutrophil-lymphocyte ratio (NLR) had an AUC of 0.76 (0.76-0.77) and a McFadden's R2 of 0.21 with a NRI of 47.6 %. A combined model including sex, hemoglobin, MCV, white blood cells, platelets, NLR, and oral hypoglycemic use had an AUC of 0.80 (0.79-0.81) with a McFadden's R2 of 0.27 and a NRI of 60.7 %. Similar results were shown in an internal validation set. A laboratory-based risk model had good predictive power for sporadic CRC risk.

  1. Clinical Prediction Model and Tool for Assessing Risk of Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Meretoja, Tuomo J; Andersen, Kenneth Geving; Bruce, Julie

    2017-01-01

    are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity......), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC......-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen...

  2. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea.

    Science.gov (United States)

    Shin, Aesun; Joo, Jungnam; Yang, Hye-Ryung; Bak, Jeongin; Park, Yunjin; Kim, Jeongseon; Oh, Jae Hwan; Nam, Byung-Ho

    2014-01-01

    Incidence and mortality rates of colorectal cancer have been rapidly increasing in Korea during last few decades. Development of risk prediction models for colorectal cancer in Korean men and women is urgently needed to enhance its prevention and early detection. Gender specific five-year risk prediction models were developed for overall colorectal cancer, proximal colon cancer, distal colon cancer, colon cancer and rectal cancer. The model was developed using data from a population of 846,559 men and 479,449 women who participated in health examinations by the National Health Insurance Corporation. Examinees were 30-80 years old and free of cancer in the baseline years of 1996 and 1997. An independent population of 547,874 men and 415,875 women who participated in 1998 and 1999 examinations was used to validate the model. Model validation was done by evaluating its performance in terms of discrimination and calibration ability using the C-statistic and Hosmer-Lemeshow-type chi-square statistics. Age, body mass index, serum cholesterol, family history of cancer, and alcohol consumption were included in all models for men, whereas age, height, and meat intake frequency were included in all models for women. Models showed moderately good discrimination ability with C-statistics between 0.69 and 0.78. The C-statistics were generally higher in the models for men, whereas the calibration abilities were generally better in the models for women. Colorectal cancer risk prediction models were developed from large-scale, population-based data. Those models can be used for identifying high risk groups and developing preventive intervention strategies for colorectal cancer.

  3. Tail Risk Premia and Return Predictability

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor; Xu, Lai

    The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may be attribu......The variance risk premium, defined as the difference between actual and risk-neutralized expectations of the forward aggregate market variation, helps predict future market returns. Relying on new essentially model-free estimation procedure, we show that much of this predictability may......-varying economic uncertainty and changes in risk aversion, or market fears, respectively....

  4. Development of a disease risk prediction model for downy mildew (Peronospora sparsa) in boysenberry.

    Science.gov (United States)

    Kim, Kwang Soo; Beresford, Robert M; Walter, Monika

    2014-01-01

    Downy mildew caused by Peronospora sparsa has resulted in serious production losses in boysenberry (Rubus hybrid), blackberry (Rubus fruticosus), and rose (Rosa sp.) in New Zealand, Mexico, and the United States and the United Kingdom, respectively. Development of a model to predict downy mildew risk would facilitate development and implementation of a disease warning system for efficient fungicide spray application in the crops affected by this disease. Because detailed disease observation data were not available, a two-step approach was applied to develop an empirical risk prediction model for P. sparsa. To identify the weather patterns associated with a high incidence of downy mildew berry infections (dryberry disease) and derive parameters for the empirical model, classification and regression tree (CART) analysis was performed. Then, fuzzy sets were applied to develop a simple model to predict the disease risk based on the parameters derived from the CART analysis. High-risk seasons with a boysenberry downy mildew incidence >10% coincided with months when the number of hours per day with temperature of 15 to 20°C averaged >9.8 over the month and the number of days with rainfall in the month was >38.7%. The Fuzzy Peronospora Sparsa (FPS) model, developed using fuzzy sets, defined relationships among high-risk events, temperature, and rainfall conditions. In a validation study, the FPS model provided correct identification of both seasons with high downy mildew risk for boysenberry, blackberry, and rose and low risk in seasons when no disease was observed. As a result, the FPS model had a significant degree of agreement between predicted and observed risks of downy mildew for those crops (P = 0.002).

  5. Improving default risk prediction using Bayesian model uncertainty techniques.

    Science.gov (United States)

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. © 2012 Society for Risk Analysis.

  6. Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

    Directory of Open Access Journals (Sweden)

    Khaled Halteh

    2018-05-01

    Full Text Available Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

  7. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  8. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea.

    Directory of Open Access Journals (Sweden)

    Aesun Shin

    Full Text Available PURPOSE: Incidence and mortality rates of colorectal cancer have been rapidly increasing in Korea during last few decades. Development of risk prediction models for colorectal cancer in Korean men and women is urgently needed to enhance its prevention and early detection. METHODS: Gender specific five-year risk prediction models were developed for overall colorectal cancer, proximal colon cancer, distal colon cancer, colon cancer and rectal cancer. The model was developed using data from a population of 846,559 men and 479,449 women who participated in health examinations by the National Health Insurance Corporation. Examinees were 30-80 years old and free of cancer in the baseline years of 1996 and 1997. An independent population of 547,874 men and 415,875 women who participated in 1998 and 1999 examinations was used to validate the model. Model validation was done by evaluating its performance in terms of discrimination and calibration ability using the C-statistic and Hosmer-Lemeshow-type chi-square statistics. RESULTS: Age, body mass index, serum cholesterol, family history of cancer, and alcohol consumption were included in all models for men, whereas age, height, and meat intake frequency were included in all models for women. Models showed moderately good discrimination ability with C-statistics between 0.69 and 0.78. The C-statistics were generally higher in the models for men, whereas the calibration abilities were generally better in the models for women. CONCLUSIONS: Colorectal cancer risk prediction models were developed from large-scale, population-based data. Those models can be used for identifying high risk groups and developing preventive intervention strategies for colorectal cancer.

  9. Lung cancer in never smokers Epidemiology and risk prediction models

    Science.gov (United States)

    McCarthy, William J.; Meza, Rafael; Jeon, Jihyoun; Moolgavkar, Suresh

    2012-01-01

    In this chapter we review the epidemiology of lung cancer incidence and mortality among never smokers/ nonsmokers and describe the never smoker lung cancer risk models used by CISNET modelers. Our review focuses on those influences likely to have measurable population impact on never smoker risk, such as secondhand smoke, even though the individual-level impact may be small. Occupational exposures may also contribute importantly to the population attributable risk of lung cancer. We examine the following risk factors in this chapter: age, environmental tobacco smoke, cooking fumes, ionizing radiation including radon gas, inherited genetic susceptibility, selected occupational exposures, preexisting lung disease, and oncogenic viruses. We also compare the prevalence of never smokers between the three CISNET smoking scenarios and present the corresponding lung cancer mortality estimates among never smokers as predicted by a typical CISNET model. PMID:22882894

  10. Development of a flood-induced health risk prediction model for Africa

    Science.gov (United States)

    Lee, D.; Block, P. J.

    2017-12-01

    Globally, many floods occur in developing or tropical regions where the impact on public health is substantial, including death and injury, drinking water, endemic disease, and so on. Although these flood impacts on public health have been investigated, integrated management of floods and flood-induced health risks is technically and institutionally limited. Specifically, while the use of climatic and hydrologic forecasts for disaster management has been highlighted, analogous predictions for forecasting the magnitude and impact of health risks are lacking, as is the infrastructure for health early warning systems, particularly in developing countries. In this study, we develop flood-induced health risk prediction model for African regions using season-ahead flood predictions with climate drivers and a variety of physical and socio-economic information, such as local hazard, exposure, resilience, and health vulnerability indicators. Skillful prediction of flood and flood-induced health risks can contribute to practical pre- and post-disaster responses in both local- and global-scales, and may eventually be integrated into multi-hazard early warning systems for informed advanced planning and management. This is especially attractive for areas with limited observations and/or little capacity to develop flood-induced health risk warning systems.

  11. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups.

    Science.gov (United States)

    Marschollek, Michael; Gövercin, Mehmet; Rust, Stefan; Gietzelt, Matthias; Schulze, Mareike; Wolf, Klaus-Hendrik; Steinhagen-Thiessen, Elisabeth

    2012-03-14

    Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified

  12. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups

    Directory of Open Access Journals (Sweden)

    Marschollek Michael

    2012-03-01

    Full Text Available Abstract Background Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1, and to identify high-risk subgroups from the data (aim#2. Methods A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493. A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances. Results The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity. Conclusions Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack

  13. Development of a risk-prediction model for Middle East respiratory syndrome coronavirus infection in dialysis patients.

    Science.gov (United States)

    Ahmed, Anwar E; Alshukairi, Abeer N; Al-Jahdali, Hamdan; Alaqeel, Mody; Siddiq, Salma S; Alsaab, Hanan A; Sakr, Ezzeldin A; Alyahya, Hamed A; Alandonisi, Munzir M; Subedar, Alaa T; Aloudah, Nouf M; Baharoon, Salim; Alsalamah, Majid A; Al Johani, Sameera; Alghamdi, Mohammed G

    2018-04-14

    Introduction The Middle East respiratory syndrome coronavirus (MERS-CoV) infection can cause transmission clusters and high mortality in hemodialysis facilities. We attempted to develop a risk-prediction model to assess the early risk of MERS-CoV infection in dialysis patients. Methods This two-center retrospective cohort study included 104 dialysis patients who were suspected of MERS-CoV infection and diagnosed with rRT-PCR between September 2012 and June 2016 at King Fahd General Hospital in Jeddah and King Abdulaziz Medical City in Riyadh. We retrieved data on demographic, clinical, and radiological findings, and laboratory indices of each patient. Findings A risk-prediction model to assess early risk for MERS-CoV in dialysis patients has been developed. Independent predictors of MERS-CoV infection were identified, including chest pain (OR = 24.194; P = 0.011), leukopenia (OR = 6.080; P = 0.049), and elevated aspartate aminotransferase (AST) (OR = 11.179; P = 0.013). The adequacy of this prediction model was good (P = 0.728), with a high predictive utility (area under curve [AUC] = 76.99%; 95% CI: 67.05% to 86.38%). The prediction of the model had optimism-corrected bootstrap resampling AUC of 71.79%. The Youden index yielded a value of 0.439 or greater as the best cut-off for high risk of MERS infection. Discussion This risk-prediction model in dialysis patients appears to depend markedly on chest pain, leukopenia, and elevated AST. The model accurately predicts the high risk of MERS-CoV infection in dialysis patients. This could be clinically useful in applying timely intervention and control measures to prevent clusters of infections in dialysis facilities or other health care settings. The predictive utility of the model warrants further validation in external samples and prospective studies. © 2018 International Society for Hemodialysis.

  14. Development and external validation of a risk-prediction model to predict 5-year overall survival in advanced larynx cancer.

    Science.gov (United States)

    Petersen, Japke F; Stuiver, Martijn M; Timmermans, Adriana J; Chen, Amy; Zhang, Hongzhen; O'Neill, James P; Deady, Sandra; Vander Poorten, Vincent; Meulemans, Jeroen; Wennerberg, Johan; Skroder, Carl; Day, Andrew T; Koch, Wayne; van den Brekel, Michiel W M

    2018-05-01

    TNM-classification inadequately estimates patient-specific overall survival (OS). We aimed to improve this by developing a risk-prediction model for patients with advanced larynx cancer. Cohort study. We developed a risk prediction model to estimate the 5-year OS rate based on a cohort of 3,442 patients with T3T4N0N+M0 larynx cancer. The model was internally validated using bootstrapping samples and externally validated on patient data from five external centers (n = 770). The main outcome was performance of the model as tested by discrimination, calibration, and the ability to distinguish risk groups based on tertiles from the derivation dataset. The model performance was compared to a model based on T and N classification only. We included age, gender, T and N classification, and subsite as prognostic variables in the standard model. After external validation, the standard model had a significantly better fit than a model based on T and N classification alone (C statistic, 0.59 vs. 0.55, P statistic to 0.68. A risk prediction model for patients with advanced larynx cancer, consisting of readily available clinical variables, gives more accurate estimations of the estimated 5-year survival rate when compared to a model based on T and N classification alone. 2c. Laryngoscope, 128:1140-1145, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance.

    Science.gov (United States)

    Meads, Catherine; Ahmed, Ikhlaaq; Riley, Richard D

    2012-04-01

    A risk prediction model is a statistical tool for estimating the probability that a currently healthy individual with specific risk factors will develop a condition in the future such as breast cancer. Reliably accurate prediction models can inform future disease burdens, health policies and individual decisions. Breast cancer prediction models containing modifiable risk factors, such as alcohol consumption, BMI or weight, condom use, exogenous hormone use and physical activity, are of particular interest to women who might be considering how to reduce their risk of breast cancer and clinicians developing health policies to reduce population incidence rates. We performed a systematic review to identify and evaluate the performance of prediction models for breast cancer that contain modifiable factors. A protocol was developed and a sensitive search in databases including MEDLINE and EMBASE was conducted in June 2010. Extensive use was made of reference lists. Included were any articles proposing or validating a breast cancer prediction model in a general female population, with no language restrictions. Duplicate data extraction and quality assessment were conducted. Results were summarised qualitatively, and where possible meta-analysis of model performance statistics was undertaken. The systematic review found 17 breast cancer models, each containing a different but often overlapping set of modifiable and other risk factors, combined with an estimated baseline risk that was also often different. Quality of reporting was generally poor, with characteristics of included participants and fitted model results often missing. Only four models received independent validation in external data, most notably the 'Gail 2' model with 12 validations. None of the models demonstrated consistently outstanding ability to accurately discriminate between those who did and those who did not develop breast cancer. For example, random-effects meta-analyses of the performance of the

  16. Melanoma Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing melanoma cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  17. Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models.

    Science.gov (United States)

    Campbell, William; Ganna, Andrea; Ingelsson, Erik; Janssens, A Cecile J W

    2016-01-01

    We propose a new measure of assessing the performance of risk models, the area under the prediction impact curve (auPIC), which quantifies the performance of risk models in terms of their average health impact in the population. Using simulated data, we explain how the prediction impact curve (PIC) estimates the percentage of events prevented when a risk model is used to assign high-risk individuals to an intervention. We apply the PIC to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its application toward prevention of coronary heart disease. We estimated that if the ARIC cohort received statins at baseline, 5% of events would be prevented when the risk model was evaluated at a cutoff threshold of 20% predicted risk compared to 1% when individuals were assigned to the intervention without the use of a model. By calculating the auPIC, we estimated that an average of 15% of events would be prevented when considering performance across the entire interval. We conclude that the PIC is a clinically meaningful measure for quantifying the expected health impact of risk models that supplements existing measures of model performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study.

    Directory of Open Access Journals (Sweden)

    Kevin Ten Haaf

    2017-04-01

    Full Text Available Selection of candidates for lung cancer screening based on individual risk has been proposed as an alternative to criteria based on age and cumulative smoking exposure (pack-years. Nine previously established risk models were assessed for their ability to identify those most likely to develop or die from lung cancer. All models considered age and various aspects of smoking exposure (smoking status, smoking duration, cigarettes per day, pack-years smoked, time since smoking cessation as risk predictors. In addition, some models considered factors such as gender, race, ethnicity, education, body mass index, chronic obstructive pulmonary disease, emphysema, personal history of cancer, personal history of pneumonia, and family history of lung cancer.Retrospective analyses were performed on 53,452 National Lung Screening Trial (NLST participants (1,925 lung cancer cases and 884 lung cancer deaths and 80,672 Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO ever-smoking participants (1,463 lung cancer cases and 915 lung cancer deaths. Six-year lung cancer incidence and mortality risk predictions were assessed for (1 calibration (graphically by comparing the agreement between the predicted and the observed risks, (2 discrimination (area under the receiver operating characteristic curve [AUC] between individuals with and without lung cancer (death, and (3 clinical usefulness (net benefit in decision curve analysis by identifying risk thresholds at which applying risk-based eligibility would improve lung cancer screening efficacy. To further assess performance, risk model sensitivities and specificities in the PLCO were compared to those based on the NLST eligibility criteria. Calibration was satisfactory, but discrimination ranged widely (AUCs from 0.61 to 0.81. The models outperformed the NLST eligibility criteria over a substantial range of risk thresholds in decision curve analysis, with a higher sensitivity for all models and a

  19. Validation of a risk prediction model for Barrett’s esophagus in an Australian population

    Directory of Open Access Journals (Sweden)

    Ireland CJ

    2018-03-01

    Full Text Available Colin J Ireland,1 Andrea L Gordon,2 Sarah K Thompson,3 David I Watson,4 David C Whiteman,5 Richard L Reed,6 Adrian Esterman1,7 1School of Nursing and Midwifery, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia; 2School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia; 3Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia; 4Department of Surgery, Flinders University, Bedford Park, SA, Australia; 5Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; 6Discipline of General Practice, Flinders University, Bedford Park, SA, Australia; 7Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia Background: Esophageal adenocarcinoma is a disease that has a high mortality rate, the only known precursor being Barrett’s esophagus (BE. While screening for BE is not cost-effective at the population level, targeted screening might be beneficial. We have developed a risk prediction model to identify people with BE, and here we present the external validation of this model. Materials and methods: A cohort study was undertaken to validate a risk prediction model for BE. Individuals with endoscopy and histopathology proven BE completed a questionnaire containing variables previously identified as risk factors for this condition. Their responses were combined with data from a population sample for analysis. Risk scores were derived for each participant. Overall performance of the risk prediction model in terms of calibration and discrimination was assessed. Results: Scores from 95 individuals with BE and 636 individuals from the general population were analyzed. The Brier score was 0.118, suggesting reasonable overall performance. The area under the receiver operating characteristic was 0.83 (95% CI 0.78–0.87. The Hosmer–Lemeshow statistic was p=0

  20. Development of a risk prediction model for Barrett's esophagus in an Australian population.

    Science.gov (United States)

    Ireland, C J; Fielder, A L; Thompson, S K; Laws, T A; Watson, D I; Esterman, A

    2017-11-01

    Esophageal adenocarcinoma has poor 5-year survival rates. Increased survival might be achieved with earlier treatment, but requires earlier identification of the precursor, Barrett's esophagus. Population screening is not cost effective, this may be improved by targeted screening directed at individuals more likely to have Barrett's esophagus. To develop a risk prediction tool for Barrett's esophagus, this study compared individuals with Barrett's esophagus against population controls. Participants completed a questionnaire comprising 35 questions addressing medical history, symptom history, lifestyle factors, anthropomorphic measures, and demographic details. Statistical analysis addressed differences between cases and controls, and entailed initial variable selection, checking of model assumptions, and establishing calibration and discrimination. The area under the curve (AUC) was used to assess overall accuracy. One hundred and twenty individuals with Barrett's esophagus and 235 population controls completed the questionnaire. Significant differences were identified for age, gender, reflux history, family reflux history, history of hypertension, alcoholic drinks per week, and body mass index. These were used to develop a risk prediction model. The AUC was 0.82 (95% CI 0.78-0.87). Good calibration between predicted and observed risk was noted (Hosmer-Lemeshow test P = 0.67). At the point minimizing false positives and false negatives, the model achieved a sensitivity of 84.96% and a specificity of 66%. A well-calibrated risk prediction model with good discrimination has been developed to identify patients with Barrett's esophagus. The model needs to be externally validated before consideration for clinical practice. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. An RES-Based Model for Risk Assessment and Prediction of Backbreak in Bench Blasting

    Science.gov (United States)

    Faramarzi, F.; Ebrahimi Farsangi, M. A.; Mansouri, H.

    2013-07-01

    Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation ( R 2) and root mean square error (RMSE) of the model were calculated ( R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.

  2. Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction.

    Science.gov (United States)

    Chen, Chia-Yen; Han, Jiali; Hunter, David J; Kraft, Peter; Price, Alkes L

    2015-09-01

    Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex traits. Here, we investigate the question of how to account for genetic ancestry when conducting polygenic prediction. We show that the accuracy of polygenic prediction in structured populations may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color (HC), tanning ability (TA), and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores (PRSs) and best linear unbiased prediction (BLUP). We compared polygenic prediction without correction for ancestry to polygenic prediction with ancestry as a separate component in the model. In 10-fold cross-validation using the PRS approach, the R(2) for HC increased by 66% (0.0456-0.0755; P ancestry, which prevents ancestry effects from entering into each SNP effect and being overweighted. Surprisingly, explicitly modeling ancestry produces a similar improvement when using the BLUP approach, which fits all SNPs simultaneously in a single variance component and causes ancestry to be underweighted. We validate our findings via simulations, which show that the differences in prediction accuracy will increase in magnitude as sample sizes increase. In summary, our results show that explicitly modeling ancestry can be important in both PRS and BLUP prediction. © 2015 WILEY PERIODICALS, INC.

  3. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.

    Science.gov (United States)

    Taslimitehrani, Vahid; Dong, Guozhu; Pereira, Naveen L; Panahiazar, Maryam; Pathak, Jyotishman

    2016-04-01

    Computerized survival prediction in healthcare identifying the risk of disease mortality, helps healthcare providers to effectively manage their patients by providing appropriate treatment options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate prognostic risk models to predict 1, 2, and 5year survival in heart failure (HF) using data from electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided logistic regression model defined by several patterns and corresponding local logistic regression models. One of the models generated by CPXR(Log) achieved an AUC and accuracy of 0.94 and 0.91, respectively, and significantly outperformed prognostic models reported in prior studies. Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although did not improve the accuracy of the models built by other classifiers. We also propose a probabilistic loss function to determine the large error and small error instances. The new loss function used in the algorithm outperforms other functions used in the previous studies by 1% improvement in the AUC. This study revealed that using EHR data to build prediction models can be very challenging using existing classification methods due to the high dimensionality and complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly heterogeneous disease, i.e., different subgroups of HF patients require different types of considerations with their diagnosis and treatment. Our risk models provided two valuable insights for application of predictive modeling techniques in biomedicine: Logistic risk models often make systematic prediction errors, and it is prudent to use subgroup based prediction models such as those given by CPXR

  4. Measurement error and timing of predictor values for multivariable risk prediction models are poorly reported.

    Science.gov (United States)

    Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D

    2018-05-18

    Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.

  5. Cardiovascular risk prediction in HIV-infected patients: comparing the Framingham, atherosclerotic cardiovascular disease risk score (ASCVD), Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) and Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) risk prediction models.

    Science.gov (United States)

    Krikke, M; Hoogeveen, R C; Hoepelman, A I M; Visseren, F L J; Arends, J E

    2016-04-01

    The aim of the study was to compare the predictions of five popular cardiovascular disease (CVD) risk prediction models, namely the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) model, the Framingham Heart Study (FHS) coronary heart disease (FHS-CHD) and general CVD (FHS-CVD) models, the American Heart Association (AHA) atherosclerotic cardiovascular disease risk score (ASCVD) model and the Systematic Coronary Risk Evaluation for the Netherlands (SCORE-NL) model. A cross-sectional design was used to compare the cumulative CVD risk predictions of the models. Furthermore, the predictions of the general CVD models were compared with those of the HIV-specific D:A:D model using three categories ( 20%) to categorize the risk and to determine the degree to which patients were categorized similarly or in a higher/lower category. A total of 997 HIV-infected patients were included in the study: 81% were male and they had a median age of 46 [interquartile range (IQR) 40-52] years, a known duration of HIV infection of 6.8 (IQR 3.7-10.9) years, and a median time on ART of 6.4 (IQR 3.0-11.5) years. The D:A:D, ASCVD and SCORE-NL models gave a lower cumulative CVD risk, compared with that of the FHS-CVD and FHS-CHD models. Comparing the general CVD models with the D:A:D model, the FHS-CVD and FHS-CHD models only classified 65% and 79% of patients, respectively, in the same category as did the D:A:D model. However, for the ASCVD and SCORE-NL models, this percentage was 89% and 87%, respectively. Furthermore, FHS-CVD and FHS-CHD attributed a higher CVD risk to 33% and 16% of patients, respectively, while this percentage was D:A:D, ASCVD and SCORE-NL models. This could have consequences regarding overtreatment, drug-related adverse events and drug-drug interactions. © 2015 British HIV Association.

  6. Risk assessment models to predict caries recurrence after oral rehabilitation under general anaesthesia: a pilot study.

    Science.gov (United States)

    Lin, Yai-Tin; Kalhan, Ashish Chetan; Lin, Yng-Tzer Joseph; Kalhan, Tosha Ashish; Chou, Chein-Chin; Gao, Xiao Li; Hsu, Chin-Ying Stephen

    2018-05-08

    Oral rehabilitation under general anaesthesia (GA), commonly employed to treat high caries-risk children, has been associated with high economic and individual/family burden, besides high post-GA caries recurrence rates. As there is no caries prediction model available for paediatric GA patients, this study was performed to build caries risk assessment/prediction models using pre-GA data and to explore mid-term prognostic factors for early identification of high-risk children prone to caries relapse post-GA oral rehabilitation. Ninety-two children were identified and recruited with parental consent before oral rehabilitation under GA. Biopsychosocial data collection at baseline and the 6-month follow-up were conducted using questionnaire (Q), microbiological assessment (M) and clinical examination (C). The prediction models constructed using data collected from Q, Q + M and Q + M + C demonstrated an accuracy of 72%, 78% and 82%, respectively. Furthermore, of the 83 (90.2%) patients recalled 6 months after GA intervention, recurrent caries was identified in 54.2%, together with reduced bacterial counts, lower plaque index and increased percentage of children toothbrushing for themselves (all P < 0.05). Additionally, meal-time and toothbrushing duration were shown, through bivariate analyses, to be significant prognostic determinants for caries recurrence (both P < 0.05). Risk assessment/prediction models built using pre-GA data may be promising in identifying high-risk children prone to post-GA caries recurrence, although future internal and external validation of predictive models is warranted. © 2018 FDI World Dental Federation.

  7. Developing risk prediction models for kidney injury and assessing incremental value for novel biomarkers.

    Science.gov (United States)

    Kerr, Kathleen F; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R

    2014-08-07

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients' risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. Copyright © 2014 by the American Society of Nephrology.

  8. Lipoprotein metabolism indicators improve cardiovascular risk prediction.

    Directory of Open Access Journals (Sweden)

    Daniël B van Schalkwijk

    Full Text Available BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC and by risk reclassification (Net Reclassification Improvement (NRI and Integrated Discrimination Improvement (IDI. Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.

  9. Application of cardiovascular disease risk prediction models and the relevance of novel biomarkers to risk stratification in Asian Indians.

    Science.gov (United States)

    Kanjilal, S; Rao, V S; Mukherjee, M; Natesha, B K; Renuka, K S; Sibi, K; Iyengar, S S; Kakkar, Vijay V

    2008-01-01

    The increasing pressure on health resources has led to the emergence of risk assessment as an essential tool in the management of cardiovascular disease (CVD). Concern exists regarding the validity of their generalization to all populations. Existing risk scoring models do not incorporate emerging 'novel' risk factors. In this context, the aim of the study was to examine the relevance of British, European, and Framingham predictive CVD risk scores to the asymptomatic high risk Indian population. Blood samples drawn from the participants were analyzed for various 'traditional' and 'novel' biomarkers, and their CVD risk factor profiling was also done. The Framingham model defined only 5% of the study cohort to be at high risk, which appears to be an underestimation of CVD risk in this genetically predisposed population. These subjects at high risk had significantly elevated levels of lipid, pro-inflammatory, pro-thrombotic, and serological markers. It is more relevant to develop risk predictive scores for application to the Indian population. This study substantiates the argument that alternative approaches to risk stratification are required in order to make them more adaptable and applicable to different populations with varying risk factor and disease patterns.

  10. Developing and evaluating polygenic risk prediction models for stratified disease prevention.

    Science.gov (United States)

    Chatterjee, Nilanjan; Shi, Jianxin; García-Closas, Montserrat

    2016-07-01

    Knowledge of genetics and its implications for human health is rapidly evolving in accordance with recent events, such as discoveries of large numbers of disease susceptibility loci from genome-wide association studies, the US Supreme Court ruling of the non-patentability of human genes, and the development of a regulatory framework for commercial genetic tests. In anticipation of the increasing relevance of genetic testing for the assessment of disease risks, this Review provides a summary of the methodologies used for building, evaluating and applying risk prediction models that include information from genetic testing and environmental risk factors. Potential applications of models for primary and secondary disease prevention are illustrated through several case studies, and future challenges and opportunities are discussed.

  11. Exploring the predictive power of interaction terms in a sophisticated risk equalization model using regression trees.

    Science.gov (United States)

    van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A

    2018-02-01

    This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Business model risk analysis: predicting the probability of business network profitability

    NARCIS (Netherlands)

    Johnson, Pontus; Iacob, Maria Eugenia; Valja, Margus; van Sinderen, Marten J.; Magnusson, Christer; Ladhe, Tobias; van Sinderen, Marten J.; Oude Luttighuis, P.H.W.M.; Folmer, Erwin Johan Albert; Bosems, S.

    In the design phase of business collaboration, it is desirable to be able to predict the profitability of the business-to-be. Therefore, techniques to assess qualities such as costs, revenues, risks, and profitability have been previously proposed. However, they do not allow the modeler to properly

  13. Development of Health Parameter Model for Risk Prediction of CVD Using SVM

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan

    2016-01-01

    Full Text Available Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD. The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model.

  14. Prostate Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing prostate cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  15. Liver Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing liver cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  16. Colorectal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing colorectal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  17. Esophageal Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing esophageal cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  18. Bladder Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing bladder cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  19. Lung Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  20. Breast Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing breast cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  1. Pancreatic Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing pancreatic cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  2. Ovarian Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing ovarian cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  3. Cervical Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  4. Testicular Cancer Risk Prediction Models

    Science.gov (United States)

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  5. Enhanced risk prediction model for emergency department use and hospitalizations in patients in a primary care medical home.

    Science.gov (United States)

    Takahashi, Paul Y; Heien, Herbert C; Sangaralingham, Lindsey R; Shah, Nilay D; Naessens, James M

    2016-07-01

    With the advent of healthcare payment reform, identifying high-risk populations has become more important to providers. Existing risk-prediction models often focus on chronic conditions. This study sought to better understand other factors to improve identification of the highest risk population. A retrospective cohort study of a paneled primary care population utilizing 2010 data to calibrate a risk prediction model of hospital and emergency department (ED) use in 2011. Data were randomly split into development and validation data sets. We compared the enhanced model containing the additional risk predictors with the Minnesota medical tiering model. The study was conducted in the primary care practice of an integrated delivery system at an academic medical center in Rochester, Minnesota. The study focus was primary care medical home patients in 2010 and 2011 (n = 84,752), with the primary outcome of subsequent hospitalization or ED visit. A total of 42,384 individuals derived the enhanced risk-prediction model and 42,368 individuals validated the model. Predictors included Adjusted Clinical Groups-based Minnesota medical tiering, patient demographics, insurance status, and prior year healthcare utilization. Additional variables included specific mental and medical conditions, use of high-risk medications, and body mass index. The area under the curve in the enhanced model was 0.705 (95% CI, 0.698-0.712) compared with 0.662 (95% CI, 0.656-0.669) in the Minnesota medical tiering-only model. New high-risk patients in the enhanced model were more likely to have lack of health insurance, presence of Medicaid, diagnosed depression, and prior ED utilization. An enhanced model including additional healthcare-related factors improved the prediction of risk of hospitalization or ED visit.

  6. Predicting the Risk of Attrition for Undergraduate Students with Time Based Modelling

    Science.gov (United States)

    Chai, Kevin E. K.; Gibson, David

    2015-01-01

    Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist…

  7. A simple model for prediction postpartum PTSD in high-risk pregnancies.

    Science.gov (United States)

    Shlomi Polachek, Inbal; Dulitzky, Mordechai; Margolis-Dorfman, Lilia; Simchen, Michal J

    2016-06-01

    This study aimed to examine the prevalence and possible antepartum risk factors of complete and partial post-traumatic stress disorder (PTSD) among women with complicated pregnancies and to define a predictive model for postpartum PTSD in this population. Women attending the high-risk pregnancy outpatient clinics at Sheba Medical Center completed the Edinburgh Postnatal Depression Scale (EPDS) and a questionnaire regarding demographic variables, history of psychological and psychiatric treatment, previous trauma, previous childbirth, current pregnancy medical and emotional complications, fears from childbirth, and expected pain. One month after delivery, women were requested to repeat the EPDS and complete the Post-traumatic Stress Diagnostic Scale (PDS) via telephone interview. The prevalence rates of postpartum PTSD (9.9 %) and partial PTSD (11.9 %) were relatively high. PTSD and partial PTSD were associated with sadness or anxiety during past pregnancy or childbirth, previous very difficult birth experiences, preference for cesarean section in future childbirth, emotional crises during pregnancy, increased fear of childbirth, higher expected intensity of pain, and depression during pregnancy. We created a prediction model for postpartum PTSD which shows a linear growth in the probability for developing postpartum PTSD when summing these seven antenatal risk factors. Postpartum PTSD is extremely prevalent after complicated pregnancies. A simple questionnaire may aid in identifying at-risk women before childbirth. This presents a potential for preventing or minimizing postpartum PTSD in this population.

  8. Predictive Accuracy of the PanCan Lung Cancer Risk Prediction Model -External Validation based on CT from the Danish Lung Cancer Screening Trial

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde M.; van Riel, Sarah J.; Saghir, Zaigham

    2015-01-01

    Objectives: Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. Methods: From...... the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were...... used to evaluate risk discrimination. Results: AUCs of 0.826–0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer...

  9. External validation of models predicting the individual risk of metachronous peritoneal carcinomatosis from colon and rectal cancer.

    Science.gov (United States)

    Segelman, J; Akre, O; Gustafsson, U O; Bottai, M; Martling, A

    2016-04-01

    To externally validate previously published predictive models of the risk of developing metachronous peritoneal carcinomatosis (PC) after resection of nonmetastatic colon or rectal cancer and to update the predictive model for colon cancer by adding new prognostic predictors. Data from all patients with Stage I-III colorectal cancer identified from a population-based database in Stockholm between 2008 and 2010 were used. We assessed the concordance between the predicted and observed probabilities of PC and utilized proportional-hazard regression to update the predictive model for colon cancer. When applied to the new validation dataset (n = 2011), the colon and rectal cancer risk-score models predicted metachronous PC with a concordance index of 79% and 67%, respectively. After adding the subclasses of pT3 and pT4 stage and mucinous tumour to the colon cancer model, the concordance index increased to 82%. In validation of external and recent cohorts, the predictive accuracy was strong in colon cancer and moderate in rectal cancer patients. The model can be used to identify high-risk patients for planned second-look laparoscopy/laparotomy for possible subsequent cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  10. Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups

    OpenAIRE

    Marschollek, Michael; Gövercin, Mehmet; Rust, Stefan; Gietzelt, Matthias; Schulze, Mareike; Wolf, Klaus-Hendrik; Steinhagen-Thiessen, Elisabeth

    2012-01-01

    Abstract Background Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2). Methods A ...

  11. Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening.

    Science.gov (United States)

    Katki, Hormuzd A; Kovalchik, Stephanie A; Petito, Lucia C; Cheung, Li C; Jacobs, Eric; Jemal, Ahmedin; Berg, Christine D; Chaturvedi, Anil K

    2018-05-15

    Lung cancer screening guidelines recommend using individualized risk models to refer ever-smokers for screening. However, different models select different screening populations. The performance of each model in selecting ever-smokers for screening is unknown. To compare the U.S. screening populations selected by 9 lung cancer risk models (the Bach model; the Spitz model; the Liverpool Lung Project [LLP] model; the LLP Incidence Risk Model [LLPi]; the Hoggart model; the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012 [PLCOM2012]; the Pittsburgh Predictor; the Lung Cancer Risk Assessment Tool [LCRAT]; and the Lung Cancer Death Risk Assessment Tool [LCDRAT]) and to examine their predictive performance in 2 cohorts. Population-based prospective studies. United States. Models selected U.S. screening populations by using data from the National Health Interview Survey from 2010 to 2012. Model performance was evaluated using data from 337 388 ever-smokers in the National Institutes of Health-AARP Diet and Health Study and 72 338 ever-smokers in the CPS-II (Cancer Prevention Study II) Nutrition Survey cohort. Model calibration (ratio of model-predicted to observed cases [expected-observed ratio]) and discrimination (area under the curve [AUC]). At a 5-year risk threshold of 2.0%, the models chose U.S. screening populations ranging from 7.6 million to 26 million ever-smokers. These disagreements occurred because, in both validation cohorts, 4 models (the Bach model, PLCOM2012, LCRAT, and LCDRAT) were well-calibrated (expected-observed ratio range, 0.92 to 1.12) and had higher AUCs (range, 0.75 to 0.79) than 5 models that generally overestimated risk (expected-observed ratio range, 0.83 to 3.69) and had lower AUCs (range, 0.62 to 0.75). The 4 best-performing models also had the highest sensitivity at a fixed specificity (and vice versa) and similar discrimination at a fixed risk threshold. These models showed better agreement on size of the

  12. A decision model to predict the risk of the first fall onset.

    Science.gov (United States)

    Deschamps, Thibault; Le Goff, Camille G; Berrut, Gilles; Cornu, Christophe; Mignardot, Jean-Baptiste

    2016-08-01

    Miscellaneous features from various domains are accepted to be associated with the risk of falling in the elderly. However, only few studies have focused on establishing clinical tools to predict the risk of the first fall onset. A model that would objectively and easily evaluate the risk of a first fall occurrence in the coming year still needs to be built. We developed a model based on machine learning, which might help the medical staff predict the risk of the first fall onset in a one-year time window. Overall, 426 older adults who had never fallen were assessed on 73 variables, comprising medical, social and physical outcomes, at t0. Each fall was recorded at a prospective 1-year follow-up. A decision tree was built on a randomly selected training subset of the cohort (80% of the full-set) and validated on an independent test set. 82 participants experienced a first fall during the follow-up. The machine learning process independently extracted 13 powerful parameters and built a model showing 89% of accuracy for the overall classification with 83%-82% of true positive fallers and 96%-61% of true negative non-fallers (training set vs. independent test set). This study provides a pilot tool that could easily help the gerontologists refine the evaluation of the risk of the first fall onset and prioritize the effective prevention strategies. The study also offers a transparent framework for future, related investigation that would validate the clinical relevance of the established model by independently testing its accuracy on larger cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Risk prediction models for mortality in patients with ventilator-associated pneumonia

    DEFF Research Database (Denmark)

    Larsson, Johan E; Itenov, Theis Skovsgaard; Bestle, Morten Heiberg

    2017-01-01

    the receiver operator characteristic curve (AUC). RESULTS: We identified 19 articles studying 7 different models' ability to predict mortality in VAP patients. The models were Acute Physiology and Chronic Health Evaluation (APACHE) II (9 studies, n = 1398); Clinical Pulmonary Infection Score (4 studies, n...... = 303); "Immunodeficiency, Blood pressure, Multilobular infiltrates on chest radiograph, Platelets and hospitalization 10 days before onset of VAP" (3 studies, n = 406); "VAP Predisposition, Insult Response and Organ dysfunction" (2 studies, n = 589); Sequential Organ Failure Assessment (7 studies, n......: The PubMed and EMBASE were searched in February 2016. We included studies in English that evaluated models' ability to predict the risk of mortality in patients with VAP. The reported mortality with the longest follow-up was used in the meta-analysis. Prognostic accuracy was measured with the area under...

  14. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    Science.gov (United States)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  15. A clinical prediction model to assess the risk of operative delivery

    NARCIS (Netherlands)

    Schuit, E.; Kwee, A.; Westerhuis, M. E. M. H.; van Dessel, H. J. H. M.; Graziosi, G. C. M.; van Lith, J. M. M.; Nijhuis, J. G.; Oei, S. G.; Oosterbaan, H. P.; Schuitemaker, N. W. E.; Wouters, M. G. A. J.; Visser, G. H. A.; Mol, B. W. J.; Moons, K. G. M.; Groenwold, R. H. H.

    2012-01-01

    Please cite this paper as: Schuit E, Kwee A, Westerhuis M, Van Dessel H, Graziosi G, Van Lith J, Nijhuis J, Oei S, Oosterbaan H, Schuitemaker N, Wouters M, Visser G, Mol B, Moons K, Groenwold R. A clinical prediction model to assess the risk of operative delivery. BJOG 2012;119:915923. Objective To

  16. A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine

    International Nuclear Information System (INIS)

    Zhou, Zhifang; Xiao, Tian; Chen, Xiaohong; Wang, Chang

    2016-01-01

    Chinese heavy-polluting industrial enterprises, especially petrochemical or chemical industry, labeled low carbon efficiency and high emission load, are facing the tremendous pressure of emission reduction under the background of global shortage of energy supply and constrain of carbon emission. However, due to the limited amount of theoretic and practical research in this field, problems like lacking prediction indicators or models, and the quantified standard of carbon risk remain unsolved. In this paper, the connotation of carbon risk and an assessment index system for Chinese heavy-polluting industrial enterprises (eg. coal enterprise, petrochemical enterprises, chemical enterprises et al.) based on support vector machine are presented. By using several heavy-polluting industrial enterprises’ related data, SVM model is trained to predict the carbon risk level of a specific enterprise, which allows the enterprise to identify and manage its carbon risks. The result shows that this method can predict enterprise’s carbon risk level in an efficient, accurate way with high practical application and generalization value.

  17. Predicting the 6-month risk of severe hypoglycemia among adults with diabetes: Development and external validation of a prediction model.

    Science.gov (United States)

    Schroeder, Emily B; Xu, Stan; Goodrich, Glenn K; Nichols, Gregory A; O'Connor, Patrick J; Steiner, John F

    2017-07-01

    To develop and externally validate a prediction model for the 6-month risk of a severe hypoglycemic event among individuals with pharmacologically treated diabetes. The development cohort consisted of 31,674 Kaiser Permanente Colorado members with pharmacologically treated diabetes (2007-2015). The validation cohorts consisted of 38,764 Kaiser Permanente Northwest members and 12,035 HealthPartners members. Variables were chosen that would be available in electronic health records. We developed 16-variable and 6-variable models, using a Cox counting model process that allows for the inclusion of multiple 6-month observation periods per person. Across the three cohorts, there were 850,992 6-month observation periods, and 10,448 periods with at least one severe hypoglycemic event. The six-variable model contained age, diabetes type, HgbA1c, eGFR, history of a hypoglycemic event in the prior year, and insulin use. Both prediction models performed well, with good calibration and c-statistics of 0.84 and 0.81 for the 16-variable and 6-variable models, respectively. In the external validation cohorts, the c-statistics were 0.80-0.84. We developed and validated two prediction models for predicting the 6-month risk of hypoglycemia. The 16-variable model had slightly better performance than the 6-variable model, but in some practice settings, use of the simpler model may be preferred. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Risk predicting of macropore flow using pedotransfer functions, textural maps and modeling

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Børgesen, Christen Duus; Lægdsmand, Mette

    2011-01-01

    of this study were first to develop pedotransfer functions (PTFs) predicting near-saturated [k(−1)] and saturated (Ks) hydraulic conductivity using simple soil parameters as predictors and second to use this information and a newly developed rasterbased soil property map of Denmark to identify risk areas...... modeling were used to construct a new map dividing Denmark into risk categories for macropore flow. This map can be combined with other tools to identify areas where there is a high risk of contaminants leaching out of the root zone....

  19. [Application of Competing Risks Model in Predicting Smoking Relapse Following Ischemic Stroke].

    Science.gov (United States)

    Hou, Li-Sha; Li, Ji-Jie; Du, Xu-Dong; Yan, Pei-Jing; Zhu, Cai-Rong

    2017-07-01

    To determine factors associated with smoking relapse in men who survived from their first stroke. Data were collected through face to face interviews with stroke patients in the hospital, and then repeated every three months via telephone over the period from 2010 to 2014. Kaplan-Meier method and competing risk model were adopted to estimate and predict smoking relapse rates. The Kaplan-Meier method estimated a higher relapse rate than the competing risk model. The four-year relapse rate was 43.1% after adjustment of competing risk. Exposure to environmental tobacco smoking outside of home and workplace (such as bars and restaurants) ( P =0.01), single ( P <0.01), and prior history of smoking at least 20 cigarettes per day ( P =0.02) were significant predictors of smoking relapse. When competing risks exist, competing risks model should be used in data analyses. Smoking interventions should give priorities to those without a spouse and those with a heavy smoking history. Smoking ban in public settings can reduce smoking relapse in stroke patients.

  20. Cardiovascular disease risk score prediction models for women and its applicability to Asians

    Directory of Open Access Journals (Sweden)

    Goh LGH

    2014-03-01

    Full Text Available Louise GH Goh,1 Satvinder S Dhaliwal,1 Timothy A Welborn,2 Peter L Thompson,2–4 Bruce R Maycock,1 Deborah A Kerr,1 Andy H Lee,1 Dean Bertolatti,1 Karin M Clark,1 Rakhshanda Naheed,1 Ranil Coorey,1 Phillip R Della5 1School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia; 2Sir Charles Gairdner Hospital, Nedlands, Perth, WA, Australia; 3School of Population Health, University of Western Australia, Perth, WA, Australia; 4Harry Perkins Institute for Medical Research, Perth, WA, Australia; 5School of Nursing and Midwifery, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia Purpose: Although elevated cardiovascular disease (CVD risk factors are associated with a higher risk of developing heart conditions across all ethnic groups, variations exist between groups in the distribution and association of risk factors, and also risk levels. This study assessed the 10-year predicted risk in a multiethnic cohort of women and compared the differences in risk between Asian and Caucasian women. Methods: Information on demographics, medical conditions and treatment, smoking behavior, dietary behavior, and exercise patterns were collected. Physical measurements were also taken. The 10-year risk was calculated using the Framingham model, SCORE (Systematic COronary Risk Evaluation risk chart for low risk and high risk regions, the general CVD, and simplified general CVD risk score models in 4,354 females aged 20–69 years with no heart disease, diabetes, or stroke at baseline from the third Australian Risk Factor Prevalence Study. Country of birth was used as a surrogate for ethnicity. Nonparametric statistics were used to compare risk levels between ethnic groups. Results: Asian women generally had lower risk of CVD when compared to Caucasian women. The 10-year predicted risk was, however, similar between Asian and Australian women, for some models. These findings were

  1. Combined prediction model for supply risk in nuclear power equipment manufacturing industry based on support vector machine and decision tree

    International Nuclear Information System (INIS)

    Shi Chunsheng; Meng Dapeng

    2011-01-01

    The prediction index for supply risk is developed based on the factor identifying of nuclear equipment manufacturing industry. The supply risk prediction model is established with the method of support vector machine and decision tree, based on the investigation on 3 important nuclear power equipment manufacturing enterprises and 60 suppliers. Final case study demonstrates that the combination model is better than the single prediction model, and demonstrates the feasibility and reliability of this model, which provides a method to evaluate the suppliers and measure the supply risk. (authors)

  2. Validation of a new mortality risk prediction model for people 65 years and older in northwest Russia: The Crystal risk score.

    Science.gov (United States)

    Turusheva, Anna; Frolova, Elena; Bert, Vaes; Hegendoerfer, Eralda; Degryse, Jean-Marie

    2017-07-01

    Prediction models help to make decisions about further management in clinical practice. This study aims to develop a mortality risk score based on previously identified risk predictors and to perform internal and external validations. In a population-based prospective cohort study of 611 community-dwelling individuals aged 65+ in St. Petersburg (Russia), all-cause mortality risks over 2.5 years follow-up were determined based on the results obtained from anthropometry, medical history, physical performance tests, spirometry and laboratory tests. C-statistic, risk reclassification analysis, integrated discrimination improvement analysis, decision curves analysis, internal validation and external validation were performed. Older adults were at higher risk for mortality [HR (95%CI)=4.54 (3.73-5.52)] when two or more of the following components were present: poor physical performance, low muscle mass, poor lung function, and anemia. If anemia was combined with high C-reactive protein (CRP) and high B-type natriuretic peptide (BNP) was added the HR (95%CI) was slightly higher (5.81 (4.73-7.14)) even after adjusting for age, sex and comorbidities. Our models were validated in an external population of adults 80+. The extended model had a better predictive capacity for cardiovascular mortality [HR (95%CI)=5.05 (2.23-11.44)] compared to the baseline model [HR (95%CI)=2.17 (1.18-4.00)] in the external population. We developed and validated a new risk prediction score that may be used to identify older adults at higher risk for mortality in Russia. Additional studies need to determine which targeted interventions improve the outcomes of these at-risk individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prediction Model of Collapse Risk Based on Information Entropy and Distance Discriminant Analysis Method

    Directory of Open Access Journals (Sweden)

    Hujun He

    2017-01-01

    Full Text Available The prediction and risk classification of collapse is an important issue in the process of highway construction in mountainous regions. Based on the principles of information entropy and Mahalanobis distance discriminant analysis, we have produced a collapse hazard prediction model. We used the entropy measure method to reduce the influence indexes of the collapse activity and extracted the nine main indexes affecting collapse activity as the discriminant factors of the distance discriminant analysis model (i.e., slope shape, aspect, gradient, and height, along with exposure of the structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate, and degree of rock weathering. We employ postearthquake collapse data in relation to construction of the Yingxiu-Wolong highway, Hanchuan County, China, as training samples for analysis. The results were analyzed using the back substitution estimation method, showing high accuracy and no errors, and were the same as the prediction result of uncertainty measure. Results show that the classification model based on information entropy and distance discriminant analysis achieves the purpose of index optimization and has excellent performance, high prediction accuracy, and a zero false-positive rate. The model can be used as a tool for future evaluation of collapse risk.

  4. Linking spring phenology with mechanistic models of host movement to predict disease transmission risk

    Science.gov (United States)

    Merkle, Jerod A.; Cross, Paul C.; Scurlock, Brandon M.; Cole, Eric K.; Courtemanch, Alyson B.; Dewey, Sarah R.; Kauffman, Matthew J.

    2018-01-01

    Disease models typically focus on temporal dynamics of infection, while often neglecting environmental processes that determine host movement. In many systems, however, temporal disease dynamics may be slow compared to the scale at which environmental conditions alter host space-use and accelerate disease transmission.Using a mechanistic movement modelling approach, we made space-use predictions of a mobile host (elk [Cervus Canadensis] carrying the bacterial disease brucellosis) under environmental conditions that change daily and annually (e.g., plant phenology, snow depth), and we used these predictions to infer how spring phenology influences the risk of brucellosis transmission from elk (through aborted foetuses) to livestock in the Greater Yellowstone Ecosystem.Using data from 288 female elk monitored with GPS collars, we fit step selection functions (SSFs) during the spring abortion season and then implemented a master equation approach to translate SSFs into predictions of daily elk distribution for five plausible winter weather scenarios (from a heavy snow, to an extreme winter drought year). We predicted abortion events by combining elk distributions with empirical estimates of daily abortion rates, spatially varying elk seroprevelance and elk population counts.Our results reveal strong spatial variation in disease transmission risk at daily and annual scales that is strongly governed by variation in host movement in response to spring phenology. For example, in comparison with an average snow year, years with early snowmelt are predicted to have 64% of the abortions occurring on feedgrounds shift to occurring on mainly public lands, and to a lesser extent on private lands.Synthesis and applications. Linking mechanistic models of host movement with disease dynamics leads to a novel bridge between movement and disease ecology. Our analysis framework offers new avenues for predicting disease spread, while providing managers tools to proactively mitigate

  5. Predictive accuracy of the PanCan lung cancer risk prediction model - external validation based on CT from the Danish Lung Cancer Screening Trial

    International Nuclear Information System (INIS)

    Winkler Wille, Mathilde M.; Dirksen, Asger; Riel, Sarah J. van; Jacobs, Colin; Scholten, Ernst T.; Ginneken, Bram van; Saghir, Zaigham; Pedersen, Jesper Holst; Hohwue Thomsen, Laura; Skovgaard, Lene T.

    2015-01-01

    Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. From the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were used to evaluate risk discrimination. AUCs of 0.826-0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer; in fact opposing effects of sex were observed in the two cohorts. Thus, female sex appeared to lower the risk (p = 0.047 and p = 0.040) in the DLCST. High risk discrimination was validated in the DLCST cohort, mainly determined by nodule size. Age and family history of lung cancer were significant predictors and could be included in the parsimonious model. Sex appears to be a less useful predictor. (orig.)

  6. Predictive accuracy of the PanCan lung cancer risk prediction model - external validation based on CT from the Danish Lung Cancer Screening Trial

    Energy Technology Data Exchange (ETDEWEB)

    Winkler Wille, Mathilde M.; Dirksen, Asger [Gentofte Hospital, Department of Respiratory Medicine, Hellerup (Denmark); Riel, Sarah J. van; Jacobs, Colin; Scholten, Ernst T.; Ginneken, Bram van [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Saghir, Zaigham [Herlev Hospital, Department of Respiratory Medicine, Herlev (Denmark); Pedersen, Jesper Holst [Copenhagen University Hospital, Department of Thoracic Surgery, Rigshospitalet, Koebenhavn Oe (Denmark); Hohwue Thomsen, Laura [Hvidovre Hospital, Department of Respiratory Medicine, Hvidovre (Denmark); Skovgaard, Lene T. [University of Copenhagen, Department of Biostatistics, Koebenhavn Oe (Denmark)

    2015-10-15

    Lung cancer risk models should be externally validated to test generalizability and clinical usefulness. The Danish Lung Cancer Screening Trial (DLCST) is a population-based prospective cohort study, used to assess the discriminative performances of the PanCan models. From the DLCST database, 1,152 nodules from 718 participants were included. Parsimonious and full PanCan risk prediction models were applied to DLCST data, and also coefficients of the model were recalculated using DLCST data. Receiver operating characteristics (ROC) curves and area under the curve (AUC) were used to evaluate risk discrimination. AUCs of 0.826-0.870 were found for DLCST data based on PanCan risk prediction models. In the DLCST, age and family history were significant predictors (p = 0.001 and p = 0.013). Female sex was not confirmed to be associated with higher risk of lung cancer; in fact opposing effects of sex were observed in the two cohorts. Thus, female sex appeared to lower the risk (p = 0.047 and p = 0.040) in the DLCST. High risk discrimination was validated in the DLCST cohort, mainly determined by nodule size. Age and family history of lung cancer were significant predictors and could be included in the parsimonious model. Sex appears to be a less useful predictor. (orig.)

  7. Predicting Young Adults Binge Drinking in Nightlife Scenes: An Evaluation of the D-ARIANNA Risk Estimation Model.

    Science.gov (United States)

    Crocamo, Cristina; Bartoli, Francesco; Montomoli, Cristina; Carrà, Giuseppe

    2018-05-25

    Binge drinking (BD) among young people has significant public health implications. Thus, there is the need to target users most at risk. We estimated the discriminative accuracy of an innovative model nested in a recently developed e-Health app (Digital-Alcohol RIsk Alertness Notifying Network for Adolescents and young adults [D-ARIANNA]) for BD in young people, examining its performance to predict short-term BD episodes. We consecutively recruited young adults in pubs, discos, or live music events. Participants self-administered the app D-ARIANNA, which incorporates an evidence-based risk estimation model for the dependent variable BD. They were re-evaluated after 2 weeks using a single-item BD behavior as reference. We estimated D-ARIANNA discriminative ability through measures of sensitivity and specificity, and also likelihood ratios. ROC curve analyses were carried out, exploring variability of discriminative ability across subgroups. The analyses included 507 subjects, of whom 18% reported at least 1 BD episode at follow-up. The majority of these had been identified as at high/moderate or high risk (65%) at induction. Higher scores from the D-ARIANNA risk estimation model reflected an increase in the likelihood of BD. Additional risk factors such as high pocket money availability and alcohol expectancies influence the predictive ability of the model. The D-ARIANNA model showed an appreciable, though modest, predictive ability for subsequent BD episodes. Post-hoc model showed slightly better predictive properties. Using up-to-date technology, D-ARIANNA appears an innovative and promising screening tool for BD among young people. Long-term impact remains to be established, and also the role of additional social and environmental factors.

  8. Identification of the high risk emergency surgical patient: Which risk prediction model should be used?

    Science.gov (United States)

    Stonelake, Stephen; Thomson, Peter; Suggett, Nigel

    2015-09-01

    National guidance states that all patients having emergency surgery should have a mortality risk assessment calculated on admission so that the 'high risk' patient can receive the appropriate seniority and level of care. We aimed to assess if peri-operative risk scoring tools could accurately calculate mortality and morbidity risk. Mortality risk scores for 86 consecutive emergency laparotomies, were calculated using pre-operative (ASA, Lee index) and post-operative (POSSUM, P-POSSUM and CR-POSSUM) risk calculation tools. Morbidity risk scores were calculated using the POSSUM predicted morbidity and compared against actual morbidity according to the Clavien-Dindo classification. The actual mortality was 10.5%. The average predicted risk scores for all laparotomies were: ASA 26.5%, Lee Index 2.5%, POSSUM 29.5%, P-POSSUM 18.5%, CR-POSSUM 10.5%. Complications occurred following 67 laparotomies (78%). The majority (51%) of complications were classified as Clavien-Dindo grade 2-3 (non-life-threatening). Patients having a POSSUM morbidity risk of greater than 50% developed significantly more life-threatening complications (CD 4-5) compared with those who predicted less than or equal to 50% morbidity risk (P = 0.01). Pre-operative risk stratification remains a challenge because the Lee Index under-predicts and ASA over-predicts mortality risk. Post-operative risk scoring using the CR-POSSUM is more accurate and we suggest can be used to identify patients who require intensive care post-operatively. In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the 'high-risk' patient.

  9. Handling Uncertainty in Social Lending Credit Risk Prediction with a Choquet Fuzzy Integral Model

    OpenAIRE

    Namvar, Anahita; Naderpour, Mohsen

    2018-01-01

    As one of the main business models in the financial technology field, peer-to-peer (P2P) lending has disrupted traditional financial services by providing an online platform for lending money that has remarkably reduced financial costs. However, the inherent uncertainty in P2P loans can result in huge financial losses for P2P platforms. Therefore, accurate risk prediction is critical to the success of P2P lending platforms. Indeed, even a small improvement in credit risk prediction would be o...

  10. Quantifying prognosis with risk predictions.

    Science.gov (United States)

    Pace, Nathan L; Eberhart, Leopold H J; Kranke, Peter R

    2012-01-01

    Prognosis is a forecast, based on present observations in a patient, of their probable outcome from disease, surgery and so on. Research methods for the development of risk probabilities may not be familiar to some anaesthesiologists. We briefly describe methods for identifying risk factors and risk scores. A probability prediction rule assigns a risk probability to a patient for the occurrence of a specific event. Probability reflects the continuum between absolute certainty (Pi = 1) and certified impossibility (Pi = 0). Biomarkers and clinical covariates that modify risk are known as risk factors. The Pi as modified by risk factors can be estimated by identifying the risk factors and their weighting; these are usually obtained by stepwise logistic regression. The accuracy of probabilistic predictors can be separated into the concepts of 'overall performance', 'discrimination' and 'calibration'. Overall performance is the mathematical distance between predictions and outcomes. Discrimination is the ability of the predictor to rank order observations with different outcomes. Calibration is the correctness of prediction probabilities on an absolute scale. Statistical methods include the Brier score, coefficient of determination (Nagelkerke R2), C-statistic and regression calibration. External validation is the comparison of the actual outcomes to the predicted outcomes in a new and independent patient sample. External validation uses the statistical methods of overall performance, discrimination and calibration and is uniformly recommended before acceptance of the prediction model. Evidence from randomised controlled clinical trials should be obtained to show the effectiveness of risk scores for altering patient management and patient outcomes.

  11. Predictive Accuracy of a Cardiovascular Disease Risk Prediction Model in Rural South India – A Community Based Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Farah N Fathima

    2015-03-01

    Full Text Available Background: Identification of individuals at risk of developing cardiovascular diseases by risk stratification is the first step in primary prevention. Aims & Objectives: To assess the five year risk of developing a cardiovascular event from retrospective data and to assess the predictive accuracy of the non laboratory based National Health and Nutrition Examination Survey (NHANES risk prediction model among individuals in a rural South Indian population. Materials & Methods: A community based retrospective cohort study was conducted in three villages where risk stratification was done for all eligible adults aged between 35-74 years at the time of initial assessment using the NHANES risk prediction charts. Household visits were made after a period of five years by trained doctors to determine cardiovascular outcomes. Results: 521 people fulfilled the eligibility criteria of whom 486 (93.3% could be traced after five years. 56.8% were in low risk, 36.6% were in moderate risk and 6.6% were in high risk categories. 29 persons (5.97% had had cardiovascular events over the last five years of which 24 events (82.7% were nonfatal and five (17.25% were fatal. The mean age of the people who developed cardiovascular events was 57.24 ± 9.09 years. The odds ratios for the three levels of risk showed a linear trend with the odds ratios for the moderate risk and high risk category being 1.35 and 1.94 respectively with the low risk category as baseline. Conclusion: The non laboratory based NHANES charts did not accurately predict the occurrence of cardiovascular events in any of the risk categories.

  12. Comparison of three lifecourse models of poverty in predicting cardiovascular disease risk in youth.

    Science.gov (United States)

    Kakinami, Lisa; Séguin, Louise; Lambert, Marie; Gauvin, Lise; Nikiema, Béatrice; Paradis, Gilles

    2013-08-01

    Childhood poverty heightens the risk of adulthood cardiovascular disease (CVD), but the underlying pathways are poorly understood. Three lifecourse models have been proposed but have never been tested among youth. We assessed the longitudinal association of childhood poverty with CVD risk factors in 10-year-old youth according to the timing, accumulation, and mobility models. The Québec Longitudinal Study of Child Development birth cohort was established in 1998 (n = 2120). Poverty was defined as annual income below the low-income thresholds defined by Statistics Canada. Multiple imputation was used for missing data. Multivariable linear regression models adjusted for gender, pubertal stage, parental education, maternal age, whether the household was a single parent household, whether the child was overweight or obese, the child's physical activity in the past week, and family history. Approximately 40% experienced poverty at least once, 16% throughout childhood, and 25% intermittently. Poverty was associated with significantly elevated triglycerides and insulin according to the timing and accumulation models, although the timing model was superior for predicting insulin and the accumulation model was superior for predicting triglycerides. Early and prolonged exposure to poverty significantly increases CVD risk among 10-year-old youth. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    Science.gov (United States)

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  14. Incidence of atrial fibrillation and its risk prediction model based on a prospective urban Han Chinese cohort.

    Science.gov (United States)

    Ding, L; Li, J; Wang, C; Li, X; Su, Q; Zhang, G; Xue, F

    2017-09-01

    Prediction models of atrial fibrillation (AF) have been developed; however, there was no AF prediction model validated in Chinese population. Therefore, we aimed to investigate the incidence of AF in urban Han Chinese health check-up population, as well as to develop AF prediction models using behavioral, anthropometric, biochemical, electrocardiogram (ECG) markers, as well as visit-to-visit variability (VVV) in blood pressures available in the routine health check-up. A total of 33 186 participants aged 45-85 years and free of AF at baseline were included in this cohort, to follow up for incident AF with an annually routine health check-up. Cox regression models were used to develop AF prediction model and 10-fold cross-validation was used to test the discriminatory accuracy of prediction model. We developed three prediction models, with age, sex, history of coronary heart disease (CHD), hypertension as predictors for simple model, with left high-amplitude waves, premature beats added for ECG model, and with age, sex, history of CHD and VVV in systolic and diabolic blood pressures as predictors for VVV model, to estimate risk of incident AF. The calibration of our models ranged from 1.001 to 1.004 (P for Hosmer Lemeshow test >0.05). The area under receiver operator characteristics curve were 78%, 80% and 82%, respectively, for predicting risk of AF. In conclusion, we have identified predictors of incident AF and developed prediction models for AF with variables readily available in routine health check-up.

  15. Predictive risk modelling in the Spanish population: a cross-sectional study.

    Science.gov (United States)

    Orueta, Juan F; Nuño-Solinis, Roberto; Mateos, Maider; Vergara, Itziar; Grandes, Gonzalo; Esnaola, Santiago

    2013-07-09

    An increase in chronic conditions is currently the greatest threat to human health and to the sustainability of health systems. Risk adjustment systems may enable population stratification programmes to be developed and become instrumental in implementing new models of care.The objectives of this study are to evaluate the capability of ACG-PM, DCG-HCC and CRG-based models to predict healthcare costs and identify patients that will be high consumers and to analyse changes to predictive capacity when socio-economic variables are added. This cross-sectional study used data of all Basque Country citizens over 14 years of age (n = 1,964,337) collected in a period of 2 years. Data from the first 12 months (age, sex, area deprivation index, diagnoses, procedures, prescriptions and previous cost) were used to construct the explanatory variables. The ability of models to predict healthcare costs in the following 12 months was assessed using the coefficient of determination and to identify the patients with highest costs by means of receiver operating characteristic (ROC) curve analysis. The coefficients of determination ranged from 0.18 to 0.21 for diagnosis-based models, 0.17-0.18 for prescription-based and 0.21-0.24 for the combination of both. The observed area under the ROC curve was 0.78-0.86 (identifying patients with a cost higher than P-95) and 0.83-0.90 (P-99). The values of the DCG-HCC models are slightly higher and those of the CRG models are lower, although prescription information could not be used in the latter. On adding previous cost data, differences between the three systems decrease appreciably. Inclusion of the deprivation index led to only marginal improvements in explanatory power. The case-mix systems developed in the USA can be useful in a publicly financed healthcare system with universal coverage to identify people at risk of high health resource consumption and whose situation is potentially preventable through proactive interventions.

  16. Long-Term Survival Prediction for Coronary Artery Bypass Grafting: Validation of the ASCERT Model Compared With The Society of Thoracic Surgeons Predicted Risk of Mortality.

    Science.gov (United States)

    Lancaster, Timothy S; Schill, Matthew R; Greenberg, Jason W; Ruaengsri, Chawannuch; Schuessler, Richard B; Lawton, Jennifer S; Maniar, Hersh S; Pasque, Michael K; Moon, Marc R; Damiano, Ralph J; Melby, Spencer J

    2018-05-01

    The recently developed American College of Cardiology Foundation-Society of Thoracic Surgeons (STS) Collaboration on the Comparative Effectiveness of Revascularization Strategy (ASCERT) Long-Term Survival Probability Calculator is a valuable addition to existing short-term risk-prediction tools for cardiac surgical procedures but has yet to be externally validated. Institutional data of 654 patients aged 65 years or older undergoing isolated coronary artery bypass grafting between 2005 and 2010 were reviewed. Predicted survival probabilities were calculated using the ASCERT model. Survival data were collected using the Social Security Death Index and institutional medical records. Model calibration and discrimination were assessed for the overall sample and for risk-stratified subgroups based on (1) ASCERT 7-year survival probability and (2) the predicted risk of mortality (PROM) from the STS Short-Term Risk Calculator. Logistic regression analysis was performed to evaluate additional perioperative variables contributing to death. Overall survival was 92.1% (569 of 597) at 1 year and 50.5% (164 of 325) at 7 years. Calibration assessment found no significant differences between predicted and actual survival curves for the overall sample or for the risk-stratified subgroups, whether stratified by predicted 7-year survival or by PROM. Discriminative performance was comparable between the ASCERT and PROM models for 7-year survival prediction (p validated for prediction of long-term survival after coronary artery bypass grafting in all risk groups. The widely used STS PROM performed comparably as a predictor of long-term survival. Both tools provide important information for preoperative decision making and patient counseling about potential outcomes after coronary artery bypass grafting. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Development and validation of a predictive risk model for all-cause mortality in type 2 diabetes.

    Science.gov (United States)

    Robinson, Tom E; Elley, C Raina; Kenealy, Tim; Drury, Paul L

    2015-06-01

    Type 2 diabetes is common and is associated with an approximate 80% increase in the rate of mortality. Management decisions may be assisted by an estimate of the patient's absolute risk of adverse outcomes, including death. This study aimed to derive a predictive risk model for all-cause mortality in type 2 diabetes. We used primary care data from a large national multi-ethnic cohort of patients with type 2 diabetes in New Zealand and linked mortality records to develop a predictive risk model for 5-year risk of mortality. We then validated this model using information from a separate cohort of patients with type 2 diabetes. 26,864 people were included in the development cohort with a median follow up time of 9.1 years. We developed three models initially using demographic information and then progressively more clinical detail. The final model, which also included markers of renal disease, proved to give best prediction of all-cause mortality with a C-statistic of 0.80 in the development cohort and 0.79 in the validation cohort (7610 people) and was well calibrated. Ethnicity was a major factor with hazard ratios of 1.37 for indigenous Maori, 0.41 for East Asian and 0.55 for Indo Asian compared with European (P<0.001). We have developed a model using information usually available in primary care that provides good assessment of patient's risk of death. Results are similar to models previously published from smaller cohorts in other countries and apply to a wider range of patient ethnic groups. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Scientific reporting is suboptimal for aspects that characterize genetic risk prediction studies: a review of published articles based on the Genetic RIsk Prediction Studies statement.

    Science.gov (United States)

    Iglesias, Adriana I; Mihaescu, Raluca; Ioannidis, John P A; Khoury, Muin J; Little, Julian; van Duijn, Cornelia M; Janssens, A Cecile J W

    2014-05-01

    Our main objective was to raise awareness of the areas that need improvements in the reporting of genetic risk prediction articles for future publications, based on the Genetic RIsk Prediction Studies (GRIPS) statement. We evaluated studies that developed or validated a prediction model based on multiple DNA variants, using empirical data, and were published in 2010. A data extraction form based on the 25 items of the GRIPS statement was created and piloted. Forty-two studies met our inclusion criteria. Overall, more than half of the evaluated items (34 of 62) were reported in at least 85% of included articles. Seventy-seven percentage of the articles were identified as genetic risk prediction studies through title assessment, but only 31% used the keywords recommended by GRIPS in the title or abstract. Seventy-four percentage mentioned which allele was the risk variant. Overall, only 10% of the articles reported all essential items needed to perform external validation of the risk model. Completeness of reporting in genetic risk prediction studies is adequate for general elements of study design but is suboptimal for several aspects that characterize genetic risk prediction studies such as description of the model construction. Improvements in the transparency of reporting of these aspects would facilitate the identification, replication, and application of genetic risk prediction models. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Relationship of Predicted Risk of Developing Invasive Breast Cancer, as Assessed with Three Models, and Breast Cancer Mortality among Breast Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Mark E Sherman

    Full Text Available Breast cancer risk prediction models are used to plan clinical trials and counsel women; however, relationships of predicted risks of breast cancer incidence and prognosis after breast cancer diagnosis are unknown.Using largely pre-diagnostic information from the Breast Cancer Surveillance Consortium (BCSC for 37,939 invasive breast cancers (1996-2007, we estimated 5-year breast cancer risk (<1%; 1-1.66%; ≥1.67% with three models: BCSC 1-year risk model (BCSC-1; adapted to 5-year predictions; Breast Cancer Risk Assessment Tool (BCRAT; and BCSC 5-year risk model (BCSC-5. Breast cancer-specific mortality post-diagnosis (range: 1-13 years; median: 5.4-5.6 years was related to predicted risk of developing breast cancer using unadjusted Cox proportional hazards models, and in age-stratified (35-44; 45-54; 55-69; 70-89 years models adjusted for continuous age, BCSC registry, calendar period, income, mode of presentation, stage and treatment. Mean age at diagnosis was 60 years.Of 6,021 deaths, 2,993 (49.7% were ascribed to breast cancer. In unadjusted case-only analyses, predicted breast cancer risk ≥1.67% versus <1.0% was associated with lower risk of breast cancer death; BCSC-1: hazard ratio (HR = 0.82 (95% CI = 0.75-0.90; BCRAT: HR = 0.72 (95% CI = 0.65-0.81 and BCSC-5: HR = 0.84 (95% CI = 0.75-0.94. Age-stratified, adjusted models showed similar, although mostly non-significant HRs. Among women ages 55-69 years, HRs approximated 1.0. Generally, higher predicted risk was inversely related to percentages of cancers with unfavorable prognostic characteristics, especially among women 35-44 years.Among cases assessed with three models, higher predicted risk of developing breast cancer was not associated with greater risk of breast cancer death; thus, these models would have limited utility in planning studies to evaluate breast cancer mortality reduction strategies. Further, when offering women counseling, it may be useful to note that high

  20. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  1. Development of a risk prediction model for lung cancer: The Japan Public Health Center-based Prospective Study.

    Science.gov (United States)

    Charvat, Hadrien; Sasazuki, Shizuka; Shimazu, Taichi; Budhathoki, Sanjeev; Inoue, Manami; Iwasaki, Motoki; Sawada, Norie; Yamaji, Taiki; Tsugane, Shoichiro

    2018-03-01

    Although the impact of tobacco consumption on the occurrence of lung cancer is well-established, risk estimation could be improved by risk prediction models that consider various smoking habits, such as quantity, duration, and time since quitting. We constructed a risk prediction model using a population of 59 161 individuals from the Japan Public Health Center (JPHC) Study Cohort II. A parametric survival model was used to assess the impact of age, gender, and smoking-related factors (cumulative smoking intensity measured in pack-years, age at initiation, and time since cessation). Ten-year cumulative probability of lung cancer occurrence estimates were calculated with consideration of the competing risk of death from other causes. Finally, the model was externally validated using 47 501 individuals from JPHC Study Cohort I. A total of 1210 cases of lung cancer occurred during 986 408 person-years of follow-up. We found a dose-dependent effect of tobacco consumption with hazard ratios for current smokers ranging from 3.78 (2.00-7.16) for cumulative consumption ≤15 pack-years to 15.80 (9.67-25.79) for >75 pack-years. Risk decreased with time since cessation. Ten-year cumulative probability of lung cancer occurrence estimates ranged from 0.04% to 11.14% in men and 0.07% to 6.55% in women. The model showed good predictive performance regarding discrimination (cross-validated c-index = 0.793) and calibration (cross-validated χ 2 = 6.60; P-value = .58). The model still showed good discrimination in the external validation population (c-index = 0.772). In conclusion, we developed a prediction model to estimate the probability of developing lung cancer based on age, gender, and tobacco consumption. This model appears useful in encouraging high-risk individuals to quit smoking and undergo increased surveillance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Simple Decision-Analytic Functions of the AUC for Ruling Out a Risk Prediction Model and an Added Predictor.

    Science.gov (United States)

    Baker, Stuart G

    2018-02-01

    When using risk prediction models, an important consideration is weighing performance against the cost (monetary and harms) of ascertaining predictors. The minimum test tradeoff (MTT) for ruling out a model is the minimum number of all-predictor ascertainments per correct prediction to yield a positive overall expected utility. The MTT for ruling out an added predictor is the minimum number of added-predictor ascertainments per correct prediction to yield a positive overall expected utility. An approximation to the MTT for ruling out a model is 1/[P (H(AUC model )], where H(AUC) = AUC - {½ (1-AUC)} ½ , AUC is the area under the receiver operating characteristic (ROC) curve, and P is the probability of the predicted event in the target population. An approximation to the MTT for ruling out an added predictor is 1 /[P {(H(AUC Model:2 ) - H(AUC Model:1 )], where Model 2 includes an added predictor relative to Model 1. The latter approximation requires the Tangent Condition that the true positive rate at the point on the ROC curve with a slope of 1 is larger for Model 2 than Model 1. These approximations are suitable for back-of-the-envelope calculations. For example, in a study predicting the risk of invasive breast cancer, Model 2 adds to the predictors in Model 1 a set of 7 single nucleotide polymorphisms (SNPs). Based on the AUCs and the Tangent Condition, an MTT of 7200 was computed, which indicates that 7200 sets of SNPs are needed for every correct prediction of breast cancer to yield a positive overall expected utility. If ascertaining the SNPs costs $500, this MTT suggests that SNP ascertainment is not likely worthwhile for this risk prediction.

  3. Using Predictive Modelling to Identify Students at Risk of Poor University Outcomes

    Science.gov (United States)

    Jia, Pengfei; Maloney, Tim

    2015-01-01

    Predictive modelling is used to identify students at risk of failing their first-year courses and not returning to university in the second year. Our aim is twofold. Firstly, we want to understand the factors that lead to poor first-year experiences at university. Secondly, we want to develop simple, low-cost tools that would allow universities to…

  4. Predictive model for risk of cesarean section in pregnant women after induction of labor.

    Science.gov (United States)

    Hernández-Martínez, Antonio; Pascual-Pedreño, Ana I; Baño-Garnés, Ana B; Melero-Jiménez, María R; Tenías-Burillo, José M; Molina-Alarcón, Milagros

    2016-03-01

    To develop a predictive model for risk of cesarean section in pregnant women after induction of labor. A retrospective cohort study was conducted of 861 induced labors during 2009, 2010, and 2011 at Hospital "La Mancha-Centro" in Alcázar de San Juan, Spain. Multivariate analysis was used with binary logistic regression and areas under the ROC curves to determine predictive ability. Two predictive models were created: model A predicts the outcome at the time the woman is admitted to the hospital (before the decision to of the method of induction); and model B predicts the outcome at the time the woman is definitely admitted to the labor room. The predictive factors in the final model were: maternal height, body mass index, nulliparity, Bishop score, gestational age, macrosomia, gender of fetus, and the gynecologist's overall cesarean section rate. The predictive ability of model A was 0.77 [95% confidence interval (CI) 0.73-0.80] and model B was 0.79 (95% CI 0.76-0.83). The predictive ability for pregnant women with previous cesarean section with model A was 0.79 (95% CI 0.64-0.94) and with model B was 0.80 (95% CI 0.64-0.96). For a probability of estimated cesarean section ≥80%, the models A and B presented a positive likelihood ratio (+LR) for cesarean section of 22 and 20, respectively. Also, for a likelihood of estimated cesarean section ≤10%, the models A and B presented a +LR for vaginal delivery of 13 and 6, respectively. These predictive models have a good discriminative ability, both overall and for all subgroups studied. This tool can be useful in clinical practice, especially for pregnant women with previous cesarean section and diabetes.

  5. Spatial model for risk prediction and sub-national prioritization to aid poliovirus eradication in Pakistan.

    Science.gov (United States)

    Mercer, Laina D; Safdar, Rana M; Ahmed, Jamal; Mahamud, Abdirahman; Khan, M Muzaffar; Gerber, Sue; O'Leary, Aiden; Ryan, Mike; Salet, Frank; Kroiss, Steve J; Lyons, Hil; Upfill-Brown, Alexander; Chabot-Couture, Guillaume

    2017-10-11

    Pakistan is one of only three countries where poliovirus circulation remains endemic. For the Pakistan Polio Eradication Program, identifying high risk districts is essential to target interventions and allocate limited resources. Using a hierarchical Bayesian framework we developed a spatial Poisson hurdle model to jointly model the probability of one or more paralytic polio cases, and the number of cases that would be detected in the event of an outbreak. Rates of underimmunization, routine immunization, and population immunity, as well as seasonality and a history of cases were used to project future risk of cases. The expected number of cases in each district in a 6-month period was predicted using indicators from the previous 6-months and the estimated coefficients from the model. The model achieves an average of 90% predictive accuracy as measured by area under the receiver operating characteristic (ROC) curve, for the past 3 years of cases. The risk of poliovirus has decreased dramatically in many of the key reservoir areas in Pakistan. The results of this model have been used to prioritize sub-national areas in Pakistan to receive additional immunization activities, additional monitoring, or other special interventions.

  6. Risk prediction of major complications in individuals with diabetes: the Atherosclerosis Risk in Communities Study.

    Science.gov (United States)

    Parrinello, C M; Matsushita, K; Woodward, M; Wagenknecht, L E; Coresh, J; Selvin, E

    2016-09-01

    To develop a prediction equation for 10-year risk of a combined endpoint (incident coronary heart disease, stroke, heart failure, chronic kidney disease, lower extremity hospitalizations) in people with diabetes, using demographic and clinical information, and a panel of traditional and non-traditional biomarkers. We included in the study 654 participants in the Atherosclerosis Risk in Communities (ARIC) study, a prospective cohort study, with diagnosed diabetes (visit 2; 1990-1992). Models included self-reported variables (Model 1), clinical measurements (Model 2), and glycated haemoglobin (Model 3). Model 4 tested the addition of 12 blood-based biomarkers. We compared models using prediction and discrimination statistics. Successive stages of model development improved risk prediction. The C-statistics (95% confidence intervals) of models 1, 2, and 3 were 0.667 (0.64, 0.70), 0.683 (0.65, 0.71), and 0.694 (0.66, 0.72), respectively (p < 0.05 for differences). The addition of three traditional and non-traditional biomarkers [β-2 microglobulin, creatinine-based estimated glomerular filtration rate (eGFR), and cystatin C-based eGFR] to Model 3 significantly improved discrimination (C-statistic = 0.716; p = 0.003) and accuracy of 10-year risk prediction for major complications in people with diabetes (midpoint percentiles of lowest and highest deciles of predicted risk changed from 18-68% to 12-87%). These biomarkers, particularly those of kidney filtration, may help distinguish between people at low versus high risk of long-term major complications. © 2016 John Wiley & Sons Ltd.

  7. A discriminant analysis prediction model of non-syndromic cleft lip with or without cleft palate based on risk factors.

    Science.gov (United States)

    Li, Huixia; Luo, Miyang; Luo, Jiayou; Zheng, Jianfei; Zeng, Rong; Du, Qiyun; Fang, Junqun; Ouyang, Na

    2016-11-23

    A risk prediction model of non-syndromic cleft lip with or without cleft palate (NSCL/P) was established by a discriminant analysis to predict the individual risk of NSCL/P in pregnant women. A hospital-based case-control study was conducted with 113 cases of NSCL/P and 226 controls without NSCL/P. The cases and the controls were obtained from 52 birth defects' surveillance hospitals in Hunan Province, China. A questionnaire was administered in person to collect the variables relevant to NSCL/P by face to face interviews. Logistic regression models were used to analyze the influencing factors of NSCL/P, and a stepwise Fisher discriminant analysis was subsequently used to construct the prediction model. In the univariate analysis, 13 influencing factors were related to NSCL/P, of which the following 8 influencing factors as predictors determined the discriminant prediction model: family income, maternal occupational hazards exposure, premarital medical examination, housing renovation, milk/soymilk intake in the first trimester of pregnancy, paternal occupational hazards exposure, paternal strong tea drinking, and family history of NSCL/P. The model had statistical significance (lambda = 0.772, chi-square = 86.044, df = 8, P Self-verification showed that 83.8 % of the participants were correctly predicted to be NSCL/P cases or controls with a sensitivity of 74.3 % and a specificity of 88.5 %. The area under the receiver operating characteristic curve (AUC) was 0.846. The prediction model that was established using the risk factors of NSCL/P can be useful for predicting the risk of NSCL/P. Further research is needed to improve the model, and confirm the validity and reliability of the model.

  8. Developing a risk prediction model for the functional outcome after hip arthroscopy.

    Science.gov (United States)

    Stephan, Patrick; Röling, Maarten A; Mathijssen, Nina M C; Hannink, Gerjon; Bloem, Rolf M

    2018-04-19

    Hip arthroscopic treatment is not equally beneficial for every patient undergoing this procedure. Therefore, the purpose of this study was to develop a clinical prediction model for functional outcome after surgery based on preoperative factors. Prospective data was collected on a cohort of 205 patients having undergone hip arthroscopy between 2011 and 2015. Demographic and clinical variables and patient reported outcome (PRO) scores were collected, and considered as potential predictors. Successful outcome was defined as either a Hip Outcome Score (HOS)-ADL score of over 80% or improvement of 23%, defined by the minimal clinical important difference, 1 year after surgery. The prediction model was developed using backward logistic regression. Regression coefficients were converted into an easy to use prediction rule. The analysis included 203 patients, of which 74% had a successful outcome. Female gender (OR: 0.37 (95% CI 0.17-0.83); p = 0.02), pincer impingement (OR: 0.47 (95% CI 0.21-1.09); p = 0.08), labral tear (OR: 0.46 (95% CI 0.20-1.06); p = 0.07), HOS-ADL score (IQR OR: 2.01 (95% CI 0.99-4.08); p = 0.05), WHOQOL physical (IQR OR: 0.43 (95% CI 0.22-0.87); p = 0.02) and WHOQOL psychological (IQR OR: 2.40 (95% CI 1.38-4.18); p = prediction model of successful functional outcome 1 year after hip arthroscopy. The model's discriminating accuracy turned out to be fair, as 71% (95% CI: 64-80%) of the patients were classified correctly. The developed prediction model can predict the functional outcome of patients that are considered for a hip arthroscopic intervention, containing six easy accessible preoperative risk factors. The model can be further improved trough external validation and/or adding additional potential predictors.

  9. The potential of large studies for building genetic risk prediction models

    Science.gov (United States)

    NCI scientists have developed a new paradigm to assess hereditary risk prediction in common diseases, such as prostate cancer. This genetic risk prediction concept is based on polygenic analysis—the study of a group of common DNA sequences, known as singl

  10. External validation of Vascular Study Group of New England risk predictive model of mortality after elective abdominal aorta aneurysm repair in the Vascular Quality Initiative and comparison against established models.

    Science.gov (United States)

    Eslami, Mohammad H; Rybin, Denis V; Doros, Gheorghe; Siracuse, Jeffrey J; Farber, Alik

    2018-01-01

    The purpose of this study is to externally validate a recently reported Vascular Study Group of New England (VSGNE) risk predictive model of postoperative mortality after elective abdominal aortic aneurysm (AAA) repair and to compare its predictive ability across different patients' risk categories and against the established risk predictive models using the Vascular Quality Initiative (VQI) AAA sample. The VQI AAA database (2010-2015) was queried for patients who underwent elective AAA repair. The VSGNE cases were excluded from the VQI sample. The external validation of a recently published VSGNE AAA risk predictive model, which includes only preoperative variables (age, gender, history of coronary artery disease, chronic obstructive pulmonary disease, cerebrovascular disease, creatinine levels, and aneurysm size) and planned type of repair, was performed using the VQI elective AAA repair sample. The predictive value of the model was assessed via the C-statistic. Hosmer-Lemeshow method was used to assess calibration and goodness of fit. This model was then compared with the Medicare, Vascular Governance Northwest model, and Glasgow Aneurysm Score for predicting mortality in VQI sample. The Vuong test was performed to compare the model fit between the models. Model discrimination was assessed in different risk group VQI quintiles. Data from 4431 cases from the VSGNE sample with the overall mortality rate of 1.4% was used to develop the model. The internally validated VSGNE model showed a very high discriminating ability in predicting mortality (C = 0.822) and good model fit (Hosmer-Lemeshow P = .309) among the VSGNE elective AAA repair sample. External validation on 16,989 VQI cases with an overall 0.9% mortality rate showed very robust predictive ability of mortality (C = 0.802). Vuong tests yielded a significant fit difference favoring the VSGNE over then Medicare model (C = 0.780), Vascular Governance Northwest (0.774), and Glasgow Aneurysm Score (0

  11. Investigation on Cardiovascular Risk Prediction Using Physiological Parameters

    Directory of Open Access Journals (Sweden)

    Wan-Hua Lin

    2013-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. Early prediction of CVD is urgently important for timely prevention and treatment. Incorporation or modification of new risk factors that have an additional independent prognostic value of existing prediction models is widely used for improving the performance of the prediction models. This paper is to investigate the physiological parameters that are used as risk factors for the prediction of cardiovascular events, as well as summarizing the current status on the medical devices for physiological tests and discuss the potential implications for promoting CVD prevention and treatment in the future. The results show that measures extracted from blood pressure, electrocardiogram, arterial stiffness, ankle-brachial blood pressure index (ABI, and blood glucose carry valuable information for the prediction of both long-term and near-term cardiovascular risk. However, the predictive values should be further validated by more comprehensive measures. Meanwhile, advancing unobtrusive technologies and wireless communication technologies allow on-site detection of the physiological information remotely in an out-of-hospital setting in real-time. In addition with computer modeling technologies and information fusion. It may allow for personalized, quantitative, and real-time assessment of sudden CVD events.

  12. An etiologic prediction model incorporating biomarkers to predict the bladder cancer risk associated with occupational exposure to aromatic amines: a pilot study

    OpenAIRE

    Mastrangelo, Giuseppe; Carta, Angela; Arici, Cecilia; Pavanello, Sofia; Porru, Stefano

    2017-01-01

    Background No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk associated with occupational exposure to aromatic amines. Methods Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; th...

  13. Developing genetic epidemiological models to predict risk for nasopharyngeal carcinoma in high-risk population of China.

    Directory of Open Access Journals (Sweden)

    Hong-Lian Ruan

    Full Text Available To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC relies on the sero-status of the Epstein-Barr virus (EBV. By contrast, the risk assessment models proposed here include environmental risk factors, family history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic curves (AUC. To compare the discriminatory improvement of models with and without genetic information, we estimated the net reclassification improvement (NRI and integrated discrimination index (IDI. Well-established environmental risk factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years. The environmental model alone shows modest discriminatory ability (AUC = 0.68; 95% CI: 0.66, 0.70, which is only slightly increased by the addition of data on family history of NPC (AUC = 0.70; 95% CI: 0.68, 0.72. With the addition of data on genetic variants, however, our model's discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76. The improvements in NRI and IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data from NPC-endemic areas could well lead to earlier detection of NPC.

  14. Predictive modeling of complications.

    Science.gov (United States)

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  15. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    Science.gov (United States)

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  16. Developmental dyslexia: predicting individual risk.

    Science.gov (United States)

    Thompson, Paul A; Hulme, Charles; Nash, Hannah M; Gooch, Debbie; Hayiou-Thomas, Emma; Snowling, Margaret J

    2015-09-01

    Causal theories of dyslexia suggest that it is a heritable disorder, which is the outcome of multiple risk factors. However, whether early screening for dyslexia is viable is not yet known. The study followed children at high risk of dyslexia from preschool through the early primary years assessing them from age 3 years and 6 months (T1) at approximately annual intervals on tasks tapping cognitive, language, and executive-motor skills. The children were recruited to three groups: children at family risk of dyslexia, children with concerns regarding speech, and language development at 3;06 years and controls considered to be typically developing. At 8 years, children were classified as 'dyslexic' or not. Logistic regression models were used to predict the individual risk of dyslexia and to investigate how risk factors accumulate to predict poor literacy outcomes. Family-risk status was a stronger predictor of dyslexia at 8 years than low language in preschool. Additional predictors in the preschool years include letter knowledge, phonological awareness, rapid automatized naming, and executive skills. At the time of school entry, language skills become significant predictors, and motor skills add a small but significant increase to the prediction probability. We present classification accuracy using different probability cutoffs for logistic regression models and ROC curves to highlight the accumulation of risk factors at the individual level. Dyslexia is the outcome of multiple risk factors and children with language difficulties at school entry are at high risk. Family history of dyslexia is a predictor of literacy outcome from the preschool years. However, screening does not reach an acceptable clinical level until close to school entry when letter knowledge, phonological awareness, and RAN, rather than family risk, together provide good sensitivity and specificity as a screening battery. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by

  17. Fall risk in community-dwelling elderly cancer survivors: a predictive model for gerontological nurses.

    Science.gov (United States)

    Spoelstra, Sandra; Given, Barbara; von Eye, Alexander; Given, Charles

    2010-02-01

    The aim of this predictive study was to test a structural model to establish predictors of fall risk in elderly cancer survivors. An aging and nursing model of care was synthesized and used to examine the Minimum Data Set for 6,912 low-income older adult participants in a community setting in the midwestern United States. Data analysis established relationships among fall risk and age, race/ethnicity, history of a previous fall, depression, pain, activities of daily living, instrumental activities of daily living, incontinence, vision, and cognitive status. Factors leading to fall risk can direct nursing activities that have the potential to prevent falls, thus improving older adults' quality of life. Copyright 2010, SLACK Incorporated.

  18. The development and implementation of stroke risk prediction model in National Health Insurance Service's personal health record.

    Science.gov (United States)

    Lee, Jae-Woo; Lim, Hyun-Sun; Kim, Dong-Wook; Shin, Soon-Ae; Kim, Jinkwon; Yoo, Bora; Cho, Kyung-Hee

    2018-01-01

    The purpose of this study was to build a 10-year stroke prediction model and categorize a probability of stroke using the Korean national health examination data. Then it intended to develop the algorithm to provide a personalized warning on the basis of each user's level of stroke risk and a lifestyle correction message about the stroke risk factors. Subject to national health examinees in 2002-2003, the stroke prediction model identified when stroke was first diagnosed by following-up the cohort until 2013 and estimated a 10-year probability of stroke. It sorted the user's individual probability of stroke into five categories - normal, slightly high, high, risky, very risky, according to the five ranges of average probability of stroke in comparison to total population - less than 50 percentile, 50-70, 70-90, 90-99.9, more than 99.9 percentile, and constructed the personalized warning and lifestyle correction messages by each category. Risk factors in stroke risk model include the age, BMI, cholesterol, hypertension, diabetes, smoking status and intensity, physical activity, alcohol drinking, past history (hypertension, coronary heart disease) and family history (stroke, coronary heart disease). The AUC values of stroke risk prediction model from the external validation data set were 0.83 in men and 0.82 in women, which showed a high predictive power. The probability of stroke within 10 years for men in normal group (less than 50 percentile) was less than 3.92% and those in very risky group (top 0.01 percentile) was 66.2% and over. The women's probability of stroke within 10 years was less than 3.77% in normal group (less than 50 percentile) and 55.24% and over in very risky group. This study developed the stroke risk prediction model and the personalized warning and the lifestyle correction message based on the national health examination data and uploaded them to the personal health record service called My Health Bank in the health information website - Health

  19. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  20. Developing and validating a new precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension prediction model (JG model).

    Science.gov (United States)

    Kanegae, Hiroshi; Oikawa, Takamitsu; Suzuki, Kenji; Okawara, Yukie; Kario, Kazuomi

    2018-03-31

    No integrated risk assessment tools that include lifestyle factors and uric acid have been developed. In accordance with the Industrial Safety and Health Law in Japan, a follow-up examination of 63 495 normotensive individuals (mean age 42.8 years) who underwent a health checkup in 2010 was conducted every year for 5 years. The primary endpoint was new-onset hypertension (systolic blood pressure [SBP]/diastolic blood pressure [DBP] ≥ 140/90 mm Hg and/or the initiation of antihypertensive medications with self-reported hypertension). During the mean 3.4 years of follow-up, 7402 participants (11.7%) developed hypertension. The prediction model included age, sex, body mass index (BMI), SBP, DBP, low-density lipoprotein cholesterol, uric acid, proteinuria, current smoking, alcohol intake, eating rate, DBP by age, and BMI by age at baseline and was created by using Cox proportional hazards models to calculate 3-year absolute risks. The derivation analysis confirmed that the model performed well both with respect to discrimination and calibration (n = 63 495; C-statistic = 0.885, 95% confidence interval [CI], 0.865-0.903; χ 2 statistic = 13.6, degree of freedom [df] = 7). In the external validation analysis, moreover, the model performed well both in its discrimination and calibration characteristics (n = 14 168; C-statistic = 0.846; 95%CI, 0.775-0.905; χ 2 statistic = 8.7, df = 7). Adding LDL cholesterol, uric acid, proteinuria, alcohol intake, eating rate, and BMI by age to the base model yielded a significantly higher C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement, especially NRI non-event (NRI = 0.127, 95%CI = 0.100-0.152; NRI non-event  = 0.108, 95%CI = 0.102-0.117). In conclusion, a highly precise model with good performance was developed for predicting incident hypertension using the new parameters of eating rate, uric acid, proteinuria, and BMI by age. ©2018 Wiley Periodicals, Inc.

  1. Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes.

    Science.gov (United States)

    Zhao, Lue Ping; Carlsson, Annelie; Larsson, Helena Elding; Forsander, Gun; Ivarsson, Sten A; Kockum, Ingrid; Ludvigsson, Johnny; Marcus, Claude; Persson, Martina; Samuelsson, Ulf; Örtqvist, Eva; Pyo, Chul-Woo; Bolouri, Hamid; Zhao, Michael; Nelson, Wyatt C; Geraghty, Daniel E; Lernmark, Åke

    2017-11-01

    It is of interest to predict possible lifetime risk of type 1 diabetes (T1D) in young children for recruiting high-risk subjects into longitudinal studies of effective prevention strategies. Utilizing a case-control study in Sweden, we applied a recently developed next generation targeted sequencing technology to genotype class II genes and applied an object-oriented regression to build and validate a prediction model for T1D. In the training set, estimated risk scores were significantly different between patients and controls (P = 8.12 × 10 -92 ), and the area under the curve (AUC) from the receiver operating characteristic (ROC) analysis was 0.917. Using the validation data set, we validated the result with AUC of 0.886. Combining both training and validation data resulted in a predictive model with AUC of 0.903. Further, we performed a "biological validation" by correlating risk scores with 6 islet autoantibodies, and found that the risk score was significantly correlated with IA-2A (Z-score = 3.628, P < 0.001). When applying this prediction model to the Swedish population, where the lifetime T1D risk ranges from 0.5% to 2%, we anticipate identifying approximately 20 000 high-risk subjects after testing all newborns, and this calculation would identify approximately 80% of all patients expected to develop T1D in their lifetime. Through both empirical and biological validation, we have established a prediction model for estimating lifetime T1D risk, using class II HLA. This prediction model should prove useful for future investigations to identify high-risk subjects for prevention research in high-risk populations. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Predicting Rib Fracture Risk With Whole-Body Finite Element Models: Development and Preliminary Evaluation of a Probabilistic Analytical Framework

    Science.gov (United States)

    Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria

    2012-01-01

    This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122

  3. The cardiovascular event reduction tool (CERT)--a simplified cardiac risk prediction model developed from the West of Scotland Coronary Prevention Study (WOSCOPS).

    Science.gov (United States)

    L'Italien, G; Ford, I; Norrie, J; LaPuerta, P; Ehreth, J; Jackson, J; Shepherd, J

    2000-03-15

    The clinical decision to treat hypercholesterolemia is premised on an awareness of patient risk, and cardiac risk prediction models offer a practical means of determining such risk. However, these models are based on observational cohorts where estimates of the treatment benefit are largely inferred. The West of Scotland Coronary Prevention Study (WOSCOPS) provides an opportunity to develop a risk-benefit prediction model from the actual observed primary event reduction seen in the trial. Five-year Cox model risk estimates were derived from all WOSCOPS subjects (n = 6,595 men, aged 45 to 64 years old at baseline) using factors previously shown to be predictive of definite fatal coronary heart disease or nonfatal myocardial infarction. Model risk factors included age, diastolic blood pressure, total cholesterol/ high-density lipoprotein ratio (TC/HDL), current smoking, diabetes, family history of fatal coronary heart disease, nitrate use or angina, and treatment (placebo/ 40-mg pravastatin). All risk factors were expressed as categorical variables to facilitate risk assessment. Risk estimates were incorporated into a simple, hand-held slide rule or risk tool. Risk estimates were identified for 5-year age bands (45 to 65 years), 4 categories of TC/HDL ratio ( or = 7.5), 2 levels of diastolic blood pressure ( or = 90 mm Hg), from 0 to 3 additional risk factors (current smoking, diabetes, family history of premature fatal coronary heart disease, nitrate use or angina), and pravastatin treatment. Five-year risk estimates ranged from 2% in very low-risk subjects to 61% in the very high-risk subjects. Risk reduction due to pravastatin treatment averaged 31%. Thus, the Cardiovascular Event Reduction Tool (CERT) is a risk prediction model derived from the WOSCOPS trial. Its use will help physicians identify patients who will benefit from cholesterol reduction.

  4. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    Directory of Open Access Journals (Sweden)

    Lucky eMehra

    2016-03-01

    Full Text Available Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB, caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum. The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early

  5. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    Science.gov (United States)

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  6. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    the expectations hypothesis (EH) out-ofsample: the forecasts do not add economic value compared to using the average historical excess return as an EH-consistent estimate of constant risk premia. We show that in general statistical signicance does not necessarily translate into economic signicance because EH...... deviations mainly matter at short horizons and standard predictability metrics are not compatible with common measures of economic value. Overall, the EH remains the benchmark for investment decisions and should be considered an economic prior in models of bond risk premia.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for bond investors. We show that ane term structure models (ATSMs) estimated by jointly tting yields and bond excess returns capture this predictive information otherwise hidden...

  7. Beyond discrimination: A comparison of calibration methods and clinical usefulness of predictive models of readmission risk.

    Science.gov (United States)

    Walsh, Colin G; Sharman, Kavya; Hripcsak, George

    2017-12-01

    Prior to implementing predictive models in novel settings, analyses of calibration and clinical usefulness remain as important as discrimination, but they are not frequently discussed. Calibration is a model's reflection of actual outcome prevalence in its predictions. Clinical usefulness refers to the utilities, costs, and harms of using a predictive model in practice. A decision analytic approach to calibrating and selecting an optimal intervention threshold may help maximize the impact of readmission risk and other preventive interventions. To select a pragmatic means of calibrating predictive models that requires a minimum amount of validation data and that performs well in practice. To evaluate the impact of miscalibration on utility and cost via clinical usefulness analyses. Observational, retrospective cohort study with electronic health record data from 120,000 inpatient admissions at an urban, academic center in Manhattan. The primary outcome was thirty-day readmission for three causes: all-cause, congestive heart failure, and chronic coronary atherosclerotic disease. Predictive modeling was performed via L1-regularized logistic regression. Calibration methods were compared including Platt Scaling, Logistic Calibration, and Prevalence Adjustment. Performance of predictive modeling and calibration was assessed via discrimination (c-statistic), calibration (Spiegelhalter Z-statistic, Root Mean Square Error [RMSE] of binned predictions, Sanders and Murphy Resolutions of the Brier Score, Calibration Slope and Intercept), and clinical usefulness (utility terms represented as costs). The amount of validation data necessary to apply each calibration algorithm was also assessed. C-statistics by diagnosis ranged from 0.7 for all-cause readmission to 0.86 (0.78-0.93) for congestive heart failure. Logistic Calibration and Platt Scaling performed best and this difference required analyzing multiple metrics of calibration simultaneously, in particular Calibration

  8. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  9. Risk Factors and Predictive Model Development of Thirty-Day Post-Operative Surgical Site Infection in the Veterans Administration Surgical Population.

    Science.gov (United States)

    Li, Xinli; Nylander, William; Smith, Tracy; Han, Soonhee; Gunnar, William

    2018-04-01

    Surgical site infection (SSI) complicates approximately 2% of surgeries in the Veterans Affairs (VA) hospitals. Surgical site infections are responsible for increased morbidity, length of hospital stay, cost, and mortality. Surgical site infection can be minimized by modifying risk factors. In this study, we identified risk factors and developed accurate predictive surgical specialty-specific SSI risk prediction models for the Veterans Health Administration (VHA) surgery population. In a retrospective observation study, surgical patients who underwent surgery from October 2013 to September 2016 from 136 VA hospitals were included. The Veteran Affairs Surgical Quality Improvement Program (VASQIP) database was used for the pre-operative demographic and clinical characteristics, intra-operative characteristics, and 30-day post-operative outcomes. The study population represents 11 surgical specialties: neurosurgery, urology, podiatry, otolaryngology, general, orthopedic, plastic, thoracic, vascular, cardiac coronary artery bypass graft (CABG), and cardiac valve/other surgery. Multivariable logistic regression models were developed for the 30-day post-operative SSIs. Among 354,528 surgical procedures, 6,538 (1.8%) had SSIs within 30 days. Surgical site infection rates varied among surgical specialty (0.7%-3.0%). Surgical site infection rates were higher in emergency procedures, procedures with long operative duration, greater complexity, and higher relative value units. Other factors associated with increased SSI risk were high level of American Society of Anesthesiologists (ASA) classification (level 4 and 5), dyspnea, open wound/infection, wound classification, ascites, bleeding disorder, chemotherapy, smoking, history of severe chronic obstructive pulmonary disease (COPD), radiotherapy, steroid use for chronic conditions, and weight loss. Each surgical specialty had a distinct combination of risk factors. Accurate SSI risk-predictive surgery specialty

  10. A Risk Prediction Model Based on Lymph-Node Metastasis in Poorly Differentiated-Type Intramucosal Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Jeung Hui Pyo

    Full Text Available Endoscopic submucosal dissection (ESD for undifferentiated type early gastric cancer is regarded as an investigational treatment. Few studies have tried to identify the risk factors that predict lymph-node metastasis (LNM in intramucosal poorly differentiated adenocarcinomas (PDC. This study was designed to develop a risk scoring system (RSS for predicting LNM in intramucosal PDC.From January 2002 to July 2015, patients diagnosed with mucosa-confined PDC, among those who underwent curative gastrectomy with lymph node dissection were reviewed. A risk model based on independent predicting factors of LNM was developed, and its performance was internally validated using a split sample approach.Overall, LNM was observed in 5.2% (61 of 1169 patients. Four risk factors [Female sex, tumor size ≥ 3.2 cm, muscularis mucosa (M3 invasion, and lymphatic-vascular involvement] were significantly associated with LNM, which were incorporated into the RSS. The area under the receiver operating characteristic curve for predicting LNM after internal validation was 0.69 [95% confidence interval (CI, 0.59-0.79]. A total score of 2 points corresponded to the optimal RSS threshold with a discrimination of 0.75 (95% CI 0.69-0.81. The LNM rates were 1.6% for low risk (<2 points and 8.9% for high-risk (≥2 points patients, with a negative predictive value of 98.6% (95% CI 0.98-1.00.A RSS could be useful in clinical practice to determine which patients with intramucosal PDC have low risk of LNM.

  11. Development of a risk prediction model among professional hockey players with visible signs of concussion.

    Science.gov (United States)

    Bruce, Jared M; Echemendia, Ruben J; Meeuwisse, Willem; Hutchison, Michael G; Aubry, Mark; Comper, Paul

    2017-04-04

    Little research examines how to best identify concussed athletes. The purpose of the present study was to develop a preliminary risk decision model that uses visible signs (VS) and mechanisms of injury (MOI) to predict the likelihood of subsequent concussion diagnosis. Coders viewed and documented VS and associated MOI for all NHL games over the course of the 2013-2014 and 2014-2015 regular seasons. After coding was completed, player concussions were identified from the NHL injury surveillance system and it was determined whether players exhibiting VS were subsequently diagnosed with concussions by club medical staff as a result of the coded event. Among athletes exhibiting VS, suspected loss of consciousness, motor incoordination or balance problems, being in a fight, having an initial hit from another player's shoulder and having a secondary hit on the ice were all associated with increased risk of subsequent concussion diagnosis. In contrast, having an initial hit with a stick was associated with decreased risk of subsequent concussion diagnosis. A risk prediction model using a combination of the above VS and MOI was superior to approaches that relied on individual VS and associated MOI (sensitivity=81%, specificity=72%, positive predictive value=26%). Combined use of VS and MOI significantly improves a clinician's ability to identify players who need to be evaluated for possible concussion. A preliminary concussion prediction log has been developed from these data. Pending prospective validation, the use of these methods may improve early concussion detection and evaluation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Enteric disease episodes and the risk of acquiring a future sexually transmitted infection: a prediction model in Montreal residents.

    Science.gov (United States)

    Caron, Melissa; Allard, Robert; Bédard, Lucie; Latreille, Jérôme; Buckeridge, David L

    2016-11-01

    The sexual transmission of enteric diseases poses an important public health challenge. We aimed to build a prediction model capable of identifying individuals with a reported enteric disease who could be at risk of acquiring future sexually transmitted infections (STIs). Passive surveillance data on Montreal residents with at least 1 enteric disease report was used to construct the prediction model. Cases were defined as all subjects with at least 1 STI report following their initial enteric disease episode. A final logistic regression prediction model was chosen using forward stepwise selection. The prediction model with the greatest validity included age, sex, residential location, number of STI episodes experienced prior to the first enteric disease episode, type of enteric disease acquired, and an interaction term between age and male sex. This model had an area under the curve of 0.77 and had acceptable calibration. A coordinated public health response to the sexual transmission of enteric diseases requires that a distinction be made between cases of enteric diseases transmitted through sexual activity from those transmitted through contaminated food or water. A prediction model can aid public health officials in identifying individuals who may have a higher risk of sexually acquiring a reportable disease. Once identified, these individuals could receive specialized intervention to prevent future infection. The information produced from a prediction model capable of identifying higher risk individuals can be used to guide efforts in investigating and controlling reported cases of enteric diseases and STIs. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Predictors of incident heart failure in patients after an acute coronary syndrome: The LIPID heart failure risk-prediction model.

    Science.gov (United States)

    Driscoll, Andrea; Barnes, Elizabeth H; Blankenberg, Stefan; Colquhoun, David M; Hunt, David; Nestel, Paul J; Stewart, Ralph A; West, Malcolm J; White, Harvey D; Simes, John; Tonkin, Andrew

    2017-12-01

    Coronary heart disease is a major cause of heart failure. Availability of risk-prediction models that include both clinical parameters and biomarkers is limited. We aimed to develop such a model for prediction of incident heart failure. A multivariable risk-factor model was developed for prediction of first occurrence of heart failure death or hospitalization. A simplified risk score was derived that enabled subjects to be grouped into categories of 5-year risk varying from 20%. Among 7101 patients from the LIPID study (84% male), with median age 61years (interquartile range 55-67years), 558 (8%) died or were hospitalized because of heart failure. Older age, history of claudication or diabetes mellitus, body mass index>30kg/m 2 , LDL-cholesterol >2.5mmol/L, heart rate>70 beats/min, white blood cell count, and the nature of the qualifying acute coronary syndrome (myocardial infarction or unstable angina) were associated with an increase in heart failure events. Coronary revascularization was associated with a lower event rate. Incident heart failure increased with higher concentrations of B-type natriuretic peptide >50ng/L, cystatin C>0.93nmol/L, D-dimer >273nmol/L, high-sensitivity C-reactive protein >4.8nmol/L, and sensitive troponin I>0.018μg/L. Addition of biomarkers to the clinical risk model improved the model's C statistic from 0.73 to 0.77. The net reclassification improvement incorporating biomarkers into the clinical model using categories of 5-year risk was 23%. Adding a multibiomarker panel to conventional parameters markedly improved discrimination and risk classification for future heart failure events. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Development of a Coronary Heart Disease Risk Prediction Model for Type 1 Diabetes: The Pittsburgh CHD in Type 1 Diabetes Risk Mode

    NARCIS (Netherlands)

    Zgibor, J.C.; Ruppert, K.; Orchard, T.J.; Soedamah-Muthu, S.S.; Fuller, J.H.; Chaturvedi, N.; Roberts, M.S.

    2010-01-01

    Aim - To create a coronary heart disease (CHD) risk prediction model specific to type 1 diabetes. Methods - Development of the model used data from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). EDC subjects had type 1 diabetes diagnosed between 1950 and 1980, received their

  15. Predictive Modeling and Concentration of the Risk of Suicide: Implications for Preventive Interventions in the US Department of Veterans Affairs.

    Science.gov (United States)

    McCarthy, John F; Bossarte, Robert M; Katz, Ira R; Thompson, Caitlin; Kemp, Janet; Hannemann, Claire M; Nielson, Christopher; Schoenbaum, Michael

    2015-09-01

    The Veterans Health Administration (VHA) evaluated the use of predictive modeling to identify patients at risk for suicide and to supplement ongoing care with risk-stratified interventions. Suicide data came from the National Death Index. Predictors were measures from VHA clinical records incorporating patient-months from October 1, 2008, to September 30, 2011, for all suicide decedents and 1% of living patients, divided randomly into development and validation samples. We used data on all patients alive on September 30, 2010, to evaluate predictions of suicide risk over 1 year. Modeling demonstrated that suicide rates were 82 and 60 times greater than the rate in the overall sample in the highest 0.01% stratum for calculated risk for the development and validation samples, respectively; 39 and 30 times greater in the highest 0.10%; 14 and 12 times greater in the highest 1.00%; and 6.3 and 5.7 times greater in the highest 5.00%. Predictive modeling can identify high-risk patients who were not identified on clinical grounds. VHA is developing modeling to enhance clinical care and to guide the delivery of preventive interventions.

  16. Multisite external validation of a risk prediction model for the diagnosis of blood stream infections in febrile pediatric oncology patients without severe neutropenia.

    Science.gov (United States)

    Esbenshade, Adam J; Zhao, Zhiguo; Aftandilian, Catherine; Saab, Raya; Wattier, Rachel L; Beauchemin, Melissa; Miller, Tamara P; Wilkes, Jennifer J; Kelly, Michael J; Fernbach, Alison; Jeng, Michael; Schwartz, Cindy L; Dvorak, Christopher C; Shyr, Yu; Moons, Karl G M; Sulis, Maria-Luisa; Friedman, Debra L

    2017-10-01

    Pediatric oncology patients are at an increased risk of invasive bacterial infection due to immunosuppression. The risk of such infection in the absence of severe neutropenia (absolute neutrophil count ≥ 500/μL) is not well established and a validated prediction model for blood stream infection (BSI) risk offers clinical usefulness. A 6-site retrospective external validation was conducted using a previously published risk prediction model for BSI in febrile pediatric oncology patients without severe neutropenia: the Esbenshade/Vanderbilt (EsVan) model. A reduced model (EsVan2) excluding 2 less clinically reliable variables also was created using the initial EsVan model derivative cohort, and was validated using all 5 external validation cohorts. One data set was used only in sensitivity analyses due to missing some variables. From the 5 primary data sets, there were a total of 1197 febrile episodes and 76 episodes of bacteremia. The overall C statistic for predicting bacteremia was 0.695, with a calibration slope of 0.50 for the original model and a calibration slope of 1.0 when recalibration was applied to the model. The model performed better in predicting high-risk bacteremia (gram-negative or Staphylococcus aureus infection) versus BSI alone, with a C statistic of 0.801 and a calibration slope of 0.65. The EsVan2 model outperformed the EsVan model across data sets with a C statistic of 0.733 for predicting BSI and a C statistic of 0.841 for high-risk BSI. The results of this external validation demonstrated that the EsVan and EsVan2 models are able to predict BSI across multiple performance sites and, once validated and implemented prospectively, could assist in decision making in clinical practice. Cancer 2017;123:3781-3790. © 2017 American Cancer Society. © 2017 American Cancer Society.

  17. Mortality Risk After Transcatheter Aortic Valve Implantation: Analysis of the Predictive Accuracy of the Transcatheter Valve Therapy Registry Risk Assessment Model.

    Science.gov (United States)

    Codner, Pablo; Malick, Waqas; Kouz, Remi; Patel, Amisha; Chen, Cheng-Han; Terre, Juan; Landes, Uri; Vahl, Torsten Peter; George, Isaac; Nazif, Tamim; Kirtane, Ajay J; Khalique, Omar K; Hahn, Rebecca T; Leon, Martin B; Kodali, Susheel

    2018-05-08

    Risk assessment tools currently used to predict mortality in transcatheter aortic valve implantation (TAVI) were designed for patients undergoing cardiac surgery. We aim to assess the accuracy of the TAVI dedicated American College of Cardiology / Transcatheter Valve Therapies (ACC/TVT) risk score in predicting mortality outcomes. Consecutive patients (n=1038) undergoing TAVI at a single institution from 2014 to 2016 were included. The ACC/TVT registry mortality risk score, the Society of Thoracic Surgeons - Patient Reported Outcomes (STS-PROM) score and the EuroSCORE II were calculated for all patients. In hospital and 30-day all-cause mortality rates were 1.3% and 2.9%, respectively. The ACC/TVT risk stratification tool scored higher for patients who died in-hospital than in those who survived the index hospitalization (6.4 ± 4.6 vs. 3.5 ± 1.6, p = 0.03; respectively). The ACC/TVT score showed a high level of discrimination, C-index for in-hospital mortality 0.74, 95% CI [0.59 - 0.88]. There were no significant differences between the performance of the ACC/TVT registry risk score, the EuroSCORE II and the STS-PROM for in hospital and 30-day mortality rates. The ACC/TVT registry risk model is a dedicated tool to aid in the prediction of in-hospital mortality risk after TAVI.

  18. Beyond the first episode: candidate factors for a risk prediction model of schizophrenia.

    Science.gov (United States)

    Murphy, Brendan P

    2010-01-01

    Many early psychosis services are financially compromised and cannot offer a full tenure of care to all patients. To maintain viability of services it is important that those with schizophrenia are identified early to maximize long-term outcomes, as are those with better prognoses who can be discharged early. The duration of untreated psychosis remains the mainstay in determining those who will benefit from extended care, yet its ability to inform on prognosis is modest in both the short and medium term. There are a number of known or putative genetic and environmental risk factors that have the potential to improve prognostication, though a multivariate risk prediction model combining them with clinical characteristics has yet to be developed. Candidate risk factors for such a model are presented, with an emphasis on environmental risk factors. More work is needed to corroborate many putative factors and to determine which of the established factors are salient and which are merely proxy measures. Future research should help clarify how gene-environment and environment-environment interactions occur and whether risk factors are dose-dependent, or if they act additively or synergistically, or are redundant in the presence (or absence) of other factors.

  19. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models

    Science.gov (United States)

    Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L.; Huffman, Jennifer E.; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S.

    2015-01-01

    We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167

  20. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin.

    Science.gov (United States)

    Luque, M J; Tapia, J L; Villarroel, L; Marshall, G; Musante, G; Carlo, W; Kattan, J

    2014-01-01

    Develop a risk prediction model for severe intraventricular hemorrhage (IVH) in very low birth weight infants (VLBWI). Prospectively collected data of infants with birth weight 500 to 1249 g born between 2001 and 2010 in centers from the Neocosur Network were used. Forward stepwise logistic regression model was employed. The model was tested in the 2011 cohort and then applied to the population of VLBWI that received prophylactic indomethacin to analyze its effect in the risk of severe IVH. Data from 6538 VLBWI were analyzed. The area under ROC curve for the model was 0.79 and 0.76 when tested in the 2011 cohort. The prophylactic indomethacin group had lower incidence of severe IVH, especially in the highest-risk groups. A model for early severe IVH prediction was developed and tested in our population. Prophylactic indomethacin was associated with a lower risk-adjusted incidence of severe IVH.

  1. Systematic Review of Health Economic Impact Evaluations of Risk Prediction Models : Stop Developing, Start Evaluating

    NARCIS (Netherlands)

    van Giessen, Anoukh; Peters, Jaime; Wilcher, Britni; Hyde, Chris; Moons, Carl; de Wit, Ardine; Koffijberg, Erik

    2017-01-01

    Background: Although health economic evaluations (HEEs) are increasingly common for therapeutic interventions, they appear to be rare for the use of risk prediction models (PMs). Objectives: To evaluate the current state of HEEs of PMs by performing a comprehensive systematic review. Methods: Four

  2. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention.

    Directory of Open Access Journals (Sweden)

    Hitinder S Gurm

    Full Text Available BACKGROUND: Transfusion is a common complication of Percutaneous Coronary Intervention (PCI and is associated with adverse short and long term outcomes. There is no risk model for identifying patients most likely to receive transfusion after PCI. The objective of our study was to develop and validate a tool for predicting receipt of blood transfusion in patients undergoing contemporary PCI. METHODS: Random forest models were developed utilizing 45 pre-procedural clinical and laboratory variables to estimate the receipt of transfusion in patients undergoing PCI. The most influential variables were selected for inclusion in an abbreviated model. Model performance estimating transfusion was evaluated in an independent validation dataset using area under the ROC curve (AUC, with net reclassification improvement (NRI used to compare full and reduced model prediction after grouping in low, intermediate, and high risk categories. The impact of procedural anticoagulation on observed versus predicted transfusion rates were assessed for the different risk categories. RESULTS: Our study cohort was comprised of 103,294 PCI procedures performed at 46 hospitals between July 2009 through December 2012 in Michigan of which 72,328 (70% were randomly selected for training the models, and 30,966 (30% for validation. The models demonstrated excellent calibration and discrimination (AUC: full model  = 0.888 (95% CI 0.877-0.899, reduced model AUC = 0.880 (95% CI, 0.868-0.892, p for difference 0.003, NRI = 2.77%, p = 0.007. Procedural anticoagulation and radial access significantly influenced transfusion rates in the intermediate and high risk patients but no clinically relevant impact was noted in low risk patients, who made up 70% of the total cohort. CONCLUSIONS: The risk of transfusion among patients undergoing PCI can be reliably calculated using a novel easy to use computational tool (https://bmc2.org/calculators/transfusion. This risk prediction

  3. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  4. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  5. A growing degree-day model for determination of Fasciola hepatica infection risk in New Zealand with future predictions using climate change models.

    Science.gov (United States)

    Haydock, L A J; Pomroy, W E; Stevenson, M A; Lawrence, K E

    2016-09-15

    Infections of ruminants with Fasciola hepatica are considered to be of regional importance within New Zealand but there is very little recent information on its prevalence or severity other than anecdotal reports. Generally they are considered to be of secondary importance compared to gastrointestinal nematode infections. Utilizing data from Virtual Climate Stations (n=11491) distributed on a 5km grid around New Zealand a growing degree-day model was used to describe the risk of infection with liver fluke from 1972 to 2012 and then to apply the predictions to estimate the risk of fluke infections within New Zealand for the years 2040 and 2090. The growing degree-day model was validated against the most recent survey of infection within New Zealand in 1984. A strong positive linear relationship for 1984 between F. hepatica prevalence in lambs and infection risk (prisk values from 14 regions in New Zealand for 1972-2012 did not show any discernible change in risk of infection over this time period (p>0.05). Post-hoc comparisons indicate the risk in Westland was found to be substantially higher (prisk in 2040 and 2090 were detected although they did vary between different climate change scenarios. The highest average percentage changes in infection risk were found in regions with low initial risk values such as Canterbury and Otago; in these regions 2090 infection risk is expected to rise by an average of 186% and 184%, respectively. Despite the already high levels of infection risk in Westland, values are expected to rise by a further 76% by 2090. The model does show some areas with little change with Taranaki predicted to experience only very minor increases in infection risk with average 2040 and 2090 predicted changes of 0% and 29%, respectively. Overall, these results suggest the significance of F. hepatica in New Zealand farming systems is probably underestimated and that this risk will generally increase with global warming following climate change. Copyright

  6. Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer

    Directory of Open Access Journals (Sweden)

    Solène Desmée

    2017-07-01

    Full Text Available Abstract Background Joint models of longitudinal and time-to-event data are increasingly used to perform individual dynamic prediction of a risk of event. However the difficulty to perform inference in nonlinear models and to calculate the distribution of individual parameters has long limited this approach to linear mixed-effect models for the longitudinal part. Here we use a Bayesian algorithm and a nonlinear joint model to calculate individual dynamic predictions. We apply this approach to predict the risk of death in metastatic castration-resistant prostate cancer (mCRPC patients with frequent Prostate-Specific Antigen (PSA measurements. Methods A joint model is built using a large population of 400 mCRPC patients where PSA kinetics is described by a biexponential function and the hazard function is a PSA-dependent function. Using Hamiltonian Monte Carlo algorithm implemented in Stan software and the estimated population parameters in this population as priors, the a posteriori distribution of the hazard function is computed for a new patient knowing his PSA measurements until a given landmark time. Time-dependent area under the ROC curve (AUC and Brier score are derived to assess discrimination and calibration of the model predictions, first on 200 simulated patients and then on 196 real patients that are not included to build the model. Results Satisfying coverage probabilities of Monte Carlo prediction intervals are obtained for longitudinal and hazard functions. Individual dynamic predictions provide good predictive performances for landmark times larger than 12 months and horizon time of up to 18 months for both simulated and real data. Conclusions As nonlinear joint models can characterize the kinetics of biomarkers and their link with a time-to-event, this approach could be useful to improve patient’s follow-up and the early detection of most at risk patients.

  7. Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.

    Science.gov (United States)

    Schoop, Rotraut; Beyersmann, Jan; Schumacher, Martin; Binder, Harald

    2011-02-01

    Prognostic models for time-to-event data play a prominent role in therapy assignment, risk stratification and inter-hospital quality assurance. The assessment of their prognostic value is vital not only for responsible resource allocation, but also for their widespread acceptance. The additional presence of competing risks to the event of interest requires proper handling not only on the model building side, but also during assessment. Research into methods for the evaluation of the prognostic potential of models accounting for competing risks is still needed, as most proposed methods measure either their discrimination or calibration, but do not examine both simultaneously. We adapt the prediction error proposal of Graf et al. (Statistics in Medicine 1999, 18, 2529–2545) and Gerds and Schumacher (Biometrical Journal 2006, 48, 1029–1040) to handle models with competing risks, i.e. more than one possible event type, and introduce a consistent estimator. A simulation study investigating the behaviour of the estimator in small sample size situations and for different levels of censoring together with a real data application follows.

  8. Modelling bankruptcy prediction models in Slovak companies

    Directory of Open Access Journals (Sweden)

    Kovacova Maria

    2017-01-01

    Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.

  9. An etiologic prediction model incorporating biomarkers to predict the bladder cancer risk associated with occupational exposure to aromatic amines: a pilot study.

    Science.gov (United States)

    Mastrangelo, Giuseppe; Carta, Angela; Arici, Cecilia; Pavanello, Sofia; Porru, Stefano

    2017-01-01

    No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk associated with occupational exposure to aromatic amines. Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; the area under the curve was used to evaluate discriminatory ability of models. Area under the curve was 0.93 for the full model (including age, smoking and coffee habits, DNA adducts, 12 genotypes) and 0.86 for the short model (including smoking, DNA adducts, 3 genotypes). Using the "best cut-off" of predicted probability of a positive outcome, percentage of cases correctly classified was 92% (full model) against 75% (short model). Cancers classified as "positive outcome" are those to be referred for evaluation by an occupational physician for etiological diagnosis; these patients were 28 (full model) or 60 (short model). Using 3 genotypes instead of 12 can double the number of patients with suspect of aromatic amine related cancer, thus increasing costs of etiologic appraisal. Integrating clinical, laboratory and genetic factors, we developed the first etiologic prediction model for aromatic amine related bladder cancer. Discriminatory ability was excellent, particularly for the full model, allowing individualized predictions. Validation of our model in external populations is essential for practical use in the clinical setting.

  10. Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study

    Science.gov (United States)

    Nijman, Ruud G; Vergouwe, Yvonne; Thompson, Matthew; van Veen, Mirjam; van Meurs, Alfred H J; van der Lei, Johan; Steyerberg, Ewout W; Moll, Henriette A

    2013-01-01

    Objective To derive, cross validate, and externally validate a clinical prediction model that assesses the risks of different serious bacterial infections in children with fever at the emergency department. Design Prospective observational diagnostic study. Setting Three paediatric emergency care units: two in the Netherlands and one in the United Kingdom. Participants Children with fever, aged 1 month to 15 years, at three paediatric emergency care units: Rotterdam (n=1750) and the Hague (n=967), the Netherlands, and Coventry (n=487), United Kingdom. A prediction model was constructed using multivariable polytomous logistic regression analysis and included the predefined predictor variables age, duration of fever, tachycardia, temperature, tachypnoea, ill appearance, chest wall retractions, prolonged capillary refill time (>3 seconds), oxygen saturation rule out the presence of other SBIs. Discriminative ability (C statistic) to predict pneumonia was 0.81 (95% confidence interval 0.73 to 0.88); for other SBIs this was even better: 0.86 (0.79 to 0.92). Risk thresholds of 10% or more were useful to identify children with serious bacterial infections; risk thresholds less than 2.5% were useful to rule out the presence of serious bacterial infections. External validation showed good discrimination for the prediction of pneumonia (0.81, 0.69 to 0.93); discriminative ability for the prediction of other SBIs was lower (0.69, 0.53 to 0.86). Conclusion A validated prediction model, including clinical signs, symptoms, and C reactive protein level, was useful for estimating the likelihood of pneumonia and other SBIs in children with fever, such as septicaemia/meningitis and urinary tract infections. PMID:23550046

  11. Machine learning application in online lending risk prediction

    OpenAIRE

    Yu, Xiaojiao

    2017-01-01

    Online leading has disrupted the traditional consumer banking sector with more effective loan processing. Risk prediction and monitoring is critical for the success of the business model. Traditional credit score models fall short in applying big data technology in building risk model. In this manuscript, data with various format and size were collected from public website, third-parties and assembled with client's loan application information data. Ensemble machine learning models, random fo...

  12. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  13. Construction and evaluation of FiND, a fall risk prediction model of inpatients from nursing data.

    Science.gov (United States)

    Yokota, Shinichiroh; Ohe, Kazuhiko

    2016-04-01

    To construct and evaluate an easy-to-use fall risk prediction model based on the daily condition of inpatients from secondary use electronic medical record system data. The present authors scrutinized electronic medical record system data and created a dataset for analysis by including inpatient fall report data and Intensity of Nursing Care Needs data. The authors divided the analysis dataset into training data and testing data, then constructed the fall risk prediction model FiND from the training data, and tested the model using the testing data. The dataset for analysis contained 1,230,604 records from 46,241 patients. The sensitivity of the model constructed from the training data was 71.3% and the specificity was 66.0%. The verification result from the testing dataset was almost equivalent to the theoretical value. Although the model's accuracy did not surpass that of models developed in previous research, the authors believe FiND will be useful in medical institutions all over Japan because it is composed of few variables (only age, sex, and the Intensity of Nursing Care Needs items), and the accuracy for unknown data was clear. © 2016 Japan Academy of Nursing Science.

  14. Three-tiered risk stratification model to predict progression in Barrett's esophagus using epigenetic and clinical features.

    Directory of Open Access Journals (Sweden)

    Fumiaki Sato

    2008-04-01

    Full Text Available Barrett's esophagus predisposes to esophageal adenocarcinoma. However, the value of endoscopic surveillance in Barrett's esophagus has been debated because of the low incidence of esophageal adenocarcinoma in Barrett's esophagus. Moreover, high inter-observer and sampling-dependent variation in the histologic staging of dysplasia make clinical risk assessment problematic. In this study, we developed a 3-tiered risk stratification strategy, based on systematically selected epigenetic and clinical parameters, to improve Barrett's esophagus surveillance efficiency.We defined high-grade dysplasia as endpoint of progression, and Barrett's esophagus progressor patients as Barrett's esophagus patients with either no dysplasia or low-grade dysplasia who later developed high-grade dysplasia or esophageal adenocarcinoma. We analyzed 4 epigenetic and 3 clinical parameters in 118 Barrett's esophagus tissues obtained from 35 progressor and 27 non-progressor Barrett's esophagus patients from Baltimore Veterans Affairs Maryland Health Care Systems and Mayo Clinic. Based on 2-year and 4-year prediction models using linear discriminant analysis (area under the receiver-operator characteristic (ROC curve: 0.8386 and 0.7910, respectively, Barrett's esophagus specimens were stratified into high-risk (HR, intermediate-risk (IR, or low-risk (LR groups. This 3-tiered stratification method retained both the high specificity of the 2-year model and the high sensitivity of the 4-year model. Progression-free survivals differed significantly among the 3 risk groups, with p = 0.0022 (HR vs. IR and p<0.0001 (HR or IR vs. LR. Incremental value analyses demonstrated that the number of methylated genes contributed most influentially to prediction accuracy.This 3-tiered risk stratification strategy has the potential to exert a profound impact on Barrett's esophagus surveillance accuracy and efficiency.

  15. Application of predictive modelling techniques in industry: from food design up to risk assessment.

    Science.gov (United States)

    Membré, Jeanne-Marie; Lambert, Ronald J W

    2008-11-30

    In this communication, examples of applications of predictive microbiology in industrial contexts (i.e. Nestlé and Unilever) are presented which cover a range of applications in food safety from formulation and process design to consumer safety risk assessment. A tailor-made, private expert system, developed to support safe product/process design assessment is introduced as an example of how predictive models can be deployed for use by non-experts. Its use in conjunction with other tools and software available in the public domain is discussed. Specific applications of predictive microbiology techniques are presented relating to investigations of either growth or limits to growth with respect to product formulation or process conditions. An example of a probabilistic exposure assessment model for chilled food application is provided and its potential added value as a food safety management tool in an industrial context is weighed against its disadvantages. The role of predictive microbiology in the suite of tools available to food industry and some of its advantages and constraints are discussed.

  16. Liver stiffness value-based risk estimation of late recurrence after curative resection of hepatocellular carcinoma: development and validation of a predictive model.

    Directory of Open Access Journals (Sweden)

    Kyu Sik Jung

    Full Text Available Preoperative liver stiffness (LS measurement using transient elastography (TE is useful for predicting late recurrence after curative resection of hepatocellular carcinoma (HCC. We developed and validated a novel LS value-based predictive model for late recurrence of HCC.Patients who were due to undergo curative resection of HCC between August 2006 and January 2010 were prospectively enrolled and TE was performed prior to operations by study protocol. The predictive model of late recurrence was constructed based on a multiple logistic regression model. Discrimination and calibration were used to validate the model.Among a total of 139 patients who were finally analyzed, late recurrence occurred in 44 patients, with a median follow-up of 24.5 months (range, 12.4-68.1. We developed a predictive model for late recurrence of HCC using LS value, activity grade II-III, presence of multiple tumors, and indocyanine green retention rate at 15 min (ICG R15, which showed fairly good discrimination capability with an area under the receiver operating characteristic curve (AUROC of 0.724 (95% confidence intervals [CIs], 0.632-0.816. In the validation, using a bootstrap method to assess discrimination, the AUROC remained largely unchanged between iterations, with an average AUROC of 0.722 (95% CIs, 0.718-0.724. When we plotted a calibration chart for predicted and observed risk of late recurrence, the predicted risk of late recurrence correlated well with observed risk, with a correlation coefficient of 0.873 (P<0.001.A simple LS value-based predictive model could estimate the risk of late recurrence in patients who underwent curative resection of HCC.

  17. Indoor Tanning and the MC1R Genotype: Risk Prediction for Basal Cell Carcinoma Risk in Young People

    OpenAIRE

    Molinaro, Annette M.; Ferrucci, Leah M.; Cartmel, Brenda; Loftfield, Erikka; Leffell, David J.; Bale, Allen E.; Mayne, Susan T.

    2015-01-01

    Basal cell carcinoma (BCC) incidence is increasing, particularly in young people, and can be associated with significant morbidity and treatment costs. To identify young individuals at risk of BCC, we assessed existing melanoma or overall skin cancer risk prediction models and built a novel risk prediction model, with a focus on indoor tanning and the melanocortin 1 receptor gene, MC1R. We evaluated logistic regression models among 759 non-Hispanic whites from a case-control study of patients...

  18. External Validation and Recalibration of Risk Prediction Models for Acute Traumatic Brain Injury among Critically Ill Adult Patients in the United Kingdom.

    Science.gov (United States)

    Harrison, David A; Griggs, Kathryn A; Prabhu, Gita; Gomes, Manuel; Lecky, Fiona E; Hutchinson, Peter J A; Menon, David K; Rowan, Kathryn M

    2015-10-01

    This study validates risk prediction models for acute traumatic brain injury (TBI) in critical care units in the United Kingdom and recalibrates the models to this population. The Risk Adjustment In Neurocritical care (RAIN) Study was a prospective, observational cohort study in 67 adult critical care units. Adult patients admitted to critical care following acute TBI with a last pre-sedation Glasgow Coma Scale score of less than 15 were recruited. The primary outcomes were mortality and unfavorable outcome (death or severe disability, assessed using the Extended Glasgow Outcome Scale) at six months following TBI. Of 3626 critical care unit admissions, 2975 were analyzed. Following imputation of missing outcomes, mortality at six months was 25.7% and unfavorable outcome 57.4%. Ten risk prediction models were validated from Hukkelhoven and colleagues, the Medical Research Council (MRC) Corticosteroid Randomisation After Significant Head Injury (CRASH) Trial Collaborators, and the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) group. The model with the best discrimination was the IMPACT "Lab" model (C index, 0.779 for mortality and 0.713 for unfavorable outcome). This model was well calibrated for mortality at six months but substantially under-predicted the risk of unfavorable outcome. Recalibration of the models resulted in small improvements in discrimination and excellent calibration for all models. The risk prediction models demonstrated sufficient statistical performance to support their use in research and audit but fell below the level required to guide individual patient decision-making. The published models for unfavorable outcome at six months had poor calibration in the UK critical care setting and the models recalibrated to this setting should be used in future research.

  19. Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Sungkyoung Choi

    2016-12-01

    Full Text Available The success of genome-wide association studies (GWASs has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the “large p and small n” problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR, least absolute shrinkage and selection operator (LASSO, and Elastic-Net (EN. We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes.

  20. How to make predictions about future infectious disease risks

    Science.gov (United States)

    Woolhouse, Mark

    2011-01-01

    Formal, quantitative approaches are now widely used to make predictions about the likelihood of an infectious disease outbreak, how the disease will spread, and how to control it. Several well-established methodologies are available, including risk factor analysis, risk modelling and dynamic modelling. Even so, predictive modelling is very much the ‘art of the possible’, which tends to drive research effort towards some areas and away from others which may be at least as important. Building on the undoubted success of quantitative modelling of the epidemiology and control of human and animal diseases such as AIDS, influenza, foot-and-mouth disease and BSE, attention needs to be paid to developing a more holistic framework that captures the role of the underlying drivers of disease risks, from demography and behaviour to land use and climate change. At the same time, there is still considerable room for improvement in how quantitative analyses and their outputs are communicated to policy makers and other stakeholders. A starting point would be generally accepted guidelines for ‘good practice’ for the development and the use of predictive models. PMID:21624924

  1. In-hospital risk prediction for post-stroke depression: development and validation of the Post-stroke Depression Prediction Scale.

    Science.gov (United States)

    de Man-van Ginkel, Janneke M; Hafsteinsdóttir, Thóra B; Lindeman, Eline; Ettema, Roelof G A; Grobbee, Diederick E; Schuurmans, Marieke J

    2013-09-01

    The timely detection of post-stroke depression is complicated by a decreasing length of hospital stay. Therefore, the Post-stroke Depression Prediction Scale was developed and validated. The Post-stroke Depression Prediction Scale is a clinical prediction model for the early identification of stroke patients at increased risk for post-stroke depression. The study included 410 consecutive stroke patients who were able to communicate adequately. Predictors were collected within the first week after stroke. Between 6 to 8 weeks after stroke, major depressive disorder was diagnosed using the Composite International Diagnostic Interview. Multivariable logistic regression models were fitted. A bootstrap-backward selection process resulted in a reduced model. Performance of the model was expressed by discrimination, calibration, and accuracy. The model included a medical history of depression or other psychiatric disorders, hypertension, angina pectoris, and the Barthel Index item dressing. The model had acceptable discrimination, based on an area under the receiver operating characteristic curve of 0.78 (0.72-0.85), and calibration (P value of the U-statistic, 0.96). Transforming the model to an easy-to-use risk-assessment table, the lowest risk category (sum score, depression, which increased to 82% in the highest category (sum score, >21). The clinical prediction model enables clinicians to estimate the degree of the depression risk for an individual patient within the first week after stroke.

  2. A new risk scoring model for prediction of poor coronary collateral circulation in acute non-ST-elevation myocardial infarction.

    Science.gov (United States)

    İleri, Mehmet; Güray, Ümit; Yetkin, Ertan; Gürsoy, Havva Tuğba; Bayır, Pınar Türker; Şahin, Deniz; Elalmış, Özgül Uçar; Büyükaşık, Yahya

    2016-01-01

    We aimed to investigate the clinical features associated with development of coronary collateral circulation (CCC) in patients with acute non-ST-elevation myocardial infarction (NSTEMI) and to develop a scoring model for predicting poor collateralization at hospital admission. The study enrolled 224 consecutive patients with NSTEMI admitted to our coronary care unit. Patients were divided into poor (grade 0 and 1) and good (grade 2 and 3) CCC groups. In logistic regression analysis, presence of diabetes mellitus, total white blood cell (WBC) and neutrophil counts and neutrophil to lymphocyte ratio (NLR) were found as independent positive predictors of poor CCC, whereas older age (≥ 70 years) emerged as a negative indicator. The final scoring model was based on 5 variables which were significant at p risk score ≤ 1, 29 had good CCC (with a 97% negative predictive value). On the other hand, 139 patients had risk score ≥ 4; out of whom, 130 (with a 93.5% positive predictive value) had poor collateralization. Sensitivity and specificity of the model in predicting poor collateralization in patients with scores ≤ 1 and ≥ 4 were 99.2% (130/131) and +76.3 (29/38), respectively. This study represents the first prediction model for degree of coronary collateralization in patients with acute NSTEMI.

  3. Machine learning derived risk prediction of anorexia nervosa.

    Science.gov (United States)

    Guo, Yiran; Wei, Zhi; Keating, Brendan J; Hakonarson, Hakon

    2016-01-20

    Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.

  4. Peak Pc Prediction in Conjunction Analysis: Conjunction Assessment Risk Analysis. Pc Behavior Prediction Models

    Science.gov (United States)

    Vallejo, J.J.; Hejduk, M.D.; Stamey, J. D.

    2015-01-01

    Satellite conjunction risk typically evaluated through the probability of collision (Pc). Considers both conjunction geometry and uncertainties in both state estimates. Conjunction events initially discovered through Joint Space Operations Center (JSpOC) screenings, usually seven days before Time of Closest Approach (TCA). However, JSpOC continues to track objects and issue conjunction updates. Changes in state estimate and reduced propagation time cause Pc to change as event develops. These changes a combination of potentially predictable development and unpredictable changes in state estimate covariance. Operationally useful datum: the peak Pc. If it can reasonably be inferred that the peak Pc value has passed, then risk assessment can be conducted against this peak value. If this value is below remediation level, then event intensity can be relaxed. Can the peak Pc location be reasonably predicted?

  5. Dynamic Bayesian modeling for risk prediction in credit operations

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andres

    2015-01-01

    Our goal is to do risk prediction in credit operations, and as data is collected continuously and reported on a monthly basis, this gives rise to a streaming data classification problem. Our analysis reveals some practical problems that have not previously been thoroughly analyzed in the context...

  6. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  7. Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors.

    Science.gov (United States)

    Razavian, Narges; Blecker, Saul; Schmidt, Ann Marie; Smith-McLallen, Aaron; Nigam, Somesh; Sontag, David

    2015-12-01

    We present a new approach to population health, in which data-driven predictive models are learned for outcomes such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors. Using administrative claims, pharmacy records, healthcare utilization, and laboratory results of 4.1 million individuals between 2005 and 2009, an initial set of 42,000 variables were derived that together describe the full health status and history of every individual. Machine learning was then used to methodically enhance predictive variable set and fit models predicting onset of type 2 diabetes in 2009-2011, 2010-2012, and 2011-2013. We compared the enhanced model with a parsimonious model consisting of known diabetes risk factors in a real-world environment, where missing values are common and prevalent. Furthermore, we analyzed novel and known risk factors emerging from the model at different age groups at different stages before the onset. Parsimonious model using 21 classic diabetes risk factors resulted in area under ROC curve (AUC) of 0.75 for diabetes prediction within a 2-year window following the baseline. The enhanced model increased the AUC to 0.80, with about 900 variables selected as predictive (p differences between AUCs). Similar improvements were observed for models predicting diabetes onset 1-3 years and 2-4 years after baseline. The enhanced model improved positive predictive value by at least 50% and identified novel surrogate risk factors for type 2 diabetes, such as chronic liver disease (odds ratio [OR] 3.71), high alanine aminotransferase (OR 2.26), esophageal reflux (OR 1.85), and history of acute bronchitis (OR 1.45). Liver risk factors emerge later in the process of diabetes development compared with obesity-related factors such as hypertension and high hemoglobin A1c. In conclusion, population-level risk

  8. The more from East-Asian, the better: risk prediction of colorectal cancer risk by GWAS-identified SNPs among Japanese.

    Science.gov (United States)

    Abe, Makiko; Ito, Hidemi; Oze, Isao; Nomura, Masatoshi; Ogawa, Yoshihiro; Matsuo, Keitaro

    2017-12-01

    Little is known about the difference of genetic predisposition for CRC between ethnicities; however, many genetic traits common to colorectal cancer have been identified. This study investigated whether more SNPs identified in GWAS in East Asian population could improve the risk prediction of Japanese and explored possible application of genetic risk groups as an instrument of the risk communication. 558 Patients histologically verified colorectal cancer and 1116 first-visit outpatients were included for derivation study, and 547 cases and 547 controls were for replication study. Among each population, we evaluated prediction models for the risk of CRC that combined the genetic risk group based on SNPs from GWASs in European-population and a similarly developed model adding SNPs from GWASs in East Asian-population. We examined whether adding East Asian-specific SNPs would improve the discrimination. Six SNPs (rs6983267, rs4779584, rs4444235, rs9929218, rs10936599, rs16969681) from 23 SNPs by European-based GWAS and five SNPs (rs704017, rs11196172, rs10774214, rs647161, rs2423279) among ten SNPs by Asian-based GWAS were selected in CRC risk prediction model. Compared with a 6-SNP-based model, an 11-SNP model including Asian GWAS-SNPs showed improved discrimination capacity in Receiver operator characteristic analysis. A model with 11 SNPs resulted in statistically significant improvement in both derivation (P = 0.0039) and replication studies (P = 0.0018) compared with six SNP model. We estimated cumulative risk of CRC by using genetic risk group based on 11 SNPs and found that the cumulative risk at age 80 is approximately 13% in the high-risk group while 6% in the low-risk group. We constructed a more efficient CRC risk prediction model with 11 SNPs including newly identified East Asian-based GWAS SNPs (rs704017, rs11196172, rs10774214, rs647161, rs2423279). Risk grouping based on 11 SNPs depicted lifetime difference of CRC risk. This might be useful for

  9. Determining the optimal screening interval for type 2 diabetes mellitus using a risk prediction model.

    Directory of Open Access Journals (Sweden)

    Andrei Brateanu

    Full Text Available Progression to diabetes mellitus (DM is variable and the screening time interval not well defined. The American Diabetes Association and US Preventive Services Task Force suggest screening every 3 years, but evidence is limited. The objective of the study was to develop a model to predict the probability of developing DM and suggest a risk-based screening interval.We included non-diabetic adult patients screened for DM in the Cleveland Clinic Health System if they had at least two measurements of glycated hemoglobin (HbA1c, an initial one less than 6.5% (48 mmol/mol in 2008, and another between January, 2009 and December, 2013. Cox proportional hazards models were created. The primary outcome was DM defined as HbA1C greater than 6.4% (46 mmol/mol. The optimal rescreening interval was chosen based on the predicted probability of developing DM.Of 5084 participants, 100 (4.4% of the 2281 patients with normal HbA1c and 772 (27.5% of the 2803 patients with prediabetes developed DM within 5 years. Factors associated with developing DM included HbA1c (HR per 0.1 units increase 1.20; 95%CI, 1.13-1.27, family history (HR 1.31; 95%CI, 1.13-1.51, smoking (HR 1.18; 95%CI, 1.03-1.35, triglycerides (HR 1.01; 95%CI, 1.00-1.03, alanine aminotransferase (HR 1.07; 95%CI, 1.03-1.11, body mass index (HR 1.06; 95%CI, 1.01-1.11, age (HR 0.95; 95%CI, 0.91-0.99 and high-density lipoproteins (HR 0.93; 95% CI, 0.90-0.95. Five percent of patients in the highest risk tertile developed DM within 8 months, while it took 35 months for 5% of the middle tertile to develop DM. Only 2.4% percent of the patients in the lowest tertile developed DM within 5 years.A risk prediction model employing commonly available data can be used to guide screening intervals. Based on equal intervals for equal risk, patients in the highest risk category could be rescreened after 8 months, while those in the intermediate and lowest risk categories could be rescreened after 3 and 5 years

  10. Risk factors and a prediction model for lower limb lymphedema following lymphadenectomy in gynecologic cancer: a hospital-based retrospective cohort study.

    Science.gov (United States)

    Kuroda, Kenji; Yamamoto, Yasuhiro; Yanagisawa, Manami; Kawata, Akira; Akiba, Naoya; Suzuki, Kensuke; Naritaka, Kazutoshi

    2017-07-25

    Lower limb lymphedema (LLL) is a chronic and incapacitating condition afflicting patients who undergo lymphadenectomy for gynecologic cancer. This study aimed to identify risk factors for LLL and to develop a prediction model for its occurrence. Pelvic lymphadenectomy (PLA) with or without para-aortic lymphadenectomy (PALA) was performed on 366 patients with gynecologic malignancies at Yaizu City Hospital between April 2002 and July 2014; we retrospectively analyzed 264 eligible patients. The intervals between surgery and diagnosis of LLL were calculated; the prevalence and risk factors were evaluated using the Kaplan-Meier and Cox proportional hazards methods. We developed a prediction model with which patients were scored and classified as low-risk or high-risk. The cumulative incidence of LLL was 23.1% at 1 year, 32.8% at 3 years, and 47.7% at 10 years post-surgery. LLL developed after a median 13.5 months. Using regression analysis, body mass index (BMI) ≥25 kg/m 2 (hazard ratio [HR], 1.616; 95% confidence interval [CI], 1.030-2.535), PLA + PALA (HR, 2.323; 95% CI, 1.126-4.794), postoperative radiation therapy (HR, 2.469; 95% CI, 1.148-5.310), and lymphocyst formation (HR, 1.718; 95% CI, 1.120-2.635) were found to be independently associated with LLL; age, type of cancer, number of lymph nodes, retroperitoneal suture, chemotherapy, lymph node metastasis, herbal medicine, self-management education, or infection were not associated with LLL. The predictive score was based on the 4 associated variables; patients were classified as high-risk (scores 3-6) and low-risk (scores 0-2). LLL incidence was significantly greater in the high-risk group than in the low-risk group (HR, 2.19; 95% CI, 1.440-3.324). The cumulative incidence at 5 years was 52.1% [95% CI, 42.9-62.1%] for the high-risk group and 28.9% [95% CI, 21.1-38.7%] for the low-risk group. The area under the receiver operator characteristics curve for the prediction model was 0.631 at 1 year, 0

  11. Evaluating predictive models of software quality

    International Nuclear Information System (INIS)

    Ciaschini, V; Canaparo, M; Ronchieri, E; Salomoni, D

    2014-01-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  12. Evaluating Predictive Models of Software Quality

    Science.gov (United States)

    Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.

    2014-06-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  13. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    Science.gov (United States)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  14. Predicting Risk of Suicide Attempt Using History of Physical Illnesses From Electronic Medical Records

    Science.gov (United States)

    Luo, Wei; Tran, Truyen; Berk, Michael; Venkatesh, Svetha

    2016-01-01

    Background Although physical illnesses, routinely documented in electronic medical records (EMR), have been found to be a contributing factor to suicides, no automated systems use this information to predict suicide risk. Objective The aim of this study is to quantify the impact of physical illnesses on suicide risk, and develop a predictive model that captures this relationship using EMR data. Methods We used history of physical illnesses (except chapter V: Mental and behavioral disorders) from EMR data over different time-periods to build a lookup table that contains the probability of suicide risk for each chapter of the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes. The lookup table was then used to predict the probability of suicide risk for any new assessment. Based on the different lengths of history of physical illnesses, we developed six different models to predict suicide risk. We tested the performance of developed models to predict 90-day risk using historical data over differing time-periods ranging from 3 to 48 months. A total of 16,858 assessments from 7399 mental health patients with at least one risk assessment was used for the validation of the developed model. The performance was measured using area under the receiver operating characteristic curve (AUC). Results The best predictive results were derived (AUC=0.71) using combined data across all time-periods, which significantly outperformed the clinical baseline derived from routine risk assessment (AUC=0.56). The proposed approach thus shows potential to be incorporated in the broader risk assessment processes used by clinicians. Conclusions This study provides a novel approach to exploit the history of physical illnesses extracted from EMR (ICD-10 codes without chapter V-mental and behavioral disorders) to predict suicide risk, and this model outperforms existing clinical assessments of suicide risk. PMID:27400764

  15. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    Science.gov (United States)

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  16. Application of discriminant analysis-based model for prediction of risk of low back disorders due to workplace design in industrial jobs.

    Science.gov (United States)

    Ganga, G M D; Esposto, K F; Braatz, D

    2012-01-01

    The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.

  17. Fingerprint verification prediction model in hand dermatitis.

    Science.gov (United States)

    Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah

    2015-07-01

    Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.

  18. Evaluation of the white finger risk prediction model in ISO 5349 suggests need for prospective studies.

    Science.gov (United States)

    Gemne, G; Lundström, R

    1996-05-01

    The risk prediction model for white fingers in Annex A of ISO 5349 is not likely to offer protection from all tools and all work processes. It is also probable that some work place changes it has initiated are either redundant or lack the intended effect. The main reasons for these shortcomings are the following. The often demonstrated disagreement between predicted and observed white fingers occurrence may be related to the fact that the model is based on latency data. This leads to an overestimation, to an unknown extent, of true group risks. A possible healthy worker effect, resulting in underestimation, has not been considered, and uncertainty because of recall bias is connected with using latency as effect variable in a slowly developing disorder like white fingers. The diagnostic criteria for white fingers have varied over the years, causing a possible inclusion of circulatory disturbances other than those induced by vibration. Among insufficiently clarified matters unrelated to vibration are variations in individual susceptibility and other host factors that modify vibration effects, uncertainty concerning daily or total effective exposure, and the fact that variation in work methods and processes as well as ergonomic factors other than vibration tend to make different groups incomparable form the viewpoint of risk of injury. Lack of sufficient data on vibration measurements and employment durations add to the uncertainty, as do variations in tool conditions (grinder wheels, etc) and inherent difficulties in measurement. Finally, the ISO 5349 frequency-weighting curve only relates to acute sensory effects rather than chronic effects on vascular functions like white fingers, and directional difference in sensitivity has not been incorporated in the curve. Data on exposure-response relationships are needed from prospective studies that monitor the dose of exposure to special vibration types and all relevant environmental agents, employ diagnostics with good

  19. Predictive value and modeling analysis of MSCT signs in gastrointestinal stromal tumors (GISTs) to pathological risk degree.

    Science.gov (United States)

    Wang, J-K

    2017-03-01

    By analyzing MSCT (multi-slice computed tomography) signs with different risks in gastrointestinal stromal tumors, this paper aimed to discuss the predictive value and modeling analysis of MSCT signs in GISTs (gastrointestinal stromal tumor) to pathological risk degree. 100 cases of primary GISTs with abdominal and pelvic MSCT scan were involved in this study. All MSCT scan findings and enhanced findings were analyzed and compared among cases with different risk degree of pathology. Then GISTs diagnostic model was established by using support vector machine (SVM) algorithm, and its diagnostic value was evaluated as well. All lesions were solitary, among which there were 46 low-risk cases, 24 medium-risk cases and 30 high-risk cases. For all high-risk, medium-risk and low-risk GISTs, there were statistical differences in tumor growth pattern, size, shape, fat space, with or without calcification, ulcer, enhancement method and peritumoral and intratumoral vessels (pvalue at each period (plain scan, arterial phase, venous phase) (p>0.05). The apparent difference lied in plain scan, arterial phase and venous phase for each risk degree. The diagnostic accuracy of SVM diagnostic model established with 10 imaging features as indexes was 70.0%, and it was especially reliable when diagnosing GISTs of high or low risk. Preoperative analysis of MSCT features is clinically significant for its diagnosis of risk degree and prognosis; GISTs diagnostic model established on the basis of SVM possesses high diagnostic value.

  20. Stochastic Model Predictive Fault Tolerant Control Based on Conditional Value at Risk for Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Yun-Tao Shi

    2018-01-01

    Full Text Available Wind energy has been drawing considerable attention in recent years. However, due to the random nature of wind and high failure rate of wind energy conversion systems (WECSs, how to implement fault-tolerant WECS control is becoming a significant issue. This paper addresses the fault-tolerant control problem of a WECS with a probable actuator fault. A new stochastic model predictive control (SMPC fault-tolerant controller with the Conditional Value at Risk (CVaR objective function is proposed in this paper. First, the Markov jump linear model is used to describe the WECS dynamics, which are affected by many stochastic factors, like the wind. The Markov jump linear model can precisely model the random WECS properties. Second, the scenario-based SMPC is used as the controller to address the control problem of the WECS. With this controller, all the possible realizations of the disturbance in prediction horizon are enumerated by scenario trees so that an uncertain SMPC problem can be transformed into a deterministic model predictive control (MPC problem. Finally, the CVaR object function is adopted to improve the fault-tolerant control performance of the SMPC controller. CVaR can provide a balance between the performance and random failure risks of the system. The Min-Max performance index is introduced to compare the fault-tolerant control performance with the proposed controller. The comparison results show that the proposed method has better fault-tolerant control performance.

  1. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation.

    Science.gov (United States)

    Candido Dos Reis, Francisco J; Wishart, Gordon C; Dicks, Ed M; Greenberg, David; Rashbass, Jem; Schmidt, Marjanka K; van den Broek, Alexandra J; Ellis, Ian O; Green, Andrew; Rakha, Emad; Maishman, Tom; Eccles, Diana M; Pharoah, Paul D P

    2017-05-22

    PREDICT is a breast cancer prognostic and treatment benefit model implemented online. The overall fit of the model has been good in multiple independent case series, but PREDICT has been shown to underestimate breast cancer specific mortality in women diagnosed under the age of 40. Another limitation is the use of discrete categories for tumour size and node status resulting in 'step' changes in risk estimates on moving between categories. We have refitted the PREDICT prognostic model using the original cohort of cases from East Anglia with updated survival time in order to take into account age at diagnosis and to smooth out the survival function for tumour size and node status. Multivariable Cox regression models were used to fit separate models for ER negative and ER positive disease. Continuous variables were fitted using fractional polynomials and a smoothed baseline hazard was obtained by regressing the baseline cumulative hazard for each patients against time using fractional polynomials. The fit of the prognostic models were then tested in three independent data sets that had also been used to validate the original version of PREDICT. In the model fitting data, after adjusting for other prognostic variables, there is an increase in risk of breast cancer specific mortality in younger and older patients with ER positive disease, with a substantial increase in risk for women diagnosed before the age of 35. In ER negative disease the risk increases slightly with age. The association between breast cancer specific mortality and both tumour size and number of positive nodes was non-linear with a more marked increase in risk with increasing size and increasing number of nodes in ER positive disease. The overall calibration and discrimination of the new version of PREDICT (v2) was good and comparable to that of the previous version in both model development and validation data sets. However, the calibration of v2 improved over v1 in patients diagnosed under the age

  2. Predicting disease risk using bootstrap ranking and classification algorithms.

    Directory of Open Access Journals (Sweden)

    Ohad Manor

    Full Text Available Genome-wide association studies (GWAS are widely used to search for genetic loci that underlie human disease. Another goal is to predict disease risk for different individuals given their genetic sequence. Such predictions could either be used as a "black box" in order to promote changes in life-style and screening for early diagnosis, or as a model that can be studied to better understand the mechanism of the disease. Current methods for risk prediction typically rank single nucleotide polymorphisms (SNPs by the p-value of their association with the disease, and use the top-associated SNPs as input to a classification algorithm. However, the predictive power of such methods is relatively poor. To improve the predictive power, we devised BootRank, which uses bootstrapping in order to obtain a robust prioritization of SNPs for use in predictive models. We show that BootRank improves the ability to predict disease risk of unseen individuals in the Wellcome Trust Case Control Consortium (WTCCC data and results in a more robust set of SNPs and a larger number of enriched pathways being associated with the different diseases. Finally, we show that combining BootRank with seven different classification algorithms improves performance compared to previous studies that used the WTCCC data. Notably, diseases for which BootRank results in the largest improvements were recently shown to have more heritability than previously thought, likely due to contributions from variants with low minimum allele frequency (MAF, suggesting that BootRank can be beneficial in cases where SNPs affecting the disease are poorly tagged or have low MAF. Overall, our results show that improving disease risk prediction from genotypic information may be a tangible goal, with potential implications for personalized disease screening and treatment.

  3. Risk Factors Analysis and Death Prediction in Some Life-Threatening Ailments Using Chi-Square Case-Based Reasoning (χ2 CBR) Model.

    Science.gov (United States)

    Adeniyi, D A; Wei, Z; Yang, Y

    2018-01-30

    A wealth of data are available within the health care system, however, effective analysis tools for exploring the hidden patterns in these datasets are lacking. To alleviate this limitation, this paper proposes a simple but promising hybrid predictive model by suitably combining the Chi-square distance measurement with case-based reasoning technique. The study presents the realization of an automated risk calculator and death prediction in some life-threatening ailments using Chi-square case-based reasoning (χ 2 CBR) model. The proposed predictive engine is capable of reducing runtime and speeds up execution process through the use of critical χ 2 distribution value. This work also showcases the development of a novel feature selection method referred to as frequent item based rule (FIBR) method. This FIBR method is used for selecting the best feature for the proposed χ 2 CBR model at the preprocessing stage of the predictive procedures. The implementation of the proposed risk calculator is achieved through the use of an in-house developed PHP program experimented with XAMP/Apache HTTP server as hosting server. The process of data acquisition and case-based development is implemented using the MySQL application. Performance comparison between our system, the NBY, the ED-KNN, the ANN, the SVM, the Random Forest and the traditional CBR techniques shows that the quality of predictions produced by our system outperformed the baseline methods studied. The result of our experiment shows that the precision rate and predictive quality of our system in most cases are equal to or greater than 70%. Our result also shows that the proposed system executes faster than the baseline methods studied. Therefore, the proposed risk calculator is capable of providing useful, consistent, faster, accurate and efficient risk level prediction to both the patients and the physicians at any time, online and on a real-time basis.

  4. Prediction models : the right tool for the right problem

    NARCIS (Netherlands)

    Kappen, Teus H.; Peelen, Linda M.

    2016-01-01

    PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to

  5. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jae Kwon Kim

    2017-01-01

    Full Text Available Background. Of the machine learning techniques used in predicting coronary heart disease (CHD, neural network (NN is popularly used to improve performance accuracy. Objective. Even though NN-based systems provide meaningful results based on clinical experiments, medical experts are not satisfied with their predictive performances because NN is trained in a “black-box” style. Method. We sought to devise an NN-based prediction of CHD risk using feature correlation analysis (NN-FCA using two stages. First, the feature selection stage, which makes features acceding to the importance in predicting CHD risk, is ranked, and second, the feature correlation analysis stage, during which one learns about the existence of correlations between feature relations and the data of each NN predictor output, is determined. Result. Of the 4146 individuals in the Korean dataset evaluated, 3031 had low CHD risk and 1115 had CHD high risk. The area under the receiver operating characteristic (ROC curve of the proposed model (0.749 ± 0.010 was larger than the Framingham risk score (FRS (0.393 ± 0.010. Conclusions. The proposed NN-FCA, which utilizes feature correlation analysis, was found to be better than FRS in terms of CHD risk prediction. Furthermore, the proposed model resulted in a larger ROC curve and more accurate predictions of CHD risk in the Korean population than the FRS.

  6. [Acute kidney injury after pediatric cardiac surgery: risk factors and outcomes. Proposal for a predictive model].

    Science.gov (United States)

    Cardoso, Bárbara; Laranjo, Sérgio; Gomes, Inês; Freitas, Isabel; Trigo, Conceição; Fragata, Isabel; Fragata, José; Pinto, Fátima

    2016-02-01

    To characterize the epidemiology and risk factors for acute kidney injury (AKI) after pediatric cardiac surgery in our center, to determine its association with poor short-term outcomes, and to develop a logistic regression model that will predict the risk of AKI for the study population. This single-center, retrospective study included consecutive pediatric patients with congenital heart disease who underwent cardiac surgery between January 2010 and December 2012. Exclusion criteria were a history of renal disease, dialysis or renal transplantation. Of the 325 patients included, median age three years (1 day-18 years), AKI occurred in 40 (12.3%) on the first postoperative day. Overall mortality was 13 (4%), nine of whom were in the AKI group. AKI was significantly associated with length of intensive care unit stay, length of mechanical ventilation and in-hospital death (p<0.01). Patients' age and postoperative serum creatinine, blood urea nitrogen and lactate levels were included in the logistic regression model as predictor variables. The model accurately predicted AKI in this population, with a maximum combined sensitivity of 82.1% and specificity of 75.4%. AKI is common and is associated with poor short-term outcomes in this setting. Younger age and higher postoperative serum creatinine, blood urea nitrogen and lactate levels were powerful predictors of renal injury in this population. The proposed model could be a useful tool for risk stratification of these patients. Copyright © 2015 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  7. Monitoring risk-adjusted outcomes in congenital heart surgery: does the appropriateness of a risk model change with time?

    Science.gov (United States)

    Tsang, Victor T; Brown, Katherine L; Synnergren, Mats Johanssen; Kang, Nicholas; de Leval, Marc R; Gallivan, Steve; Utley, Martin

    2009-02-01

    Risk adjustment of outcomes in pediatric congenital heart surgery is challenging due to the great diversity in diagnoses and procedures. We have previously shown that variable life-adjusted display (VLAD) charts provide an effective graphic display of risk-adjusted outcomes in this specialty. A question arises as to whether the risk model used remains appropriate over time. We used a recently developed graphic technique to evaluate the performance of an existing risk model among those patients at a single center during 2000 to 2003 originally used in model development. We then compared the distribution of predicted risk among these patients with that among patients in 2004 to 2006. Finally, we constructed a VLAD chart of risk-adjusted outcomes for the latter period. Among 1083 patients between April 2000 and March 2003, the risk model performed well at predicted risks above 3%, underestimated mortality at 2% to 3% predicted risk, and overestimated mortality below 2% predicted risk. There was little difference in the distribution of predicted risk among these patients and among 903 patients between June 2004 and October 2006. Outcomes for the more recent period were appreciably better than those expected according to the risk model. This finding cannot be explained by any apparent bias in the risk model combined with changes in case-mix. Risk models can, and hopefully do, become out of date. There is scope for complacency in the risk-adjusted audit if the risk model used is not regularly recalibrated to reflect changing standards and expectations.

  8. A utility/cost analysis of breast cancer risk prediction algorithms

    Science.gov (United States)

    Abbey, Craig K.; Wu, Yirong; Burnside, Elizabeth S.; Wunderlich, Adam; Samuelson, Frank W.; Boone, John M.

    2016-03-01

    Breast cancer risk prediction algorithms are used to identify subpopulations that are at increased risk for developing breast cancer. They can be based on many different sources of data such as demographics, relatives with cancer, gene expression, and various phenotypic features such as breast density. Women who are identified as high risk may undergo a more extensive (and expensive) screening process that includes MRI or ultrasound imaging in addition to the standard full-field digital mammography (FFDM) exam. Given that there are many ways that risk prediction may be accomplished, it is of interest to evaluate them in terms of expected cost, which includes the costs of diagnostic outcomes. In this work we perform an expected-cost analysis of risk prediction algorithms that is based on a published model that includes the costs associated with diagnostic outcomes (true-positive, false-positive, etc.). We assume the existence of a standard screening method and an enhanced screening method with higher scan cost, higher sensitivity, and lower specificity. We then assess expected cost of using a risk prediction algorithm to determine who gets the enhanced screening method under the strong assumption that risk and diagnostic performance are independent. We find that if risk prediction leads to a high enough positive predictive value, it will be cost-effective regardless of the size of the subpopulation. Furthermore, in terms of the hit-rate and false-alarm rate of the of the risk prediction algorithm, iso-cost contours are lines with slope determined by properties of the available diagnostic systems for screening.

  9. Predictive Models, How good are they?

    DEFF Research Database (Denmark)

    Kasch, Helge

    The WAD grading system has been used for more than 20 years by now. It has shown long-term viability, but with strengths and limitations. New bio-psychosocial assessment of the acute whiplash injured subject may provide better prediction of long-term disability and pain. Furthermore, the emerging......-up. It is important to obtain prospective identification of the relevant risk underreported disability could, if we were able to expose these hidden “risk-factors” during our consultations, provide us with better predictive models. New data from large clinical studies will present exciting new genetic risk markers...

  10. The Surgical Mortality Probability Model: derivation and validation of a simple risk prediction rule for noncardiac surgery.

    Science.gov (United States)

    Glance, Laurent G; Lustik, Stewart J; Hannan, Edward L; Osler, Turner M; Mukamel, Dana B; Qian, Feng; Dick, Andrew W

    2012-04-01

    To develop a 30-day mortality risk index for noncardiac surgery that can be used to communicate risk information to patients and guide clinical management at the "point-of-care," and that can be used by surgeons and hospitals to internally audit their quality of care. Clinicians rely on the Revised Cardiac Risk Index to quantify the risk of cardiac complications in patients undergoing noncardiac surgery. Because mortality from noncardiac causes accounts for many perioperative deaths, there is also a need for a simple bedside risk index to predict 30-day all-cause mortality after noncardiac surgery. Retrospective cohort study of 298,772 patients undergoing noncardiac surgery during 2005 to 2007 using the American College of Surgeons National Surgical Quality Improvement Program database. The 9-point S-MPM (Surgical Mortality Probability Model) 30-day mortality risk index was derived empirically and includes three risk factors: ASA (American Society of Anesthesiologists) physical status, emergency status, and surgery risk class. Patients with ASA physical status I, II, III, IV or V were assigned either 0, 2, 4, 5, or 6 points, respectively; intermediate- or high-risk procedures were assigned 1 or 2 points, respectively; and emergency procedures were assigned 1 point. Patients with risk scores less than 5 had a predicted risk of mortality less than 0.50%, whereas patients with a risk score of 5 to 6 had a risk of mortality between 1.5% and 4.0%. Patients with a risk score greater than 6 had risk of mortality more than 10%. S-MPM exhibited excellent discrimination (C statistic, 0.897) and acceptable calibration (Hosmer-Lemeshow statistic 13.0, P = 0.023) in the validation data set. Thirty-day mortality after noncardiac surgery can be accurately predicted using a simple and accurate risk score based on information readily available at the bedside. This risk index may play a useful role in facilitating shared decision making, developing and implementing risk

  11. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  12. A point-based prediction model for cardiovascular risk in orthotopic liver transplantation: The CAR-OLT score.

    Science.gov (United States)

    VanWagner, Lisa B; Ning, Hongyan; Whitsett, Maureen; Levitsky, Josh; Uttal, Sarah; Wilkins, John T; Abecassis, Michael M; Ladner, Daniela P; Skaro, Anton I; Lloyd-Jones, Donald M

    2017-12-01

    Cardiovascular disease (CVD) complications are important causes of morbidity and mortality after orthotopic liver transplantation (OLT). There is currently no preoperative risk-assessment tool that allows physicians to estimate the risk for CVD events following OLT. We sought to develop a point-based prediction model (risk score) for CVD complications after OLT, the Cardiovascular Risk in Orthotopic Liver Transplantation risk score, among a cohort of 1,024 consecutive patients aged 18-75 years who underwent first OLT in a tertiary-care teaching hospital (2002-2011). The main outcome measures were major 1-year CVD complications, defined as death from a CVD cause or hospitalization for a major CVD event (myocardial infarction, revascularization, heart failure, atrial fibrillation, cardiac arrest, pulmonary embolism, and/or stroke). The bootstrap method yielded bias-corrected 95% confidence intervals for the regression coefficients of the final model. Among 1,024 first OLT recipients, major CVD complications occurred in 329 (32.1%). Variables selected for inclusion in the model (using model optimization strategies) included preoperative recipient age, sex, race, employment status, education status, history of hepatocellular carcinoma, diabetes, heart failure, atrial fibrillation, pulmonary or systemic hypertension, and respiratory failure. The discriminative performance of the point-based score (C statistic = 0.78, bias-corrected C statistic = 0.77) was superior to other published risk models for postoperative CVD morbidity and mortality, and it had appropriate calibration (Hosmer-Lemeshow P = 0.33). The point-based risk score can identify patients at risk for CVD complications after OLT surgery (available at www.carolt.us); this score may be useful for identification of candidates for further risk stratification or other management strategies to improve CVD outcomes after OLT. (Hepatology 2017;66:1968-1979). © 2017 by the American Association for the Study of Liver

  13. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    2016-01-01

    evaluation. More specifically, the model mostly generates positive (negative) economic value during times of high (low) macroeconomic uncertainty. Overall, the expectations hypothesis remains a useful benchmark for investment decisions in bond markets, especially in low uncertainty states.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for investors. We propose a novel estimation strategy for affine term structure models that jointly fits yields and bond excess returns, thereby capturing predictive information...... otherwise hidden to standard estimations. The model predicts excess returns with high regression R2s and high forecast accuracy but cannot outperform the expectations hypothesis out-of-sample in terms of economic value, showing a general contrast between statistical and economic metrics of forecast...

  14. Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China).

    Science.gov (United States)

    Yang, Xueli; Li, Jianxin; Hu, Dongsheng; Chen, Jichun; Li, Ying; Huang, Jianfeng; Liu, Xiaoqing; Liu, Fangchao; Cao, Jie; Shen, Chong; Yu, Ling; Lu, Fanghong; Wu, Xianping; Zhao, Liancheng; Wu, Xigui; Gu, Dongfeng

    2016-11-08

    The accurate assessment of individual risk can be of great value to guiding and facilitating the prevention of atherosclerotic cardiovascular disease (ASCVD). However, prediction models in common use were formulated primarily in white populations. The China-PAR project (Prediction for ASCVD Risk in China) is aimed at developing and validating 10-year risk prediction equations for ASCVD from 4 contemporary Chinese cohorts. Two prospective studies followed up together with a unified protocol were used as the derivation cohort to develop 10-year ASCVD risk equations in 21 320 Chinese participants. The external validation was evaluated in 2 independent Chinese cohorts with 14 123 and 70 838 participants. Furthermore, model performance was compared with the Pooled Cohort Equations reported in the American College of Cardiology/American Heart Association guideline. Over 12 years of follow-up in the derivation cohort with 21 320 Chinese participants, 1048 subjects developed a first ASCVD event. Sex-specific equations had C statistics of 0.794 (95% confidence interval, 0.775-0.814) for men and 0.811 (95% confidence interval, 0.787-0.835) for women. The predicted rates were similar to the observed rates, as indicated by a calibration χ 2 of 13.1 for men (P=0.16) and 12.8 for women (P=0.17). Good internal and external validations of our equations were achieved in subsequent analyses. Compared with the Chinese equations, the Pooled Cohort Equations had lower C statistics and much higher calibration χ 2 values in men. Our project developed effective tools with good performance for 10-year ASCVD risk prediction among a Chinese population that will help to improve the primary prevention and management of cardiovascular disease. © 2016 American Heart Association, Inc.

  15. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.

    Science.gov (United States)

    Blanche, Paul; Proust-Lima, Cécile; Loubère, Lucie; Berr, Claudine; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2015-03-01

    Thanks to the growing interest in personalized medicine, joint modeling of longitudinal marker and time-to-event data has recently started to be used to derive dynamic individual risk predictions. Individual predictions are called dynamic because they are updated when information on the subject's health profile grows with time. We focus in this work on statistical methods for quantifying and comparing dynamic predictive accuracy of this kind of prognostic models, accounting for right censoring and possibly competing events. Dynamic area under the ROC curve (AUC) and Brier Score (BS) are used to quantify predictive accuracy. Nonparametric inverse probability of censoring weighting is used to estimate dynamic curves of AUC and BS as functions of the time at which predictions are made. Asymptotic results are established and both pointwise confidence intervals and simultaneous confidence bands are derived. Tests are also proposed to compare the dynamic prediction accuracy curves of two prognostic models. The finite sample behavior of the inference procedures is assessed via simulations. We apply the proposed methodology to compare various prediction models using repeated measures of two psychometric tests to predict dementia in the elderly, accounting for the competing risk of death. Models are estimated on the French Paquid cohort and predictive accuracies are evaluated and compared on the French Three-City cohort. © 2014, The International Biometric Society.

  16. Predicting the Risk of Breakthrough Urinary Tract Infections: Primary Vesicoureteral Reflux.

    Science.gov (United States)

    Hidas, Guy; Billimek, John; Nam, Alexander; Soltani, Tandis; Kelly, Maryellen S; Selby, Blake; Dorgalli, Crystal; Wehbi, Elias; McAleer, Irene; McLorie, Gordon; Greenfield, Sheldon; Kaplan, Sherrie H; Khoury, Antoine E

    2015-11-01

    We constructed a risk prediction instrument stratifying patients with primary vesicoureteral reflux into groups according to their 2-year probability of breakthrough urinary tract infection. Demographic and clinical information was retrospectively collected in children diagnosed with primary vesicoureteral reflux and followed for 2 years. Bivariate and binary logistic regression analyses were performed to identify factors associated with breakthrough urinary tract infection. The final regression model was used to compute an estimation of the 2-year probability of breakthrough urinary tract infection for each subject. Accuracy of the binary classifier for breakthrough urinary tract infection was evaluated using receiver operator curve analysis. Three distinct risk groups were identified. The model was then validated in a prospective cohort. A total of 252 bivariate analyses showed that high grade (IV or V) vesicoureteral reflux (OR 9.4, 95% CI 3.8-23.5, p urinary tract infection (OR 5.3, 95% CI 1.1-24.7, p = 0.034) and female gender (OR 2.6, 95% CI 0.097-7.11, p urinary tract infection. Subgroup analysis revealed bladder and bowel dysfunction was a significant risk factor more pronounced in low grade (I to III) vesicoureteral reflux (OR 2.8, p = 0.018). The estimation model was applied for prospective validation, which demonstrated predicted vs actual 2-year breakthrough urinary tract infection rates of 19% vs 21%. Stratifying the patients into 3 risk groups based on parameters in the risk model showed 2-year risk for breakthrough urinary tract infection was 8.6%, 26.0% and 62.5% in the low, intermediate and high risk groups, respectively. This proposed risk stratification and probability model allows prediction of 2-year risk of patient breakthrough urinary tract infection to better inform parents of possible outcomes and treatment strategies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights

  17. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  18. An Integrated and Interdisciplinary Model for Predicting the Risk of Injury and Death in Future Earthquakes.

    Science.gov (United States)

    Shapira, Stav; Novack, Lena; Bar-Dayan, Yaron; Aharonson-Daniel, Limor

    2016-01-01

    A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities' preparedness and response capabilities and to mitigate future consequences. An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model's algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel. the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard. The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.

  19. Validation of mathematical models for the prediction of organs-at-risk dosimetric metrics in high-dose-rate gynecologic interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, Antonio L.; Viswanathan, Akila N.; Cormack, Robert A. [Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, Massachusetts 02115 (United States)

    2013-10-15

    Purpose: Given the complicated nature of an interstitial gynecologic brachytherapy treatment plan, the use of a quantitative tool to evaluate the quality of the achieved metrics compared to clinical practice would be advantageous. For this purpose, predictive mathematical models to predict the D{sub 2cc} of rectum and bladder in interstitial gynecologic brachytherapy are discussed and validated.Methods: Previous plans were used to establish the relationship between D2cc and the overlapping volume of the organ at risk with the targeted area (C0) or a 1-cm expansion of the target area (C1). Three mathematical models were evaluated: D{sub 2cc}=α*C{sub 1}+β (LIN); D{sub 2cc}=α– exp(–β*C{sub 0}) (EXP); and a mixed approach (MIX), where both C{sub 0} and C{sub 1} were inputs of the model. The parameters of the models were optimized on a training set of patient data, and the predictive error of each model (predicted D{sub 2cc}− real D{sub 2cc}) was calculated on a validation set of patient data. The data of 20 patients were used to perform a K-fold cross validation analysis, with K = 2, 4, 6, 8, 10, and 20.Results: MIX was associated with the smallest mean prediction error <6.4% for an 18-patient training set; LIN had an error <8.5%; EXP had an error <8.3%. Best case scenario analysis shows that an error ≤5% can be achieved for a ten-patient training set with MIX, an error ≤7.4% for LIN, and an error ≤6.9% for EXP. The error decreases with the increase in training set size, with the most marked decrease observed for MIX.Conclusions: The MIX model can predict the D{sub 2cc} of the organs at risk with an error lower than 5% with a training set of ten patients or greater. The model can be used in the development of quality assurance tools to identify treatment plans with suboptimal sparing of the organs at risk. It can also be used to improve preplanning and in the development of real-time intraoperative planning tools.

  20. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  1. Improvement of Risk Prediction After Transcatheter Aortic Valve Replacement by Combining Frailty With Conventional Risk Scores.

    Science.gov (United States)

    Schoenenberger, Andreas W; Moser, André; Bertschi, Dominic; Wenaweser, Peter; Windecker, Stephan; Carrel, Thierry; Stuck, Andreas E; Stortecky, Stefan

    2018-02-26

    This study sought to evaluate whether frailty improves mortality prediction in combination with the conventional scores. European System for Cardiac Operative Risk Evaluation (EuroSCORE) or Society of Thoracic Surgeons (STS) score have not been evaluated in combined models with frailty for mortality prediction after transcatheter aortic valve replacement (TAVR). This prospective cohort comprised 330 consecutive TAVR patients ≥70 years of age. Conventional scores and a frailty index (based on assessment of cognition, mobility, nutrition, and activities of daily living) were evaluated to predict 1-year all-cause mortality using Cox proportional hazards regression (providing hazard ratios [HRs] with confidence intervals [CIs]) and measures of test performance (providing likelihood ratio [LR] chi-square test statistic and C-statistic [CS]). All risk scores were predictive of the outcome (EuroSCORE, HR: 1.90 [95% CI: 1.45 to 2.48], LR chi-square test statistic 19.29, C-statistic 0.67; STS score, HR: 1.51 [95% CI: 1.21 to 1.88], LR chi-square test statistic 11.05, C-statistic 0.64; frailty index, HR: 3.29 [95% CI: 1.98 to 5.47], LR chi-square test statistic 22.28, C-statistic 0.66). A combination of the frailty index with either EuroSCORE (LR chi-square test statistic 38.27, C-statistic 0.72) or STS score (LR chi-square test statistic 28.71, C-statistic 0.68) improved mortality prediction. The frailty index accounted for 58.2% and 77.6% of the predictive information in the combined model with EuroSCORE and STS score, respectively. Net reclassification improvement and integrated discrimination improvement confirmed that the added frailty index improved risk prediction. This is the first study showing that the assessment of frailty significantly enhances prediction of 1-year mortality after TAVR in combined risk models with conventional risk scores and relevantly contributes to this improvement. Copyright © 2018 American College of Cardiology Foundation

  2. [Risk Prediction Using Routine Data: Development and Validation of Multivariable Models Predicting 30- and 90-day Mortality after Surgical Treatment of Colorectal Cancer].

    Science.gov (United States)

    Crispin, Alexander; Strahwald, Brigitte; Cheney, Catherine; Mansmann, Ulrich

    2018-06-04

    Quality control, benchmarking, and pay for performance (P4P) require valid indicators and statistical models allowing adjustment for differences in risk profiles of the patient populations of the respective institutions. Using hospital remuneration data for measuring quality and modelling patient risks has been criticized by clinicians. Here we explore the potential of prediction models for 30- and 90-day mortality after colorectal cancer surgery based on routine data. Full census of a major statutory health insurer. Surgical departments throughout the Federal Republic of Germany. 4283 and 4124 insurants with major surgery for treatment of colorectal cancer during 2013 and 2014, respectively. Age, sex, primary and secondary diagnoses as well as tumor locations as recorded in the hospital remuneration data according to §301 SGB V. 30- and 90-day mortality. Elixhauser comorbidities, Charlson conditions, and Charlson scores were generated from the ICD-10 diagnoses. Multivariable prediction models were developed using a penalized logistic regression approach (logistic ridge regression) in a derivation set (patients treated in 2013). Calibration and discrimination of the models were assessed in an internal validation sample (patients treated in 2014) using calibration curves, Brier scores, receiver operating characteristic curves (ROC curves) and the areas under the ROC curves (AUC). 30- and 90-day mortality rates in the learning-sample were 5.7 and 8.4%, respectively. The corresponding values in the validation sample were 5.9% and once more 8.4%. Models based on Elixhauser comorbidities exhibited the highest discriminatory power with AUC values of 0.804 (95% CI: 0.776 -0.832) and 0.805 (95% CI: 0.782-0.828) for 30- and 90-day mortality. The Brier scores for these models were 0.050 (95% CI: 0.044-0.056) and 0.067 (95% CI: 0.060-0.074) and similar to the models based on Charlson conditions. Regardless of the model, low predicted probabilities were well calibrated, while

  3. Predicting risk for childhood asthma by pre-pregnancy, perinatal, and postnatal factors.

    Science.gov (United States)

    Wen, Hui-Ju; Chiang, Tung-Liang; Lin, Shio-Jean; Guo, Yue Leon

    2015-05-01

    Symptoms of atopic disease start early in human life. Predicting risk for childhood asthma by early-life exposure would contribute to disease prevention. A birth cohort study was conducted to investigate early-life risk factors for childhood asthma and to develop a predictive model for the development of asthma. National representative samples of newborn babies were obtained by multistage stratified systematic sampling from the 2005 Taiwan Birth Registry. Information on potential risk factors and children's health was collected by home interview when babies were 6 months old and 5 yr old, respectively. Backward stepwise regression analysis was used to identify the risk factors of childhood asthma for predictive models that were used to calculate the probability of childhood asthma. A total of 19,192 children completed the study satisfactorily. Physician-diagnosed asthma was reported in 6.6% of 5-yr-old children. Pre-pregnancy factors (parental atopy and socioeconomic status), perinatal factors (place of residence, exposure to indoor mold and painting/renovations during pregnancy), and postnatal factors (maternal postpartum depression and the presence of atopic dermatitis before 6 months of age) were chosen for the predictive models, and the highest predicted probability of asthma in 5-yr-old children was 68.1% in boys and 78.1% in girls; the lowest probability in boys and girls was 4.1% and 3.2%, respectively. This investigation provides a technique for predicting risk of childhood asthma that can be used to developing a preventive strategy against asthma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Risk Prediction Models for Other Cancers or Multiple Sites

    Science.gov (United States)

    Developing statistical models that estimate the probability of developing other multiple cancers over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  5. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John G., E-mail: jeley@som.umaryland.edu [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Friedrich, Thomas [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Homann, Kenneth L.; Howell, Rebecca M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Scholz, Michael; Durante, Marco [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Newhauser, Wayne D. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana (United States); Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States)

    2016-05-01

    Purpose: This work proposes a theoretical framework that enables comparative risk predictions for second cancer incidence after particle beam therapy for different ion species for individual patients, accounting for differences in relative biological effectiveness (RBE) for the competing processes of tumor initiation and cell inactivation. Our working hypothesis was that use of carbon-ion therapy instead of proton therapy would show a difference in the predicted risk of second cancer incidence in the breast for a sample of Hodgkin lymphoma (HL) patients. Methods and Materials: We generated biologic treatment plans and calculated relative predicted risks of second cancer in the breast by using two proposed methods: a full model derived from the linear quadratic model and a simpler linear-no-threshold model. Results: For our reference calculation, we found the predicted risk of breast cancer incidence for carbon-ion plans-to-proton plan ratio, , to be 0.75 ± 0.07 but not significantly smaller than 1 (P=.180). Conclusions: Our findings suggest that second cancer risks are, on average, comparable between proton therapy and carbon-ion therapy.

  6. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Living donor risk model for predicting kidney allograft and patient survival in an emerging economy.

    Science.gov (United States)

    Zafar, Mirza Naqi; Wong, Germaine; Aziz, Tahir; Abbas, Khawar; Adibul Hasan Rizvi, S

    2018-03-01

    Living donor kidney is the main source of donor organs in low to middle income countries. We aimed to develop a living donor risk model that predicts graft and patient survival in an emerging economy. We used data from the Sindh Institute of Urology and Transplantation (SIUT) database (n = 2283 recipients and n = 2283 living kidney donors, transplanted between 1993 and 2009) and conducted Cox proportional hazard analyses to develop a composite score that predicts graft and patient survivals. Donor factors age, creatinine clearance, nephron dose (estimated by donor/recipient body weight ratio) and human leukocyte antigen (HLA) match were included in the living donor risk model. The adjusted hazard ratios (HRs) for graft failures among those who received a kidney with living donor scores (reference to donor score of zero) of 1, 2, 3 and 4 were 1.14 (95%CI: 0.94-1.39), 1.24 (95%CI:1.03-1.49), 1.25 (95%CI:1.03-1.51) and 1.36 (95%CI:1.08-1.72) (P-value for trend =0.05). Similar findings were observed for patient survival. Similar to findings in high income countries, our study suggests that donor characteristics such as age, nephron dose, creatinine clearance and HLA match are important factors that determine the long-term patient and graft survival in low income countries. However, other crucial but undefined factors may play a role in determining the overall risk of graft failure and mortality in living kidney donor transplant recipients. © 2016 Asian Pacific Society of Nephrology.

  8. Predictive validity of the Hendrich fall risk model II in an acute geriatric unit.

    Science.gov (United States)

    Ivziku, Dhurata; Matarese, Maria; Pedone, Claudio

    2011-04-01

    Falls are the most common adverse events reported in acute care hospitals, and older patients are the most likely to fall. The risk of falling cannot be completely eliminated, but it can be reduced through the implementation of a fall prevention program. A major evidence-based intervention to prevent falls has been the use of fall-risk assessment tools. Many tools have been increasingly developed in recent years, but most instruments have not been investigated regarding reliability, validity and clinical usefulness. This study intends to evaluate the predictive validity and inter-rater reliability of Hendrich fall risk model II (HFRM II) in order to identify older patients at risk of falling in geriatric units and recommend its use in clinical practice. A prospective descriptive design was used. The study was carried out in a geriatric acute care unit of an Italian University hospital. All over 65 years old patients consecutively admitted to a geriatric acute care unit of an Italian University hospital over 8-month period were enrolled. The patients enrolled were screened for the falls risk by nurses with the HFRM II within 24h of admission. The falls occurring during the patient's hospital stay were registered. Inter-rater reliability, area under the ROC curve, sensitivity, specificity, positive and negative predictive values and time for the administration were evaluated. 179 elderly patients were included. The inter-rater reliability was 0.87 (95% CI 0.71-1.00). The administration time was about 1min. The most frequently reported risk factors were depression, incontinence, vertigo. Sensitivity and specificity were respectively 86% and 43%. The optimal cut-off score for screening at risk patients was 5 with an area under the ROC curve of 0.72. The risk factors more strongly associated with falls were confusion and depression. As falls of older patients are a common problem in acute care settings it is necessary that the nurses use specific validate and reliable

  9. Effects of Different Missing Data Imputation Techniques on the Performance of Undiagnosed Diabetes Risk Prediction Models in a Mixed-Ancestry Population of South Africa.

    Directory of Open Access Journals (Sweden)

    Katya L Masconi

    Full Text Available Imputation techniques used to handle missing data are based on the principle of replacement. It is widely advocated that multiple imputation is superior to other imputation methods, however studies have suggested that simple methods for filling missing data can be just as accurate as complex methods. The objective of this study was to implement a number of simple and more complex imputation methods, and assess the effect of these techniques on the performance of undiagnosed diabetes risk prediction models during external validation.Data from the Cape Town Bellville-South cohort served as the basis for this study. Imputation methods and models were identified via recent systematic reviews. Models' discrimination was assessed and compared using C-statistic and non-parametric methods, before and after recalibration through simple intercept adjustment.The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously diagnosed diabetes. Of the final 1083 individuals, 329 (30.4% had missing data. Family history had the highest proportion of missing data (25%. Imputation of the outcome, undiagnosed diabetes, was highest in stochastic regression imputation (163 individuals. Overall, deletion resulted in the lowest model performances while simple imputation yielded the highest C-statistic for the Cambridge Diabetes Risk model, Kuwaiti Risk model, Omani Diabetes Risk model and Rotterdam Predictive model. Multiple imputation only yielded the highest C-statistic for the Rotterdam Predictive model, which were matched by simpler imputation methods.Deletion was confirmed as a poor technique for handling missing data. However, despite the emphasized disadvantages of simpler imputation methods, this study showed that implementing these methods results in similar predictive utility for undiagnosed diabetes when compared to multiple imputation.

  10. Geo-environmental model for the prediction of potential transmission risk of Dirofilaria in an area with dry climate and extensive irrigated crops. The case of Spain.

    Science.gov (United States)

    Simón, Luis; Afonin, Alexandr; López-Díez, Lucía Isabel; González-Miguel, Javier; Morchón, Rodrigo; Carretón, Elena; Montoya-Alonso, José Alberto; Kartashev, Vladimir; Simón, Fernando

    2014-03-01

    Zoonotic filarioses caused by Dirofilaria immitis and Dirofilaria repens are transmitted by culicid mosquitoes. Therefore Dirofilaria transmission depends on climatic factors like temperature and humidity. In spite of the dry climate of most of the Spanish territory, there are extensive irrigated crops areas providing moist habitats favourable for mosquito breeding. A GIS model to predict the risk of Dirofilaria transmission in Spain, based on temperatures and rainfall data as well as in the distribution of irrigated crops areas, is constructed. The model predicts that potential risk of Dirofilaria transmission exists in all the Spanish territory. Highest transmission risk exists in several areas of Andalucía, Extremadura, Castilla-La Mancha, Murcia, Valencia, Aragón and Cataluña, where moderate/high temperatures coincide with extensive irrigated crops. High risk in Balearic Islands and in some points of Canary Islands, is also predicted. The lowest risk is predicted in Northern cold and scarcely or non-irrigated dry Southeastern areas. The existence of irrigations locally increases transmission risk in low rainfall areas of the Spanish territory. The model can contribute to implement rational preventive therapy guidelines in accordance with the transmission characteristics of each local area. Moreover, the use of humidity-related factors could be of interest in future predictions to be performed in countries with similar environmental characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A risk prediction score model for predicting occurrence of post-PCI vasovagal reflex syndrome: a single center study in Chinese population.

    Science.gov (United States)

    Li, Hai-Yan; Guo, Yu-Tao; Tian, Cui; Song, Chao-Qun; Mu, Yang; Li, Yang; Chen, Yun-Dai

    2017-08-01

    The vasovagal reflex syndrome (VVRS) is common in the patients undergoing percutaneous coronary intervention (PCI). However, prediction and prevention of the risk for the VVRS have not been completely fulfilled. This study was conducted to develop a Risk Prediction Score Model to identify the determinants of VVRS in a large Chinese population cohort receiving PCI. From the hospital electronic medical database, we identified 3550 patients who received PCI (78.0% males, mean age 60 years) in Chinese PLA General Hospital from January 1, 2000 to August 30, 2016. The multivariate analysis and receiver operating characteristic (ROC) analysis were performed. The adverse events of VVRS in the patients were significantly increased after PCI procedure than before the operation (all P PCI was 4.5% (4.1%-5.6%). Compared to the patients suffering no VVRS, incidence of VVRS involved the following factors, namely female gender, primary PCI, hypertension, over two stents implantation in the left anterior descending (LAD), and the femoral puncture site. The multivariate analysis suggested that they were independent risk factors for predicting the incidence of VVRS (all P PCI (c-statistic 0.76, 95% CI: 0.72-0.79, P PCI whose diastolic blood pressure dropped by more than 30 mmHg and heart rate reduced by 10 times per minute (AUC: 0.84, 95% CI: 0.81-0.87, P PCI. In which, the following factors may be involved, the femoral puncture site, female gender, hypertension, primary PCI, and over 2 stents implanted in LAD.

  12. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control.

    Science.gov (United States)

    Phung, Dung; Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Chu, Cordia

    2016-10-01

    To develop a prediction score scheme useful for prevention practitioners and authorities to implement dengue preparedness and controls in the Mekong Delta region (MDR). We applied a spatial scan statistic to identify high-risk dengue clusters in the MDR and used generalised linear-distributed lag models to examine climate-dengue associations using dengue case records and meteorological data from 2003 to 2013. The significant predictors were collapsed into categorical scales, and the β-coefficients of predictors were converted to prediction scores. The score scheme was validated for predicting dengue outbreaks using ROC analysis. The north-eastern MDR was identified as the high-risk cluster. A 1 °C increase in temperature at lag 1-4 and 5-8 weeks increased the dengue risk 11% (95% CI, 9-13) and 7% (95% CI, 6-8), respectively. A 1% rise in humidity increased dengue risk 0.9% (95% CI, 0.2-1.4) at lag 1-4 and 0.8% (95% CI, 0.2-1.4) at lag 5-8 weeks. Similarly, a 1-mm increase in rainfall increased dengue risk 0.1% (95% CI, 0.05-0.16) at lag 1-4 and 0.11% (95% CI, 0.07-0.16) at lag 5-8 weeks. The predicted scores performed with high accuracy in diagnosing the dengue outbreaks (96.3%). This study demonstrates the potential usefulness of a dengue prediction score scheme derived from complex statistical models for high-risk dengue clusters. We recommend a further study to examine the possibility of incorporating such a score scheme into the dengue early warning system in similar climate settings. © 2016 John Wiley & Sons Ltd.

  13. Risk Prediction of One-Year Mortality in Patients with Cardiac Arrhythmias Using Random Survival Forest

    Directory of Open Access Journals (Sweden)

    Fen Miao

    2015-01-01

    Full Text Available Existing models for predicting mortality based on traditional Cox proportional hazard approach (CPH often have low prediction accuracy. This paper aims to develop a clinical risk model with good accuracy for predicting 1-year mortality in cardiac arrhythmias patients using random survival forest (RSF, a robust approach for survival analysis. 10,488 cardiac arrhythmias patients available in the public MIMIC II clinical database were investigated, with 3,452 deaths occurring within 1-year followups. Forty risk factors including demographics and clinical and laboratory information and antiarrhythmic agents were analyzed as potential predictors of all-cause mortality. RSF was adopted to build a comprehensive survival model and a simplified risk model composed of 14 top risk factors. The built comprehensive model achieved a prediction accuracy of 0.81 measured by c-statistic with 10-fold cross validation. The simplified risk model also achieved a good accuracy of 0.799. Both results outperformed traditional CPH (which achieved a c-statistic of 0.733 for the comprehensive model and 0.718 for the simplified model. Moreover, various factors are observed to have nonlinear impact on cardiac arrhythmias prognosis. As a result, RSF based model which took nonlinearity into account significantly outperformed traditional Cox proportional hazard model and has great potential to be a more effective approach for survival analysis.

  14. Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern China

    International Nuclear Information System (INIS)

    Zhang Qiang; Rodríguez-Lado, Luis; Johnson, C. Annette; Xue, Hanbin; Shi Jianbo; Zheng Quanmei; Sun Guifan

    2012-01-01

    Shanxi Province is one of the regions in northern China where endemic arsenicosis occurs. In this study, stepwise logistic regression was applied to analyze the statistical relationships of a dataset of arsenic (As) concentrations in groundwaters with some environmental explanatory parameters. Finally, a 2D spatial model showing the potential As-affected areas in this province was created. We identified topography, gravity, hydrologic parameters and remote sensing information as explanatory variables with high potential to predict high As risk areas. The model identifies correctly the already known endemic areas of arsenism. We estimate that the area at risk exceeding 10 μg L −1 As occupies approximately 8100 km 2 in 30 counties in the province. - Highlights: ► We develop a statistical model to predict arsenic affected areas of Shanxi Province. ► Holocene sediments, TWI, Rivdist, Gravity, remote sensing images are key predictors. ► Area of 8112 km 2 and more than 30 counties are estimated at risk of arsenic hazard. ► Logistic regression model could be widely used to predict other emerging regions. - Explanatory variables from topography, hydrology, gravity, and remote sensing information are benefit to model As risk in groundwater of Shanxi Province.

  15. A contemporary risk model for predicting 30-day mortality following percutaneous coronary intervention in England and Wales.

    Science.gov (United States)

    McAllister, Katherine S L; Ludman, Peter F; Hulme, William; de Belder, Mark A; Stables, Rodney; Chowdhary, Saqib; Mamas, Mamas A; Sperrin, Matthew; Buchan, Iain E

    2016-05-01

    The current risk model for percutaneous coronary intervention (PCI) in the UK is based on outcomes of patients treated in a different era of interventional cardiology. This study aimed to create a new model, based on a contemporary cohort of PCI treated patients, which would: predict 30 day mortality; provide good discrimination; and be well calibrated across a broad risk-spectrum. The model was derived from a training dataset of 336,433 PCI cases carried out between 2007 and 2011 in England and Wales, with 30 day mortality provided by record linkage. Candidate variables were selected on the basis of clinical consensus and data quality. Procedures in 2012 were used to perform temporal validation of the model. The strongest predictors of 30-day mortality were: cardiogenic shock; dialysis; and the indication for PCI and the degree of urgency with which it was performed. The model had an area under the receiver operator characteristic curve of 0.85 on the training data and 0.86 on validation. Calibration plots indicated a good model fit on development which was maintained on validation. We have created a contemporary model for PCI that encompasses a range of clinical risk, from stable elective PCI to emergency primary PCI and cardiogenic shock. The model is easy to apply and based on data reported in national registries. It has a high degree of discrimination and is well calibrated across the risk spectrum. The examination of key outcomes in PCI audit can be improved with this risk-adjusted model. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Using Clinical Factors and Mammographic Breast Density to Estimate Breast Cancer Risk: Development and Validation of a New Predictive Model

    Science.gov (United States)

    Tice, Jeffrey A.; Cummings, Steven R.; Smith-Bindman, Rebecca; Ichikawa, Laura; Barlow, William E.; Kerlikowske, Karla

    2009-01-01

    Background Current models for assessing breast cancer risk are complex and do not include breast density, a strong risk factor for breast cancer that is routinely reported with mammography. Objective To develop and validate an easy-to-use breast cancer risk prediction model that includes breast density. Design Empirical model based on Surveillance, Epidemiology, and End Results incidence, and relative hazards from a prospective cohort. Setting Screening mammography sites participating in the Breast Cancer Surveillance Consortium. Patients 1 095 484 women undergoing mammography who had no previous diagnosis of breast cancer. Measurements Self-reported age, race or ethnicity, family history of breast cancer, and history of breast biopsy. Community radiologists rated breast density by using 4 Breast Imaging Reporting and Data System categories. Results During 5.3 years of follow-up, invasive breast cancer was diagnosed in 14 766 women. The breast density model was well calibrated overall (expected–observed ratio, 1.03 [95% CI, 0.99 to 1.06]) and in racial and ethnic subgroups. It had modest discriminatory accuracy (concordance index, 0.66 [CI, 0.65 to 0.67]). Women with low-density mammograms had 5-year risks less than 1.67% unless they had a family history of breast cancer and were older than age 65 years. Limitation The model has only modest ability to discriminate between women who will develop breast cancer and those who will not. Conclusion A breast cancer prediction model that incorporates routinely reported measures of breast density can estimate 5-year risk for invasive breast cancer. Its accuracy needs to be further evaluated in independent populations before it can be recommended for clinical use. PMID:18316752

  17. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  18. Quantitative prediction of oral cancer risk in patients with oral leukoplakia.

    Science.gov (United States)

    Liu, Yao; Li, Yicheng; Fu, Yue; Liu, Tong; Liu, Xiaoyong; Zhang, Xinyan; Fu, Jie; Guan, Xiaobing; Chen, Tong; Chen, Xiaoxin; Sun, Zheng

    2017-07-11

    Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.

  19. Application of a predictive Bayesian model to environmental accounting.

    Science.gov (United States)

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  20. Prostate Health Index improves multivariable risk prediction of aggressive prostate cancer.

    Science.gov (United States)

    Loeb, Stacy; Shin, Sanghyuk S; Broyles, Dennis L; Wei, John T; Sanda, Martin; Klee, George; Partin, Alan W; Sokoll, Lori; Chan, Daniel W; Bangma, Chris H; van Schaik, Ron H N; Slawin, Kevin M; Marks, Leonard S; Catalona, William J

    2017-07-01

    To examine the use of the Prostate Health Index (PHI) as a continuous variable in multivariable risk assessment for aggressive prostate cancer in a large multicentre US study. The study population included 728 men, with prostate-specific antigen (PSA) levels of 2-10 ng/mL and a negative digital rectal examination, enrolled in a prospective, multi-site early detection trial. The primary endpoint was aggressive prostate cancer, defined as biopsy Gleason score ≥7. First, we evaluated whether the addition of PHI improves the performance of currently available risk calculators (the Prostate Cancer Prevention Trial [PCPT] and European Randomised Study of Screening for Prostate Cancer [ERSPC] risk calculators). We also designed and internally validated a new PHI-based multivariable predictive model, and created a nomogram. Of 728 men undergoing biopsy, 118 (16.2%) had aggressive prostate cancer. The PHI predicted the risk of aggressive prostate cancer across the spectrum of values. Adding PHI significantly improved the predictive accuracy of the PCPT and ERSPC risk calculators for aggressive disease. A new model was created using age, previous biopsy, prostate volume, PSA and PHI, with an area under the curve of 0.746. The bootstrap-corrected model showed good calibration with observed risk for aggressive prostate cancer and had net benefit on decision-curve analysis. Using PHI as part of multivariable risk assessment leads to a significant improvement in the detection of aggressive prostate cancer, potentially reducing harms from unnecessary prostate biopsy and overdiagnosis. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  1. Predicting dementia risk in primary care: development and validation of the Dementia Risk Score using routinely collected data.

    Science.gov (United States)

    Walters, K; Hardoon, S; Petersen, I; Iliffe, S; Omar, R Z; Nazareth, I; Rait, G

    2016-01-21

    Existing dementia risk scores require collection of additional data from patients, limiting their use in practice. Routinely collected healthcare data have the potential to assess dementia risk without the need to collect further information. Our objective was to develop and validate a 5-year dementia risk score derived from primary healthcare data. We used data from general practices in The Health Improvement Network (THIN) database from across the UK, randomly selecting 377 practices for a development cohort and identifying 930,395 patients aged 60-95 years without a recording of dementia, cognitive impairment or memory symptoms at baseline. We developed risk algorithm models for two age groups (60-79 and 80-95 years). An external validation was conducted by validating the model on a separate cohort of 264,224 patients from 95 randomly chosen THIN practices that did not contribute to the development cohort. Our main outcome was 5-year risk of first recorded dementia diagnosis. Potential predictors included sociodemographic, cardiovascular, lifestyle and mental health variables. Dementia incidence was 1.88 (95% CI, 1.83-1.93) and 16.53 (95% CI, 16.15-16.92) per 1000 PYAR for those aged 60-79 (n = 6017) and 80-95 years (n = 7104), respectively. Predictors for those aged 60-79 included age, sex, social deprivation, smoking, BMI, heavy alcohol use, anti-hypertensive drugs, diabetes, stroke/TIA, atrial fibrillation, aspirin, depression. The discrimination and calibration of the risk algorithm were good for the 60-79 years model; D statistic 2.03 (95% CI, 1.95-2.11), C index 0.84 (95% CI, 0.81-0.87), and calibration slope 0.98 (95% CI, 0.93-1.02). The algorithm had a high negative predictive value, but lower positive predictive value at most risk thresholds. Discrimination and calibration were poor for the 80-95 years model. Routinely collected data predicts 5-year risk of recorded diagnosis of dementia for those aged 60-79, but not those aged 80+. This

  2. Development of a Korean Fracture Risk Score (KFRS for Predicting Osteoporotic Fracture Risk: Analysis of Data from the Korean National Health Insurance Service.

    Directory of Open Access Journals (Sweden)

    Ha Young Kim

    Full Text Available Asian-specific prediction models for estimating individual risk of osteoporotic fractures are rare. We developed a Korean fracture risk prediction model using clinical risk factors and assessed validity of the final model.A total of 718,306 Korean men and women aged 50-90 years were followed for 7 years in a national system-based cohort study. In total, 50% of the subjects were assigned randomly to the development dataset and 50% were assigned to the validation dataset. Clinical risk factors for osteoporotic fracture were assessed at the biennial health check. Data on osteoporotic fractures during the follow-up period were identified by ICD-10 codes and the nationwide database of the National Health Insurance Service (NHIS.During the follow-up period, 19,840 osteoporotic fractures were reported (4,889 in men and 14,951 in women in the development dataset. The assessment tool called the Korean Fracture Risk Score (KFRS is comprised of a set of nine variables, including age, body mass index, recent fragility fracture, current smoking, high alcohol intake, lack of regular exercise, recent use of oral glucocorticoid, rheumatoid arthritis, and other causes of secondary osteoporosis. The KFRS predicted osteoporotic fractures over the 7 years. This score was validated using an independent dataset. A close relationship with overall fracture rate was observed when we compared the mean predicted scores after applying the KFRS with the observed risks after 7 years within each 10th of predicted risk.We developed a Korean specific prediction model for osteoporotic fractures. The KFRS was able to predict risk of fracture in the primary population without bone mineral density testing and is therefore suitable for use in both clinical setting and self-assessment. The website is available at http://www.nhis.or.kr.

  3. Methodological issues in cardiovascular epidemiology: the risk of determining absolute risk through statistical models

    Directory of Open Access Journals (Sweden)

    Demosthenes B Panagiotakos

    2006-09-01

    Full Text Available Demosthenes B Panagiotakos, Vassilis StavrinosOffice of Biostatistics, Epidemiology, Department of Dietetics, Nutrition, Harokopio University, Athens, GreeceAbstract: During the past years there has been increasing interest in the development of cardiovascular disease functions that predict future events at individual level. However, this effort has not been so far very successful, since several investigators have reported large differences in the estimation of the absolute risk among different populations. For example, it seems that predictive models that have been derived from US or north European populations  overestimate the incidence of cardiovascular events in south European and Japanese populations. A potential explanation could be attributed to several factors such as geographical, cultural, social, behavioral, as well as genetic variations between the investigated populations in addition to various methodological, statistical, issues relating to the estimation of these predictive models. Based on current literature it can be concluded that, while risk prediction of future cardiovascular events is a useful tool and might be valuable in controlling the burden of the disease in a population, further work is required to improve the accuracy of the present predictive models.Keywords: cardiovascular disease, risk, models

  4. Modelling the predictive performance of credit scoring

    Directory of Open Access Journals (Sweden)

    Shi-Wei Shen

    2013-07-01

    Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.

  5. Providing access to risk prediction tools via the HL7 XML-formatted risk web service.

    Science.gov (United States)

    Chipman, Jonathan; Drohan, Brian; Blackford, Amanda; Parmigiani, Giovanni; Hughes, Kevin; Bosinoff, Phil

    2013-07-01

    Cancer risk prediction tools provide valuable information to clinicians but remain computationally challenging. Many clinics find that CaGene or HughesRiskApps fit their needs for easy- and ready-to-use software to obtain cancer risks; however, these resources may not fit all clinics' needs. The HughesRiskApps Group and BayesMendel Lab therefore developed a web service, called "Risk Service", which may be integrated into any client software to quickly obtain standardized and up-to-date risk predictions for BayesMendel tools (BRCAPRO, MMRpro, PancPRO, and MelaPRO), the Tyrer-Cuzick IBIS Breast Cancer Risk Evaluation Tool, and the Colorectal Cancer Risk Assessment Tool. Software clients that can convert their local structured data into the HL7 XML-formatted family and clinical patient history (Pedigree model) may integrate with the Risk Service. The Risk Service uses Apache Tomcat and Apache Axis2 technologies to provide an all Java web service. The software client sends HL7 XML information containing anonymized family and clinical history to a Dana-Farber Cancer Institute (DFCI) server, where it is parsed, interpreted, and processed by multiple risk tools. The Risk Service then formats the results into an HL7 style message and returns the risk predictions to the originating software client. Upon consent, users may allow DFCI to maintain the data for future research. The Risk Service implementation is exemplified through HughesRiskApps. The Risk Service broadens the availability of valuable, up-to-date cancer risk tools and allows clinics and researchers to integrate risk prediction tools into their own software interface designed for their needs. Each software package can collect risk data using its own interface, and display the results using its own interface, while using a central, up-to-date risk calculator. This allows users to choose from multiple interfaces while always getting the latest risk calculations. Consenting users contribute their data for future

  6. Environmental risk prediction and emergency plan for liquid ammonia leakage fault

    International Nuclear Information System (INIS)

    He Zhanfei; Lian Guoxi; Zhang Yuntao; Sun Juan; Du Juan

    2014-01-01

    Taking liquid ammonia storage in a uranium production process as an example, a multi-puff Gassian model was used to predict and analyze the environmental risk under the scenario of the maximum credible accident as well as the most unfavorable weather conditions. According to the results of prediction, the suggestions for safety evacuation and evacuation way were made, thus providing theoretical basis and technical guideline for uranium mine making risk management and contingency plan. (authors)

  7. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    Science.gov (United States)

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Predictors of outcome after elective endovascular abdominal aortic aneurysm repair and external validation of a risk prediction model.

    Science.gov (United States)

    Wisniowski, Brendan; Barnes, Mary; Jenkins, Jason; Boyne, Nicholas; Kruger, Allan; Walker, Philip J

    2011-09-01

    Endovascular abdominal aortic aneurysm (AAA) repair (EVAR) has been associated with lower operative mortality and morbidity than open surgery but comparable long-term mortality and higher delayed complication and reintervention rates. Attention has therefore been directed to identifying preoperative and operative variables that influence outcomes after EVAR. Risk-prediction models, such as the EVAR Risk Assessment (ERA) model, have also been developed to help surgeons plan EVAR procedures. The aims of this study were (1) to describe outcomes of elective EVAR at the Royal Brisbane and Women's Hospital (RBWH), (2) to identify preoperative and operative variables predictive of outcomes after EVAR, and (3) to externally validate the ERA model. All elective EVAR procedures at the RBWH before July 1, 2009, were reviewed. Descriptive analyses were performed to determine the outcomes. Univariate and multivariate analyses were performed to identify preoperative and operative variables predictive of outcomes after EVAR. Binomial logistic regression analyses were used to externally validate the ERA model. Before July 1, 2009, 197 patients (172 men), who were a mean age of 72.8 years, underwent elective EVAR at the RBWH. Operative mortality was 1.0%. Survival was 81.1% at 3 years and 63.2% at 5 years. Multivariate analysis showed predictors of survival were age (P = .0126), American Society of Anesthesiologists (ASA) score (P = .0180), and chronic obstructive pulmonary disease (P = .0348) at 3 years and age (P = .0103), ASA score (P = .0006), renal failure (P = .0048), and serum creatinine (P = .0022) at 5 years. Aortic branch vessel score was predictive of initial (30-day) type II endoleak (P = .0015). AAA tortuosity was predictive of midterm type I endoleak (P = .0251). Female sex was associated with lower rates of initial clinical success (P = .0406). The ERA model fitted RBWH data well for early death (C statistic = .906), 3-year survival (C statistic = .735), 5-year

  9. Prediction Model for Gastric Cancer Incidence in Korean Population.

    Directory of Open Access Journals (Sweden)

    Bang Wool Eom

    Full Text Available Predicting high risk groups for gastric cancer and motivating these groups to receive regular checkups is required for the early detection of gastric cancer. The aim of this study is was to develop a prediction model for gastric cancer incidence based on a large population-based cohort in Korea.Based on the National Health Insurance Corporation data, we analyzed 10 major risk factors for gastric cancer. The Cox proportional hazards model was used to develop gender specific prediction models for gastric cancer development, and the performance of the developed model in terms of discrimination and calibration was also validated using an independent cohort. Discrimination ability was evaluated using Harrell's C-statistics, and the calibration was evaluated using a calibration plot and slope.During a median of 11.4 years of follow-up, 19,465 (1.4% and 5,579 (0.7% newly developed gastric cancer cases were observed among 1,372,424 men and 804,077 women, respectively. The prediction models included age, BMI, family history, meal regularity, salt preference, alcohol consumption, smoking and physical activity for men, and age, BMI, family history, salt preference, alcohol consumption, and smoking for women. This prediction model showed good accuracy and predictability in both the developing and validation cohorts (C-statistics: 0.764 for men, 0.706 for women.In this study, a prediction model for gastric cancer incidence was developed that displayed a good performance.

  10. Prospective validation of a predictive model that identifies homeless people at risk of re-presentation to the emergency department.

    Science.gov (United States)

    Moore, Gaye; Hepworth, Graham; Weiland, Tracey; Manias, Elizabeth; Gerdtz, Marie Frances; Kelaher, Margaret; Dunt, David

    2012-02-01

    To prospectively evaluate the accuracy of a predictive model to identify homeless people at risk of representation to an emergency department. A prospective cohort analysis utilised one month of data from a Principal Referral Hospital in Melbourne, Australia. All visits involving people classified as homeless were included, excluding those who died. Homelessness was defined as living on the streets, in crisis accommodation, in boarding houses or residing in unstable housing. Rates of re-presentation, defined as the total number of visits to the same emergency department within 28 days of discharge from hospital, were measured. Performance of the risk screening tool was assessed by calculating sensitivity, specificity, positive and negative predictive values and likelihood ratios. Over the study period (April 1, 2009 to April 30, 2009), 3298 presentations from 2888 individuals were recorded. The homeless population accounted for 10% (n=327) of all visits and 7% (n=211) of all patients. A total of 90 (43%) homeless people re-presented to the emergency department. The predictive model included nine variables and achieved 98% (CI, 0.92-0.99) sensitivity and 66% (CI, 0.57-0.74) specificity. The positive predictive value was 68% and the negative predictive value was 98%. The positive likelihood ratio 2.9 (CI, 2.2-3.7) and the negative likelihood ratio was 0.03 (CI, 0.01-0.13). The high emergency department re-presentation rate for people who were homeless identifies unresolved psychosocial health needs. The emergency department remains a vital access point for homeless people, particularly after hours. The risk screening tool is key to identify medical and social aspects of a homeless patient's presentation to assist early identification and referral. Copyright © 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Development of a new risk model for predicting cardiovascular events among hemodialysis patients: Population-based hemodialysis patients from the Japan Dialysis Outcome and Practice Patterns Study (J-DOPPS.

    Directory of Open Access Journals (Sweden)

    Yukiko Matsubara

    Full Text Available Cardiovascular (CV events are the primary cause of death and becoming bedridden among hemodialysis (HD patients. The Framingham risk score (FRS is useful for predicting incidence of CV events in the general population, but is considerd to be unsuitable for the prediction of the incidence of CV events in HD patients, given their characteristics due to atypical relationships between conventional risk factors and outcomes. We therefore aimed to develop a new prognostic prediction model for prevention and early detection of CV events among hemodialysis patients.We enrolled 3,601 maintenance HD patients based on their data from the Japan Dialysis Outcomes and Practice Patterns Study (J-DOPPS, phases 3 and 4. We longitudinaly assessed the association between several potential candidate predictors and composite CV events in the year after study initiation. Potential candidate predictors included the component factors of FRS and other HD-specific risk factors. We used multivariable logistic regression with backward stepwise selection to develop our new prediction model and generated a calibration plot. Additinially, we performed bootstrapping to assess the internal validity.We observed 328 composite CV events during 1-year follow-up. The final prediction model contained six variables: age, diabetes status, history of CV events, dialysis time per session, and serum phosphorus and albumin levels. The new model showed significantly better discrimination than the FRS, in both men (c-statistics: 0.76 for new model, 0.64 for FRS and women (c-statistics: 0.77 for new model, 0.60 for FRS. Additionally, we confirmed the consistency between the observed results and predicted results using the calibration plot. Further, we found similar discrimination and calibration to the derivation model in the bootstrapping cohort.We developed a new risk model consisting of only six predictors. Our new model predicted CV events more accurately than the FRS.

  12. Risk-adjusted performance evaluation in three academic thoracic surgery units using the Eurolung risk models.

    Science.gov (United States)

    Pompili, Cecilia; Shargall, Yaron; Decaluwe, Herbert; Moons, Johnny; Chari, Madhu; Brunelli, Alessandro

    2018-01-03

    The objective of this study was to evaluate the performance of 3 thoracic surgery centres using the Eurolung risk models for morbidity and mortality. This was a retrospective analysis performed on data collected from 3 academic centres (2014-2016). Seven hundred and twenty-one patients in Centre 1, 857 patients in Centre 2 and 433 patients in Centre 3 who underwent anatomical lung resections were analysed. The Eurolung1 and Eurolung2 models were used to predict risk-adjusted cardiopulmonary morbidity and 30-day mortality rates. Observed and risk-adjusted outcomes were compared within each centre. The observed morbidity of Centre 1 was in line with the predicted morbidity (observed 21.1% vs predicted 22.7%, P = 0.31). Centre 2 performed better than expected (observed morbidity 20.2% vs predicted 26.7%, P models were successfully used as risk-adjusting instruments to internally audit the outcomes of 3 different centres, showing their applicability for future quality improvement initiatives. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. When does risk perception predict protection motivation for health threats? A person-by-situation analysis

    Science.gov (United States)

    Klein, William M. P.; Avishai, Aya; Jones, Katelyn; Villegas, Megan; Sheeran, Paschal

    2018-01-01

    Although risk perception is a key concept in many health behavior theories, little research has explicitly tested when risk perception predicts motivation to take protective action against a health threat (protection motivation). The present study tackled this question by (a) adopting a multidimensional model of risk perception that comprises deliberative, affective, and experiential components (the TRIRISK model), and (b) taking a person-by-situation approach. We leveraged a highly intensive within-subjects paradigm to test features of the health threat (i.e., perceived severity) and individual differences (e.g., emotion reappraisal) as moderators of the relationship between the three types of risk perception and protection motivation in a within-subjects design. Multi-level modeling of 2968 observations (32 health threats across 94 participants) showed interactions among the TRIRISK components and moderation both by person-level and situational factors. For instance, affective risk perception better predicted protection motivation when deliberative risk perception was high, when the threat was less severe, and among participants who engage less in emotional reappraisal. These findings support the TRIRISK model and offer new insights into when risk perceptions predict protection motivation. PMID:29494705

  14. When does risk perception predict protection motivation for health threats? A person-by-situation analysis.

    Science.gov (United States)

    Ferrer, Rebecca A; Klein, William M P; Avishai, Aya; Jones, Katelyn; Villegas, Megan; Sheeran, Paschal

    2018-01-01

    Although risk perception is a key concept in many health behavior theories, little research has explicitly tested when risk perception predicts motivation to take protective action against a health threat (protection motivation). The present study tackled this question by (a) adopting a multidimensional model of risk perception that comprises deliberative, affective, and experiential components (the TRIRISK model), and (b) taking a person-by-situation approach. We leveraged a highly intensive within-subjects paradigm to test features of the health threat (i.e., perceived severity) and individual differences (e.g., emotion reappraisal) as moderators of the relationship between the three types of risk perception and protection motivation in a within-subjects design. Multi-level modeling of 2968 observations (32 health threats across 94 participants) showed interactions among the TRIRISK components and moderation both by person-level and situational factors. For instance, affective risk perception better predicted protection motivation when deliberative risk perception was high, when the threat was less severe, and among participants who engage less in emotional reappraisal. These findings support the TRIRISK model and offer new insights into when risk perceptions predict protection motivation.

  15. A risk-based model for predicting the impact of using condoms on the spread of sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Asma Azizi

    2017-02-01

    Full Text Available We create and analyze a mathematical model to understand the impact of condom-use and sexual behavior on the prevalence and spread of Sexually Transmitted Infections (STIs. STIs remain significant public health challenges globally with a high burden of some Sexually Transmitted Diseases (STDs in both developed and undeveloped countries. Although condom-use is known to reduce the transmission of STIs, there are a few quantitative population-based studies on the protective role of condom-use in reducing the incidence of STIs. The number of concurrent partners is correlated with their risk of being infectious by an STI such as chlamydia, gonorrhea, or syphilis. We develop a Susceptible-Infectious-Susceptible (SIS model that stratifies the population based on the number of concurrent partners. The model captures the multi-level heterogeneous mixing through a combination of biased (preferential and random (proportional mixing processes between individuals with distinct risk levels, and accounts for differences in condom-use in the low- and high-risk populations. We use sensitivity analysis to assess the relative impact of high-risk people using condom as a prophylactic intervention to reduce their chance of being infectious, or infecting others. The model predicts the STI prevalence as a function of the number of partners of an individual, and quantifies how this distribution of effective partners changes as a function of condom-use. Our results show that when the mixing is random, then increasing the condom-use in the high-risk population is more effective in reducing the prevalence than when many of the partners of high-risk people have high risk. The model quantifies how the risk of being infected increases for people who have more partners, and the need for high-risk people to consistently use condoms to reduce their risk of infection. Keywords: Mathematical modeling, Sexually transmitted infection (STI, Biased (preferential mixing, Random

  16. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Vriesendorp, Pieter A; Schinkel, Arend F L; Liebregts, Max; Theuns, Dominic A M J; van Cleemput, Johan; Ten Cate, Folkert J; Willems, Rik; Michels, Michelle

    2015-08-01

    The recently released 2014 European Society of Cardiology guidelines of hypertrophic cardiomyopathy (HCM) use a new clinical risk prediction model for sudden cardiac death (SCD), based on the HCM Risk-SCD study. Our study is the first external and independent validation of this new risk prediction model. The study population consisted of a consecutive cohort of 706 patients with HCM without prior SCD event, from 2 tertiary referral centers. The primary end point was a composite of SCD and appropriate implantable cardioverter-defibrillator therapy, identical to the HCM Risk-SCD end point. The 5-year SCD risk was calculated using the HCM Risk-SCD formula. Receiver operating characteristic curves and C-statistics were calculated for the 2014 European Society of Cardiology guidelines, and risk stratification methods of the 2003 American College of Cardiology/European Society of Cardiology guidelines and 2011 American College of Cardiology Foundation/American Heart Association guidelines. During follow-up of 7.7±5.3 years, SCD occurred in 42 (5.9%) of 706 patients (ages 49±16 years; 34% women). The C-statistic of the new model was 0.69 (95% CI, 0.57-0.82; P=0.008), which performed significantly better than the conventional risk factor models based on the 2003 guidelines (C-statistic of 0.55: 95% CI, 0.47-0.63; P=0.3), and 2011 guidelines (C-statistic of 0.60: 95% CI, 0.50-0.70; P=0.07). The HCM Risk-SCD model improves the risk stratification of patients with HCM for primary prevention of SCD, and calculating an individual risk estimate contributes to the clinical decision-making process. Improved risk stratification is important for the decision making before implantable cardioverter-defibrillator implantation for the primary prevention of SCD. © 2015 American Heart Association, Inc.

  17. Developing predictive models for return to work using the Military Power, Performance and Prevention (MP3) musculoskeletal injury risk algorithm: a study protocol for an injury risk assessment programme.

    Science.gov (United States)

    Rhon, Daniel I; Teyhen, Deydre S; Shaffer, Scott W; Goffar, Stephen L; Kiesel, Kyle; Plisky, Phil P

    2018-02-01

    Musculoskeletal injuries are a primary source of disability in the US Military, and low back pain and lower extremity injuries account for over 44% of limited work days annually. History of prior musculoskeletal injury increases the risk for future injury. This study aims to determine the risk of injury after returning to work from a previous injury. The objective is to identify criteria that can help predict likelihood for future injury or re-injury. There will be 480 active duty soldiers recruited from across four medical centres. These will be patients who have sustained a musculoskeletal injury in the lower extremity or lumbar/thoracic spine, and have now been cleared to return back to work without any limitations. Subjects will undergo a battery of physical performance tests and fill out sociodemographic surveys. They will be followed for a year to identify any musculoskeletal injuries that occur. Prediction algorithms will be derived using regression analysis from performance and sociodemographic variables found to be significantly different between injured and non-injured subjects. Due to the high rates of injuries, injury prevention and prediction initiatives are growing. This is the first study looking at predicting re-injury rates after an initial musculoskeletal injury. In addition, multivariate prediction models appear to have move value than models based on only one variable. This approach aims to validate a multivariate model used in healthy non-injured individuals to help improve variables that best predict the ability to return to work with lower risk of injury, after a recent musculoskeletal injury. NCT02776930. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. The Tripartite Model of Risk Perception (TRIRISK): Distinguishing Deliberative, Affective, and Experiential Components of Perceived Risk.

    Science.gov (United States)

    Ferrer, Rebecca A; Klein, William M P; Persoskie, Alexander; Avishai-Yitshak, Aya; Sheeran, Paschal

    2016-10-01

    Although risk perception is a key predictor in health behavior theories, current conceptions of risk comprise only one (deliberative) or two (deliberative vs. affective/experiential) dimensions. This research tested a tripartite model that distinguishes among deliberative, affective, and experiential components of risk perception. In two studies, and in relation to three common diseases (cancer, heart disease, diabetes), we used confirmatory factor analyses to examine the factor structure of the tripartite risk perception (TRIRISK) model and compared the fit of the TRIRISK model to dual-factor and single-factor models. In a third study, we assessed concurrent validity by examining the impact of cancer diagnosis on (a) levels of deliberative, affective, and experiential risk perception, and (b) the strength of relations among risk components, and tested predictive validity by assessing relations with behavioral intentions to prevent cancer. The tripartite factor structure was supported, producing better model fit across diseases (studies 1 and 2). Inter-correlations among the components were significantly smaller among participants who had been diagnosed with cancer, suggesting that affected populations make finer-grained distinctions among risk perceptions (study 3). Moreover, all three risk perception components predicted unique variance in intentions to engage in preventive behavior (study 3). The TRIRISK model offers both a novel conceptualization of health-related risk perceptions, and new measures that enhance predictive validity beyond that engendered by unidimensional and bidimensional models. The present findings have implications for the ways in which risk perceptions are targeted in health behavior change interventions, health communications, and decision aids.

  19. Using multi-state markov models to identify credit card risk

    Directory of Open Access Journals (Sweden)

    Daniel Evangelista Régis

    2016-06-01

    Full Text Available Abstract The main interest of this work is to analyze the application of multi-state Markov models to evaluate credit card risk by investigating the characteristics of different state transitions in client-institution relationships over time, thereby generating score models for various purposes. We also used logistic regression models to compare the results with those obtained using multi-state Markov models. The models were applied to an actual database of a Brazilian financial institution. In this application, multi-state Markov models performed better than logistic regression models in predicting default risk, and logistic regression models performed better in predicting cancellation risk.

  20. Stochastic rainfall-runoff forecasting: parameter estimation, multi-step prediction, and evaluation of overflow risk

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik

    2014-01-01

    Probabilistic runoff forecasts generated by stochastic greybox models can be notably useful for the improvement of the decision-making process in real-time control setups for urban drainage systems because the prediction risk relationships in these systems are often highly nonlinear. To date...... the identification of models for cases with noisy in-sewer observations. For the prediction of the overflow risk, no improvement was demonstrated through the application of stochastic forecasts instead of point predictions, although this result is thought to be caused by the notably simplified setup used...

  1. High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision.

    Science.gov (United States)

    Bahl, Manisha; Barzilay, Regina; Yedidia, Adam B; Locascio, Nicholas J; Yu, Lili; Lehman, Constance D

    2018-03-01

    Purpose To develop a machine learning model that allows high-risk breast lesions (HRLs) diagnosed with image-guided needle biopsy that require surgical excision to be distinguished from HRLs that are at low risk for upgrade to cancer at surgery and thus could be surveilled. Materials and Methods Consecutive patients with biopsy-proven HRLs who underwent surgery or at least 2 years of imaging follow-up from June 2006 to April 2015 were identified. A random forest machine learning model was developed to identify HRLs at low risk for upgrade to cancer. Traditional features such as age and HRL histologic results were used in the model, as were text features from the biopsy pathologic report. Results One thousand six HRLs were identified, with a cancer upgrade rate of 11.4% (115 of 1006). A machine learning random forest model was developed with 671 HRLs and tested with an independent set of 335 HRLs. Among the most important traditional features were age and HRL histologic results (eg, atypical ductal hyperplasia). An important text feature from the pathologic reports was "severely atypical." Instead of surgical excision of all HRLs, if those categorized with the model to be at low risk for upgrade were surveilled and the remainder were excised, then 97.4% (37 of 38) of malignancies would have been diagnosed at surgery, and 30.6% (91 of 297) of surgeries of benign lesions could have been avoided. Conclusion This study provides proof of concept that a machine learning model can be applied to predict the risk of upgrade of HRLs to cancer. Use of this model could decrease unnecessary surgery by nearly one-third and could help guide clinical decision making with regard to surveillance versus surgical excision of HRLs. © RSNA, 2017.

  2. Predicting Lymph Node Metastasis in Endometrial Cancer Using Serum CA125 Combined with Immunohistochemical Markers PR and Ki67, and a Comparison with Other Prediction Models.

    Directory of Open Access Journals (Sweden)

    Bingyi Yang

    Full Text Available We aimed to evaluate the value of immunohistochemical markers and serum CA125 in predicting the risk of lymph node metastasis (LNM in women with endometrial cancer and to identify a low-risk group of LNM. The medical records of 370 patients with endometrial endometrioid adenocarcinoma who underwent surgical staging in the Obstetrics & Gynecology Hospital of Fudan University were collected and retrospectively reviewed. Immunohistochemical markers were screened. A model using serum cancer antigen 125 (CA125 level, the immunohistochemical markers progesterone receptor (PR and Ki67 was created for prediction of LNM. A predicted probability of 4% among these patients was defined as low risk. The developed model was externally validated in 200 patients from Shanghai Cancer Center. The efficiency of the model was compared with three other reported prediction models. Patients with serum CA125 50% and Ki67 < 40% in cancer lesion were defined as low risk for LNM. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.82. The model classified 61.9% (229/370 of patients as being at low risk for LNM. Among these 229 patients, 6 patients (2.6% had LNM and the negative predictive value was 97.4% (223/229. The sensitivity and specificity of the model were 84.6% and 67.4% respectively. In the validation cohort, the model classified 59.5% (119/200 of patients as low-risk, 3 out of these 119 patients (2.5% has LNM. Our model showed a predictive power similar to those of two previously reported prediction models. The prediction model using serum CA125 and the immunohistochemical markers PR and Ki67 is useful to predict patients with a low risk of LNM and has the potential to provide valuable guidance to clinicians in the treatment of patients with endometrioid endometrial cancer.

  3. Driving Strategic Risk Planning With Predictive Modelling For Managerial Accounting

    DEFF Research Database (Denmark)

    Nielsen, Steen; Pontoppidan, Iens Christian

    for managerial accounting and shows how it can be used to determine the impact of different types of risk assessment input parameters on the variability of important outcome measures. The purpose is to: (i) point out the theoretical necessity of a stochastic risk framework; (ii) present a stochastic framework......Currently, risk management in management/managerial accounting is treated as deterministic. Although it is well-known that risk estimates are necessarily uncertain or stochastic, until recently the methodology required to handle stochastic risk-based elements appear to be impractical and too...... mathematical. The ultimate purpose of this paper is to “make the risk concept procedural and analytical” and to argue that accountants should now include stochastic risk management as a standard tool. Drawing on mathematical modelling and statistics, this paper methodically develops risk analysis approach...

  4. Predicting epidemic risk from past temporal contact data.

    Directory of Open Access Journals (Sweden)

    Eugenio Valdano

    2015-03-01

    Full Text Available Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.

  5. Clinical Risk Scoring Models for Prediction of Acute Kidney Injury after Living Donor Liver Transplantation: A Retrospective Observational Study.

    Directory of Open Access Journals (Sweden)

    Mi Hye Park

    Full Text Available Acute kidney injury (AKI is a frequent complication of liver transplantation and is associated with increased mortality. We identified the incidence and modifiable risk factors for AKI after living-donor liver transplantation (LDLT and constructed risk scoring models for AKI prediction. We retrospectively reviewed 538 cases of LDLT. Multivariate logistic regression analysis was used to evaluate risk factors for the prediction of AKI as defined by the RIFLE criteria (RIFLE = risk, injury, failure, loss, end stage. Three risk scoring models were developed in the retrospective cohort by including all variables that were significant in univariate analysis, or variables that were significant in multivariate analysis by backward or forward stepwise variable selection. The risk models were validated by way of cross-validation. The incidence of AKI was 27.3% (147/538 and 6.3% (34/538 required postoperative renal replacement therapy. Independent risk factors for AKI by multivariate analysis of forward stepwise variable selection included: body-mass index >27.5 kg/m2 [odds ratio (OR 2.46, 95% confidence interval (CI 1.32-4.55], serum albumin 20 (OR 2.01, 95%CI 1.17-3.44, operation time >600 min (OR 1.81, 95%CI 1.07-3.06, warm ischemic time >40 min (OR 2.61, 95%CI 1.55-4.38, postreperfusion syndrome (OR 2.96, 95%CI 1.55-4.38, mean blood glucose during the day of surgery >150 mg/dl (OR 1.66, 95%CI 1.01-2.70, cryoprecipitate > 6 units (OR 4.96, 95%CI 2.84-8.64, blood loss/body weight >60 ml/kg (OR 4.05, 95%CI 2.28-7.21, and calcineurin inhibitor use without combined mycophenolate mofetil (OR 1.87, 95%CI 1.14-3.06. Our risk models performed better than did a previously reported score by Utsumi et al. in our study cohort. Doses of calcineurin inhibitor should be reduced by combined use of mycophenolate mofetil to decrease postoperative AKI. Prospective randomized trials are required to address whether artificial modification of hypoalbuminemia, hyperglycemia

  6. Risk Prediction for Epithelial Ovarian Cancer in 11 United States–Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci

    Science.gov (United States)

    Clyde, Merlise A.; Palmieri Weber, Rachel; Iversen, Edwin S.; Poole, Elizabeth M.; Doherty, Jennifer A.; Goodman, Marc T.; Ness, Roberta B.; Risch, Harvey A.; Rossing, Mary Anne; Terry, Kathryn L.; Wentzensen, Nicolas; Whittemore, Alice S.; Anton-Culver, Hoda; Bandera, Elisa V.; Berchuck, Andrew; Carney, Michael E.; Cramer, Daniel W.; Cunningham, Julie M.; Cushing-Haugen, Kara L.; Edwards, Robert P.; Fridley, Brooke L.; Goode, Ellen L.; Lurie, Galina; McGuire, Valerie; Modugno, Francesmary; Moysich, Kirsten B.; Olson, Sara H.; Pearce, Celeste Leigh; Pike, Malcolm C.; Rothstein, Joseph H.; Sellers, Thomas A.; Sieh, Weiva; Stram, Daniel; Thompson, Pamela J.; Vierkant, Robert A.; Wicklund, Kristine G.; Wu, Anna H.; Ziogas, Argyrios; Tworoger, Shelley S.; Schildkraut, Joellen M.

    2016-01-01

    Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls) from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical logistic regression model for predicting case-control status that included imputation of missing data. We randomly divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this improved model to estimate absolute risk and evaluating it in prospective data sets is warranted. PMID:27698005

  7. Predicting the risk of perioperative transfusion for patients undergoing elective hepatectomy.

    Science.gov (United States)

    Sima, Camelia S; Jarnagin, William R; Fong, Yuman; Elkin, Elena; Fischer, Mary; Wuest, David; D'Angelica, Michael; DeMatteo, Ronald P; Blumgart, Leslie H; Gönen, Mithat

    2009-12-01

    To develop 2 instruments that predict the probability of perioperative red blood cell transfusion in patients undergoing elective liver resection for primary and secondary tumors. Hepatic resection is the most effective treatment for several benign and malign conditions, but may be accompanied by substantial blood loss and the need for perioperative transfusions. While blood conservation strategies such as autologous blood donation, acute normovolemic hemodilution, or cell saver systems are available, they are economically efficient only if directed toward patients with a high risk of transfusion. Using preoperative data from 1204 consecutive patients who underwent liver resection between 1995 and 2000 at Memorial Sloan- Kettering Cancer Center, we modeled the probability of perioperative red blood cell transfusion. We used the resulting model, validated on an independent dataset (n = 555 patients), to develop 2 prediction instruments, a nomogram and a transfusion score, which can be easily implemented into clinical practice. The planned number of liver segments resected, concomitant extrahepatic organ resection, a diagnosis of primary liver malignancy, as well as preoperative hemoglobin and platelets levels predicted the probability of perioperative red blood cell transfusion. The predictions of the model appeared accurate and with good discriminatory abilities, generating an area under the receiver operating characteristic curve of 0.71. Preoperative factors can be combined into risk profiles to predict the likelihood of transfusion during or after elective liver resection. These predictions, easy to calculate in the frame of a nomogram or of a transfusion score, can be used to identify patients who are at high risk for red cell transfusions and therefore most likely to benefit from blood conservation techniques.

  8. Predicting Drug Safety and Communicating Risk: Benefits of a Bayesian Approach.

    Science.gov (United States)

    Lazic, Stanley E; Edmunds, Nicholas; Pollard, Christopher E

    2018-03-01

    Drug toxicity is a major source of attrition in drug discovery and development. Pharmaceutical companies routinely use preclinical data to predict clinical outcomes and continue to invest in new assays to improve predictions. However, there are many open questions about how to make the best use of available data, combine diverse data, quantify risk, and communicate risk and uncertainty to enable good decisions. The costs of suboptimal decisions are clear: resources are wasted and patients may be put at risk. We argue that Bayesian methods provide answers to all of these problems and use hERG-mediated QT prolongation as a case study. Benefits of Bayesian machine learning models include intuitive probabilistic statements of risk that incorporate all sources of uncertainty, the option to include diverse data and external information, and visualizations that have a clear link between the output from a statistical model and what this means for risk. Furthermore, Bayesian methods are easy to use with modern software, making their adoption for safety screening straightforward. We include R and Python code to encourage the adoption of these methods.

  9. Undergraduate Student Retention in Context: An Examination of First-Year Risk Prediction and Advising Practices within a College of Education

    Science.gov (United States)

    Litchfield, Bradley C.

    2013-01-01

    This study examined the use of an institutionally-specific risk prediction model in the university's College of Education. Set in a large, urban, public university, the risk model predicted incoming students' first-semester GPAs, which, in turn, predicted the students' risk of attrition. Additionally, the study investigated advising practices…

  10. Predicting medical complications after spine surgery: a validated model using a prospective surgical registry.

    Science.gov (United States)

    Lee, Michael J; Cizik, Amy M; Hamilton, Deven; Chapman, Jens R

    2014-02-01

    The possibility and likelihood of a postoperative medical complication after spine surgery undoubtedly play a major role in the decision making of the surgeon and patient alike. Although prior study has determined relative risk and odds ratio values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of medical complication, rather than relative risk or odds ratio values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. The purpose of this study was to create and validate a predictive model for the risk of medical complication during and after spine surgery. Statistical analysis using a prospective surgical spine registry that recorded extensive demographic, surgical, and complication data. Outcomes examined are medical complications that were specifically defined a priori. This analysis is a continuation of statistical analysis of our previously published report. Using a prospectively collected surgical registry of more than 1,476 patients with extensive demographic, comorbidity, surgical, and complication detail recorded for 2 years after surgery, we previously identified several risk factor for medical complications. Using the beta coefficients from those log binomial regression analyses, we created a model to predict the occurrence of medical complication after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created two predictive models: one predicting the occurrence of any medical complication and the other predicting the occurrence of a major medical complication. The final predictive model for any medical complications had a receiver operator curve characteristic of 0.76, considered to be a fair measure. The final predictive model for any major medical complications had

  11. A new, accurate predictive model for incident hypertension.

    Science.gov (United States)

    Völzke, Henry; Fung, Glenn; Ittermann, Till; Yu, Shipeng; Baumeister, Sebastian E; Dörr, Marcus; Lieb, Wolfgang; Völker, Uwe; Linneberg, Allan; Jørgensen, Torben; Felix, Stephan B; Rettig, Rainer; Rao, Bharat; Kroemer, Heyo K

    2013-11-01

    Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures. The primary study population consisted of 1605 normotensive individuals aged 20-79 years with 5-year follow-up from the population-based study, that is the Study of Health in Pomerania (SHIP). The initial set was randomly split into a training and a testing set. We used a probabilistic graphical model applying a Bayesian network to create a predictive model for incident hypertension and compared the predictive performance with the established Framingham risk score for hypertension. Finally, the model was validated in 2887 participants from INTER99, a Danish community-based intervention study. In the training set of SHIP data, the Bayesian network used a small subset of relevant baseline features including age, mean arterial pressure, rs16998073, serum glucose and urinary albumin concentrations. Furthermore, we detected relevant interactions between age and serum glucose as well as between rs16998073 and urinary albumin concentrations [area under the receiver operating characteristic (AUC 0.76)]. The model was confirmed in the SHIP validation set (AUC 0.78) and externally replicated in INTER99 (AUC 0.77). Compared to the established Framingham risk score for hypertension, the predictive performance of the new model was similar in the SHIP validation set and moderately better in INTER99. Data mining procedures identified a predictive model for incident hypertension, which included innovative and easy-to-measure variables. The findings promise great applicability in screening settings and clinical practice.

  12. Modelo de previsão de value at risk utilizando volatilidade de longo prazo = Value at Risk prediction model using long term volatility

    Directory of Open Access Journals (Sweden)

    Vinicius Mothé Maia

    2016-07-01

    Full Text Available Tendo em vista a importância do Value at Risk (VaR como medida de risco para instituições financeiras e agências de risco, o presente estudo avaliou se o modelo ARLS é mais preciso no cálculo do VaR de longo prazo que os modelos tradicionais, dada sua maior adequação para a previsão da volatilidade. Considerando a utilização do VaR pelos agentes de mercado como medida de risco para o gerenciamento de portfólios é importante sua adequada mensuração. A partir de dados diários dos mercados de ações e cambial dos BRICS (Brasil, Rússia, Índia, China e África do Sul foram calculadas as volatilidades futuras para 15 dias, 1 mês e 3 meses. Em seguida, calculou-se as medidas tradicionais de avaliação da precisão do VaR. Os resultados sugerem a superioridade do modelo ARLS para a previsão da volatilidade cambial, capaz de prever corretamente o número de violações em 33% dos casos, enquanto os modelos tradicionais não obtiveram um bom desempenho. Com relação ao mercado acionário, os modelos GARCH e ARLS apresentaram desempenho similar. O modelo GARCH é superior considerando a perda média quadrática. Esses resultados apontam para a escolha do modelo ARLS no cálculo do VaR de portfólios cambiais devido a maior precisão alcançada. Ajuda assim os agentes de mercado a melhor gerirem o risco de suas carteiras. Em relação ao mercado acionário, em função do desempenho similar dos modelos GARCH e ARLS, o modelo GARCH é o mais indicado devido a sua maior simplicidade e fácil implementação computacional. Having in mind the importance of Value at Risk (VaR as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio

  13. Robust human body model injury prediction in simulated side impact crashes.

    Science.gov (United States)

    Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D

    2016-01-01

    This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.

  14. Risk determination after an acute myocardial infarction: review of 3 clinical risk prediction tools.

    Science.gov (United States)

    Scruth, Elizabeth Ann; Page, Karen; Cheng, Eugene; Campbell, Michelle; Worrall-Carter, Linda

    2012-01-01

    The objective of the study was to provide comprehensive information for the clinical nurse specialist (CNS) on commonly used clinical prediction (risk assessment) tools used to estimate risk of a secondary cardiac or noncardiac event and mortality in patients undergoing primary percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction (STEMI). The evolution and widespread adoption of primary PCI represent major advances in the treatment of acute myocardial infarction, specifically STEMI. The American College of Cardiology and the American Heart Association have recommended early risk stratification for patients presenting with acute coronary syndromes using several clinical risk scores to identify patients' mortality and secondary event risk after PCI. Clinical nurse specialists are integral to any performance improvement strategy. Their knowledge and understandings of clinical prediction tools will be essential in carrying out important assessment, identifying and managing risk in patients who have sustained a STEMI, and enhancing discharge education including counseling on medications and lifestyle changes. Over the past 2 decades, risk scores have been developed from clinical trials to facilitate risk assessment. There are several risk scores that can be used to determine in-hospital and short-term survival. This article critiques the most common tools: the Thrombolytic in Myocardial Infarction risk score, the Global Registry of Acute Coronary Events risk score, and the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications risk score. The importance of incorporating risk screening assessment tools (that are important for clinical prediction models) to guide therapeutic management of patients cannot be underestimated. The ability to forecast secondary risk after a STEMI will assist in determining which patients would require the most aggressive level of treatment and monitoring postintervention including

  15. Costs, effects and implementation of routine data emergency admission risk prediction models in primary care for patients with, or at risk of, chronic conditions: a systematic review protocol.

    Science.gov (United States)

    Kingston, Mark Rhys; Evans, Bridie Angela; Nelson, Kayleigh; Hutchings, Hayley; Russell, Ian; Snooks, Helen

    2016-03-01

    Emergency admission risk prediction models are increasingly used to identify patients, typically with one or more chronic conditions, for proactive management in primary care to avoid admissions, save costs and improve patient experience. To identify and review the published evidence on the costs, effects and implementation of emergency admission risk prediction models in primary care for patients with, or at risk of, chronic conditions. We shall search for studies of healthcare interventions using routine data-generated emergency admission risk models. We shall report: the effects on emergency admissions and health costs; clinician and patient views; and implementation findings. We shall search ASSIA, CINAHL, the Cochrane Library, HMIC, ISI Web of Science, MEDLINE and Scopus from 2005, review references in and citations of included articles, search key journals and contact experts. Study selection, data extraction and quality assessment will be performed by two independent reviewers. No ethical permissions are required for this study using published data. Findings will be disseminated widely, including publication in a peer-reviewed journal and through conferences in primary and emergency care and chronic conditions. We judge our results will help a wide audience including primary care practitioners and commissioners, and policymakers. CRD42015016874; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. A simple risk scoring system for prediction of relapse after inpatient alcohol treatment.

    Science.gov (United States)

    Pedersen, Mads Uffe; Hesse, Morten

    2009-01-01

    Predicting relapse after alcoholism treatment can be useful in targeting patients for aftercare services. However, a valid and practical instrument for predicting relapse risk does not exist. Based on a prospective study of alcoholism treatment, we developed the Risk of Alcoholic Relapse Scale (RARS) using items taken from the Addiction Severity Index and some basic demographic information. The RARS was cross-validated using two non-overlapping samples, and tested for its ability to predict relapse across different models of treatment. The RARS predicted relapse to drinking within 6 months after alcoholism treatment in both the original and the validation sample, and in a second validation sample it predicted admission to new treatment 3 years after treatment. The RARS can identify patients at high risk of relapse who need extra aftercare and support after treatment.

  17. Globally-Applicable Predictive Wildfire Model   a Temporal-Spatial GIS Based Risk Analysis Using Data Driven Fuzzy Logic Functions

    Science.gov (United States)

    van den Dool, G.

    2017-11-01

    This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.

  18. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study.

    NARCIS (Netherlands)

    Lamain-de Ruiter, M.; Kwee, A.; Naaktgeboren, C.A.; Groot, I. de; Evers, I.M.; Groenendaal, F.; Hering, Y.R.; Huisjes, A.J.M.; Kirpestein, C.; Monincx, W.M.; Siljee, J.E.; Zelfde, A. van't; Oirschot, C.M. van; Vankan-Buitelaar, S.A.; Vonk, M.A.A.W.; Wiegers, T.A.; Zwart, J.J.; Franx, A.; Moons, K.G.M.; Koster, M.P.H.

    2016-01-01

    Objective: To perform an external validation and direct comparison of published prognostic models for early prediction of the risk of gestational diabetes mellitus, including predictors applicable in the first trimester of pregnancy. Design: External validation of all published prognostic models in

  19. Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.

    Science.gov (United States)

    Jamei, Mehdi; Nisnevich, Aleksandr; Wetchler, Everett; Sudat, Sylvia; Liu, Eric

    2017-01-01

    Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of Electronic Health Records (EHR) has created the opportunity to proactively identify patients with high risk of hospital readmission, and apply effective interventions to mitigate that risk. To that end, in the past, numerous machine-learning models have been employed to predict the risk of 30-day hospital readmission. However, the need for an accurate and real-time predictive model, suitable for hospital setting applications still exists. Here, using data from more than 300,000 hospital stays in California from Sutter Health's EHR system, we built and tested an artificial neural network (NN) model based on Google's TensorFlow library. Through comparison with other traditional and non-traditional models, we demonstrated that neural networks are great candidates to capture the complexity and interdependency of various data fields in EHRs. LACE, the current industry standard, showed a precision (PPV) of 0.20 in identifying high-risk patients in our database. In contrast, our NN model yielded a PPV of 0.24, which is a 20% improvement over LACE. Additionally, we discussed the predictive power of Social Determinants of Health (SDoH) data, and presented a simple cost analysis to assist hospitalists in implementing helpful and cost-effective post-discharge interventions.

  20. Predicting child maltreatment: A meta-analysis of the predictive validity of risk assessment instruments.

    Science.gov (United States)

    van der Put, Claudia E; Assink, Mark; Boekhout van Solinge, Noëlle F

    2017-11-01

    Risk assessment is crucial in preventing child maltreatment since it can identify high-risk cases in need of child protection intervention. Despite widespread use of risk assessment instruments in child welfare, it is unknown how well these instruments predict maltreatment and what instrument characteristics are associated with higher levels of predictive validity. Therefore, a multilevel meta-analysis was conducted to examine the predictive accuracy of (characteristics of) risk assessment instruments. A literature search yielded 30 independent studies (N=87,329) examining the predictive validity of 27 different risk assessment instruments. From these studies, 67 effect sizes could be extracted. Overall, a medium significant effect was found (AUC=0.681), indicating a moderate predictive accuracy. Moderator analyses revealed that onset of maltreatment can be better predicted than recurrence of maltreatment, which is a promising finding for early detection and prevention of child maltreatment. In addition, actuarial instruments were found to outperform clinical instruments. To bring risk and needs assessment in child welfare to a higher level, actuarial instruments should be further developed and strengthened by distinguishing risk assessment from needs assessment and by integrating risk assessment with case management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling issues in nuclear plant fire risk analysis

    International Nuclear Information System (INIS)

    Siu, N.

    1989-01-01

    This paper discusses various issues associated with current models for analyzing the risk due to fires in nuclear power plants. Particular emphasis is placed on the fire growth and suppression models, these being unique to the fire portion of the overall risk analysis. Potentially significant modeling improvements are identified; also discussed are a variety of modeling issues where improvements will help the credibility of the analysis, without necessarily changing the computed risk significantly. The mechanistic modeling of fire initiation is identified as a particularly promising improvement for reducing the uncertainties in the predicted risk. 17 refs., 5 figs. 2 tabs

  2. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  3. Predicting Barrett's Esophagus in Families: An Esophagus Translational Research Network (BETRNet) Model Fitting Clinical Data to a Familial Paradigm.

    Science.gov (United States)

    Sun, Xiangqing; Elston, Robert C; Barnholtz-Sloan, Jill S; Falk, Gary W; Grady, William M; Faulx, Ashley; Mittal, Sumeet K; Canto, Marcia; Shaheen, Nicholas J; Wang, Jean S; Iyer, Prasad G; Abrams, Julian A; Tian, Ye D; Willis, Joseph E; Guda, Kishore; Markowitz, Sanford D; Chandar, Apoorva; Warfe, James M; Brock, Wendy; Chak, Amitabh

    2016-05-01

    Barrett's esophagus is often asymptomatic and only a small portion of Barrett's esophagus patients are currently diagnosed and under surveillance. Therefore, it is important to develop risk prediction models to identify high-risk individuals with Barrett's esophagus. Familial aggregation of Barrett's esophagus and esophageal adenocarcinoma, and the increased risk of esophageal adenocarcinoma for individuals with a family history, raise the necessity of including genetic factors in the prediction model. Methods to determine risk prediction models using both risk covariates and ascertained family data are not well developed. We developed a Barrett's Esophagus Translational Research Network (BETRNet) risk prediction model from 787 singly ascertained Barrett's esophagus pedigrees and 92 multiplex Barrett's esophagus pedigrees, fitting a multivariate logistic model that incorporates family history and clinical risk factors. The eight risk factors, age, sex, education level, parental status, smoking, heartburn frequency, regurgitation frequency, and use of acid suppressant, were included in the model. The prediction accuracy was evaluated on the training dataset and an independent validation dataset of 643 multiplex Barrett's esophagus pedigrees. Our results indicate family information helps to predict Barrett's esophagus risk, and predicting in families improves both prediction calibration and discrimination accuracy. Our model can predict Barrett's esophagus risk for anyone with family members known to have, or not have, had Barrett's esophagus. It can predict risk for unrelated individuals without knowing any relatives' information. Our prediction model will shed light on effectively identifying high-risk individuals for Barrett's esophagus screening and surveillance, consequently allowing intervention at an early stage, and reducing mortality from esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev; 25(5); 727-35. ©2016 AACR. ©2016 American Association for

  4. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    International Nuclear Information System (INIS)

    Zhang, Rui; Howell, Rebecca M; Homann, Kenneth; Giebeler, Annelise; Taddei, Phillip J; Mahajan, Anita; Newhauser, Wayne D

    2013-01-01

    Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

  5. A mathematical prediction model incorporating molecular subtype for risk of non-sentinel lymph node metastasis in sentinel lymph node-positive breast cancer patients: a retrospective analysis and nomogram development.

    Science.gov (United States)

    Wang, Na-Na; Yang, Zheng-Jun; Wang, Xue; Chen, Li-Xuan; Zhao, Hong-Meng; Cao, Wen-Feng; Zhang, Bin

    2018-04-25

    Molecular subtype of breast cancer is associated with sentinel lymph node status. We sought to establish a mathematical prediction model that included breast cancer molecular subtype for risk of positive non-sentinel lymph nodes in breast cancer patients with sentinel lymph node metastasis and further validate the model in a separate validation cohort. We reviewed the clinicopathologic data of breast cancer patients with sentinel lymph node metastasis who underwent axillary lymph node dissection between June 16, 2014 and November 16, 2017 at our hospital. Sentinel lymph node biopsy was performed and patients with pathologically proven sentinel lymph node metastasis underwent axillary lymph node dissection. Independent risks for non-sentinel lymph node metastasis were assessed in a training cohort by multivariate analysis and incorporated into a mathematical prediction model. The model was further validated in a separate validation cohort, and a nomogram was developed and evaluated for diagnostic performance in predicting the risk of non-sentinel lymph node metastasis. Moreover, we assessed the performance of five different models in predicting non-sentinel lymph node metastasis in training cohort. Totally, 495 cases were eligible for the study, including 291 patients in the training cohort and 204 in the validation cohort. Non-sentinel lymph node metastasis was observed in 33.3% (97/291) patients in the training cohort. The AUC of MSKCC, Tenon, MDA, Ljubljana, and Louisville models in training cohort were 0.7613, 0.7142, 0.7076, 0.7483, and 0.671, respectively. Multivariate regression analysis indicated that tumor size (OR = 1.439; 95% CI 1.025-2.021; P = 0.036), sentinel lymph node macro-metastasis versus micro-metastasis (OR = 5.063; 95% CI 1.111-23.074; P = 0.036), the number of positive sentinel lymph nodes (OR = 2.583, 95% CI 1.714-3.892; P model based on the results of multivariate analysis was established to predict the risk of non

  6. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk)

    DEFF Research Database (Denmark)

    Hajifathalian, Kaveh; Ueda, Peter; Lu, Yuan

    2015-01-01

    BACKGROUND: Treatment of cardiovascular risk factors based on disease risk depends on valid risk prediction equations. We aimed to develop, and apply in example countries, a risk prediction equation for cardiovascular disease (consisting here of coronary heart disease and stroke) that can be reca...

  7. Comparison between frailty index of deficit accumulation and phenotypic model to predict risk of falls: data from the global longitudinal study of osteoporosis in women (GLOW Hamilton cohort.

    Directory of Open Access Journals (Sweden)

    Guowei Li

    Full Text Available To compare the predictive accuracy of the frailty index (FI of deficit accumulation and the phenotypic frailty (PF model in predicting risks of future falls, fractures and death in women aged ≥55 years.Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW 3-year Hamilton cohort (n = 3,985, we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1 investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20% of the FI and PF; (2 trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail which were defined by the PF; (3 categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures.The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56 in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs for falls (AUCs ≥ 0.68 and death (AUCs ≥ 0.79, and c-indices for fractures (c-indices ≥ 0.69 respectively.The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings.

  8. Comparison between frailty index of deficit accumulation and phenotypic model to predict risk of falls: data from the global longitudinal study of osteoporosis in women (GLOW) Hamilton cohort.

    Science.gov (United States)

    Li, Guowei; Thabane, Lehana; Ioannidis, George; Kennedy, Courtney; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-01-01

    To compare the predictive accuracy of the frailty index (FI) of deficit accumulation and the phenotypic frailty (PF) model in predicting risks of future falls, fractures and death in women aged ≥55 years. Based on the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort (n = 3,985), we compared the predictive accuracy of the FI and PF in risks of falls, fractures and death using three strategies: (1) investigated the relationship with adverse health outcomes by increasing per one-fifth (i.e., 20%) of the FI and PF; (2) trichotomized the FI based on the overlap in the density distribution of the FI by the three groups (robust, pre-frail and frail) which were defined by the PF; (3) categorized the women according to a predicted probability function of falls during the third year of follow-up predicted by the FI. Logistic regression models were used for falls and death, while survival analyses were conducted for fractures. The FI and PF agreed with each other at a good level of consensus (correlation coefficients ≥ 0.56) in all the three strategies. Both the FI and PF approaches predicted adverse health outcomes significantly. The FI quantified the risks of future falls, fractures and death more precisely than the PF. Both the FI and PF discriminated risks of adverse outcomes in multivariable models with acceptable and comparable area under the curve (AUCs) for falls (AUCs ≥ 0.68) and death (AUCs ≥ 0.79), and c-indices for fractures (c-indices ≥ 0.69) respectively. The FI is comparable with the PF in predicting risks of adverse health outcomes. These findings may indicate the flexibility in the choice of frailty model for the elderly in the population-based settings.

  9. Predicting risk of trace element pollution from municipal roads using site-specific soil samples and remotely sensed data.

    Science.gov (United States)

    Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit

    2018-07-15

    Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.

  10. Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach.

    Science.gov (United States)

    Journy, Neige; Ancelet, Sophie; Rehel, Jean-Luc; Mezzarobba, Myriam; Aubert, Bernard; Laurier, Dominique; Bernier, Marie-Odile

    2014-03-01

    The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose-response models estimated in the Japanese atomic bomb survivors' dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1-55) brain/CNS cancers and four (90 % UI 1-14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9-101) thyroid cancers, 55 (90 % UI 20-158) breast cancers, and one (90 % UI risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5-10 % of CT examinations would be related to risks 1.4-3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1-10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.

  11. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    Science.gov (United States)

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  12. Adequacy of relative and absolute risk models for lifetime risk estimate of radiation-induced cancer

    International Nuclear Information System (INIS)

    McBride, M.; Coldman, A.J.

    1988-03-01

    This report examines the applicability of the relative (multiplicative) and absolute (additive) models in predicting lifetime risk of radiation-induced cancer. A review of the epidemiologic literature, and a discussion of the mathematical models of carcinogenesis and their relationship to these models of lifetime risk, are included. Based on the available data, the relative risk model for the estimation of lifetime risk is preferred for non-sex-specific epithelial tumours. However, because of lack of knowledge concerning other determinants of radiation risk and of background incidence rates, considerable uncertainty in modelling lifetime risk still exists. Therefore, it is essential that follow-up of exposed cohorts be continued so that population-based estimates of lifetime risk are available

  13. Predicting the risk of cucurbit downy mildew in the eastern United States using an integrated aerobiological model

    Science.gov (United States)

    Neufeld, K. N.; Keinath, A. P.; Gugino, B. K.; McGrath, M. T.; Sikora, E. J.; Miller, S. A.; Ivey, M. L.; Langston, D. B.; Dutta, B.; Keever, T.; Sims, A.; Ojiambo, P. S.

    2017-11-01

    Cucurbit downy mildew caused by the obligate oomycete, Pseudoperonospora cubensis, is considered one of the most economically important diseases of cucurbits worldwide. In the continental United States, the pathogen overwinters in southern Florida and along the coast of the Gulf of Mexico. Outbreaks of the disease in northern states occur annually via long-distance aerial transport of sporangia from infected source fields. An integrated aerobiological modeling system has been developed to predict the risk of disease occurrence and to facilitate timely use of fungicides for disease management. The forecasting system, which combines information on known inoculum sources, long-distance atmospheric spore transport and spore deposition modules, was tested to determine its accuracy in predicting risk of disease outbreak. Rainwater samples at disease monitoring sites in Alabama, Georgia, Louisiana, New York, North Carolina, Ohio, Pennsylvania and South Carolina were collected weekly from planting to the first appearance of symptoms at the field sites during the 2013, 2014, and 2015 growing seasons. A conventional PCR assay with primers specific to P. cubensis was used to detect the presence of sporangia in rain water samples. Disease forecasts were monitored and recorded for each site after each rain event until initial disease symptoms appeared. The pathogen was detected in 38 of the 187 rainwater samples collected during the study period. The forecasting system correctly predicted the risk of disease outbreak based on the presence of sporangia or appearance of initial disease symptoms with an overall accuracy rate of 66 and 75%, respectively. In addition, the probability that the forecasting system correctly classified the presence or absence of disease was ≥ 73%. The true skill statistic calculated based on the appearance of disease symptoms in cucurbit field plantings ranged from 0.42 to 0.58, indicating that the disease forecasting system had an acceptable to good

  14. Predicting nosocomial lower respiratory tract infections by a risk index based system

    NARCIS (Netherlands)

    Chen, Yong; Shan, Xue; Zhao, Jingya; Han, Xuelin; Tian, Shuguang; Chen, Fangyan; Su, Xueting; Sun, Yansong; Huang, Liuyu; Grundmann, Hajo; Wang, Hongyuan; Han, Li

    2017-01-01

    Although belonging to one of the most common type of nosocomial infection, there was currently no simple prediction model for lower respiratory tract infections (LRTIs). This study aims to develop a risk index based system for predicting nosocomial LRTIs based on data from a large point-prevalence

  15. MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-07-01

    Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.

  16. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong [Southeast University, Department of Radiology, Medical School, Zhongda Hospital (China); Wu, Chun-Gen [Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Diagnostic and Interventional Radiology (China); Fang, Wen; Chen, Li; Guo, Jin-He; Deng, Gang; Zhu, Guang-Yu; Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Southeast University, Department of Radiology, Medical School, Zhongda Hospital (China)

    2017-02-15

    PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.

  17. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

    International Nuclear Information System (INIS)

    Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong; Wu, Chun-Gen; Fang, Wen; Chen, Li; Guo, Jin-He; Deng, Gang; Zhu, Guang-Yu; Teng, Gao-Jun

    2017-01-01

    PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy of this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.

  18. Predicting the risk of suicide by analyzing the text of clinical notes.

    Science.gov (United States)

    Poulin, Chris; Shiner, Brian; Thompson, Paul; Vepstas, Linas; Young-Xu, Yinong; Goertzel, Benjamin; Watts, Bradley; Flashman, Laura; McAllister, Thomas

    2014-01-01

    We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veterans who used mental health services and did not commit suicide, and veterans who did not use mental health services and did not commit suicide during the observation period (n = 70 in each group). From the clinical notes, we generated datasets of single keywords and multi-word phrases, and constructed prediction models using a machine-learning algorithm based on a genetic programming framework. The resulting inference accuracy was consistently 65% or more. Our data therefore suggests that computerized text analytics can be applied to unstructured medical records to estimate the risk of suicide. The resulting system could allow clinicians to potentially screen seemingly healthy patients at the primary care level, and to continuously evaluate the suicide risk among psychiatric patients.

  19. Predicting the Risk of Suicide by Analyzing the Text of Clinical Notes

    Science.gov (United States)

    Thompson, Paul; Vepstas, Linas; Young-Xu, Yinong; Goertzel, Benjamin; Watts, Bradley; Flashman, Laura; McAllister, Thomas

    2014-01-01

    We developed linguistics-driven prediction models to estimate the risk of suicide. These models were generated from unstructured clinical notes taken from a national sample of U.S. Veterans Administration (VA) medical records. We created three matched cohorts: veterans who committed suicide, veterans who used mental health services and did not commit suicide, and veterans who did not use mental health services and did not commit suicide during the observation period (n = 70 in each group). From the clinical notes, we generated datasets of single keywords and multi-word phrases, and constructed prediction models using a machine-learning algorithm based on a genetic programming framework. The resulting inference accuracy was consistently 65% or more. Our data therefore suggests that computerized text analytics can be applied to unstructured medical records to estimate the risk of suicide. The resulting system could allow clinicians to potentially screen seemingly healthy patients at the primary care level, and to continuously evaluate the suicide risk among psychiatric patients. PMID:24489669

  20. A Regularized Deep Learning Approach for Clinical Risk Prediction of Acute Coronary Syndrome Using Electronic Health Records.

    Science.gov (United States)

    Huang, Zhengxing; Dong, Wei; Duan, Huilong; Liu, Jiquan

    2018-05-01

    Acute coronary syndrome (ACS), as a common and severe cardiovascular disease, is a leading cause of death and the principal cause of serious long-term disability globally. Clinical risk prediction of ACS is important for early intervention and treatment. Existing ACS risk scoring models are based mainly on a small set of hand-picked risk factors and often dichotomize predictive variables to simplify the score calculation. This study develops a regularized stacked denoising autoencoder (SDAE) model to stratify clinical risks of ACS patients from a large volume of electronic health records (EHR). To capture characteristics of patients at similar risk levels, and preserve the discriminating information across different risk levels, two constraints are added on SDAE to make the reconstructed feature representations contain more risk information of patients, which contribute to a better clinical risk prediction result. We validate our approach on a real clinical dataset consisting of 3464 ACS patient samples. The performance of our approach for predicting ACS risk remains robust and reaches 0.868 and 0.73 in terms of both AUC and accuracy, respectively. The obtained results show that the proposed approach achieves a competitive performance compared to state-of-the-art models in dealing with the clinical risk prediction problem. In addition, our approach can extract informative risk factors of ACS via a reconstructive learning strategy. Some of these extracted risk factors are not only consistent with existing medical domain knowledge, but also contain suggestive hypotheses that could be validated by further investigations in the medical domain.

  1. Multimethod prediction of physical parent-child aggression risk in expectant mothers and fathers with Social Information Processing theory.

    Science.gov (United States)

    Rodriguez, Christina M; Smith, Tamika L; Silvia, Paul J

    2016-01-01

    The Social Information Processing (SIP) model postulates that parents undergo a series of stages in implementing physical discipline that can escalate into physical child abuse. The current study utilized a multimethod approach to investigate whether SIP factors can predict risk of parent-child aggression (PCA) in a diverse sample of expectant mothers and fathers. SIP factors of PCA attitudes, negative child attributions, reactivity, and empathy were considered as potential predictors of PCA risk; additionally, analyses considered whether personal history of PCA predicted participants' own PCA risk through its influence on their attitudes and attributions. Findings indicate that, for both mothers and fathers, history influenced attitudes but not attributions in predicting PCA risk, and attitudes and attributions predicted PCA risk; empathy and reactivity predicted negative child attributions for expectant mothers, but only reactivity significantly predicted attributions for expectant fathers. Path models for expectant mothers and fathers were remarkably similar. Overall, the findings provide support for major aspects of the SIP model. Continued work is needed in studying the progression of these factors across time for both mothers and fathers as well as the inclusion of other relevant ecological factors to the SIP model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validation

    NARCIS (Netherlands)

    Lammers, R.J.M.; Hendriks, J.C.M.; Rodriguez Faba, O.; Witjes, W.P.J.; Palou, J.; Witjes, J.A.

    2016-01-01

    PURPOSE: To develop a model to predict recurrence for patients with intermediate-risk (IR) non-muscle-invasive bladder cancer (NMIBC) treated with intravesical chemotherapy which can be challenging because of the heterogeneous characteristics of these patients. METHODS: Data from three Dutch trials

  3. Predicting risk and human reliability: a new approach

    International Nuclear Information System (INIS)

    Duffey, R.; Ha, T.-S.

    2009-01-01

    Learning from experience describes human reliability and skill acquisition, and the resulting theory has been validated by comparison against millions of outcome data from multiple industries and technologies worldwide. The resulting predictions were used to benchmark the classic first generation human reliability methods adopted in probabilistic risk assessments. The learning rate, probabilities and response times are also consistent with the existing psychological models for human learning and error correction. The new approach also implies a finite lower bound probability that is not predicted by empirical statistical distributions that ignore the known and fundamental learning effects. (author)

  4. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis.

    Science.gov (United States)

    Perotte, Adler; Ranganath, Rajesh; Hirsch, Jamie S; Blei, David; Elhadad, Noémie

    2015-07-01

    As adoption of electronic health records continues to increase, there is an opportunity to incorporate clinical documentation as well as laboratory values and demographics into risk prediction modeling. The authors develop a risk prediction model for chronic kidney disease (CKD) progression from stage III to stage IV that includes longitudinal data and features drawn from clinical documentation. The study cohort consisted of 2908 primary-care clinic patients who had at least three visits prior to January 1, 2013 and developed CKD stage III during their documented history. Development and validation cohorts were randomly selected from this cohort and the study datasets included longitudinal inpatient and outpatient data from these populations. Time series analysis (Kalman filter) and survival analysis (Cox proportional hazards) were combined to produce a range of risk models. These models were evaluated using concordance, a discriminatory statistic. A risk model incorporating longitudinal data on clinical documentation and laboratory test results (concordance 0.849) predicts progression from state III CKD to stage IV CKD more accurately when compared to a similar model without laboratory test results (concordance 0.733, P<.001), a model that only considers the most recent laboratory test results (concordance 0.819, P < .031) and a model based on estimated glomerular filtration rate (concordance 0.779, P < .001). A risk prediction model that takes longitudinal laboratory test results and clinical documentation into consideration can predict CKD progression from stage III to stage IV more accurately than three models that do not take all of these variables into consideration. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  5. Prostate Cancer Predictive Simulation Modelling, Assessing the Risk Technique (PCP-SMART): Introduction and Initial Clinical Efficacy Evaluation Data Presentation of a Simple Novel Mathematical Simulation Modelling Method, Devised to Predict the Outcome of Prostate Biopsy on an Individual Basis.

    Science.gov (United States)

    Spyropoulos, Evangelos; Kotsiris, Dimitrios; Spyropoulos, Katherine; Panagopoulos, Aggelos; Galanakis, Ioannis; Mavrikos, Stamatios

    2017-02-01

    We developed a mathematical "prostate cancer (PCa) conditions simulating" predictive model (PCP-SMART), from which we derived a novel PCa predictor (prostate cancer risk determinator [PCRD] index) and a PCa risk equation. We used these to estimate the probability of finding PCa on prostate biopsy, on an individual basis. A total of 371 men who had undergone transrectal ultrasound-guided prostate biopsy were enrolled in the present study. Given that PCa risk relates to the total prostate-specific antigen (tPSA) level, age, prostate volume, free PSA (fPSA), fPSA/tPSA ratio, and PSA density and that tPSA ≥ 50 ng/mL has a 98.5% positive predictive value for a PCa diagnosis, we hypothesized that correlating 2 variables composed of 3 ratios (1, tPSA/age; 2, tPSA/prostate volume; and 3, fPSA/tPSA; 1 variable including the patient's tPSA and the other, a tPSA value of 50 ng/mL) could operate as a PCa conditions imitating/simulating model. Linear regression analysis was used to derive the coefficient of determination (R 2 ), termed the PCRD index. To estimate the PCRD index's predictive validity, we used the χ 2 test, multiple logistic regression analysis with PCa risk equation formation, calculation of test performance characteristics, and area under the receiver operating characteristic curve analysis using SPSS, version 22 (P regression revealed the PCRD index as an independent PCa predictor, and the formulated risk equation was 91% accurate in predicting the probability of finding PCa. On the receiver operating characteristic analysis, the PCRD index (area under the curve, 0.926) significantly (P < .001) outperformed other, established PCa predictors. The PCRD index effectively predicted the prostate biopsy outcome, correctly identifying 9 of 10 men who were eventually diagnosed with PCa and correctly ruling out PCa for 9 of 10 men who did not have PCa. Its predictive power significantly outperformed established PCa predictors, and the formulated risk equation

  6. Does the Risk Assessment and Prediction Tool Predict Discharge Disposition After Joint Replacement?

    DEFF Research Database (Denmark)

    Hansen, Viktor J.; Gromov, Kirill; Lebrun, Lauren M

    2015-01-01

    BACKGROUND: Payers of health services and policymakers place a major focus on cost containment in health care. Studies have shown that early planning of discharge is essential in reducing length of stay and achieving financial benefit; tools that can help predict discharge disposition would...... populations is unknown. A low RAPT score is reported to indicate a high risk of needing any form of inpatient rehabilitation after TJA, including short-term nursing facilities. QUESTIONS/PURPOSES: This study attempts (1) to assess predictive accuracy of the RAPT on US patients undergoing total hip and knee....... Based on our findings, the risk categories in our populations should be high risk intermediate risk 7 to 10, and low risk > 10. CONCLUSIONS: The RAPT accurately predicted discharge disposition for high- and low-risk patients in our cohort. Based on our data, intermediate-risk patients should...

  7. Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Mehdi Jamei

    Full Text Available Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of Electronic Health Records (EHR has created the opportunity to proactively identify patients with high risk of hospital readmission, and apply effective interventions to mitigate that risk. To that end, in the past, numerous machine-learning models have been employed to predict the risk of 30-day hospital readmission. However, the need for an accurate and real-time predictive model, suitable for hospital setting applications still exists. Here, using data from more than 300,000 hospital stays in California from Sutter Health's EHR system, we built and tested an artificial neural network (NN model based on Google's TensorFlow library. Through comparison with other traditional and non-traditional models, we demonstrated that neural networks are great candidates to capture the complexity and interdependency of various data fields in EHRs. LACE, the current industry standard, showed a precision (PPV of 0.20 in identifying high-risk patients in our database. In contrast, our NN model yielded a PPV of 0.24, which is a 20% improvement over LACE. Additionally, we discussed the predictive power of Social Determinants of Health (SDoH data, and presented a simple cost analysis to assist hospitalists in implementing helpful and cost-effective post-discharge interventions.

  8. The utility of absolute risk prediction using FRAX® and Garvan Fracture Risk Calculator in daily practice.

    Science.gov (United States)

    van Geel, Tineke A C M; Eisman, John A; Geusens, Piet P; van den Bergh, Joop P W; Center, Jacqueline R; Dinant, Geert-Jan

    2014-02-01

    There are two commonly used fracture risk prediction tools FRAX(®) and Garvan Fracture Risk Calculator (GARVAN-FRC). The objective of this study was to investigate the utility of these tools in daily practice. A prospective population-based 5-year follow-up study was conducted in ten general practice centres in the Netherlands. For the analyses, the FRAX(®) and GARVAN-FRC 10-year absolute risks (FRAX(®) does not have 5-year risk prediction) for all fractures were used. Among 506 postmenopausal women aged ≥60 years (mean age: 67.8±5.8 years), 48 (9.5%) sustained a fracture during follow-up. Both tools, using BMD values, distinguish between women who did and did not fracture (10.2% vs. 6.8%, respectively for FRAX(®) and 32.4% vs. 39.1%, respectively for GARVAN-FRC, pbetter for women who sustained a fracture (higher sensitivity) and FRAX(®) for women who did not sustain a fracture (higher specificity). Similar results were obtained using age related cut off points. The discriminant value of both models is at least as good as models used in other medical conditions; hence they can be used to communicate the fracture risk to patients. However, given differences in the estimated risks between FRAX(®) and GARVAN-FRC, the significance of the absolute risk must be related to country-specific recommended intervention thresholds to inform the patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Prediction of Adulthood Obesity Using Genetic and Childhood Clinical Risk Factors in the Cardiovascular Risk in Young Finns Study.

    Science.gov (United States)

    Seyednasrollah, Fatemeh; Mäkelä, Johanna; Pitkänen, Niina; Juonala, Markus; Hutri-Kähönen, Nina; Lehtimäki, Terho; Viikari, Jorma; Kelly, Tanika; Li, Changwei; Bazzano, Lydia; Elo, Laura L; Raitakari, Olli T

    2017-06-01

    Obesity is a known risk factor for cardiovascular disease. Early prediction of obesity is essential for prevention. The aim of this study is to assess the use of childhood clinical factors and the genetic risk factors in predicting adulthood obesity using machine learning methods. A total of 2262 participants from the Cardiovascular Risk in YFS (Young Finns Study) were followed up from childhood (age 3-18 years) to adulthood for 31 years. The data were divided into training (n=1625) and validation (n=637) set. The effect of known genetic risk factors (97 single-nucleotide polymorphisms) was investigated as a weighted genetic risk score of all 97 single-nucleotide polymorphisms (WGRS97) or a subset of 19 most significant single-nucleotide polymorphisms (WGRS19) using boosting machine learning technique. WGRS97 and WGRS19 were validated using external data (n=369) from BHS (Bogalusa Heart Study). WGRS19 improved the accuracy of predicting adulthood obesity in training (area under the curve [AUC=0.787 versus AUC=0.744, P obesity. Predictive accuracy is highest among young children (3-6 years), whereas among older children (9-18 years) the risk can be identified using childhood clinical factors. The model is helpful in screening children with high risk of developing obesity. © 2017 American Heart Association, Inc.

  10. An antenatal prediction model for adverse birth outcomes in an urban population: The contribution of medical and non-medical risks.

    Science.gov (United States)

    Posthumus, A G; Birnie, E; van Veen, M J; Steegers, E A P; Bonsel, G J

    2016-07-01

    in the Netherlands the perinatal mortality rate is high compared to other European countries. Around eighty percent of perinatal mortality cases is preceded by being small for gestational age (SGA), preterm birth and/or having a low Apgar-score at 5 minutes after birth. Current risk detection in pregnancy focusses primarily on medical risks. However, non-medical risk factors may be relevant too. Both non-medical and medical risk factors are incorporated in the Rotterdam Reproductive Risk Reduction (R4U) scorecard. We investigated the associations between R4U risk factors and preterm birth, SGA and a low Apgar score. a prospective cohort study under routine practice conditions. six midwifery practices and two hospitals in Rotterdam, the Netherlands. 836 pregnant women. the R4U scorecard was filled out at the booking visit. after birth, the follow-up data on pregnancy outcomes were collected. Multivariate logistic regression was used to fit models for the prediction of any adverse outcome (preterm birth, SGA and/or a low Apgar score), stratified for ethnicity and socio-economic status (SES). factors predicting any adverse outcome for Western women were smoking during the first trimester and over-the-counter medication. For non-Western women risk factors were teenage pregnancy, advanced maternal age and an obstetric history of SGA. Risk factors for high SES women were low family income, no daily intake of vegetables and a history of preterm birth. For low SES women risk factors appeared to be low family income, non-Western ethnicity, smoking during the first trimester and a history of SGA. the presence of both medical and non-medical risk factors early in pregnancy predict the occurrence of adverse outcomes at birth. Furthermore the risk profiles for adverse outcomes differed according to SES and ethnicity. to optimise effective risk selection, both medical and non-medical risk factors should be taken into account in midwifery and obstetric care at the booking visit

  11. Predicting 30-Day Readmissions in an Asian Population: Building a Predictive Model by Incorporating Markers of Hospitalization Severity.

    Directory of Open Access Journals (Sweden)

    Lian Leng Low

    Full Text Available To reduce readmissions, it may be cost-effective to consider risk stratification, with targeting intervention programs to patients at high risk of readmissions. In this study, we aimed to derive and validate a prediction model including several novel markers of hospitalization severity, and compare the model with the LACE index (Length of stay, Acuity of admission, Charlson comorbidity index, Emergency department visits in past 6 months, an established risk stratification tool.This was a retrospective cohort study of all patients ≥ 21 years of age, who were admitted to a tertiary hospital in Singapore from January 1, 2013 through May 31, 2015. Data were extracted from the hospital's electronic health records. The outcome was defined as unplanned readmissions within 30 days of discharge from the index hospitalization. Candidate predictive variables were broadly grouped into five categories: Patient demographics, social determinants of health, past healthcare utilization, medical comorbidities, and markers of hospitalization severity. Multivariable logistic regression was used to predict the outcome, and receiver operating characteristic analysis was performed to compare our model with the LACE index.74,102 cases were enrolled for analysis. Of these, 11,492 patient cases (15.5% were readmitted within 30 days of discharge. A total of fifteen predictive variables were strongly associated with the risk of 30-day readmissions, including number of emergency department visits in the past 6 months, Charlson Comorbidity Index, markers of hospitalization severity such as 'requiring inpatient dialysis during index admission, and 'treatment with intravenous furosemide 40 milligrams or more' during index admission. Our predictive model outperformed the LACE index by achieving larger area under the curve values: 0.78 (95% confidence interval [CI]: 0.77-0.79 versus 0.70 (95% CI: 0.69-0.71.Several factors are important for the risk of 30-day readmissions

  12. Job stress models for predicting burnout syndrome: a review.

    Science.gov (United States)

    Chirico, Francesco

    2016-01-01

    In Europe, the Council Directive 89/391 for improvement of workers' safety and health has emphasized the importance of addressing all occupational risk factors, and hence also psychosocial and organizational risk factors. Nevertheless, the construct of "work-related stress" elaborated from EU-OSHA is not totally corresponding with the "psychosocial" risk, that is a broader category of risk, comprising various and different psychosocial risk factors. The term "burnout", without any binding definition, tries to integrate symptoms as well as cause of the burnout process. In Europe, the most important methods developed for the work related stress risk assessment are based on the Cox's transactional model of job stress. Nevertheless, there are more specific models for predicting burnout syndrome. This literature review provides an overview of job burnout, highlighting the most important models of job burnout, such as the Job Strain, the Effort/Reward Imbalance and the Job Demands-Resources models. The difference between these models and the Cox's model of job stress is explored.

  13. Cardiovascular risk prediction in the Netherlands

    NARCIS (Netherlands)

    Dis, van S.J.

    2011-01-01

    Background: In clinical practice, Systematic COronary Risk Evaluation (SCORE) risk prediction functions and charts are used to identify persons at high risk for cardiovascular diseases (CVD), who are considered eligible for drug treatment of elevated blood pressure and serum cholesterol. These

  14. Predicting surgical site infection after spine surgery: a validated model using a prospective surgical registry.

    Science.gov (United States)

    Lee, Michael J; Cizik, Amy M; Hamilton, Deven; Chapman, Jens R

    2014-09-01

    The impact of surgical site infection (SSI) is substantial. Although previous study has determined relative risk and odds ratio (OR) values to quantify risk factors, these values may be difficult to translate to the patient during counseling of surgical options. Ideally, a model that predicts absolute risk of SSI, rather than relative risk or OR values, would greatly enhance the discussion of safety of spine surgery. To date, there is no risk stratification model that specifically predicts the risk of medical complication. The purpose of this study was to create and validate a predictive model for the risk of SSI after spine surgery. This study performs a multivariate analysis of SSI after spine surgery using a large prospective surgical registry. Using the results of this analysis, this study will then create and validate a predictive model for SSI after spine surgery. The patient sample is from a high-quality surgical registry from our two institutions with prospectively collected, detailed demographic, comorbidity, and complication data. An SSI that required return to the operating room for surgical debridement. Using a prospectively collected surgical registry of more than 1,532 patients with extensive demographic, comorbidity, surgical, and complication details recorded for 2 years after the surgery, we identified several risk factors for SSI after multivariate analysis. Using the beta coefficients from those regression analyses, we created a model to predict the occurrence of SSI after spine surgery. We split our data into two subsets for internal and cross-validation of our model. We created a predictive model based on our beta coefficients from our multivariate analysis. The final predictive model for SSI had a receiver-operator curve characteristic of 0.72, considered to be a fair measure. The final model has been uploaded for use on SpineSage.com. We present a validated model for predicting SSI after spine surgery. The value in this model is that it gives

  15. Prediction Models and Decision Support: Chances and Challenges

    NARCIS (Netherlands)

    Kappen, T.H.

    2015-01-01

    A clinical prediction model can assist doctors in arriving at the most likely diagnosis or estimating the prognosis. By utilizing various patient- and disease-related properties, such models can yield objective estimations of the risk of a disease or the probability of a certain disease course for

  16. D-dimer levels over time and the risk of recurrent venous thromboembolism: an update of the Vienna prediction model.

    Science.gov (United States)

    Eichinger, Sabine; Heinze, Georg; Kyrle, Paul A

    2014-01-02

    Patients with unprovoked venous thromboembolism (VTE) can be stratified according to their recurrence risk based on their sex, the VTE location, and D-dimer measured 3 weeks after anticoagulation by the Vienna Prediction Model. We aimed to expand the model to also assess the recurrence risk from later points on. Five hundred and fifty-three patients with a first VTE were followed for a median of 68 months. We excluded patients with VTE provoked by a transient risk factor or female hormone intake, with a natural inhibitor deficiency, the lupus anticoagulant, or cancer. The study end point was recurrent VTE, which occurred in 150 patients. D-dimer levels did not substantially increase over time. Subdistribution hazard ratios (95% confidence intervals) dynamically changed from 2.43 (1.57 to 3.77) at 3 weeks to 2.27 (1.48 to 3.48), 1.98 (1.30 to 3.02) , and 1.73 (1.11 to 2.69) at 3, 9, and 15 months in men versus women, from 1.84 (1.00 to 3.43) to 1.68 (0.91 to 3.10), 1.49 (0.79 to 2.81) , and 1.44 (0.76 to 2.72) in patients with proximal deep vein thrombosis or pulmonary embolism compared with calf vein thrombosis, and from 1.30 (1.07 to 1.58) to 1.27 (1.06 to 1.51), 1.20 (1.02 to 1.41), and 1.13 (0.95 to 1.36) per doubling D-dimer. Using a dynamic landmark competing risks regression approach, we generated nomograms and a web-based calculator to calculate risk scores and recurrence rates from multiple times after anticoagulation. Risk of recurrent VTE after discontinuation of anticoagulation can be predicted from multiple random time points by integrating the patient's sex, location of first VTE, and serial D-dimer measurements.

  17. An artificial neural network prediction model of congenital heart disease based on risk factors: A hospital-based case-control study.

    Science.gov (United States)

    Li, Huixia; Luo, Miyang; Zheng, Jianfei; Luo, Jiayou; Zeng, Rong; Feng, Na; Du, Qiyun; Fang, Junqun

    2017-02-01

    An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of 85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN models were developed on Matlab 7.1.The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level (odds ratio  = 0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place (3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). After many trials, we selected a 3-layer BPNN model with 15, 12, and 1 neuron in the input, hidden, and output layers, respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets, respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0

  18. [Predicting individual risk of high healthcare cost to identify complex chronic patients].

    Science.gov (United States)

    Coderch, Jordi; Sánchez-Pérez, Inma; Ibern, Pere; Carreras, Marc; Pérez-Berruezo, Xavier; Inoriza, José M

    2014-01-01

    To develop a predictive model for the risk of high consumption of healthcare resources, and assess the ability of the model to identify complex chronic patients. A cross-sectional study was performed within a healthcare management organization by using individual data from 2 consecutive years (88,795 people). The dependent variable consisted of healthcare costs above the 95th percentile (P95), including all services provided by the organization and pharmaceutical consumption outside of the institution. The predictive variables were age, sex, morbidity-based on clinical risk groups (CRG)-and selected data from previous utilization (use of hospitalization, use of high-cost drugs in ambulatory care, pharmaceutical expenditure). A univariate descriptive analysis was performed. We constructed a logistic regression model with a 95% confidence level and analyzed sensitivity, specificity, positive predictive values (PPV), and the area under the ROC curve (AUC). Individuals incurring costs >P95 accumulated 44% of total healthcare costs and were concentrated in ACRG3 (aggregated CRG level 3) categories related to multiple chronic diseases. All variables were statistically significant except for sex. The model had a sensitivity of 48.4% (CI: 46.9%-49.8%), specificity of 97.2% (CI: 97.0%-97.3%), PPV of 46.5% (CI: 45.0%-47.9%), and an AUC of 0.897 (CI: 0.892 to 0.902). High consumption of healthcare resources is associated with complex chronic morbidity. A model based on age, morbidity, and prior utilization is able to predict high-cost risk and identify a target population requiring proactive care. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. Bankruptcy prediction for credit risk using neural networks: a survey and new results.

    Science.gov (United States)

    Atiya, A F

    2001-01-01

    The prediction of corporate bankruptcies is an important and widely studied topic since it can have significant impact on bank lending decisions and profitability. This work presents two contributions. First we review the topic of bankruptcy prediction, with emphasis on neural-network (NN) models. Second, we develop an NN bankruptcy prediction model. Inspired by one of the traditional credit risk models developed by Merton (1974), we propose novel indicators for the NN system. We show that the use of these indicators in addition to traditional financial ratio indicators provides a significant improvement in the (out-of-sample) prediction accuracy (from 81.46% to 85.5% for a three-year-ahead forecast).

  20. Clinical utility of polymorphisms in one-carbon metabolism for breast cancer risk prediction

    Directory of Open Access Journals (Sweden)

    Shaik Mohammad Naushad

    2011-01-01

    Full Text Available This study addresses the issues in translating the laboratory derived data obtained during discovery phase of research to a clinical setting using a breast cancer model. Laboratory-based risk assessment indi-cated that a family history of breast cancer, reduced folate carrier 1 (RFC1 G80A, thymidylate synthase (TYMS 5’-UTR 28bp tandem repeat, methylene tetrahydrofolate reductase (MTHFR C677T and catecholamine-O-methyl transferase (COMT genetic polymorphisms in one-carbon metabolic pathway increase the risk for breast cancer. Glutamate carboxypeptidase II (GCPII C1561T and cytosolic serine hydroxymethyl transferase (cSHMT C1420T polymorphisms were found to decrease breast cancer risk. In order to test the clinical validity of this information in the risk prediction of breast cancer, data was stratified based on number of protective alleles into four categories and in each category sensitivity and 1-specificity values were obtained based on the distribution of number of risk alleles in cases and controls. Receiver operating characteristic (ROC curves were plotted and the area under ROC curve (C was used as a measure of discriminatory ability between cases and controls. In subjects without any protective allele, aberrations in one-carbon metabolism showed perfect prediction (C=0.93 while the predictability was lost in subjects with one protective allele (C=0.60. However, predictability increased steadily with increasing number of protective alleles (C=0.63 for 2 protective alleles and C=0.71 for 3 protective alleles. The cut-off point for discrimination was >4 alleles in all predictable combinations. Models of this kind can serve as valuable tools in translational re-search, especially in identifying high-risk individuals and reducing the disease risk either by life style modification or by medical intervention.

  1. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  2. Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model

    Science.gov (United States)

    Orini, Michele; Mincholé, Ana; Monasterio, Violeta; Cygankiewicz, Iwona; Bayés de Luna, Antonio; Martínez, Juan Pablo

    2017-01-01

    Background Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in chronic heart failure (CHF) patients, but prevention strategies are different. Currently used tools to specifically predict these endpoints are limited. We developed risk models to specifically assess SCD and PFD risk in CHF by combining ECG markers and clinical variables. Methods The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597 patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indices included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans (TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe) and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolarization due to heart rate changes. Standard clinical indices were also included. Results The indices with the greatest SCD prognostic impact were gender, New York Heart Association (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indices were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables, the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of risk score) with respect to patients in the low-risk group (first and second quintiles of risk score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a model including only ECG markers, and to 14 and 13, when combining clinical and ECG markers. Conclusion The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure mechanisms into risk models based only on standard clinical variables substantially improves prediction of SCD and PFD in CHF patients. PMID:29020031

  3. A Knowledge-Base for a Personalized Infectious Disease Risk Prediction System.

    Science.gov (United States)

    Vinarti, Retno; Hederman, Lucy

    2018-01-01

    We present a knowledge-base to represent collated infectious disease risk (IDR) knowledge. The knowledge is about personal and contextual risk of contracting an infectious disease obtained from declarative sources (e.g. Atlas of Human Infectious Diseases). Automated prediction requires encoding this knowledge in a form that can produce risk probabilities (e.g. Bayesian Network - BN). The knowledge-base presented in this paper feeds an algorithm that can auto-generate the BN. The knowledge from 234 infectious diseases was compiled. From this compilation, we designed an ontology and five rule types for modelling IDR knowledge in general. The evaluation aims to assess whether the knowledge-base structure, and its application to three disease-country contexts, meets the needs of personalized IDR prediction system. From the evaluation results, the knowledge-base conforms to the system's purpose: personalization of infectious disease risk.

  4. Missing Value Imputation Improves Mortality Risk Prediction Following Cardiac Surgery: An Investigation of an Australian Patient Cohort.

    Science.gov (United States)

    Karim, Md Nazmul; Reid, Christopher M; Tran, Lavinia; Cochrane, Andrew; Billah, Baki

    2017-03-01

    The aim of this study was to evaluate the impact of missing values on the prediction performance of the model predicting 30-day mortality following cardiac surgery as an example. Information from 83,309 eligible patients, who underwent cardiac surgery, recorded in the Australia and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) database registry between 2001 and 2014, was used. An existing 30-day mortality risk prediction model developed from ANZSCTS database was re-estimated using the complete cases (CC) analysis and using multiple imputation (MI) analysis. Agreement between the risks generated by the CC and MI analysis approaches was assessed by the Bland-Altman method. Performances of the two models were compared. One or more missing predictor variables were present in 15.8% of the patients in the dataset. The Bland-Altman plot demonstrated significant disagreement between the risk scores (prisk of mortality. Compared to CC analysis, MI analysis resulted in an average of 8.5% decrease in standard error, a measure of uncertainty. The MI model provided better prediction of mortality risk (observed: 2.69%; MI: 2.63% versus CC: 2.37%, Pvalues improved the 30-day mortality risk prediction following cardiac surgery. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  5. Modeling infection transmission in primate networks to predict centrality-based risk.

    Science.gov (United States)

    Romano, Valéria; Duboscq, Julie; Sarabian, Cécile; Thomas, Elodie; Sueur, Cédric; MacIntosh, Andrew J J

    2016-07-01

    Social structure can theoretically regulate disease risk by mediating exposure to pathogens via social proximity and contact. Investigating the role of central individuals within a network may help predict infectious agent transmission as well as implement disease control strategies, but little is known about such dynamics in real primate networks. We combined social network analysis and a modeling approach to better understand transmission of a theoretical infectious agent in wild Japanese macaques, highly social animals which form extended but highly differentiated social networks. We collected focal data from adult females living on the islands of Koshima and Yakushima, Japan. Individual identities as well as grooming networks were included in a Markov graph-based simulation. In this model, the probability that an individual will transmit an infectious agent depends on the strength of its relationships with other group members. Similarly, its probability of being infected depends on its relationships with already infected group members. We correlated: (i) the percentage of subjects infected during a latency-constrained epidemic; (ii) the mean latency to complete transmission; (iii) the probability that an individual is infected first among all group members; and (iv) each individual's mean rank in the chain of transmission with different individual network centralities (eigenvector, strength, betweenness). Our results support the hypothesis that more central individuals transmit infections in a shorter amount of time and to more subjects but also become infected more quickly than less central individuals. However, we also observed that the spread of infectious agents on the Yakushima network did not always differ from expectations of spread on random networks. Generalizations about the importance of observed social networks in pathogen flow should thus be made with caution, since individual characteristics in some real world networks appear less relevant than

  6. Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers

    DEFF Research Database (Denmark)

    Kuchenbaecker, Karoline B; McGuffog, Lesley; Barrowdale, Daniel

    2017-01-01

    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic ...... risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management....

  7. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  8. Using a Prediction Model to Manage Cyber Security Threats

    Directory of Open Access Journals (Sweden)

    Venkatesh Jaganathan

    2015-01-01

    Full Text Available Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization.

  9. Using a Prediction Model to Manage Cyber Security Threats.

    Science.gov (United States)

    Jaganathan, Venkatesh; Cherurveettil, Priyesh; Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization.

  10. Using a Prediction Model to Manage Cyber Security Threats

    Science.gov (United States)

    Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization. PMID:26065024

  11. Generating a robust prediction model for stage I lung adenocarcinoma recurrence after surgical resection.

    Science.gov (United States)

    Wu, Yu-Chung; Wei, Nien-Chih; Hung, Jung-Jyh; Yeh, Yi-Chen; Su, Li-Jen; Hsu, Wen-Hu; Chou, Teh-Ying

    2017-10-03

    Lung cancer mortality remains high even after successful resection. Adjuvant treatment benefits stage II and III patients, but not stage I patients, and most studies fail to predict recurrence in stage I patients. Our study included 211 lung adenocarcinoma patients (stages I-IIIA; 81% stage I) who received curative resections at Taipei Veterans General Hospital between January 2001 and December 2012. We generated a prediction model using 153 samples, with validation using an additional 58 clinical outcome-blinded samples. Gene expression profiles were generated using formalin-fixed, paraffin-embedded tissue samples and microarrays. Data analysis was performed using a supervised clustering method. The prediction model generated from mixed stage samples successfully separated patients at high vs. low risk for recurrence. The validation tests hazard ratio (HR = 4.38) was similar to that of the training tests (HR = 4.53), indicating a robust training process. Our prediction model successfully distinguished high- from low-risk stage IA and IB patients, with a difference in 5-year disease-free survival between high- and low-risk patients of 42% for stage IA and 45% for stage IB ( p model for identifying lung adenocarcinoma patients at high risk for recurrence who may benefit from adjuvant therapy. Our prediction performance of the difference in disease free survival between high risk and low risk groups demonstrates more than two fold improvement over earlier published results.

  12. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.

    Science.gov (United States)

    Kaewprag, Pacharmon; Newton, Cheryl; Vermillion, Brenda; Hyun, Sookyung; Huang, Kun; Machiraju, Raghu

    2017-07-05

    We develop predictive models enabling clinicians to better understand and explore patient clinical data along with risk factors for pressure ulcers in intensive care unit patients from electronic health record data. Identifying accurate risk factors of pressure ulcers is essential to determining appropriate prevention strategies; in this work we examine medication, diagnosis, and traditional Braden pressure ulcer assessment scale measurements as patient features. In order to predict pressure ulcer incidence and better understand the structure of related risk factors, we construct Bayesian networks from patient features. Bayesian network nodes (features) and edges (conditional dependencies) are simplified with statistical network techniques. Upon reviewing a network visualization of our model, our clinician collaborators were able to identify strong relationships between risk factors widely recognized as associated with pressure ulcers. We present a three-stage framework for predictive analysis of patient clinical data: 1) Developing electronic health record feature extraction functions with assistance of clinicians, 2) simplifying features, and 3) building Bayesian network predictive models. We evaluate all combinations of Bayesian network models from different search algorithms, scoring functions, prior structure initializations, and sets of features. From the EHRs of 7,717 ICU patients, we construct Bayesian network predictive models from 86 medication, diagnosis, and Braden scale features. Our model not only identifies known and suspected high PU risk factors, but also substantially increases sensitivity of the prediction - nearly three times higher comparing to logistical regression models - without sacrificing the overall accuracy. We visualize a representative model with which our clinician collaborators identify strong relationships between risk factors widely recognized as associated with pressure ulcers. Given the strong adverse effect of pressure ulcers

  13. Uncertainty estimation and risk prediction in air quality

    International Nuclear Information System (INIS)

    Garaud, Damien

    2011-01-01

    This work is about uncertainty estimation and risk prediction in air quality. Firstly, we build a multi-model ensemble of air quality simulations which can take into account all uncertainty sources related to air quality modeling. Ensembles of photochemical simulations at continental and regional scales are automatically generated. Then, these ensemble are calibrated with a combinatorial optimization method. It selects a sub-ensemble which is representative of uncertainty or shows good resolution and reliability for probabilistic forecasting. This work shows that it is possible to estimate and forecast uncertainty fields related to ozone and nitrogen dioxide concentrations or to improve the reliability of threshold exceedance predictions. The approach is compared with Monte Carlo simulations, calibrated or not. The Monte Carlo approach appears to be less representative of the uncertainties than the multi-model approach. Finally, we quantify the observational error, the representativeness error and the modeling errors. The work is applied to the impact of thermal power plants, in order to quantify the uncertainty on the impact estimates. (author) [fr

  14. Feasibility and predictive performance of the Hendrich Fall Risk Model II in a rehabilitation department: a prospective study.

    Science.gov (United States)

    Campanini, Isabella; Mastrangelo, Stefano; Bargellini, Annalisa; Bassoli, Agnese; Bosi, Gabriele; Lombardi, Francesco; Tolomelli, Stefano; Lusuardi, Mirco; Merlo, Andrea

    2018-01-11

    Falls are a common adverse event in both elderly inpatients and patients admitted to rehabilitation units. The Hendrich Fall Risk Model II (HIIFRM) has been already tested in all hospital wards with high fall rates, with the exception of the rehabilitation setting. This study's aim is to address the feasibility and predictive performances of HIIFRM in a hospital rehabilitation department. A 6 months prospective study in a Italian rehabilitation department with patients from orthopaedic, pulmonary, and neurological rehabilitation wards. All admitted patients were enrolled and assessed within 24 h of admission by means of the HIIFRM. The occurrence of falls was checked and recorded daily. HIIFRM feasibility was assessed as the percentage of successful administrations at admission. HIIFRM predictive performance was determined in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC), best cutoff, sensitivity, specificity, positive and negative predictive values, along with their asymptotic 95% confidence intervals (95% CI). One hundred ninety-one patents were admitted. HIIFRM was feasible in 147 cases (77%), 11 of which suffered a fall (7.5%). Failures in administration were mainly due to bedridden patients (e.g. minimally conscious state, vegetative state). AUC was 0.779(0.685-0.873). The original HIIFRM cutoff of 5 led to a sensitivity of 100% with a mere specificity of 49%(40-57%), thus suggesting using higher cutoffs. Moreover, the median score for non-fallers at rehabilitation units was higher than that reported in literature for geriatric non fallers. The best trade-off between sensitivity and specificity was obtained by using a cutoff of 8. This lead to sensitivity = 73%(46-99%), specificity = 72%(65-80%), positive predictive value = 17% and negative predictive value = 97%. These results support the use of the HIIFRM as a predictive tool. The HIIFRM showed satisfactory feasibility and predictive performances in

  15. A predictive model to identify patients with suspected acute coronary syndromes at high risk of cardiac arrest or in-hospital mortality: An IMMEDIATE Trial sub-study

    Directory of Open Access Journals (Sweden)

    Madhab Ray

    2015-12-01

    Conclusions: The multivariable predictive model developed identified patients with very early ACS at high risk of cardiac arrest or death. Using this model could assist treating those with greatest potential benefit from GIK.

  16. A biological approach to the interspecies prediction of radiation-induced mortality risk

    International Nuclear Information System (INIS)

    Carnes, B.A.; Grahn, D.; Olshansky, S.J.

    1997-01-01

    Evolutionary explanations for why sexually reproducing organisms grow old suggest that the forces of natural selection affect the ages when diseases occur that are subject to a genetic influence (referred to here as intrinsic diseases). When extended to the population level for a species, this logic leads to the general prediction that age-specific death rates from intrinsic causes should begin to rise as the force of selection wanes once the characteristic age of sexual maturity is attained. Results consistent with these predictions have been found for laboratory mice, beagles, and humans where, after adjusting for differences in life span, it was demonstrated that these species share a common age pattern of mortality for intrinsic causes of death. In quantitative models used to predict radiation-induced mortality, risks are often expressed as multiples of those observed in a control population. A control population, however, is an aging population. As such, mortality risks related to exposure must be interpreted relative to the age-specific risk of death associated with aging. Given the previous success in making interspecies predictions of age-related mortality, the purpose of this study was to determine whether radiation-induced mortality observed in one species could also be predicted quantitatively from a model used to describe the mortality consequences of exposure to radiation in a different species. Mortality data for B6CF 1 mice and beagles exposed to 60 Co γ-rays for the duration of life were used for analysis

  17. Predicting Readmission at Early Hospitalization Using Electronic Clinical Data: An Early Readmission Risk Score.

    Science.gov (United States)

    Tabak, Ying P; Sun, Xiaowu; Nunez, Carlos M; Gupta, Vikas; Johannes, Richard S

    2017-03-01

    Identifying patients at high risk for readmission early during hospitalization may aid efforts in reducing readmissions. We sought to develop an early readmission risk predictive model using automated clinical data available at hospital admission. We developed an early readmission risk model using a derivation cohort and validated the model with a validation cohort. We used a published Acute Laboratory Risk of Mortality Score as an aggregated measure of clinical severity at admission and the number of hospital discharges in the previous 90 days as a measure of disease progression. We then evaluated the administrative data-enhanced model by adding principal and secondary diagnoses and other variables. We examined the c-statistic change when additional variables were added to the model. There were 1,195,640 adult discharges from 70 hospitals with 39.8% male and the median age of 63 years (first and third quartile: 43, 78). The 30-day readmission rate was 11.9% (n=142,211). The early readmission model yielded a graded relationship of readmission and the Acute Laboratory Risk of Mortality Score and the number of previous discharges within 90 days. The model c-statistic was 0.697 with good calibration. When administrative variables were added to the model, the c-statistic increased to 0.722. Automated clinical data can generate a readmission risk score early at hospitalization with fair discrimination. It may have applied value to aid early care transition. Adding administrative data increases predictive accuracy. The administrative data-enhanced model may be used for hospital comparison and outcome research.

  18. Comparison of Simple Versus Performance-Based Fall Prediction Models

    Directory of Open Access Journals (Sweden)

    Shekhar K. Gadkaree BS

    2015-05-01

    Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.

  19. Persistent hemifacial spasm after microvascular decompression: a risk assessment model.

    Science.gov (United States)

    Shah, Aalap; Horowitz, Michael

    2017-06-01

    Microvascular decompression (MVD) for hemifacial spasm (HFS) provides resolution of disabling symptoms such as eyelid twitching and muscle contractions of the entire hemiface. The primary aim of this study was to evaluate the predictive value of patient demographics and spasm characteristics on long-term outcomes, with or without intraoperative lateral spread response (LSR) as an additional variable in a risk assessment model. A retrospective study was undertaken to evaluate the associations of pre-operative patient characteristics, as well as intraoperative LSR and need for a staged procedure on the presence of persistent or recurrent HFS at the time of hospital discharge and at follow-up. A risk assessment model was constructed with the inclusion of six clinically or statistically significant variables from the univariate analyses. A receiving operator characteristic curve was generated, and area under the curve was calculated to determine the strength of the predictive model. A risk assessment model was first created consisting of significant pre-operative variables (Model 1) (age >50, female gender, history of botulinum toxin use, platysma muscle involvement). This model demonstrated borderline predictive value for persistent spasm at discharge (AUC .60; p=.045) and fair predictive value at follow-up (AUC .75; p=.001). Intraoperative variables (e.g. LSR persistence) demonstrated little additive value (Model 2) (AUC .67). Patients with a higher risk score (three or greater) demonstrated greater odds of persistent HFS at the time of discharge (OR 1.5 [95%CI 1.16-1.97]; p=.035), as well as greater odds of persistent or recurrent spasm at the time of follow-up (OR 3.0 [95%CI 1.52-5.95]; p=.002) Conclusions: A risk assessment model consisting of pre-operative clinical characteristics is useful in prognosticating HFS persistence at follow-up.

  20. Development of a prognostic model for predicting spontaneous singleton preterm birth.

    Science.gov (United States)

    Schaaf, Jelle M; Ravelli, Anita C J; Mol, Ben Willem J; Abu-Hanna, Ameen

    2012-10-01

    To develop and validate a prognostic model for prediction of spontaneous preterm birth. Prospective cohort study using data of the nationwide perinatal registry in The Netherlands. We studied 1,524,058 singleton pregnancies between 1999 and 2007. We developed a multiple logistic regression model to estimate the risk of spontaneous preterm birth based on maternal and pregnancy characteristics. We used bootstrapping techniques to internally validate our model. Discrimination (AUC), accuracy (Brier score) and calibration (calibration graphs and Hosmer-Lemeshow C-statistic) were used to assess the model's predictive performance. Our primary outcome measure was spontaneous preterm birth at model included 13 variables for predicting preterm birth. The predicted probabilities ranged from 0.01 to 0.71 (IQR 0.02-0.04). The model had an area under the receiver operator characteristic curve (AUC) of 0.63 (95% CI 0.63-0.63), the Brier score was 0.04 (95% CI 0.04-0.04) and the Hosmer Lemeshow C-statistic was significant (pvalues of predicted probability. The positive predictive value was 26% (95% CI 20-33%) for the 0.4 probability cut-off point. The model's discrimination was fair and it had modest calibration. Previous preterm birth, drug abuse and vaginal bleeding in the first half of pregnancy were the most important predictors for spontaneous preterm birth. Although not applicable in clinical practice yet, this model is a next step towards early prediction of spontaneous preterm birth that enables caregivers to start preventive therapy in women at higher risk. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. How to interpret a small increase in AUC with an additional risk prediction marker: decision analysis comes through.

    Science.gov (United States)

    Baker, Stuart G; Schuit, Ewoud; Steyerberg, Ewout W; Pencina, Michael J; Vickers, Andrew; Vickers, Andew; Moons, Karel G M; Mol, Ben W J; Lindeman, Karen S

    2014-09-28

    An important question in the evaluation of an additional risk prediction marker is how to interpret a small increase in the area under the receiver operating characteristic curve (AUC). Many researchers believe that a change in AUC is a poor metric because it increases only slightly with the addition of a marker with a large odds ratio. Because it is not possible on purely statistical grounds to choose between the odds ratio and AUC, we invoke decision analysis, which incorporates costs and benefits. For example, a timely estimate of the risk of later non-elective operative delivery can help a woman in labor decide if she wants an early elective cesarean section to avoid greater complications from possible later non-elective operative delivery. A basic risk prediction model for later non-elective operative delivery involves only antepartum markers. Because adding intrapartum markers to this risk prediction model increases AUC by 0.02, we questioned whether this small improvement is worthwhile. A key decision-analytic quantity is the risk threshold, here the risk of later non-elective operative delivery at which a patient would be indifferent between an early elective cesarean section and usual care. For a range of risk thresholds, we found that an increase in the net benefit of risk prediction requires collecting intrapartum marker data on 68 to 124 women for every correct prediction of later non-elective operative delivery. Because data collection is non-invasive, this test tradeoff of 68 to 124 is clinically acceptable, indicating the value of adding intrapartum markers to the risk prediction model. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A calibration hierarchy for risk models was defined: from utopia to empirical data.

    Science.gov (United States)

    Van Calster, Ben; Nieboer, Daan; Vergouwe, Yvonne; De Cock, Bavo; Pencina, Michael J; Steyerberg, Ewout W

    2016-06-01

    Calibrated risk models are vital for valid decision support. We define four levels of calibration and describe implications for model development and external validation of predictions. We present results based on simulated data sets. A common definition of calibration is "having an event rate of R% among patients with a predicted risk of R%," which we refer to as "moderate calibration." Weaker forms of calibration only require the average predicted risk (mean calibration) or the average prediction effects (weak calibration) to be correct. "Strong calibration" requires that the event rate equals the predicted risk for every covariate pattern. This implies that the model is fully correct for the validation setting. We argue that this is unrealistic: the model type may be incorrect, the linear predictor is only asymptotically unbiased, and all nonlinear and interaction effects should be correctly modeled. In addition, we prove that moderate calibration guarantees nonharmful decision making. Finally, results indicate that a flexible assessment of calibration in small validation data sets is problematic. Strong calibration is desirable for individualized decision support but unrealistic and counter productive by stimulating the development of overly complex models. Model development and external validation should focus on moderate calibration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.

    Science.gov (United States)

    Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M

    2015-07-01

    Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.

  4. A score to predict short-term risk of COPD exacerbations (SCOPEX

    Directory of Open Access Journals (Sweden)

    Make BJ

    2015-01-01

    Full Text Available Barry J Make,1 Göran Eriksson,2 Peter M Calverley,3 Christine R Jenkins,4 Dirkje S Postma,5 Stefan Peterson,6 Ollie Östlund,7 Antonio Anzueto8 1Division of Pulmonary Sciences and Critical Care Medicine, National Jewish Health, University of Colorado Denver School of Medicine, Denver, CO, USA; 2Department of Respiratory Medicine and Allergology, University Hospital, Lund, Sweden; 3Pulmonary and Rehabilitation Research Group, University Hospital Aintree, Liverpool, UK; 4George Institute for Global Health, The University of Sydney and Concord Clinical School, Woolcock Institute of Medical Research, Sydney, NSW, Australia; 5Department of Pulmonology, University of Groningen and GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands; 6StatMind AB, Lund, Sweden; 7Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden; 8Department of Pulmonary/Critical Care, University of Texas Health Sciences Center and South Texas Veterans Healthcare System, San Antonio, TX, USA Background: There is no clinically useful score to predict chronic obstructive pulmonary disease (COPD exacerbations. We aimed to derive this by analyzing data from three existing COPD clinical trials of budesonide/formoterol, formoterol, or placebo in patients with moderate-to-very-severe COPD and a history of exacerbations in the previous year. Methods: Predictive variables were selected using Cox regression for time to first severe COPD exacerbation. We determined absolute risk estimates for an exacerbation by identifying variables in a binomial model, adjusting for observation time, study, and treatment. The model was further reduced to clinically useful variables and the final regression coefficients scaled to obtain risk scores of 0–100 to predict an exacerbation within 6 months. Receiver operating characteristic (ROC curves and the corresponding C-index were used to investigate the discriminatory

  5. A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of RiSk multi-country prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Beth A Payne

    2014-01-01

    Full Text Available Pre-eclampsia/eclampsia are leading causes of maternal mortality and morbidity, particularly in low- and middle- income countries (LMICs. We developed the miniPIERS risk prediction model to provide a simple, evidence-based tool to identify pregnant women in LMICs at increased risk of death or major hypertensive-related complications.From 1 July 2008 to 31 March 2012, in five LMICs, data were collected prospectively on 2,081 women with any hypertensive disorder of pregnancy admitted to a participating centre. Candidate predictors collected within 24 hours of admission were entered into a step-wise backward elimination logistic regression model to predict a composite adverse maternal outcome within 48 hours of admission. Model internal validation was accomplished by bootstrapping and external validation was completed using data from 1,300 women in the Pre-eclampsia Integrated Estimate of RiSk (fullPIERS dataset. Predictive performance was assessed for calibration, discrimination, and stratification capacity. The final miniPIERS model included: parity (nulliparous versus multiparous; gestational age on admission; headache/visual disturbances; chest pain/dyspnoea; vaginal bleeding with abdominal pain; systolic blood pressure; and dipstick proteinuria. The miniPIERS model was well-calibrated and had an area under the receiver operating characteristic curve (AUC ROC of 0.768 (95% CI 0.735-0.801 with an average optimism of 0.037. External validation AUC ROC was 0.713 (95% CI 0.658-0.768. A predicted probability ≥25% to define a positive test classified women with 85.5% accuracy. Limitations of this study include the composite outcome and the broad inclusion criteria of any hypertensive disorder of pregnancy. This broad approach was used to optimize model generalizability.The miniPIERS model shows reasonable ability to identify women at increased risk of adverse maternal outcomes associated with the hypertensive disorders of pregnancy. It could be

  6. Prediction of cardiovascular disease risk among low-income urban dwellers in metropolitan Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Su, Tin Tin; Amiri, Mohammadreza; Mohd Hairi, Farizah; Thangiah, Nithiah; Bulgiba, Awang; Majid, Hazreen Abdul

    2015-01-01

    We aimed to predict the ten-year cardiovascular disease (CVD) risk among low-income urban dwellers of metropolitan Malaysia. Participants were selected from a cross-sectional survey conducted in Kuala Lumpur. To assess the 10-year CVD risk, we employed the Framingham risk scoring (FRS) models. Significant determinants of the ten-year CVD risk were identified using General Linear Model (GLM). Altogether 882 adults (≥30 years old with no CVD history) were randomly selected. The classic FRS model (figures in parentheses are from the modified model) revealed that 20.5% (21.8%) and 38.46% (38.9%) of respondents were at high and moderate risk of CVD. The GLM models identified the importance of education, occupation, and marital status in predicting the future CVD risk. Our study indicated that one out of five low-income urban dwellers has high chance of having CVD within ten years. Health care expenditure, other illness related costs and loss of productivity due to CVD would worsen the current situation of low-income urban population. As such, the public health professionals and policy makers should establish substantial effort to formulate the public health policy and community-based intervention to minimize the upcoming possible high mortality and morbidity due to CVD among the low-income urban dwellers.

  7. Prediction of Cardiovascular Disease Risk among Low-Income Urban Dwellers in Metropolitan Kuala Lumpur, Malaysia

    Directory of Open Access Journals (Sweden)

    Tin Tin Su

    2015-01-01

    Full Text Available We aimed to predict the ten-year cardiovascular disease (CVD risk among low-income urban dwellers of metropolitan Malaysia. Participants were selected from a cross-sectional survey conducted in Kuala Lumpur. To assess the 10-year CVD risk, we employed the Framingham risk scoring (FRS models. Significant determinants of the ten-year CVD risk were identified using General Linear Model (GLM. Altogether 882 adults (≥30 years old with no CVD history were randomly selected. The classic FRS model (figures in parentheses are from the modified model revealed that 20.5% (21.8% and 38.46% (38.9% of respondents were at high and moderate risk of CVD. The GLM models identified the importance of education, occupation, and marital status in predicting the future CVD risk. Our study indicated that one out of five low-income urban dwellers has high chance of having CVD within ten years. Health care expenditure, other illness related costs and loss of productivity due to CVD would worsen the current situation of low-income urban population. As such, the public health professionals and policy makers should establish substantial effort to formulate the public health policy and community-based intervention to minimize the upcoming possible high mortality and morbidity due to CVD among the low-income urban dwellers.

  8. Cabin Environment Physics Risk Model

    Science.gov (United States)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  9. Risk modelling study for carotid endarterectomy.

    Science.gov (United States)

    Kuhan, G; Gardiner, E D; Abidia, A F; Chetter, I C; Renwick, P M; Johnson, B F; Wilkinson, A R; McCollum, P T

    2001-12-01

    The aims of this study were to identify factors that influence the risk of stroke or death following carotid endarterectomy (CEA) and to develop a model to aid in comparative audit of vascular surgeons and units. A series of 839 CEAs performed by four vascular surgeons between 1992 and 1999 was analysed. Multiple logistic regression analysis was used to model the effect of 15 possible risk factors on the 30-day risk of stroke or death. Outcome was compared for four surgeons and two units after adjustment for the significant risk factors. The overall 30-day stroke or death rate was 3.9 per cent (29 of 741). Heart disease, diabetes and stroke were significant risk factors. The 30-day predicted stroke or death rates increased with increasing risk scores. The observed 30-day stroke or death rate was 3.9 per cent for both vascular units and varied from 3.0 to 4.2 per cent for the four vascular surgeons. Differences in the outcomes between the surgeons and vascular units did not reach statistical significance after risk adjustment. Diabetes, heart disease and stroke are significant risk factors for stroke or death following CEA. The risk score model identified patients at higher risk and aided in comparative audit.

  10. Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

    Science.gov (United States)

    Goldstein, Benjamin A; Navar, Ann Marie; Carter, Rickey E

    2017-06-14

    Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  11. Survival prediction model for postoperative hepatocellular carcinoma patients.

    Science.gov (United States)

    Ren, Zhihui; He, Shasha; Fan, Xiaotang; He, Fangping; Sang, Wei; Bao, Yongxing; Ren, Weixin; Zhao, Jinming; Ji, Xuewen; Wen, Hao

    2017-09-01

    This study is to establish a predictive index (PI) model of 5-year survival rate for patients with hepatocellular carcinoma (HCC) after radical resection and to evaluate its prediction sensitivity, specificity, and accuracy.Patients underwent HCC surgical resection were enrolled and randomly divided into prediction model group (101 patients) and model evaluation group (100 patients). Cox regression model was used for univariate and multivariate survival analysis. A PI model was established based on multivariate analysis and receiver operating characteristic (ROC) curve was drawn accordingly. The area under ROC (AUROC) and PI cutoff value was identified.Multiple Cox regression analysis of prediction model group showed that neutrophil to lymphocyte ratio, histological grade, microvascular invasion, positive resection margin, number of tumor, and postoperative transcatheter arterial chemoembolization treatment were the independent predictors for the 5-year survival rate for HCC patients. The model was PI = 0.377 × NLR + 0.554 × HG + 0.927 × PRM + 0.778 × MVI + 0.740 × NT - 0.831 × transcatheter arterial chemoembolization (TACE). In the prediction model group, AUROC was 0.832 and the PI cutoff value was 3.38. The sensitivity, specificity, and accuracy were 78.0%, 80%, and 79.2%, respectively. In model evaluation group, AUROC was 0.822, and the PI cutoff value was well corresponded to the prediction model group with sensitivity, specificity, and accuracy of 85.0%, 83.3%, and 84.0%, respectively.The PI model can quantify the mortality risk of hepatitis B related HCC with high sensitivity, specificity, and accuracy.

  12. Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus: The Steno Type 1 Risk Engine.

    Science.gov (United States)

    Vistisen, Dorte; Andersen, Gregers Stig; Hansen, Christian Stevns; Hulman, Adam; Henriksen, Jan Erik; Bech-Nielsen, Henning; Jørgensen, Marit Eika

    2016-03-15

    Patients with type 1 diabetes mellitus are at increased risk of developing cardiovascular disease (CVD), but they are currently undertreated. There are no risk scores used on a regular basis in clinical practice for assessing the risk of CVD in type 1 diabetes mellitus. From 4306 clinically diagnosed adult patients with type 1 diabetes mellitus, we developed a prediction model for estimating the risk of first fatal or nonfatal CVD event (ischemic heart disease, ischemic stroke, heart failure, and peripheral artery disease). Detailed clinical data including lifestyle factors were linked to event data from validated national registers. The risk prediction model was developed by using a 2-stage approach. First, a nonparametric, data-driven approach was used to identify potentially informative risk factors and interactions (random forest and survival tree analysis). Second, based on results from the first step, Poisson regression analysis was used to derive the final model. The final CVD prediction model was externally validated in a different population of 2119 patients with type 1 diabetes mellitus. During a median follow-up of 6.8 years (interquartile range, 2.9-10.9) a total of 793 (18.4%) patients developed CVD. The final prediction model included age, sex, diabetes duration, systolic blood pressure, low-density lipoprotein cholesterol, hemoglobin A1c, albuminuria, glomerular filtration rate, smoking, and exercise. Discrimination was excellent for a 5-year CVD event with a C-statistic of 0.826 (95% confidence interval, 0.807-0.845) in the derivation data and a C-statistic of 0.803 (95% confidence interval, 0.767-0.839) in the validation data. The Hosmer-Lemeshow test showed good calibration (P>0.05) in both cohorts. This high-performing CVD risk model allows for the implementation of decision rules in a clinical setting. © 2016 American Heart Association, Inc.

  13. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  14. Complex versus simple models: ion-channel cardiac toxicity prediction.

    Science.gov (United States)

    Mistry, Hitesh B

    2018-01-01

    There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  15. Complex versus simple models: ion-channel cardiac toxicity prediction

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry

    2018-02-01

    Full Text Available There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model Bnet was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the Bnet model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.

  16. Can preventable adverse events be predicted among hospitalized older patients? The development and validation of a predictive model.

    NARCIS (Netherlands)

    Steeg, L. van de; Langelaan, M.; Wagner, C.

    2014-01-01

    Objective: To develop and validate a predictive model for preventable adverse events (AEs) in hospitalized older patients, using clinically important risk factors that are readily available on admission. Design: Data from two retrospective patient record review studies on AEs were used. Risk factors

  17. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team.

    Science.gov (United States)

    Harrison, David A; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Nolan, Jerry P; Rowan, Kathryn M

    2014-08-01

    The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Risk models for two outcomes-return of spontaneous circulation (ROSC) for greater than 20min and survival to hospital discharge-were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC>20min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC>20min (c index 0.81 versus 0.72). Validated risk models for ROSC>20min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Development and validation of risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team☆

    Science.gov (United States)

    Harrison, David A.; Patel, Krishna; Nixon, Edel; Soar, Jasmeet; Smith, Gary B.; Gwinnutt, Carl; Nolan, Jerry P.; Rowan, Kathryn M.

    2014-01-01

    Aim The National Cardiac Arrest Audit (NCAA) is the UK national clinical audit for in-hospital cardiac arrest. To make fair comparisons among health care providers, clinical indicators require case mix adjustment using a validated risk model. The aim of this study was to develop and validate risk models to predict outcomes following in-hospital cardiac arrest attended by a hospital-based resuscitation team in UK hospitals. Methods Risk models for two outcomes—return of spontaneous circulation (ROSC) for greater than 20 min and survival to hospital discharge—were developed and validated using data for in-hospital cardiac arrests between April 2011 and March 2013. For each outcome, a full model was fitted and then simplified by testing for non-linearity, combining categories and stepwise reduction. Finally, interactions between predictors were considered. Models were assessed for discrimination, calibration and accuracy. Results 22,479 in-hospital cardiac arrests in 143 hospitals were included (14,688 development, 7791 validation). The final risk model for ROSC > 20 min included: age (non-linear), sex, prior length of stay in hospital, reason for attendance, location of arrest, presenting rhythm, and interactions between presenting rhythm and location of arrest. The model for hospital survival included the same predictors, excluding sex. Both models had acceptable performance across the range of measures, although discrimination for hospital mortality exceeded that for ROSC > 20 min (c index 0.81 versus 0.72). Conclusions Validated risk models for ROSC > 20 min and hospital survival following in-hospital cardiac arrest have been developed. These models will strengthen comparative reporting in NCAA and support local quality improvement. PMID:24830872

  19. Predicting the short-term risk of diabetes in HIV-positive patients

    DEFF Research Database (Denmark)

    Petoumenos, Kathy; Worm, Signe Westring; Fontas, Eric

    2012-01-01

    Introduction: HIV-positive patients receiving combination antiretroviral therapy (cART) frequently experience metabolic complications such as dyslipidemia and insulin resistance, as well as lipodystrophy, increasing the risk of cardiovascular disease (CVD) and diabetes mellitus (DM). Rates of DM ......). Factors predictive of DM included higher glucose, body mass index (BMI) and triglyceride levels, and older age. Among HIV-related factors, recent CD4 counts of...... and other glucose-associated disorders among HIV-positive patients have been reported to range between 2 and 14%, and in an ageing HIV-positive population, the prevalence of DM is expected to continue to increase. This study aims to develop a model to predict the short-term (six-month) risk of DM in HIV...

  20. Surrogate modeling of joint flood risk across coastal watersheds

    Science.gov (United States)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  1. Asymptotically Constant-Risk Predictive Densities When the Distributions of Data and Target Variables Are Different

    Directory of Open Access Journals (Sweden)

    Keisuke Yano

    2014-05-01

    Full Text Available We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.

  2. [Establishment of risk evaluation model of peritoneal metastasis in gastric cancer and its predictive value].

    Science.gov (United States)

    Zhao, Junjie; Zhou, Rongjian; Zhang, Qi; Shu, Ping; Li, Haojie; Wang, Xuefei; Shen, Zhenbin; Liu, Fenglin; Chen, Weidong; Qin, Jing; Sun, Yihong

    2017-01-25

    To establish an evaluation model of peritoneal metastasis in gastric cancer, and to assess its clinical significance. Clinical and pathologic data of the consecutive cases of gastric cancer admitted between April 2015 and December 2015 in Department of General Surgery, Zhongshan Hospital of Fudan University were analyzed retrospectively. A total of 710 patients were enrolled in the study after 18 patients with other distant metastasis were excluded. The correlations between peritoneal metastasis and different factors were studied through univariate (Pearson's test or Fisher's exact test) and multivariate analyses (Binary Logistic regression). Independent predictable factors for peritoneal metastasis were combined to establish a risk evaluation model (nomogram). The nomogram was created with R software using the 'rms' package. In the nomogram, each factor had different scores, and every patient could have a total score by adding all the scores of each factor. A higher total score represented higher risk of peritoneal metastasis. Receiver operating characteristic (ROC) curve analysis was used to compare the sensitivity and specificity of the established nomogram. Delong. Delong. Clarke-Pearson test was used to compare the difference of the area under the curve (AUC). The cut-off value was determined by the AUC, when the ROC curve had the biggest AUC, the model had the best sensitivity and specificity. Among 710 patients, 47 patients had peritoneal metastasis (6.6%), including 30 male (30/506, 5.9%) and 17 female (17/204, 8.3%); 31 were ≥ 60 years old (31/429, 7.2%); 38 had tumor ≥ 3 cm(38/461, 8.2%). Lauren classification indicated that 2 patients were intestinal type(2/245, 0.8%), 8 patients were mixed type(8/208, 3.8%), 11 patients were diffuse type(11/142, 7.7%), and others had no associated data. CA19-9 of 13 patients was ≥ 37 kU/L(13/61, 21.3%); CA125 of 11 patients was ≥ 35 kU/L(11/36, 30.6%); CA72-4 of 11 patients was ≥ 10 kU/L(11/39, 28

  3. Bayesian predictive risk modeling of microbial criteria for Campylobacter in broilers

    DEFF Research Database (Denmark)

    Nauta, Maarten; Ranta, J.; Mikkelä, A.

    Microbial Criteria define the acceptability of food products, based on the presence or detected number of microorganisms in samples. The criteria are applied at the level of defined food lots. Generally, these are interpreted as statistical batches representing the production [1]. The batches...... be assessed by computing posterior distribution of the parameters - a Bayesian evidence synthesis. The outcome of a defined Microbial Criterion (MC) for a batch provides additional evidence concerning the batch. Posterior predictive consumer risk (probability of illness) was computed for such batch...

  4. Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data.

    Science.gov (United States)

    Rahman, M Shafiqur; Sultana, Mahbuba

    2017-02-23

    When developing risk models for binary data with small or sparse data sets, the standard maximum likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of the regression coefficient and frequent convergence failure of the likelihood due to separation. The problem of separation occurs commonly even if sample size is large but there is sufficient number of strong predictors. In the presence of separation, even if one develops the model, it produces overfitted model with poor predictive performance. Firth-and logF-type penalized regression methods are popular alternative to MLE, particularly for solving separation-problem. Despite the attractive advantages, their use in risk prediction is very limited. This paper evaluated these methods in risk prediction in comparison with MLE and other commonly used penalized methods such as ridge. The predictive performance of the methods was evaluated through assessing calibration, discrimination and overall predictive performance using an extensive simulation study. Further an illustration of the methods were provided using a real data example with low prevalence of outcome. The MLE showed poor performance in risk prediction in small or sparse data sets. All penalized methods offered some improvements in calibration, discrimination and overall predictive performance. Although the Firth-and logF-type methods showed almost equal amount of improvement, Firth-type penalization produces some bias in the average predicted probability, and the amount of bias is even larger than that produced by MLE. Of the logF(1,1) and logF(2,2) penalization, logF(2,2) provides slight bias in the estimate of regression coefficient of binary predictor and logF(1,1) performed better in all aspects. Similarly, ridge performed well in discrimination and overall predictive performance but it often produces underfitted model and has high rate of convergence failure (even the rate is higher than that

  5. New Zealand Diabetes Cohort Study cardiovascular risk score for people with Type 2 diabetes: validation in the PREDICT cohort.

    Science.gov (United States)

    Robinson, Tom; Elley, C Raina; Wells, Sue; Robinson, Elizabeth; Kenealy, Tim; Pylypchuk, Romana; Bramley, Dale; Arroll, Bruce; Crengle, Sue; Riddell, Tania; Ameratunga, Shanthi; Metcalf, Patricia; Drury, Paul L

    2012-09-01

    New Zealand (NZ) guidelines recommend treating people for cardiovascular disease (CVD) risk on the basis of five-year absolute risk using a NZ adaptation of the Framingham risk equation. A diabetes-specific Diabetes Cohort Study (DCS) CVD predictive risk model has been developed and validated using NZ Get Checked data. To revalidate the DCS model with an independent cohort of people routinely assessed using PREDICT, a web-based CVD risk assessment and management programme. People with Type 2 diabetes without pre-existing CVD were identified amongst people who had a PREDICT risk assessment between 2002 and 2005. From this group we identified those with sufficient data to allow estimation of CVD risk with the DCS models. We compared the DCS models with the NZ Framingham risk equation in terms of discrimination, calibration, and reclassification implications. Of 3044 people in our study cohort, 1829 people had complete data and therefore had CVD risks calculated. Of this group, 12.8% (235) had a cardiovascular event during the five-year follow-up. The DCS models had better discrimination than the currently used equation, with C-statistics being 0.68 for the two DCS models and 0.65 for the NZ Framingham model. The DCS models were superior to the NZ Framingham equation at discriminating people with diabetes who will have a cardiovascular event. The adoption of a DCS model would lead to a small increase in the number of people with diabetes who are treated with medication, but potentially more CVD events would be avoided.

  6. Assessment of predictivity of volatile organic compounds carcinogenicity and mutagenicity by freeware in silico models.

    Science.gov (United States)

    Guerra, Lília Ribeiro; de Souza, Alessandra Mendonça Teles; Côrtes, Juliana Alves; Lione, Viviane de Oliveira Freitas; Castro, Helena Carla; Alves, Gutemberg Gomes

    2017-12-01

    The application of in silico methods is increasing on toxicological risk prediction for human and environmental health. This work aimed to evaluate the performance of three in silico freeware models (OSIRIS v.2.0, LAZAR, and Toxtree) on the prediction of carcinogenicity and mutagenicity of thirty-eight volatile organic compounds (VOC) related to chemical risk assessment for occupational exposure. Theoretical data were compared with assessments available in international databases. Confusion matrices and ROC curves were used to evaluate the sensitivity, specificity, and accuracy of each model. All three models (OSIRIS, LAZAR and Toxtree) were able to identify VOC with a potential carcinogenicity or mutagenicity risk for humans, however presenting differences concerning the specificity, sensitivity, and accuracy. The best predictive performances were found for OSIRIS and LAZAR for carcinogenicity and OSIRIS for mutagenicity, as these softwares presented a combination of negative predictive power and lower risk of false positives (high specificity) for those endpoints. The heterogeneity of results found with different softwares reinforce the importance of using a combination of in silico models to occupational toxicological risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Risk score for predicting long-term mortality after coronary artery bypass graft surgery.

    Science.gov (United States)

    Wu, Chuntao; Camacho, Fabian T; Wechsler, Andrew S; Lahey, Stephen; Culliford, Alfred T; Jordan, Desmond; Gold, Jeffrey P; Higgins, Robert S D; Smith, Craig R; Hannan, Edward L

    2012-05-22

    No simplified bedside risk scores have been created to predict long-term mortality after coronary artery bypass graft surgery. The New York State Cardiac Surgery Reporting System was used to identify 8597 patients who underwent isolated coronary artery bypass graft surgery in July through December 2000. The National Death Index was used to ascertain patients' vital statuses through December 31, 2007. A Cox proportional hazards model was fit to predict death after CABG surgery using preprocedural risk factors. Then, points were assigned to significant predictors of death on the basis of the values of their regression coefficients. For each possible point total, the predicted risks of death at years 1, 3, 5, and 7 were calculated. It was found that the 7-year mortality rate was 24.2 in the study population. Significant predictors of death included age, body mass index, ejection fraction, unstable hemodynamic state or shock, left main coronary artery disease, cerebrovascular disease, peripheral arterial disease, congestive heart failure, malignant ventricular arrhythmia, chronic obstructive pulmonary disease, diabetes mellitus, renal failure, and history of open heart surgery. The points assigned to these risk factors ranged from 1 to 7; possible point totals for each patient ranged from 0 to 28. The observed and predicted risks of death at years 1, 3, 5, and 7 across patient groups stratified by point totals were highly correlated. The simplified risk score accurately predicted the risk of mortality after coronary artery bypass graft surgery and can be used for informed consent and as an aid in determining treatment choice.

  8. Predictive Modelling and Time: An Experiment in Temporal Archaeological Predictive Models

    OpenAIRE

    David Ebert

    2006-01-01

    One of the most common criticisms of archaeological predictive modelling is that it fails to account for temporal or functional differences in sites. However, a practical solution to temporal or functional predictive modelling has proven to be elusive. This article discusses temporal predictive modelling, focusing on the difficulties of employing temporal variables, then introduces and tests a simple methodology for the implementation of temporal modelling. The temporal models thus created ar...

  9. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  10. Prediction of Febrile Neutropenia after Chemotherapy Based on Pretreatment Risk Factors among Cancer Patients

    Science.gov (United States)

    Aagaard, Theis; Roen, Ashley; Daugaard, Gedske; Brown, Peter; Sengeløv, Henrik; Mocroft, Amanda; Lundgren, Jens; Helleberg, Marie

    2017-01-01

    Abstract Background Febrile neutropenia (FN) is a common complication to chemotherapy associated with a high burden of morbidity and mortality. Reliable prediction of individual risk based on pretreatment risk factors allows for stratification of preventive interventions. We aimed to develop such a risk stratification model to predict FN in the 30 days after initiation of chemotherapy. Methods We included consecutive treatment-naïve patients with solid cancers and diffuse large B-cell lymphomas at Copenhagen University Hospital, 2010–2015. Data were obtained from the PERSIMUNE repository of electronic health records. FN was defined as neutrophils ≤0.5 × 10E9/L ​at the time of either a blood culture sample or death. Time from initiation of chemotherapy to FN was analyzed using Fine-Gray models with death as a competing event. Risk factors investigated were: age, sex, body surface area, haemoglobin, albumin, neutrophil-to-lymphocyte ratio, Charlson Comorbidity Index (CCI) and chemotherapy drugs. Parameter estimates were scaled and summed to create the risk score. The scores were grouped into four: low, intermediate, high and very high risk. Results Among 8,585 patients, 467 experienced FN, incidence rate/30 person-days 0.05 (95% CI, 0.05–0.06). Age (1 point if > 65 years), albumin (1 point if 2) and chemotherapy (range -5 to 6 points/drug) predicted FN. Median score at inclusion was 2 points (range –5 to 9). The cumulative incidence and the incidence rates and hazard ratios of FN are shown in Figure 1 and Table 1, respectively. Conclusion We developed a risk score to predict FN the first month after initiation of chemotherapy. The score is easy to use and provides good differentiation of risk groups; the score needs independent validation before routine use. Disclosures All authors: No reported disclosures.

  11. Suicide detection in Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders

    Directory of Open Access Journals (Sweden)

    Jorge Barros

    Full Text Available Objective: To analyze suicidal behavior and build a predictive model for suicide risk using data mining (DM analysis. Methods: A study of 707 Chilean mental health patients (with and without suicide risk was carried out across three healthcare centers in the Metropolitan Region of Santiago, Chile. Three hundred forty-three variables were studied using five questionnaires. DM and machine-learning tools were used via the support vector machine technique. Results: The model selected 22 variables that, depending on the circumstances in which they all occur, define whether a person belongs in a suicide risk zone (accuracy = 0.78, sensitivity = 0.77, and specificity = 0.79. Being in a suicide risk zone means patients are more vulnerable to suicide attempts or are thinking about suicide. The interrelationship between these variables is highly nonlinear, and it is interesting to note the particular ways in which they are configured for each case. The model shows that the variables of a suicide risk zone are related to individual unrest, personal satisfaction, and reasons for living, particularly those related to beliefs in one’s own capacities and coping abilities. Conclusion: These variables can be used to create an assessment tool and enables us to identify individual risk and protective factors. This may also contribute to therapeutic intervention by strengthening feelings of personal well-being and reasons for staying alive. Our results prompted the design of a new clinical tool, which is fast and easy to use and aids in evaluating the trajectory of suicide risk at a given moment.

  12. The Evolution of a Malignancy Risk Prediction Model for Thyroid Nodules Using the Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Shahram Paydar

    2016-01-01

    fine needle aspiration and surgical histopathology results. The results matched in 63.5% of subjects. On the other hand, fine needle aspiration biopsy results falsely predicted malignant thyroid nodules in 16% of cases (false-negative. In 20.5% of subjects, fine needle aspiration was falsely positive for thyroid malignancy. The Resilient back Propagation (RP training algorithm lead to acceptable accuracy in prediction for the designed artificial neural network (64.66% by the cross- validation method. Under the cross-validation method, a back propagation algorithm that used the resilient back propagation protocol - the accuracy in prediction for the trained artificial neural network was 64.66%. Conclusion: An extensive bio-statistically validated artificial neural network of certain clinical, paraclinical and individual given inputs (predictors has the capability to stratify the malignancy risk of a thyroid nodule in order to individualize patient care. This risk assessment model (tool can virtually minimize unnecessary diagnostic thyroid surgeries as well as FNA misleading.

  13. Reexamining financial and economic predictability with new estimators of realized variance and variance risk premium

    DEFF Research Database (Denmark)

    Casas, Isabel; Mao, Xiuping; Veiga, Helena

    This study explores the predictive power of new estimators of the equity variance risk premium and conditional variance for future excess stock market returns, economic activity, and financial instability, both during and after the last global financial crisis. These estimators are obtained from...... time-varying coefficient models are the ones showing considerably higher predictive power for stock market returns and financial instability during the financial crisis, suggesting that an extreme volatility period requires models that can adapt quickly to turmoil........ Moreover, a comparison of the overall results reveals that the conditional variance gains predictive power during the global financial crisis period. Furthermore, both the variance risk premium and conditional variance are determined to be predictors of future financial instability, whereas conditional...

  14. Net Reclassification Indices for Evaluating Risk-Prediction Instruments: A Critical Review

    Science.gov (United States)

    Kerr, Kathleen F.; Wang, Zheyu; Janes, Holly; McClelland, Robyn L.; Psaty, Bruce M.; Pepe, Margaret S.

    2014-01-01

    Net reclassification indices have recently become popular statistics for measuring the prediction increment of new biomarkers. We review the various types of net reclassification indices and their correct interpretations. We evaluate the advantages and disadvantages of quantifying the prediction increment with these indices. For pre-defined risk categories, we relate net reclassification indices to existing measures of the prediction increment. We also consider statistical methodology for constructing confidence intervals for net reclassification indices and evaluate the merits of hypothesis testing based on such indices. We recommend that investigators using net reclassification indices should report them separately for events (cases) and nonevents (controls). When there are two risk categories, the components of net reclassification indices are the same as the changes in the true-positive and false-positive rates. We advocate use of true- and false-positive rates and suggest it is more useful for investigators to retain the existing, descriptive terms. When there are three or more risk categories, we recommend against net reclassification indices because they do not adequately account for clinically important differences in shifts among risk categories. The category-free net reclassification index is a new descriptive device designed to avoid pre-defined risk categories. However, it suffers from many of the same problems as other measures such as the area under the receiver operating characteristic curve. In addition, the category-free index can mislead investigators by overstating the incremental value of a biomarker, even in independent validation data. When investigators want to test a null hypothesis of no prediction increment, the well-established tests for coefficients in the regression model are superior to the net reclassification index. If investigators want to use net reclassification indices, confidence intervals should be calculated using bootstrap

  15. Predictive Risk Modelling to Prevent Child Maltreatment and Other Adverse Outcomes for Service Users: Inside the 'Black Box' of Machine Learning.

    Science.gov (United States)

    Gillingham, Philip

    2016-06-01

    Recent developments in digital technology have facilitated the recording and retrieval of administrative data from multiple sources about children and their families. Combined with new ways to mine such data using algorithms which can 'learn', it has been claimed that it is possible to develop tools that can predict which individual children within a population are most likely to be maltreated. The proposed benefit is that interventions can then be targeted to the most vulnerable children and their families to prevent maltreatment from occurring. As expertise in predictive modelling increases, the approach may also be applied in other areas of social work to predict and prevent adverse outcomes for vulnerable service users. In this article, a glimpse inside the 'black box' of predictive tools is provided to demonstrate how their development for use in social work may not be straightforward, given the nature of the data recorded about service users and service activity. The development of predictive risk modelling (PRM) in New Zealand is focused on as an example as it may be the first such tool to be applied as part of ongoing reforms to child protection services.

  16. Personality patterns predict the risk of antisocial behavior in Spanish-speaking adolescents.

    Science.gov (United States)

    Alcázar-Córcoles, Miguel A; Verdejo-García, Antonio; Bouso-Sáiz, José C; Revuelta-Menéndez, Javier; Ramírez-Lira, Ezequiel

    2017-05-01

    There is a renewed interest in incorporating personality variables in criminology theories in order to build models able to integrate personality variables and biological factors with psychosocial and sociocultural factors. The aim of this article is the assessment of personality dimensions that contribute to the prediction of antisocial behavior in adolescents. For this purpose, a sample of adolescents from El Salvador, Mexico, and Spain was obtained. The sample consisted of 1035 participants with a mean age of 16.2. There were 450 adolescents from a forensic population (those who committed a crime) and 585 adolescents from the normal population (no crime committed). All of participants answered personality tests about neuroticism, extraversion, psychoticism, sensation seeking, impulsivity, and violence risk. Principal component analysis of the data identified two independent factors: (i) the disinhibited behavior pattern (PDC), formed by the dimensions of neuroticism, psychoticism, impulsivity and risk of violence; and (ii) the extrovert behavior pattern (PEC), formed by the dimensions of sensation risk and extraversion. Both patterns significantly contributed to the prediction of adolescent antisocial behavior in a logistic regression model which properly classifies a global percentage of 81.9%, 86.8% for non-offense and 72.5% for offense behavior. The classification power of regression equations allows making very satisfactory predictions about adolescent offense commission. Educational level has been classified as a protective factor, while age and gender (male) have been classified as risk factors.

  17. A TCP model for external beam treatment of intermediate-risk prostate cancer.

    LENUS (Irish Health Repository)

    Walsh, Seán

    2013-03-01

    Biological models offer the ability to predict clinical outcomes. The authors describe a model to predict the clinical response of intermediate-risk prostate cancer to external beam radiotherapy for a variety of fractionation regimes.

  18. OTA-Grapes: A Mechanistic Model to Predict Ochratoxin A Risk in Grapes, a Step beyond the Systems Approach

    Directory of Open Access Journals (Sweden)

    Battilani Paola

    2015-08-01

    Full Text Available Ochratoxin A (OTA is a fungal metabolite dangerous for human and animal health due to its nephrotoxic, immunotoxic, mutagenic, teratogenic and carcinogenic effects, classified by the International Agency for Research on Cancer in group 2B, possible human carcinogen. This toxin has been stated as a wine contaminant since 1996. The aim of this study was to develop a conceptual model for the dynamic simulation of the A. carbonarius life cycle in grapes along the growing season, including OTA production in berries. Functions describing the role of weather parameters in each step of the infection cycle were developed and organized in a prototype model called OTA-grapes. Modelling the influence of temperature on OTA production, it emerged that fungal strains can be shared in two different clusters, based on the dynamic of OTA production and according to the optimal temperature. Therefore, two functions were developed, and based on statistical data analysis, it was assumed that the two types of strains contribute equally to the population. Model validation was not possible because of poor OTA contamination data, but relevant differences in OTA-I, the output index of the model, were noticed between low and high risk areas. To our knowledge, this is the first attempt to assess/model A. carbonarius in order to predict the risk of OTA contamination in grapes.

  19. Geographical information system and predictive risk maps of urinary schistosomiasis in Ogun State, Nigeria

    Directory of Open Access Journals (Sweden)

    Solarin Adewale RT

    2008-05-01

    Full Text Available Abstract Background The control of urinary schistosomiasis in Ogun State, Nigeria remains inert due to lack of reliable data on the geographical distribution of the disease and the population at risk. To help in developing a control programme, delineating areas of risk, geographical information system and remotely sensed environmental images were used to developed predictive risk maps of the probability of occurrence of the disease and quantify the risk for infection in Ogun State, Nigeria. Methods Infection data used were derived from carefully validated morbidity questionnaires among primary school children in 2001–2002, in which school children were asked among other questions if they have experienced "blood in urine" or urinary schistosomiasis. The infection data from 1,092 schools together with remotely sensed environmental data such as rainfall, vegetation, temperature, soil-types, altitude and land cover were analysis using binary logistic regression models to identify environmental features that influence the spatial distribution of the disease. The final regression equations were then used in Arc View 3.2a GIS software to generate predictive risk maps of the distribution of the disease and population at risk in the state. Results Logistic regression analysis shows that the only significant environmental variable in predicting the presence and absence of urinary schistosomiasis in any area of the State was Land Surface Temperature (LST (B = 0.308, p = 0.013. While LST (B = -0.478, p = 0.035, rainfall (B = -0.006, p = 0.0005, ferric luvisols (B = 0.539, p = 0.274, dystric nitosols (B = 0.133, p = 0.769 and pellic vertisols (B = 1.386, p = 0.008 soils types were the final variables in the model for predicting the probability of an area having an infection prevalence equivalent to or more than 50%. The two predictive risk maps suggest that urinary schistosomiasis is widely distributed and occurring in all the Local Government Areas (LGAs

  20. Multicenter external validation of two malignancy risk prediction models in patients undergoing 18F-FDG-PET for solitary pulmonary nodule evaluation

    International Nuclear Information System (INIS)

    Perandini, Simone; Soardi, G.A.; Signorini, M.; Motton, M.; Montemezzi, S.; Larici, A.R.; Del Ciello, A.; Rizzardi, G.; Solazzo, A.; Mancino, L.; Zeraj, F.; Bernhart, M.

    2017-01-01

    To achieve multicentre external validation of the Herder and Bayesian Inference Malignancy Calculator (BIMC) models. Two hundred and fifty-nine solitary pulmonary nodules (SPNs) collected from four major hospitals which underwent 18-FDG-PET characterization were included in this multicentre retrospective study. The Herder model was tested on all available lesions (group A). A subgroup of 180 SPNs (group B) was used to provide unbiased comparison between the Herder and BIMC models. Receiver operating characteristic (ROC) area under the curve (AUC) analysis was performed to assess diagnostic accuracy. Decision analysis was performed by adopting the risk threshold stated in British Thoracic Society (BTS) guidelines. Unbiased comparison performed In Group B showed a ROC AUC for the Herder model of 0.807 (95 % CI 0.742-0.862) and for the BIMC model of 0.822 (95 % CI 0.758-0.875). Both the Herder and the BIMC models were proven to accurately predict the risk of malignancy when tested on a large multicentre external case series. The BIMC model seems advantageous on the basis of a more favourable decision analysis. (orig.)

  1. Multicenter external validation of two malignancy risk prediction models in patients undergoing 18F-FDG-PET for solitary pulmonary nodule evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Perandini, Simone; Soardi, G.A.; Signorini, M.; Motton, M.; Montemezzi, S. [Azienda Ospedaliera Universitaria Integrata di Verona, UOC Radiologia, Ospedale Maggiore di Borgo Trento, Verona (Italy); Larici, A.R.; Del Ciello, A. [Universita Cattolica del Sacro Cuore, Dipartimento di Scienze Radiologiche, Roma (Italy); Rizzardi, G. [Ospedale Humanitas Gavazzeni, UO Chirurgia Toracica, Bergamo (Italy); Solazzo, A. [Ospedale Humanitas Gavazzeni, UO Radiologia, Bergamo (Italy); Mancino, L.; Zeraj, F. [Ospedale dell' Angelo di Mestre, UO Pneumologia, Venezia (Italy); Bernhart, M. [Ospedale dell' Angelo di Mestre, UO Radiologia, Venezia (Italy)

    2017-05-15

    To achieve multicentre external validation of the Herder and Bayesian Inference Malignancy Calculator (BIMC) models. Two hundred and fifty-nine solitary pulmonary nodules (SPNs) collected from four major hospitals which underwent 18-FDG-PET characterization were included in this multicentre retrospective study. The Herder model was tested on all available lesions (group A). A subgroup of 180 SPNs (group B) was used to provide unbiased comparison between the Herder and BIMC models. Receiver operating characteristic (ROC) area under the curve (AUC) analysis was performed to assess diagnostic accuracy. Decision analysis was performed by adopting the risk threshold stated in British Thoracic Society (BTS) guidelines. Unbiased comparison performed In Group B showed a ROC AUC for the Herder model of 0.807 (95 % CI 0.742-0.862) and for the BIMC model of 0.822 (95 % CI 0.758-0.875). Both the Herder and the BIMC models were proven to accurately predict the risk of malignancy when tested on a large multicentre external case series. The BIMC model seems advantageous on the basis of a more favourable decision analysis. (orig.)

  2. Drug response prediction in high-risk multiple myeloma

    DEFF Research Database (Denmark)

    Vangsted, A J; Helm-Petersen, S; Cowland, J B

    2018-01-01

    from high-risk patients by GEP70 at diagnosis from Total Therapy 2 and 3A to predict the response by the DRP score of drugs used in the treatment of myeloma patients. The DRP score stratified patients further. High-risk myeloma with a predicted sensitivity to melphalan by the DRP score had a prolonged...

  3. Predicting readmission risk of patients with diabetes hospitalized for cardiovascular disease: a retrospective cohort study.

    Science.gov (United States)

    Rubin, Daniel J; Golden, Sherita Hill; McDonnell, Marie E; Zhao, Huaqing

    2017-08-01

    To develop and validate a tool that predicts 30d readmission risk of patients with diabetes hospitalized for cardiovascular disease (CVD), the Diabetes Early Readmission Risk Indicator-CVD (DERRI-CVD™). A cohort of 8189 discharges was retrospectively selected from electronic records of adult patients with diabetes hospitalized for CVD. Discharges of 60% of the patients (n=4950) were randomly selected as a training sample and the remaining 40% (n=3219) were the validation sample. Statistically significant predictors of all-cause 30d readmission risk were identified by multivariable logistic regression modeling: education level, employment status, living within 5miles of the hospital, pre-admission diabetes therapy, macrovascular complications, admission serum creatinine and albumin levels, having a hospital discharge within 90days pre-admission, and a psychiatric diagnosis. Model discrimination and calibration were good (C-statistic 0.71). Performance in the validation sample was comparable. Predicted 30d readmission risk was similar in the training and validation samples (38.6% and 35.1% in the highest quintiles). The DERRI-CVD™ may be a valid tool to predict all-cause 30d readmission risk of patients with diabetes hospitalized for CVD. Identifying high-risk patients may encourage the use of interventions targeting those at greatest risk, potentially leading to better outcomes and lower healthcare costs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison between frailty index of deficit accumulation and fracture risk assessment tool (FRAX) in prediction of risk of fractures.

    Science.gov (United States)

    Li, Guowei; Thabane, Lehana; Papaioannou, Alexandra; Adachi, Jonathan D

    2015-08-01

    A frailty index (FI) of deficit accumulation could quantify and predict the risk of fractures based on the degree of frailty in the elderly. We aimed to compare the predictive powers between the FI and the fracture risk assessment tool (FRAX) in predicting risk of major osteoporotic fracture (hip, upper arm or shoulder, spine, or wrist) and hip fracture, using the data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) 3-year Hamilton cohort. There were 3985 women included in the study, with the mean age of 69.4 years (standard deviation [SD] = 8.89). During the follow-up, there were 149 (3.98%) incident major osteoporotic fractures and 18 (0.48%) hip fractures reported. The FRAX and FI were significantly related to each other. Both FRAX and FI significantly predicted risk of major osteoporotic fracture, with a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 1.02-1.05) and 1.02 (95% CI: 1.01-1.04) for per-0.01 increment for the FRAX and FI respectively. The HRs were 1.37 (95% CI: 1.19-1.58) and 1.26 (95% CI: 1.12-1.42) for an increase of per-0.10 (approximately one SD) in the FRAX and FI respectively. Similar discriminative ability of the models was found: c-index = 0.62 for the FRAX and c-index = 0.61 for the FI. When cut-points were chosen to trichotomize participants into low-risk, medium-risk and high-risk groups, a significant increase in fracture risk was found in the high-risk group (HR = 2.04, 95% CI: 1.36-3.07) but not in the medium-risk group (HR = 1.23, 95% CI: 0.82-1.84) compared with the low-risk women for the FI, while for FRAX the medium-risk (HR = 2.00, 95% CI: 1.09-3.68) and high-risk groups (HR = 2.61, 95% CI: 1.48-4.58) predicted risk of major osteoporotic fracture significantly only when survival time exceeded 18months (550 days). Similar findings were observed for hip fracture and in sensitivity analyses. In conclusion, the FI is comparable with FRAX in the prediction of risk of future fractures, indicating that

  5. Predictive model for serious bacterial infections among infants younger than 3 months of age.

    Science.gov (United States)

    Bachur, R G; Harper, M B

    2001-08-01

    To develop a data-derived model for predicting serious bacterial infection (SBI) among febrile infants /=38.0 degrees C seen in an urban emergency department (ED) were retrospectively identified. SBI was defined as a positive culture of urine, blood, or cerebrospinal fluid. Tree-structured analysis via recursive partitioning was used to develop the model. SBI or No-SBI was the dichotomous outcome variable, and age, temperature, urinalysis (UA), white blood cell (WBC) count, absolute neutrophil count, and cerebrospinal fluid WBC were entered as potential predictors. The model was tested by V-fold cross-validation. Of 5279 febrile infants studied, SBI was diagnosed in 373 patients (7%): 316 urinary tract infections (UTIs), 17 meningitis, and 59 bacteremia (8 with meningitis, 11 with UTIs). The model sequentially used 4 clinical parameters to define high-risk patients: positive UA, WBC count >/=20 000/mm(3) or /=39.6 degrees C, and age <13 days. The sensitivity of the model for SBI is 82% (95% confidence interval [CI]: 78%-86%) and the negative predictive value is 98.3% (95% CI: 97.8%-98.7%). The negative predictive value for bacteremia or meningitis is 99.6% (95% CI: 99.4%-99.8%). The relative risk between high- and low-risk groups is 12.1 (95% CI: 9.3-15.6). Sixty-six SBI patients (18%) were misclassified into the lower risk group: 51 UTIs, 14 with bacteremia, and 1 with meningitis. Decision-tree analysis using common clinical variables can reasonably predict febrile infants at high-risk for SBI. Sequential use of UA, WBC count, temperature, and age can identify infants who are at high risk of SBI with a relative risk of 12.1 compared with lower-risk infants.

  6. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model.

    Science.gov (United States)

    Huang, Yanqi; He, Lan; Dong, Di; Yang, Caiyun; Liang, Cuishan; Chen, Xin; Ma, Zelan; Huang, Xiaomei; Yao, Su; Liang, Changhong; Tian, Jie; Liu, Zaiyi

    2018-02-01

    To develop and validate a radiomics prediction model for individualized prediction of perineural invasion (PNI) in colorectal cancer (CRC). After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation (separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram. The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index (c-index): 0.817; 95% confidence interval (95% CI): 0.811-0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination (c-index: 0.803; 95% CI: 0.794-0.812). Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.

  7. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  8. Risk adjustment model of credit life insurance using a genetic algorithm

    Science.gov (United States)

    Saputra, A.; Sukono; Rusyaman, E.

    2018-03-01

    In managing the risk of credit life insurance, insurance company should acknowledge the character of the risks to predict future losses. Risk characteristics can be learned in a claim distribution model. There are two standard approaches in designing the distribution model of claims over the insurance period i.e, collective risk model and individual risk model. In the collective risk model, the claim arises when risk occurs is called individual claim, accumulation of individual claim during a period of insurance is called an aggregate claim. The aggregate claim model may be formed by large model and a number of individual claims. How the measurement of insurance risk with the premium model approach and whether this approach is appropriate for estimating the potential losses occur in the future. In order to solve the problem Genetic Algorithm with Roulette Wheel Selection is used.

  9. A Bayesian framework for early risk prediction in traumatic brain injury

    Science.gov (United States)

    Chaganti, Shikha; Plassard, Andrew J.; Wilson, Laura; Smith, Miya A.; Patel, Mayur B.; Landman, Bennett A.

    2016-03-01

    Early detection of risk is critical in determining the course of treatment in traumatic brain injury (TBI). Computed tomography (CT) acquired at admission has shown latent prognostic value in prior studies; however, no robust clinical risk predictions have been achieved based on the imaging data in large-scale TBI analysis. The major challenge lies in the lack of consistent and complete medical records for patients, and an inherent bias associated with the limited number of patients samples with high-risk outcomes in available TBI datasets. Herein, we propose a Bayesian framework with mutual information-based forward feature selection to handle this type of data. Using multi-atlas segmentation, 154 image-based features (capturing intensity, volume and texture) were computed over 22 ROIs in 1791 CT scans. These features were combined with 14 clinical parameters and converted into risk likelihood scores using Bayes modeling. We explore the prediction power of the image features versus the clinical measures for various risk outcomes. The imaging data alone were more predictive of outcomes than the clinical data (including Marshall CT classification) for discharge disposition with an area under the curve of 0.81 vs. 0.67, but less predictive than clinical data for discharge Glasgow Coma Scale (GCS) score with an area under the curve of 0.65 vs. 0.85. However, in both cases, combining imaging and clinical data increased the combined area under the curve with 0.86 for discharge disposition and 0.88 for discharge GCS score. In conclusion, CT data have meaningful prognostic value for TBI patients beyond what is captured in clinical measures and the Marshall CT classification.

  10. Anatomical Cystocele Recurrence: Development and Internal Validation of a Prediction Model.

    Science.gov (United States)

    Vergeldt, Tineke F M; van Kuijk, Sander M J; Notten, Kim J B; Kluivers, Kirsten B; Weemhoff, Mirjam

    2016-02-01

    To develop a prediction model that estimates the risk of anatomical cystocele recurrence after surgery. The databases of two multicenter prospective cohort studies were combined, and we performed a retrospective secondary analysis of these data. Women undergoing an anterior colporrhaphy without mesh materials and without previous pelvic organ prolapse (POP) surgery filled in a questionnaire, underwent translabial three-dimensional ultrasonography, and underwent staging of POP preoperatively and postoperatively. We developed a prediction model using multivariable logistic regression and internally validated it using standard bootstrapping techniques. The performance of the prediction model was assessed by computing indices of overall performance, discriminative ability, calibration, and its clinical utility by computing test characteristics. Of 287 included women, 149 (51.9%) had anatomical cystocele recurrence. Factors included in the prediction model were assisted delivery, preoperative cystocele stage, number of compartments involved, major levator ani muscle defects, and levator hiatal area during Valsalva. Potential predictors that were excluded after backward elimination because of high P values were age, body mass index, number of vaginal deliveries, and family history of POP. The shrinkage factor resulting from the bootstrap procedure was 0.91. After correction for optimism, Nagelkerke's R and the Brier score were 0.15 and 0.22, respectively. This indicates satisfactory model fit. The area under the receiver operating characteristic curve of the prediction model was 71.6% (95% confidence interval 65.7-77.5). After correction for optimism, the area under the receiver operating characteristic curve was 69.7%. This prediction model, including history of assisted delivery, preoperative stage, number of compartments, levator defects, and levator hiatus, estimates the risk of anatomical cystocele recurrence.

  11. Malaria in Africa: vector species' niche models and relative risk maps.

    Directory of Open Access Journals (Sweden)

    Alexander Moffett

    2007-09-01

    Full Text Available A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km. Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes. For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.

  12. A genetic risk score combining ten psoriasis risk loci improves disease prediction.

    Directory of Open Access Journals (Sweden)

    Haoyan Chen

    2011-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated skin disease affecting 2-3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS and a weighted (wGRS approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7 versus 12.09 (SD 1.8, p = 4.577×10(-40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63-14.57, p = 2.010×10(-65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC. The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10(-8. Additionally, the AUC for HLA-C alone (rs10484554 was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18, highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10(-6 and family history (p = 0.020. Using a liability threshold model, we estimated that the 10 risk loci account for only 11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date.

  13. Validated predictive modelling of the environmental resistome.

    Science.gov (United States)

    Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-06-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.

  14. External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland.

    Science.gov (United States)

    Harrison, David A; Lone, Nazir I; Haddow, Catriona; MacGillivray, Moranne; Khan, Angela; Cook, Brian; Rowan, Kathryn M

    2014-01-01

    Risk prediction models are used in critical care for risk stratification, summarising and communicating risk, supporting clinical decision-making and benchmarking performance. However, they require validation before they can be used with confidence, ideally using independently collected data from a different source to that used to develop the model. The aim of this study was to validate the Intensive Care National Audit & Research Centre (ICNARC) model using independently collected data from critical care units in Scotland. Data were extracted from the Scottish Intensive Care Society Audit Group (SICSAG) database for the years 2007 to 2009. Recoding and mapping of variables was performed, as required, to apply the ICNARC model (2009 recalibration) to the SICSAG data using standard computer algorithms. The performance of the ICNARC model was assessed for discrimination, calibration and overall fit and compared with that of the Acute Physiology And Chronic Health Evaluation (APACHE) II model. There were 29,626 admissions to 24 adult, general critical care units in Scotland between 1 January 2007 and 31 December 2009. After exclusions, 23,269 admissions were included in the analysis. The ICNARC model outperformed APACHE II on measures of discrimination (c index 0.848 versus 0.806), calibration (Hosmer-Lemeshow chi-squared statistic 18.8 versus 214) and overall fit (Brier's score 0.140 versus 0.157; Shapiro's R 0.652 versus 0.621). Model performance was consistent across the three years studied. The ICNARC model performed well when validated in an external population to that in which it was developed, using independently collected data.

  15. Young Children’s Risk-Taking: Mothers’ Authoritarian Parenting Predicts Risk-Taking by Daughters but Not Sons

    Directory of Open Access Journals (Sweden)

    Erin E. Wood

    2017-01-01

    Full Text Available We investigated how mothers’ parenting behaviors and personal characteristics were related to risk-taking by young children. We tested contrasting predictions from evolutionary and social role theories with the former predicting higher risk-taking by boys compared to girls and the latter predicting that mothers would influence children’s gender role development with risk-taking occurring more in children parented with higher levels of harshness (i.e., authoritarian parenting style. In our study, mothers reported their own gender roles and parenting styles as well as their children’s risk-taking and activities related to gender roles. The results were only partially consistent with the two theories, as the amount of risk-taking by sons and daughters did not differ significantly and risk-taking by daughters, but not sons, was positively related to mothers’ use of the authoritarian parenting style and the girls’ engagement in masculine activities. Risk-taking by sons was not predicted by any combination of mother-related variables. Overall, mothers who were higher in femininity used more authoritative and less authoritarian parenting styles. Theoretical implications as well as implications for predicting and reducing children’s risk-taking are discussed.

  16. Prediction models for successful external cephalic version: a systematic review.

    Science.gov (United States)

    Velzel, Joost; de Hundt, Marcella; Mulder, Frederique M; Molkenboer, Jan F M; Van der Post, Joris A M; Mol, Ben W; Kok, Marjolein

    2015-12-01

    To provide an overview of existing prediction models for successful ECV, and to assess their quality, development and performance. We searched MEDLINE, EMBASE and the Cochrane Library to identify all articles reporting on prediction models for successful ECV published from inception to January 2015. We extracted information on study design, sample size, model-building strategies and validation. We evaluated the phases of model development and summarized their performance in terms of discrimination, calibration and clinical usefulness. We collected different predictor variables together with their defined significance, in order to identify important predictor variables for successful ECV. We identified eight articles reporting on seven prediction models. All models were subjected to internal validation. Only one model was also validated in an external cohort. Two prediction models had a low overall risk of bias, of which only one showed promising predictive performance at internal validation. This model also completed the phase of external validation. For none of the models their impact on clinical practice was evaluated. The most important predictor variables for successful ECV described in the selected articles were parity, placental location, breech engagement and the fetal head being palpable. One model was assessed using discrimination and calibration using internal (AUC 0.71) and external validation (AUC 0.64), while two other models were assessed with discrimination and calibration, respectively. We found one prediction model for breech presentation that was validated in an external cohort and had acceptable predictive performance. This model should be used to council women considering ECV. Copyright © 2015. Published by Elsevier Ireland Ltd.

  17. Preventing patient absenteeism: validation of a predictive overbooking model.

    Science.gov (United States)

    Reid, Mark W; Cohen, Samuel; Wang, Hank; Kaung, Aung; Patel, Anish; Tashjian, Vartan; Williams, Demetrius L; Martinez, Bibiana; Spiegel, Brennan M R

    2015-12-01

    To develop a model that identifies patients at high risk for missing scheduled appointments ("no-shows" and cancellations) and to project the impact of predictive overbooking in a gastrointestinal endoscopy clinic-an exemplar resource-intensive environment with a high no-show rate. We retrospectively developed an algorithm that uses electronic health record (EHR) data to identify patients who do not show up to their appointments. Next, we prospectively validated the algorithm at a Veterans Administration healthcare network clinic. We constructed a multivariable logistic regression model that assigned a no-show risk score optimized by receiver operating characteristic curve analysis. Based on these scores, we created a calendar of projected open slots to offer to patients and compared the daily performance of predictive overbooking with fixed overbooking and typical "1 patient, 1 slot" scheduling. Data from 1392 patients identified several predictors of no-show, including previous absenteeism, comorbid disease burden, and current diagnoses of mood and substance use disorders. The model correctly classified most patients during the development (area under the curve [AUC] = 0.80) and validation phases (AUC = 0.75). Prospective testing in 1197 patients found that predictive overbooking averaged 0.51 unused appointments per day versus 6.18 for typical booking (difference = -5.67; 95% CI, -6.48 to -4.87; P < .0001). Predictive overbooking could have increased service utilization from 62% to 97% of capacity, with only rare clinic overflows. Information from EHRs can accurately predict whether patients will no-show. This method can be used to overbook appointments, thereby maximizing service utilization while staying within clinic capacity.

  18. Exacerbations in adults with asthma: A systematic review and external validation of prediction models

    NARCIS (Netherlands)

    Loymans, Rik J. B.; Debray, Thomas P. A.; Honkoop, Persijn J.; Termeer, Evelien H.; Snoeck-Stroband, Jiska B.; Schermer, Tjard R. J.; Assendelft, Willem J. J.; Timp, Merel; Chung, Kian Fan; Sousa, Ana R.; Sont, Jaap K.; Sterk, Peter J.; Reddel, Helen K.; ter Riet, Gerben

    2018-01-01

    Several prediction models assessing future risk of exacerbations in adult patients with asthma have been published. Applicability of these models is uncertain because their predictive performance has often not been assessed beyond the population in which they were derived. This study aimed to

  19. Development and validation of a prediction model for long-term sickness absence based on occupational health survey variables.

    Science.gov (United States)

    Roelen, Corné; Thorsen, Sannie; Heymans, Martijn; Twisk, Jos; Bültmann, Ute; Bjørner, Jakob

    2018-01-01

    The purpose of this study is to develop and validate a prediction model for identifying employees at increased risk of long-term sickness absence (LTSA), by using variables commonly measured in occupational health surveys. Based on the literature, 15 predictor variables were retrieved from the DAnish National working Environment Survey (DANES) and included in a model predicting incident LTSA (≥4 consecutive weeks) during 1-year follow-up in a sample of 4000 DANES participants. The 15-predictor model was reduced by backward stepwise statistical techniques and then validated in a sample of 2524 DANES participants, not included in the development sample. Identification of employees at increased LTSA risk was investigated by receiver operating characteristic (ROC) analysis; the area-under-the-ROC-curve (AUC) reflected discrimination between employees with and without LTSA during follow-up. The 15-predictor model was reduced to a 9-predictor model including age, gender, education, self-rated health, mental health, prior LTSA, work ability, emotional job demands, and recognition by the management. Discrimination by the 9-predictor model was significant (AUC = 0.68; 95% CI 0.61-0.76), but not practically useful. A prediction model based on occupational health survey variables identified employees with an increased LTSA risk, but should be further developed into a practically useful tool to predict the risk of LTSA in the general working population. Implications for rehabilitation Long-term sickness absence risk predictions would enable healthcare providers to refer high-risk employees to rehabilitation programs aimed at preventing or reducing work disability. A prediction model based on health survey variables discriminates between employees at high and low risk of long-term sickness absence, but discrimination was not practically useful. Health survey variables provide insufficient information to determine long-term sickness absence risk profiles. There is a need for

  20. The c-index is not proper for the evaluation of $t$-year predicted risks.

    Science.gov (United States)

    Blanche, Paul; Kattan, Michael W; Gerds, Thomas A

    2018-02-16

    We show that the widely used concordance index for time to event outcome is not proper when interest is in predicting a $t$-year risk of an event, for example 10-year mortality. In the situation with a fixed prediction horizon, the concordance index can be higher for a misspecified model than for a correctly specified model. Impropriety happens because the concordance index assesses the order of the event times and not the order of the event status at the prediction horizon. The time-dependent area under the receiver operating characteristic curve does not have this problem and is proper in this context.

  1. A simplified baseline prediction model for joint damage progression in rheumatoid arthritis: a step toward personalized medicine.

    Science.gov (United States)

    de Punder, Yvonne M R; van Riel, Piet L C M; Fransen, Jaap

    2015-03-01

    To compare the performance of an extended model and a simplified prognostic model for joint damage in rheumatoid arthritis (RA) based on 3 baseline risk factors: anticyclic citrullinated peptide antibodies (anti-CCP), erosions, and acute-phase reaction. Data were used from the Nijmegen early RA cohort. An extended model and a simplified baseline prediction model were developed to predict joint damage progression between 0 and 3 years. Joint damage progression was assessed using the Ratingen score. In the extended model, prediction factors were positivity for anti-CCP and/or rheumatoid factor, the level of erythrocyte sedimentation rate, and the quantity of erosions. The prediction score was calculated as the sum of the regression coefficients. In the simplified model, the prediction factors were dichotomized and the number of risk factors was counted. Performances of both models were compared using discrimination and calibration. The models were internally validated using bootstrapping. The extended model resulted in a prediction score between 0 and 5.6 with an area under the receiver-operation characteristic (ROC) curve of 0.77 (95% CI 0.72-0.81). The simplified model resulted in a prediction score between 0 and 3. This model had an area under the ROC curve of 0.75 (95% CI 0.70-0.80). In internal validation, the 2 models showed reasonably well the agreement between observed and predicted probabilities for joint damage progression (Hosmer-Lemeshow test p > 0.05 and calibration slope near 1.0). A simple prediction model for joint damage progression in early RA, by only counting the number of risk factors, has adequate performance. This facilitates the translation of the theoretical prognostic models to daily clinical practice.

  2. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes

    Directory of Open Access Journals (Sweden)

    Trine Krogh-Madsen

    2017-12-01

    Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

  3. A multi-scale modeling framework for individualized, spatiotemporal prediction of drug effects and toxicological risk

    Directory of Open Access Journals (Sweden)

    Juan Guillermo eDiaz Ochoa

    2013-01-01

    Full Text Available In this study, we focus on a novel multi-scale modeling approach for spatiotemporal prediction of the distribution of substances and resulting hepatotoxicity by combining cellular models, a 2D liver model, and whole-body model. As a case study, we focused on predicting human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity data and potential inter-individual variability in gene expression and enzyme activities. By aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and eventually to a whole body model, we predicted pharmacokinetic properties, metabolism, and the onset of hepatotoxicity in an in silico patient. Depending on the concentration of acetaminophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as a function of space and time as well as changes in the elimination rate of substances were estimated. We show that the variations in elimination rates also influence the distribution of acetaminophen and its metabolites in the whole body. Our results are in agreement with experimental results. What is more, the integrated model also predicted variations in drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this framework presents an important basis for efficiently integrating inter-individual variability data into models, paving the way for personalized or stratified predictions of drug toxicity and efficacy.

  4. Evaluation of fetal anthropometric measures to predict the risk for shoulder dystocia.

    Science.gov (United States)

    Burkhardt, T; Schmidt, M; Kurmanavicius, J; Zimmermann, R; Schäffer, L

    2014-01-01

    To evaluate the quality of anthropometric measures to improve the prediction of shoulder dystocia by combining different sonographic biometric parameters. This was a retrospective cohort study of 12,794 vaginal deliveries with complete sonographic biometry data obtained within 7 days before delivery. Receiver-operating characteristics (ROC) curves of various combinations of the biometric parameters, namely, biparietal diameter (BPD), occipitofrontal diameter (OFD), head circumference, abdominal diameter (AD), abdominal circumference (AC) and femur length were analyzed. The influences of independent risk factors were calculated and their combination used in a predictive model. The incidence of shoulder dystocia was 1.14%. Different combinations of sonographic parameters showed comparable ROC curves without advantage for a particular combination. The difference between AD and BPD (AD - BPD) (area under the curve (AUC) = 0.704) revealed a significant increase in risk (odds ratio (OR) 7.6 (95% CI 4.2-13.9), sensitivity 8.2%, specificity 98.8%) at a suggested cut-off ≥ 2.6 cm. However, the positive predictive value (PPV) was low (7.5%). The AC as a single parameter (AUC = 0.732) with a cut-off ≥ 35 cm performed worse (OR 4.6 (95% CI 3.3-6.5), PPV 2.6%). BPD/OFD (a surrogate for fetal cranial shape) was not significantly different between those with and those without shoulder dystocia. The combination of estimated fetal weight, maternal diabetes, gender and AD - BPD provided a reasonable estimate of the individual risk. Sonographic fetal anthropometric measures appear not to be a useful tool to screen for the risk of shoulder dystocia due to a low PPV. However, AD - BPD appears to be a relevant risk factor. While risk stratification including different known risk factors may aid in counseling, shoulder dystocia cannot effectively be predicted. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.

  5. An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology

    Science.gov (United States)

    Qiu, Yuchen; Wang, Yunzhi; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Liu, Hong; Zheng, Bin

    2016-03-01

    In order to establish a new personalized breast cancer screening paradigm, it is critically important to accurately predict the short-term risk of a woman having image-detectable cancer after a negative mammographic screening. In this study, we developed and tested a novel short-term risk assessment model based on deep learning method. During the experiment, a number of 270 "prior" negative screening cases was assembled. In the next sequential ("current") screening mammography, 135 cases were positive and 135 cases remained negative. These cases were randomly divided into a training set with 200 cases and a testing set with 70 cases. A deep learning based computer-aided diagnosis (CAD) scheme was then developed for the risk assessment, which consists of two modules: adaptive feature identification module and risk prediction module. The adaptive feature identification module is composed of three pairs of convolution-max-pooling layers, which contains 20, 10, and 5 feature maps respectively. The risk prediction module is implemented by a multiple layer perception (MLP) classifier, which produces a risk score to predict the likelihood of the woman developing short-term mammography-detectable cancer. The result shows that the new CAD-based risk model yielded a positive predictive value of 69.2% and a negative predictive value of 74.2%, with a total prediction accuracy of 71.4%. This study demonstrated that applying a new deep learning technology may have significant potential to develop a new short-term risk predicting scheme with improved performance in detecting early abnormal symptom from the negative mammograms.

  6. Cardiovascular risk prediction: the old has given way to the new but at what risk-benefit ratio?

    Directory of Open Access Journals (Sweden)

    Yeboah J

    2014-10-01

    Full Text Available Joseph Yeboah Heart and Vascular Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: The ultimate goal of cardiovascular risk prediction is to identify individuals in the population to whom the application or administration of current proven lifestyle modifications and medicinal therapies will result in reduction in cardiovascular disease events and minimal adverse effects (net benefit to society. The use of cardiovascular risk prediction tools dates back to 1976 when the Framingham coronary heart disease risk score was published. Since then a lot of novel risk markers have been identified and other cardiovascular risk prediction tools have been developed to either improve or replace the Framingham Risk Score (FRS. In 2013, the new atherosclerotic cardiovascular disease risk estimator was published by the American College of Cardiology and the American Heart Association to replace the FRS for cardiovascular risk prediction. It is too soon to know the performance of the new atherosclerotic cardiovascular disease risk estimator. The risk-benefit ratio for preventive therapy (lifestyle modifications, statin +/− aspirin based on cardiovascular disease risk assessed using the FRS is unknown but it was assumed to be a net benefit. Should we also assume the risk-benefit ratio for the new atherosclerotic cardiovascular disease risk estimator is also a net benefit? Keywords: risk prediction, prevention, cardiovascular disease

  7. Developing a clinical utility framework to evaluate prediction models in radiogenomics

    Science.gov (United States)

    Wu, Yirong; Liu, Jie; Munoz del Rio, Alejandro; Page, David C.; Alagoz, Oguzhan; Peissig, Peggy; Onitilo, Adedayo A.; Burnside, Elizabeth S.

    2015-03-01

    Combining imaging and genetic information to predict disease presence and behavior is being codified into an emerging discipline called "radiogenomics." Optimal evaluation methodologies for radiogenomics techniques have not been established. We aim to develop a clinical decision framework based on utility analysis to assess prediction models for breast cancer. Our data comes from a retrospective case-control study, collecting Gail model risk factors, genetic variants (single nucleotide polymorphisms-SNPs), and mammographic features in Breast Imaging Reporting and Data System (BI-RADS) lexicon. We first constructed three logistic regression models built on different sets of predictive features: (1) Gail, (2) Gail+SNP, and (3) Gail+SNP+BI-RADS. Then, we generated ROC curves for three models. After we assigned utility values for each category of findings (true negative, false positive, false negative and true positive), we pursued optimal operating points on ROC curves to achieve maximum expected utility (MEU) of breast cancer diagnosis. We used McNemar's test to compare the predictive performance of the three models. We found that SNPs and BI-RADS features augmented the baseline Gail model in terms of the area under ROC curve (AUC) and MEU. SNPs improved sensitivity of the Gail model (0.276 vs. 0.147) and reduced specificity (0.855 vs. 0.912). When additional mammographic features were added, sensitivity increased to 0.457 and specificity to 0.872. SNPs and mammographic features played a significant role in breast cancer risk estimation (p-value < 0.001). Our decision framework comprising utility analysis and McNemar's test provides a novel framework to evaluate prediction models in the realm of radiogenomics.

  8. Enhanced clinical pharmacy service targeting tools: risk-predictive algorithms.

    Science.gov (United States)

    El Hajji, Feras W D; Scullin, Claire; Scott, Michael G; McElnay, James C

    2015-04-01

    This study aimed to determine the value of using a mix of clinical pharmacy data and routine hospital admission spell data in the development of predictive algorithms. Exploration of risk factors in hospitalized patients, together with the targeting strategies devised, will enable the prioritization of clinical pharmacy services to optimize patient outcomes. Predictive algorithms were developed using a number of detailed steps using a 75% sample of integrated medicines management (IMM) patients, and validated using the remaining 25%. IMM patients receive targeted clinical pharmacy input throughout their hospital stay. The algorithms were applied to the validation sample, and predicted risk probability was generated for each patient from the coefficients. Risk threshold for the algorithms were determined by identifying the cut-off points of risk scores at which the algorithm would have the highest discriminative performance. Clinical pharmacy staffing levels were obtained from the pharmacy department staffing database. Numbers of previous emergency admissions and admission medicines together with age-adjusted co-morbidity and diuretic receipt formed a 12-month post-discharge and/or readmission risk algorithm. Age-adjusted co-morbidity proved to be the best index to predict mortality. Increased numbers of clinical pharmacy staff at ward level was correlated with a reduction in risk-adjusted mortality index (RAMI). Algorithms created were valid in predicting risk of in-hospital and post-discharge mortality and risk of hospital readmission 3, 6 and 12 months post-discharge. The provision of ward-based clinical pharmacy services is a key component to reducing RAMI and enabling the full benefits of pharmacy input to patient care to be realized. © 2014 John Wiley & Sons, Ltd.

  9. Perioperative Respiratory Adverse Events in Pediatric Ambulatory Anesthesia: Development and Validation of a Risk Prediction Tool.

    Science.gov (United States)

    Subramanyam, Rajeev; Yeramaneni, Samrat; Hossain, Mohamed Monir; Anneken, Amy M; Varughese, Anna M

    2016-05-01

    model. A risk score in the range of 0 to 3 was assigned to each significant variable in the logistic regression model, and final score for all risk factors ranged from 0 to 11. A cutoff score of 4 was derived from a receiver operating characteristic curve to determine the high-risk category. The model C-statistic and the corresponding SE for the derivation and validation cohort was 0.64 ± 0.01 and 0.63 ± 0.02, respectively. Sensitivity and SE of the risk prediction tool to identify children at risk for PRAE was 77.6 ± 0.02 in the derivation cohort and 76.2 ± 0.03 in the validation cohort. The risk tool developed and validated from our study cohort identified 5 risk factors: age ≤ 3 years (versus >3 years), ASA physical status II and III (versus ASA physical status I), morbid obesity, preexisting pulmonary disorder, and surgery (versus radiology) for PRAE. This tool can be used to provide an individual risk score for each patient to predict the risk of PRAE in the preoperative period.

  10. Recurrent epistaxis: predicting risk of 30-day readmission, derivation and validation of RHINO-ooze score.

    Science.gov (United States)

    Addison, A; Paul, C; Kuo, R; Lamyman, A; Martinez-Devesa, P; Hettige, R

    2017-06-01

    To derive and validate a predictive scoring tool (RHINO-ooze score) with good sensitivity and specificity in identifying patients with epistaxis at high risk of 30 day readmission and to enable risk stratification for possible definitive intervention. Using medical databases, we searched for factors influencing recurrent epistaxis. The information ascertained together with our analysis of retrospective data on patients admitted with epistaxis between October 2013 and September 2014, was used as the derivation cohort to develop the predictive scoring model (RHINO-ooze score). The tool was validated by performing statistical analysis on the validation cohort of patients admitted with epistaxis between October 2014 and October 2015. Multiple linear regressions with backwards elimination was used to derive the predictive model. The area under the curve (AUC), sensitivity and specificity were calculated. 834 admissions were encountered within the study period. Using the derivative cohort (n= 302) the RHINO-ooze score with a maximum score of 8 from five variables (Recent admission, Haemorrhage point unidentified, Increasing age over 70, posterior Nasal packing, Oral anticoagulant) was developed. The RHINO-ooze score had a chi-square value of 99.72 with a significance level of smaller than 0.0001 and hence an overall good model fit. Comparison between the derivative and validation groups revealed similar rates of 30-day readmission between the cohorts. The sensitivity and specificity of predicting 30-day readmission in high risk patients with recurrent epistaxis (RHINO-ooze score equal/larger than 6) was 81% and 84%, respectively. The RHINO-ooze scoring tool demonstrates good specificity and sensitivity in predicting the risk of 30 day readmission in patients with epistaxis and can be used as an adjunct to clinical decision making with regards to timing of operative intervention in order to reduce readmission rates.

  11. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  12. Predictive modeling of mosquito abundance and dengue transmission in Kenya

    Science.gov (United States)

    Caldwell, J.; Krystosik, A.; Mutuku, F.; Ndenga, B.; LaBeaud, D.; Mordecai, E.

    2017-12-01

    Approximately 390 million people are exposed to dengue virus every year, and with no widely available treatments or vaccines, predictive models of disease risk are valuable tools for vector control and disease prevention. The aim of this study was to modify and improve climate-driven predictive models of dengue vector abundance (Aedes spp. mosquitoes) and viral transmission to people in Kenya. We simulated disease transmission using a temperature-driven mechanistic model and compared model predictions with vector trap data for larvae, pupae, and adult mosquitoes collected between 2014 and 2017 at four sites across urban and rural villages in Kenya. We tested predictive capacity of our models using four temperature measurements (minimum, maximum, range, and anomalies) across daily, weekly, and monthly time scales. Our results indicate seasonal temperature variation is a key driving factor of Aedes mosquito abundance and disease transmission. These models can help vector control programs target specific locations and times when vectors are likely to be present, and can be modified for other Aedes-transmitted diseases and arboviral endemic regions around the world.

  13. Modeling Success: Using Preenrollment Data to Identify Academically At-Risk Students

    Science.gov (United States)

    Gansemer-Topf, Ann M.; Compton, Jonathan; Wohlgemuth, Darin; Forbes, Greg; Ralston, Ekaterina

    2015-01-01

    Improving student success and degree completion is one of the core principles of strategic enrollment management. To address this principle, institutional data were used to develop a statistical model to identify academically at-risk students. The model employs multiple linear regression techniques to predict students at risk of earning below a…

  14. Prediction of prostate cancer in unscreened men: external validation of a risk calculator.

    Science.gov (United States)

    van Vugt, Heidi A; Roobol, Monique J; Kranse, Ries; Määttänen, Liisa; Finne, Patrik; Hugosson, Jonas; Bangma, Chris H; Schröder, Fritz H; Steyerberg, Ewout W

    2011-04-01

    Prediction models need external validation to assess their value beyond the setting where the model was derived from. To assess the external validity of the European Randomized study of Screening for Prostate Cancer (ERSPC) risk calculator (www.prostatecancer-riskcalculator.com) for the probability of having a positive prostate biopsy (P(posb)). The ERSPC risk calculator was based on data of the initial screening round of the ERSPC section Rotterdam and validated in 1825 and 531 men biopsied at the initial screening round in the Finnish and Swedish sections of the ERSPC respectively. P(posb) was calculated using serum prostate specific antigen (PSA), outcome of digital rectal examination (DRE), transrectal ultrasound and ultrasound assessed prostate volume. The external validity was assessed for the presence of cancer at biopsy by calibration (agreement between observed and predicted outcomes), discrimination (separation of those with and without cancer), and decision curves (for clinical usefulness). Prostate cancer was detected in 469 men (26%) of the Finnish cohort and in 124 men (23%) of the Swedish cohort. Systematic miscalibration was present in both cohorts (mean predicted probability 34% versus 26% observed, and 29% versus 23% observed, both pscreened men, but overestimated the risk of a positive biopsy. Further research is necessary to assess the performance and applicability of the ERSPC risk calculator when a clinical setting is considered rather than a screening setting. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Neuroticism Predicts Subsequent Risk of Major Depression for Whites but Not Blacks

    Directory of Open Access Journals (Sweden)

    Shervin Assari

    2017-09-01

    Full Text Available Cultural and ethnic differences in psychosocial and medical correlates of negative affect are well documented. This study aimed to compare blacks and whites for the predictive role of baseline neuroticism (N on subsequent risk of major depressive episodes (MDD 25 years later. Data came from the Americans’ Changing Lives (ACL Study, 1986–2011. We used data on 1219 individuals (847 whites and 372 blacks who had data on baseline N in 1986 and future MDD in 2011. The main predictor of interest was baseline N, measured using three items in 1986. The main outcome was 12 months MDD measured using the Composite International Diagnostic Interview (CIDI at 2011. Covariates included baseline demographics (age and gender, socioeconomics (education and income, depressive symptoms [Center for Epidemiologic Studies Depression Scale (CES-D], stress, health behaviors (smoking and driking, and physical health [chronic medical conditions, obesity, and self-rated health (SRH] measured in 1986. Logistic regressions were used to test the predictive role of baseline N on subsequent risk of MDD 25 years later, net of covariates. The models were estimated in the pooled sample, as well as blacks and whites. In the pooled sample, baseline N predicted subsequent risk of MDD 25 years later (OR = 2.23, 95%CI = 1.14–4.34, net of covariates. We also found a marginally significant interaction between race and baseline N on subsequent risk of MDD (OR = 0.37, 95% CI = 0.12–1.12, suggesting a stronger effect for whites compared to blacks. In race-specific models, among whites (OR = 2.55; 95% CI = 1.22–5.32 but not blacks (OR = 0.90; 95% CI = 0.24–3.39, baseline N predicted subsequent risk of MDD. Black-white differences in socioeconomics and physical health could not explain the racial differences in the link between N and MDD. Blacks and whites differ in the salience of baseline N as a psychological determinant of MDD risk over a long period of time. This finding

  16. Comparison of different risk perception measures in predicting seasonal influenza vaccination among healthy Chinese adults in Hong Kong: a prospective longitudinal study.

    Science.gov (United States)

    Liao, Qiuyan; Wong, Wing Sze; Fielding, Richard

    2013-01-01

    Risk perception is a reported predictor of vaccination uptake, but which measures of risk perception best predict influenza vaccination uptake remain unclear. During the main influenza seasons (between January and March) of 2009 (Wave 1) and 2010 (Wave 2),505 Chinese students and employees from a Hong Kong university completed an online survey. Multivariate logistic regression models were conducted to assess how well different risk perceptions measures in Wave 1 predicted vaccination uptake against seasonal influenza in Wave 2. The results of the multivariate logistic regression models showed that feeling at risk (β = 0.25, p = 0.021) was the better predictor compared with probability judgment while probability judgment (β = 0.25, p = 0.029 ) was better than beliefs about risk in predicting subsequent influenza vaccination uptake. Beliefs about risk and feeling at risk seemed to predict the same aspect of subsequent vaccination uptake because their associations with vaccination uptake became insignificant when paired into the logistic regression model. Similarly, to compare the four scales for assessing probability judgment in predicting vaccination uptake, the 7-point verbal scale remained a significant and stronger predictor for vaccination uptake when paired with other three scales; the 6-point verbal scale was a significant and stronger predictor when paired with the percentage scale or the 2-point verbal scale; and the percentage scale was a significant and stronger predictor only when paired with the 2-point verbal scale. Beliefs about risk and feeling at risk are not well differentiated by Hong Kong Chinese people. Feeling at risk, an affective-cognitive dimension of risk perception predicts subsequent vaccination uptake better than do probability judgments. Among the four scales for assessing risk probability judgment, the 7-point verbal scale offered the best predictive power for subsequent vaccination uptake.

  17. Comparison of Different Risk Perception Measures in Predicting Seasonal Influenza Vaccination among Healthy Chinese Adults in Hong Kong: A Prospective Longitudinal Study

    Science.gov (United States)

    Liao, Qiuyan; Wong, Wing Sze; Fielding, Richard

    2013-01-01

    Background Risk perception is a reported predictor of vaccination uptake, but which measures of risk perception best predict influenza vaccination uptake remain unclear. Methodology During the main influenza seasons (between January and March) of 2009 (Wave 1) and 2010 (Wave 2),505 Chinese students and employees from a Hong Kong university completed an online survey. Multivariate logistic regression models were conducted to assess how well different risk perceptions measures in Wave 1 predicted vaccination uptake against seasonal influenza in Wave 2. Principal Findings The results of the multivariate logistic regression models showed that feeling at risk (β = 0.25, p = 0.021) was the better predictor compared with probability judgment while probability judgment (β = 0.25, p = 0.029 ) was better than beliefs about risk in predicting subsequent influenza vaccination uptake. Beliefs about risk and feeling at risk seemed to predict the same aspect of subsequent vaccination uptake because their associations with vaccination uptake became insignificant when paired into the logistic regression model. Similarly, to compare the four scales for assessing probability judgment in predicting vaccination uptake, the 7-point verbal scale remained a significant and stronger predictor for vaccination uptake when paired with other three scales; the 6-point verbal scale was a significant and stronger predictor when paired with the percentage scale or the 2-point verbal scale; and the percentage scale was a significant and stronger predictor only when paired with the 2-point verbal scale. Conclusions/Significance Beliefs about risk and feeling at risk are not well differentiated by Hong Kong Chinese people. Feeling at risk, an affective-cognitive dimension of risk perception predicts subsequent vaccination uptake better than do probability judgments. Among the four scales for assessing risk probability judgment, the 7-point verbal scale offered the best predictive

  18. Predicting risk of unplanned hospital readmission in survivors of critical illness: a population-level cohort study.

    Science.gov (United States)

    Lone, Nazir I; Lee, Robert; Salisbury, Lisa; Donaghy, Eddie; Ramsay, Pamela; Rattray, Janice; Walsh, Timothy S

    2018-04-05

    Intensive care unit (ICU) survivors experience high levels of morbidity after hospital discharge and are at high risk of unplanned hospital readmission. Identifying those at highest risk before hospital discharge may allow targeting of novel risk reduction strategies. We aimed to identify risk factors for unplanned 90-day readmission, develop a risk prediction model and assess its performance to screen for ICU survivors at highest readmission risk. Population cohort study linking registry data for patients discharged from general ICUs in Scotland (2005-2013). Independent risk factors for 90-day readmission and discriminant ability (c-index) of groups of variables were identified using multivariable logistic regression. Derivation and validation risk prediction models were constructed using a time-based split. Of 55 975 ICU survivors, 24.1% (95%CI 23.7% to 24.4%) had unplanned 90-day readmission. Pre-existing health factors were fair discriminators of readmission (c-index 0.63, 95% CI 0.63 to 0.64) but better than acute illness factors (0.60) or demographics (0.54). In a subgroup of those with no comorbidity, acute illness factors (0.62) were better discriminators than pre-existing health factors (0.56). Overall model performance and calibration in the validation cohort was fair (0.65, 95% CI 0.64 to 0.66) but did not perform sufficiently well as a screening tool, demonstrating high false-positive/false-negative rates at clinically relevant thresholds. Unplanned 90-day hospital readmission is common. Pre-existing illness indices are better predictors of readmission than acute illness factors. Identifying additional patient-centred drivers of readmission may improve risk prediction models. Improved understanding of risk factors that are amenable to intervention could improve the clinical and cost-effectiveness of post-ICU care and rehabilitation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights

  19. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  20. Testing a cognitive model to predict posttraumatic stress disorder following childbirth.

    Science.gov (United States)

    King, Lydia; McKenzie-McHarg, Kirstie; Horsch, Antje

    2017-01-14

    One third of women describes their childbirth as traumatic and between 0.8 and 6.9% goes on to develop posttraumatic stress disorder (PTSD). The cognitive model of PTSD has been shown to be applicable to a range of trauma samples. However, childbirth is qualitatively different to other trauma types and special consideration needs to be taken when applying it to this population. Previous studies have investigated some cognitive variables in isolation but no study has so far looked at all the key processes described in the cognitive model. This study therefore aimed to investigate whether theoretically-derived variables of the cognitive model explain unique variance in postnatal PTSD symptoms when key demographic, obstetric and clinical risk factors are controlled for. One-hundred and fifty-seven women who were between 1 and 12 months post-partum (M = 6.5 months) completed validated questionnaires assessing PTSD and depressive symptoms, childbirth experience, postnatal social support, trauma memory, peritraumatic processing, negative appraisals, dysfunctional cognitive and behavioural strategies and obstetric as well as demographic risk factors in an online survey. A PTSD screening questionnaire suggested that 5.7% of the sample might fulfil diagnostic criteria for PTSD. Overall, risk factors alone predicted 43% of variance in PTSD symptoms and cognitive behavioural factors alone predicted 72.7%. A final model including both risk factors and cognitive behavioural factors explained 73.7% of the variance in PTSD symptoms, 37.1% of which was unique variance predicted by cognitive factors. All variables derived from Ehlers and Clark's cognitive model significantly explained variance in PTSD symptoms following childbirth, even when clinical, demographic and obstetric were controlled for. Our findings suggest that the CBT model is applicable and useful as a way of understanding and informing the treatment of PTSD following childbirth.

  1. Risk avoidance in sympatric large carnivores: reactive or predictive?

    Science.gov (United States)

    Broekhuis, Femke; Cozzi, Gabriele; Valeix, Marion; McNutt, John W; Macdonald, David W

    2013-09-01

    1. Risks of predation or interference competition are major factors shaping the distribution of species. An animal's response to risk can either be reactive, to an immediate risk, or predictive, based on preceding risk or past experiences. The manner in which animals respond to risk is key in understanding avoidance, and hence coexistence, between interacting species. 2. We investigated whether cheetahs (Acinonyx jubatus), known to be affected by predation and competition by lions (Panthera leo) and spotted hyaenas (Crocuta crocuta), respond reactively or predictively to the risks posed by these larger carnivores. 3. We used simultaneous spatial data from Global Positioning System (GPS) radiocollars deployed on all known social groups of cheetahs, lions and spotted hyaenas within a 2700 km(2) study area on the periphery of the Okavango Delta in northern Botswana. The response to risk of encountering lions and spotted hyaenas was explored on three levels: short-term or immediate risk, calculated as the distance to the nearest (contemporaneous) lion or spotted hyaena, long-term risk, calculated as the likelihood of encountering lions and spotted hyaenas based on their cumulative distributions over a 6-month period and habitat-associated risk, quantified by the habitat used by each of the three species. 4. We showed that space and habitat use by cheetahs was similar to that of lions and, to a lesser extent, spotted hyaenas. However, cheetahs avoided immediate risks by positioning themselves further from lions and spotted hyaenas than predicted by a random distribution. 5. Our results suggest that cheetah spatial distribution is a hierarchical process, first driven by resource acquisition and thereafter fine-tuned by predator avoidance; thus suggesting a reactive, rather than a predictive, response to risk. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  2. Predicting complication risk in spine surgery: a prospective analysis of a novel risk assessment tool.

    Science.gov (United States)

    Veeravagu, Anand; Li, Amy; Swinney, Christian; Tian, Lu; Moraff, Adrienne; Azad, Tej D; Cheng, Ivan; Alamin, Todd; Hu, Serena S; Anderson, Robert L; Shuer, Lawrence; Desai, Atman; Park, Jon; Olshen, Richard A; Ratliff, John K

    2017-07-01

    OBJECTIVE The ability to assess the risk of adverse events based on known patient factors and comorbidities would provide more effective preoperative risk stratification. Present risk assessment in spine surgery is limited. An adverse event prediction tool was developed to predict the risk of complications after spine surgery and tested on a prospective patient cohort. METHODS The spinal Risk Assessment Tool (RAT), a novel instrument for the assessment of risk for patients undergoing spine surgery that was developed based on an administrative claims database, was prospectively applied to 246 patients undergoing 257 spinal procedures over a 3-month period. Prospectively collected data were used to compare the RAT to the Charlson Comorbidity Index (CCI) and the American College of Surgeons National Surgery Quality Improvement Program (ACS NSQIP) Surgical Risk Calculator. Study end point was occurrence and type of complication after spine surgery. RESULTS The authors identified 69 patients (73 procedures) who experienced a complication over the prospective study period. Cardiac complications were most common (10.2%). Receiver operating characteristic (ROC) curves were calculated to compare complication outcomes using the different assessment tools. Area under the curve (AUC) analysis showed comparable predictive accuracy between the RAT and the ACS NSQIP calculator (0.670 [95% CI 0.60-0.74] in RAT, 0.669 [95% CI 0.60-0.74] in NSQIP). The CCI was not accurate in predicting complication occurrence (0.55 [95% CI 0.48-0.62]). The RAT produced mean probabilities of 34.6% for patients who had a complication and 24% for patients who did not (p = 0.0003). The generated predicted values were stratified into low, medium, and high rates. For the RAT, the predicted complication rate was 10.1% in the low-risk group (observed rate 12.8%), 21.9% in the medium-risk group (observed 31.8%), and 49.7% in the high-risk group (observed 41.2%). The ACS NSQIP calculator consistently

  3. Validation of the 2014 European Society of Cardiology Sudden Cardiac Death Risk Prediction Model in Hypertrophic Cardiomyopathy in a Reference Center in South America.

    Science.gov (United States)

    Fernández, Adrián; Quiroga, Alejandro; Ochoa, Juan Pablo; Mysuta, Mauricio; Casabé, José Horacio; Biagetti, Marcelo; Guevara, Eduardo; Favaloro, Liliana E; Fava, Agostina M; Galizio, Néstor

    2016-07-01

    Sudden cardiac death (SCD) is a common cause of death in hypertrophic cardiomyopathy (HC). Our aim was to conduct an external and independent validation in South America of the 2014 European Society of Cardiology (ESC) SCD risk prediction model to identify patients requiring an implantable cardioverter defibrillator. This study included 502 consecutive patients with HC followed from March, 1993 to December, 2014. A combined end point of SCD or appropriate implantable cardioverter defibrillator therapy was assessed. For the quantitative estimation of individual 5-year SCD risk, we used the formula: 1 - 0.998(exp(Prognostic index)). Our database also included the abnormal blood pressure response to exercise as a risk marker. We analyzed the 3 categories of 5-year risk proposed by the ESC: low risk (LR) validated in our population and represents an improvement compared with previous approaches. A larger multicenter, independent and external validation of the model with long-term follow-up would be advisable. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Young Children’s Risk-Taking: Mothers’ Authoritarian Parenting Predicts Risk-Taking by Daughters but Not Sons

    OpenAIRE

    Wood, Erin E.; Kennison, Shelia M.

    2017-01-01

    We investigated how mothers’ parenting behaviors and personal characteristics were related to risk-taking by young children. We tested contrasting predictions from evolutionary and social role theories with the former predicting higher risk-taking by boys compared to girls and the latter predicting that mothers would influence children’s gender role development with risk-taking occurring more in children parented with higher levels of harshness (i.e., authoritarian parenting style). In our st...

  5. Can an arthroplasty risk score predict bundled care events after total joint arthroplasty?

    Directory of Open Access Journals (Sweden)

    Blair S. Ashley, MD

    2018-03-01

    Full Text Available Background: The validated Arthroplasty Risk Score (ARS predicts the need for postoperative triage to an intensive care setting. We hypothesized that the ARS may also predict hospital length of stay (LOS, discharge disposition, and episode-of-care cost (EOCC. Methods: We retrospectively reviewed a series of 704 patients undergoing primary total hip and knee arthroplasty over 17 months. Patient characteristics, 90-day EOCC, LOS, and readmission rates were compared before and after ARS implementation. Results: ARS implementation was associated with fewer patients going to a skilled nursing or rehabilitation facility after discharge (63% vs 74%, P = .002. There was no difference in LOS, EOCC, readmission rates, or complications. While the adoption of the ARS did not change the mean EOCC, ARS >3 was predictive of high EOCC outlier (odds ratio 2.65, 95% confidence interval 1.40-5.01, P = .003. Increased ARS correlated with increased EOCC (P = .003. Conclusions: Implementation of the ARS was associated with increased disposition to home. It was predictive of high EOCC and should be considered in risk adjustment variables in alternative payment models. Keywords: Bundled payments, Risk stratification, Arthroplasty

  6. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.

    Science.gov (United States)

    Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P

    2012-01-11

    Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.

  7. Predicting the short-term risk of diabetes in HIV-positive patients

    DEFF Research Database (Denmark)

    Petoumenos, Kathy; Worm, Signe W; Fontas, Eric

    2012-01-01

    HIV-positive patients receiving combination antiretroviral therapy (cART) frequently experience metabolic complications such as dyslipidemia and insulin resistance, as well as lipodystrophy, increasing the risk of cardiovascular disease (CVD) and diabetes mellitus (DM). Rates of DM and other...... glucose-associated disorders among HIV-positive patients have been reported to range between 2 and 14%, and in an ageing HIV-positive population, the prevalence of DM is expected to continue to increase. This study aims to develop a model to predict the short-term (six-month) risk of DM in HIV...

  8. Mathematical models of cancer and their use in risk assessment. Technical report No. 27

    International Nuclear Information System (INIS)

    Whittemore, A.S.

    1979-08-01

    The sensitivity of risk predictions to certain assumptions in the underlying mathematical model is illustrated. To avoid the misleading and erroneous predictions that can result from the use of models incorporating assumptions whose validity is questionable, the following steps should be taken. First, state the assumptions used in a proposed model in terms that are clear to all who will use the model to assess risk. Second, assess the sensitivity of predictions to changes in model assumptions. Third, scrutinize pivotal assumptions in light of the best available human and animal data. Fourth, stress inconsistencies between model assumptions and experimental or epidemiological observations. The model fitting procedure will yield the most information when the data discriminates between theories because of their inconsistency with one or more assumptions. In this sense, mathematical theories are most successful when they fail. Finally, exclude value judgments from the quantitative procedures used to assess risk; instead include them explicitly in that part of the decision process concerned with cost-benefit analysis

  9. The impact of global environmental change on vector-borne disease risk: a modelling study

    Directory of Open Access Journals (Sweden)

    Rachel Lowe, PhD

    2018-05-01

    Full Text Available Background: Vector-borne diseases, such as dengue virus, Zika virus, and malaria, are highly sensitive to environmental changes, including variations in climate and land-surface characteristics. The emergence and spread of vector-borne diseases is also exacerbated by anthropogenic activities, such as deforestation, mining, urbanisation, and human mobility, which alter the natural habitats of vectors and increase vector–host interactions. Innovative epidemiological modelling tools can help to understand how environmental conditions interact with socioeconomic risk factors to predict the risk of disease transmission. In recent years, climate-health modelling has benefited from computational advances in fitting complex mathematical models; increasing availability of environmental, socioeconomic, and disease surveillance datasets; and improved ability to understand and model the climate system. Climate forecasts at seasonal time scales tend to improve in quality during El Niño-Southern Oscillation events in certain regions of the tropics. Thus, climate forecasts provide an opportunity to anticipate potential outbreaks of vector-borne diseases from several months to a year in advance. The aim of this study was to develop a framework to incorporate seasonal climate forecasts in predictive disease models to understand the future risk of vector-borne diseases, with a focus on dengue fever in Latin America. Methods: A Bayesian spatiotemporal model framework that quantifies the extent to which environmental and socioeconomic indicators can explain variations in disease risk was designed to disentangle the effects of climate from other risk factors using multi-source data and random effects, which account for unknown and unmeasured sources of spatial, seasonal, and inter-annual variation. The model was used to provide probabilistic predictions of monthly dengue incidence and the probability of exceeding outbreak thresholds, which were established in

  10. Prediction of long-term absence due to sickness in employees: development and validation of a multifactorial risk score in two cohort studies.

    Science.gov (United States)

    Airaksinen, Jaakko; Jokela, Markus; Virtanen, Marianna; Oksanen, Tuula; Koskenvuo, Markku; Pentti, Jaana; Vahtera, Jussi; Kivimäki, Mika

    2018-01-24

    Objectives This study aimed to develop and validate a risk prediction model for long-term sickness absence. Methods Survey responses on work- and lifestyle-related questions from 65 775 public-sector employees were linked to sickness absence records to develop a prediction score for medically-certified sickness absence lasting >9 days and ≥90 days. The score was externally validated using data from an independent population-based cohort of 13 527 employees. For both sickness absence outcomes, a full model including 46 candidate predictors was reduced to a parsimonious model using least-absolute-shrinkage-and-selection-operator (LASSO) regression. Predictive performance of the model was evaluated using C-index and calibration plots. Results Variance explained in ≥90-day sickness absence by the full model was 12.5%. In the parsimonious model, the predictors included self-rated health (linear and quadratic term), depression, sex, age (linear and quadratic), socioeconomic position, previous sickness absences, number of chronic diseases, smoking, shift work, working night shift, and quadratic terms for body mass index and Jenkins sleep scale. The discriminative ability of the score was good (C-index 0.74 in internal and 0.73 in external validation). Calibration plots confirmed high correspondence between the predicted and observed risk. In >9-day sickness absence, the full model explained 15.2% of the variance explained, but the C-index of the parsimonious model was poor (<0.65). Conclusions Individuals' risk of a long-term sickness absence that lasts ≥90 days can be estimated using a brief risk score. The predictive performance of this score is comparable to those for established multifactorial risk algorithms for cardiovascular disease, such as the Framingham risk score.

  11. Cross-national validation of prognostic models predicting sickness absence and the added value of work environment variables.

    Science.gov (United States)

    Roelen, Corné A M; Stapelfeldt, Christina M; Heymans, Martijn W; van Rhenen, Willem; Labriola, Merete; Nielsen, Claus V; Bültmann, Ute; Jensen, Chris

    2015-06-01

    To validate Dutch prognostic models including age, self-rated health and prior sickness absence (SA) for ability to predict high SA in Danish eldercare. The added value of work environment variables to the models' risk discrimination was also investigated. 2,562 municipal eldercare workers (95% women) participated in the Working in Eldercare Survey. Predictor variables were measured by questionnaire at baseline in 2005. Prognostic models were validated for predictions of high (≥30) SA days and high (≥3) SA episodes retrieved from employer records during 1-year follow-up. The accuracy of predictions was assessed by calibration graphs and the ability of the models to discriminate between high- and low-risk workers was investigated by ROC-analysis. The added value of work environment variables was measured with Integrated Discrimination Improvement (IDI). 1,930 workers had complete data for analysis. The models underestimated the risk of high SA in eldercare workers and the SA episodes model had to be re-calibrated to the Danish data. Discrimination was practically useful for the re-calibrated SA episodes model, but not the SA days model. Physical workload improved the SA days model (IDI = 0.40; 95% CI 0.19-0.60) and psychosocial work factors, particularly the quality of leadership (IDI = 0.70; 95% CI 053-0.86) improved the SA episodes model. The prognostic model predicting high SA days showed poor performance even after physical workload was added. The prognostic model predicting high SA episodes could be used to identify high-risk workers, especially when psychosocial work factors are added as predictor variables.

  12. Predictive models for the assessment of occupational exposure to chemicals: A new challenge for employers

    Directory of Open Access Journals (Sweden)

    Jan Piotr Gromiec

    2013-10-01

    Full Text Available Employers are obliged to carry out and document the risk associated with the use of chemical substances. The best but the most expensive method is to measure workplace concentrations of chemicals. At present no "measureless" method for risk assessment is available in Poland, but predictive models for such assessments have been developed in some countries. The purpose of this work is to review and evaluate the applicability of selected predictive methods for assessing occupational inhalation exposure and related risk to check the compliance with Occupational Exposure Limits (OELs, as well as the compliance with REACH obligations. Based on the literature data HSE COSHH Essentials, EASE, ECETOC TRA, Stoffenmanager, and EMKG-Expo-Tool were evaluated. The data on validation of predictive models were also examined. It seems that predictive models may be used as a useful method for Tier 1 assessment of occupational exposure by inhalation. Since the levels of exposure are frequently overestimated, they should be considered as "rational worst cases" for selection of proper control measures. Bearing in mind that the number of available exposure scenarios and PROC categories is limited, further validation by field surveys is highly recommended. Predictive models may serve as a good tool for preliminary risk assessment and selection of the most appropriate risk control measures in Polish small and medium size enterprises (SMEs providing that they are available in the Polish language. This also requires an extensive training of their future users. Med Pr 2013;64(5:699–716

  13. Mechanistic effect modeling for ecological risk assessment: where to go from here?

    Science.gov (United States)

    Grimm, Volker; Martin, Benjamin T

    2013-07-01

    Mechanistic effect models (MEMs) consider the mechanisms of how chemicals affect individuals and ecological systems such as populations and communities. There is an increasing awareness that MEMs have high potential to make risk assessment of chemicals more ecologically relevant than current standard practice. Here we discuss what kinds of MEMs are needed to improve scientific and regulatory aspects of risk assessment. To make valid predictions for a wide range of environmental conditions, MEMs need to include a sufficient amount of emergence, for example, population dynamics emerging from what individual organisms do. We present 1 example where the life cycle of individuals is described using Dynamic Energy Budget theory. The resulting individual-based population model is thus parameterized at the individual level but correctly predicts multiple patterns at the population level. This is the case for both control and treated populations. We conclude that the state-of-the-art in mechanistic effect modeling has reached a level where MEMs are robust and predictive enough to be used in regulatory risk assessment. Mechanistic effect models will thus be used to advance the scientific basis of current standard practice and will, if their development follows Good Modeling Practice, be included in a standardized way in future regulatory risk assessments. Copyright © 2013 SETAC.

  14. Cardiovascular risk prediction tools for populations in Asia.

    Science.gov (United States)

    Barzi, F; Patel, A; Gu, D; Sritara, P; Lam, T H; Rodgers, A; Woodward, M

    2007-02-01

    Cardiovascular risk equations are traditionally derived from the Framingham Study. The accuracy of this approach in Asian populations, where resources for risk factor measurement may be limited, is unclear. To compare "low-information" equations (derived using only age, systolic blood pressure, total cholesterol and smoking status) derived from the Framingham Study with those derived from the Asian cohorts, on the accuracy of cardiovascular risk prediction. Separate equations to predict the 8-year risk of a cardiovascular event were derived from Asian and Framingham cohorts. The performance of these equations, and a subsequently "recalibrated" Framingham equation, were evaluated among participants from independent Chinese cohorts. Six cohort studies from Japan, Korea and Singapore (Asian cohorts); six cohort studies from China; the Framingham Study from the US. 172,077 participants from the Asian cohorts; 25,682 participants from Chinese cohorts and 6053 participants from the Framingham Study. In the Chinese cohorts, 542 cardiovascular events occurred during 8 years of follow-up. Both the Asian cohorts and the Framingham equations discriminated cardiovascular risk well in the Chinese cohorts; the area under the receiver-operator characteristic curve was at least 0.75 for men and women. However, the Framingham risk equation systematically overestimated risk in the Chinese cohorts by an average of 276% among men and 102% among women. The corresponding average overestimation using the Asian cohorts equation was 11% and 10%, respectively. Recalibrating the Framingham risk equation using cardiovascular disease incidence from the non-Chinese Asian cohorts led to an overestimation of risk by an average of 4% in women and underestimation of risk by an average of 2% in men. A low-information Framingham cardiovascular risk prediction tool, which, when recalibrated with contemporary data, is likely to estimate future cardiovascular risk with similar accuracy in Asian

  15. Comparison of prospective risk estimates for postoperative complications: human vs computer model.

    Science.gov (United States)

    Glasgow, Robert E; Hawn, Mary T; Hosokawa, Patrick W; Henderson, William G; Min, Sung-Joon; Richman, Joshua S; Tomeh, Majed G; Campbell, Darrell; Neumayer, Leigh A

    2014-02-01

    Surgical quality improvement tools such as NSQIP are limited in their ability to prospectively affect individual patient care by the retrospective audit and feedback nature of their design. We hypothesized that statistical models using patient preoperative characteristics could prospectively provide risk estimates of postoperative adverse events comparable to risk estimates provided by experienced surgeons, and could be useful for stratifying preoperative assessment of patient risk. This was a prospective observational cohort. Using previously developed models for 30-day postoperative mortality, overall morbidity, cardiac, thromboembolic, pulmonary, renal, and surgical site infection (SSI) complications, model and surgeon estimates of risk were compared with each other and with actual 30-day outcomes. The study cohort included 1,791 general surgery patients operated on between June 2010 and January 2012. Observed outcomes were mortality (0.2%), overall morbidity (8.2%), and pulmonary (1.3%), cardiac (0.3%), thromboembolism (0.2%), renal (0.4%), and SSI (3.8%) complications. Model and surgeon risk estimates showed significant correlation (p risk for overall morbidity to be low, the model-predicted risk and observed morbidity rates were 2.8% and 4.1%, respectively, compared with 10% and 18% in perceived high risk patients. Patients in the highest quartile of model-predicted risk accounted for 75% of observed mortality and 52% of morbidity. Across a broad range of general surgical operations, we confirmed that the model risk estimates are in fairly good agreement with risk estimates of experienced surgeons. Using these models prospectively can identify patients at high risk for morbidity and mortality, who could then be targeted for intervention to reduce postoperative complications. Published by Elsevier Inc.

  16. Predictive analytics for supply chain collaboration, risk management ...

    African Journals Online (AJOL)

    kirstam

    management, and (2) supply chain risk management predicted financial .... overhead costs, delivery of ever-increasing customer value, flexibility with superior ... risk exposure, relationship longevity, trust and communication are considered as.

  17. Individual-based model for radiation risk assessment

    Science.gov (United States)

    Smirnova, O.

    A mathematical model is developed which enables one to predict the life span probability for mammals exposed to radiation. It relates statistical biometric functions with statistical and dynamic characteristics of an organism's critical system. To calculate the dynamics of the latter, the respective mathematical model is used too. This approach is applied to describe the effects of low level chronic irradiation on mice when the hematopoietic system (namely, thrombocytopoiesis) is the critical one. For identification of the joint model, experimental data on hematopoiesis in nonirradiated and irradiated mice, as well as on mortality dynamics of those in the absence of radiation are utilized. The life span probability and life span shortening predicted by the model agree with corresponding experimental data. Modeling results show the significance of ac- counting the variability of the individual radiosensitivity of critical system cells when estimating the radiation risk. These findings are corroborated by clinical data on persons involved in the elimination of the Chernobyl catastrophe after- effects. All this makes it feasible to use the model for radiation risk assessments for cosmonauts and astronauts on long-term missions such as a voyage to Mars or a lunar colony. In this case the model coefficients have to be determined by making use of the available data for humans. Scenarios for the dynamics of dose accumulation during space flights should also be taken into account.

  18. Predicting PTSD using the New York Risk Score with genotype data: potential clinical and research opportunities

    Directory of Open Access Journals (Sweden)

    Boscarino JA

    2013-04-01

    Full Text Available Joseph A Boscarino,1,2 H Lester Kirchner,3,4 Stuart N Hoffman,5 Porat M Erlich1,4 1Center for Health Research, Geisinger Clinic, Danville, 2Department of Psychiatry, Temple University School of Medicine, Philadelphia, 3Division of Medicine, Geisinger Clinic, Danville, 4Department of Medicine, Temple University School of Medicine, Philadelphia, 5Department of Neurology, Geisinger Clinic, Danville, PA, USA Background: We previously developed a post-traumatic stress disorder (PTSD screening instrument, ie, the New York PTSD Risk Score (NYPRS, that was effective in predicting PTSD. In the present study, we assessed a version of this risk score that also included genetic information. Methods: Utilizing diagnostic testing methods, we hierarchically examined different prediction variables identified in previous NYPRS research, including genetic risk-allele information, to assess lifetime and current PTSD status among a population of trauma-exposed adults. Results: We found that, in predicting lifetime PTSD, the area under the receiver operating characteristic curve (AUC for the Primary Care PTSD Screen alone was 0.865. When we added psychosocial predictors from the original NYPRS to the model, including depression, sleep disturbance, and a measure of health care access, the AUC increased to 0.902, which was a significant improvement (P = 0.0021. When genetic information was added in the form of a count of PTSD risk alleles located within FKBP, COMT, CHRNA5, and CRHR1 genetic loci (coded 0–6, the AUC increased to 0.920, which was also a significant improvement (P = 0.0178. The results for current PTSD were similar. In the final model for current PTSD with the psychosocial risk factors included, genotype resulted in a prediction weight of 17 for each risk allele present, indicating that a person with six risk alleles or more would receive a PTSD risk score of 17 × 6 = 102, the highest risk score for any of the predictors studied. Conclusion: Genetic

  19. Updating risk prediction tools: a case study in prostate cancer.

    Science.gov (United States)

    Ankerst, Donna P; Koniarski, Tim; Liang, Yuanyuan; Leach, Robin J; Feng, Ziding; Sanda, Martin G; Partin, Alan W; Chan, Daniel W; Kagan, Jacob; Sokoll, Lori; Wei, John T; Thompson, Ian M

    2012-01-01

    Online risk prediction tools for common cancers are now easily accessible and widely used by patients and doctors for informed decision-making concerning screening and diagnosis. A practical problem is as cancer research moves forward and new biomarkers and risk factors are discovered, there is a need to update the risk algorithms to include them. Typically, the new markers and risk factors cannot be retrospectively measured on the same study participants used to develop the original prediction tool, necessitating the merging of a separate study of different participants, which may be much smaller in sample size and of a different design. Validation of the updated tool on a third independent data set is warranted before the updated tool can go online. This article reports on the application of Bayes rule for updating risk prediction tools to include a set of biomarkers measured in an external study to the original study used to develop the risk prediction tool. The procedure is illustrated in the context of updating the online Prostate Cancer Prevention Trial Risk Calculator to incorporate the new markers %freePSA and [-2]proPSA measured on an external case-control study performed in Texas, U.S.. Recent state-of-the art methods in validation of risk prediction tools and evaluation of the improvement of updated to original tools are implemented using an external validation set provided by the U.S. Early Detection Research Network. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.

    Science.gov (United States)

    Ducrot, Virginie; Ashauer, Roman; Bednarska, Agnieszka J; Hinarejos, Silvia; Thorbek, Pernille; Weyman, Gabriel

    2016-01-01

    Recent guidance identified toxicokinetic-toxicodynamic (TK-TD) modeling as a relevant approach for risk assessment refinement. Yet, its added value compared to other refinement options is not detailed, and how to conduct the modeling appropriately is not explained. This case study addresses these issues through 2 examples of individual-level risk assessment for 2 hypothetical plant protection products: 1) evaluating the risk for small granivorous birds and small omnivorous mammals of a single application, as a seed treatment in winter cereals, and 2) evaluating the risk for fish after a pulsed treatment in the edge-of-field zone. Using acute test data, we conducted the first tier risk assessment as defined in the European Food Safety Authority (EFSA) guidance. When first tier risk assessment highlighted a concern, refinement options were discussed. Cases where the use of models should be preferred over other existing refinement approaches were highlighted. We then practically conducted the risk assessment refinement by using 2 different models as examples. In example 1, a TK model accounting for toxicokinetics and relevant feeding patterns in the skylark and in the wood mouse was used to predict internal doses of the hypothetical active ingredient in individuals, based on relevant feeding patterns in an in-crop situation, and identify the residue levels leading to mortality. In example 2, a TK-TD model accounting for toxicokinetics, toxicodynamics, and relevant exposure patterns in the fathead minnow was used to predict the time-course of fish survival for relevant FOCUS SW exposure scenarios and identify which scenarios might lead to mortality. Models were calibrated using available standard data and implemented to simulate the time-course of internal dose of active ingredient or survival for different exposure scenarios. Simulation results were discussed and used to derive the risk assessment refinement endpoints used for decision. Finally, we compared the

  1. Quantifying and estimating the predictive accuracy for censored time-to-event data with competing risks.

    Science.gov (United States)

    Wu, Cai; Li, Liang

    2018-05-15

    This paper focuses on quantifying and estimating the predictive accuracy of prognostic models for time-to-event outcomes with competing events. We consider the time-dependent discrimination and calibration metrics, including the receiver operating characteristics curve and the Brier score, in the context of competing risks. To address censoring, we propose a unified nonparametric estimation framework for both discrimination and calibration measures, by weighting the censored subjects with the conditional probability of the event of interest given the observed data. The proposed method can be extended to time-dependent predictive accuracy metrics constructed from a general class of loss functions. We apply the methodology to a data set from the African American Study of Kidney Disease and Hypertension to evaluate the predictive accuracy of a prognostic risk score in predicting end-stage renal disease, accounting for the competing risk of pre-end-stage renal disease death, and evaluate its numerical performance in extensive simulation studies. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Inter-model comparison of the landscape determinants of vector-borne disease: implications for epidemiological and entomological risk modeling.

    Science.gov (United States)

    Lorenz, Alyson; Dhingra, Radhika; Chang, Howard H; Bisanzio, Donal; Liu, Yang; Remais, Justin V

    2014-01-01

    Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An ensemble model containing these three models improved precision and predictive ability over individual models. A priori assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing models and those interested in applying them to new areas and research questions.

  3. Inter-model comparison of the landscape determinants of vector-borne disease: implications for epidemiological and entomological risk modeling.

    Directory of Open Access Journals (Sweden)

    Alyson Lorenz

    Full Text Available Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An ensemble model containing these three models improved precision and predictive ability over individual models. A priori assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing models and those interested in applying them to new areas and research questions.

  4. An overview of techniques for linking high-dimensional molecular data to time-to-event endpoints by risk prediction models.

    Science.gov (United States)

    Binder, Harald; Porzelius, Christine; Schumacher, Martin

    2011-03-01

    Analysis of molecular data promises identification of biomarkers for improving prognostic models, thus potentially enabling better patient management. For identifying such biomarkers, risk prediction models can be employed that link high-dimensional molecular covariate data to a clinical endpoint. In low-dimensional settings, a multitude of statistical techniques already exists for building such models, e.g. allowing for variable selection or for quantifying the added value of a new biomarker. We provide an overview of techniques for regularized estimation that transfer this toward high-dimensional settings, with a focus on models for time-to-event endpoints. Techniques for incorporating specific covariate structure are discussed, as well as techniques for dealing with more complex endpoints. Employing gene expression data from patients with diffuse large B-cell lymphoma, some typical modeling issues from low-dimensional settings are illustrated in a high-dimensional application. First, the performance of classical stepwise regression is compared to stage-wise regression, as implemented by a component-wise likelihood-based boosting approach. A second issues arises, when artificially transforming the response into a binary variable. The effects of the resulting loss of efficiency and potential bias in a high-dimensional setting are illustrated, and a link to competing risks models is provided. Finally, we discuss conditions for adequately quantifying the added value of high-dimensional gene expression measurements, both at the stage of model fitting and when performing evaluation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling.

    Science.gov (United States)

    Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd

    2016-12-01

    Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.

  6. Risk-Based Predictive Maintenance for Safety-Critical Systems by Using Probabilistic Inference

    Directory of Open Access Journals (Sweden)

    Tianhua Xu

    2013-01-01

    Full Text Available Risk-based maintenance (RBM aims to improve maintenance planning and decision making by reducing the probability and consequences of failure of equipment. A new predictive maintenance strategy that integrates dynamic evolution model and risk assessment is proposed which can be used to calculate the optimal maintenance time with minimal cost and safety constraints. The dynamic evolution model provides qualified risks by using probabilistic inference with bucket elimination and gives the prospective degradation trend of a complex system. Based on the degradation trend, an optimal maintenance time can be determined by minimizing the expected maintenance cost per time unit. The effectiveness of the proposed method is validated and demonstrated by a collision accident of high-speed trains with obstacles in the presence of safety and cost constrains.

  7. A model to predict progression in brain-injured patients.

    Science.gov (United States)

    Tommasino, N; Forteza, D; Godino, M; Mizraji, R; Alvarez, I

    2014-11-01

    The study of brain death (BD) epidemiology and the acute brain injury (ABI) progression profile is important to improve public health programs, organ procurement strategies, and intensive care unit (ICU) protocols. The purpose of this study was to analyze the ABI progression profile among patients admitted to ICUs with a Glasgow Coma Score (GCS) ≤8, as well as establishing a prediction model of probability of death and BD. This was a retrospective analysis of prospective data that included all brain-injured patients with GCS ≤8 admitted to a total of four public and private ICUs in Uruguay (N = 1447). The independent predictor factors of death and BD were studied using logistic regression analysis. A hierarchical model consisting of 2 nested logit regression models was then created. With these models, the probabilities of death, BD, and death by cardiorespiratory arrest were analyzed. In the first regression, we observed that as the GCS decreased and age increased, the probability of death rose. Each additional year of age increased the probability of death by 0.014. In the second model, however, BD risk decreased with each year of age. The presence of swelling, mass effect, and/or space-occupying lesion increased BD risk for the same given GCS. In the presence of injuries compatible with intracranial hypertension, age behaved as a protective factor that reduced the probability of BD. Based on the analysis of the local epidemiology, a model to predict the probability of death and BD can be developed. The organ potential donation of a country, region, or hospital can be predicted on the basis of this model, customizing it to each specific situation.

  8. Workplace mavericks: how personality and risk-taking propensity predicts maverickism.

    Science.gov (United States)

    Gardiner, Elliroma; Jackson, Chris J

    2012-11-01

    We examine the relationship between lateral preference, the Five-Factor Model of personality, risk-taking propensity, and maverickism. We take an original approach by narrowing our research focus to only functional aspects of maverickism. Results with 458 full-time workers identify lateral preference as a moderator of the neuroticism-maverickism relationship. Extraversion, openness to experience, and low agreeableness were also each found to predict maverickism. The propensity of individuals high in maverickism to take risks was also found to be unaffected by task feedback. Our results highlight the multifaceted nature of maverickism, identifying both personality and task conditions as determinants of this construct. ©2011 The British Psychological Society.

  9. A time series modeling approach in risk appraisal of violent and sexual recidivism.

    Science.gov (United States)

    Bani-Yaghoub, Majid; Fedoroff, J Paul; Curry, Susan; Amundsen, David E

    2010-10-01

    For over half a century, various clinical and actuarial methods have been employed to assess the likelihood of violent recidivism. Yet there is a need for new methods that can improve the accuracy of recidivism predictions. This study proposes a new time series modeling approach that generates high levels of predictive accuracy over short and long periods of time. The proposed approach outperformed two widely used actuarial instruments (i.e., the Violence Risk Appraisal Guide and the Sex Offender Risk Appraisal Guide). Furthermore, analysis of temporal risk variations based on specific time series models can add valuable information into risk assessment and management of violent offenders.

  10. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-01-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  11. A molecular prognostic model predicts esophageal squamous cell carcinoma prognosis.

    Directory of Open Access Journals (Sweden)

    Hui-Hui Cao

    Full Text Available Esophageal squamous cell carcinoma (ESCC has the highest mortality rates in China. The 5-year survival rate of ESCC remains dismal despite improvements in treatments such as surgical resection and adjuvant chemoradiation, and current clinical staging approaches are limited in their ability to effectively stratify patients for treatment options. The aim of the present study, therefore, was to develop an immunohistochemistry-based prognostic model to improve clinical risk assessment for patients with ESCC.We developed a molecular prognostic model based on the combined expression of axis of epidermal growth factor receptor (EGFR, phosphorylated Specificity protein 1 (p-Sp1, and Fascin proteins. The presence of this prognostic model and associated clinical outcomes were analyzed for 130 formalin-fixed, paraffin-embedded esophageal curative resection specimens (generation dataset and validated using an independent cohort of 185 specimens (validation dataset.The expression of these three genes at the protein level was used to build a molecular prognostic model that was highly predictive of ESCC survival in both generation and validation datasets (P = 0.001. Regression analysis showed that this molecular prognostic model was strongly and independently predictive of overall survival (hazard ratio = 2.358 [95% CI, 1.391-3.996], P = 0.001 in generation dataset; hazard ratio = 1.990 [95% CI, 1.256-3.154], P = 0.003 in validation dataset. Furthermore, the predictive ability of these 3 biomarkers in combination was more robust than that of each individual biomarker.This technically simple immunohistochemistry-based molecular model accurately predicts ESCC patient survival and thus could serve as a complement to current clinical risk stratification approaches.

  12. Vaginal birth after caesarean section prediction models: a UK comparative observational study.

    Science.gov (United States)

    Mone, Fionnuala; Harrity, Conor; Mackie, Adam; Segurado, Ricardo; Toner, Brenda; McCormick, Timothy R; Currie, Aoife; McAuliffe, Fionnuala M

    2015-10-01

    Primarily, to assess the performance of three statistical models in predicting successful vaginal birth in patients attempting a trial of labour after one previous lower segment caesarean section (TOLAC). The statistically most reliable models were subsequently subjected to validation testing in a local antenatal population. A retrospective observational study was performed with study data collected from the Northern Ireland Maternity Service Database (NIMATs). The study population included all women that underwent a TOLAC (n=385) from 2010 to 2012 in a regional UK obstetric unit. Data was collected from the Northern Ireland Maternity Service Database (NIMATs). Area under the curve (AUC) and correlation analysis was performed. Of the three prediction models evaluated, AUC calculations for the Smith et al., Grobman et al. and Troyer and Parisi Models were 0.74, 0.72 and 0.65, respectively. Using the Smith et al. model, 52% of women had a low risk of caesarean section (CS) (predicted VBAC >72%) and 20% had a high risk of CS (predicted VBAC <60%), of whom 20% and 63% had delivery by CS. The fit between observed and predicted outcome in this study cohort using the Smith et al. and Grobman et al. models were greatest (Chi-square test, p=0.228 and 0.904), validating both within the population. The Smith et al. and Grobman et al. models could potentially be utilized within the UK to provide women with an informed choice when deciding on mode of delivery after a previous CS. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients.

    Science.gov (United States)

    Antic, Darko; Milic, Natasa; Nikolovski, Srdjan; Todorovic, Milena; Bila, Jelena; Djurdjevic, Predrag; Andjelic, Bosko; Djurasinovic, Vladislava; Sretenovic, Aleksandra; Vukovic, Vojin; Jelicic, Jelena; Hayman, Suzanne; Mihaljevic, Biljana

    2016-10-01

    Lymphoma patients are at increased risk of thromboembolic events but thromboprophylaxis in these patients is largely underused. We sought to develop and validate a simple model, based on individual clinical and laboratory patient characteristics that would designate lymphoma patients at risk for thromboembolic event. The study population included 1,820 lymphoma patients who were treated in the Lymphoma Departments at the Clinics of Hematology, Clinical Center of Serbia and Clinical Center Kragujevac. The model was developed using data from a derivation cohort (n = 1,236), and further assessed in the validation cohort (n = 584). Sixty-five patients (5.3%) in the derivation cohort and 34 (5.8%) patients in the validation cohort developed thromboembolic events. The variables independently associated with risk for thromboembolism were: previous venous and/or arterial events, mediastinal involvement, BMI>30 kg/m(2) , reduced mobility, extranodal localization, development of neutropenia and hemoglobin level 3). For patients classified at risk (intermediate and high-risk scores), the model produced negative predictive value of 98.5%, positive predictive value of 25.1%, sensitivity of 75.4%, and specificity of 87.5%. A high-risk score had positive predictive value of 65.2%. The diagnostic performance measures retained similar values in the validation cohort. Developed prognostic Thrombosis Lymphoma - ThroLy score is more specific for lymphoma patients than any other available score targeting thrombosis in cancer patients. Am. J. Hematol. 91:1014-1019, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Comparison of models for predicting outcomes in patients with coronary artery disease focusing on microsimulation

    Directory of Open Access Journals (Sweden)

    Masoud Amiri

    2012-01-01

    Full Text Available Background: Physicians have difficulty to subjectively estimate the cardiovascular risk of their patients. Using an estimate of global cardiovascular risk could be more relevant to guide decisions than using binary representation (presence or absence of risk factors data. The main aim of the paper is to compare different models of predicting the progress of a coronary artery diseases (CAD to help the decision making of physician. Methods: There are different standard models for predicting risk factors such as models based on logistic regression model, Cox regression model, dynamic logistic regression model, and simulation models such as Markov model and microsimulation model. Each model has its own application which can or cannot use by physicians to make a decision on treatment of each patient. Results: There are five main common models for predicting of outcomes, including models based on logistic regression model (for short-term outcomes, Cox regression model (for intermediate-term outcomes, dynamic logistic regression model, and simulation models such as Markov and microsimulation models (for long-term outcomes. The advantages and disadvantages of these models have been discussed and summarized. Conclusion: Given the complex medical decisions that physicians face in everyday practice, the multiple interrelated factors that play a role in choosing the optimal treatment, and the continuously accumulating new evidence on determinants of outcome and treatment options for CAD, physicians may potentially benefit from a clinical decision support system that accounts for all these considerations. The microsimulation model could provide cardiologists, researchers, and medical students a user-friendly software, which can be used as an intelligent interventional simulator.

  15. Liver function tests and risk prediction of incident type 2 diabetes : evaluation in two independent cohorts

    NARCIS (Netherlands)

    Abbasi, Ali; Bakker, Stephan J. L.; Corpeleijn, Eva; van der A, Daphne L.; Gansevoort, Ron T.; Gans, Rijk O. B.; Peelen, Linda M.; van der Schouw, Yvonne T.; Stolk, Ronald P.; Navis, Gerjan; Spijkerman, Annemieke M. W.; Beulens, Joline W. J.

    2012-01-01

    Background: Liver function tests might predict the risk of type 2 diabetes. An independent study evaluating utility of these markers compared with an existing prediction model is yet lacking. Methods and Findings: We performed a case-cohort study, including random subcohort (6.5%) from 38,379

  16. Modeling and predicting historical volatility in exchange rate markets

    Science.gov (United States)

    Lahmiri, Salim

    2017-04-01

    Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.

  17. BRAIN NATRIURETIC PEPTIDE (BNP: BIOMARKER FOR RISK STRATIFICATION AND FUNCTIONAL RECOVERY PREDICTION IN ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    STANESCU Ioana

    2015-02-01

    Full Text Available Functional outcome after cardiovascular and cerebrovascular events is traditionally predicted using demographic and clinical variables like age, gender, blood pressure, cholesterol levels, diabetes status, smoking habits or pre-existing morbidity. Identification of new variables will improve the risk stratification of specific categories of patients. Numerous blood-based biomarkers associated with increased cardiovascular risk have been identified; some of them even predict cardiovascular events. Investigators have tried to produce prediction models by incorporating traditional risk factors and biomarkers. (1. Widely-available, rapidly processed and less expensive biomarkers could be used in the future to guide management of complex cerebrovascular patients in order to maximize their recovery (2 Recently, studies have demonstrated that biomarkers can predict not only the risk for a specific clinical event, but also the risk of death of vascular cause and the functional outcome after cardiovascular or cerebrovascular events. Early prediction of fatal outcome after stroke may improve therapeutic strategies (such as the use of more aggressive treatments or inclusion of patients in clinical trials and guide decision-making processes in order to maximize patient’s chances for survival and recovery. (3 Long term functional outcome after stroke is one of the most difficult variables to predict. Elevated serum levels of brain natriuretic peptide (BNP are powerful predictor of outcomes in patients with cardiovascular disease (heart failure, atrial fibrillation. Potential role of BNP in predicting atrial fibrillation occurrence, cardio-embolic stroke and post-stroke mortality have been proved in many studies. However, data concerning the potential role of BNP in predicting short term and long term functional outcomes after stroke remain controversial.

  18. Improving prediction of fall risk among nursing home residents using electronic medical records.

    Science.gov (United States)

    Marier, Allison; Olsho, Lauren E W; Rhodes, William; Spector, William D

    2016-03-01

    Falls are physically and financially costly, but may be preventable with targeted intervention. The Minimum Data Set (MDS) is one potential source of information on fall risk factors among nursing home residents, but its limited breadth and relatively infrequent updates may limit its practical utility. Richer, more frequently updated data from electronic medical records (EMRs) may improve ability to identify individuals at highest risk for falls. The authors applied a repeated events survival model to analyze MDS 3.0 and EMR data for 5129 residents in 13 nursing homes within a single large California chain that uses a centralized EMR system from a leading vendor. Estimated regression parameters were used to project resident fall probability. The authors examined the proportion of observed falls within each projected fall risk decile to assess improvements in predictive power from including EMR data. In a model incorporating fall risk factors from the MDS only, 28.6% of observed falls occurred among residents in the highest projected risk decile. In an alternative specification incorporating more frequently updated measures for the same risk factors from the EMR data, 32.3% of observed falls occurred among residents in the highest projected risk decile, a 13% increase over the base MDS-only specification. Incorporating EMR data improves ability to identify those at highest risk for falls relative to prediction using MDS data alone. These improvements stem chiefly from the greater frequency with which EMR data are updated, with minimal additional gains from availability of additional risk factor variables. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Can machine-learning improve cardiovascular risk prediction using routine clinical data?

    Science.gov (United States)

    Kai, Joe; Garibaldi, Jonathan M.; Qureshi, Nadeem

    2017-01-01

    Background Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction. Methods Prospective cohort study using routine clinical data of 378,256 patients from UK family practices, free from cardiovascular disease at outset. Four machine-learning algorithms (random forest, logistic regression, gradient boosting machines, neural networks) were compared to an established algorithm (American College of Cardiology guidelines) to predict first cardiovascular event over 10-years. Predictive accuracy was assessed by area under the ‘receiver operating curve’ (AUC); and sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) to predict 7.5% cardiovascular risk (threshold for initiating statins). Findings 24,970 incident cardiovascular events (6.6%) occurred. Compared to the established risk prediction algorithm (AUC 0.728, 95% CI 0.723–0.735), machine-learning algorithms improved prediction: random forest +1.7% (AUC 0.745, 95% CI 0.739–0.750), logistic regression +3.2% (AUC 0.760, 95% CI 0.755–0.766), gradient boosting +3.3% (AUC 0.761, 95% CI 0.755–0.766), neural networks +3.6% (AUC 0.764, 95% CI 0.759–0.769). The highest achieving (neural networks) algorithm predicted 4,998/7,404 cases (sensitivity 67.5%, PPV 18.4%) and 53,458/75,585 non-cases (specificity 70.7%, NPV 95.7%), correctly predicting 355 (+7.6%) more patients who developed cardiovascular disease compared to the established algorithm. Conclusions Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment, while avoiding unnecessary treatment of others

  20. Development and validation of a predictive model for excessive postpartum blood loss: A retrospective, cohort study.

    Science.gov (United States)

    Rubio-Álvarez, Ana; Molina-Alarcón, Milagros; Arias-Arias, Ángel; Hernández-Martínez, Antonio

    2018-03-01

    postpartum haemorrhage is one of the leading causes of maternal morbidity and mortality worldwide. Despite the use of uterotonics agents as preventive measure, it remains a challenge to identify those women who are at increased risk of postpartum bleeding. to develop and to validate a predictive model to assess the risk of excessive bleeding in women with vaginal birth. retrospective cohorts study. "Mancha-Centro Hospital" (Spain). the elaboration of the predictive model was based on a derivation cohort consisting of 2336 women between 2009 and 2011. For validation purposes, a prospective cohort of 953 women between 2013 and 2014 were employed. Women with antenatal fetal demise, multiple pregnancies and gestations under 35 weeks were excluded METHODS: we used a multivariate analysis with binary logistic regression, Ridge Regression and areas under the Receiver Operating Characteristic curves to determine the predictive ability of the proposed model. there was 197 (8.43%) women with excessive bleeding in the derivation cohort and 63 (6.61%) women in the validation cohort. Predictive factors in the final model were: maternal age, primiparity, duration of the first and second stages of labour, neonatal birth weight and antepartum haemoglobin levels. Accordingly, the predictive ability of this model in the derivation cohort was 0.90 (95% CI: 0.85-0.93), while it remained 0.83 (95% CI: 0.74-0.92) in the validation cohort. this predictive model is proved to have an excellent predictive ability in the derivation cohort, and its validation in a latter population equally shows a good ability for prediction. This model can be employed to identify women with a higher risk of postpartum haemorrhage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A joint calibration model for combining predictive distributions

    Directory of Open Access Journals (Sweden)

    Patrizia Agati

    2013-05-01

    Full Text Available In many research fields, as for example in probabilistic weather forecasting, valuable predictive information about a future random phenomenon may come from several, possibly heterogeneous, sources. Forecast combining methods have been developed over the years in order to deal with ensembles of sources: the aim is to combine several predictions in such a way to improve forecast accuracy and reduce risk of bad forecasts.In this context, we propose the use of a Bayesian approach to information combining, which consists in treating the predictive probability density functions (pdfs from the individual ensemble members as data in a Bayesian updating problem. The likelihood function is shown to be proportional to the product of the pdfs, adjusted by a joint “calibration function” describing the predicting skill of the sources (Morris, 1977. In this paper, after rephrasing Morris’ algorithm in a predictive context, we propose to model the calibration function in terms of bias, scale and correlation and to estimate its parameters according to the least squares criterion. The performance of our method is investigated and compared with that of Bayesian Model Averaging (Raftery, 2005 on simulated data.

  2. A Collision Risk Model to Predict Avian Fatalities at Wind Facilities: An Example Using Golden Eagles, Aquila chrysaetos.

    Science.gov (United States)

    New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C; Runge, Michael C

    2015-01-01

    Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6

  3. Genetic risk prediction and neurobiological understanding of alcoholism.

    Science.gov (United States)

    Levey, D F; Le-Niculescu, H; Frank, J; Ayalew, M; Jain, N; Kirlin, B; Learman, R; Winiger, E; Rodd, Z; Shekhar, A; Schork, N; Kiefer, F; Kiefe, F; Wodarz, N; Müller-Myhsok, B; Dahmen, N; Nöthen, M; Sherva, R; Farrer, L; Smith, A H; Kranzler, H R; Rietschel, M; Gelernter, J; Niculescu, A B

    2014-05-20

    We have used a translational Convergent Functional Genomics (CFG) approach to discover genes involved in alcoholism, by gene-level integration of genome-wide association study (GWAS) data from a German alcohol dependence cohort with other genetic and gene expression data, from human and animal model studies, similar to our previous work in bipolar disorder and schizophrenia. A panel of all the nominally significant P-value SNPs in the top candidate genes discovered by CFG  (n=135 genes, 713 SNPs) was used to generate a genetic  risk prediction score (GRPS), which showed a trend towards significance (P=0.053) in separating  alcohol dependent individuals from controls in an independent German test cohort. We then validated and prioritized our top findings from this discovery work, and subsequently tested them in three independent cohorts, from two continents. A panel of all the nominally significant P-value single-nucleotide length polymorphisms (SNPs) in the top candidate genes discovered by CFG (n=135 genes, 713 SNPs) were used to generate a Genetic Risk Prediction Score (GRPS), which showed a trend towards significance (P=0.053) in separating alcohol-dependent individuals from controls in an independent German test cohort. In order to validate and prioritize the key genes that drive behavior without some of the pleiotropic environmental confounds present in humans, we used a stress-reactive animal model of alcoholism developed by our group, the D-box binding protein (DBP) knockout mouse, consistent with the surfeit of stress theory of addiction proposed by Koob and colleagues. A much smaller panel (n=11 genes, 66 SNPs) of the top CFG-discovered genes for alcoholism, cross-validated and prioritized by this stress-reactive animal model showed better predictive ability in the independent German test cohort (P=0.041). The top CFG scoring gene for alcoholism from the initial discovery step, synuclein alpha (SNCA) remained the top gene after the stress

  4. Modelling of spatial prediction of fire ignition risk in the Antalya-Manavgat district

    Directory of Open Access Journals (Sweden)

    Coşkun Okan Güney

    2016-07-01

    Full Text Available The aim of this study was to present the fire ignition risk for Manavgat-Antalya District to enable the planning of firefighting sources in a more qualified way. From sites within the study area, where forest fires broke out or not during the past five years, we obtained geographical coordinates, climate data, topographical data and variables like bedrock, stand types, settlement areas, roads and power lines and prepared them with geographical information systems. For all variables we performed Wilcoxon rank-sum test, interspecific correlation analysis and logistic regression analysis and obtained 4 different models. When ROC analysis was applied to these models, model 4 was determined as the most significant model and therefore used to prepare the fire ignition risk map for the Manavgat-Antalya District. According to this map, ignition risk within the study area was highest in and around settlement areas where roads and power lines concentrate and Turkish red pine is distributed, but it was lowest afar of settlement areas without roads and where species apart from Turkish red pine are distributed. According to the results some suggestions were made.

  5. Development of Risk Score for Predicting 3-Year Incidence of Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study.

    Directory of Open Access Journals (Sweden)

    Akiko Nanri

    Full Text Available Risk models and scores have been developed to predict incidence of type 2 diabetes in Western populations, but their performance may differ when applied to non-Western populations. We developed and validated a risk score for predicting 3-year incidence of type 2 diabetes in a Japanese population.Participants were 37,416 men and women, aged 30 or older, who received periodic health checkup in 2008-2009 in eight companies. Diabetes was defined as fasting plasma glucose (FPG ≥ 126 mg/dl, random plasma glucose ≥ 200 mg/dl, glycated hemoglobin (HbA1c ≥ 6.5%, or receiving medical treatment for diabetes. Risk scores on non-invasive and invasive models including FPG and HbA1c were developed using logistic regression in a derivation cohort and validated in the remaining cohort.The area under the curve (AUC for the non-invasive model including age, sex, body mass index, waist circumference, hypertension, and smoking status was 0.717 (95% CI, 0.703-0.731. In the invasive model in which both FPG and HbA1c were added to the non-invasive model, AUC was increased to 0.893 (95% CI, 0.883-0.902. When the risk scores were applied to the validation cohort, AUCs (95% CI for the non-invasive and invasive model were 0.734 (0.715-0.753 and 0.882 (0.868-0.895, respectively. Participants with a non-invasive score of ≥ 15 and invasive score of ≥ 19 were projected to have >20% and >50% risk, respectively, of developing type 2 diabetes within 3 years.The simple risk score of the non-invasive model might be useful for predicting incident type 2 diabetes, and its predictive performance may be markedly improved by incorporating FPG and HbA1c.

  6. Modelo Preditivo para Cesariana com Uso de Fatores de Risco Predictive Model using Risk Factors for Cesarean Section

    Directory of Open Access Journals (Sweden)

    Alfredo de Almeida Cunha

    2002-01-01

    dependent variable was cesarean section (c-section. Independent variables were antepartum factors related to c-section. Logistic regression was used to develop a predictive model. Results: our model showed risk of c-section according to the following variables: maternal age under 20 years (OR = 0.396 and over 28 years (OR = 2.133; previous vaginal deliveries (OR = 0.626; previous c-section (OR = 4.576; prenatal care (OR = 2.346; breech presentation (OR = 4.174; twin pregnancies (OR = 14.065; late obstetrical hemorrhage (OR = 28.189; mild preeclampsia (OR = 2.180; severe preeclampsia OR=16.738; chronic hypertension OR=4.927 and other clinical problems (OR = 2.012. The predictive model had a concordance of 82.3% between probabilities and responses. Conclusions: our study identified 12 antepartum factors related to c-section. It was possible to develop a cesarean section predictive model taking into account all previously identified antepartum risk factors.

  7. Terrestrial population models for ecological risk assessment: A state-of-the-art review

    Science.gov (United States)

    Emlen, J.M.

    1989-01-01

    Few attempts have been made to formulate models for predicting impacts of xenobiotic chemicals on wildlife populations. However, considerable effort has been invested in wildlife optimal exploitation models. Because death from intoxication has a similar effect on population dynamics as death by harvesting, these management models are applicable to ecological risk assessment. An underlying Leslie-matrix bookkeeping formulation is widely applicable to vertebrate wildlife populations. Unfortunately, however, the various submodels that track birth, death, and dispersal rates as functions of the physical, chemical, and biotic environment are by their nature almost inevitably highly species- and locale-specific. Short-term prediction of one-time chemical applications requires only information on mortality before and after contamination. In such cases a simple matrix formulation may be adequate for risk assessment. But generally, risk must be projected over periods of a generation or more. This precludes generic protocols for risk assessment and also the ready and inexpensive predictions of a chemical's influence on a given population. When designing and applying models for ecological risk assessment at the population level, the endpoints (output) of concern must be carefully and rigorously defined. The most easily accessible and appropriate endpoints are (1) pseudoextinction (the frequency or probability of a population falling below a prespecified density), and (2) temporal mean population density. Spatial and temporal extent of predicted changes must be clearly specified a priori to avoid apparent contradictions and confusion.

  8. A risk score to predict type 2 diabetes mellitus in an elderly Spanish Mediterranean population at high cardiovascular risk.

    Directory of Open Access Journals (Sweden)

    Marta Guasch-Ferré

    Full Text Available INTRODUCTION: To develop and test a diabetes risk score to predict incident diabetes in an elderly Spanish Mediterranean population at high cardiovascular risk. MATERIALS AND METHODS: A diabetes risk score was derived from a subset of 1381 nondiabetic individuals from three centres of the PREDIMED study (derivation sample. Multivariate Cox regression model ß-coefficients were used to weigh each risk factor. PREDIMED-personal Score included body-mass-index, smoking status, family history of type 2 diabetes, alcohol consumption and hypertension as categorical variables; PREDIMED-clinical Score included also high blood glucose. We tested the predictive capability of these scores in the DE-PLAN-CAT cohort (validation sample. The discrimination of Finnish Diabetes Risk Score (FINDRISC, German Diabetes Risk Score (GDRS and our scores was assessed with the area under curve (AUC. RESULTS: The PREDIMED-clinical Score varied from 0 to 14 points. In the subset of the PREDIMED study, 155 individuals developed diabetes during the 4.75-years follow-up. The PREDIMED-clinical score at a cutoff of ≥6 had sensitivity of 72.2%, and specificity of 72.5%, whereas AUC was 0.78. The AUC of the PREDIMED-clinical Score was 0.66 in the validation sample (sensitivity = 85.4%; specificity = 26.6%, and was significantly higher than the FINDRISC and the GDRS in both the derivation and validation samples. DISCUSSION: We identified classical risk factors for diabetes and developed the PREDIMED-clinical Score to determine those individuals at high risk of developing diabetes in elderly individuals at high cardiovascular risk. The predictive capability of the PREDIMED-clinical Score was significantly higher than the FINDRISC and GDRS, and also used fewer items in the questionnaire.

  9. Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression.

    Science.gov (United States)

    Jovanovic, Milos; Radovanovic, Sandro; Vukicevic, Milan; Van Poucke, Sven; Delibasic, Boris

    2016-09-01

    Quantification and early identification of unplanned readmission risk have the potential to improve the quality of care during hospitalization and after discharge. However, high dimensionality, sparsity, and class imbalance of electronic health data and the complexity of risk quantification, challenge the development of accurate predictive models. Predictive models require a certain level of interpretability in order to be applicable in real settings and create actionable insights. This paper aims to develop accurate and interpretable predictive models for readmission in a general pediatric patient population, by integrating a data-driven model (sparse logistic regression) and domain knowledge based on the international classification of diseases 9th-revision clinical modification (ICD-9-CM) hierarchy of diseases. Additionally, we propose a way to quantify the interpretability of a model and inspect the stability of alternative solutions. The analysis was conducted on >66,000 pediatric hospital discharge records from California, State Inpatient Databases, Healthcare Cost and Utilization Project between 2009 and 2011. We incorporated domain knowledge based on the ICD-9-CM hierarchy in a data driven, Tree-Lasso regularized logistic regression model, providing the framework for model interpretation. This approach was compared with traditional Lasso logistic regression resulting in models that are easier to interpret by fewer high-level diagnoses, with comparable prediction accuracy. The results revealed that the use of a Tree-Lasso model was as competitive in terms of accuracy (measured by area under the receiver operating characteristic curve-AUC) as the traditional Lasso logistic regression, but integration with the ICD-9-CM hierarchy of diseases provided more interpretable models in terms of high-level diagnoses. Additionally, interpretations of models are in accordance with existing medical understanding of pediatric readmission. Best performing models have

  10. NT-proBNP is associated with coronary heart disease risk in healthy older women but fails to enhance prediction beyond established risk factors: results from the British Women's Heart and Health Study.

    Science.gov (United States)

    Sattar, Naveed; Welsh, Paul; Sarwar, Nadeem; Danesh, John; Di Angelantonio, Emanuele; Gudnason, Vilmundur; Davey Smith, George; Ebrahim, Shah; Lawlor, Debbie A

    2010-03-01

    Limited evidence suggests NT-proBNP improves prediction of coronary heart disease (CHD) events but further data are needed, especially in people without pre-existing CHD and in women. We measured NT-proBNP in serum from 162 women with incident CHD events and 1226 controls (60-79 years) in a case-control study nested within the prospective British Women's Heart and Health Study. All cases and controls were free from CHD at baseline. We related NT-proBNP to CHD event risk, and determined to what extent NT-proBNP enhanced CHD risk prediction beyond established risk factors. The odds ratio for CHD per 1 standard deviation increase in log(e)NT-proBNP was 1.37 (95% CI: 1.13-1.68) in analyses adjusted for established CHD risk factors, social class, CRP and insulin. However, addition of log(e)NT-proBNP did not improve the discrimination of a prediction model including age, social class, smoking, physical activity, lipids, fasting glucose, waist:hip ratio, hypertension, statin and aspirin use, nor a standard Framingham risk score model; area under the receiver operator curve for the former model increased from 0.676 to 0.687 on inclusion of NT-proBNP (p=0.3). Furthermore, adding NT-proBNP did not improve calibration of a prediction model containing established risk factors, nor did inclusion more appropriately re-classify participants in relation to their final outcome. Findings were similar (independent associations, but no prediction improvement) for fasting insulin and CRP. These results caution against use of NT-proBNP for CHD risk prediction in healthy women and suggest a need for larger studies in both genders to resolve outstanding uncertainties.

  11. Cannabis use in children with individualized risk profiles: Predicting the effect of universal prevention intervention.

    Science.gov (United States)

    Miovský, Michal; Vonkova, Hana; Čablová, Lenka; Gabrhelík, Roman

    2015-11-01

    To study the effect of a universal prevention intervention targeting cannabis use in individual children with different risk profiles. A school-based randomized controlled prevention trial was conducted over a period of 33 months (n=1874 sixth-graders, baseline mean age 11.82). We used a two-level random intercept logistic model for panel data to predict the probabilities of cannabis use for each child. Specifically, we used eight risk/protective factors to characterize each child and then predicted two probabilities of cannabis use for each child if the child had the intervention or not. Using the two probabilities, we calculated the absolute and relative effect of the intervention for each child. According to the two probabilities, we also divided the sample into a low-risk group (the quarter of the children with the lowest probabilities), a moderate-risk group, and a high-risk group (the quarter of the children with the highest probabilities) and showed the average effect of the intervention on these groups. The differences between the intervention group and the control group were statistically significant in each risk group. The average predicted probabilities of cannabis use for a child from the low-risk group were 4.3% if the child had the intervention and 6.53% if no intervention was provided. The corresponding probabilities for a child from the moderate-risk group were 10.91% and 15.34% and for a child from the high-risk group 25.51% and 32.61%. School grades, thoughts of hurting oneself, and breaking the rules were the three most important factors distinguishing high-risk and low-risk children. We predicted the effect of the intervention on individual children, characterized by their risk/protective factors. The predicted absolute effect and relative effect of any intervention for any selected risk/protective profile of a given child may be utilized in both prevention practice and research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Predicting birth weight with conditionally linear transformation models.

    Science.gov (United States)

    Möst, Lisa; Schmid, Matthias; Faschingbauer, Florian; Hothorn, Torsten

    2016-12-01

    Low and high birth weight (BW) are important risk factors for neonatal morbidity and mortality. Gynecologists must therefore accurately predict BW before delivery. Most prediction formulas for BW are based on prenatal ultrasound measurements carried out within one week prior to birth. Although successfully used in clinical practice, these formulas focus on point predictions of BW but do not systematically quantify uncertainty of the predictions, i.e. they result in estimates of the conditional mean of BW but do not deliver prediction intervals. To overcome this problem, we introduce conditionally linear transformation models (CLTMs) to predict BW. Instead of focusing only on the conditional mean, CLTMs model the whole conditional distribution function of BW given prenatal ultrasound parameters. Consequently, the CLTM approach delivers both point predictions of BW and fetus-specific prediction intervals. Prediction intervals constitute an easy-to-interpret measure of prediction accuracy and allow identification of fetuses subject to high prediction uncertainty. Using a data set of 8712 deliveries at the Perinatal Centre at the University Clinic Erlangen (Germany), we analyzed variants of CLTMs and compared them to standard linear regression estimation techniques used in the past and to quantile regression approaches. The best-performing CLTM variant was competitive with quantile regression and linear regression approaches in terms of conditional coverage and average length of the prediction intervals. We propose that CLTMs be used because they are able to account for possible heteroscedasticity, kurtosis, and skewness of the distribution of BWs. © The Author(s) 2014.

  13. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2011-07-01

    Full Text Available Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction,have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR and near infrared (NIR channels of satellite sensors have been employed for detecting live fuel moisture content (FMC, and the Normalized Difference Water Index (NDWI was used for evaluating the forest vegetation condition and its moisture status.

  14. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  15. Value of multiple risk factors in predicting coronary artery disease

    International Nuclear Information System (INIS)

    Zhu Zhengbin; Zhang Ruiyan; Zhang Qi; Yang Zhenkun; Hu Jian; Zhang Jiansheng; Shen Weifeng

    2008-01-01

    Objective: This study sought to assess the relationship between correlative comprehension risk factors and coronary arterial disease and to build up a simple mathematical model to evaluate the extension of coronary artery lesion in patients with stable angina. Methods: A total of 1024 patients with chest pain who underwent coronary angiography were divided into CAD group(n=625)and control group(n=399) based on at least one significant coronary artery narrowing more than 50% in diameter. Independent risk factors for CAD were evaluated and multivariate logistic regression model and receiver-operating characteristic(ROC) curves were used to estimate the independent influence factor for CAD and built up a simple formula for clinical use. Results: Multivariate regression analysis revealed that UACR > 7.25 μg/mg(OR=3.6; 95% CI 2.6-4.9; P 20 mmol/L(OR=3.2; 95% CI 2.3-4.4; P 2 (OR=2.3; 95% CI 1.4-3.8; P 2.6 mmol/L (OR 2.141; 95% CI 1.586-2.890; P 7.25 μg/mg + 1.158 x hsCRP > 20 mmol/L + 0.891 GFR 2 + 0.831 x LVEF 2.6 mmol/L + 0.676 x smoking history + 0.594 x male + 0.459 x diabetes + 0.425 x hypertension). Area under the curve was 0.811 (P < 0.01), and the optimal probability value for predicting severe stage of CAD was 0.977 (sensitivity 49.0%, specificity 92.7% ). Conclusions: Risk factors including renal insufficiency were the main predictors for CAD. The logistic regression model is the non-invasive method of choice for predicting the extension of coronary artery lesion in patients with stable agiana. (authors)

  16. Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study.

    Science.gov (United States)

    Nambi, Vijay; Chambless, Lloyd; He, Max; Folsom, Aaron R; Mosley, Tom; Boerwinkle, Eric; Ballantyne, Christie M

    2012-01-01

    Carotid intima-media thickness (CIMT) and plaque information can improve coronary heart disease (CHD) risk prediction when added to traditional risk factors (TRF). However, obtaining adequate images of all carotid artery segments (A-CIMT) may be difficult. Of A-CIMT, the common carotid artery intima-media thickness (CCA-IMT) is relatively more reliable and easier to measure. We evaluated whether CCA-IMT is comparable to A-CIMT when added to TRF and plaque information in improving CHD risk prediction in the Atherosclerosis Risk in Communities (ARIC) study. Ten-year CHD risk prediction models using TRF alone, TRF + A-CIMT + plaque, and TRF + CCA-IMT + plaque were developed for the overall cohort, men, and women. The area under the receiver operator characteristic curve (AUC), per cent individuals reclassified, net reclassification index (NRI), and model calibration by the Grønnesby-Borgan test were estimated. There were 1722 incident CHD events in 12 576 individuals over a mean follow-up of 15.2 years. The AUC for TRF only, TRF + A-CIMT + plaque, and TRF + CCA-IMT + plaque models were 0.741, 0.754, and 0.753, respectively. Although there was some discordance when the CCA-IMT + plaque- and A-CIMT + plaque-based risk estimation was compared, the NRI and clinical NRI (NRI in the intermediate-risk group) when comparing the CIMT models with TRF-only model, per cent reclassified, and test for model calibration were not significantly different. Coronary heart disease risk prediction can be improved by adding A-CIMT + plaque or CCA-IMT + plaque information to TRF. Therefore, evaluating the carotid artery for plaque presence and measuring CCA-IMT, which is easier and more reliable than measuring A-CIMT, provide a good alternative to measuring A-CIMT for CHD risk prediction.

  17. Predicting the onset of hazardous alcohol drinking in primary care: development and validation of a simple risk algorithm.

    Science.gov (United States)

    Bellón, Juan Ángel; de Dios Luna, Juan; King, Michael; Nazareth, Irwin; Motrico, Emma; GildeGómez-Barragán, María Josefa; Torres-González, Francisco; Montón-Franco, Carmen; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; Moreno-Peral, Patricia

    2017-04-01

    Little is known about the risk of progressing to hazardous alcohol use in abstinent or low-risk drinkers. To develop and validate a simple brief risk algorithm for the onset of hazardous alcohol drinking (HAD) over 12 months for use in primary care. Prospective cohort study in 32 health centres from six Spanish provinces, with evaluations at baseline, 6 months, and 12 months. Forty-one risk factors were measured and multilevel logistic regression and inverse probability weighting were used to build the risk algorithm. The outcome was new occurrence of HAD during the study, as measured by the AUDIT. From the lists of 174 GPs, 3954 adult abstinent or low-risk drinkers were recruited. The 'predictAL-10' risk algorithm included just nine variables (10 questions): province, sex, age, cigarette consumption, perception of financial strain, having ever received treatment for an alcohol problem, childhood sexual abuse, AUDIT-C, and interaction AUDIT-C*Age. The c-index was 0.886 (95% CI = 0.854 to 0.918). The optimal cutoff had a sensitivity of 0.83 and specificity of 0.80. Excluding childhood sexual abuse from the model (the 'predictAL-9'), the c-index was 0.880 (95% CI = 0.847 to 0.913), sensitivity 0.79, and specificity 0.81. There was no statistically significant difference between the c-indexes of predictAL-10 and predictAL-9. The predictAL-10/9 is a simple and internally valid risk algorithm to predict the onset of hazardous alcohol drinking over 12 months in primary care attendees; it is a brief tool that is potentially useful for primary prevention of hazardous alcohol drinking. © British Journal of General Practice 2017.

  18. Risk horoscopes: Predicting the number and type of serious occupational accidents in The Netherlands for sectors and jobs

    International Nuclear Information System (INIS)

    Bellamy, Linda J.; Damen, Martin; Jan Manuel, Henk; Aneziris, Olga N.; Papazoglou, Ioannis A.; Oh, Joy I.H.

    2015-01-01

    The risk of a serious occupational accident per hour exposure was calculated in a project to develop an occupational risk model in the Netherlands (WebORCA). To obtain risk rates, the numbers of victims of serious occupational accidents investigated by the Dutch Labour inspectorate 1998–Feb 2004 were divided by the number of hours exposure for each of 64 different types of hazards, such as contact with moving parts of machines and falls from various types of height. The exposures to the occupational accident hazards were calculated from a survey of a panel of 30,000 from the Dutch working population. Sixty risk rates were then used to predict serious accidents for activity sectors and jobs in the Netherlands where exposures to the hazards for sectors or jobs could be estimated from the survey. Such predictions have been called “horoscopes” because the idea is to provide a quick look-up of predicted accidents for a particular sector or job. Predictions compared favourably with actual data. It is concluded that predictive data can help provide information about accidents in cases where there is a lack of data, such as for smaller sub groups of the working population. - Highlights: • Dutch occupational accident risk rates and yearly exposures for 60 hazards are given. • Risks rates are based on the 1% most serious accidents 1998–Feb 2004. • Risk rates are used to predict serious accident risks in jobs and sectors. • Predictions (“risk horoscopes”) give a good match with actual accidents. • Risk horoscopes can help worker groups identify most important accident risks

  19. Sexual risk behavior among youth: modeling the influence of prosocial activities and socioeconomic factors.

    Science.gov (United States)

    Ramirez-Valles, J; Zimmerman, M A; Newcomb, M D

    1998-09-01

    Sexual activity among high-school-aged youths has steadily increased since the 1970s, emerging as a significant public health concern. Yet, patterns of youth sexual risk behavior are shaped by social class, race, and gender. Based on sociological theories of financial deprivation and collective socialization, we develop and test a model of the relationships among neighborhood poverty; family structure and social class position; parental involvement; prosocial activities; race; and gender as they predict youth sexual risk behavior. We employ structural equation modeling to test this model on a cross-sectional sample of 370 sexually active high-school students from a midwestern city; 57 percent (n = 209) are males and 86 percent are African American. We find that family structure indirectly predicts sexual risk behavior through neighborhood poverty, parental involvement, and prosocial activities. In addition, family class position indirectly predicts sexual risk behavior through neighborhood poverty and prosocial activities. We address implications for theory and health promotion.

  20. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies.

    Directory of Open Access Journals (Sweden)

    Florian Mittag

    Full Text Available Various attempts have been made to predict the individual disease risk based on genotype data from genome-wide association studies (GWAS. However, most studies only investigated one or two classification algorithms and feature encoding schemes. In this study, we applied seven different classification algorithms on GWAS case-control data sets for seven different diseases to create models for disease risk prediction. Further, we used three different encoding schemes for the genotypes of single nucleotide polymorphisms (SNPs and investigated their influence on the predictive performance of these models. Our study suggests that an additive encoding of the SNP data should be the preferred encoding scheme, as it proved to yield the best predictive performances for all algorithms and data sets. Furthermore, our results showed that the differences between most state-of-the-art classification algorithms are not statistically significant. Consequently, we recommend to prefer algorithms with simple models like the linear support vector machine (SVM as they allow for better subsequent interpretation without significant loss of accuracy.

  1. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction.

    Science.gov (United States)

    Luo, Gang

    2016-01-01

    Predictive modeling is a key component of solutions to many healthcare problems. Among all predictive modeling approaches, machine learning methods often achieve the highest prediction accuracy, but suffer from a long-standing open problem precluding their widespread use in healthcare. Most machine learning models give no explanation for their prediction results, whereas interpretability is essential for a predictive model to be adopted in typical healthcare settings. This paper presents the first complete method for automatically explaining results for any machine learning predictive model without degrading accuracy. We did a computer coding implementation of the method. Using the electronic medical record data set from the Practice Fusion diabetes classification competition containing patient records from all 50 states in the United States, we demonstrated the method on predicting type 2 diabetes diagnosis within the next year. For the champion machine learning model of the competition, our method explained prediction results for 87.4 % of patients who were correctly predicted by the model to have type 2 diabetes diagnosis within the next year. Our demonstration showed the feasibility of automatically explaining results for any machine learning predictive model without degrading accuracy.

  2. Impact of Age on the Risk of Advanced Colorectal Neoplasia in a Young Population: An Analysis Using the Predicted Probability Model.

    Science.gov (United States)

    Jung, Yoon Suk; Park, Chan Hyuk; Kim, Nam Hee; Lee, Mi Yeon; Park, Dong Il

    2017-09-01

    The incidence of colorectal cancer is decreasing in adults aged ≥50 years and increasing in those aged probability models for ACRN in a population aged 30-49 years. Of 96,235 participants, 57,635 and 38,600 were included in the derivation and validation cohorts, respectively. The predicted probability model considered age, sex, body mass index, family history of colorectal cancer, and smoking habits, as follows: Y ACRN  = -8.755 + 0.080·X age  - 0.055·X male  + 0.041·X BMI  + 0.200·X family_history_of_CRC  + 0.218·X former_smoker  + 0.644·X current_smoker . The optimal cutoff value for the predicted probability of ACRN by Youden index was 1.14%. The area under the receiver-operating characteristic curve (AUROC) values of our model for ACRN were higher than those of the previously established Asia-Pacific Colorectal Screening (APCS), Korean Colorectal Screening (KCS), and Kaminski's scoring models [AUROC (95% confidence interval): model in the current study, 0.673 (0.648-0.697); vs. APCS, 0.588 (0.564-0.611), P probability model can assess the risk of ACRN more accurately than existing models, including the APCS, KCS, and Kaminski's scoring models.

  3. Predicting risk behaviors: development and validation of a diagnostic scale.

    Science.gov (United States)

    Witte, K; Cameron, K A; McKeon, J K; Berkowitz, J M

    1996-01-01

    The goal of this study was to develop and validate the Risk Behavior Diagnosis (RBD) Scale for use by health care providers and practitioners interested in promoting healthy behaviors. Theoretically guided by the Extended Parallel Process Model (EPPM; a fear appeal theory), the RBD scale was designed to work in conjunction with an easy-to-use formula to determine which types of health risk messages would be most appropriate for a given individual or audience. Because some health risk messages promote behavior change and others backfire, this type of scale offers guidance to practitioners on how to develop the best persuasive message possible to motivate healthy behaviors. The results of the study demonstrate the RBD scale to have a high degree of content, construct, and predictive validity. Specific examples and practical suggestions are offered to facilitate use of the scale for health practitioners.

  4. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    Science.gov (United States)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  5. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    Science.gov (United States)

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  6. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach.

    Science.gov (United States)

    Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J

    2009-11-22

    Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  7. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach

    Directory of Open Access Journals (Sweden)

    Christensen Helen

    2009-11-01

    Full Text Available Abstract Background Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. Methods The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. Results The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. Conclusion The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  8. A Novel Risk Scoring System Reliably Predicts Readmission Following Pancreatectomy

    Science.gov (United States)

    Valero, Vicente; Grimm, Joshua C.; Kilic, Arman; Lewis, Russell L.; Tosoian, Jeffrey J.; He, Jin; Griffin, James; Cameron, John L.; Weiss, Matthew J.; Vollmer, Charles M.; Wolfgang, Christopher L.

    2015-01-01

    Background Postoperative readmissions have been proposed by Medicare as a quality metric and may impact provider reimbursement. Since readmission following pancreatectomy is common, we sought to identify factors associated with readmission in order to establish a predictive risk scoring system (RSS). Study Design A retrospective analysis of 2,360 pancreatectomies performed at nine, high-volume pancreatic centers between 2005 and 2011 was performed. Forty-five factors strongly associated with readmission were identified. To derive and validate a RSS, the population was randomly divided into two cohorts in a 4:1 fashion. A multivariable logistic regression model was constructed and scores were assigned based on the relative odds ratio of each independent predictor. A composite Readmission After Pancreatectomy (RAP) score was generated and then stratified to create risk groups. Results Overall, 464 (19.7%) patients were readmitted within 90-days. Eight pre- and postoperative factors, including prior myocardial infarction (OR 2.03), ASA Class ≥ 3 (OR 1.34), dementia (OR 6.22), hemorrhage (OR 1.81), delayed gastric emptying (OR 1.78), surgical site infection (OR 3.31), sepsis (OR 3.10) and short length of stay (OR 1.51), were independently predictive of readmission. The 32-point RAP score generated from the derivation cohort was highly predictive of readmission in the validation cohort (AUC 0.72). The low (0-3), intermediate (4-7) and high risk (>7) groups correlated to 11.7%, 17.5% and 45.4% observed readmission rates, respectively (preadmission following pancreatectomy. Identification of patients with increased risk of readmission using the RAP score will allow efficient resource allocation aimed to attenuate readmission rates. It also has potential to serve as a new metric for comparative research and quality assessment. PMID:25797757

  9. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703

  10. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Derek; Zhang, Rui, E-mail: rzhang@marybird.com [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States); Sanders, Mary [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Newhauser, Wayne [Department of Radiation Oncology, Mary Bird Perkins Cancer Center, 4950 Essen Ln., Baton Rouge, LA 70809 (United States); Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Tower Dr., Baton Rouge, LA 70810 (United States)

    2015-04-13

    Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  11. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

    Directory of Open Access Journals (Sweden)

    Derek Freund

    2015-04-01

    Full Text Available Cancer of the brain and central nervous system (CNS is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT compared to passively scattered proton therapy (PSPT and intensity modulated proton therapy (IMPT. Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.

  12. Personalized prediction of lifetime benefits with statin therapy for asymptomatic individuals: a modeling study.

    Directory of Open Access Journals (Sweden)

    Bart S Ferket

    Full Text Available BACKGROUND: Physicians need to inform asymptomatic individuals about personalized outcomes of statin therapy for primary prevention of cardiovascular disease (CVD. However, current prediction models focus on short-term outcomes and ignore the competing risk of death due to other causes. We aimed to predict the potential lifetime benefits with statin therapy, taking into account competing risks. METHODS AND FINDINGS: A microsimulation model based on 5-y follow-up data from the Rotterdam Study, a population-based cohort of individuals aged 55 y and older living in the Ommoord district of Rotterdam, the Netherlands, was used to estimate lifetime outcomes with and without statin therapy. The model was validated in-sample using 10-y follow-up data. We used baseline variables and model output to construct (1 a web-based calculator for gains in total and CVD-free life expectancy and (2 color charts for comparing these gains to the Systematic Coronary Risk Evaluation (SCORE charts. In 2,428 participants (mean age 67.7 y, 35.5% men, statin therapy increased total life expectancy by 0.3 y (SD 0.2 and CVD-free life expectancy by 0.7 y (SD 0.4. Age, sex, smoking, blood pressure, hypertension, lipids, diabetes, glucose, body mass index, waist-to-hip ratio, and creatinine were included in the calculator. Gains in total and CVD-free life expectancy increased with blood pressure, unfavorable lipid levels, and body mass index after multivariable adjustment. Gains decreased considerably with advancing age, while SCORE 10-y CVD mortality risk increased with age. Twenty-five percent of participants with a low SCORE risk achieved equal or larger gains in CVD-free life expectancy than the median gain in participants with a high SCORE risk. CONCLUSIONS: We developed tools to predict personalized increases in total and CVD-free life expectancy with statin therapy. The predicted gains we found are small. If the underlying model is validated in an independent cohort, the

  13. About Using Predictive Models and Tools To Assess Chemicals under TSCA

    Science.gov (United States)

    As part of EPA's effort to promote chemical safety, OPPT provides public access to predictive models and tools which can help inform the public on the hazards and risks of substances and improve chemical management decisions.

  14. Violence risk prediction. Clinical and actuarial measures and the role of the Psychopathy Checklist.

    Science.gov (United States)

    Dolan, M; Doyle, M

    2000-10-01

    Violence risk prediction is a priority issue for clinicians working with mentally disordered offenders. To review the current status of violence risk prediction research. Literature search (Medline). Key words: violence, risk prediction, mental disorder. Systematic/structured risk assessment approaches may enhance the accuracy of clinical prediction of violent outcomes. Data on the predictive validity of available clinical risk assessment tools are based largely on American and North American studies and further validation is required in British samples. The Psychopathy Checklist appears to be a key predictor of violent recidivism in a variety of settings. Violence risk prediction is an inexact science and as such will continue to provoke debate. Clinicians clearly need to be able to demonstrate the rationale behind their decisions on violence risk and much can be learned from recent developments in research on violence risk prediction.

  15. Risk attitudes and personality traits predict perceptions of benefits and risks for medicinal products: a field study of European medical assessors.

    Science.gov (United States)

    Beyer, Andrea R; Fasolo, Barbara; de Graeff, P A; Hillege, H L

    2015-01-01

    Risk attitudes and personality traits are known predictors of decision making among laypersons, but very little is known of their influence among experts participating in organizational decision making. Seventy-five European medical assessors were assessed in a field study using the Domain Specific Risk Taking scale and the Big Five Inventory scale. Assessors rated the risks and benefits for a mock "clinical dossier" specific to their area of expertise, and ordinal regression models were used to assess the odds of risk attitude or personality traits in predicting either the benefit or the risk ratings. An increase in the "conscientiousness" score predicted an increase in the perception of the drug's benefit, and male assessors gave higher scores for the drug's benefit ratings than did female assessors. Extraverted assessors saw fewer risks, and assessors with a perceived neutral-averse or averse risk profile saw greater risks. Medical assessors perceive the benefits and risks of medicines via a complex interplay of the medical situation, their personality traits and even their gender. Further research in this area is needed to determine how these potential biases are managed within the regulatory setting. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Comparison of models used for ecological risk assessment and human health risk assessment

    International Nuclear Information System (INIS)

    Ryti, R.T.; Gallegos, A.F.

    1994-01-01

    Models are used to derive action levels for site screening, or to estimate potential ecological or human health risks posed by potentially hazardous sites. At the Los Alamos National Laboratory (LANL), which is RCRA-regulated, the human-health screening action levels are based on hazardous constituents described in RCRA Subpart S and RESRAD-derived soil guidelines (based on 10 mRem/year) for radiological constituents. Also, an ecological risk screening model was developed for a former firing site, where the primary constituents include depleted uranium, beryllium and lead. Sites that fail the screening models are evaluated with site-specific human risk assessment (using RESRAD and other approaches) and a detailed ecological effect model (ECOTRAN). ECOTRAN is based on pharmacokinetics transport modeling within a multitrophic-level biological-growth dynamics model. ECOTRAN provides detailed temporal records of contaminant concentrations in biota, and annual averages of these body burdens are compared to equivalent site-specific runs of the RESRAD model. The results show that thoughtful interpretation of the results of these models must be applied before they can be used for evaluation of current risk posed by sites and the benefits of various remedial options. This presentation compares the concentrations of biological media in the RESRAD screening runs to the concentrations in ecological endpoints predicted by the ecological screening model. The assumptions and limitations of these screening models and the decision process where these are screening models are applied are discussed

  17. The Multi-factor Predictive Seis &Gis Model of Ecological, Genetical, Population Health Risk and Bio-geodynamic Processes In Geopathogenic Zones

    Science.gov (United States)

    Bondarenko, Y.

    I. Goal and Scope. Human birth rate decrease, death-rate growth and increase of mu- tagenic deviations risk take place in geopathogenic and anthropogenic hazard zones. Such zones create unfavourable conditions for reproductive process of future genera- tions. These negative trends should be considered as a protective answer of the com- plex biosocial system to the appearance of natural and anthropogenic risk factors that are unfavourable for human health. The major goals of scientific evaluation and de- crease of risk of appearance of hazardous processes on the territory of Dnipropetrovsk, along with creation of the multi-factor predictive Spirit-Energy-Information Space "SEIS" & GIS Model of ecological, genetical and population health risk in connection with dangerous bio-geodynamic processes, were: multi-factor modeling and correla- tion of natural and anthropogenic environmental changes and those of human health; determination of indicators that show the risk of destruction structures appearance on different levels of organization and functioning of the city ecosystem (geophys- ical and geochemical fields, soil, hydrosphere, atmosphere, biosphere); analysis of regularities of natural, anthropogenic, and biological rhythms' interactions. II. Meth- ods. The long spatio-temporal researches (Y. Bondarenko, 1996, 2000) have proved that the ecological, genetic and epidemiological processes are in connection with de- velopment of dangerous bio-geophysical and bio-geodynamic processes. Mathemat- ical processing of space photos, lithogeochemical and geophysical maps with use of JEIS o and ERDAS o computer systems was executed at the first stage of forma- tion of multi-layer geoinformation model "Dnipropetrovsk ARC View GIS o. The multi-factor nonlinear correlation between solar activity and cosmic ray variations, geophysical, geodynamic, geochemical, atmospheric, technological, biological, socio- economical processes and oncologic case rate frequency, general and primary

  18. Prediction of hemoglobin levels in whole blood donors: how to model donation history

    NARCIS (Netherlands)

    Baart, A.M.; Vergouwe, Y.; Atsma, F.; Moons, K.G.; Kort, W.L. de

    2014-01-01

    BACKGROUND: Recently, prediction models for hemoglobin (Hb) deferral risk have been developed. These models consider the previous Hb level plus change in Hb. Here, we investigated if the performance of models could be improved by considering more information on Hb level history. STUDY DESIGN AND

  19. New methods for fall risk prediction.

    Science.gov (United States)

    Ejupi, Andreas; Lord, Stephen R; Delbaere, Kim

    2014-09-01

    Accidental falls are the leading cause of injury-related death and hospitalization in old age, with over one-third of the older adults experiencing at least one fall or more each year. Because of limited healthcare resources, regular objective fall risk assessments are not possible in the community on a large scale. New methods for fall prediction are necessary to identify and monitor those older people at high risk of falling who would benefit from participating in falls prevention programmes. Technological advances have enabled less expensive ways to quantify physical fall risk in clinical practice and in the homes of older people. Recently, several studies have demonstrated that sensor-based fall risk assessments of postural sway, functional mobility, stepping and walking can discriminate between fallers and nonfallers. Recent research has used low-cost, portable and objective measuring instruments to assess fall risk in older people. Future use of these technologies holds promise for assessing fall risk accurately in an unobtrusive manner in clinical and daily life settings.

  20. Risk factors predicting onset and persistence of subthreshold expression of bipolar psychopathology among youth from the community.

    Science.gov (United States)

    Tijssen, M J A; Van Os, J; Wittchen, H U; Lieb, R; Beesdo, K; Wichers, Marieke

    2010-09-01

    To examine factors increasing the risk for onset and persistence of subthreshold mania and depression. In a prospective cohort community study, the association between risk factors [a family history of mood disorders, trauma, substance use, attention-deficit/hyperactivity disorder (ADHD) and temperamental/personality traits] and onset of manic/depressive symptoms was determined in 705 adolescents. The interaction between baseline risk factors and baseline symptoms in predicting 8-year follow-up symptoms was used to model the impact of risk factors on persistence. Onset of manic symptoms was associated with cannabis use and novelty seeking (NS), but NS predicted a transitory course. Onset of depressive symptoms was associated with a family history of depression. ADHD and harm avoidance (HA) were associated with persistence of depressive symptoms, while trauma and a family history of depression predicted a transitory course. Different risk factors may operate during onset and persistence of subthreshold mania and depression. The differential associations found for mania and depression dimensions suggest partly different underlying mechanisms.