WorldWideScience

Sample records for risk microwave radiation

  1. Behavioral teratologic studies using microwave radiation: is there an increased risk from exposure to cellular phones and microwave ovens?

    Science.gov (United States)

    Jensh, R P

    1997-01-01

    delayed, and there were changes in the water T-maze and open field performance levels. Several organ/body weight ratios differed from those of the control offspring. These results indicate that exposure to 6000 MHz radiation at this power density level may result in subtle long-term neurophysiologic alterations. However, in the absence of a hyperthermic state, the microwave frequencies tested, which included frequencies used in cellular phones and microwave ovens, do not induce a consistent, significant increase in reproductive risk as assessed by classical morphologic and postnatal psychophysiologic parameters.

  2. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  3. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  4. Risks of long-term effect of microwave radiation from mobile communication systems on human organism

    International Nuclear Information System (INIS)

    Chekhun, V.F.; Yakimenko, Yi.L.; Tsibulyin, O.S.; Sidorik, Je.P.; Chekhun, V.F.; Yakimenko, Yi.L.; Tsibulyin, O.S.; Sidorik, Je.P.

    2011-01-01

    It has been detected that commercial models of cell phones on the market of Ukraine sometimes emit microwaves in intensity by 1-2 orders of magnitude higher than the national safety limit for non-ionizing radiation. The survey of Ukrainian students has revealed an active usage of cell phones and a high percent of youth with the subjective feeling of physical discomfort and/or pain in head during cell phone talks. A significant time-dependent biological activity of the certain modes of low-intensity microwave radiation on the model of bird somitogenesis has been demonstrated.

  5. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... Non-Ionizing Radiation Used in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual ... can do Where to learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens ...

  6. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  7. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  8. Environmental levels of microwave radiation around a satellite earth station

    International Nuclear Information System (INIS)

    Joyner, K.H.; Bangay, M.J.

    1986-01-01

    This paper discusses the background to claims of possible adverse health effects arising from exposure to environmental levels of microwave radiation around satellite earth stations. Results of a recent survey of the environmental levels of microwave radiation around two 32 metre diameter satellite communications antennas owned and operated by the Overseas Telecommunications Commission (OTC) of Australia are presented. From the measurements obtained in this survey it can be concluded that the environmental levels of microwave radiation around the OTC and similar satellite facilities do not pose a health risk to persons in the vicinity

  9. Measurements of nonionizing radiation emitted from microwave oven

    International Nuclear Information System (INIS)

    Elnour, Yassir Elnour Osman

    2014-05-01

    There is an increase in the usage of microwave oven which is used electromagnetic radiation in the microwave range, which believed to be harmful to human health. The measurements were taken at distance of range(0-100) cm from the microwave oven. The study concluded that the risk possibility of the radiation increases at high mode. We measured the power density, magnetic field and signal strength of microwave oven using the SPECTRAN high frequency (HF-6080) detector. The experimental results of power density were found to be (3.78-208000) nW/m 2 and magnetic field is (0.001-0.744) mA/m. These values are less than the exposure limits recommended. (author)

  10. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  11. Effects of Microwave Radiation on Oil Recovery

    Science.gov (United States)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  12. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  13. Cataracts induced by microwave and ionizing radiation

    International Nuclear Information System (INIS)

    Lipman, R.M.; Tripathi, B.J.; Tripathi, R.C.

    1988-01-01

    Microwaves most commonly cause anterior and/or posterior subcapsular lenticular opacities in experimental animals and, as shown in epidemiologic studies and case reports, in human subjects. The formation of cataracts seems to be related directly to the power of the microwave and the duration of exposure. The mechanism of cataractogenesis includes deformation of heat-labile enzymes, such as glutathione peroxide, that ordinarily protect lens cell proteins and membrane lipids from oxidative damage. Oxidation of protein sulfhydryl groups and the formation of high-molecular-weight aggregates cause local variations in the orderly structure of the lens cells. An alternative mechanism is thermoelastic expansion through which pressure waves in the aqueous humor cause direct physical damage to the lens cells. Cataracts induced by ionizing radiation (e.g., X-rays and gamma rays) usually are observed in the posterior region of the lens, often in the form of a posterior subcapsular cataract. Increasing the dose of ionizing radiation causes increasing opacification of the lens, which appears after a decreasing latency period. Like cataract formation by microwaves, cataractogenesis induced by ionizing radiation is associated with damage to the lens cell membrane. Another possible mechanism is damage to lens cell DNA, with decreases in the production of protective enzymes and in sulfur-sulfur bond formation, and with altered protein concentrations. Until further definitive conclusions about the mechanisms of microwaves and ionizing radiation induced cataracts are reached, and alternative protective measures are found, one can only recommend mechanical shielding from these radiations to minimize the possibility of development of radiation-induced cataracts. 74 references

  14. Radiation protection in occupational exposure to microwave electrotherapy units

    International Nuclear Information System (INIS)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-01-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  15. Radiofrequency radiation leakage from microwave ovens

    International Nuclear Information System (INIS)

    Lahham, A.; Sharabati, A.

    2013-01-01

    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm -1 with an average value equalling 3.64 μW cm -2 . Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm -2 . The highest radiation leakage from any tested oven was ∼16.4 μW cm -2 , and found in two cases only. In no case did the leakage exceed the limit of 1 μWcm -1 recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age. (authors)

  16. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  17. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  18. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I.

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities

  19. Rapid and Decentralized Human Waste Treatment by Microwave Radiation.

    Science.gov (United States)

    Nguyen, Tu Anh; Babel, Sandhya; Boonyarattanakalin, Siwarutt; Koottatep, Thammarat

    2017-07-01

      This study evaluates the technical feasibility of using microwave radiation for the rapid treatment of human feces. Human feces of 1000 g were radiated with a commercially available household microwave oven (with rotation) at different exposure time lengths (30, 50, 60, 70, and 75 mins) and powers (600, 800, and 1000 W). Volume reduction over 90% occurred after 1000 W microwave radiation for 75 mins. Pathogen eradiation performances of six log units or more at a high range of microwave powers were achieved. Treatments with the same energy input of 1000 Wh, but at lower powers with prolonged exposure times, significantly enhanced moisture removal and volume reduction. Microwave radiation caused carbonization and resulted in a more stable end product. The energy content of the samples after microwave treatment at 1000 W and 75 mins is 3517 ± 8.85 calories/g of dried sample, and the product can also be used as compost.

  20. Biologic effects and health hazards of microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Czerski, P; Ostrowski, K; Shore, M L; Silverman, C., Suess, M.J.; Waldeskog, B

    1974-01-01

    Proceedings of an international symposium held in Warsaw, 15--18 Oct. 1973, sponsored by the World Health Organization, the U.S. Department of Health, Education and Welfare, and the Polish Scientific Council to the Minister of Health and Social Welfare are presented. It covered numerous aspects of exposure to microwave radiation. The papers more specifically relating to occupational exposure to microwaves deal with: measurement of microwave radiations, clinical manifestations, neurological findings, health status of microwave workers, blood protein disorders, effects of electromagnetic fields in densely populated areas, microwave cataract and concomitant pathology, retinal changes, assessment of lens translucency in microwave workers. A list of participants at the symposium and an author and subject index are appended.

  1. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  2. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  3. Removal of Pseudomonas aeruginosa in hospital air using microwave radiation

    Directory of Open Access Journals (Sweden)

    firouz valipour

    2013-09-01

    Conclusion: Microwave radiation with high functionality can be used to remove bacterial air pollutions. They can help to control biological agents in hospitals and medical centers with good efficiency.

  4. The influence of microwave radiation on the failure of rocks

    Directory of Open Access Journals (Sweden)

    Lovás Michal

    2000-09-01

    Full Text Available The heating and processing of materials using microwaves becomes increasingly popular for industrial applications. Compared to conventional heating, microwave processing can provide a rapid, the production of materials with unique properties, and reductions in manufacturing costs and processing times.The positive influence of the microwave radiation on the faulting of the individual rocks is described. At the heating of the heterogeneous ores, the microwaves have an selective effect for individual mineral components. Owing to the different degree of to heating and thermal dilatation the stress and destructive attendants arise, which increase the faulting of rocks. The rate of the faulting has been investigated on the basis of measurement of the elastic waves motion velocity by the impulse-dynamic method.On the basis of the measured values of elastic wave motion in the observed rocks before and after their microwave heating the coefficient of faulting was computed according to the relation (1. Subsequently, from these coefficients the rate of faulting was determined for individual rocks according to Jaeger (Table 1.Various rate of rocks faulting caused by the radiation depend on their ability to absorb microwave power. High rate of faulting was observed in rocks with strong absorption of microwave power unlike from substances which weakly absorb the radiation. Particularly, a high rate of faulting after microwave heating was observed at samples of limestone (Rožòava-Jovice and magnesite (Haèava. Low rate of faulting was obtained in the case of granodiorite (Podhradová, granite (Hnilec, sandstone (Horelica, marble (Koelga and andesite (Hubošovce.The influence of microwave energy on the rate of rocks faulting was confirmed. The new knowledge can be applied for the intensification of the rock disintegration processes.

  5. Plasma acceleration by means of microwave radiation pressure

    International Nuclear Information System (INIS)

    Fukumura, Takashi; Takamoto, Teruo

    1977-01-01

    In the electric discharge of gas with microwaves, intense reflection waves occur simultaneously with the discharge, so the plasma ionized and formed by the microwaves is accelerated due to large radiation pressure. The basic experiment made, aiming at plasma gun, is described. In the gas electric discharge, the plasma flow velocity proportional to the reflected power is obtained. For 550 W microwave input power, the plasma velocity of 1 x 10 4 m/s was obtained. The accelerated plasma is bunched; its front as mass travels, recombines and disappears. (Mori, K.)

  6. Occupational exposure to microwave radiation in diathermia units

    International Nuclear Information System (INIS)

    Martinez, M.A.; Ubeda, A.; Tellez, M.; Santa Olalla, I.

    2006-01-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  7. Occupational exposure to microwave radiation in diathermia units

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.A.; Ubeda, A. [Hospital Ramon y Cajal, Servicio de Investigacion-BEM, Madrid (Spain); Tellez, M.; Santa Olalla, I. [Hospital La Paz, Servicio de Radiofisica y Radioproteccion, Madrid (Spain)

    2006-07-01

    The present study summarizes preliminary data addressed to complete the present knowledge on the microwave (M.V.)-exposure doses and conditions in workers exposed chronically to relatively high, though nonthermal, levels of that non ionizing radiations (N.I.R.). The obtained data are of direct application to radiation protection in occupational media provided that: 1) help to detect and eradicate practices and situations that result in overexposure; 2) they constitute a basis for the design and development of strategies for exposure control and minimization, and 3) they represent a dosimetric support necessary to properly interpret past and future epidemiologic and experimental data on potential health effects of chronic exposures to M.W. radiation at work. The described results will be extended through additional dosimetric recordings in other hospitals. The dosimetric data will be compared to the results of questionnaires among the electro-therapists working at the units studied. The objective is to identify potential relationships between exposure doses and specific diseases or level of risk perception among the investigated professional group. (authors)

  8. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  9. Effect of microwave radiation on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ozbayoglu, G.; Depci, T.; Ataman, N. [Middle East Technical University, Ankara (Turkey). Mining Engineering Department

    2009-07-01

    Most low-rank coals are high in moisture and acid functional groups, therefore showing poor floatability. Drying, which removes the water molecules trapped in the pores and adsorbed at the surface of coal, decreases the hydrophilic character and improves the floatability. Microwave heating, whose simplest application is drying, was applied at 0.9 kW power level for 60 sec exposure time in the experiments to decrease the moisture content of coal in order to enhance the hydrophobicity. The flotation tests of microwave-treated coal by using heptanol and octanol lead to a higher flotation yield and ash removal than original coal.

  10. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  11. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  12. Diagnostic radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, T [Addenbrooke' s Hospital, Cambridge (UK)

    1980-04-01

    A brief discussion on diagnostic radiation risks is given. First some fundamental facts on the concepts and units of radiation measurement are clarified. Medical diagnostic radiation doses are also compared to the radiation doses received annually by man from natural background radiation. The controversy concerning the '10-day rule' in X-raying women of child-bearing age is discussed; it would appear that the risk of malformation in an unborn child due to X-radiation is very much less than the natural level of risk of malformation. The differences in the radiographic techniques and thus the different X-ray doses needed to make adequate X-ray images of different parts of the body are considered. The radiation burden of nuclear medicine investigations compared to X-ray procedures is also discussed. Finally, the problems of using volunteers in radiation research are aired.

  13. Hopping Conductivity Enhanced by Microwave Radiation

    International Nuclear Information System (INIS)

    Ovadyahu, Z

    2012-01-01

    Hopping conductivity is enhanced when exposed to microwave (MW) fields. Data taken on several Anderson-localized systems and granular-aluminium are presented to illustrate the generality of the phenomenon. It is suggested that the effect is due to a field-enhanced hopping, which is the ac version of a non-ohmic effect familiar from studies in the dc transport regime.

  14. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis and ovary of Sprague Dawley rats was ... Microwave (MW) radiation is a non-ionizing electromagnetic radiation ..... microwave field and not in any way related to indirect.

  15. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  16. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  17. Angular anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1982-01-01

    The theory of fluctuations in the cosmic microwave background radiation is reviewed. Anisotropy on large-scale (dipole and quadrupole) and on small scales is discussed. The smoothing effects of secondary ionization (fractional ionization x) are found to be unimportant over an angular scale greater than approx.= 5(OMEGAx)sup(1/3) degrees. (author)

  18. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  19. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  20. Microwave radiative transfer intercomparison study for 3-D dichroic media

    International Nuclear Information System (INIS)

    Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C.

    2007-01-01

    Three different numerical methods capable of solving the radiative transfer of microwave radiation within 3-D dichroic media are compared. A case study, represented by an intense rain shaft populated by perfectly oriented oblate raindrops, is analysed in detail, including a discussion of the behaviour of all four Stokes components. Results demonstrate an acceptable agreement between all Monte Carlo methods. The method based on a discrete ordinates scheme agrees only qualitatively with the Monte Carlo outputs. Because of its lower computational cost the backward Monte Carlo technique based on importance sampling represents the most efficient way to face passive microwave radiative transfer problems related to optically thick 3-D structured clouds including non-spherical preferentially oriented hydrometeors

  1. Risks for radiation workers

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The following topics are discussed: recommendations of the International Commission on Radiological Protection; methods for determining dose limits to workers; use of data from survivors of Hiroshima and Nagasaki for estimating risk factors; use of data from survivors of nuclear explosions in Marshall Islands, uranium miners, and patients exposed to diagnostic and therapeutic radiation; risk factors for radioinduced malignancies; evidence that risk factors for persons exposed to partial-body radiation and Japanese survivors are too low; greater resistance of A-bomb survivors to radiation; and radiation doses received by U.K. medical workers and by U.K. fuel reprocessing workers. It is suggested that the dose limit for radiation workers should be reduced by a factor of 5

  2. Radiation risks in pregnancy

    International Nuclear Information System (INIS)

    Mossman, K.L.; Hill, L.T.

    1982-01-01

    A major contraindication of radiodiagnostic procedures is pregnancy. Approximately 1% of all pregnant women are given abdominal x-rays during the first trimester of pregnancy. Evaluation of radiation exposure should involve consideration of the types of examinations performed and when performed, as well as radiation dose and risk estimation. This information is then weighed against other possible risks of the pregnancy as well as personal factors. In the authors' experiences, radiation exposures usually result in doses to the embryo of less than 5 cGy (rad); the resulting radiation risks are usually small compared with other risks of pregnancy. Procedures to minimize diagnostic x-ray exposure of the fetus are also discussed

  3. Radiation risk estimation

    International Nuclear Information System (INIS)

    Schull, W.J.; Texas Univ., Houston, TX

    1992-01-01

    Estimation of the risk of cancer following exposure to ionizing radiation remains largely empirical, and models used to adduce risk incorporate few, if any, of the advances in molecular biology of a past decade or so. These facts compromise the estimation risk where the epidemiological data are weakest, namely, at low doses and dose rates. Without a better understanding of the molecular and cellular events ionizing radiation initiates or promotes, it seems unlikely that this situation will improve. Nor will the situation improve without further attention to the identification and quantitative estimation of the effects of those host and environmental factors that enhance or attenuate risk. (author)

  4. On the cosmic microwave background radiation

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-12-01

    Full Text Available In this article we will try to give a pale idea to the reader of what could be the Cosmic Microwave Background (RCFM that, according to the traditional Big Bang model, was generated by a primordial explosion. With this purpose we find it very important to present a brief historical summary of how the Microcosm, based on the Standard Model of Elementary Particle Physics (MPPE, and the Macrocosm, based on the Standard Big Bang Model (MPBB, have evolved over time. In addition, in the final part of the article we will analyze the two physical processes presented in the literature that seek to explain the RCFM: Bariogenesis and Plasma Quark-Gluon.

  5. Perception of radiation risks

    International Nuclear Information System (INIS)

    Brenot, J.

    1992-01-01

    Perception of risks by people depends on many factors, either characterizing the individuals, or specific to the risk sources. The risk concept, which confuses the issue, is precised first. Second, the perception phenomenon is presented as an interactive process involving the individual, the hazard, and the social context. Third, dimensions of perception are listed and used to describe the perception of radiation risks. Finally, the relation between perception and attitude is clarified. (author) 50 refs

  6. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  7. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  8. Effects of microwave radiation on peripheral lymphocyte subpopulations in rats

    Directory of Open Access Journals (Sweden)

    Jin-ling YIN

    2011-10-01

    Full Text Available Objective To investigate the effects and mechanisms of microwave radiation on peripheral lymphocyte subpopulations in Wistar rats.Methods A total of 100 Wistar rats(180-220g were exposed to microwave with different average power densities of 5,10,30 and 60 mW/cm2,and sham exposure of 0mW/cm2 was performed in a control group at the same time.At day 1,7,14 and 28 after microwave irradiation,the changes in peripheral CD3+,CD4+,CD8+ T cells,ratio of CD4+/CD8+ and CD45RA+ B lymphocyte in rats were analyzed by flow cytometry(FCM.Results The CD3+ T cells decreased significantly in 10-30mW/cm2 groups at day 7 and in 5-30 mW/cm2 groups at day 14 after radiation as compared with control group(P < 0.05,and CD4+ T cells decreased significantly in 10mW/cm2 group at day 14 after radiation as compared with control group(P < 0.01.From day 1 to day 14 after radiation,CD8+ T cells showed a reduction in number in all irradiated groups when compared with the control,but statistical significance was only found in the 30mW/cm2 group(P < 0.05.The CD4+/CD8+ ratio increased in 5mW/cm2 group on day 1,while decreased significantly in 5-30mW/cm2 groups on day 14 after radiation as compared with control group(P < 0.05.After microwave exposure,however,CD45RA+ B cells in 30mW/cm2 group at day 1 and in 30-60mW/cm2 groups at day 14 after radiation increased significantly in a dose-dependent manner.Conclusion A definite dosage of microwave radiation,ranging from 5-60mW/cm2,may induce changes in subpopulations of peripheral lymphocytes and cause acute immune function impairment in rats.

  9. Radiation and risk

    International Nuclear Information System (INIS)

    Jacobi, W.

    1983-01-01

    From the beginnings of the peaceful utilization of nuclear energy, the principles of prevention and optimization have greatly limited the emission of radioactive substances. In this way, the radiation exposure associated with emissions from nuclear power plants during normal operation has been kept low compared with natural radiation exposure and its variance. This also applies to the local public in the vicinities of such plants. The present health hazard to the public arising from ionizing radiation is only a small fraction of the man-made risk to which the public is exposed in this country. This is also due to the fact that radiation protection employs the principle of prevention, which has been laid down in legal regulations. In this respect, the concepts and criteria developed in radiation protection for evaluation, limitation and optimization may be useful examples to other areas of safety at work and environmental protection. The acceptance of nuclear power is decisively influenced by the remaining residual risk of accidents. Extremely careful inspection and supervision of the technical safety of such plants is indispensable to prevent major accidents. The German Risk Study for Nuclear Power Plants has made an important contribution to this end. It is being continued. However, risk research must always be accompanied by risk comparison to allow numerical risk data to be evaluated properly and important features to be distinguished from unimportant ones. (orig.) [de

  10. Management of radiation risk

    International Nuclear Information System (INIS)

    Hubert, P.

    1996-01-01

    The need to control the risk from ionizing radiation can be tracked back to the eve of the twentieth century. However, as knowledge improved and practices expanded, the approaches to this control have evolved. No longer is the mere respect of some forms of exposure limits or safety related standards sufficient. Rather, it is widely admitted that there is a need for managing radiation risk, both by balancing the advantages and disadvantages of enhancing protection and by setting up a proper organization that allows handling of the risk. This paper describes the multiple aspects of radiation risk management and points out the main related issues. It critically analyzes ALARA and ICRP recommendations. 74 refs, 8 figs, 5 tabs

  11. Could unstable relic particles distort the microwave background radiation?

    International Nuclear Information System (INIS)

    Dar, A.; Loeb, A.; Nussinov, S.

    1989-01-01

    Three general classes of possible scenarios for the recently reported distortion of the microwave background radiation (MBR) via decaying relic weakly interacting particles are analyzed. The analysis shows that such particles could not reheat the universe and cause the spectral distortion of the MBR. Gravitational processes such as the early formation of massive black holes may still be plausible energy sources for producing the reported spectral distortion of the MBR at an early cosmological epoch. 24 references

  12. Cytogenetic monitoring of personnel occupationally exposed to microwave radiation of GEM radar

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, Vera; Gajski, Goran; Brumen, Vlatka

    2008-01-01

    In the present study we analyzed and followed-up on the DNA damaging effects of microwave radiation of GEM radar equipment within microwave field of 10 μW/cm 2 to 10 mW/cm 2 in personnel occupationally exposed to frequency range of 1.5 GHz to 10.9 GHz. The single cell gel electrophoresis (SCGE)/comet assay as a tool for the bio monitoring of individuals accidentally, environmentally or occupationally exposed to physical or chemical agents was used to evaluate possible genotoxic effect on peripheral human blood lymphocytes. The comet assay is a method that allows efficient determination of single strand breaks (SSB) and double-strand breaks (DSB), as well as alkali-labile sites in the DNA of single cells. The comet assay was carried out under alkaline conditions. We measured the baseline comet assay effect in whole blood samples. Parameter of the comet assay was studied in workers occupationally exposed to microwave radiation of GEM radar and in corresponding unexposed control subjects. It was found that in the subjects who were occupationally exposed to microwave radiation, the levels of DNA damage increased compare to control group and showed interindividual variations. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of exposed group was 13.54±1.44 as opposed to control mean value that was 13.15±1.39. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). The results of this study indicate that individuals occupationally exposed to microwave frequency of GEM radar equipment may experience an increased genotoxic risk, emphasizing the importance of individual bio monitoring, limiting exposure and radiation safety programs. (author)

  13. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  14. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Science.gov (United States)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  15. The Effect of 2.45 GHz Microwave Radiation on Brain Cell Apoptosis in Sprague Dawley Rats

    International Nuclear Information System (INIS)

    Wan Saffiey Wan Abdullah; Rozaimah Abdul Rahim; Zulkifli Yusof

    2016-01-01

    Microwave radiation is a part of non-ionizing electromagnetic radiations present in the environment and is now being perceived as health risks. The study was performed to investigate the effect of 2.45 GHz microwave radiation on brain cell apoptosis in Sprague Dawley rat. In the research done, 32 Sprague Dawley rat were used and divided into four groups; control group, G1 (1 month exposure), G2 (2 months exposure) and G3 (3 months exposure). The presence of apoptotic activity in control group was compared molecularly with exposed group through DNA ladder test. Each exposed group were irradiated in GTEM cell at frequency of 2.45 GHz located at RF/ MW laboratory. There was presence of necrotic instead of apoptotic activity in brain cell and increase in weight of Sprague Dawley rat. Therefore the effect of 2.45GHz microwave radiation shown no presence of apoptosis and increase in weight of Sprague Dawley rat. (author)

  16. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    Robinette, C.D.; Silverman, C.; Jablon, S.

    1980-01-01

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  17. Radiation risk estimation

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1981-11-01

    This report outlines the major publications between 1976 and 1981 that have contributed to the evolution of the way in which radiation risks (cancer and hereditary birth defects) are assessed. The publications include the latest findings of the UNSCEAR, BEIR and ICRP committees, epidemiological studies at low doses and new assessments of the doses received by the Japanese A-bomb survivors. This report is not a detailed critique of those publications, but it highlights the impact of their findings on risk assessment

  18. SMRT: A new, modular snow microwave radiative transfer model

    Science.gov (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  19. Generalized Chaplygin gas and cosmic microwave background radiation constraints

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2003-01-01

    We study the dependence of the location of the cosmic microwave background radiation peaks on the parameters of the generalized Chaplygin gas model, whose equation of state is given by p=-A/ρ α , where A is a positive constant and 0<α≤1. We find, in particular, that observational data arising from Archeops, BOOMERANG, supernova and high-redshift observations allow constraining significantly the parameter space of the model. Our analysis indicates that the emerging model is clearly distinguishable from the α=1 Chaplygin case and the ΛCDM model

  20. Engineering squeezed states of microwave radiation with circuit quantum electrodynamics

    International Nuclear Information System (INIS)

    Li Pengbo; Li Fuli

    2011-01-01

    We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.

  1. Radiation risks in perspective

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1987-01-01

    The problem of risk assessment is greater at the low effective dose rates now observed in the majority of all forms of exposure, usually of less than 3 mSv per year from natural causes, from occupational exposure, and from exposure of 'critical groups' of the general public. For most populations there are particular problems also in epidemiological studies at low dose, in addition to those due to the very large numbers of person-years that need to be studied and the long latencies of most radiation effects. Adequate estimates can, however, now be made of the carcinogenic risk of exposure at higher dose of various organs selectively and of the whole body uniformly, and of modes of inference to the risk at lower dose. Estimates can also be made of the risks of inducing major types of inheritable and developmental abnormality. An essential step in viewing the sum of all such radiation risks in the perspective of other occupational and public risks must now be to develop an informed consensus on the relative weight that is regarded as attaching to hazards of different kind and severity. (author)

  2. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  3. Genetic risks from radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    Two widely-recognized committees, UNSCEAR and BEIR, have reevaluated their estimates of genetic risks from radiation. Their estimates for gene mutations are based on two different approaches, one being the doubling-dose approach and the other being a new direct approach based on an empirical determination of the amount of dominant induced damage in the skeletons of mice in the first generation following irradiation. The estimates made by these committees are in reasonably good agreement and suggest that the genetic risks from present exposures resultng from nuclear power production are small. There is room for much improvement in the reliability of the risk estimates. The relatively new approach of measuring the amount of induced damage to the mouse skeleton shows great promise of improving knowledge about how changes in the mutation frequency affect the incidence of genetic disorders. Such findings may have considerable influence on genetic risk estimates for radiation and on the development of risk estimates for other less-well-understood environmental mutagens. (author)

  4. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    OBEMBE

    The genotoxic effects of 2.45 GHz microwave (MW) radiation on the testis ... electromagnetic radiation present in the environment and ..... intrinsic (quantum) energy is too low to dislodge an .... wave on brain enzymes of developing rat brain.

  5. The local contribution to the microwave background radiation

    International Nuclear Information System (INIS)

    Pecker, Jean-Claude; Narlikar, Jayant V.; Ochsenbein, Francois; Wickramasinghe, Chandra

    2015-01-01

    The observed microwave background radiation (MBR) is commonly interpreted as the relic of an early hot universe, and its observed features (spectrum and anisotropy) are explained in terms of properties of the early universe. Here we describe a complementary, even possibly alternative, interpretation of MBR, first proposed in the early 20 th century, and adapt it to modern observations. For example, the stellar Hipparcos data show that the energy density of starlight from the Milky Way, if suitably thermalized, yields a temperature of ∼2.81 K. This and other arguments given here strongly suggest that the origin of MBR may lie, at least in a very large part, in re-radiation of thermalized galactic starlight. The strengths and weaknesses of this alternative radical explanation are discussed. (paper)

  6. BIOLOGICAL EFFECTS OF MICROWAVE RADIATION ON BRAIN TISSUE IN RATS

    Directory of Open Access Journals (Sweden)

    Boris Đinđić

    2003-04-01

    Full Text Available Exposure to microwave radiation induces multiple organ dysfunctions, especially in CNS.The aim of this work was investigation of biological effects of microwave radiation on rats' brain and determination of increased oxidative stress as a possible pathogenetic's mechanism.Wis tar rats 3 months old were divided in experimental (4 female and 4 male animal and control group (5 female and 4 male. This experimental group was constantly exposed to a magnetic field of 5 mG. We simulated using of mobile phones 30 min every day. The source of NIR emitted MF that was similar to mobile phones at 900 MHz. The rats were killed after 2 months. Biological effects were determined by observation of individual and collective behavior and body mass changes. Lipid per oxidation was determined by measuring quantity of malondialdehyde (MDA in brain homogenate.The animals in experimental group exposed to EMF showed les weight gain. The most important observations were changing of basic behavior models and expression of aggressive or panic behavior. The content of MDA in brain tissue is singificantly higher (1.42 times in rats exposed to electromagnetic fields (3,82±0.65 vs. control 2.69±0.42 nmol/mg proteins, p<0.01.Increased oxidative stress and lipid peroxidation after exposition in EM fields induced disorders of function and structure of brain.

  7. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.

    1988-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix [de

  8. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  9. Radiation and health. Benefit and risks

    International Nuclear Information System (INIS)

    Kiefer, Juergen

    2012-01-01

    The book on radiation and health covers the following topics: The world of radiation and waves; a sight into biology; if radiation hits the body; a sight into the internal radiation diagnostics; radiation hazards; the not always beloved sun; mobile phones, microwave ovens and power poles; healing with and due to radiation; radiation and food; radiation in the environment; generation and interactions of radiation in more detail; radiation effects in the cell - closer insight; radiation doses and measurement; epidemiology and its pitfalls; the system of radiation protection radiation accidents.

  10. Risk Factors: Radiation

    Science.gov (United States)

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  11. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  12. Interaction of ultrahigh energy cosmic rays with microwave background radiation

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Kanevskij, B.L.; Vardanyan, V.V.

    1989-01-01

    The formation of the bump and black-body cutoff in the cosmic-ray (CR) spectrum arising from the π-meson photoproduction reaction in collisions of CR protons with the microwave background radiation (MBR) photons is studied. A kinetic equation which describes CR proton propagation in MBR with account of a catastrophic of the π-meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with spectrum obtained under assumption of continuous energy loss approximation. However spectra from local sources especially for the times of propagation t>10 9 years differ noticeably from those obtained in the continuous loss approximation. 24 refs.; 5 figs

  13. On the anisotropies of cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Molnar, Z.

    1996-01-01

    The work gives a brief overview of the topic of cosmic microwave background radiation anisotropies. Then is deals with the so-called Rees-Sciama affect; i.e. with the anisotropies arising between the last scattering surface and us due to transparent huge irregularities. Using the formulas of Special Theory of Relativity it is proven that in the neighbourhood of expanding spherical body the Meszaros calculation (Meszaros 1994) are correct; the inaccuracy is maximally of order 10 -12 . Then the profile of the blue shift of expansion caused by an expanding sphere is calculated for the case, when the radius of this sphere is much smaller that the relevant Hubble radius. Hence the profiles of the shifts of light periods through a void and through a supercluster are given in the most general cases. These cases contain all the three Friedmannian models and both the synchronous and asynchronous clusters. Then the obtained profiles are explicitly decomposed into the sum of the multipole terms, and it is shown that the observed difference between the measured direction of the maximum of dipole anisotropy of cosmic microwave background radiation and the result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect. This means that no alternative exists to the two possibilities for the explanation of the data of Lauer and Postman; either the either the huge system of Abell clusters is streaming, or the Friedmannian model is queried. The third possibility is, of course, that the data of observations of Lauer and Postman are incorrect. However, any of these three possibilities seem to be strange enough; hence, the problems coming from data of Lauer and Postman further holds. This is the key result of paper. As a further technical result it is also shown that in principle there is no upper limit of Rees-Sciama effect. (author)

  14. RADIOFREQUENCY AND MICROWAVE RADIATION HEALTH EFFECTS AND OCCUPATIONAL EXPOSURE

    Directory of Open Access Journals (Sweden)

    Ivana Damnjanović

    2011-12-01

    Full Text Available In the recent years, there have been considerable discussion and concern about the possible hazards of RF/MW radiation. More recently, the growth and development in personal mobile communications have focused attention on the frequencies associated with this technology. A number of studies have examined the health effects of RF/MW electromagnetic fields (EMFs, originating from occupational exposure, hobbies, or residence near the radio or television transmitters. Particularly controversial are the biophysical mechanisms by which these RF fields may affect biological systems. General health effects reviews explore possible carcinogenic, reproductive and neurological effects. Health effects by exposure source have been observed in radar traffic devices, wireless communications with cellular phones, radio transmission, and magnetic resonance imaging (MRI. Several epidemiological surveys have suggested associations with non-specific complaints such as headache, tiredness, sleep disturbance, loss of memory, and dizziness. These findings, which echo reports of illness associated with other types of radiofrequency (RF radiation, relate not only to the use of mobile phones, but also to residence near the mobile phone base stations and other settings involving occupational exposure. The biological effects suggest that some precautions are necessary, and preventive approaches are highly recommended. Further researches are required to give more information about the effects of microwave radiation on our health, especially in occupational setting and professionally exposed workers.

  15. The Local Contribution to the Microwave Background Radiation(MBR)

    Science.gov (United States)

    Narlikar, Jayant V.; Pecker, Jean-Claude; Wickramasinghe, N. Ch.

    2010-11-01

    In the early fifties, from the early theories of the big bang universe, Gamow, Alpher & Herman have predicted the existence of a "cosmological" microwave background radiation, corresponding to a black body of a few Kelvins. When, in 1964, Penzias & Wilson, observed a radiation at 2.7K, the scientific world concluded quickly it was a proof, a final proof, of the big bang type cosmologies. But it should be realized that, in the beginning of the XX-th century, several authors, from Guillaume to Eddington, have predicted the same thing in a static Universe. We have redone the calculations of Eddington, and based them on the recent and very accurate photometric results from the satellite Hipparcos. In the absence of any expansion, of any big bang type behaviour, we compute the local temperature induced by the reradiation by local matter of stellar radiation, and we found it to be in excellent agreement with the observations. This result, completed by a careful discussion, could lead to a dramatic revision of the classical cosmological concepts.

  16. The risks of radiation

    Science.gov (United States)

    Miettenen, Jorma K.

    1988-01-01

    The risks of radioactivity are a really complicated matter, yet they are much better known than are the risks relating to thousands of chemical poisons that occur in our environment. The greatest mistakes are probably made in the definition of safety margins. Except for the bombs dropped in Japan and one other case in the Marshall Islands, there has always—luckily—been a wide safety margin between fallout radiation and doses dangerous to health; the margin has actually been about 1000-fold. The Chernobyl dose of 0.5 mGy/year that we received is only 1/1000 of the acute dose of 0.5 Gy which would cause a slight and nonpermanent change in the blood picture. There is no such safety margin with respect to many air pollutants. The safety standards for sulfuric or nitric oxides, ozone and so on, have been set only just below the level that already causes a health hazard, and these standards are exceeded once in a while. Otherwise, traffic would have to be forbidden and many industrial plants, especially power stations using coal, would have to stop working whenever a low-temperature inversion occurred. Environmental radioactivity does not represent a likely health risk in Finland unless a nuclear war breaks out. Air pollutants, on the contrary, are a real and almost daily health risk that should be carefully considered when decisions about our energy production are being made. In spite of what happened at Chernobyl, global consumption of nuclear power will double by the year 2000, since there are about 140 nuclear power plants presently under construction. It is not likely that another catastrophe like Chernobyl will happen, yet nuclear plant accidents are of course possible, even if their likelihood is diminished by improving reactor safety and even if any eventual damage could be expected to be smaller. If a reactor is hooded by a containment structure, no significant release of radioactive materials should be possible even in case of an accident. However, we must

  17. The Usefulness Cytogenetic Biomarkers in Assessment of Occupational Exposure to Microwave Radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    technique based on the selection of individual cells in a heterogeneous cell population on the basis of nuclear morphology and shape of comets makes it suitable for rapid and sensitive in vivo human biomonitoring. Enumeration of MN provides an index of chromosome loss from the main nuclei indicating clastogenic and aneugenic impacts. On the other hand, chromatid breakage assay (bleomycin sensitivity test) seems to be a useful tool in predicting individual risk of cancer. All methods employed in the present study provide powerful techniques for successful biomonitoring of populations occupationally exposed to microwave radiation. (author)

  18. Radiation exposures: risks and realities

    International Nuclear Information System (INIS)

    Ganesh, G.

    2010-01-01

    Discovery of radioactivity in 1869 by Henry Becquerel and artificial radioactivity by Irene Curie in 1934 led to the development of nuclear field and nuclear materials in 20th century. They are widely used for man-kind across the globe in electricity production, carbon dating, treatment and diagnosis of diseases etc. While deriving benefits and utilizing nuclear resources for the benefit of man-kind, it is inevitable that exposure to radiation can not be avoided. Radiation exists all around us either natural or man-made which can not be totally eliminated or avoided. Radiation exposures from natural background contribute 2.4 to 3.6 mSv in a year. Radiation exposures incurred by a member of public due to nuclear industries constitute less than one hundredth of annual dose due to natural background. Hence it is important to understand the risk posed by radiation and comparison of radiation risk with various risks arising due to other sources. Studies have indicated that risks due to environmental pollution, cigarette smoking, alcohol consumption, heart diseases are far higher in magnitude compared to radiation risks from man made sources. This paper brings about the details and awareness regarding radiation exposures, radiation risk, various risks associated with other industries and benefits of radiation exposures. (author)

  19. Radiation risk and radiation protection concepts

    International Nuclear Information System (INIS)

    Doerschel, B.

    1989-01-01

    The revised dosimetry for the survivors of Hiroshima and Nagasaki implies an increased risk from low LET radiation compared with that currently used. During its meeting in 1987 the ICRP stated that the new data at present do not require any change in the dose limits. However, two other factors can cause larger changes in the present risk estimates. Firstly, for some types of cancer the relative risk model seems to describe the observed data better than the absolute risk model currently used by the ICRP. Secondly, the shape of the dose-response relationship considerably influences the derived risks. In the present paper the factor causing a substantial increase in radiation risk are analyzed. Conclusions are drawn in how far a change in the currently recommended dose limits seems to be necessary. (author)

  20. Calculating Risk: Radiation and Chernobyl.

    Science.gov (United States)

    Gale, Robert Peter

    1987-01-01

    Considers who is at risk in a disaster such as Chernobyl. Assesses the difficulty in translating information regarding radiation to the public and in determining the acceptability of technological risks. (NKA)

  1. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian

    2011-01-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10 12 W cm -2 normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10 -8 . The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  2. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Li Jun; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-05-01

    The microwave radiation mechanism in a Cu-based foil target irradiated by an intense laser pulse has been investigated. Microwave emission in the frequency range 0.5-4 GHz has been observed from a 200 ps laser pulse of intensity about 10{sup 12} W cm{sup -2} normally incident on the target surface. The total microwave power and energy emitted from the interaction were found to be about 0.4 W and 2 nJ, respectively, corresponding to an efficiency of coupling laser energy to microwave energy of 2x10{sup -8}. The result agrees well with quadrupole radiation calculated based on a circuit model of a laser plasma, which indicates that the radiative process can be explained by magnetic dipole or electric quadrupole radiation from the laser-produced symmetric poloidal current distribution at the plasma-target interface.

  3. Radiation protection in occupational exposure to microwave electrotherapy units; Proteccion radiologica en exposicion ocupacional a microondas en unidades de electroterapia

    Energy Technology Data Exchange (ETDEWEB)

    Guardia, V.; Ferrer, S.; Alonso, O.; Almonacid, M.

    2012-07-01

    During the last years, electromagnetic emitters are more and more commonly used for therapeutic treatments in electrotherapy centers. This extended use has caused worries workers, who believe that microwave radiation radiation might have effects similar to those induced by radioactivity, even if the only effects recognised by international regulatory bodies concerning microwave exposure of humans are those of thermal origin. The present study aims to answer the existing concerns about electromagnetic exposure in electrotherapy facilities. After monitoring environmental values in an electrotherapy facility, we conclude that actions must be undertaken in order to reduce the exposure levels, as proposed by the current European guidelines, which should become legally binding for all EU state members within the current year. With the purpose of reducing potential risks of occupational overexposure, we are developing innovative fabrics for microwave shielding. These new materials are able to attenuate 85% of the microwave radiation. As these are light materials, they can be used in all kind of facilities, as wall covers, movable screens or even as personal protection, like lab clothes or gloves. (Author) 6 refs.

  4. Does radiation risk exist?

    International Nuclear Information System (INIS)

    Passchier, W.

    1996-01-01

    Risk assessment and risk management are parts of a dynamic process with the objective to decide on the tolerability of risk and on measures to keep risk within accepted limits. It enables all relevant parties to express their concerns and preferences regarding the different options for the human action involved and regarding the relative importance of criteria to decide on the tolerability of risk. Risk assessment has three phases; problem definition, risk analysis and risk characterization. Risk analysis is primarily a technical and scientific endeavour. With regard to problem definition and ride characterization consultation between risk assessors and risk managers (and other parties concerned) is a must. (author)

  5. Perception of risk from radiation

    International Nuclear Information System (INIS)

    Slovic, P.

    1996-01-01

    Perceptions of risk from radiation have been studied systematically for about 20 years. This paper summarises the key findings and conclusions from this research with regard to the nature of risk perceptions, the impacts of these perceptions, and the need for communication about radiological hazards. Perhaps the most important generalisation from research in this area is that there is no uniform or consistent perception of radiation risks. Public perception and acceptance is determined by the context in which the radiation is used -and the very different reactions to different uses provide insight into the nature of perception and the determinants of acceptable risk. (author)

  6. Ionizing radiation: benefits vs. risks

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.

    1986-01-01

    No one has been identifiably injured by radiation within the levels set by the NCRP and ICRP in 1934. This fact and the level of natural radiation (average dose 102 millirems/year) help provide standards against which the authors can view the relative increases in exposure from manmade sources of radiation. Because one person in five in the US will die of cancer from all causes, it is impossible to detect small increases in some types of cancer from radiation. A valid assumption is that any exposure to radiation carries some possibility of harm and should be kept below the level of the expected benefits. More is known about radiation toxicity than about any other potentially toxic substances. An obstacle to progress in the use of radioactive materials in biology and medicine is an exaggerated impression by the public of the risk of radiation. Several studies indicate that the public perceives the risk of radiation to be the greatest of all societal risks and at times does not distinguish peaceful from military uses of radiation. It behooves scientists and physicians to inform the public about the benefits as well as the risks of procedures involving radiation

  7. Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-05-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W). The perforation was evaluated using different techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The results of the oxidation of carbonaceous materials indicated that the relative amount of oxygen functional groups increased without total oxidation of carbon up to 60 s. After 60 s, the amount of functional groups decreased as the total oxidation started suddenly. Afterwards, at around 120 and 420 s, the oxidation of Ag-decorated CNTAs reached the point of total perforation and total cutting, respectively. Though carbon decomposition terminated at around 420 s, the total pore volume and surface area increased continuously. This was attributed to the steady growth of Ag nanoparticles located between CNTAs.

  8. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  9. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  10. Radiation risks and other risks

    International Nuclear Information System (INIS)

    Jansweyer, C.J.M.

    1981-01-01

    The differences in acceptance of risks of different nature (industrial, in the home, on the road, use of drugs, alcohol, tobacco, coffee or other food stuffs) by the public are compared on the basis of life expectancy values of different categories of people. The safety of radiologic work for both personnel and patients is considered in connection with the basic principles underlying the ICRP recommendations. A computation of the effective body dose equivalent for a mean medical X-ray examination and a nuclear in vivo examination is given. (Auth.)

  11. [Level of microwave radiation from mobile phone base stations built in residential districts].

    Science.gov (United States)

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  12. Loads due to stray microwave radiation in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Johan W. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Eindhoven University of Technology, P.O. Box 513, 5600 AZ Eindhoven (Netherlands); Udintsev, Victor S.; Gandini, Franco [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Hirsch, Matthias; Laqua, Heinrich P. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, D-17489 Greifswald (Germany); Maassen, Nick [Eindhoven University of Technology, P.O. Box 513, 5600 AZ Eindhoven (Netherlands); Ma, Yunxing; Polevoi, Alexei; Sirinelli, Antoine; Vayakis, George; Walsh, Mike J. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    High-power microwaves generated by gyrotrons will be extensively used in ITER for a variety of purposes such as assisting plasma breakdown, plasma heating, current drive, tearing mode suppression and as a probing beam for the Collective Thomson Scattering diagnostic. In a number of these schemes absorption of the microwaves by the plasma will not be full and in some cases there could be no absorption at all. This may result in a directed beam with a high microwave power flux or – depending on location and plasma conditions – an approximately isotropic microwave power field. The contribution of electron cyclotron emission to these power densities is briefly discussed. Exposure to in-vessel components leads to absorption by metals and ceramics. In this paper microwave power densities are estimated and, following a brief review of absorption, thermal loads on in-vessel components are assessed. The paper is concluded by a discussion of the current approach to control such loads.

  13. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  14. Space Radiation Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Project A: Integration and Review: A review of current knowledge from space radiation physics was accepted for publication in Reviews of Modern Physics (Durante and...

  15. Occupational radiation risk to radiologists

    International Nuclear Information System (INIS)

    Schuettmann, W.

    1981-01-01

    A review is given of the most important publications dealing with attempts to estimate the occupational radiation risk to radiologists by comparing data on their mortality from leukemia and other forms of cancer with respective data for other physicians who were not occupationally exposed to ionizing radiation. (author)

  16. Radiation risk education program - local

    International Nuclear Information System (INIS)

    Bushong, S.C.; Archer, B.R.

    1980-01-01

    This article points out the lack of knowledge by the general public and medical profession concerning the true risks of radiation exposure. The author describes an educational program which can be implemented at the local level to overcome this deficiency. The public must understand the enormous extent of benefit derived from radiation applications in our society

  17. Cancer risks after radiation exposures

    International Nuclear Information System (INIS)

    Voelz, G.L.

    1980-01-01

    A general overview of the effects of ionizing radiation on cancer induction is presented. The relationship between the degree of risk and absorbed dose is examined. Mortality from radiation-induced cancer in the US is estimated and percentages attributable to various sources are given

  18. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    Science.gov (United States)

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  20. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  1. Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction

    Directory of Open Access Journals (Sweden)

    Yu.D. Ivanov

    2016-03-01

    Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.

  2. Effect of Gamma Radiation and Microwave Cooking on Aeromonas Hydrophila in Bolti Fish Fillet

    International Nuclear Information System (INIS)

    Mohamad, W.S.; Megahed, A.A.; El-Ghaiaty, H.A.; Hafez, T.A.

    2016-01-01

    The objective of this study is to determine the bactericidal effect of gamma and microwave radiation on Aeromonas hydrophila inoculated in fish fillets. The study revealed that treatment of fish fillets with a dose of 1 kGy gamma radiation reduced the population of A.hydrophila by 104 cfu/g, while the dose of 2 and 3 kGy completely eliminated the microorganism. Treatment of fish fillets with microwave cooking for 1 and 2 minutes completely eliminated the microorganism. The physical examination of fish after gamma radiation treatment revealed that the used doses had no significant changes on fish fillets. The changes in protein profile (amino acids %) depended on radiation dose and period of cooking in microwave alongside controls while the total protein content was not affected.

  3. Radiation risks revisited

    International Nuclear Information System (INIS)

    Ackland, L.

    1993-01-01

    The Stewart team's findings are based on previously restricted Hanford data that the U.S. Dept. of Energy began releasing in 1990 to settle a lawsuit filed by the Three Mile Island Public Health Fund. The records include those of the 7,342 workers who died before 1987 and were employed at the plant between 1944 and 1978. These workers were among more than 35,000 men and women whose radiation doses were measured by film-badge monitoring during this period. According to contemporary radiation standards, these recorded exposures were safe. But Stewart and Kneale, using a new technique to more effectively isolate occupational doses from other causes of cancer, have calculated that approximately 3 percent of the 1,732 cancer deaths in the group resulted from work-place radiation exposure

  4. Short-duration exposure to 2.45 GHz microwave radiation induces ...

    African Journals Online (AJOL)

    ... disorganization in the testis of exposed group with increasing SARs. These results suggest that MW radiation has the potential to affect both male and female fertility adversely. Keywords: 2.45 GHz microwave radiation, histopathology, DNA single strand break, ovary, testis. African Journal of Biotechnology Vol. 12(2), pp.

  5. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  6. Sarcoma risk after radiation exposure

    Directory of Open Access Journals (Sweden)

    Berrington de Gonzalez Amy

    2012-10-01

    Full Text Available Abstract Sarcomas were one of the first solid cancers to be linked to ionizing radiation exposure. We reviewed the current evidence on this relationship, focusing particularly on the studies that had individual estimates of radiation doses. There is clear evidence of an increased risk of both bone and soft tissue sarcomas after high-dose fractionated radiation exposure (10 + Gy in childhood, and the risk increases approximately linearly in dose, at least up to 40 Gy. There are few studies available of sarcoma after radiotherapy in adulthood for cancer, but data from cancer registries and studies of treatment for benign conditions confirm that the risk of sarcoma is also increased in this age-group after fractionated high-dose exposure. New findings from the long-term follow-up of the Japanese atomic bomb survivors suggest, for the first time, that sarcomas can be induced by acute lower-doses of radiation (

  7. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  8. Competing risk theory and radiation risk assessment

    International Nuclear Information System (INIS)

    Groer, P.G.

    1980-01-01

    New statistical procedures are applied to estimate cumulative distribution functions (c.d.f.), force of mortality, and latent period for radiation-induced malignancies. It is demonstrated that correction for competing risks influences the shape of dose response curves, estimates of the latent period, and of the risk from ionizing radiations. The equivalence of the following concepts is demonstrated: force of mortality, hazard rate, and age or time specific incidence. This equivalence makes it possible to use procedures from reliability analysis and demography for radiation risk assessment. Two methods used by reliability analysts - hazard plotting and total time on test plots - are discussed in some detail and applied to characterize the hazard rate in radiation carcinogenesis. C.d.f.'s with increasing, decreasing, or constant hazard rate have different shapes and are shown to yield different dose-response curves for continuous irradiation. Absolute risk is shown to be a sound estimator only if the force of mortality is constant for the exposed and the control group. Dose-response relationships that use the absolute risk as a measure for the effect turn out to be special cases of dose-response relationships that measure the effect with cumulative incidence. (H.K.)

  9. Ionizing radiation, genetic risks and radiation protection

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1992-01-01

    With one method of risk estimation, designed as the doubling dose method, the estimates of total genetic risk (i.e., over all generation) for a population continuously exposed at a rate of 0.01 Gy/generation of low LET irradiation are about 120 cases of Mendelian and chromosomal diseases/10 6 live births and about the same number of cases for multifactorial diseases (i.e., a total of 240 cases/10 6 ). These estimates provide the basis for risk coefficients for genetic effects estimated by ICRP (1991) in its Publication 60. These are: 1.0%/Sv for the general population (which is 40% of 240/10 6 /0.01 Gy), and 0.6%/Sv for radiation workers (which is 60% of that for the general population). The results of genetic studies carried out on the Japanese survivors of A-bombs have shown no significant adverse effects attributable to parental radiation exposures. The studies of Gardner and colleagues suggest that the risk of leukaemia in children born to male workers in the nuclear reprocessing facility in Sellafield, U.K., may be increased. However, this finding is at variance with the results from the Japanese studies and at present, does not lend itself to a simple interpretation based on radiobiological principles. In the light of recent advances in the molecular biology of naturally-occurring human Mendelian diseases and what we presently know about multifactorial diseases, arguments are advanced to support the thesis that (i) current risk estimates for Mendelian diseases may be conservative and (ii) an overall doubling dose for all adverse genetic effects may be higher than the 1 Gy currently used (i.e., the relative risks are probably lower). (author)

  10. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  11. Radiation risk of diagnostical procedures

    International Nuclear Information System (INIS)

    Pohlit, W.

    1986-01-01

    The environmental radiation burden of man in Germany is about 1 mGy (Milligray) per year. This is, of course, also valid for children. Due to diagnostical procedures this burden is increased to about 1.3 mGy. The question arises wether this can be neglected, or important consequences have to be drawn. To give a clear answer, the action of ionizing radiation in living cells and in organisms is explained in detail. Many of the radiation actions at the DNA can soon be repaired by the cell, if the radiation dose was small. Some damage, however will remain irreparable for the cell and consequently leads to cell death, to mutations or to cell transformation. The number of these lesion increases or decreases linearily with radiation dose. Therefore, it must be expected that the risk of tumour induction is increased to above the normal background even by the smallest doses. This small but not negligible risk has to be compared with other risks of civilization or with other medical risks. But also the benefit and the efficacy of diagnostic procedures have to be considered. (orig./HSCH) [de

  12. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  13. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  15. Occupational risk from radiation

    International Nuclear Information System (INIS)

    Schmitz-Feuerhake, I.

    1988-01-01

    In this paper, the author shows that a real and concrete elevation of cancer cases has to be expected in all groups of occupationally irradiated perons. The risk figure one should use for mortality is 0.1% per rem of whole body dose. The mean dose registered for these persons lies well below the maximum permissible dose. In Germany there are about 0.2 rem per year in medical people and below 0.5 rem per year in the nuclear industry. But there are risk groups working in situations with typical higher exposure. In medicine, these are for example nurses working with radium implants in radiotherapy units, technicians doing cardiac catheterization and cholangiogrammes, nurses and physicians holding very young patient during X-ray investigations. In the nuclear industry there are also high level and low level working areas. Highest doses are generally delivered to personnel who are engaged from outside for revision and cleaning procedures

  16. Radiation and other risks

    International Nuclear Information System (INIS)

    Trott, K.-R.

    1991-01-01

    Examples of occupational cancer and its diagnosis drawn from history are given. These include lung cancer prevalent among cobalt miners at Schneeburg in Sascaria in the nineteenth century. The true agent causing the cancer was not identified until 1955 when it became clear that the cobalt miners of the past and uranium miners currently employed close to the old Schneeburg mines were at risk because of their exposure to the decay products of radon. Radon build up in houses in certain areas became a cause of concern although the significance of the risk has not yet been appropriately investigated. The science of epidemiology has developed new and powerful methods to detect occupational hazards, however, which are being applied to the radon issue and to other cases where the risks are much lower than in the historical examples quoted. The study of occupational cancer at the Sellafield nuclear plant in the United Kingdom is a typical example. This modern research produces results which are much less self-evident and, to the non-specialist, much more difficult to understand. Learning from the past, we may be able to avoid some errors and provide safer working conditions for the future; certainly, over the last twenty years in the UK, occupational exposure to all conceivable carcinogens has decreased considerably. (UK)

  17. Estimation of health risks from radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks.

  18. Estimation of health risks from radiation exposures

    International Nuclear Information System (INIS)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks

  19. Risks Associated with Ionizing Radiations

    International Nuclear Information System (INIS)

    Cascon, Adriana

    2009-01-01

    Medical use of ionizing radiations implies certain risks which are widely balanced by their diagnostic and therapeutic benefits. Nevertheless, knowledge about these risks and how to diagnose and prevent them minimizes their disadvantages and optimizes the quality and safety of the method. This article describes the aspects related to skin dose (nonstochastic effects), the importance of dose limit, the physiopathology of biological damage and, finally, the prevention measures. [es

  20. Quantifying Cancer Risk from Radiation.

    Science.gov (United States)

    Keil, Alexander P; Richardson, David B

    2017-12-06

    Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.

  1. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  2. Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels

    Directory of Open Access Journals (Sweden)

    Peio Lopez-Iturri

    2015-01-01

    Full Text Available The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied.

  3. Skull and cerebrospinal fluid effects on microwave radiation propagation in human brain

    Science.gov (United States)

    Ansari, M. A.; Zarei, M.; Akhlaghipour, N.; Niknam, A. R.

    2017-12-01

    The determination of microwave absorption distribution in the human brain is necessary for the detection of brain tumors using thermo-acoustic imaging and for removing them using hyperthermia treatment. In contrast to ionizing radiation, hyperthermia treatment can be applied to remove tumors inside the brain without the concern of including secondary malignancies, which typically form from the neuronal cells of the septum pellucidum. The aim of this study is to determine the microwave absorption distribution in an adult human brain and to study the effects of skull and cerebrospinal fluid on the propagation of microwave radiation inside the brain. To this end, we simulate the microwave absorption distribution in a realistic adult brain model (Colin 27) using the mesh-based Monte Carlo (MMC) method. This is because in spite of there being other numerical methods, the MMC does not require a large memory, even for complicated geometries, and its algorithm is simple and easy to implement with low computational cost. The brain model is constructed using high-resolution (1 mm isotropic voxel) and low noise magnetic resonance imaging (MRI) scans and its volume contains 181×217×181 voxels, covering the brain completely. Using the MMC method, the radiative transport equation is solved and the absorbed microwave energy distribution in different brain regions is obtained without any fracture or anomaly. The simulation results show that the skull and cerebrospinal fluid guide the microwave radiation and suppress its penetration through deep brain compartments as a shielding factor. These results reveal that the MMC can be used to predict the amount of required energy to increase the temperature inside the tumour during hyperthermia treatment. Our results also show why a deep tumour inside an adult human brain cannot be efficiently treated using hyperthermia treatment. Finally, the accuracy of the presented numerical method is verified using the signal flow graph technique.

  4. Examination of the effects of ionising radiation on microwave transmission

    International Nuclear Information System (INIS)

    Excell, P.S.; Rousseau, M.

    1981-05-01

    It is proposed to use microwave heating to dry glass fibre 'slugs' soaked with an aqueous solution of fission product compounds. The method has been tested using two geometries (normal and oblique incidence) in equipment built at AERE Harwell. Tests have so far only been conducted with simulated fission product mixtures (the same chemicals using non-radioactive isotopes). A number of problems have already arisen which could affect the feasibility of microwave heating in this application and the possibility of further problems is envisaged when radioactive mixtures are used. The object of the investigation reported here was to assess the likely overall feasibility of the proposed process, in particular to assess the possibility that highly radioactive material may lower the threshold for electrical breakdown, and to suggest improvements that will mitigate potential problems. The layout of the proposed process is shown. (author)

  5. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  6. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  7. Erratum: Correction to: Rapid and controllable perforation of carbon nanotubes by microwave radiation

    Science.gov (United States)

    Ojaghi, Neda; Mokhtarifar, Maryam; Sabaghian, Zahra; Arab, Hamed; Maghrebi, Morteza; Baniadam, Majid

    2018-06-01

    This study presents a new controlled approach to deep perforation of millimeter-long carbon nanotube arrays (CNTAs) by fast oxidative cutting. The approach is based on decorating CNTAs with silver (Ag) nanoparticles, followed by heating Ag-decorated CNTAs with microwave radiation (2.48 GHz, 300 W).

  8. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  9. Responses of the mouse to microwave radiation during estrous cycle and pregnancy

    International Nuclear Information System (INIS)

    Rugh, R.; Ginns, E.I.; Ho, H.S.; Leach, W.M.

    1975-01-01

    A new facility for microwave irradiation of mice that will provide reproducible dosimetry is described. The waveguide used provided the integral dose rate to experimental animals under stable and controlled environmental conditions of relative humidity and temperature, variables which have been found to be critical in microwave studies. In terms of average absorbed lethal dose, the female mouse was found to be more sensitive to microwave irradiation during estrus than during diestrus. Teratogenesis (e.g., exencephalies) after sublethal irradiation of pregnant mice at 8 gestation days resulted from absorbed doses within the range of 3 to 5 calories per gram of body weight, and was never an all-or-none response. The incidence and variety of effects produced (hemorrhage, resorption, stunting, and fetal death) indicate that the cause and effect relationships are neither linear nor well enough established and understood to permit prediction of the biological effects either in the mouse of other species. As the absorbed dose of radiant energy is increased to the 8-day pregnant mouse, the probability of it producing at least one exencephaly is likewise increased. Nevertheless, the determination of the absorbed dose of microwave energy in each mouse is one step closer to determining the precise absorbed-dose-effect relationship for microwave exposures. A total of 1096 mice were exposed to microwave radiation and separately monitored to gather the related data. (U.S.)

  10. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  11. Microwave radiation is effective at disinfecting dental stone surfaces without changing their physical properties.

    Science.gov (United States)

    Bona, Ariel José; Amaral-Brito, Mauro Gustavo; Rodrigues, José Augusto; Peruzzo, Daiane Cristina; França, Fabiana Mantovani Gomes

    2017-01-01

    The aims of this study were to evaluate the effectiveness of different microwave radiation regimens for disinfection of type IV dental stone surfaces and to assess the influence of these regimens on surface roughness and dimensional change following disinfection. Three hundred cylindrical (20 × 2-mm) test specimens were made in type IV stone and divided into subgroups of 20 according to the microorganisms tested (Staphylococcus aureus, Escherichia coli, or Candida albicans) and the 900-W microwave radiation protocol (cycles of 3, 5, or 7 minutes; a positive control; or a negative control). To test physical changes, 80 test specimens were made with the same dimensions except that they had 2 parallel and symmetrical indentations measuring 8 × 4 mm. These specimens were divided into 4 subgroups of 20 each (a subgroup for each radiation time and a negative control). The mean dimensional change and roughness data were analyzed by mixed models for repeated measures and Tukey-Kramer tests. Disinfection was analyzed with descriptive statistics. For E coli and C albicans, all radiation times proved effective at sterilizing the test specimens. For S aureus, sterilization was achieved with 5 and 7 minutes of exposure; however, colonies were observed in 10 Petri dishes (50%) exposed to 3 minutes of microwave radiation. No statistically significant difference in dimensional change or surface roughness was observed for any radiation regimen (P > 0.05).

  12. Radiation risks and radiation protection at CRNL

    International Nuclear Information System (INIS)

    Myers, D.K.

    1986-01-01

    Radiation exposure is an occupational hazard at CRNL. The predicted health effects of low levels of radiation are described and compared with other hazards of living. Data related to the health of radiation workers are also considered. Special attention is given to the expected effects of radiation on the unborn child. Measures taken to protect CRNL employees against undue occupational exposure to radiation are noted

  13. Dark energy and the cosmic microwave background radiation

    Science.gov (United States)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  14. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  15. Effects of fetal microwave radiation exposure on offspring behavior in mice

    International Nuclear Information System (INIS)

    Zhang Yanchun; Li Zhihui; Gao Yan; Zhang Chenggang

    2015-01-01

    The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. (author)

  16. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  17. Risk assessment of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kai, Michiaki

    2012-01-01

    This commentary describes the radiation cancer risk assessed by international organizations other than ICRP, assessed for radon and for internal exposure, in the series from the aspect of radiation protection of explaining the assessments done until ICRP Pub. 103. Statistic significant increase of cancer formation is proved at higher doses than 100-200 mSv. At lower doses, with use of mathematical model, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported the death probability due to the excess lifetime risk (ELR) at 100 mSv of 0.36-0.77% for solid tumors and 0.03-0.05% for leukemia, and NRC in US, the risk of exposure-induced prevalence and death (REID) per 100 thousands persons of 800 (male)/1,310 (female) and 410/610, respectively. Both are essentially based on findings in A-bomb survivors. The assessment for Rn is described here not on dose. UK and US analyses of pooled raw data in case control studies revealed the significant increase of lung cancer formation at as low level as 100 Bq Rn/m3. Their analyses also showed the significance of smoking, which had been realized as a confounding factor in risk analysis of Rn for uranium miners. The death probability until the age of 85 y was found to be 1.2 x 10 -4 in non-smokers and 24 x 10 -4 in smokers/ Working Level Month (WLM). Increased thyroid cancer incidence has been known in Chernobyl Accident, which is realized as a result of internal exposure of radioiodine; however, the relationship between the internal dose to thyroid and its cancer prevalence resembles that in the case of external exposure. There is no certain evidence against the concept that risk of internal exposure is similar to and/or lower than, the external one although assessment of the internal exposure risk accompanies uncertainty depending on the used model and ingested dose. International Commission on Radiological Protection (ICRP) recommendations hitherto have been important and precious despite

  18. Ionizing radiation and genetic risks

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. [Department of Toxicogenetics, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden (Netherlands)]. E-mail: sankaran@lumc.nl; Wassom, J.S. [YAHSGS, LLC, Richland, WA 99352 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2005-10-15

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G{sub 2} phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G{sub 1}. In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other

  19. Ionizing radiation and genetic risks

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.; Wassom, J.S.

    2005-01-01

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G 2 phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G 1 . In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other rearrangements

  20. Selected properties of the potato snacks expanded in the microwave radiation

    Directory of Open Access Journals (Sweden)

    Mitrus Marcin

    2018-01-01

    Full Text Available The results of measurements of the selected properties of the extruded potato pellets and snacks expanded in the microwave field are presented in the paper. The potato pellets with the addition of the baking soda were prepared with a single screw extruder TS-45. The snacks were obtained by pellets expansion in a conventional microwave oven. The expansion index and the hardness of the pellets and the snacks, as well as, the texture properties of the snacks were evaluated during this study. The results showed that baking soda addition reduced the potato pellet expansion during their extrusion. This was an effect of a smaller thickness of the obtained pellets. The addition of baking soda had positive influence on potato snacks expansion in microwave radiation. The higher content of the soda additive resulted in lower hardness of pellets during cutting tests. The opposite effect was observed during texture measurements of the snacks. The addition of baking soda increased hardness of the expanded snacks. Soda addition lowers crispness and fragilityof the potato snacks expanded in the microwave radiation.

  1. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  2. The risk philosophy of radiation protection

    International Nuclear Information System (INIS)

    Lindell, B.

    1996-01-01

    The processes of risk assessment and risk evaluation are described. The assumptions behind current radiation risk assessments, which are focused on the probability of attributable death from radiation-induced cancer, are reviewed. These assessments involve projection models to take account of future cancer death in irradiated populations, the transfer of risk estimates between populations and the assumptions necessary to derive risk assessments for low radiation doses from actual observations at high doses. The paper ends with a presentation of the basic radiation protection recommendations of the International Commission on Radiological Protection (ICRP) in the context of a risk philosophy. (author)

  3. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    Science.gov (United States)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  4. Investigation of the Surface Filamentary Discharge in Focus of Microwave Radiation

    Science.gov (United States)

    2010-08-01

    microwave radiation 5a. CONTRACT NUMBER ISTC Registration No: 3784 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Kirill...NUMBER(S) ISTC 07-7011 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. (approval given by local...contract to the International Science and Technology Center ( ISTC ), Moscow Project ISTC # 3784p (077011) Investigation of the surface filamentary

  5. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  6. Microwave radiation, in the absence of hyperthermia, has no detectable effect on synapsin I levels or phosphorylation

    International Nuclear Information System (INIS)

    Browning, M.D.; Haycock, J.W.

    1988-01-01

    Recent reports have indicated that microwave radiation can produce effects on a variety of cell types in vitro. To determine whether microwave radiation might be neurotoxic, the effects of microwave radiation on synapsin I have been examined. Synapsin I is a neuron-specific phosphoprotein that is present in all neurons, where it is localized to the presynaptic terminal and is associated with synaptic vesicles. O'Callaghan and Miller have demonstrated that studies of such neuron-specific proteins can provide reliable indices of neurotoxicity. We have used a radioimmunoassay for synapsin I to determine whether microwave irradiation has any effect on the levels of synapsin I. Neither acute nor chronic exposure to microwave irradiation had any detectable effect on synapsin I levels. We have also examined the calcium-dependent phosphorylation of synapsin I in synaptosomes isolated from rats that had been subjected to microwave radiation. The phosphorylation of synapsin I in synaptosomes reflects numerous components of the presynaptic aspect of neuronal transmission. At intensities below that required to produce mild hyperthermia, no effects of microwave irradiation were seen on synapsin I phosphorylation

  7. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats.

    Science.gov (United States)

    Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar

    2017-01-01

    Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.

  8. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  9. A unique combination of infrared and microwave radiation accelerates wound healing.

    Science.gov (United States)

    Schramm, J Mark; Warner, Dave; Hardesty, Robert A; Oberg, Kerby C

    2003-01-01

    Light or electromagnetic radiation has been reported to enhance wound healing. The use of selected spectra, including infrared and microwave, has been described; however, no studies to date have examined the potential benefit of combining these spectra. In this study, a device that emits electromagnetic radiation across both the infrared and microwave ranges was used. To test the effects of this unique electromagnetic radiation spectrum on wound healing, two clinically relevant wound-healing models (i.e., tensile strength of simple incisions and survival of McFarlane flaps) were selected. After the creation of a simple full-thickness incision (n = 35 rats) or a caudally based McFarlane flap (n = 33 rats), animals were randomly assigned to one of three treatment groups: untreated control, infrared, or combined electromagnetic radiation. Treatment was administered for 30 minutes, twice daily for 18 days in animals with simple incisions, and 15 days in animals with McFarlane flaps. The wound area or flap was harvested and analyzed, blinded to the treatment regimens. A p value of less than 0.05 obtained by analysis of variance was considered to be statistically significant. Animals receiving combined electromagnetic radiation demonstrated increased tensile strength (2.62 N/mm2) compared with animals receiving infrared radiation (2.36 N/mm2) or untreated controls (1.73 N/mm2, p radiation had increased flap survival (78.0 percent) compared with animals receiving infrared radiation (69.7 percent) and untreated controls (63.1 percent, p radiation provided a distinct advantage in wound healing that might augment current treatment regimens.

  10. Cancer risk as a radiation detriment

    International Nuclear Information System (INIS)

    Servomaa, A.; Komppa, T.; Servomaa, K.

    1992-11-01

    Potential radiation detriment means a risk of cancer or other somatic disease, genetic damage of fetal injury. Quantative information about the relation between a radiation dose and cancer risk is needed to enable decision-making in radiation protection. However, assessment of cancer risk by means of the radiation dose is controversial, as epidemiological and biological information about factors affecting the origin of cancers show that risk assessment is imprecise when the radiation dose is used as the only factor. Focusing on radiation risk estimates for breast cancer, lung cancer and leukemia, the report is based on the models given in the Beir V report, on sources of radiation exposure and the uncertainty of risk estimates. Risk estimates are assessed using the relative risk model and the cancer mortality rates in Finland. Cancer incidence and mortality rates for men and women are shown in graphs as a function of age and time. Relative risks are shown as a function of time after exposure and lifetime risks as a function of age at exposure. Uncertainty factors affecting the radiation risk are examined from the point of view of epidemiology and molecular biology. (orig.)

  11. Current features on risk perception and risk communication of radiation

    International Nuclear Information System (INIS)

    Kusama, Tomoko

    1997-01-01

    Health effects and risks of radiation and radionuclides are being misunderstood by many members of general public. Many peoples have fear and anxieties for radiation. So far, the health effects from radiation at low dose and low dose rate have not been cleared on biological aspects. Then, we have quantitatively estimated health risks of low-dose radiation on the basis of linear dose response relationship without threshold from the viewpoints of radiation protection by using both epidemiological data, such as atomic bomb survivors, and some models and assumptions. It is important for researchers and relevant persons in radiation protection to understand the process of risk estimation of radiation and to communicate an exact knowledge of radiation risks of the public members. (author)

  12. Composite materials for protection against electromagnetic microwave radiation

    International Nuclear Information System (INIS)

    Senyk, IV; Barsukov, VZ; Savchenko, BM; Shevchenko, KL; Plavan, VP; Shpak, Yu V; Kruykova, OA

    2016-01-01

    A fairly wide range of carbon-polymer composite materials was synthesized and studied in terms of their potential to protect people and electronic equipment from exposure to electromagnetic radiation (EMR). The materials studied included three main groups: (1) PVC polymer composites filled with various carbon-containing fillers (colloidal graphite, thermally expanded graphite, acetylene black, graphitized carbon black, carbon nanotubes, graphene) at concentrations ranging from 5 to 20%; (2) carbon cloth - commercial and modified with nanometal additives (e.g., nanoparticles of Cu, TiN, etc.); (3) highly-filled polymer-carbon composites in the form of paint. The transmission rate a of electromagnetic radiation was investigated for such materials in the frequency range of 10 GHz as well as their electrical conductivity. The results showed that the shielding ability of the materials of group (2) is significantly higher than that of the materials of group (1), which is probably due to the presence of strong internal skeleton of conductivity. Nevertheless, some highly-filled mixed polymer-carbon composites in the form of paint demonstrate even more shielding ability than carbon cloth and could be used for the defense against EMR. (paper)

  13. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.G.

    1990-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix [de

  14. Microwave radiation safety assessment around mobile telephone base station (MTBS) in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Mohd Anuar Abd Majid; Mohamad Amirul Nizam Mohamad Thari; Ahmad Fazli Ahmad Sanusi; Roslan Md Dan; Sahirudden Mohd Nor

    2006-01-01

    Mobile telephone is one of the fastest popular consumer product introduced in the market. Since more people are using mobile telephone, the number of mobile telephone base station (MTBS) in Malaysia had also increased in order to provide a better coverage services to consumer. The antennas that are required for the mobile (or cellular) telephone network are located at MTBS. This antenna emits radio frequency (RF) and microwave (MW) radiation. Due to the concerns that has been raised by the people that are living or working nearby to MTBS about the possibility of adverse health effects that might occur due to the exposure of this radiation, a project of microwave radiation safety assessment around MTBS by MINT was carried out (September 2003 - January 2006). It was involved with 128 MTBS from three biggest service providers in Malaysia. This assessment is required to establish a baseline data in term of pattern and trend of the radiation emission from the facilities as well as to develop a public confident. In this paper, it will describe the fact that radiation is critical to the MTBS system and without the radiation, the MTBS system is functionless. It will also highlight the result of the assessment's work that has been carried out by MINT around MTBS mounted on the rooftops and towers. The average reading varies between the detection limit of the instrument 2 ( 2 (7.204 V/m). The highest average reading corresponds to about 2.0% of the Suruhanjaya Komunikasi dan Multimedia Malaysia (MCMC) exposure limit for public. The finding of this measurement confirms that the presence of RF and MW radiation in public accessible area around the base station was very low and comparable to the radiation levels in other places away from MTBS. There is also no evidence, from any laboratory or epidemiology studies that the exposure to RF energy levels recommended limits has any health significance for humans. (Author)

  15. Analysis of the electromagnetic radiation generated by a multipactor discharge occurring within a microwave passive component

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M; Quesada, F; Alvarez, A [Department of Information and Communication Technologies, Technical University of Cartagena, Cartagena (Murcia) (Spain); Gimeno, B [Departamento de Fisica Aplicada y Electromagnetismo-ICMUV, Universidad de Valencia, Valencia (Spain); Miquel-Espanya, C; Raboso, D [European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Noordwijk (Netherlands); Anza, S; Vicente, C; Gil, J [Aurora Software and Testing S.L., Valencia, Valencia (Spain); Taroncher, M; Reglero, M; Boria, V E, E-mail: benito.gimeno@uv.e [Departamento de Comunicaciones-ITEAM, Universidad Politecnica de Valencia (Spain)

    2010-10-06

    Multipactoring is a non-linear phenomenon that appears in high-power microwave equipment operating under vacuum conditions and causes several undesirable effects. In this paper, a theoretical and experimental study of the RF spectrum radiated by a multipactor discharge, occurring within a realistic microwave component based on rectangular waveguides, is reported. The electromagnetic coupling of a multipactor current to the fundamental propagative mode of a uniform waveguide has been analysed in the context of the microwave network theory. The discharge produced under a single-carrier RF voltage regime has been approached as a shunt current source exciting such a mode in a transmission-line gap region. By means of a simple equivalent circuit, this model allows prediction of the harmonics generated by the discharge occurring in a realistic passive waveguide component. Power spectrum radiated by a third-order multipactor discharge has been measured in an E-plane silver-plated waveguide transformer, thus validating qualitatively the presented theory to simulate the noise generated by a single-carrier multipactor discharge.

  16. The study of thermal interaction and microstructure of sodium silicate/bentonite composite under microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)

    2016-12-01

    The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.

  17. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  18. A New Microwave Shield Preparation for Super High Frequency Range: Occupational Approach to Radiation Protection.

    Science.gov (United States)

    Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher

    2016-01-01

    Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects.  According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.

  19. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, E A; Abdel-Fatah, O M [Dept. of Biochem., Faculty of Agric., Cairo University. (Egypt); El-Adawy, M; Badea, M Y [Food Technol. Dept., National Center for Research and Radiation Technol., Atomic Energy Authority (Egypt)

    2000-07-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone.

  20. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    Abdel-Rahim, E.A.; Abdel-Fatah, O.M.; El-Adawy, M.; Badea, M.Y.

    2000-01-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  1. Radiation exposure and risk of death

    International Nuclear Information System (INIS)

    Hongo, Syozo

    1979-01-01

    By using the risk factor given in ICRP publication 26 and an assumption of linear relationship between risk and dose, death rate and death number which correspond to radiation dose level and collective dose level of Japanese are estimated and they are compared with vital statistics of Japanese in 1975 to get out some ideas about radiation risk relative to the risks of everyday life. (author)

  2. Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme

    Science.gov (United States)

    Singh, Anang K.; Burada, P. S.; Bhattacharya, Susmita; Bag, Sudipta; Bhattacharya, Amitabha; Dasgupta, Swagata; Roy, Anushree

    2018-05-01

    We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.

  3. Radiation risk perception in Institute 'Vinca'

    International Nuclear Information System (INIS)

    Milanovic, S.; Pavlovic, S

    1999-01-01

    The necessity for research and development of risk analysis methods arise from practical needs for safety for men and environment. Relating to speed of technological development risk is implemented in modern technological achievements. Complexity of approach to the concept of risk presents the essence of risk management. Risk management means to apply risk analysis in order to risk decrease and control. Database for risk management is in technical social, economic and political area. Risk perception is a construction in the field of social psychology i.e. public opinion research. These results are of importance for the risk management. Research presented in this paper has been done on the sample of 240 examines with two basic sub samples: person working with ionizing radiation (140 of them) and persons not working with ionizing radiation (100 of them). Attitudes to risk definition risk acceptance and relation to risk consequences. (author)

  4. Risk and benefits in ionizing radiation uses

    International Nuclear Information System (INIS)

    2010-08-01

    This meeting include: A tribute to Szeinfeld, presentation software for population dose, impact on radiation protection, radiation protection hospital and population exposed workers, regulation and licensing. radiological emergencies, risk, inspection, external radiotherapy and radiation protection with photons, brachytherapy, industrial, environmental monitoring, food irradiation, nuclear power, nuclear medicine.

  5. Features of interaction of fullerenes with microwave radiation

    International Nuclear Information System (INIS)

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  6. Radiation in medicine: Origins, risks and aspirations.

    Science.gov (United States)

    Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies.

  7. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  8. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  9. Occupational radiation exposure risks: a review

    Energy Technology Data Exchange (ETDEWEB)

    Besar, Idris [PUSPATI, Selangor (Malaysia)

    1984-06-01

    This paper presents a review of the health risk as a result of exposure to ionizing radiation. A comparison of occupational risk among workers exposed to radiological and nonradiological harms are also presented. This comparison shows that radiation workers exposed to the current nuclear industry average of 3.4 mSv. per year are among the safest of all industry groupings.

  10. Low-level radiation risks in people

    International Nuclear Information System (INIS)

    Goloman, M.; Filjushkin, V. lgor

    1993-01-01

    Using the limited human data plus the relationships derived from the laboratory, a leukemia risk model has been developed as well as a suggested model for other cancers in people exposed to low levels of radiation. Theoretical experimental and epidemiological evidence will be presented in an integrated stochastic model for projection of radiation-induced cancer risks

  11. Occupational radiation exposure risks: a review

    International Nuclear Information System (INIS)

    Idris Besar

    1984-01-01

    This paper presents a review of the health risk as a result of exposure to ionizing radiation. A comparison of occupational risk among workers exposed to radiological and nonradiological harms are also presented. This comparison shows that radiation workers exposed to the current nuclear industry average of 3.4 mSv. per year are among the safest of all industry groupings. (author)

  12. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  13. Radiation risk and public education

    International Nuclear Information System (INIS)

    Faden, R.R.

    1983-01-01

    Two issues which deal with the public's perception of radiation hazards are discussed. The goal of public education about radiation, and the relative role of scientific and moral beliefs in public education are examined

  14. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  15. Observation of microwave radiation using low-cost detectors at the ANKA storage ring*

    CERN Document Server

    Judin, V; Hofmann, A; Huttel, E; Kehrer, B; Klein, M; Marsching, S; Müller, A S; Nasse, M; Smale, N; Caspers, F; Peier, P

    2011-01-01

    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually use...

  16. Biological effects of exposure to non-ionising electromagnetic fields and radiation: III radiofrequency and microwave radiation

    International Nuclear Information System (INIS)

    Saunders, R.D.; Kowalczuk, C.I.; Sienkiewicz, Z.J.

    1991-12-01

    The biological effects of experimental exposure to radiofrequency (RF) and microwave radiation above 100 kHz are reviewed with the intention of providing a summary of effects directly relevant to considerations of the health and safety of exposed people. The biological bases for restricting exposures are also briefly discussed. Studies of the possible effects of electromagnetic field exposure on human populations are described in a separate report. The majority of the biological effects of acute exposure to radiofrequency (RF) and microwave radiation are consistent with responses to induced heating, resulting either from frank rises in tissue or body temperature of about 1 0 C or more, or from responses involved in minimising the total heat load. Most responses have been reported at specific energy absorption rates (SARs) above about 1-2 W kg -1 in different animal species exposed under various environmental conditions. These animal, particularly primate, data indicate the sorts of responses that are likely to occur in humans subject to a sufficient heat load. In addition, most animal and cell culture data indicate that RF and microwave exposure is not mutagenic and so will not result in somatic mutation or in hereditary effects; such exposure is therefore unlikely to initiate cancers. With some exceptions that are described below, restrictions on the acute exposure of humans to RF or microwave radiation should be based on the acute responses to raised body temperature. It seems probable that healthy people can tolerate short-term (minute-hour) rises in body temperature of up to about 1 0 C. This rise is well below the maximum tolerable increase but nevertheless represents a significant thermal load. The evidence suggests that the exposure of resting humans in moderate environments at whole-body SARs of 1 W kg -1 , and up to 4 W kg -1 for short periods, will result in body temperature rises of less than 1 0 C. A restriction of whole-body SAR for healthy people to 0

  17. Fundamental matters on radiation risk communication

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Nagai, Hiroyuki; Yonezawa, Rika; Ohuchi, Hiroko; Chikamoto, Kazuhiko; Taniguchi, Kazufumi; Morimoto, Eriko

    2009-01-01

    In the field of atomic energy and radiation utilization, radiation risk is considered as one of the social uneasy factors. About the perception of risks, there is a gap between experts and general public (non-experts). It is said that the general public tends to be going to judge risk from intuitive fear and a visible concrete instance whereas the experts judge it scientifically. A company, an administration or experts should disclose relating information about the risks and communicate interactively with the stakeholders to find the way to solve the problem with thinking together. This process is called 'risk communication'. The role of the expert is important on enforcement of risk communication. They should be required to explain the information on the risks with plain words to help stakeholders understand the risks properly. The Japan Health Physics Society (JHPS) is the largest academic society for radiation protection professionals in Japan, and one of its missions is supposed to convey accurate and trustworthy information about the radiation risk to the general public. The expert group on risk communication of ionizing radiation of the JHPS has worked for the purpose of summarizing the fundamental matters on radiation risk communication. 'Lecture on risk communication for the members of the JHPS.' which has been up on the JHPS web-site, and the symposium of 'For better understanding of radiation risk.' are a part of the activities. The expert group proposes that the JHPS should enlighten the members continuously for being interested in and practicing risk communication of radiation. (author)

  18. Assessment of risk from radiation sources

    International Nuclear Information System (INIS)

    Subbaratnam, T.; Madhvanath, U.; Somasundaram, S.

    1976-01-01

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  19. Risks associated with utilization of radiation

    International Nuclear Information System (INIS)

    Matsuoka, Satoshi; Kumazawa, Shigeru; Aoki, Yoshiro; Nakamura, Yuji; Takeda, Atsuhiko; Kusama, Tomoko; Inaba, Jiro; Tanaka, Yasumasa.

    1993-01-01

    When mankind decides action, the conveniences and the risks obtained by the action are weighed up. When socially important judgement is done, the logical discussion based on objective data is indispensable. The utilization of radiation spread from industrial circles to general public, accordingly the circumstances changed from the recognition of its risks by professionals to that by general public. The radiation exposure dose of public has increased rapidly by medical treatment. The global radioactivity contamination accompanying nuclear explosion experiment and the Chernobyl accident raised the psychological risk recognition of public. Now, the fear of the potential radioactivity which may be released from nuclear power plants and nuclear fuel cycle facilities expanded. The radiation exposure due to its utilization in recent years is mostly at the level below natural radiation. The acute radiation syndrome by whole body exposure is shown, and the effect is probabilistic. The evaluation of the risks due to radiation in the early effect, the hereditary effect and the delayed effect including canceration is explained. The risks in general human activities, the concept of risks in radiation protection, the effect of Chernobyl accident and the perception of general public on radiation risks are reported. (K.I.)

  20. Fast microwave detection system for coherent synchrotron radiation study at KEK: Accelerator test facility

    International Nuclear Information System (INIS)

    Aryshev, A.; Araki, S.; Karataev, P.; Naito, T.; Terunuma, N.; Urakawa, J.

    2007-01-01

    A fast room temperature microwave detection system based on the Schottky Barrier-diode detector was created at the KEK ATF (Accelerator Test Facility). It was tested using Coherent Synchrotron Radiation (CSR) generated by the 1.28 GeV electron beam in the damping ring. The speed performance of the detection system was checked by observing the CSR from a multi-bunch (2.8 ns bunch separation time) beam. The theoretical estimations of CSR power yield from an edge of bending magnet as well as new injection tuning method are presented. A very high sensitivity of CSR power yield to the longitudinal electron distribution in a bunch is discussed

  1. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    Science.gov (United States)

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  2. Theoretical investigations of the anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1981-01-01

    In this work, the anisotropy of the cosmic microwave background radiation is calculated within the context of the standard Big Bang cosmological model. The results of the calculations for different initial conditions are compared to the observational data available in order to try to learn more about conditions in the early universe. It is found that a model which has isothermal fluctuations superimposed on the standard model can explain all of the observations so far. In fact, a range of models with different initial densities can explain the observations. There is not enough information at present to choose among these models, but more data should be available in the near future

  3. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  4. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  5. Can the anisotropy of microwave background radiation be discovered at present?

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Kocharyan, A.A.

    1990-10-01

    An effect leading to a decrease of perturbations of Microwave Background Radiation after recombination epoch is investigated. Behaviour of correlation functions for null geodesics flow enables one to evaluate the role of this effect based purely on geometrical and topological properties of the Universe. Possible anisotropy of MwB in open Friedmannian Universe is shown to decrease due to this effect to a level far below present experimental accuracy. The fractal nature of the large scale structure of the Universe is also discussed. (author). 20 refs

  6. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  7. New radiobiological, radiation risk and radiation protection paradigms

    International Nuclear Information System (INIS)

    Goodhead, Dudley T.

    2010-01-01

    The long-standing conventional paradigm for radiobiology has formed a logical basis for the standard paradigm for radiation risk of cancer and heritable effects and, from these paradigms, has developed the internationally applied system for radiation protection, but with many simplifications, assumptions and generalizations. A variety of additional radiobiological phenomena that do not conform to the standard paradigm for radiobiology may have potential implications for radiation risk and radiation protection. It is suggested, however, that the current state of knowledge is still insufficient for these phenomena, individually or collectively, to be formulated systematically into a new paradigm for radiobiology. Additionally, there is at present lack of direct evidence of their relevance to risk for human health, despite attractive hypotheses as to how they might be involved. Finally, it remains to be shown how incorporation of such phenomena into the paradigm for radiation protection would provide sufficient added value to offset disruption to the present widely applied system. Further research should aim for better mechanistic understanding of processes such as radiation-induced genomic instability (for all radiation types) and bystander effects (particularly for low-fluence high-LET particles) and also priority should be given to confirmation, or negation, of the relevance of the processes to human health risks from radiation.

  8. Development of radiation detectors based on KMgF3:Tb nano crystals synthesized by microwave

    International Nuclear Information System (INIS)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A.; Gonzalez M, P. R.; Mendoza A, D.

    2015-10-01

    The development of new thermoluminescent (Tl) materials of the size of KMgF 3 :Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF 3 COO) 2 and potassium K(CF 3 COO), finally the synthesis of KMgF 3 :Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF 3 obtained without doping and doped with Tb +3 ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of 60 Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  9. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  10. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  11. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  12. Radiation induced cancer: risk assessment and prevention

    International Nuclear Information System (INIS)

    Shore, R.E.

    1984-01-01

    A number of factors have to be considered in defining the cancer risk from ionizing radiation. These include the radiation sensitivity of the target tissue(s), the temporal pattern of risk, the shape of the dose-incidence curve, the effects of low dose rates, host susceptibility factors, and synergism with other environmental exposures. For the population as a whole the largest sources of radiation exposure are natural background radiation and medical/dental radiation. Radiation exposures in the medical field make up the largest volume of occupational exposures as well. Although new technologies offer opportunities to lower exposures, worker training, careful exposure monitoring with remedial feedback, and monitoring to prevent unnecessary radiodiagnostic procedures may be even more important means of reducing radiation exposure. Screening of irradiated populations can serve a useful preventive function, but only for those who have received very high doses

  13. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: Counseling the pregnant and nonpregnant patient about these risks

    International Nuclear Information System (INIS)

    Brent, R.L.

    1989-01-01

    The term radiation evokes emotional responses both from lay persons and from professionals. Many spokespersons are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic-imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue; however, at present ultrasound not only improves obstetric care, but also reduces the necessity of diagnostic x-ray procedures. In the field of ionizing radiation, we have a better comprehension of the biologic effects and the quantitative maximum risks than for any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, IUGR, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation, Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. It is obvious that the risks of 1-rad (.10Gy) or 5-rad (.05Gy) acute exposure are far below the spontaneous risks of the developing embryo because 15% of human embryos abort, 2.7% to 3.0% of human embryos have major malformations, 4% have intrauterine growth retardation, and 8% to 10% have early- or late-stage onset genetic disease. 92 references

  14. Microwave hyperthermia as an adjuvant to radiation therapy. Summary experience of 256 multifraction treatment cases

    International Nuclear Information System (INIS)

    Bicher, H.I.

    1985-01-01

    Analysis is presented of a series of 256 human tumors treated under multifraction protocol regimes with standard controlled hyperthermia parameters and increasing doses of radiation therapy. Air cooled microwave applicators intracavitary and interstitial antennae operating at 915 or 300 MHz were used in various sites. Temperatures were measured by micro-thermocouples. Minimum tumor temperatures of 42 0 C were maintained at 1 hour, twice weekly. Treatment included a radiation dose of 1600-1700 rads. Tumor response was 94% with 60% or more total response. Frequency and duration of total responses depended mainly on the radiation dose. Skin tumors, melanomas, chest wall recurrences responded better than head and neck or intrapelvic recurrences. Side effects observed were minor burns; proctitis or oesophagitis with intracavitary devices; ulcerations or fistulae due to rapid tumor regression; 4 cases of pleuritis treating chest wall. Overall toxicity was less than 5%. In conclusion: 1) Combination heat-low dose radiation offers good palliation. 2) Response depends on radiation dose. 3) Combination of full dose radiation therapy plus hyperthermia proves to be well tolerated

  15. Generalized indices for radiation risk analysis

    International Nuclear Information System (INIS)

    Bykov, A.A.; Demin, V.F.

    1989-01-01

    A new approach to ensuring nuclear safety has begun forming since the early eighties. The approach based on the probabilistic safety analysis, the principles of acceptable risk, the optimization of safety measures, etc. has forced a complex of adequate quantitative methods of assessment, safety analysis and risk management to be developed. The method of radiation risk assessment and analysis hold a prominent place in the complex. National and international research and regulatory organizations ICRP, IAEA, WHO, UNSCEAR, OECD/NEA have given much attention to the development of the conceptual and methodological basis of those methods. Some resolutions of the National Commission of Radiological Protection (NCRP) and the Problem Commission on Radiation Hygiene of the USSR Ministry of Health should be also noted. Both CBA (cost benefit analysis) and other methods of radiation risk analysis and safety management use a system of natural and socio-economic indices characterizing the radiation risk or damage. There exist a number of problems associated with the introduction, justification and use of these indices. For example, the price, a, of radiation damage, or collective dose unit, is a noteworthy index. The difficulties in its qualitative and quantitative determination are still an obstacle for a wide application of CBA to the radiation risk analysis and management. During recent 10-15 years these problems have been a subject of consideration for many authors. The present paper also considers the issues of the qualitative and quantitative justification of the indices of radiation risk analysis

  16. Radiation risk - historical perspective and current issues

    Energy Technology Data Exchange (ETDEWEB)

    Kellerer, Albrecht M. [Strahlenbiologisches Institut, Ludwig-Maximilians-Universitaet, Munich, Germany and Institute for Radiation Biology, GSF-National Research Center for Environment and Health, Neuherberg (Germany)

    2002-09-01

    The assessment of radiation risk needs to be seen against the background of a historical development that has reversed the initial belief in a general beneficial effect of radiation to apprehension and fear. Numerical risk estimates are, today, based on large epidemiological studies, and the observations on the A-bomb survivors are outlined as the primary source of information. Since the epidemiological findings are obtained from relatively high radiation exposures, extrapolations are required to the much lower doses that are relevant to radiation protection. The evolution of extrapolation procedures up to current attempts at mechanistic modelling is outlined, and some of the open issues are reviewed. (author)

  17. Radiation risk - historical perspective and current issues

    International Nuclear Information System (INIS)

    Kellerer, Albrecht M.

    2002-01-01

    The assessment of radiation risk needs to be seen against the background of a historical development that has reversed the initial belief in a general beneficial effect of radiation to apprehension and fear. Numerical risk estimates are, today, based on large epidemiological studies, and the observations on the A-bomb survivors are outlined as the primary source of information. Since the epidemiological findings are obtained from relatively high radiation exposures, extrapolations are required to the much lower doses that are relevant to radiation protection. The evolution of extrapolation procedures up to current attempts at mechanistic modelling is outlined, and some of the open issues are reviewed. (author)

  18. The Exposure Duration and Distance Effects of Microwave Radiation from Wireless Routers on Sperm Parameters of Wistar Rats

    Directory of Open Access Journals (Sweden)

    S Safari

    2015-12-01

    Full Text Available Background & aim: As a communication technology, Wi-Fi allows electronic devices such as laptops to exchange data or connect to a network resource such as the Internet via a wireless network access point  using 2.4 GHz microwave radiation. However, with the exponential development of wireless communication technology, the public concern regarding the safety of this technology has increased rapidly. The main goal of this study was to assess the bio effects of duration of exposure of an animal model to 2.4 GHz microwave radiation emitted from a common Wi-Fi router on sperm quality. Method: In the present experimental study, 84 male Wistar rats were used. The mice were randomly divided based on the duration of exposure to microwave radiation and distance to the modem into seven groups of 12. Group II rats were exposed to 2.4 GHz microwave radiation for 2 hours per day in term of 7 days at a distance of 30 cm from the router. The rats in this group were allowed to live for 53 days then sacrificed and semen samples analyzed. Rats in all the groups except group II, were sacrificed 30 min to 1 hr.After exposure. To analyze the results, The Mann-Whitney and Kruskal-Wallis tests were used. Result: The average sperm with normal morphology, testes weight and number of spermatogonial cells after exposure to microwave radiation decreased. With increasing exposure time and reduce the distance to the modem, testis weight and the number of spermatogonia cells significantly reduced. Conclusion: Beams of microwave radiation from Wi-Fi modems leads to sperm morphological changes and weight loss of testicular spermatogonia. With increasing exposure time and reduce the distance to the modem, testis weight and the number of spermatogonia cells significantly reduced.

  19. Characterising risk - aggregated metrics: radiation and noise

    International Nuclear Information System (INIS)

    Passchier, W.

    1998-01-01

    The characterisation of risk is an important phase in the risk assessment - risk management process. From the multitude of risk attributes a few have to be selected to obtain a risk characteristic or profile that is useful for risk management decisions and implementation of protective measures. One way to reduce the number of attributes is aggregation. In the field of radiation protection such an aggregated metric is firmly established: effective dose. For protection against environmental noise the Health Council of the Netherlands recently proposed a set of aggregated metrics for noise annoyance and sleep disturbance. The presentation will discuss similarities and differences between these two metrics and practical limitations. The effective dose has proven its usefulness in designing radiation protection measures, which are related to the level of risk associated with the radiation practice in question, given that implicit judgements on radiation induced health effects are accepted. However, as the metric does not take into account the nature of radiation practice, it is less useful in policy discussions on the benefits and harm of radiation practices. With respect to the noise exposure metric, only one effect is targeted (annoyance), and the differences between sources are explicitly taken into account. This should make the metric useful in policy discussions with respect to physical planning and siting problems. The metric proposed has only significance on a population level, and can not be used as a predictor for individual risk. (author)

  20. Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation

    Science.gov (United States)

    Dadras, Sedigheh; Faraji, Maryam

    2018-05-01

    In this study, we achieved superfast growth of carbon nanotubes (CNTs) in an anodic aluminum oxide (AAO) template by applying microwave (MW) radiation. This is a simple and direct approach for growing CNTs using a MW oven. The CNTs were synthesized using MW radiation at a frequency of 2.45 GHz and power was applied at various levels of 900, 600, and 450 W. We used graphite and ferrocene in equal portions as precursors. The optimum conditions for the growth of CNTs inside a MW oven were a time period of 5 s and power of 450 W. In order to grow uniform CNTs, an AAO template was applied with the CNTs synthesized under optimum conditions. The morphology of the synthesized CNTs was investigated by scanning electron microscopy analysis. The average diameters of the CNTs obtained without the template were 22-27 nm, whereas the diameters of the CNTs prepared inside the AAO template were about 4-6 nm.

  1. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  2. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  3. The vertical pattern of microwave radiation around BTS (Base Transceiver Station) antennae in Hashtgerd township.

    Science.gov (United States)

    Nasseri, Simin; Monazzam, Mohammadreza; Beheshti, Meisam; Zare, Sajad; Mahvi, Amirhosein

    2013-12-20

    New environmental pollutants interfere with the environment and human life along with technology development. One of these pollutants is electromagnetic field. This study determines the vertical microwave radiation pattern of different types of Base Transceiver Station (BTS) antennae in the Hashtgerd city as the capital of Savojbolagh County, Alborz Province of Iran. The basic data including the geographical location of the BTS antennae in the city, brand, operator type, installation and its height was collected from radio communication office, and then the measurements were carried out according to IEEE STD 95. 1 by the SPECTRAN 4060. The statistical analyses were carried out by SPSS16 using Kolmogorov Smirnov test and multiple regression method. Results indicated that in both operators of Irancell and Hamrah-e-Aval (First Operator), the power density rose with an increase in measurement height or decrease in the vertical distance of broadcaster antenna. With mix model test, a significant statistical relationship was observed between measurement height and the average power density in both types of the operators. With increasing measuring height, power density increased in both operators. The study showed installing antennae in a crowded area needs more care because of higher radiation emission. More rigid surfaces and mobile users are two important factors in crowded area that can increase wave density and hence raise public microwave exposure.

  4. Radiation. Your health at risk

    International Nuclear Information System (INIS)

    This public information pamphlet gives a simple account of the nature of ionizing radiations and their effects on human health. Sources of radiation, both natural and man-made, to which the population may be exposed and the setting of exposure limits are discussed. The need is stressed for more research into the effects of low levels of exposure over long periods of time. The aims of the Radiation and Health Information Service and a list of organizers in European countries are given. A reading list is included. (UK)

  5. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  6. Risk analysis of external radiation therapy

    International Nuclear Information System (INIS)

    Arvidsson, Marcus

    2011-09-01

    External radiation therapy is carried out via a complex treatment process in which many different groups of staff work together. Much of the work is dependent on and in collaboration with advanced technical equipment. The purpose of the research task has been to identify a process for external radiation therapy and to identify, test and analyze a suitable method for performing risk analysis of external radiation therapy

  7. Radiation in medicine: Origins, risks and aspirations.

    OpenAIRE

    Donya, M; Radford, M; ElGuindy, A; Firmin, D; Yacoub, MH

    2014-01-01

    The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit rati...

  8. Radiation exposure and radiation risk of the population

    International Nuclear Information System (INIS)

    Jacobi, W.; Paretzke, H.G.; Ehling, U.H.

    1981-02-01

    The major scientifically founded results concerning the assessment of the radiation exposure and the analysis and evaluation of the radiationhazards for the population, particularly in the range of low doses, are presented. As to the risk analysis special attention is paid to the rays with low ionization density (X-, γ-, β- and electronrays). Contents: 1) Detailed survey of the results and conclusions; 2) Data on the radiation load of the population; 3) Results to epidemiological questioning on the risk of cancer; 4) Genetical radiation hazards of the population. For quantification purposes of the risk of cancer by γ-radiation the observations with the a-bomb survivors in Japan are taken as a basis, as the available dosimetrical data have to be revised. Appendices: 1) German translation of the UNSCEAR-Report (1977); 2) BEIR-Report (1980); 3) Comments from the SSK on the comparability of the risks of natural-artificial radiation exposure; 4) Comments from the SSK on the importance of synergistical influences for the radiation protection (23.9.1977). (HP) [de

  9. Epidemiological data and radiation risk estimates

    International Nuclear Information System (INIS)

    Cardis, E.

    2002-01-01

    The results of several major epidemiology studies on populations with particular exposure to ionizing radiation should become available during the first years of the 21. century. These studies are expected to provide answers to a number of questions concerning public health and radiation protection. Most of the populations concerned were accidentally exposed to radiation in ex-USSR or elsewhere or in a nuclear industrial context. The results will complete and test information on risk coming from studies among survivors of the Hiroshima and Nagasaki atomic bombs, particularly studies on the effects of low dose exposure and prolonged low-dose exposure, of different types of radiation, and environmental and host-related factors which could modify the risk of radiation-induced effects. These studies are thus important to assess the currently accepted scientific evidence on radiation protection for workers and the general population. In addition, supplementary information on radiation protection could be provided by formal comparisons and analyses combining data from populations with different types of exposure. Finally, in order to provide pertinent information for public health and radiation protection, future epidemiology studies should be targeted and designed to answer specific questions, concerning, for example, the risk for specific populations (children, patients, people with genetic predisposition). An integrated approach, combining epidemiology and studies on the mechanisms of radiation induction should provide particularly pertinent information. (author)

  10. Radioprotection of Wistar Rat Lymphocytes Against Microwave Radiation Mediated by Bee Venom

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Gajski, G.

    2011-01-01

    Microwave radiation is a type of non-ionising electromagnetic radiation present in the environment, and is a potential threat to human health. Cytogenetic studies of microwave radiation conducted in vitro and in vivo, yielded contradictory and often intriguing experimental results. Some reports suggest that exposure of human cells to radiofrequency radiation does not result in increased cytogenetic damage. On the other hand, there is a range of studies showing that radiofrequency radiation can indeed induce genetic alteration after exposure to electric field. Bee venom is used in traditional medicine to treat variety of conditions, such as arthritis, rheumatism, back pain and skin disease. In recent years it has been reported that bee venom possesses antimutagenic, proinflammatory, anti-inflammatory, antinociceptive, and anticancer effects. In addition to the wide range of the bee venom's activities, it also possesses a radioprotective capacity that was noted against X-ray and gamma radiation in various test systems. The aim of the present study was assessment of the radioprotective effect of bee venom against 915 MHz microwave radiation-induced DNA damage in the Wistar rat's lymphocytes in vitro. The possible genotoxic effect of bee venom alone was also assessed on non-irradiated lymphocytes. The alkaline comet assay was used as a sensitive tool in The assessment of DNA damage was performed using the alkaline comet assay and the Fpg-modified comet assay that is more specific technique in detection of DNA strand breaks and oxidative stress. Whole blood was collected from adult male Wistar rats (11 weeks old, approximate body weight 350 g)by cardiac puncture under sterile conditions in heparinized vacutainer tubes. After collection, blood was divided into 1 ml aliquots and placed into 24-well culture plates according to the exposure conditions. Bee venom was added to lymphocyte cultures in final concentration of 1 μg/ml, 4 h prior to irradiation and immediately

  11. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  12. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1978-01-01

    The bases for developing quantitative assessment of exposure risks in the human being, and the several problems that accompany the assessment and introduction of the risk of exposure to high and low LET radiation into radiation protection, will be evaluated. The extension of the pioneering radiation protection philosophies to the control of other hazardous agents that cannot be eliminated from the environment will be discussed, as will the serious misunderstandings and misuse of concepts and facts that have inevitably surrounded the application to one agent alone, of the protection philosophy that must in time be applied to a broad spectrum of potentially hazardous agents. (orig.) [de

  13. Radiation sources, radiation environment and risk level at Dubna

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1991-01-01

    The overall information about ionizing radiation sources, which form radiation environment and risk at Dubna, is introduced. Systematization of the measurement results is performed on the basis of the effective dose and losses of life expectancy. The contribution of different sources to total harm of Dubna inhabitants has been revealed. JINR sources carry in ∼ 4% from the total effective dose of natural and medicine radiation sources; the harm from them is much less than the harm from cigarette smoking. 18 refs.; 2 tabs

  14. Space Radiation and Risks to Human Health

    Science.gov (United States)

    Huff, Janice L.; Patel, Zarana S.; Simonsen, Lisa C.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  15. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    Science.gov (United States)

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  16. Radiation as a source of risk

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1999-01-01

    Essence and nature of ionizing radiation as a source of risk are reviewed. Following to the appeal of necessity and importance of campaign for enlightening risk management, of individual and of society, background knowledge and information helpful to the promotion and discussion are summarized, also. (author)

  17. Genetic risks of ionizing radiation

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1990-01-01

    Quantitative genetic risk estimation is made using two methods: the direct method, and the doubling dose (DD) method. The doubling dose currently used is 1 Gy for low LET, low dose, low dose rate irradiation, and is based on mouse data. Tables present the 1988 UNSCEAR estimates of genetic risk using both methods. (L.L.) (Tab.)

  18. USE OF THE MICROWAVE RADIATION FOR UPGRADING OF A BIOMASS ALCOHOLIC FERMENTATION

    Directory of Open Access Journals (Sweden)

    Anna Nowicka

    2017-04-01

    Full Text Available Perform pretreatment is crucial particularly in the case of the use of hard-degradable biomass, the biochemical susceptibility to degradation, for example, alcoholic fermentation is limited. Biomass disintegration processes lead to the destruction of compact structures and release of the organic substance to the phase dissolved in a resultant increase in the concentration of dissolved easily degradable organic substances. Effective pretreatment should meet several criteria, including ensuring the separation of lignin from cellulose, to increase the share of amorphous cellulose, provide a higher porosity substrates, eliminate waste sugars limit formation of inhibitors, minimize energy costs. The aim of this paper is to show the possibilities of using electromagnetic microwave radiation for pre-treatment plant biomass before the fermentation process of alcohol and comparison of the effectiveness of the described method with other commonly used techniques of pre-treatment. The substrate subjected to microwave treatment has a fast rate of hydrolysis and a high content of glucose in the hydrolyzate, which increases the efficiency of the production of bioethanol.

  19. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  20. Humoral immunity of Japanese quail subjected to microwave radiation during embryogeny

    International Nuclear Information System (INIS)

    Hamrick, P.E.; McRee, D.I.; Thaxton, P.; Parkhurst, C.R.

    1977-01-01

    Fertile Japanese quail eggs were exposed to continuous wave microwave radiation at an intensity of 5 mW/cm 2 (50 W/m 2 ) and a frequency of 2450 Mhz. The absorbed power density was determined to be 4.03 W/kg. The eggs were exposed throughout the first 12 days of the normal incubation period of 17.5 days. Non-exposed control eggs were incubated in a chamber identical to the exposure chamber. After hatching, exposed and control quail were reared in the conventional laboratory manner. Weekly body weight measurements were made to compare the growth patterns of exposed and control quail. The weights of the exposed male at the ages of 4 and 5 weeks were 12 and 7%, respectively, less than the control males. These differences approached statistical significance (P<=0.05). At 5 weeks of age the quail were challenged with sheep red blood cells (SRBC) and the levels of the anti-SRBC antibodies were determined. The levels of specific anti-SRBC antibodies, determined 4 days after antigen challenges, were of the same magnitude for both the exposed and control quail. Following this assessment of humoral immunity, the quail were sacrificed and the bursa of Fabricius and spleen were removed and a comparison was made of exposed and control birds. The weights of the bursa of Fabricius and spleen were not altered significantly by the microwave exposure. (author)

  1. Effect of Radiation Leakage of Microwave Oven on Rat Serum Testosterone at Pre and Post Pubertal Stage

    Directory of Open Access Journals (Sweden)

    Y Zare

    2008-01-01

    Full Text Available Introduction: Since discovery of high frequency waves, their biological effects have been in great attention. Increased male fertility problems proposed their possible relation to use of microwaves. Testes are of very active body tissues, which can be affected by these waves. Age of exposure may also be an important factor. Methods: This study was carried out to evaluated testosterone level in rats exposed to microwave radiation at pre and post puberty. For this study 18 adult (2 month old and 18 immature (1 month old male rats were selected and each group divided in two groups, control and test group. Test groups were exposed to 2450 MHZ microwaves produced by microwave oven (LG Brant, three times a day, 30 minute each time. Control groups were kept in laboratory at same temperature and light condition. After 60 days blood was collected by heart puncture and testosterone was measured in serum by RIA method. Mean testosterone levels were compared by T-test. Result: The results showed that in immature group testosterone has not changed significantly compare to control group; however in adult group this value was significantly decreased in test group in comparison with control (P<0.005. Conclusion: exposure to microwaves leakage of microwave oven decreased testosterone in adult male rats, which may be due to its direct effect on Leydig cells or indirectly through its effect on pituitary and hypothalamus.

  2. Glial reaction in visual centers upon whole-body combined irradiation with microwaves and x-radiation

    International Nuclear Information System (INIS)

    Logvinov, S.V.

    1989-01-01

    A single whole-body preirradiation with thermogenous microwaves modifies the dynamics of the glial reactions of visual centers of ginea pigs induced by median lethal X-radiation doses. A combination of the two factors products the synergistic effect, estimated by the degree of alteration of astrocytes and oligodendroglyocytes at early times after exposure, leads to early activation of microglia, and reduces radiation-induced alterations in glia at later times (25-60 days)

  3. To manage the ionizing radiations risks

    International Nuclear Information System (INIS)

    Metivier, H.; Romerio, F.

    2000-01-01

    Mister Romerio's work tackles the problem of controversy revealed by the experts in the field of estimation and management of ionizing radiations risks. The author describes the three paradigms at the base of the debate: the relationship without threshold (typified by the ICRP and its adepts), these ones that think that low doses risks are overestimated ( Medicine Academia for example) or that ones that believe that dose limits are too severe and induce unwarranted costs; then that ones that think that these risks are under-estimated and limits should be more reduced, even stop these practices that lead to public exposure to ionizing radiations. The author details the uncertainties about the risk estimations, refreshes the knowledge in radiation protection with the explanations of the different paradigms. At the end a table summarize the positions of the three paradigms

  4. Risks associated with radiation: General information

    International Nuclear Information System (INIS)

    Baris, D.; Pomroy, C.; Chatterjee, R.M.

    1995-07-01

    Employers have a general responsibility to explain occupational risks to their workers. This document has been prepared to assist employers in this task. Employers should inform their workers about radiation risks associated with their work by: identifying the source(s) of radiation exposure; identifying the risk of health effects due to exposure to these sources, including the risk to the embryo and foetus of pregnant female workers; explaining the relationship between regulatory dose limits and the risk of health effects; and, explaining a worker's personal dose in terms of risk. This publication provides basic information on these subjects in a form that is clear and easy to understand. For further information, a list of suggested additional reading is included at the end of the text. (author). 15 refs., 5 tabs., 3 figs

  5. Risks associated with radiation: General information

    Energy Technology Data Exchange (ETDEWEB)

    Baris, D; Pomroy, C; Chatterjee, R M

    1995-07-01

    Employers have a general responsibility to explain occupational risks to their workers. This document has been prepared to assist employers in this task. Employers should inform their workers about radiation risks associated with their work by: identifying the source(s) of radiation exposure; identifying the risk of health effects due to exposure to these sources, including the risk to the embryo and foetus of pregnant female workers; explaining the relationship between regulatory dose limits and the risk of health effects; and, explaining a worker`s personal dose in terms of risk. This publication provides basic information on these subjects in a form that is clear and easy to understand. For further information, a list of suggested additional reading is included at the end of the text. (author). 15 refs., 5 tabs., 3 figs.

  6. The cosmic microwave background radiation and the dog in the night

    Science.gov (United States)

    Partridge, R. B.

    The spectrum and angular distribution of the cosmic microwave background radiation (CMBR) are characterized, summarizing the results of recent observations. The emphasis is on null experiments which have established upper limits on anisotropies and spectral distortion. The benefits and pitfalls of null experiments are recalled; the generally observed isotropy of the CMBR and the possible ways anisotropy could be introduced are discussed; and data from searches for anisotropy on arcmin, degree, and arcsec scales are presented in tables and graphs and analyzed in detail. The observed CMBR spectrum is shown to be generally consistent with a black body at temperature 2.75 + or - 0.04 K at wavelengths from 0.1 to 12 cm, although some recent data (Kogut et al., 1988) seem to confirm the presence of distortion due to the Suniaev-Zel'dovich effect at wavelength 3.0 cm.

  7. Magnetic tunnel structures: Transport properties controlled by bias, magnetic field, and microwave and optical radiation

    International Nuclear Information System (INIS)

    Volkov, N.V.; Eremin, E.V.; Tarasov, A.S.; Rautskii, M.V.; Varnakov, S.N.; Ovchinnikov, S.G.; Patrin, G.S.

    2012-01-01

    Different phenomena that give rise to a spin-polarized current in some systems with magnetic tunnel junctions are considered. In a manganite-based magnetic tunnel structure in CIP geometry, the effect of current-channel switching was observed, which causes bias-driven magnetoresistance, rf rectification, and the photoelectric effect. The second system under study, ferromagnetic/insulator/semiconductor, exhibits the features of the transport properties in CIP geometry that are also related to the current-channel switching effect. The described properties can be controlled by a bias, a magnetic field, and optical radiation. At last, the third system under consideration is a cooperative assembly of magnetic tunnel junctions. This system exhibits tunnel magnetoresistance and the magnetic-field-driven microwave detection effect.

  8. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  9. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    Science.gov (United States)

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  10. Hot gas in clusters of galaxies, cosmic microwave background radiation and cosmology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Presence of the hot (kTe ~ 3 - 10 KeV) rarefied gas in the clusters of galaxies (most massive gravitationally bound objects in the Universe) leads to the appearance of  "shadows"  in the angular distribution of the Cosmic Microwave Background (CMB) Radiation and permits to measure the peculiar velocities of these clusters relative to the unique coordinate frame where CMB is isotropic. I plan to describe the physics leading to these observational effects. Planck spacecraft, ground based South Pole and Atacama Cosmology Telescopes discovered recently more than two thousand of unknown before Clusters of Galaxies at high redshifts detecting these "shadows" and traces of kinematic effect, demonstrating the correlation of the hot gas velocities with mass concentrations on large scales. Giant ALMA interferometer in Atacama desert resolved recently strong shocks between merging clusters of galaxies. Newly discovered clusters of galaxies permit to study the rate of growth of the large scale structur...

  11. Athermal alterations in the structure in the canalicular membrane and ATPase activity induced by thermal levels of microwave radiation

    International Nuclear Information System (INIS)

    Phelan, A.M.; Neubauer, C.F.; Timm, R.; Neirenberg, J.; Lange, D.G.

    1994-01-01

    Sprague-Dawley rats (200-250 g) were exposed 30 min/day for 4 days to thermogenic levels (rectal temperature increase of 2.2 degrees C) of microwave radiation [2.45 GHz, 80 mW/cm 2 , continuous-wave mode (CW)] or to a radiant heat source resulting in an equivalent increase in body temperature of 2.2 degrees C. On the fifth day the animals were sacrificed and their livers removed. The canalicular membranes were isolated and evaluated for adenosinetriphosphatase (ATPase) activity, total fatty acid composition and membrane fluidity characteristics. Mg ++ -ATPase activity (V max ) decreased by 48.5% in the group exposed to microwave radiation, with no significant change in the group exposed to radiant heat. The decrease in Mg ++ -ATPase was partially compensated by a concomitant increase in Na + /K + -ATPase activity (170% increase in V max over control) in animals exposed to microwave radiation, while no change occurred in the group exposed to radiant heat. This alteration in ATPase activity in the group exposed to microwave radiation is associated with a large decrease in the ratio of saturated to unsaturated fatty acids. Conversely, the group exposed to radiant heat had an increase in the ratio of saturated to unsaturated fatty acids. The most dramatic changes were found in the levels of arachidonic acid. Finally, the electron paramagnetic resonance (EPR) spin label technique used to measure the fluidity of the canalicular membranes of the animals in the three groups (sham, microwave radiation and radiant heat) indicated that the results were different in the three groups, reflecting the changes found in their fatty acid composition. The physiological response to open-quotes equivalentclose quotes thermal loads in rats is expressed differently for different types of energy sources. Possible mechanisms producing these divergent thermogenic responses are discussed. 34 refs., 3 figs., 2 tabs

  12. Radiation risks for patients having X rays

    International Nuclear Information System (INIS)

    Hale, J.; Thomas, J.W.

    1985-01-01

    In addition to radiation from naturally occurring radioactive materials and cosmic rays, individuals in developed countries receive radiation doses to bone marrow and gonads from the medical diagnostic use of X rays. A brief discussion of radiation epidemiology shows that deleterious effects are low even when doses are high. The concept of acceptable risk is introduced to help evaluate the small, but still existent, risks of radiation dose. Examples of bone marrow and gonadal doses for representative X-ray examinations are presented along with the current best estimates, per unit of X-ray dose, of the induction of leukemia or of genetic harm. The risk to the patient from an examination can then be compared with the normal risk of mortality from leukemia or of the occurrence of genetic defects. The risk increase is found to be very low. The risks to unborn children from radiographic examinations are also discussed. The benefit to the patient from information obtained from the examination must be balanced against the small risks

  13. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Basic Science Research Institute, Ewha Womans University, Seoul 03760 (Korea, Republic of); Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-10-20

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  14. Detection of hot gas in clusters of galaxies by observation of the microwave background radiation

    International Nuclear Information System (INIS)

    Gull, S.F.; Northover, K.J.E.

    1976-01-01

    It is stated that satellite observations have indicated that many rich clusters are powerful sources of x-rays. This has been interpreted as due to either thermal bremsstrahlung from very hot gas filling the clusters or as inverse Compton scattering of photons by relativistic electrons. Spectral evidence appears to favour a thermal origin for the radiation, implying the existence of large amounts of hot gas. This gas may be a major constituent of the Universe, and independent confirmation of its existence is very important. Observations are here reported of small diminutions in the cosmic microwave background radiation in the direction of several rich clusters of galaxies. This is considered to confirm the existence of large amounts of very hot gas in these clusters and to indicate that the x-radiation is thermal bremsstrahlung and not inverse Compton emission. The observations were made in 1975/1976 using the 25m. telescope at the SRC Appleton Laboratory at a frequency of 10.6 GH2, and details are given of the technique employed. (U.K.)

  15. Bioeffects and health risks of low-level exposures to radiofrequency and microwave fields-scientific facts and public concerns

    International Nuclear Information System (INIS)

    Szmigielski, Stanislaw

    2001-01-01

    Radiofrequency (RF) and microwave (MW) radiations, parts of the electromagnetic spectrum at wave frequencies of 0.1 - 300 MHz and 300 MHz - 300 GHz, respectively, can penetrate human tissues and exert various bioeffects at relatively low field power densities. Exposure of the general public to RF/MW radiation in the environment is generally below intensities which are considered as responsible for evoking such bioeffects. Use of mobile phones (MP) considerably increased local exposure to 900 or 1800 MHz MWs and raised concerns of the risk of brain tumors and other neoplasms of the head. At present the experimental and epidemiological bulk of evidence is too limited for valid assessment of the risks. Health consequences of long-term use of MPs are not known in detail, but available data indicate that development of non-specific health symptoms is possible, at least in 'MW-hypersensitive' subjects. In contrast to cellular terminals, which emit locally relatively high intensity MW fields, transmitting antennas and base stations contribute to MW environmental contaminations only with a small portion of the energy and do not pose established health risks. Two available epidemiological studies of brain cancer morbidity in MP users did not confirm an increased risk for all types of neoplasms, but unexplained excesses of particular types and/or locations of the tumors has been reported. Experimental investigations revealed the possibility of epigenetic activity of certain MW exposures (frequently limited to particular frequencies and/or modulations of the carrier wave), but there exists no satisfactory support from epidemiological studies for the increased cancer risk in MW-exposed subjects. However, there exist single epidemiological studies which indicate increased mortality of certain types of neoplasms in workers exposed to microwave radiation. As an example, the multiyear study of cancer morbidity in Polish military personnel exposed to 2 - 10 W/m2 will be presented

  16. Radiation and risk in physics education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1990-01-01

    The study reported in this thesis deals with physics education, particularly with the teaching and learning of radioactivity and ionizing radiation. It is a follow up of earlier research and development work in the Dutch Physics Curriculum Development Project (PLON) on a unit called Ionizing Radiation. The central theme of this unit was the acceptability of the risks of ionizing radiation. Preliminary evaluation of the effectiveness of the PLON-unit showed that pupils appear to have lay-ideas which seem to be resistant to change. In this study the nature and persistence of these lay-ideas have been explored and a set of recommendations have been developed for writing curriculum materials and for teaching strategies, for physics lessons in secondary high school, in order to promote thoughtful risk analysis and assessment as regards applications of ionizing radiation. (H.W.). 225 refs.; 3 figs.; 41 tabs

  17. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  18. Epidemiology and risk assessment for radiation

    International Nuclear Information System (INIS)

    Badwe, R.A.

    2014-01-01

    The hazard and exposures from radiation are known with reasonable accuracy. However, at 'low levels' uncertainty persists as to whether the dose response relationship is linear and whether there is a dose threshold, below which there is no risk. Some have proposed that 'low' exposures to radiation may be beneficial, a hypothesis referred to as 'hormesis'. Over recent decades, various expert groups have adopted linear no-threshold dose-response models for radiation and cancer, based on review of epidemiological and biological evidence. The unexpected epidemic of thyroid cancer among children following the Chernobyl disaster was noticed. The research with epidemiological data and knowledge of the radionuclides to which the children were exposed is needed. Currently a debate concerning potential risks of high frequency electromagnetic radiation from mobile phones illustrates another need for further research

  19. Risk of cardiovascular disease following radiation exposure

    International Nuclear Information System (INIS)

    Trivedi, A.; Vlahovich, S.; Cornett, R.J.

    2001-01-01

    Excess radiation-induced cardiac mortalities have been reported among radiotherapy patients. Many case reports describe the occurrence of atherosclerosis following radiotherapy for Hodgkin's disease and breast cancer. Some case reports describe the cerebral infarction following radiotherapy to neck region, and of peripheral vascular disease of the lower extremities following radiotherapy to the pelvic region. The association of atomic bomb radiation and cardiovascular disease has been examined recently by incidence studies and prevalence studies of various endpoints of atherosclerosis; all endpoints indicated an increase of cardiovascular disease in the exposed group. It is almost certain that the cardiovascular disease is higher among atomic bomb survivors. However, since a heavy exposure of 10-40 Gy is delivered in radiotherapy and the bomb survivors were exposed to radiation at high dose and dose-rate, the question is whether the results can be extrapolated to individuals exposed to lower levels of radiation. Some recent epidemiological studies on occupationally exposed workers and population living near Chernobyl have provided the evidence for cardiovascular disease being a significant late effect at relatively low doses of radiation. However, the issue of non-cancer mortality from radiation is complicated by lack of adequate information on doses, and many other confounding factors (e.g., smoking habits or socio-economic status). This presentation will evaluate possible radiobiological mechanisms for radiation-induced cardiovascular disease, and will address its relevance to radiation protection management at low doses and what the impact might be on future radiation risk assessments. (authors)

  20. Radiation risk management at DOE accelerator facilities

    International Nuclear Information System (INIS)

    Dyck, O.B. van.

    1997-01-01

    The DOE accelerator contractors have been discussing among themselves and with the Department how to improve radiation safety risk management. This activity-how to assure prevention of unplanned high exposures-is separate from normal exposure management, which historically has been quite successful. The ad-hoc Committee on the Accelerator Safety Order and Guidance [CASOG], formed by the Accelerator Section of the HPS, has proposed a risk- based approach, which will be discussed. Concepts involved are risk quantification and comparison (including with non-radiation risk), passive and active (reacting) protection systems, and probabilistic analysis. Different models of risk management will be presented, and the changing regulatory environment will also be discussed

  1. Comparison of radiation and chemical risks

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1988-01-01

    Injury to living cells is caused by mechanisms which in many cases are similar for radiation and chemicals. It is thus not surprising that radiation and many chemicals can cause similar biological effects, e.g. cancer, fetal injury and hereditary disease. Both radiation and chemicals are always found in our environment. One agent may strengthen or weaken the effect of another, be it radiation in combination with chemicals or one chemical with another. The implications of such synergistic or antagonistic effects are discussed. Intricate mechanisms help the body to defend itself against threats to health from radiation and chemicals, even against cancer risks. In a strategy for health, it might be worth to exploit actively these defense mechanisms, in parallel with decreasing the exposures. On particular interest are the large exposures from commonly known sources such as smoking, sun tanning and high fat contents of food. (author)

  2. Radiation risks : the ethics of health protection

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1988-01-01

    Since the inception of commercial uses of nuclear technology, radiation protection standards established by regulatory agencies have reflected moral concerns based on two assumptions: (1) that the linear, zero-threshold hypothesis derives from scientific data in radiobiology which are virtually conclusive; (2) it is morally better for public health protection to assume that any radiation exposure, no matter how small, has some harmful effect which can and ought to be prevented. In the past few years these beliefs and related assumptions have received closer scrutiny, revealing hidden reasons for regulatory selection of radiation risks as objects of paramount ethical concern, with the result that greater risks to health have escaped comparison and mitigation. Based on this scrutiny this brief paper explores two questions: Are presupposed assumptions ethically justified on grounds of scientific evidence and ethical consistency? and should moral objections claiming to invalidate comparative risk assessments be accepted or rejected?

  3. Radiation in perspective applications, risks and protection

    International Nuclear Information System (INIS)

    1997-01-01

    Everyone on earth is exposed to natural radiation. Radiation produced artificially is no different, either in kind or in effect, from that originating naturally. Although radiation has many beneficial applications, throughout medicine, industry and research, it can be harmful to human beings who must be adequately protected from unnecessary or excessive exposures. For this purpose, a thorough system of international principles and standards and stringent national legislations have been put in place. Yet radiation continues to be the subject of much public fear and controversy. This clearly written report, intended for the nonspecialist reader, aims to contribute to an enlightened debate on this subject by presenting the most up-to-date and authoritative material on sources, uses and affects of radiation, and ways in which people are protected from its risks. It discusses the development of radiation protection measures, its internationally agreed principles, and also addresses social and economic issues such as ethical questions, risk perceptions, risk comparisons, public participation in decision-making and the cost of protection. (author)

  4. Radiation risks -a possible teaching topic

    International Nuclear Information System (INIS)

    Howes, R.W.

    1975-01-01

    Radiation risks has been the subject of hot debate since 1969 due in main to the energy crisis and the switch to nuclear power. Topics of this debate including; the controversy concerned with the late radiobiological effects of low level radiation, the social responsibility of modern scientists, the sometimes acrimonious discussion which has taken place over many years concerning radiation standards, and present day misgivings over the environmental aspect of the nuclear power programme, are discussed and suggestions are made of ways in which the topics could be introduced into teaching courses. (U.K.)

  5. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Kargbo, A.A

    2012-04-01

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  6. Radiation risks and benefits: politics and morality

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1983-01-01

    The bioethical framework from which moral reasoning concerning nuclear technology has been derived is both seriously flawed and conceptually inadequate. The reasons are examined and are arranged in response to three questions. First, what is the status of alleged scientific evidence from which moral conclusions about the unacceptability of man-made radiation exposures are derived. Secondly, what criticisms of risk assessment reasoning are pertinent to ethical reflection. Finally, what revisions in an ethical framework are necessary if risk estimates of low-dose radiation exposure are to be conducted properly

  7. Radiation risk assessment of reprocessed uranium

    International Nuclear Information System (INIS)

    Cardenas, Hugo R.; Perez, Aldo E.; Luna, Manuel F.; Becerra, Fabian A.

    1999-01-01

    Reprocessed uranium contains 232 U, which is not found in nature, as well as 234 U which is present in higher proportion than in natural uranium. Both isotopes modify the radiological properties of the material. The paper evaluates the increase of the internal and external radiation risk on the base of experimental data and theoretical calculations. It also suggests measures to be taken in the production of fuel elements with slightly enriched uranium.The radiation risk of reprocessed uranium is directly proportional to the content of 232 U and 234 U as well as to the aging time of the material

  8. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  9. Effect of Leaked Radiation from Microwave Oven on Bone Marrow of Male Rats in Pre and Post Pubertal Stage

    Directory of Open Access Journals (Sweden)

    G Jelodar

    2011-01-01

    Full Text Available Introduction: Increasing hematological diseases along with increased use of microwaves in different systems proposed possible correlation between them. Age of exposure to wave is also an important factor. This study was conducted to evaluate the effect of radiation leakaged from microwave oven on hemopoitic bone marrow cells at pre and post pubertal. Methods: Fourteen male mature (2 months old and 14 male immature rats(one month old were randomly divided in to four groups (control and test. Test groups were exposed, three times a day each time 30 min for 60 days, to microwaves produced by microwave oven. After sixty days, animals were sacrified and bone marrow samples were collected from femural bones. Percent of variose cells type and their morphology were evaluated in 500 cells of each smear. Results: exposure to microwave did not exert visible morphological alteration. In the immature experimental group significant decrease in percent of basophilic rubricyte, polychromatic rubricyte, meta rubricyte and all the erythroid cell types observed(P<0.05, whereas, meta myelocyte, notrophilic band, total myeloid cell types and prolifrative cells, other cell types and the myeloid/erythroid ratio significantly increased(P<0.05. In the mature group, however, a significant decrease in percent of meta rubricyte and myelocyte cells observed(P<0.05, although prolifrative cells and all other cell types were significantly increasing in this group. Conclusion: In conclusion, the radiation leaked from microwave oven in the experimental conditions had no effect on the morphology of hemopoitic bone marrow cells, though the number of these cells was altered especially in immature group.

  10. Emerging Radiation Health-Risk Mitigation Technologies

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-01-01

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods

  11. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing

    Science.gov (United States)

    Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre

    2017-01-01

    This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow

  12. Effect of the Great Attractor on the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, E [Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics; Gorski, K M [Los Alamos National Lab., NM (USA); Dekel, A [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1990-06-07

    ANISOTROPY in the cosmic microwave background radiation (CMB) is expected as a result of fluctuations in gravitational potential caused by large-scale structure in the Universe. The background radiation is redshifted as it climbs out of gravitational wells. Here we present a map of the anisotropy in CMB temperature {Delta}T/T of our region of the Universe as viewed by a distant observer, predicted on the basis of the gravitational potential field. We calculate this field in the vicinity of the Local Group of galaxies from the observed peculiar (non-Hubble) velocities of galaxies, under the assumption that the peculiar motions are induced by gravity. If the cosmological density parameter {Omega} is 1, the gravitational potential field of the Great Attractor and surrounding regions produces a maximum Sachs-Wolfe anisotropy of {Delta}T/T=(1.7{plus minus}0.3) x 10{sup -5} on an angular scale of 1deg. Doppler and adiabatic contributions to this anisotropy are expected to be somewhat larger. If similar fluctuations in the gravitational potential are present elsewhere in the Universe, the anisotropy present when the CMB was last scattered should be visible from the Earth, and should be detectable in current experiments. A fundamental test of whether gravity is responsible for the generation of structure in the Universe can be made by looking for the imprint in the CMB of deep potential wells similar to those found in our neighbourhood, (author).

  13. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  14. Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating.

    Science.gov (United States)

    González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E

    2018-05-15

    The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Effect of Microwave Radiation on Prickly Paddy Melon (Cucumis myriocarpus

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available The growing list of herbicide-resistant biotypes and environmental concerns about chemical use has prompted interest in alternative methods of managing weeds. This study explored the effect of microwave energy on paddy melon (Cucumis myriocarpus plants, fruits, and seeds. Microwave treatment killed paddy melon plants and seeds. Stem rupture due to internal steam explosions often occurred after the first few seconds of microwave treatment when a small aperture antenna was used to apply the microwave energy. The half lethal microwave energy dose for plants was 145 J/cm2; however, a dose of at least 422 J/cm2 was needed to kill seeds. This study demonstrated that a strategic burst of intense microwave energy, focused onto the stem of the plant is as effective as applying microwave energy to the whole plant, but uses much less energy.

  16. What Are the Radiation Risks from CT?

    Science.gov (United States)

    ... doses. Some scientists believe that low doses of radiation do not increase the risk of developing cancer at all, but this is a minority view. More in Medical X-ray Imaging Radiography Computed Tomography (CT) Dental Cone-beam Computed Tomography Fluoroscopy Mammography Page Last ...

  17. Influence of microwave radiation on the post harvest decay and quality of peach fruits in cold storage

    International Nuclear Information System (INIS)

    Azarpajoun, E.; Nikkhah, SH.

    2009-01-01

    This research has been carried out in Khorasan Agricultural and Natural Resources research center to study the effect of microwave radiation on storage time and control of peach fruit rot. Peach cultivars (Alberta, Red, White and Green of Mashad) were harvested in the first and second decades of June, July and September, sorted and stored at 4°C for 12 hours. Then fruits were treated with a Microwave with the Frequency at 2450 MHZ and two intensities, low (200 w) and high (800 w) for 30, 60 and 120 seconds, the treated and control fruits were laid on in plastic trays, packed in perforated polyethylene bags and stored in cold storage (0°C and 90-95% relative humidity) for 2 months. The qualitative tests including fruit rot, total soluble solids, titrable acidity, weight loss, firmness and color were assayed after 15, 30, 45 and 60 days. Sensory attributes were measured after 60 days storage. The experimental design was factorial in frame of completely randomized design. Multiple range test (Duncan) were used to compare the means. The results showed that treating the fruit with microwave decreased the fruit rot and increased pH, flesh firmness and total soluble solids of treated peach. Microwave radiation with the 800w for 60 seconds maintained the qualitative characteristics of fruits. Panel test confirmed these results. (author)

  18. The DMRT-ML Model: Numerical Simulations of the Microwave Emission of Snowpacks Based on the Dense Media Radiative Transfer Theory

    Science.gov (United States)

    Brucker, Ludovic; Picard, Ghislain; Roy, Alexandre; Dupont, Florent; Fily, Michel; Royer, Alain

    2014-01-01

    Microwave radiometer observations have been used to retrieve snow depth and snow water equivalent on both land and sea ice, snow accumulation on ice sheets, melt events, snow temperature, and snow grain size. Modeling the microwave emission from snow and ice physical properties is crucial to improve the quality of these retrievals. It also is crucial to improve our understanding of the radiative transfer processes within the snow cover, and the snow properties most relevant in microwave remote sensing. Our objective is to present a recent microwave emission model and its validation. The model is named DMRT-ML (DMRT Multi-Layer), and is available at http:lgge.osug.frpicarddmrtml.

  19. Risk assessment perspectives in radiation protection

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1980-01-01

    Risk evaluation involves a) optimization, where collective dose is reduced by application of controls, b) justification, where benefits and costs are balanced, and c) application of dose limits. Justification may be determined in general by examining the difference between the new practice and a reference condition in the form of a diference equation. This equation is expanded to take into account other risks in addition to radiation risks. The relative potencies of some toxic chemicals are compared with those of some isotopes. Nuclear and waste disposal accidents are also considered. It is concluded that a probablistic analysis may be useful for resolving the high level radioactive waste question but not for nuclear accidents. However, in the latter case, relative risk models may provide insight into the causes of risk and where resources for reducing the risk may be best spent. (H.K.)

  20. Radiation induced cancer risk, detriment and radiation protection

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1992-01-01

    Recommendations on radiation protection limits for workers and for the public depend mainly on the total health detriment estimated to be the result of low dose ionizing radiation exposure. This detriment includes the probability of a fatal cancer, an allowance for the morbidity due to non-fatal cancer and the probability of severe hereditary effects in succeeding generations. In a population of all ages, special effects on the fetus particularly the risk of mental retardation at defined gestational ages, should also be included. Among these components of detriment after low doses, the risk of fatal cancer is the largest and most important. The estimates of fatal cancer risk used by ICRP in the 1990 recommendations were derived almost exclusively from the study of the Japanese survivors of the atomic bombs of 1945. How good are these estimates? Uncertainties associated with them, apart from those due to limitations in epidemiological observation and dosimetry, are principally those due to projection forward in time and extrapolation from high dose and dose rate to low dose and dose rate, each of which could after the estimate by a factor of 2 or so. Recent estimates of risk of cancer derived directly from low dose studies are specific only within very broad ranges of risk. Nevertheless, such studies are important as confirmation or otherwise of the estimates derived from the atomic bomb survivors. Recent U.S. British and Russian studies are examined in this light. (author)

  1. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  2. A map of the cosmic microwave background radiation from the Wilkinson Microwave Anisotropy Probe (WMAP), showing the large-scale fluctuations (the quadrupole and octopole) isolated by an analysis done partly by theorists at CERN.

    CERN Multimedia

    2004-01-01

    A recent analysis, in part by theorists working at CERN, suggests a new view of the cosmic microwave background radiation. It seems the solar system, rather than the universe, causes the radiation's large-scale fluctuations, similar to the bass in a song.

  3. Implications of radiation risk for practical dosimetry

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1984-01-01

    Radiobiological experiments with animals and cells have led to an expectation that the risks of cancer and hereditary effects are reduced at low doses and low dose rates of low LET radiation. Risk estimates derived from human exposures at high doses and dose rates usually contain an allowance for low dose effects in comparison with high dose effects, but no allowance may have been made for low dose rate effects. Although there are reasons for thinking that leukaemia risks may possibly have been underestimated, the total cancer risk assumed by ICRP for occupational exposures is reasonably realistic. For practical dosimetry the primary dose concepts and limits have to be translated into secondary quantities that are capable of practical realisation and measurement, and which will provide a stable and robust system of metrology. If the ICRP risk assumptions are approximately correct, it is extremely unlikely that epidemiological studies of occupational exposures will detect the influence of radiation. Elaboration of dosimetry and dose recording for epidemiological purposes is therefore unjustified except possibly in relation to differences between high and low LET radiations. (author)

  4. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  5. Safety assessment of RF and microwave radiation emitted by the mobile telephone base station (MTBS) in Malaysia: experience and challenge

    International Nuclear Information System (INIS)

    Roha Tukimin; Rozaimah Abd Rahim; Mohamad Amirul Nizam; Mohd Yusof Mohd Ali

    2007-01-01

    Non-ionising radiation (NIR) is known to be hazardous if the amount received is excessive. It is a fact that NIR, including extremely low frequency (ELF) electromagnetic fields, radiofrequency (RF) and microwave radiation can be found almost everywhere generated by both natural and man-made source. This is due to increase in demand for telecommunication and wireless technology which is become very important and as part of our lives. However, the widespread of the relevant technology contributed more NIR man-made sources exposure to the human. Due to public concern their potential of causing such health hazard, members of public and companies approached and request NIR Group of Nuclear Malaysia to carry out surveys and safety assessments of radiofrequency and microwave radiation emitted by the mobile telephone base station (MTBS) erected near the residential area or installed on the rooftop of the commercial building. Objective of the survey was to assess the presence of radiofrequency and microwave radiation and to identify radiation level which may lead to significant personnel exposure. Findings of the survey was compared to the standard guidelines issued by Malaysian Communication and Multimedia Commission (MCMC) and International Committee on Non-Ionising Radiation Protection (ICNIRP). This paper highlights the works that had been carried out by NIR Group of Nuclear Malaysia from 1997 to 2007. We will share the experience and challenge in carried out the NIR safety assessment at mobile telephone base station. Results of the assessment work will be used to develop non-ionising radiation database for future reference in Malaysia. (Author)

  6. Comparison of 864 and 935 MHz microwave radiation effects on cell culture

    International Nuclear Information System (INIS)

    Pavicic, I.; Trosic, I.; Sarolic, A.

    2005-01-01

    The aim of our study was to evaluate and compare the effect of 864 and 935 MHz microwave radiation on proliferation, colony forming and viability of Chinese hamster lung cells, cell line V79. Cell cultures were exposed both to the 864 MHz microwave field in transversal electromagnetic mode cell (TEM-cell) and to the 935 MHz field in Gigahertz transversal electromagnetic mode cell (GTEM-cell) for 1, 2 and 3 hours. Philips PM 5508 generator connected with a signal amplifier generated the frequency of 864 MHz, whereas Hewlett Packard HP8657A signal generator was used to generate the frequency of 935 MHz. The average specific absorption rate (SAR) was 0.08 W/kg for 864 MHz and 0.12 W/kg for 935 MHz. To determine the cell growth, V79 cells were plated in the concentration of 1x10 4 cells per milliliter of nutrient medium. Cells were cultured in a humidified atmosphere at 37 degrees of C in 5% CO 2 . Cell proliferation was determined by cell counts for each hour of exposure during the five post-exposure days. To identify colony-forming ability, cells were cultivated in the concentration of 40 cells/mL of medium and incubated as described above. Colony-forming ability was assessed for each exposure time by colony count on post-exposure day 7. Trypan blue exclusion test was used to determine cell viability. On post-exposure day 3, the growth curve of 864 MHz irradiated cells showed a significant decrease (p less than 0.05) after 2 and 3 hours of exposure in comparison with control cells. Cells exposed to 935 MHz radiation showed a significant decrease (p less than 0.05) after 3 hours of exposure on post-exposure day 3. Both the colony-forming ability and viability of 864 MHz and 935 MHz exposed cells did not significantly differ from matched control cells. In conclusion, both applied RF/MW fields have shown similar effects on cell culture growth, colony forming and cell viability of the V79 cell line.(author)

  7. The importance of radiation risk assessment

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1979-01-01

    In its Publication 26, ICRP recommends a system of radiation dose limitation that is designed to ensure adequate protection from the harmful effects of radiation in conditions both of occupational and of environmental exposure. Clearly, however, no such system can be recommended or accepted as sufficiently safe unless the risks of the resultant exposures have been quantitatively assessed. Publication 26 reflects the increasing quantitative information that is now available on (a) carcinogenic risks of radiation in man, both from exposure of the whole body and from that of individual organs, at moderate exposures; (b) theoretical bases for inference of risk, from moderate to lower exposures; (c) genetic risks in the mouse, and inferences from such risks to those in man; (d) the dose equivalent levels at which certain non-stochastic effects may be induced. Despite a number of uncertainties, substantially improved estimates can therefore be made of the levels of safety that are likely to be achieved by observing the Commission's recommended dose limits, and the associated system of limitation of exposures to levels as low as reasonably achievable below these limits. Both for occupational exposure and for the exposure of the members of the public, these estimates are expressed in Publication 26 in terms of the risk of inducing fatal malignancies or serious hereditary ill health. These frequencies are compared with those of occupational fatalities in other industries or with accidental fatalities amongst the general public. The comparison between harm from radiation and from other agents in different industries is extended in ICRP-27 (on ''Problems Involved in Developing an Index of Harm'') in a review of the time lost through occupational diseases and non-fatal accidents, as well as from fatal diseases and accidents, so that the levels of safety achievable by the Commission's recommendations can be reviewed in the general perspective of occupational safety. (author)

  8. Mammography and radiation risk; Mammographie und Strahlenrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. [Hamburg Univ. (Germany). Inst. fuer Biophysik und Strahlenbiologie

    1998-10-01

    Breast cancer is the most frequent malignant neoplasia among women in Germany. The use of mammography as the most relevant diagnostic procedure has increased rapidly over the last decade. Radiation risks associated with mammography may be estimated from the results of numerous epidemiological studies providing risk coefficients for breast cancer in relation to age at exposure. Various calculations can be performed using the risk coefficients. For instance, a single mammography examination (bilateral, two views of each breast) of a women aged 45 may enhance the risk of developing breast cancer during her lifetime numerically from about 12% of 12.0036%. This increase in risk is lower by a factor of 3,300 as compared to the risk of developing breast cancer in the absence of radiation exposure. At the age of 40 or more, the benefit of mammography exceeds the radiation risk by a factor of about 100. At higher ages this factor increases further. Finally, the dualism of individual risk and collective risk is considered. It is shown that the individual risk of a patient, even after multiple mammography examinations, is vanishingly small. Nevertheless, the basic principle of minimising radiation exposure must be followed to keep the collective risk in the total population as low as reasonably achievable. (orig.) [Deutsch] Das Mammakarzinom ist in Deutschland die haeufigste Krebserkrankung der Frau, und entsprechend oft wird die Mammographie als das derzeit wichtigste Diagnoseverfahren eingesetzt. Zur Beurteilung des mit einer mammographischen Untersuchung verbundenen Strahlenrisikos liegen die Resultate einer groesseren Anzahl strahlenepidemiologischer Studien vor. Diese liefern den Risikokoeffizienten fuer Brustkrebs in Abhaengigkeit vom Lebensalter bei Strahlenexposition und ermoeglichen somit die Berechnung des altersabhaengigen Strahlenrisikos. Beispielsweise wird durch eine einmalige Mammographie-Untersuchung (bilateral, je zwei Aufnahmen in zwei Ebenen) bei einer 45

  9. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  10. Radiation characteristics of a coaxial waveguide with eccentric inner conductor for application in hyperthermia and microwave reflex therapy

    Directory of Open Access Journals (Sweden)

    R. Herschmann

    2007-06-01

    Full Text Available This paper examines the radiation characteristics of a contact emitter conceived for application in hyperthermia and microwave reflex therapy. It is important to analyse the distribution of power density in the near field area, as the radiator's therapeutic sphere of activity is localized here. The contact emitter is a coaxial radiator with an eccentric course of the inner conductor. According to Huygens principle, a theoretical view of the near field radiation characteristics is made by determining the equivalent current densities in the emitter aperture. It is shown that by an eccentric shift of the inner conductor, an almost isotropic near field radiation pattern and power density can be achieved. For this, the electromagnetic field in the emitter aperture is determined by using a Bipolar coordinate system. This calculation considers only the fundamental TEM mode of the contact emitter. Besides the theoretical results near and far fields are simulated using the programme system Ansoft HFSS.

  11. Risk approaches in setting radiation standards

    International Nuclear Information System (INIS)

    Whipple, C.

    1984-01-01

    This paper discusses efforts to increase the similarity of risk regulation approaches for radiation and chemical carcinogens. The risk assessment process in both cases involves the same controversy over the extrapolation from high to low doses and dose rates, and in both cases the boundaries between science and policy in risk assessment are indistinct. Three basic considerations are presented to approach policy questions: the economic efficiency of the regulatory approach, the degree of residual risk, and the technical opportunities for risk control. It is the author's opinion that if an agency can show that its standard-setting policies are consistent with those which have achieved political and judicial acceptance in other contexts, the greater the predictability of the regulatory process and the stability of this process

  12. Radiation risks to the developing nervous system

    International Nuclear Information System (INIS)

    Kriegel, H.; Schmahl, W.; Stieve, F.E.; Gerber, G.B.

    1986-01-01

    A symposium dealing with 'Radiation Risks to the Developing Nervous System' held at Neuherberg, June 18-20, 1985 was organised by the Radiation Protection Programme of the Commission of the European Communities and the Gesellschaft fuer Strahlen- und Umweltforschung mbH. The proceedings of this symposium present up-to-date information on the development of the nervous system and the modifications caused by prenatal radiation there upon. A large part of the proceedings is devoted to the consequences of prenatal irradiation in experimental animals with respect to alterations in morphology, biochemistry and behaviour, to the influence of dose, dose rate and radiation quality and to the question whether damage of the brain can arise from a synergistic action of radiation together with other agents. Since animal models for damage to the human central nervous system have inherent short-comings due to the differences in structure, complexity and development it is discussed how experimental studies could be applied to the human situation. The most recent data on persons exposed in utero at Hiroshima and Nagasaki are reviewed. A round table discussion, published in full, analyses all this information with a view to radiation protection, and defines the areas where future studies are needed. Separate abstracts were prepared for papers in these proceedings. (orig./MG)

  13. Environmental radiation standards and risk limitation

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1987-01-01

    The Environmental Protection Agency and Nuclear Regulatory Commission have established environmental radiation standards for specific practices which correspond to limits on risk to the public that vary by several orders of magnitude and often are much less than radiation risks that are essentially unregulated, e.g., risks from radon in homes. This paper discusses a proposed framework for environmental radiation standards that would improve the correspondence with limitation of risk. This framework includes the use of limits on annual effective dose equivalent averaged over a lifetime, rather than limits on dose equivalent to whole body or any organ for each year of exposure, and consideration of exposures of younger age groups as well as adults; limits on annual effective dose equivalent averaged over a lifetime no lower than 0.25 mSv (25 mrem) per practice; maintenance of all exposures as low as reasonably achievable (ALARA); and establishment of a generally applicable de minimis dose for public exposures. Implications of the proposed regulatory framework for the current system of standards for limiting public exposures are discussed. 20 refs

  14. Radiation quality and radiation risks - some current problems

    International Nuclear Information System (INIS)

    Kellerer, A.M.; Hahn, K.

    1989-01-01

    The newly evaluated cancer mortality data of the atomic bomb survivors suggest substantially enhanced risk estimates, and the various factors that are involved in the change are considered. The enhanced risk estimates have already led to added restrictions in the dose limits for radiation workers, and there may be a further tightening of regulations in the future. The impending revision of the quality factors in radiation protection may, therefore, lead to practical difficulties, and a careful consideration of the various aspects involved in a revision is required. A liaison group of ICRU and ICRP has proposed a reformulation of the quality factor that is related not to the LET, but to the microdosimetric variably y. The relation leads to increased quality factors for neutrons, but also to a quality factor for γ rays of only 0.5. Alternatives are presented that relate the quality factor to LET and that retain γ- rays as the reference radiation. One option corresponds to different quality factors for γ rays and X-rays, the other option sets the quality factor for photons approximately equal to unity, irrespective of energy. (author)

  15. On ionising radiation and breast cancer risk

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Anders

    1999-05-01

    A cohort of 3,090 women with clinical diagnosis of benign breast disease (BBD) was studied. Of these, 1,216 were treated with radiation therapy during 1925-54 (median age 40 years). The mean dose to the breasts was 5.8 Gy (range 0-50 Gy). Among other organs the lung received the highest scattered dose (0.75 Gy; range 0.004-8.98 Gy) and the rectum the lowest (0.008 Gy; range 0-0.06 Gy). A pooled analysis of eight breast cancer incidence cohorts was done, including: tumour registry data on breast cancer incidence among women in the Life Span Study cohort of atomic bomb survivors; women in Massachusetts who received repeated chest fluoroscopic during lung collapse treatment for tuberculosis; women who received x-ray therapy for acute post-partum mastitis; women who were irradiated in infancy for enlarged thymus glands ; two Swedish cohorts of women who received radiation treatments during infancy for skin hemangioma; and the BBD cohort. Together the cohorts included almost 78,000 women (-35,000 were exposed), around 1.8 million woman-years and 1500 cases. The breast cancer incidence rate as a function of breast dose was analysed using linear-quadratic Poisson regression models. Cell-killing effects and other modifying effects were incorporated through additional log-linear terms. Additive (EAR) and multiplicative (ERR) models were compared in estimating the age-at-exposure patterns and time related excess. The carcinogenic risks associated with radiation in mammographic mass screening is evaluated. Assessment was made in terms of breast cancer mortality and years of life. Effects were related to rates not influenced by a mammographic mass screening program and based on a hypothetical cohort of 100,000 40-year old women with no history of breast cancer being followed to 100 years of age. Two radiation risk assumptions were compared. The dose-response relationship is linear with little support in data for an upward curvature at low to medium doses. The competing effect

  16. On ionising radiation and breast cancer risk

    International Nuclear Information System (INIS)

    Mattson, Anders

    1999-01-01

    A cohort of 3,090 women with clinical diagnosis of benign breast disease (BBD) was studied. Of these, 1,216 were treated with radiation therapy during 1925-54 (median age 40 years). The mean dose to the breasts was 5.8 Gy (range 0-50 Gy). Among other organs the lung received the highest scattered dose (0.75 Gy; range 0.004-8.98 Gy) and the rectum the lowest (0.008 Gy; range 0-0.06 Gy). A pooled analysis of eight breast cancer incidence cohorts was done, including: tumour registry data on breast cancer incidence among women in the Life Span Study cohort of atomic bomb survivors; women in Massachusetts who received repeated chest fluoroscopic during lung collapse treatment for tuberculosis; women who received x-ray therapy for acute post-partum mastitis; women who were irradiated in infancy for enlarged thymus glands ; two Swedish cohorts of women who received radiation treatments during infancy for skin hemangioma; and the BBD) cohort. Together the cohorts included almost 78,000 women (-35,000 were exposed), around 1.8 million woman-years and 1500 cases. The breast cancer incidence rate as a function of breast dose was analysed using linear-quadratic Poisson regression models. Cell-killing effects and other modifying effects were incorporated through additional log-linear terms. Additive (EAR) and multiplicative (ERR) models were compared in estimating the age-at-exposure patterns and time related excess. The carcinogenic risks associated with radiation in mammographic mass screening is evaluated. Assessment was made in terms of breast cancer mortality and years of life. Effects were related to rates not influenced by a mammographic mass screening program and based on a hypothetical cohort of 100,000 40-year old women with no history of breast cancer being followed to 100 years of age. Two radiation risk assumptions were compared. The dose-response relationship is linear with little support in data for an upward curvature at low to medium doses. The competing effect

  17. Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture.

    Science.gov (United States)

    Piątkowski, Marek; Janus, Łukasz; Radwan-Pragłowska, Julia; Bogdał, Dariusz; Matysek, Dalibor

    2018-04-01

    A new type of promising chitosan beads with advanced properties were obtained under microwave radiation according to Green Chemistry principles. Biomaterials were prepared using chitosan as raw material and glutamic acid/1,5-pentanodiol mixture as crosslinking agents. Additionally beads were modified with Tilia platyphyllos extract to enhance their antioxidant properties. Beads were investigated over their chemical structure by FT-IR analysis. Also their morphology has been investigated by SEM method. Additionally swelling capacity of the obtained hydrogels was determined. Lack of cytotoxicity has been confirmed by MTT assay. Proliferation studies were carried out on L929 mouse fibroblasts. Advanced properties of the obtained beads were investigated by studying pH sensitivity and antioxidant properties by DPPH method. Also susceptibility to degradation and biodegradation by Sturm Test method was evaluated. Results shows that proposed chitosan beads and their eco-friendly synthesis method can be applied in cell therapy and tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A measurement of the medium-scale anisotropy in the cosmic microwave background radiation

    Science.gov (United States)

    Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Inman, C. A.; Kowitt, M. S.; Meyer, S. S.; Page, L. A.; Puchalla, J. L.; Silverberg, R. F.

    1994-01-01

    Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.

  19. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  20. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    Energy Technology Data Exchange (ETDEWEB)

    Andueza, Ángel; Sevilla, Joaquín [Dpto. Ing. Eléctrica y Electrónica Universidad Pública de Navarra, 31006 Pamplona (Spain); Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona (Spain); Wang, Kang [Laboratoire de Physique des Solides, UMR CNRS/Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Pérez-Conde, Jesús [Dpto. de Física Universidad Pública de Navarra, 31006 Pamplona (Spain)

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  1. A limit of the anisotropy of the microwave background radiation on arc minute scales

    International Nuclear Information System (INIS)

    Readhead, A.C.S.; Lawrence, C.R.; Myers, S.T.; Sargent, W.L.W.; Hardebeck, H.E.

    1989-01-01

    After adjustment for observational parameters, various models predict an upper anisotropy limit of microwave background radiation of delta T/T less than 0.00017 at the 95 percent confidence level for uncorrelated patches of sky that are uniform on a 2-arcsec scale. This limit is more than a factor of 2 lower than previous limits on comparable angular scales. Results obtained assuming Gaussian fluctuations place useful constraints on models of galaxy formation based on adiabatic or isocurvature fluctuations in baryonic matter, provided that any reionization of the intergalactic medium occurred at z less than 40. Adiabatic models are ruled out with greater than 95 percent confidence, and isocurvature models with Omega less than 0.8 are inconsistent with the measured limits. Nonbaryonic models with early reionization predict anisotropy levels up to a factor of 3 below the present limit. The lowest predictions come from models with biased galaxy formation, nonbaryonic matter, and early reionization and are as much as a factor of 10 below the present sensitivity limit. The predictions of most popular contending theories of galaxy formation are within reach of the techniques used in this study. 112 refs

  2. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  3. Quantitative risk in radiation protection standards

    International Nuclear Information System (INIS)

    Bond, V.P.

    1979-01-01

    Although the overall aim of radiobiology is to understand the biological effects of radiation, it also has the implied practical purpose of developing rational measures for the control of radiation exposure in man. The emphasis in this presentation is to show that the enormous effort expended over the years to develop quantitative dose-effect relationships in biochemical and cellular systems, animals, and human beings now seems to be paying off. The pieces appear to be falling into place, and a framework is evolving to utilize these data. Specifically, quantitative risk assessments will be discussed in terms of the cellular, animal, and human data on which they are based; their use in the development of radiation protection standards; and their present and potential impact and meaning in relation to the quantity dose equivalent and its special unit, the rem

  4. Perception of low dose radiation risks among radiation researchers in Korea.

    Science.gov (United States)

    Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects perception of radiation exposure.

  5. Radiation, cancer risk, and the new dosimetry

    International Nuclear Information System (INIS)

    Mole, R.H.

    1987-01-01

    This letter discusses revision of risk estimates in the light of the new dosimetry (DS86) and concludes that direct observation is more to be relied on than the extrapolation from A-bomb survivors' experience. X-ray treatment for ankylosing spondylitis, cervical cancer data, and figures observed from 50,000 workers occupationally exposed to radiation are used as examples. (U.K.)

  6. Contribution to the theoretical study of a high power microwave radiation produced by a relativistic electron beam

    International Nuclear Information System (INIS)

    Sellem, F.

    1997-01-01

    This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.)

  7. Sigmoidal response model for radiation risk

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    From epidemiologic studies, we find no measurable increase in the incidences of birth defects and cancer after low-level exposure to radiation. Based on modern understanding of the molecular basis of teratogenesis and cancer, I attempt to explain thresholds observed in atomic bomb survivors, radium painters, uranium workers and patients injected with Thorotrast. Teratogenic injury induced by doses below threshold will be completely eliminated as a result of altruistic death (apoptosis) of injured cells. Various lines of evidence obtained show that oncomutations produced in cancerous cells after exposure to radiation are of spontaneous origin and that ionizing radiation acts not as an oncomutation inducer but as a tumor promoter by induction of chronic wound-healing activity. The tissue damage induced by radiation has to be repaired by cell growth and this creates opportunity for clonal expansion of a spontaneously occurring preneoplastic cell. If the wound-healing error model is correct, there must be a threshold dose range of radiation giving no increase in cancer risk. (author)

  8. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Science.gov (United States)

    Smolen, Dariusz; Chudoba, Tadeusz; Malka, Iwona; Kedzierska, Aleksandra; Lojkowski, Witold; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof Jan; Kolodziejczyk-Mierzynska, Małgorzata; Lewandowska-Szumiel, Małgorzata

    2013-01-01

    A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp) nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM). The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 μmol/dm3 in the tris(hydroxymethyl)aminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material extract, and in direct contact. A quantitative analysis was based on the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide. Viability assay as well as on DNA content measurements in the PicoGreen test. Indirect observations were performed at one point in time according to the ISO standard for in vitro cytotoxicity (ie, after 24 hours of cell exposure to the extracts). The direct contact tests were completed at three time points: after 24 hours, on day 7, and on day 14 of a culture in an osteogenic

  9. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation

    Directory of Open Access Journals (Sweden)

    Smolen D

    2013-02-01

    Full Text Available Dariusz Smolen1, Tadeusz Chudoba1, Iwona Malka1, Aleksandra Kedzierska1, Witold Lojkowski1, Wojciech Swieszkowski2, Krzysztof Jan Kurzydlowski2, Malgorzata Kolodziejczyk-Mierzynska3, Malgorzata Lewandowska-Szumiel31Polish Academy of Science, Institute of High Pressure Physics, Warsaw, Poland; 2Faculty of Materials Engineering, Warsaw University of Technology, Warsaw, Poland; 3Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, PolandAbstract: A microwave, solvothermal synthesis of highly biocompatible hydroxyapatite (HAp nanopowder was developed. The process was conducted in a microwave radiation field having a high energy density of 5 W/mL and over a time less than 2 minutes. The sample measurements included: powder X-ray diffraction, density, specific surface area, and chemical composition. The morphology and structure were investigated by scanning electron microscopy as well as transmission electron microscopy (TEM. The thermal behavior analysis was conducted using a simultaneous thermal analysis technique coupled with quadruple mass spectrometry. Additionally, Fourier transform infrared spectroscopy tests of heated samples were performed. A degradation test and a biocompatibility study in vitro using human osteoblast cells were also conducted. The developed method enables the synthesis of pure, fully crystalline hexagonal HAp nanopowder with a specific surface area close to 240 m2/g and a Ca/P molar ratio equal to 1.57. TEM measurements showed that this method results in particles with an average grain size below 6 nm. A 28-day degradation test conducted according to the ISO standard indicated a 22% loss of initial weight and a calcium ion concentration at 200 µmol/dm3 in the tris(hydroxymethylaminomethane hydrochloride test solution. The cytocompatibility of the obtained material was confirmed in a culture of human bone derived cells, both in an indirect test using the material

  10. Temperature-specific inhibition of human red cell (Na/sup +//K/sup +/) ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz (CW) microwave radiation. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersected between 23 and 24 C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 C. Exposure of membrane suspensions to a 6 W/kg dose rate at 1 C intervals between 23 and 27 C, resulted in an activity change only for the Na+/K+ ATPase at 25 C. The activity decreased by approximately 35% compared to sham-irradiated samples. An hypothesis based on the interaction of microwave radiation with enzyme structure during a conformational rearrangement is proposed as an explanation for the effect.

  11. Temperature-specific inhibition of human red cell Na+/K+ ATPase by 2450-MHz microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Allis, J.W.; Sinha-Robinson, B.L.

    1987-01-01

    The ATPase activity in human red blood cell membranes was investigated in vitro as a function of temperature and exposure to 2450-MHz continuous wave microwave radiation to confirm and extend a report of Na+ transport inhibition under certain conditions of temperature and exposure. Assays were conducted spectrophotometrically during microwave exposure with a custom-made spectrophotometer-waveguide apparatus. Temperature profiles of total ATPase and Ca+2 ATPase (ouabain-inhibited) activity between 17 and 31 degrees C were graphed as an Arrhenius plot. Each data set was fitted to two straight lines which intersect between 23 and 24 degrees C. The difference between the total and Ca+2 ATPase activities, which represented the Na+/K+ ATPase activity, was also plotted and treated similarly to yield an intersection near 25 degrees C. Exposure of membrane suspensions to electromagnetic radiation, at a dose rate of 6 W/kg and at five temperatures between 23 and 27 degrees C, resulted in an activity change only for the Na+/K+ ATPase at 25 degrees C. The activity decreased by approximately 35% compared to sham-irradiated samples. A possible explanation for the unusual temperature/microwave interaction is proposed.

  12. Radiation risk perception and public information

    International Nuclear Information System (INIS)

    Boggs-Mayes, C.J.

    1988-01-01

    We as Health Physicists face what, at many times, appears to be a hopeless task. The task simply stated is informing the public about the risks (or lack thereof) of radiation. Unfortunately, the public has perceived radiation risks to be much greater than they actually are. An example of this problem is shown in a paper by Arthur C. Upton. Three groups of people -- the League of Women Voters, students, and Business and Professional Club members -- were asked to rank 30 sources of risk according to their contribution to the number of deaths in the United States. Not surprisingly, they ranked nuclear power much higher and medical x-rays much lower than the actual values. In addition to the perception problem, we are faced with another hurdle: health physicists as communicators. Members of the Health Physics Society (HPS) found that the communication styles of most health physicists appear to be dissimilar to those of the general public. These authors administered the Myers-Briggs Type Indicator to the HPS Baltimore-Washington Chapter. This test, a standardized test for psychological type developed by Isabel Myers, ask questions that provide a quantitative measure of our natural preferences in four areas. Assume that you as a health physicist have the necessary skills to communicate information about radiation to the public. Health physicists do nothing with these tools. Most people involved in radiation protection do not get involved with public information activies. What I will attempt to do is heighten your interest in such activities. I will share information about public information activities in which I have been involved and give you suggestions for sources of information and materials. 2 refs., 1 tab

  13. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  14. How health risk from radiation is assessed

    International Nuclear Information System (INIS)

    Rahm-Crites, L.

    1994-07-01

    The likelihood that a dose of radiation will result in death from cancer at some future time can be estimated by multiplying the dose equivalent by a risk factor, or dose-to-risk conversion factor. Conversion factors, which are based on studies of atomic bomb survivors and others, provide approximate predictions of the health effects to be expected from a given radiological exposure. Following recommendations of the Nuclear Regulatory Commission, the Department of Energy currently uses risk conversion factors of 4 x 10 -4 (0.0004 LCFs) per person-rem for workers and 5 x 10 -4 (0.0005 LCFs) per person-rem for the general public (NRC 1991; DOE 1993). The conversion factor for general public is slightly higher than that for workers because the general public includes infants and children, who are more susceptible to cancer. The current overall death rate from cancer in the United States is between 20 and 25 percent, in other words, cancer accounts for one out of nearly every four deaths. An action affecting a population of 20,000 people, with the estimated potential to induce one latent cancer fatality, should therefore be understood as adding one death from cancer to a normally expected total of 4500. Studies dedicated to improving their ability to predict radiation health effects are constantly in progress, nationally and internationally, and risk conversion factors are periodically revised to incorporate new experimental and epidemiological information

  15. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Daniel, E-mail: daniel.kersting@usp.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP/USP), Sao Paulo, SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica; Marinucci, Gerson; Silva, Leonardo G.A. e, E-mail: marinuci@ipen.br, E-mail: gasilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  16. Comparative study of the use of non-ionizing and ionizing radiation in the cure of epoxy resin: microwave versus electron electron

    International Nuclear Information System (INIS)

    Kersting, Daniel; Wiebeck, Helio

    2013-01-01

    Several processes for curing epoxy resins were developed over the years. Two methods are discussed in this paper, in order to present the main advantages and disadvantages of using microwave radiation (non-ionizing radiation) and electron beam radiation (ionizing radiation). The microwave radiation is a non-ionizing radiation, with great power of penetration and transfer of heat in microwave absorbing materials, or materials with microwave absorbing fillers. The frequency usually used in research and development is 2.45 GHz, the same available in commercial equipment. The microwave effect provides increase on the collision velocity between the reactant which, combined with energy absorbed by the reaction system, accelerates the curing reaction. None modifications in the epoxy system are required to use microwave heating for the curing process.On the other hand, the electron beam is a form of ionizing radiation in which the high energy electrons have the ability to interact with the irradiated material and produce ions, free radicals, and molecules in excited state, which can be used to initiate and propagate a polymerization. Specific initiators are necessary for an effective cure of the resin. In this study, a DGEBA epoxy resin with initiators based on anhydride and amine was used under the same conditions indicated by the manufacturer. The curing of the catalyzed system was performed in a domestic microwave oven adapted for laboratory use. The degradation and glass transition temperatures were evaluated by thermal analysis techniques. For comparative purposes, it was used data available in the literature for electron beam irradiation. (author)

  17. Mobile phone radiation health risk controversy: the reliability and sufficiency of science behind the safety standards.

    Science.gov (United States)

    Leszczynski, Dariusz; Xu, Zhengping

    2010-01-27

    There is ongoing discussion whether the mobile phone radiation causes any health effects. The International Commission on Non-Ionizing Radiation Protection, the International Committee on Electromagnetic Safety and the World Health Organization are assuring that there is no proven health risk and that the present safety limits protect all mobile phone users. However, based on the available scientific evidence, the situation is not as clear. The majority of the evidence comes from in vitro laboratory studies and is of very limited use for determining health risk. Animal toxicology studies are inadequate because it is not possible to "overdose" microwave radiation, as it is done with chemical agents, due to simultaneous induction of heating side-effects. There is a lack of human volunteer studies that would, in unbiased way, demonstrate whether human body responds at all to mobile phone radiation. Finally, the epidemiological evidence is insufficient due to, among others, selection and misclassification bias and the low sensitivity of this approach in detection of health risk within the population. This indicates that the presently available scientific evidence is insufficient to prove reliability of the current safety standards. Therefore, we recommend to use precaution when dealing with mobile phones and, whenever possible and feasible, to limit body exposure to this radiation. Continuation of the research on mobile phone radiation effects is needed in order to improve the basis and the reliability of the safety standards.

  18. Mobile phone radiation health risk controversy: the reliability and sufficiency of science behind the safety standards

    Directory of Open Access Journals (Sweden)

    Leszczynski Dariusz

    2010-01-01

    Full Text Available Abstract There is ongoing discussion whether the mobile phone radiation causes any health effects. The International Commission on Non-Ionizing Radiation Protection, the International Committee on Electromagnetic Safety and the World Health Organization are assuring that there is no proven health risk and that the present safety limits protect all mobile phone users. However, based on the available scientific evidence, the situation is not as clear. The majority of the evidence comes from in vitro laboratory studies and is of very limited use for determining health risk. Animal toxicology studies are inadequate because it is not possible to "overdose" microwave radiation, as it is done with chemical agents, due to simultaneous induction of heating side-effects. There is a lack of human volunteer studies that would, in unbiased way, demonstrate whether human body responds at all to mobile phone radiation. Finally, the epidemiological evidence is insufficient due to, among others, selection and misclassification bias and the low sensitivity of this approach in detection of health risk within the population. This indicates that the presently available scientific evidence is insufficient to prove reliability of the current safety standards. Therefore, we recommend to use precaution when dealing with mobile phones and, whenever possible and feasible, to limit body exposure to this radiation. Continuation of the research on mobile phone radiation effects is needed in order to improve the basis and the reliability of the safety standards.

  19. Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Westerly, David C; Cannon, George M

    2010-01-01

    To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models.......To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models....

  20. Blood-brain barrier permeation in the rat during exposure to low-power 1.7-GHz microwave radiation

    International Nuclear Information System (INIS)

    Ward, T.R.; Ali, J.S.

    1985-01-01

    The permeability of the blood-brain barrier to high-and low-molecular-weight compounds has been measured as a function of continuous-wave (CW) and pulsed-microwave radiation. Adult rats, anesthetized with pentobarbital and injected intravenously with a mixture of [ 14 C] sucrose and [ 3 H] inulin, were exposed for 30 min at a specific absorption rate of 0.1 W/kg to 1.7-GHz CW and pulsed (0.5-microseconds pulse width, 1,000 pps) microwaves. After exposure, the brain was perfused and sectioned into nine regions, and the radioactivity in each region was counted. During identical exposure conditions, temperatures of rats were measured in eight of the brain regions by a thermistor probe that did not perturb the field. No change in uptake of either tracer was found in any of the eight regions as compared with those of sham-exposed animals

  1. Effects of gamma rays, ultraviolet radiation, sunlight, microwaves and electromagnetic fields on gene expression mediated by human immunodeficiency virus promoter

    International Nuclear Information System (INIS)

    Libertin, C.R.; Woloschak, G.E.; Panozzo, J.; Groh, K.R.; Chang-Liu, Chin-Mei; Schreck, S.

    1994-01-01

    Previous work by our group and others has shown the modulation of human immunodeficiency virus (HIV) promoter or long terminal repeat (LTR) after exposure to neutrons and ultraviolet radiations. Using HeLa cells stably transfected with a construct containing the chloramphenicol acetyl transferase (CAT) gene, the transcription of which is mediated by the HIV-LTR, we designed experiments to examine the effects of exposure to different types of radiation (such as γ rays, ultraviolet and sunlight irradiations, electromagnetic fields and microwaves) in HIV-LTR-driven expression of CAT. These results demonstrated ultraviolet-light-induced transcription from the HIV promoter, as has been shown by others. Exposure to other DNA-damaging agents such as γ rays and sunlight (with limited exposures) had no significant effect on transcription mediated by HIV-LTR, suggesting that induction of HIV is not mediated by just any type of DNA damage but rather may require specific types of DNA damage. Microwaves did not cause cell killing when cells in culture were exposed in high volumes of medium, and the same cells showed no changes in expression. When microwave exposure was carried out in low volumes of medium (so that excessive heat was generated) induction of HIV-LTR transcription (as assayed by CAT activity) was evident. Electromagnetic field exposures had no effect on expression of HIV-LTR. These results demonstrate that not all types of radiation and not all DNA-damaging agents are capable of inducing HIV. We hypothesize that induction of HIV transcription may be mediated by several different signals exposure to radiation. 22 refs., 8 figs

  2. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  3. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Wattieaux, G.; Yousfi, M.; Merbahi, N.

    2013-01-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10 14 cm −3 , the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case

  4. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Heidari S

    2011-04-01

    Full Text Available Saeed Heidari Keshel1, S Neda Kh Azhdadi2, Azadeh Asefnezhad2, Mohammad Sadraeian3, Mohamad Montazeri4, Esmaeil Biazar51Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch - Islamic Azad University; 3Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran; 4Faculty of Medical Sciences, Babol University of Medical Sciences, Babol; 5Department of Chemistry, Islamic Azad University, Tonekabon, IranAbstract: Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.Keywords: surface topography, polyurethane, plasma treatment, cellular investigation

  5. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  6. Risk management of radiation therapy. Survey by north Japan radiation therapy oncology group

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Abe, Yoshinao; Yamada, Shogo; Hareyama, Masato; Nakamura, Ryuji; Sugita, Tadashi; Miyano, Takashi

    2004-01-01

    A North Japan Radiation Oncology Group (NJRTOG) survey was carried out to disclose the risk management of radiation therapy. During April 2002, we sent questionnaires to radiation therapy facilities in northern Japan. There were 31 replies from 27 facilities. Many incidents and accidents were reported, including old cases. Although 60% of facilities had a risk management manual and/or risk manager, only 20% had risk management manuals for radiation therapy. Eighty five percent of radiation oncologists thought that incidents may be due to a lack of manpower. Ninety percent of radiation oncologists want to know the type of cases happened in other facilities. The risk management system is still insufficient for radiation therapy. We hope that our data will be a great help to develop risk management strategies for radiation therapy for all radiation oncologists in Japan. (author)

  7. Medical radiation exposure and genetic risks

    International Nuclear Information System (INIS)

    Baker, D.G.

    1980-01-01

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%

  8. Opto-microwave, Butler matrixes based front-end for a multi-beam large direct radiating array antenna

    Science.gov (United States)

    Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.

    2017-11-01

    The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming

  9. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  10. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  11. Radiation doses and risks from internal emitters

    International Nuclear Information System (INIS)

    Harrison, John; Day, Philip

    2008-01-01

    This review updates material prepared for the UK Government Committee Examining Radiation Risks from Internal Emitters (CERRIE) and also refers to the new recommendations of the International Commission on Radiological Protection (ICRP) and other recent developments. Two conclusions from CERRIE were that ICRP should clarify and elaborate its advice on the use of its dose quantities, equivalent and effective dose, and that more attention should be paid to uncertainties in dose and risk estimates and their implications. The new ICRP recommendations provide explanations of the calculation and intended purpose of the protection quantities, but further advice on their use would be helpful. The new recommendations refer to the importance of understanding uncertainties in estimates of dose and risk, although methods for doing this are not suggested. Dose coefficients (Sv per Bq intake) for the inhalation or ingestion of radionuclides are published as reference values without uncertainty. The primary purpose of equivalent and effective dose is to enable the summation of doses from different radionuclides and from external sources for comparison with dose limits, constraints and reference levels that relate to stochastic risks of whole-body radiation exposure. Doses are calculated using defined biokinetic and dosimetric models, including reference anatomical data for the organs and tissues of the human body. Radiation weighting factors are used to adjust for the different effectiveness of different radiation types, per unit absorbed dose (Gy), in causing stochastic effects at low doses and dose rates. Tissue weighting factors are used to take account of the contribution of individual organs and tissues to overall detriment from cancer and hereditary effects, providing a simple set of rounded values chosen on the basis of age- and sex-averaged values of relative detriment. While the definition of absorbed dose has the scientific rigour required of a basic physical quantity

  12. Ionization radiations - basis, risks and benefits

    International Nuclear Information System (INIS)

    Bodart, F.

    1991-01-01

    An attempt is made to discuss the use of ionizing radiations in an impartial way. Ionizing radiation is potentially harmfull; excessive doses have a devastating effect on living cells. However, there is no direct, conclusive evidence of human disability, either in the form of cancer or genetic anomalies, arising as a consequence of low-level doses of x- or gamma-rays of about 0.01 Gray (1 rad) the entire dose range involved in medical radiography or in nuclear industry. Statements appearing in the press that a certain number of excess cancers will be produced are estimates, based maybe on plausible assumptions, but estimates nevertheless; they are not measured quantities or established facts. A balanced view of radiation must include appreciation of the substantial benefits which result from their use in both medicine and industry. The risks are small and hard to demonstrate, and it is instructive to make a comparison with the other hazards occuring continually in an industrialized society, such as driving a motorcar or smoking cigarettes. (Author)

  13. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  14. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lee

    2017-10-01

    Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics

  15. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...... are transferred to a large high-speed computer for bulk processing and for the production of isophot and equiphase contour maps or profiles. The performance of the system is demonstrated through results for a single conical horn, for interacting rectangular horns, for multiple cylindrical scatterers...

  16. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  17. Assessment of radiofrequency/microwave radiation emitted by the antennas of rooftop-mounted mobile phone base stations

    International Nuclear Information System (INIS)

    Keow, M. A.; Radiman, S.

    2006-01-01

    Radiofrequency (RF) and microwave (MW) radiation exposures from the antennas of rooftop-mounted mobile telephone base stations have become a serious issue in recent years due to the rapidly evolving technologies in wireless telecommunication systems. In Malaysia, thousands of mobile telephone base stations have been erected all over the country, most of which are mounted on the rooftops. In view of public concerns, measurements of the RF/MW levels emitted by the base stations were carried out in this study. The values were compared with the exposure limits set by several organisations and countries. Measurements were performed at 200 sites around 47 mobile phone base stations. It was found that the RF/MW radiation from these base stations were well below the maximum exposure limits set by various agencies. (authors)

  18. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  19. Perception of low dose radiation risks among radiation researchers in Korea

    Science.gov (United States)

    Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects risk perception of radiation exposure. PMID:28166286

  20. Study of viability on the destruction of weed seeds in the soil by microwave radiation

    International Nuclear Information System (INIS)

    Velazquez-Marti, B.; Osca, J.M.; Jorda, C.; Marzal, A.

    2003-01-01

    This work has been carried out to study the thermic effects over weed seeds in typical orchard soil irradiated by its surface with microwave. A previous treatment was carried out in a domestic microwave oven, using 660-watt power. With this laboratory oven, we have investigated three kind of weed seeds: Lolium perenne, Sinopsis alba and Setaria sativa. These previous experiments showed a important decrease of germination with short irradiating times. After previous treatment, a microwave applicator, designed to achieve wide distribution of superficial irradiation energy, was evaluated. This applicator is powered by a 4-kilowatt magnetron through a slotted waveguide. With this oven, we have investigated two kind of weed seeds at several depths: Lolium perenne and Brassica napus var. oleifera. For a soil column, temperature increments reduce seeds germination to a maximum of 5 centimetres. Deeper, the increments of temperature are very low for short irradiating times, so it will be negligible for our purpose. This applicator lets approach better to real treatments focused into the development of a continuous microwave oven for disinfecting seedbed and greenhouse crop substratum. (author) [es

  1. Radiofrequency/Microwave Radiation Biological Effects and Safety Standards: A Review

    Science.gov (United States)

    1994-06-01

    reported that a 50 year old woman had developed cataracts after intermittent exposure to a 2.45 GHz microwave oven. The incident power density levels were...include: Survelance, Communications, Command and Control, Intelligence, Signal Processing, Computer Sience and Technology, Electrom Technology, Photoracs and laiity Saences. S* I l I

  2. Informing people about radiation risks: a review of obstacles to public understanding and effective risk communication

    International Nuclear Information System (INIS)

    Covello, V.T.

    1988-01-01

    This paper reviews the literature on informing people about radiation risks. The paper focuses on obstacles to public understanding and effective risk communication. The paper concludes with a set of guidelines for communicating information about radiation risks to the public. The paper also includes an appendix that reviews the literature on one of the most important tools for communicating information about radiation risks: risk comparisons

  3. Comments on the theory of radiation risk I Systematic outline of the theory of radiation risk

    CERN Document Server

    Neufeld, J

    1974-01-01

    Presents a systematic outline of the current theory of radiation risk. The most basic ideas of the theory can be expressed by two quantities which represent the administrative approach to radiation risk. These quantities are 'specific dose', D/sub s/, which relates to individual organs or tissues and 'overall dose', D/sub 0/, which relates to the entire human body. By taking D/sub s/ and D/sub 0/ as a starting point and by using postulational methods, two auxiliary quantities have been derived which are 'dose equivalent', D/sub e/(r), and quality factor, Q. Dose equivalent, D/sub e/(r), is a macroscopic field quantity and is, therefore, different from the ICRP defined dose equivalent, H, which is microscopic.

  4. Review of the current status of radiation risk estimates

    International Nuclear Information System (INIS)

    Charles, M.W.; Little, M.P.

    1988-10-01

    This report reviews the current status of radiation risk estimation for low linear energy transfer radiation. Recent statements by various national and international organisations regarding risk estimates are critically discussed. The recently published revised population risk estimates from the study of Japanese bomb survivors are also reviewed and used with some unpublished data from Japan to calculate risk figures for a general work force. (author)

  5. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  6. GARLIC — A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    International Nuclear Information System (INIS)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-01-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code — GARLIC — is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus. - Highlights: • High resolution infrared-microwave radiative transfer model. • Discussion of algorithmic and computational aspects. • Jacobians by automatic/algorithmic differentiation. • Performance evaluation by intercomparisons, verification, validation

  7. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  8. Propagation of microwave radiation through an inhomogeneous plasma layer in a magnetic field

    Science.gov (United States)

    Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Mashek, I. Ch; Pashchina, A. S.; Pervov, A. Yu; Petrovskiy, V. P.; Ryazanskiy, N. M.; Shkatov, O. Yu

    2018-01-01

    The problem of reliable microwave communication through a plasma sheath has its origin from the beginning of space flights. During reentry of spacecraft, the plasma layer can interrupt the communication. At sufficiently high plasma density, the plasma layer either reflects or attenuates radio wave communications to and from the vehicle. In this work, we present a simple analytical one-dimensional algorithm to study the propagation of electromagnetic (EM) waves through a nonuniform plasma layer in a static nonuniform magnetic field. The experimental study of the EM wave transmission and reflection through plasma layer was carried out on the (i) microwave set and (ii) on the unit using a high-voltage pulsed discharge.

  9. Study of properties of chloroprene rubber devulcanizate by radiation in microwave

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Araujo, Sumair G.; Landini, Liliane; Lugao, Ademar B., E-mail: scagliusi@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Among the vulcanized elastomers, the chloroprene rubber (DuPont Neoprene{sup R} - generic name) possesses a good performance, being one of the most used in the current days. However, this kind of polymer causes a serious environmental problem if it is not reprocessed or recycled. A worldwide method that has been used and that is an important tool in the rubber devulcanization is microwave irradiation at high temperature Elastomer waste may be devulcanized without depolymerization and allows a new vulcanization into a product having physical properties essentially equivalent to the original vulcanized. In this work, the chloroprene samples were irradiated in microwave generator equipment with 2,450 MHz (frequency) and 1,000 W to 3,000 W (power). The properties of samples (according to ASTM standards) were analyzed before and after irradiation. The degraded material after irradiation will be tested for re-use. (author)

  10. Study of properties of chloroprene rubber devulcanizate by radiation in microwave

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Araujo, Sumair G.; Landini, Liliane; Lugao, Ademar B.

    2009-01-01

    Among the vulcanized elastomers, the chloroprene rubber (DuPont Neoprene R - generic name) possesses a good performance, being one of the most used in the current days. However, this kind of polymer causes a serious environmental problem if it is not reprocessed or recycled. A worldwide method that has been used and that is an important tool in the rubber devulcanization is microwave irradiation at high temperature Elastomer waste may be devulcanized without depolymerization and allows a new vulcanization into a product having physical properties essentially equivalent to the original vulcanized. In this work, the chloroprene samples were irradiated in microwave generator equipment with 2,450 MHz (frequency) and 1,000 W to 3,000 W (power). The properties of samples (according to ASTM standards) were analyzed before and after irradiation. The degraded material after irradiation will be tested for re-use. (author)

  11. Biological effects of 2450 MHZ microwave radiation on Raji-Cell in vitro

    International Nuclear Information System (INIS)

    Tan Ming; Zhang Mengdan; Xu Hao.

    1988-01-01

    A water circulating microwave exposure system designed by the authors was used to investigate the thermal and nonthermal biological effects at different power density (1.0mw/cm 2 , 3.9mw/cm 2 , 6.2mw/cm 2 , 8.3mw/cm 2 , 10.5mw/cm 2 ). The results show that the growth of Raji-Cell is inhibited significantly by microwave exposure in 8.3 mw/cm 2 and 10.5 mw/cm 2 groups in temperature controlled test (below 37.0 deg C). It shows that while the growth curve goes down, the rate of inhibition and time of generation increase. The degree of inhibition would increase when the medium temperature was not controlled. And, the mechanisms of thermal and nonthermal biological effects were discussed

  12. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  13. Autoacceleration of electron beam and microwave radiation in the diaphragmed waveguide

    International Nuclear Information System (INIS)

    Kolomensky, A.A.; Meskhy, G.O.; Yablokov, B.N.

    1977-01-01

    The energy of a portion of beam electrons can be increased by means of the autoacceleration mechanism. In these experiments, an electron accelerator with parameters 0.5 to 1.0 MeV, 20 to 30 kA, 40 to 50 ns was used. A hollow beam was passed through a diaphragmed waveguide. At its output, the electron spectrum and microwave spectrum were measured simultaneously. About 10% of the electrons increase their energy as compared with the maximum input energy, whereby 3% increase their energy more than by a factor of two. The energy multiplication for the tail electrons turns out to be 3 to 4 times the initial value. About 10% of the beam input power is spent on the increase of electron energy. The pulse microwave power generated is in the range 2.7 to 2.9 GHz and its total measured power was approx. 0.4 GW, which corresponds to approx. 20% of the input beam power. Experiments show that effects of autoacceleration and microwave generation are interdependent and should be studied together

  14. Compton scattering of microwave background radiation by gas in galaxy clusters

    International Nuclear Information System (INIS)

    Gould, R.J.; Rephaeli, Y.

    1978-01-01

    Based on data on the X-ray spectrum of the Coma cluster, interpreted as thermal bremsstrahlung, the expected brightness depletion from Compton scattering of the microwave background in the direction of the cluster is computed. The calculated depletion is about one-third that recently observed by Gull and Northover, and the discrepancy is discussed. In comparing the observed microwave depletion in the direction of other clusters which are X-ray sources it is found that there is no correlation with the cluster X-ray luminosity, while a dependence proportional to L/sub x//sup 1/2/ is expected. Consequently, the microwave depletion observations cannot yet be taken as good evidence for a thermal bremsstrahlung origin for the X-ray emission. The perturbation from Compton scattering of photons on the high-frequency (Wien) tail of the blackbody distribution is computed and found to be much larger than predicted in previous calculations. In the Wien tail the effect is a relative increase in the blackbody intensity that is appreciably greater in magnitude than the depletion in the Rayleigh-Jeans domain

  15. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  16. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  17. Analysis and evaluation of WRF microphysical schemes for deep moist convection over south-eastern South America (SESA) using microwave satellite observations and radiative transfer simulations

    Science.gov (United States)

    Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine

    2017-10-01

    In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident

  18. Influence of a microwave radiation on dissolution kinetics of UO2, CeO2, and Co3O4 in nitric environment

    International Nuclear Information System (INIS)

    Joret, Laurent

    1995-01-01

    This research thesis addresses the issue of dissolution oxides present in spent nuclear fuels. As previous studies outlined important increases of oxide dissolution rate when submitted to microwaves, the issue is then to apply such a technique to PuO 2 which is the most difficult oxide to dissolve. As plutonium may be handled only in certified laboratories and under strict safety conditions, the author studied the influence of a microwave radiation on the dissolution kinetics of other and various metallic oxides in a nitric environment. The choice of this nitric environment is imposed by conditions met in the nuclear industry. Oxides are chosen according to two criteria: dissolution times ranging from few minutes to few days, various responses to electromagnetic radiation (different values for the real and imaginary parts of their dielectric permittivity). Three oxides are retained: UO 2 and CeO 2 (to model PuO 2 ) and Co 3 O 4 . After a recall of some theoretical aspects of the response of a dielectric material to an electromagnetic field, a comparison between conventional and microwave heating, the author presents the main results obtained by using microwaves in chemistry (organic synthesis, ceramic sintering, acid dissolution). He reports the experimental study of nitric dissolution of oxides by conventional heating, and the dielectric characterisation of the studied oxides. He presents the experimental microwave set-up, and reports and discusses experimental results obtained for the dissolution of UO 2 , CeO 2 and Co 3 O 4 in HNO 3 [fr

  19. Acceptable level of radiation risk and its perception

    Energy Technology Data Exchange (ETDEWEB)

    Kusama, Tomoko; Shinozaki, Motoshi; Yoshizawa, Yasuo

    1987-03-01

    The acceptable level of radiation risk for public members, that is 10/sup -5//y, was proposed by ICRP and other international organizations. We studied to survey basic procedures of deriving this value and to derive an acceptable risk value in Japan by using similar procedures. The basic procedures to derive 10/sup -5//y were found as follows; (1) 0.1 percent of annual mortality from all diseases, (2) 0.1 percent of life time risk, (3) one percent of mortality from all causes in each age cohort and (4) corresponding value to 1 mSv annual radiation exposure. From these bases we derived the value of 10/sup -5//y as acceptable risk level in Japan. The perception to risk level of 10/sup -5//y in conventional life was investigated by means of questionnaires for 1,095 college students living in Tokyo. The risks considered in this study were natural background radiation, coffee, skiing, X-ray diagnosis, spontaneous cancer, passive smoking and air pollution. The most acceptable risk was the risk related with natural background radiation. And the risk of natural background radiation was more easily accepted by the students who had knowledges on natural background radiation. On the other hand, the risk from air pollution or passive smoking was the most adverse one.

  20. Acceptable level of radiation risk and its perception

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Shinozaki, Motoshi; Yoshizawa, Yasuo

    1987-01-01

    The acceptable level of radiation risk for public members, that is 10 -5 /y, was proposed by ICRP and other international organizations. We studied to survey basic procedures of deriving this value and to derive an acceptable risk value in Japan by using similar procedures. The basic procedures to derive 10 -5 /y were found as follows; (1) 0.1 percent of annual mortality from all diseases, (2) 0.1 percent of life time risk, (3) one percent of mortality from all causes in each age cohort and (4) corresponding value to 1 mSv annual radiation exposure. From these bases we derived the value of 10 -5 /y as acceptable risk level in Japan. The perception to risk level of 10 -5 /y in conventional life was investigated by means of questionnaires for 1,095 college students living in Tokyo. The risks considered in this study were natural background radiation, coffee, skiing, X-ray diagnosis, spontaneous cancer, passive smoking and air pollution. The most acceptable risk was the risk related with natural background radiation. And the risk of natural background radiation was more easily accepted by the students who had knowledges on natural background radiation. On the other hand, the risk from air pollution or passive smoking was the most adverse one. (author)

  1. Cancer risks following diagnostic and therapeutic radiation exposure in children

    Energy Technology Data Exchange (ETDEWEB)

    Kleinerman, Ruth A. [National Institutes of Health, Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS 7044, Rockville, MD (United States)

    2006-09-15

    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life. (orig.)

  2. Cancer risks following diagnostic and therapeutic radiation exposure in children

    International Nuclear Information System (INIS)

    Kleinerman, Ruth A.

    2006-01-01

    The growing use of interventional and fluoroscopic imaging in children represents a tremendous benefit for the diagnosis and treatment of benign conditions. Along with the increasing use and complexity of these procedures comes concern about the cancer risk associated with ionizing radiation exposure to children. Children are considerably more sensitive to the carcinogenic effects of ionizing radiation than adults, and children have a longer life expectancy in which to express risk. Numerous epidemiologic cohort studies of childhood exposure to radiation for treatment of benign diseases have demonstrated radiation-related risks of cancer of the thyroid, breast, brain and skin, as well as leukemia. Many fewer studies have evaluated cancer risk following diagnostic radiation exposure in children. Although radiation dose for a single procedure might be low, pediatric patients often receive repeated examinations over time to evaluate their conditions, which could result in relatively high cumulative doses. Several cohort studies of girls and young women subjected to multiple diagnostic radiation exposures have been informative about increased mortality from breast cancer with increasing radiation dose, and case-control studies of childhood leukemia and postnatal diagnostic radiation exposure have suggested increased risks with an increasing number of examinations. Only two long-term follow-up studies of cancer following cardiac catheterization in childhood have been conducted, and neither reported an overall increased risk of cancer. Most cancers can be induced by radiation, and a linear dose-response has been noted for most solid cancers. Risks of radiation-related cancer are greatest for those exposed early in life, and these risks appear to persist throughout life. (orig.)

  3. Radiation doses and radiation risk in foreign nuclear objects

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2001-01-01

    Data on levels of irradiation on NPP operating in different regions of the world obtained from the data of the International Information System ISOE created by IAEA in association with the Nuclear Energetic Agency OECD are performed. Effect of commissioning new NPP, sacrifice of radiation situation at the Ignalina NPP in 1996, importance of the development and introduction of programs on perfecting of radiation protection and culture of safety are noted [ru

  4. Radiation risk from CT: implications for cancer screening.

    Science.gov (United States)

    Albert, Jeffrey M

    2013-07-01

    The cancer risks associated with patient exposure to radiation from medical imaging have become a major topic of debate. The higher doses necessary for technologies such as CT and the increasing utilization of these technologies further increase medical radiation exposure to the population. Furthermore, the use of CT for population-based cancer screening continues to be explored for common malignancies such as lung cancer and colorectal cancer. Given the known carcinogenic effects of ionizing radiation, this warrants evaluation of the balance between the benefit of early cancer detection and the risk of screening-induced malignancy. This report provides a brief review of the process of radiation carcino-genesis and the literature evaluating the risk of malignancy from CT, with a focus on the risks and benefits of CT for cancer screening. The available data suggest a small but real risk of radiation-induced malignancy from CT that could become significant at the population level with widespread use of CT-based screening. However, a growing body of literature suggests that the benefits of CT screening for lung cancer in high-risk patients and CT colonography for colorectal cancer may significantly outweigh the radiation risk. Future studies evaluating the benefits of CT screening should continue to consider potential radiation risks.

  5. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  6. The great wall in the CfA survey: Its origin and imprint on the microwave background radiation

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    1990-01-01

    The Great Wall (GW) found in the latest CfA survey has clearly started out as an aspherical overdense region. We model its evolution after recombination and the imprint its time-dependent gravitational potential leaves on the microwave background radiation (MBR). We approximate GW as an oblate ellipsoid and show that it started at recombination with an almost spherical shape, but with an initial density contrast, δ i , much smaller than it had to be in the spherical model in order to reach the observed GW density contrast of q∝5. The resultant δ i is compatible with the r.m.s. value of δρ/ρ on the GW scale at recombination for models with the n -6 -5 depending on Ω and q. Therefore, MBR observations in that direction can further constrain Ω and the bias factor of the light distribution. (orig.)

  7. Occuptional radiation exposures and thyroid cancer risk among radiologic technologists

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Kyeong; Lee, Won Jin [Korea University, Seoul (Korea, Republic of); Ha, Mina [Dankook University Seoul (Korea, Republic of); Kim, Jae Young [Keimyung University, Daegu (Korea, Republic of); Jun, Jae Kwan [National Cancer Center, Seoul (Korea, Republic of); Jin, Young Won [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-04-15

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures and accounted for 7.4 million worldwide in 2008. Ionizing radiation is the confirmed human carcinogen for most organ sites. The aims of the study is to evaluate the association between occupational practices including radiation exposure and thyroid cancer risk among radiologic technologists. We found no significant association between the risk of thyroid cancer and the majority of work practices among diagnostic radiation technologists in general. However workers performing fluoroscopy and interventional procedures showed increased risks although the lack of a clear exposure– response gradient makes it difficult to draw clear conclusions. Future studies with larger sample size and detailed work practices implementation are needed to clarify the role of occupational radiation work in thyroid cancer carcinogenesis.

  8. Medical interventional procedures--reducing the radiation risks

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, C. E-mail: claire.cousins@addenbrookes.nhs.uk; Sharp, C

    2004-06-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up.

  9. Medical interventional procedures--reducing the radiation risks

    International Nuclear Information System (INIS)

    Cousins, C.; Sharp, C.

    2004-01-01

    Over the last 40 years, the number of percutaneous interventional procedures using radiation has increased significantly, with many secondary care clinicians using fluoroscopically guided techniques. Many procedures can deliver high radiation doses to patients and staff, with the potential to cause immediate and delayed radiation effects. The challenge for interventionists is to maximize benefit, whilst minimizing radiation risk to patients and staff. Non-radiologist clinicians are often inadequately trained in radiation safety and radiobiology. However, clinical governance and legislation now requires a more rigorous approach to protecting patients and staff. Protection can be ensured, and risks can be controlled, by appropriate design, procurement and commissioning of equipment; quality assurance; and optimal operational technique, backed by audit. Interventionists need knowledge and skills to reduce the risks. Appropriate training should include awareness of the potential for radiation injury, equipment operational parameters, doses measurement and recording methods and dose reduction techniques. Clinical governance requires informed consent, appropriate patient counselling and follow-up

  10. Occuptional radiation exposures and thyroid cancer risk among radiologic technologists

    International Nuclear Information System (INIS)

    Moon, Eun Kyeong; Lee, Won Jin; Ha, Mina; Kim, Jae Young; Jun, Jae Kwan; Jin, Young Won

    2016-01-01

    Medical radiation workers were among the earliest occupational groups exposed to external ionizing radiation due to their administration of a range of medical diagnostic procedures and accounted for 7.4 million worldwide in 2008. Ionizing radiation is the confirmed human carcinogen for most organ sites. The aims of the study is to evaluate the association between occupational practices including radiation exposure and thyroid cancer risk among radiologic technologists. We found no significant association between the risk of thyroid cancer and the majority of work practices among diagnostic radiation technologists in general. However workers performing fluoroscopy and interventional procedures showed increased risks although the lack of a clear exposure– response gradient makes it difficult to draw clear conclusions. Future studies with larger sample size and detailed work practices implementation are needed to clarify the role of occupational radiation work in thyroid cancer carcinogenesis.

  11. Natural radiation, radioactive waste and chemical risk determinants

    International Nuclear Information System (INIS)

    Christensen, T.; Mustonen, R.; Edhwall, H.; Hansen, H.; Soerensen, A.; Stranden, E.

    1990-01-01

    Doses from natural radiation to the population in the Nordic countries are summarized, and man-made modifications of the natural radiation environment are discussed. An account is given for the radiological concequences of energy concervation by reduced ventilation. Risks from possible future releases of radioactivity from final depositories of spent nuclear fuel are compared to the risks from present natural radioactivity in the environment. The possibilities for comparison between chemical and radiological risks are discussed. 104 refs., 36 figs., 47 tabs

  12. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  13. Effective doses and standardised risk factors from paediatric diagnostic medical radiation exposures: Information for radiation risk communication

    International Nuclear Information System (INIS)

    Bibbo, Giovanni

    2018-01-01

    In the paediatric medical radiation setting, there is no consistency on the radiation risk information conveyed to the consumer (patient/carer). Each communicator may convey different information about the level of risk for the same radiation procedure, leaving the consumer confused and frustrated. There is a need to standardise risks resulting from medical radiation exposures. In this study, paediatric radiographic, fluoroscopic, CT and nuclear medicine examination data have been analysed to provide (i) effective doses and radiation induced cancer risk factors from common radiological and nuclear medicine diagnostic procedures in standardised formats, (II) awareness of the difficulties that may be encountered in communicating risks to the layperson, and (iii) an overview of the deleterious effects of ionising radiation so that the risk communicator can convey with confidence the risks resulting from medical radiation exposures. Paediatric patient dose data from general radiographic, computed tomography, fluoroscopic and nuclear medicine databases have been analysed in age groups 0 to <5 years, 5 to <10 years, 10 to <15 years and 15 to <18 years to determine standardised risk factors. Mean, minimum and maximum effective doses and the corresponding mean lifetime risks for general radiographic, fluoroscopic, CT and nuclear medicine examinations for different age groups have been calculated. For all examinations, the mean lifetime cancer induction risk is provided in three formats: statistical, fraction and category. Standardised risk factors for different radiological and nuclear medicine examinations and an overview of the deleterious effects of ionising radiation and the difficulties encountered in communicating the risks should facilitate risk communication to the patient/carer.

  14. Risks from ionizing radiation during pregnancy

    Directory of Open Access Journals (Sweden)

    mehrdad Gholami

    2007-04-01

    Full Text Available Gholami M1, Abedini MR2, Khossravi HR3, Akbari S4 1. Instructor, Department of medical physics, Faculty of medicine, Lorestan University of medical sciences 2. Assistant professor, Department of radiology, Faculty of medicine, Lorestan University of medical sciences 3. Assistant professor, Department of radiation protection, Iranian Atomic Energy Organization 4. Assistant professor, Department of gynecology, Faculty of medicine, Lorestan University of medical sciences Abstract Background: The discovery of the X-ray in November 1895 by the W. C. Roentgen caused the increasing use of x-ray, because of the benefits that patients get from the resultant the diagnosis. Since medical radiation exposure are mainly in artificial radiation sources, immediately after the x- ray discovery, progressive dermatitis and ophthalmic diseases were occurred in the early physicians and physicists. But delay effects were observed approximately 20 years after the x-ray discovery. History: Based on the studies, ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to pregnant women is a standard practice in radiology, unless there are important clinical indications. Due to difference in stages of fetus development, using of the current radiation protection standards includes: justification of a practice, optimization of radiation protection procedures and dose limitation to prevent of serious radiation induced conditions is necessary. Conclusion: Conversely the somatic and genetic effects of x-rays, since the X-ray has the benefit effects, special in diagnostic and treatment procedures, there is increasing use of x-ray, so using of the latest radiation protection procedures is necessary. Radiation protection not only is a scientific subject but also is a philosophy, Moral and reasonable. since the ionizing radiation is a potential hazard to the developing fetus, avoiding unnecessary radiation exposure to the pregnant

  15. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    Science.gov (United States)

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  16. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  17. Combined Microwave Ablation and Cementoplasty in Patients with Painful Bone Metastases at High Risk of Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Pusceddu, Claudio, E-mail: clapusceddu@gmail.com [Regional Referral Center for Oncologic Diseases, Division of Interventional Radiology, Department of Oncological Radiology, Ocological Hospital “A. Businco” (Italy); Sotgia, Barbara, E-mail: barbara.sotgia@gmail.com; Fele, Rosa Maria, E-mail: rosellafele@tiscali.it [Regional Referral Center for Oncological Diseases, Department of Oncological Radiology, Oncological Hospital “A. Businco” (Italy); Ballicu, Nicola, E-mail: nicolaballicu77@gmail.com [Regional Referral Center for Oncologic Diseases, Division of Interventional Radiology, Department of Oncological Radiology, Ocological Hospital “A. Businco” (Italy); Melis, Luca, E-mail: doclucamelis@tiscali.it [Regional Referral Center for Oncological Diseases, Department of Oncological Radiology, Oncological Hospital “A. Businco” (Italy)

    2016-01-15

    PurposeTo retrospectively evaluate the effectiveness of computed tomography-guided percutaneous microwave ablation (MWA) and cementoplasty in patients with painful bone metastases at high risk of fracture.Materials and MethodsThirty-five patients with 37 metastatic bone lesions underwent computed tomography-guided MWA combined with cementoplasty (polymethylmethacrylate injection). Vertebrae, femur, and acetabulum were the intervention sites and the primary end point was pain relief. Pain severity was estimated by visual analog scale (VAS) before treatment; 1 week post-treatment; and 1, 6, and 12 months post-treatment. Functional outcome was assessed by improved patient walking ability. Radiological evaluation was performed at baseline and 3 and 12 months post-procedure.ResultsIn all patients, pain reduction occurred from the first week after treatment. The mean reduction in the VAS score was 84, 90, 90 % at week 1, month 1, and month 6, respectively. Improved walking ability occurred in 100 and 98 % of cases at the 1- and 6-month functional outcome evaluations, respectively. At the 1-year evaluation, 25 patients were alive, and 10 patients (28 %) had died because of widespread disease. The mean reduction in the VAS score and improvement in surviving patients’ walking ability were 90 and 100 %, respectively. No patients showed evidence of local tumor recurrence or progression and pathological fracture in the treated sites.ConclusionOur results suggest that MWA combined with osteoplasty is safe and effective when treating painful bone metastases at high risk of fracture. The number of surviving patients at the 1-year evaluation confirms the need for an effective and long-lasting treatment.

  18. Radiation and society: Comprehending radiation risk. V. 3. Proceedings of an international conference

    International Nuclear Information System (INIS)

    1997-01-01

    This IAEA international conference on Radiation and Society was the first major international meeting devoted to the comprehension of radiation risk, public attitude towards radiation risk and hazards encountered by the general public in contaminated areas. Volume three of the proceedings contains the speeches, ten introductory papers, summaries of the technical discussion sessions, the key note paper on uncertainties in the health impact of environmental pollutants. Refs, figs, tabs

  19. Discussions about nuclear and radiation risk information communication

    International Nuclear Information System (INIS)

    Yang Bo; Wang Erqi; Peng Xianxun

    2013-01-01

    This paper described the definition and the objective of risk communication and the development of the risk communication research. It stated that how to establish a trustworthy relationship with public and the 8 aspects that should be done for keeping the relationship. With the analysis of the cognition and the influencing of the nuclear and radiation risk, this article figured out the factors which could influence the cognition of public on nuclear and radiation risk. Moreover, it explained the principles for enhancing the efficiency of the risk communication and the specific works in each phase of the risk communication. Finally, the suggestions for the development of the risk communication of the nuclear and radiation in China had been provided. (authors)

  20. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  1. MICROWAVES IN ORGANIC SYNTHESIS

    Science.gov (United States)

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  2. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  3. Radiation risks and the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, B

    1986-01-01

    A review is given of the basic of radiation protection, including nomenclature and units and principles for protection at accidents. The consequences of the Chernobyl accident in the Soviet Union and in Sweden is described, and the recommendations and protection measures applied in Sweden are presented. In particular, the radiation levels and restrictions concerning food are discussed. (L.E.).

  4. Acceptability of risk from radiation: Application to human space flight

    International Nuclear Information System (INIS)

    1997-01-01

    This one of NASA's sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Acceptability of risk from radiation: Application to human space flight

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    Science.gov (United States)

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  7. Identification of risk aversion factor for radiation workers in Korea

    International Nuclear Information System (INIS)

    Fadul, Abdulbagi; Na, Seong H.

    2016-01-01

    Radiation aversion factor reflects the degree of avoidance of radiation exposure which is considered a fundamental element in the optimization of radiation protection and a key factor in determining the real monetary value of the man-Sievert (Sv). This study provides an adjusted risk aversion factor, which was prescribed by the Korea Institute for Nuclear Safety (KINS), a regulatory body in Korea. Specifically, the Korea Hydro and Nuclear Power Co., Ltd. (KHNP) evaluated the monetary value of the man-Sv for Korean Nuclear Power Plants (NPPs) workers. This monetary value was assessed by the radiation aversion factor. Consequently, identifying the monetary value of the man-Sv in this study will enhance not only the effectiveness of optimization of radiation protection in Korea but also contribute to reduce doses to As Low As Reasonably Achievable (ALARA) when accounting for economic and societal aspects. The primary purpose of this study is to obtain the risk aversion factor for radiation workers in medical and industrial facilities in Korea. The secondary purpose is to evaluate the real monetary value of the man-Sv.These objectives will be accomplished by collecting data from surveys that consider a variety of socio-economic conditions. The value of 1.45 represents considerable avoidance of radiation risk for the majority of NDT radiographers due to familiarity and work experience with radiation hazards. On the other hand, the value 1.57 indicates that most of radiation medical practitioners, in particular, interventional radiologists have a strong will to avoid radiation risk. However, they will accept more risk with incremental salary increases. For international comparison, the concept of Purchasing Power Parity (PPP) should be adopted to obtain the alpha values in real term. Certainly, this monetary value of the man-Sv is expected to contribute effectively in optimization of radiation protection in both medical and industrial fields. The findings of this study

  8. Identification of risk aversion factor for radiation workers in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Fadul, Abdulbagi [KAIST, Daejeon (Korea, Republic of); Na, Seong H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Radiation aversion factor reflects the degree of avoidance of radiation exposure which is considered a fundamental element in the optimization of radiation protection and a key factor in determining the real monetary value of the man-Sievert (Sv). This study provides an adjusted risk aversion factor, which was prescribed by the Korea Institute for Nuclear Safety (KINS), a regulatory body in Korea. Specifically, the Korea Hydro and Nuclear Power Co., Ltd. (KHNP) evaluated the monetary value of the man-Sv for Korean Nuclear Power Plants (NPPs) workers. This monetary value was assessed by the radiation aversion factor. Consequently, identifying the monetary value of the man-Sv in this study will enhance not only the effectiveness of optimization of radiation protection in Korea but also contribute to reduce doses to As Low As Reasonably Achievable (ALARA) when accounting for economic and societal aspects. The primary purpose of this study is to obtain the risk aversion factor for radiation workers in medical and industrial facilities in Korea. The secondary purpose is to evaluate the real monetary value of the man-Sv.These objectives will be accomplished by collecting data from surveys that consider a variety of socio-economic conditions. The value of 1.45 represents considerable avoidance of radiation risk for the majority of NDT radiographers due to familiarity and work experience with radiation hazards. On the other hand, the value 1.57 indicates that most of radiation medical practitioners, in particular, interventional radiologists have a strong will to avoid radiation risk. However, they will accept more risk with incremental salary increases. For international comparison, the concept of Purchasing Power Parity (PPP) should be adopted to obtain the alpha values in real term. Certainly, this monetary value of the man-Sv is expected to contribute effectively in optimization of radiation protection in both medical and industrial fields. The findings of this study

  9. Knowledge of medical imaging radiation dose and risk among doctors.

    Science.gov (United States)

    Brown, Nicholas; Jones, Lee

    2013-02-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  10. Response of exfoliated human buccal epithelium cells to combined gamma radiation, microwaves, and magnetic field exposure estimated by changes in chromatin condensation and cell membrane permeability

    Directory of Open Access Journals (Sweden)

    K. А. Kuznetsov

    2016-11-01

    Full Text Available Modulation of the biological effects produced by ionizing radiation (IR using microwave and magnetic fields has important theoretical and practical applications. Response of human buccal epithelium cells to different physical agents (single and combined exposure to 0.5–5 Gy γ-radiation (60Co; microwaves with the frequency of 36.64 GHz and power densities of 0.1 and 1 W/m2, and static magnetic field with the intensity of 25 mT has been investigated. The stress response of the cells was evaluated by counting heterochromatin granules quantity (HGQ in the cell nuclei stained with orcein. Membrane permeability was assessed by the percentage of cells stained with indigocarmine (cells with damaged membrane. The increase of heterochromatin granules quantity (HGQ, i.e. chromatin condensation was detected at the doses of 2 Gy and higher. Changes in the cell membrane permeability to indigocarmine expressed the threshold effect. Membrane permeability reached the threshold at the doses of 2–3 Gy for the cells of different donors and did not change with the increase of the dose of γ-radiation. Cells obtained from different donors revealed some individual peculiarities in their reaction to γ-radiation. The static magnetic field and microwaves applied before or after γ-radiation decreased its impact, as revealed by means of HGQ assessment.

  11. Assessment of DNA sensitivity in peripheral blood leukocytes after occupational exposure to microwave radiation: the alkaline comet assay and chromatid breakage assay

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2002-01-01

    The people of industrialised societies are continuously exposed to increasing levels of electromagnetic fields (EMF) emitted by various electrical installations and telecommunication systems. In recent years there has been growing interest in the health effects of the electromagnetic radiation's designated extremely low frequency (ELF) and radiofrequency radiation (RFR). It is known that exposure to microwave radiation has different biological effects on eye, the nervous system and its function, circulatory and the reproductive system. Available data on cytogenetic consequences of microwave exposure on the induction of chromosome damage are sometimes contradictory, mostly because of different experimental conditions of in vitro and in vivo studies. However, in occupationally exposed persons elevated levels of DNA damage as expressed by means of cytogenetic endpoints were observed. Positive results in induction of micronuclei are also reported after in vitro exposure to microwave radiation on human lymphocytes. It has been suggested that exposure to radiofrequency radiation may have genetic effects which predispose to the development of cancer, particularly lymphoma and leukaemia, and also birth defects such as Down's syndrome

  12. Interaction between radiation and other breast cancer risk factors

    International Nuclear Information System (INIS)

    Boice, J.D. Jr.; Stone, B.J.

    1978-01-01

    A follow-up study was conducted of 1764 women institutionalized for pulmonary tuberculosis between 1930 and 1954. Among 1047 women exposed to fluoroscopic chest X-rays during air collapse therapy of the lung, an excess of breast cancer was observed and previously reported (41 cases observed versus 23.3 expected). Among 717 comparison patients who received other treatments, no excess breast cancer risk was apparent (15 cases observed versus 14.1 expected). To determine whether breast cancer risk factors modify the carcinogenic effect of radiation, analyses were performed evaluating the interaction of radiation with indicators of breast cancer risk. The greatest radiation risk was found when radiation exposure occurred just before and during menarche. Similarly, exposures during first pregnancy appeared substantially more hazardous than exposures occurring before or after first pregnancy, suggesting that the condition of the breast at the time of pregnancy modifies the effect of radiation in such a way as to enhance the risk. Age at menopause did not appear to influence the risk of radiation exposure. Other than radiation, benign breast disease was the most significant breast cancer risk indicator. Benign breast disease was not seen to modify the effect of radiation exposure; however, excessive radiation exposure might have increased the incidence of benign breast disease, complicating the interaction analysis. Because of the uncertainty due to small-number sampling variation, these study results will require confirmation by a larger series. They do, however, suggest that stages when breast tissue undergoes high mitotic activity, e.g. menarche and pregnancy, are times of special vulnerability to the harmful effects of ionizing radiation

  13. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  14. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  15. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  16. Alleged radiation risks from visual display terminals

    International Nuclear Information System (INIS)

    Knave, B.G.; Bergqvist, U.O.V.

    1988-01-01

    A number of careful scientific studies have been focussed on the measurement of electromagnetic radiation or fields due to VDTs based on the cathode ray tube technique (CRT), whole limited attention has also been given acoustic radiation. The discussion as to whether work at VDTs can affect human health has been centered on different types of effects such as eye damage or discomforts, neck and shoulder discomfort, adverse reproductive outcomes, skin disorders and different stress reactions. In the present paper a short review is given of some of the alleged radiation hazards from the VDTs, mainly with emphasis on pregnancy outcome

  17. Developments in assessing carcinogenic risks from radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1984-01-01

    The papers in this volume have ranged widely over theoretical, experimental, and epidemiologic topics relating to radiation carcinogenesis. The multistage character of carcinogenesis, emphasis on the ease with which the initial event occurs in contrast to the infrequency of carcinogenic expression, the role of cell repair, and factors that may influence expression were major themes of the theoretical and experimental papers. The elegance of the cell transformation tool was illustrated in reviews of experimental work dealing with the exposure and environmental variables that influence radiation-induced transformation, among them the intracellular environment. Arguments were advanced for the view that more than one cell must be affected by radiation if a critical event is to occur. The relative congruence of carcinogens and clastogens was noted, and the suggestion made that the rules governing the induction of chromosomal aberrations by ionizing may apply to radiation carcinogenesis as well

  18. Risk of cancer subsequent to low-dose radiation

    International Nuclear Information System (INIS)

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident

  19. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  20. Biological consequences of radiation: risk factors

    International Nuclear Information System (INIS)

    1985-01-01

    This publication is a syllabus of a course on Radiation Protection. The publication offers an overview of the biological radiation effects at cellular level. For that purpose, different forms of cancers and their incidence are first discussed; structure and functioning of normal cells are considered and an introduction in genetics is given. Finally, an overview is presented of the character of tissue damage after high-dose irradiation. (G.J.P.)

  1. GARLIC - A general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and evaluation

    Science.gov (United States)

    Schreier, Franz; Gimeno García, Sebastián; Hedelt, Pascal; Hess, Michael; Mendrok, Jana; Vasquez, Mayte; Xu, Jian

    2014-04-01

    A suite of programs for high resolution infrared-microwave atmospheric radiative transfer modeling has been developed with emphasis on efficient and reliable numerical algorithms and a modular approach appropriate for simulation and/or retrieval in a variety of applications. The Generic Atmospheric Radiation Line-by-line Infrared Code - GARLIC - is suitable for arbitrary observation geometry, instrumental field-of-view, and line shape. The core of GARLIC's subroutines constitutes the basis of forward models used to implement inversion codes to retrieve atmospheric state parameters from limb and nadir sounding instruments. This paper briefly introduces the physical and mathematical basics of GARLIC and its descendants and continues with an in-depth presentation of various implementation aspects: An optimized Voigt function algorithm combined with a two-grid approach is used to accelerate the line-by-line modeling of molecular cross sections; various quadrature methods are implemented to evaluate the Schwarzschild and Beer integrals; and Jacobians, i.e. derivatives with respect to the unknowns of the atmospheric inverse problem, are implemented by means of automatic differentiation. For an assessment of GARLIC's performance, a comparison of the quadrature methods for solution of the path integral is provided. Verification and validation are demonstrated using intercomparisons with other line-by-line codes and comparisons of synthetic spectra with spectra observed on Earth and from Venus.

  2. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. II. Postnatal psychophysiologic evaluations

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Wistar rats (36) were exposed daily throughout pregnancy to a power density level of 35 mW/cm 2 of 6000-MHz microwave radiation (11), sham irradiated (10), or used as control animals (15). Litters were culled to a maximum of eight F 1 /sub a/ offspring/litter (total = 124) on Postnatal Day 1 and subjected to a series of reflex tests beginning Day 3. Mothers were rebred 10 days after weaning. Teratologic evaluations were completed on 263 F 1 /sub b/ offspring. Weekly weights were recorded for 298 F 1 /sub a/ offspring. At 60 days, behavioral testing was initiated on 121 offspring. At 90 days, offspring were bred within/across groups. Teratologic evaluations were completed on 659 F 2 term fetuses. Organ weight analyses were completed on 17 mothers and 181 F 1 /sub a/ adult offspring, and blood analyses on 21 mothers and 131 offspring. Sex differences within groups were observed in four behavioral tests and in blood data. Significant differences between groups were observed for: F 1 /sub b/ term fetal weight; F 1 /sub a/ eye opening, postnatal growth to the fifth week, water T-maze and open field test results; and several organ/body weight ratios. These results indicate that exposure to 6000-MHz radiation at this power density level may result in subtle long-term neurophysiologic alterations not detectable at term using conventional morphologic teratologic procedures

  3. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. II. Postnatal phychophysiologic evaluations

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Wistar rats (36) were exposed daily throughout pregnancy to a power density level of 35 mW/cm 2 of 6000-MHz microwave radiation (11), sham irradiated (10), or used as control animals (15). Litters were culled to a maximum of eight F 1 /sub a/ offspring/litter (total = 124) on Postnatal Day 1 and subjected to a series of reflex tests beginning Day 3. Mothers were rebred 10 days after weaning. Teratologic evaluations were completed on 263 F 1 /sub b/ offspring. Weekly weights were recorded for 298 F 1 /sub a/ offspring. At 60 days, behavioral testing was initiated on 121 offspring. At 90 days, offspring were bred within/across groups. Teratologic evaluations were completed on 659 F 2 term fetuses. Organ weight analyses were completed on 17 mothers and 181 F 1 /sub a/ adult offspring, and blood analyses on 21 mothers and 131 offspring. Sex differences within groups were observed in four behavioral tests and in blood data. Significant differences between groups were observed for: F 1 /sub b/ term fetal weight; F 1 /sub a/ eye opening, postnatal growth to the fifth week, water T-maze and open field test results; and several organ/body weight ratios. These results indicate that exposure to 6000-MHz radiation at this power density level may result in subtle long-term neurophysiologic alterations not detectable at term using conventional morphologic teratologic procedures

  4. Oscillator phenomena in the solar atmosphere and radiation modulation in microwaves

    International Nuclear Information System (INIS)

    Vaz, A.M.Z.

    1983-05-01

    An overview of the principal known descriptions of oscillations in the solar atmosphere at different ranges of periods was developed. Particular attention was given to oscillations with time scale of seconds, associated to active regions or bursts. 1.5 quasi-periodic oscillations were detected by the first time at more than one microwave frequency simultaneously (22 GHz and 44 GHz), with high sensitivity and high time resolution, superimposed on a burst on Dec. 15, 1980. An advance phase of 0,3s between the oscillations in the frequencies of 22 GHz and 44 GHz was discovered. The proposed mechanism to explain such oscillations is based on oscillations of the magnetic field at the source. These oscillations modulate the gyro-synchrotron emission from high energy electrons trapped in the magnetic structure. The phase difference is attributed to the influence of the optical thickness of the gyro-synchrotron emission at 22 GHz. (Author) [pt

  5. Sources of exposure to radiofrequency and microwave radiations in the UK

    CERN Document Server

    Allen, S G

    1983-01-01

    A comprehensive survey is presented of sources of radiofrequency and microwave fields in the United Kingdom that give rise to the exposure of both workers and the general public. The information is presented in the context of the existing guidelines for the restrictions of exposures to such fields and of proposed new guidelines based on restricting the rate of energy absorption averaged over the human body to 0.4 watts per kilogram or, at frequencies below 3 MHz, limiting field strengths to 600 volts per metre. It is concluded that unless account is taken of time averaging relaxations and possible modifying factors relating to energy absorption arising under near field and partial body exposure conditions, there may be difficulties in applying the proposed guidelines to the use of radio frequencies for industrial heating purposes and to some portable and mobile transmitters used for communications.

  6. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  7. Dielectric and magnetic losses of microwave electromagnetic radiation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V; Tchmutin, I A; Ryvkina, N G; Kalinin, Y E; Sitnikoff, A V

    2003-01-01

    We have studied dielectric and magnetic losses in granular structures constituted by ferromagnetic nanoparticles (Co, Fe, B) in an insulating amorphous a-SiO sub 2 matrix at microwave frequencies, in relation to metal concentration, substrate temperatures and gas content, in the plasma atmosphere in sputtering and annealing. The magnetic losses are due to fast spin relaxation of nanoparticles, which becomes more pronounced with decreasing metal content and occur via simultaneous changes in the granule spin direction and spin polarization of electrons on exchange-split localized states in the matrix (spin-polarized relaxation mechanism). The difference between the experimental values of the imaginary parts of magnetic permeability for granular structures prepared in Ar and Ar + O sub 2 atmospheres is determined by different electron structures of argon and oxygen impurities in the matrix. To account for large dielectric losses in granular structures, we have developed a model of cluster electron states (CESs)....

  8. Hospital waste sterilization: a technical and economic comparison between radiation and microwave treatments

    International Nuclear Information System (INIS)

    Tata, A.; Beone, F.

    1995-01-01

    Hospital waste (HW) disposal is becoming a problem of increasing importance in almost all industrially advanced countries. In Italy the yearly hospital waste production is about 250,000 tons and only 60,000 are treated by incineration at present time. As by a recent Italian law a meaningful percentage of HW (50 to 60%), corresponding to food residuals, plastic, paper, various organic materials, etc., could be landfilled as municipal refuses if preliminarily submitted to a suitable sterilization treatment. Under this perspective, sterilization/sanitation techniques represent now a technically and commercially viable alternative to HW thermal destruction that, besides more and more socially and politically less accepted. Electron Beam (EB) and Microwave (MW) treatments are two of the most interesting and emerging HW sterilization techniques, and, based on engineering real data, a technical and economic comparison is carried out, focusing vantages and limits of each process. (author)

  9. Social impacts induced by radiation risk in Fukushima prefecture

    International Nuclear Information System (INIS)

    Murayama, Takehiko

    2011-01-01

    An accident of Fukushima Daiichi nuclear power plant induced by an earthquake of M9.0 and subsequent tsunami gave various kinds of impacts around the plant. After reviewing arguments of local governments for low dose radiation risk, this paper analyzed social impacts by the risk in terms of a gap of emergency response between national and local governments, corruption of communities in various levels induced by plural statements for risk levels in low level radiation, and economic impacts for agricultural crops made in Fukushima prefecture. Afterwards, clues for improving the situation were discussed, which include understanding of characteristics of public perception, attitudes of experts and interactive risk communication. (author)

  10. Risks of low-level radiation - the evidence of epidemiology

    International Nuclear Information System (INIS)

    Gloag, D.

    1980-01-01

    The difficulties involved in estimating risks from very low levels of radiation and the use of dose-response models for cancer incidence are discussed with reference to the third BEIR Committee report on the Effects on Populations of Exposure to low levels of Ionizing Radiation (1980). Cancer risk estimates derived from different epidemiological studies are reviewed. They include atom bomb survivors, medically irradiated groups and occupational groups. (36 references). (author)

  11. Delineating organs at risk in radiation therapy

    CERN Document Server

    Ausili Cèfaro, Giampiero; Perez, Carlos A

    2014-01-01

    This book offers an invaluable guide to the delineation of organs at risk of toxicity in patients undergoing radiotherapy. It details the radiological anatomy of organs at risk as seen on typical radiotherapy planning CT scans.

  12. Degradation of Transformer Oil (PCB Compounds by Microwave Radiation, Ethanol Solvent, Hydrogen Peroxide and Dioxide Titanium for Reducing Environmental Hazards

    Directory of Open Access Journals (Sweden)

    Reza Tajik

    2013-02-01

    Full Text Available Background: Poly chlorinated biphenyls (PCBs are a class of chlorinated organic chemicals that do not easily degrade in the environment. This study was conducted to determine the effect of microwave rays, hydrogen peroxide, dioxide titanium and ethanol solvent on the degradation of PCBs. Methods: A 900w domestic MW oven with a fixed frequency of 2450 MHZ was used to provide MW irradiation. Ray powers were used in 540, 720, and 900w. A hole was made on the top portion of the oven and a Pyrex vessel reactor (250ml volume was connected to condensing system with a Pyrex tube connector. The PCBs were analyzed by GC-ECD. Results: The degradation of total PCBs was 54.62%, 79.71%, and 95.76% in terms of their ratio to solvent with transformer oil at 1:1, 2:1, and 3:1, respectively. The degradation of total PCBs was 84.27%, 89.18%, and 96.1% when using 540, 720, and 900W microwave radiation, respectively. The degradation of total PCBs was 70.72%, 93.02%, 94.16, 95.23% and 96.1% when not using H2O2/ Tio2 and using 20% H2O2 and 0.05, 0.1, 0.15, and 0.2g Tio2, respectively. Conclusion: In the present study, the optimum conditions to decompose PCBs efficiently included 50 ml volume of ratio to solvent with transformer oil (3:1, sodium hydroxide solution (0.2N 1 cc, use of 20% hydrogen peroxide of total volume of samples, dioxide titanium (0.2g, and irradiation for 9 minutes. Under these optimum conditions, efficiency of PCBs decomposition increased.

  13. Integrating electromagnetic radiation hazard info the unique occupational risk assessment document

    International Nuclear Information System (INIS)

    Demaret, P.; Donati, P.

    2011-01-01

    The number of industrial applications involving electromagnetic waves has significantly increased in recent years. These applications are likely to expose operators to electromagnetic fields exceeding the limits laid down by European Parliament and Council Directive 2004/40/CE of 29 April 2004. A survey has identified the equipment emitting the most radiation and this has been classified into 8 families: resistance welding, magnetization, induction heating, magneto-scopy, dielectric loss welding, electrolysis, magnetic resonance imagery, microwaves. The equipment numbers per family was estimated by a market surveys, which specifically identified several tens of thousands of resistance welding- or magnetization-type machines. This survey enabled us to deduce that at least 100,000 operators in France would be at risk of exposure to electromagnetic fields. An assessment of exposure levels for operators at their workstations was undertaken for each equipment family. A group comprising specialists from INRS and the 9 CARSAT/CRAM Physical Measurement Centres measured electromagnetic fields at 635 workstations fitted with radiation emitting machinery. For each measurement, a severity index corresponding to the ratio of the measured value to the action-triggering value (ATV) recommended by European Parliament and Council Directive 2004/40/CE of 29 April 2004 was calculated. The results show that, for 7 equipment families out of the 8 retained, 25 - 50% of measurements gave electromagnetic field values exceeding the corresponding ATV. These results demonstrate the need for prevention means. In most cases, exposure reduction is achieved by moving the workstation away from the radiation source. Technical solutions do exist for certain equipments, such as shielding for microwave ovens and high-frequency presses, a grounding pad for tarpaulin welding, etc. (authors)

  14. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    International Nuclear Information System (INIS)

    Franco, Jose G.; Franco, Suely S.H.; Franco, Caio H.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  15. Microwave radiation effects on the different stages of Sitophilus oryzae (Linne, 1763) (Coleoptera, Curculionidae) evolutive cycle in rice, focusing its control

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose G.; Franco, Suely S.H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Franco, Caio H.; Arthur, Paula B.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente

    2013-07-01

    As insects increase in radio tolerance as they develop and usually several developmental stages of pest may present in grain shipped commodity, it is important to know the microwave radiation susceptibility of stages of the target insect before the establishment of microwave radiation quarantine treatments. The current research had the aim to evaluate the microwave radiation effects on several phases of the rice weevil evolution cycle (S.oryzae), focusing its control. This specie is considered as on of the most serious worldwide pests for stored grains. The tests have been done in glass vials with 250 grams of whole grain (brown) rice and the irradiation was done in a 2,450 MHz commercial microwave oven, model Carousel II (potency of 800W). It was determined the exposure time needed to each phase control for the insect evolutive cycle, concluding that the immature phases (larvae and pupae), contained inside the rice, are more sensitive, requiring only 100 seconds to obtain 100% control while the egg phase requires a longer exposure (130 seconds). Referring to the grown phase, the time required to attain the lethal dose was 160 seconds. All the exposure time have been irradiated with a low potency (240 W). It also displayed that to greater quantities of rice (1.0 kg), with egg presence and forming a 2.0-centimeter layer on the microwave plate surface, it required an exposure time of 180 seconds. Therefore, in a more effective way, we can recommend these 180 seconds exposure time to the control of all phases concerning the insect evolutive cycle. (author)

  16. The stochastic risks of radioactive radiation - risk assessment, risk proportions, dose limits

    International Nuclear Information System (INIS)

    Lindackers, K.H.

    1990-01-01

    The latest data on the delayed injury to the a-bomb survivors of Hiroshima and Nagasaki reveal that the effects of radiation are more severe than was estimated in the past. However, the application of these data to small dose rate radiation exposure over longer periods of time leads to an overestimation of the actual risk. The future supersonic aviation schemes for altitudes within 20,000 m should include early personnel check-ups for assessment of the required protective measures. (orig./DG) [de

  17. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  20. Risk evaluation for protection of the public in radiation accidents

    International Nuclear Information System (INIS)

    1967-01-01

    Evaluation of the risk that would be involved in the exposure of the public in the event of a radiation accident requires information on the biological consequences expected of such an exposure. This report defines a range of reference doses of radiation and their corresponding risks to the public in the event of a radiation accident. The reference doses and the considerations on which they were based will be used for assessing the hazards of nuclear installations and for policy decisions by the authorities responsible for measures taken to safeguards the public in the case of a nuclear accident.

  1. Cancer risk from low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Auvinen, A.

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.)

  2. Cancer risk from low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auvinen, A

    1997-06-01

    The aim of the study was to estimate cancer risk from small doses of ionizing radiation from various sources, including both external and internal exposure. The types of radiation included alpha, gamma, and neutron radiation. A nationwide follow-up study covering the years up to 1992 revealed no significant association between fallout from the Chernobyl accident and incidence of childhood leukemia. An excess of eight cases or more per year could be excluded. However, some indication of an increase was evident in the most heavily affected areas. Furthermore, the risk estimates were in accordance with those reported from Hiroshima and Nagasaki, although the confidence intervals were wide. (282 refs.).

  3. Radiation risks - how low can one get

    International Nuclear Information System (INIS)

    Bunyard, P.

    1978-01-01

    The level of the maximum permissible dose of ionizing radiation at present adopted is discussed. Statistics relating to the incidence of cancer among persons exposed to radiation are considered, with special reference to workers at the USAEC Hanford plant, persons in Nagasaki or Hiroshima at or shortly after the dropping of the atomic bombs, and children whose mothers were x-rayed during pregnancy. The hearings at the Windscale official inquiry into the proposed BNFL thermal oxide reprocessing plant are also discussed. (U.K.)

  4. Ethical Aspects of Radiation Risk Management

    OpenAIRE

    Wikman-Svahn, Per

    2012-01-01

    This thesis is based on the assumption that the intersection of moral philosophy and practical risk management is a rewarding area to study. In particular, the thesis assumes that concepts, ideas, and methods that are used in moral philosophy can be of great benefit for risk analysis, but also that practices in risk regulation provide a useful testing ground for moral philosophical theories. The thesis consists of an introduction and five articles. Article I is a review article on social and ...

  5. Factors that modify risks of radiation-induced cancer

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors)

  6. Risk of occupational radiation-induced cataract in medical workers

    International Nuclear Information System (INIS)

    Snezana, Milacic

    2008-01-01

    The objective of this study was determination of criteria for recognition of a pre senile cataract as a professional disease in health care personnel exposed to small doses of ionizing radiation. Method: The study included 3240 health workers in medical centers of Serbia in the period 1992-2002. A total of 1560 workers were employed in the zone (group A) and 1680 out of ionizing radiation zone (group B). Among group A, two groups had been selected: 1. Group A-1: Health workers in the ionizing radiation zone who contracted lens cataract during their years of service while dosimetry could not reveal higher absorbed dose (A-1=115); 2. Group A-2: Health workers in the ionizing radiation zone with higher incidence of chromosomal aberrations and without cataract (A-2=100). Results: More significant incidence of cataract was found in group A, χ 2 =65.92; p<0.01. Radiation risk was higher in health workers in radiation zone than in others, relative risk is 4, 6. Elevated blood sugar level was found in higher percentage with health workers working in radiation zone who developed cataract. Conclusion: Low doses of radiation are not the cause of occupational cataract as individual occupational disease. X-ray radiation may be a significant cofactor of cataract in radiological technicians. (author)

  7. Radiation and health risks: a bioethical perspective

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1983-01-01

    The author suggests that radiation and radioactivity have acquired a set of attributes that tend almost inevitably to intensify public alarm as public concern over nuclear energy and nuclear weapons has escalated. She discusses the moral argument that widespread use of radioactive substances seems tantamount to an immoral violation of human rights no matter what the benefits might be

  8. Real and perceived risks of medical radiation exposure

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1983-01-01

    After considering all the evidence related to the health effects of exposure to low levels of radiation, it is apparent that the risk is immeasurably small to any single person in a population exposed to small amounts of radiation. However, multiplying this immeasurably small estimate of risk by very large populations yields numbers that seem to imply that significant health effects (cancer, malformations, genetic effects) occur following exposure to small quantities of radiation. Although many advisory groups have cautioned against this procedure and conclusion, both continue to be used by some scientists and political action groups. In a public opinion poll conducted by Decision Research, Inc. of Eugene, Oregon, three groups were asked to rank the relative risks of various societal activities. Two of the three groups ranked nuclear power as the most hazardous of all societal activities, with a risk factor greater than that for smoking, automobiles, handguns and alcohol. Actually, nuclear power is the least hazardous of all 30 of the activities included in the poll. It is a conservative posture and probably a wise course of action to assume that exposure to any amount of radiation carries with it some element of risk. For example, requests for x-ray studies and nuclear medicine procedures should always be accompanied by an appreciation of the possibility of risk to the patient and to radiological personnel. At the same time, this element of risk should be placed in a realistic perspective by comparing it with other risks we assume every day

  9. Risky business: challenges and successes in military radiation risk communication.

    Science.gov (United States)

    Melanson, Mark A; Geckle, Lori S; Davidson, Bethney A

    2012-01-01

    Given the general public's overall lack of knowledge about radiation and their heightened fear of its harmful effects, effective communication of radiation risks is often difficult. This is especially true when it comes to communicating the radiation risks stemming from military operations. Part of this difficulty stems from a lingering distrust of the military that harkens back to the controversy surrounding Veteran exposures to Agent Orange during the Vietnam War along with the often classified nature of many military operations. Additionally, there are unique military exposure scenarios, such as the use of nuclear weapons and combat use of depleted uranium as antiarmor munitions that are not found in the civilian sector. Also, the large, diverse nature of the military makes consistent risk communication across the vast and widespread organization very difficult. This manuscript highlights and discusses both the common and the distinctive challenges of effectively communicating military radiation risks, to include communicating through the media. The paper also introduces the Army's Health Risk Communication Program and its role in assisting in effective risk communication efforts. The authors draw on their extensive collective experience to share 3 risk communication success stories that were accomplished through the innovative use of a matrixed, team approach that combines both health physics and risk communication expertise.

  10. Radiation risk estimation based on measurement error models

    CERN Document Server

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  11. Genotoxicity and oxidative stress of microwave radiation role of ascorbic acid

    International Nuclear Information System (INIS)

    Desouky, O.S.; Abdel Karim, M.A.; Deiaa El Deen, D.A.; Nayal, N.A.

    2005-01-01

    Radiofrequency fields and especially microwaves are very important part of electromagnetic spectrum that can produce generations of reactive oxygen species, and thus can affect DNA and cause chromosomal aberrations. So this effect can be diminished by the supplement of an antioxidant such as ascorbic acid. In this study, the proposed protective role of ascorbic acid was tested against the EMF induced chromosomal aberrations and lipid peroxidation. The present study proved that EMF had a clastogenic effect on the bone marrow cells of mice, either with the exposure to EMF; 950 MHz or frequency EMF; 2450 MHz. This effect was evidenced by structural and numerical chromosomal aberrations. The study also proved that EMF had an effect on oxidative stress, evidenced by increase in the level of lipid peroxide, in a dose dependent manner. So, the mechanism of EMF induced chromosomal aberrations can be explained by this oxidative stress induced by EMF exposure. The present study showed that ascorbic acid had a protective effect against both EMF induced chromosomal aberrations and oxidative stress, when it is applied concomitantly with EMF exposure either at frequency of 950 MHz or 2450 MHz. this is evident by decreases in the level of lipid peroxide and decrease in chromosomal aberrations

  12. Flexible composite via rapid titania coating by microwave-assisted ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... carbon fibre via microwave-assisted hydrothermal synthesis (MHS) ... Nanoparticles; titanium dioxide; microwave-assisted hydrothermal synthesis; carbon fibre. ..... study, the carbon fibre absorbs microwave radiation and con-.

  13. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  14. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  15. Features of transformation of impurity-defect complexes in СdTe:Сl under the influence of microwave radiation

    Directory of Open Access Journals (Sweden)

    Budzulyak S. I.

    2014-08-01

    Full Text Available High-resistance cadmium telluride single crystals are promising material for production of ionizing radiation detectors. To increase crystal resistance, they are doped with chlorine. The detector quality depends on uniformity of chlorine impurity distribution over crystal. It is known that low-dose microwave irradiation can homogenize impurity distribution in a specimen. In the present work, we made an attempt to improve the detector material quality by using such post-technological treatment, as well as to study state variation for impurity-defect complexes. To this end, the effect of microwave irradiation on transformation of impurity-defect complexes in CdTe:Cl single crystals was investigated using low-temperature photoluminescence. It is shown that activation of ClTe donor centers by microwave irradiation for 10 s and presence of VCd acceptor centers in the specimens under investigation effectively facilitate formation of (VNd–ClTe defect centers at which excitons are bound. Detailed investigations of the band form for donor-acceptor pairs (DAPs in CdTe:Cl single crystals made it possible to determine the Huang—Rhys factor (that characterizes electron-phonon interaction in CdTe:Cl DAPs as a function of microwave treatment duration. It is shown for single crystals with NCl = 5·1017 cm–3 and 5·1019 cm–3 that the Huang—Rhys factor grows with microwave irradiation dose. This is related to both homogenization of donor and acceptor centers distribution and increase of donor—acceptor spacing. It is shown that microwave irradiation of CdTe:Cl single crystals results in concentration reduction for separate cadmium vacancies VCd because of formation of (VNd—ClTe defect centers at which excitons are bound.

  16. Radiation risk and its estimation for nuclear facilities

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1979-01-01

    The level of knowledge achieved in estimating risks due to the operation of nuclear facilities is discussed. In this connection it is analyzed to what extent risk estimates may be used for establishing requirements for facilities and measures of radiation protection and accident prevention. At present, estimates of risks are subject to great uncertainties. However, the results attainable already permit to discern the causes of possible accidents and to develop effective measures for preventing such accidents. For the time being (and maybe in principle) risk estimation is possible only with more or less arbitrary premises. Within the foreseeable future, cost-benefit comparisons cannot compensate for discretionary decisions in establishing requirements for measures of radiation protection and accident prevention. In preparing such decisions based on experience, expert opinions, political and socio-economic reflections and views, comparison of the risk of novel technologies with existing ones or accepted risks may be a useful means. (author)

  17. Risk perception in the process of working with radiation sources

    International Nuclear Information System (INIS)

    Carneiro, J.C.G.; Levy, D.; Sanches, M.P.; Rodrigues, D.L.; Sordi, G.M.A.A.

    2017-01-01

    This study discusses occupational risk under three distinct aspects, which are often interconnected or interdependent in the work environment. These are: environmental risks, human failures and equipment failures. The article addresses the potential exposure in the workplace, caused by the agent's physical radiation risk, resulting from handling with sources of ionizing radiation. Based on the history of accidents occurring in normal operations, the study summarizes the main accidents in various facilities and possible causes involving the three aspects of risk. In its final considerations, it presents the lessons learned and the measures to be taken with the intention of contributing to the prevention and mitigation of risks in the work environment. The analysis of accident cases and their causes provide valuable information to prevent the risk of similar accidents and contribute to the improvement of operational projects and procedures

  18. The Effect of Solvent, Hydrogen Peroxide and Dioxide Titanium on Degradation of PCBs, Using Microwave Radiation in Order to Reduce Occupational Exposure

    Directory of Open Access Journals (Sweden)

    Tajik Reza

    2014-07-01

    Full Text Available Polychlorinated biphenyls (PCBs are one group of persistent organic pollutants (POPs that are of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment remains a very difficult challenge because the compounds are highly hydrophobic and have very low solubility in water. A 900 W domestic microwave oven, pyrex vessel reactor, pyrex tube connector and condensing system were used in this experiment. Radiation was discontinuous and ray powers were 540, 720 and 900 W. The PCBS were analyzed by GC-ECD. The application of microwave radiation and H2O2/TiO2 agents for the degradation of polychlorinated biphenyl contaminated oil was explored in this study. PCB – contaminated oil was treated in a pyrex reactor by microwave irradiation at 2450 MHz with the addition of H2O2/TiO2. A novel grain TiO2 (GT01 was used. The determination of PCB residues in oil by gas chromatography (GC revealed that rates of PCB decomposition were highly dependent on microwave power, exposure time, ratio to solvent with transformer oil in 3:1, the optimal amount of GT01 (0.2 g and 0.116 mol of H2O2 were used in the study. It was suggested that microwave irradiation with the assistance of H2O2/TiO2 might be a potential technology for the degradation of PCB – contaminated oil. The experiments show that MW irradiation, H2O2 oxidant and TiO2 catalyst lead to a degradation efficiency of PCBs only in the presence of ethanol. The results showed that the addition of ethanol significantly enhanced degradation efficiency of PCBs.

  19. Air travel and radiation risks - review of current knowledge

    International Nuclear Information System (INIS)

    Zeeb, H.; Blettner, M.

    2004-01-01

    Aircrew and passengers are exposed to cosmic radiation, in particular when travelling routes close to the poles and in high altitudes. The paper reviews current radiation measurement and estimation approaches as well as the actual level of cosmic radiation that personnel and travellers receive and summarizes the available epidemiological evidence on health effects of cosmic radiation. On average, German aircrew is exposed to les than 5 mSv per annum, and even frequent travellers only rarely reach values above 1 mSv/year. Cohort studies among aircrew have found very little evidence for an increased incidence or mortality of radiation-associated cancers. Only malignant melanoma rates have consistently found to be increased among male aircrew. Socioeconomic and reproductive aspects are likely to contribute to the slightly elevated breast cancer risk of female aircrew. Cytogenetic studies have not yielded consistent results. Based on these data overall risk increases for cancer among occupationally exposed aircrew appear unlikely. This also applies to air travellers who are usually exposed to much lower radiation levels. Occasional air travel during pregnancy does not pose a significant radiation risk, but further considerations apply in this situation. The currently available studies are limited with regard to methodological issues and case numbers so that a continuation of cohort studies in several European countries is being planned. (orig.) [de

  20. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  1. Radiation Risk Associated with Low Doses of Ionizing Radiation: Irrational Fear or Real Danger

    International Nuclear Information System (INIS)

    Reshetin, V.

    2007-01-01

    The established worldwide practice of protecting people from radiation based on the assessments of radiation risk received in the researches carried out earlier costs hundreds of billions of dollars a year to implement. In the opinion of the well-known experts, the maintenance of the existing radiation protection regulations or moreover acceptance of more tough regulations can influence the development of nuclear power engineering. The accepted practice of assessment of human health risk from radiation may also significantly affect our perception of threats of radiation terrorism. In this work, the critical analysis of publications on the assessment of the effects of small doses of radiation on human health is carried out. In our analysis, we especially emphasize the data on cancer mortality among survivors of the atomic bombing of Hiroshima and Nagasaki who received instantaneous radiation doses of less than 200 mSv including the data on leukemia and solid cancer, as well as epidemiological studies in the regions of India and China with high level of natural radiation. Since the investigations of radiation risk is a base for formulating modern radiation protection regulations, their reliability and validity are of great importance. As follows from the analysis, the subsequent, during three decades, toughening of radiation protection regulations has already led to exceedingly prohibitive standards and impractical recommendations the science-based validity of which can cause serious doubts. Now, a number of world-wide known scientists and authoritative international organizations call for revision of these standards and of the radiation safety concept itself. (author)

  2. Ionizing radiation risk assessment, BEIR IV

    International Nuclear Information System (INIS)

    1991-10-01

    This report of the Subpanel discusses the potential impact on Federal agencies and indicates individual risk factors that could be used by them in risk assessment. The approach used in this CIRRPC report was to consider the risk factors presented in BEIR IV for each radionuclide (or group radioelements) and to make some judgments regarding their validity and/or the uncertainties involved. The coverage of Radon-222 and its progeny dominated the BEIR IV report and this Subpanel felt is was proper to devote more attention to this radionuclide family. This risk factor presented in BEIR IV for radon is 350 cancer deaths per million person-working level months (WLM) of exposure for a lifetime. There is a range of opinions on the conversion from WLM to absorbed dose. As discussed in the text, the use of the WLM concept makes it difficult or infeasible to compare the risk factor for radon with that of other radionuclides which are based on organ dose. This report also includes a discussion of certain fundamental scientific and operational issues that may have decisive effect upon risk factor selection. These adjunct items are dealt with under separate headings and include discussions of threshold dose considerations, extrapolation to low doses, and age at exposure

  3. Studies of the teratogenic potential of exposure of rats to 6000-MHz microwave radiation. I. Morphologic analysis at term

    International Nuclear Information System (INIS)

    Jensh, R.P.

    1984-01-01

    Thirty-six pregnant Wistar strain albino rats were exposed throughout pregnancy to 6000-MHz microwave radiation at a power density level of 35 mW/cm 2 or were used as controls. The irradiation did not cause a significant increase in maternal body temperature as measured by a rectal thermocouple. The rats were randomly assigned to one of four groups: home cage control (5), anechoic chamber control (10), sham-irradiated concurrent control (10), and irradiated (11). All animals were killed on the 22nd day of gestation, and maternal tissues were removed and weighed and maternal blood samples were taken. The 384 resultant fetuses and their placentas were individually weighed, fixed, and dissected to determine normality. Teratologic evaluation included the following parameters: maternal weight and weight gain; mean litter size; maternal organ weight and organ weight/body weight ratios; body weight ratios of brain, liver, kidneys, and ovaries; maternal peripheral blood parameters including hematocrit, hemoglobin, and white cell counts; number of resorptions and resorption rate; number of abnormalities and abnormality rate; mean term fetal weight. The irradiated fetuses exhibited slight but statistically significant growth retardation at term. Term maternal monocyte count was also significantly depressed. No other parameters differed between the control groups and the irradiated group

  4. Assessment of the radiation risk from diagnostic radiology

    International Nuclear Information System (INIS)

    Streffer, C.; Mueller, W.U.

    1995-01-01

    In any assessment of radiation risks from diagnostic radiology the main concern is the possible induction of cancer. It now appears to be beyond all doubt that ionizing rays invite the development of cancer in humans. The radiation doses encountered in diagnostic radiology generally vary from 1 to 50 mSv. For this dose range, no measured values are available to ascertain cancer risks from ionizing rays. The effects of such doses must therefore be extrapolated from higher dose levels under consideration of given dose-effect relationships. All relevant figures for diagnostic X-ray measures are therefore mathematically determined approximate values. The stochastic radiation risk following non-homogeneous radiation exposure is assessed on the basis of the effective dose. This dose was originally introduced to ascertain the risk from radioactive substances incorporated at the working place. A secondary intention was to trigger further developmental processes in radiation protection. Due to the difficulties previously outlined and the uncertainties surrounding the determination and assessment of the effective dose from diagnostic X-ray procedures, this dose should merely be used for technological refinements and comaprisons of examination procedures. It appears unreasonable that the effective doses determined for the individual examinations are summed up to obtain a collective effective dose and to multiply this with a risk factor so as to give an approximation of the resulting deaths from cancer. A reasonable alternative is to inform patients subjected to X-ray examinations about the associated radiation dose and to estimate form this the magnitude of the probable radiation risk. (orig./MG) [de

  5. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  6. Modeling of microwave heating of metallic powders

    International Nuclear Information System (INIS)

    Buchelnikov, V.D.; Louzguine-Luzgin, D.V.; Anzulevich, A.P.; Bychkov, I.V.; Yoshikawa, N.; Sato, M.; Inoue, A.

    2008-01-01

    As it is known from the experiment that bulk metallic samples reflect microwaves while powdered samples can absorb such a radiation and be heated efficiently. In the present paper we investigate theoretically the mechanisms of penetration of a layer of metallic powder by microwave radiation and microwave heating of such a system

  7. Radiation losses in the microwave Ku band in magneto-electric nanocomposites

    Directory of Open Access Journals (Sweden)

    Talwinder Kaur

    2015-08-01

    Full Text Available A study on radiation losses in conducting polymer nanocomposites, namely La–Co-substituted barium hexaferrite and polyaniline, is presented. The study was performed by means of a vector network analyser, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, electron spin resonance spectroscopy and a vibrating sample magnetometer. It is found that the maximum loss occurs at 17.9 GHz (−23.10 dB, 99% loss which is due to the composition of a conducting polymer and a suitable magnetic material. A significant role of polyaniline has been observed in ESR. The influence of the magnetic properties on the radiation losses is explained. Further studies revealed that the prepared material is a nanocomposite. FTIR spectra show the presence of expected chemical structures such as C–H bonds in a ring system at 1512 cm−1.

  8. A comparison of radiative transfer models for predicting the microwave emission from soils

    Science.gov (United States)

    Schmugge, T. J.; Choudhury, B. J.

    1981-01-01

    Noncoherent and coherent numerical models for predicting emission from soils are compared. Coherent models use the boundary conditions on the electric fields across the layer boundaries to calculate the radiation intensity, and noncoherent models consider radiation intensities directly. Interference may cause different results in the two approaches when coupling between soil layers in coherent models causes greater soil moisture sampling depths. Calculations performed at frequencies of 1.4 and 19.4 GHz show little difference between the models at 19.4 GHz, although differences are apparent at the lower frequency. A definition for an effective emissivity is also given for when a nonuniform temperature profile is present, and measurements made from a tower show good agreement with calculations from the coherent model.

  9. Harmonization of risk management approaches: radiation and chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P. [Bhabha Atomic Research Centre, Radiation Safety Systems Div., Mumbai (India)

    2006-07-01

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  10. Harmonization of risk management approaches: radiation and chemical exposures

    International Nuclear Information System (INIS)

    Srinivasan, P.

    2006-01-01

    Assessment of occupational and public risk from the environmental pollutants like chemicals, radiation, etc demands that the effects be considered not only from each individual pollutant, but from the combination of all the pollutants. An integrated risk assessment system needs to be in place to have an overall risk perspective for the benefit of policy makers and decision takers to try to achieve risk reduction in totality. The basis for risk-based radiation dose limits is derived from epidemiological studies, which provide a rich source of data largely unavailable to chemical risk assessors. In addition, use of the principle of optimization as expressed in the ALARA concept has resulted in a safety culture, which is much more than just complying with stipulated limits. The conservative hypothesis of no-threshold dose-effect relation (ICRP) is universally assumed. The end-points and the severity of different classes of pollutants and even different pollutants in a same class vary over a wide range. Hence, it is difficult to arrive at a quantitative value for the net detriment that weighs the various types of end-points and various classes of pollutants. Once the risk due to other pollutants is quantified by some acceptable methodology, it can be expressed in terms of the Risk Equivalent Radiation Dose (R.E.R.D.) for easy comparison with options involving radiation exposure. This paper is an effort to use to quantify and present the risk due to exposure to chemicals and radiation in a common scale for the purpose of easy comparison to facilitate decision taking. (authors)

  11. Systematic review on physician's knowledge about radiation doses and radiation risks of computed tomography

    International Nuclear Information System (INIS)

    Krille, Lucian; Hammer, Gael P.; Merzenich, Hiltrud; Zeeb, Hajo

    2010-01-01

    Background: The frequent use of computed tomography is a major cause of the increasing medical radiation exposure of the general population. Consequently, dose reduction and radiation protection is a topic of scientific and public concern. Aim: We evaluated the available literature on physicians' knowledge regarding radiation dosages and risks due to computed tomography. Methods: A systematic review in accordance with the Cochrane and PRISMA statements was performed using eight databases. 3091 references were found. Only primary studies assessing physicians' knowledge about computed tomography were included. Results: 14 relevant articles were identified, all focussing on dose estimations for CT. Overall, the surveys showed moderate to low knowledge among physicians concerning radiation doses and the involved health risks. However, the surveys varied considerably in conduct and quality. For some countries, more than one survey was available. There was no general trend in knowledge in any country except a slight improvement of knowledge on health risks and radiation doses in two consecutive local German surveys. Conclusions: Knowledge gaps concerning radiation doses and associated health risks among physicians are evident from published research. However, knowledge on radiation doses cannot be interpreted as reliable indicator for good medical practice.

  12. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    Science.gov (United States)

    Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas

    2018-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.

  13. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  14. Radiation polluton and cancer: comparative risks and proof

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1982-01-01

    A case study of the comparative risks from nuclear radiation and coal burning is presented for a given level of energy production. Mr. Cohen indicates results that might be realized under judicial reforms. Cohen notes the typical overstatement of health hazards from low-level radiation, when current risk assessment methodology derives it from high-level radiation statistics. However, he sees public attention focused on the danger of even low-level radiation brought about by radioactive waste disposal uncertainties. Cohen accuses the information media of generating bad news even when facts point in the opposite direction. He offers as an example, a rationale for the Best-Collins proposal to adjudicate pollution engendered torts under the guidance of reputable authorities rather than impressionable juries guided by proximate case. The paper ends with the question, How can the ajudication system be reformed, given such perverse incentives

  15. Radiation and risk: A look at the data

    International Nuclear Information System (INIS)

    Schillaci, M.E.

    1996-01-01

    This paper is a review of current data on the risks associated with human exposure to ionizing radiation. We examine these risks for dose levels ranging from very high (atomic bomb survivors) to very low (background). The principal end point considered is cancer mortality. Cancer is the only observed clinical manifestation of radiation-induced stochastic effects. Stochastic effects are caused by subtle radiation-induced cellular changes (DNA mutations) that are random in nature and have no threshold dose (assuming less than perfect repair). The probability of such effects increases with dose, but the severity does not. The time required for cancer to develop ranges from several years for leukemia to decades for solid tumors. In addition to somatic cells, radiation can also damage germ cells (ova and sperm) to produce hereditary effects, which are also classified as stochastic. However, clinical manifestations of such effects have not been observed in humans at a statistically significant level

  16. Radiation risk factors and dose limits

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1979-01-01

    The contents of the ICRP publications 9 (1965) and 26 (1977) are outlined and the research conducted during these years considered. Expressions are derived for the frequency for induction of cancer from the most common irradiations - X rays, gamma rays and electrons. The dose limits advised by the ICRP are discussed and the first two fundamental principles are presented - that no one should be subjected to radiation without useful cause and that in those cases where irradiation is thought necessary, the medical, scientific, social and economic advantages need to be carefully considered with respect to the possible disadvantages. (C.F.)

  17. Radiation risk assessment: the 1982 UNSCEAR report

    International Nuclear Information System (INIS)

    1982-01-01

    Since its establishment in 1955 the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has reported yearly to the General Assembly and at irregular intervals has submitted more comprehensive reports with detailed scientific annexes. In 1982, the eighth in the series of such substantive reports was published. It consists of a summary and a main text outlining the conclusions reached in the Committee's discussions and 12 scientific annexes reviewing in considerable detail the procedures and the scientific information on which such conclusions rest. The Summary of the main conclusions of the Committee is reprinted in this paper

  18. Features of Microwave Radiation and Magnetographic Characteristics of Solar Active Region NOAA 12242 Before the X1.8 Flare on December 20, 2014

    Science.gov (United States)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.; Yasnov, L. V.

    2017-12-01

    This paper continues the cycle of authors' works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65-10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1-3 days before the large flares.

  19. Radiation Dose Risk and Diagnostic Benefit in Imaging Investigations

    OpenAIRE

    Dobrescu, Lidia; Rădulescu, Gheorghe-Cristian

    2015-01-01

    The paper presents many facets of medical imaging investigations radiological risks. The total volume of prescribed medical investigations proves a serious lack in monitoring and tracking of the cumulative radiation doses in many health services. Modern radiological investigations equipment is continuously reducing the total dose of radiation due to improved technologies, so a decrease in per caput dose can be noticed, but the increasing number of investigations has determined a net increase ...

  20. Medical effects and risks of exposure to ionising radiation

    International Nuclear Information System (INIS)

    Mettler, Fred A

    2012-01-01

    Effects and risk from exposure to ionising radiation depend upon the absorbed dose, dose rate, quality of radiation, specifics of the tissue irradiated and other factors such as the age of the individual. Effects may be apparent almost immediately or may take decades to be manifest. Cancer is the most important stochastic effect at absorbed doses of less than 1 Gy. The risk of cancer induction varies widely across different tissues; however, the risk of fatal radiation-induced cancer for a general population following chronic exposure is about 5% Sv −1 . Quantification of cancer risk at doses of less than 0.1 Gy remains problematic. Hereditary risks from irradiation that might result in effects to offspring of humans appear to be much lower and any such potential risks can only be estimated from animal models. At high doses (over 1 Gy) cell killing and modification causes deterministic effects such as skin burns, and bone marrow depression, in which case immunosuppression becomes a critical issue. Acute whole body penetrating gamma irradiation at doses in excess of 2 Gy results in varying degrees of acute radiation sickness and doses over 10 Gy are usually lethal as a result of combined organ injury. (note)

  1. Study on technology for minimizing radiation risk

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung.

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. 1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) 2) The onset of DNA fragmentation in cells occurs after one more cell divisions. 3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) 4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. 1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials 2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs

  2. Study on technology for minimizing radiation risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. (1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) (2) The onset of DNA fragmentation in cells occurs after one more cell divisions. (3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) (4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. (1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials (2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs.

  3. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.; Seibert, J. Anthony; Wong, Kenneth; Vaughan, Andrew T.; Chen, Allen M.

    2016-01-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”

  4. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Clayton B. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Thompson, Holly M. [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Benedict, Stanley H. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Seibert, J. Anthony [Department of Diagnostic Radiology, University of California Davis Medical Center, Sacramento, California (United States); Wong, Kenneth [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States); Vaughan, Andrew T. [Department of Radiation Oncology, University California Davis Comprehensive Cancer Center, Sacramento, California (United States); Chen, Allen M., E-mail: allenmchen@yahoo.com [Department of Radiation Oncology, University of California Los Angeles Jonsson Comprehensive Cancer Center, University of California David Geffen School of Medicine, Los Angeles, California (United States)

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.

  5. A mathematical foundation for controlling radiation health risks

    International Nuclear Information System (INIS)

    Kumazawa, S.

    2000-01-01

    Radiation protection is to attain an adequate control of radiation health risk compared with other risks. Our society in the 21 st century is predicted by some experts to seek the high priority of safety for expanding activity of human beings. The law of controlling risks will be a key subject to serve the safety of human beings and their environment. The main principles of the ICRP system of radiological system are strongly relating to the general law of various risk controls. The individual-based protection concept clearly gives us a mathematical model of controlling risks in general. This paper discusses the simplest formulation of controlling risks in the ICRP system, including other relating systems. First, the basic characteristics of occupational exposure as a risk control is presented by analyzing the data compiled over half a century. It shows the relation ship between dose control levels and individually controlled doses. The individual-based control also exerts some influence on the resultant collective dose. The study of occupational exposure concludes the simple mathematical expression of controlling doses under the ICRP system as shown by Kumazawa and Numakunai. Second, the typical characteristics of biological effects with repair or recovery of bio-systems are given by analyzing the data published. Those show the relationship between dose and biologically controlled or regulated response. The bio-system is undoubtedly relating to cybernetics that contains many functions of controlling risks. Consequently radiation effects might somewhat express the feature of biological risk controls. The shouldered survival of irradiated cells shows cybernetic characteristics that are assumed to be the mathematical foundation of controlling risks. The dose-response relationship shows another type of cybernetic characteristics, which could be reduced to the same basic form of controlling risks. The limited study of radiation effects definitely confirms the two

  6. Distance factor on reducing scattered radiation risk during interventional fluoroscopy

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Mat Isa; Zainal Jamaluddin; Mohd Firdaus Abdul Rahman; Mohd Khairusalih Mohd Zin

    2012-01-01

    Interventional Radiology (IR) is subspecialty of diagnostic radiology where minimally invasive procedures are performed using an x-ray as a guidance. This procedure can deliver high radiation doses to patient and medical staff compared with other radiological method due to long screening time. The use of proper shielding, shorten the exposure time and keep the distance are the practices to reduce scattered radiation risks to staff involve in this procedure. This project is to study the distance factor on reducing the scattered radiation effect to the medical staff. It also may provide the useful information which can be use to establish the scattered radiation profile during the IR for the sake of radiation protection and safety to the medical staff involved. (author)

  7. Risks and hazards from conventional and radiation sources

    International Nuclear Information System (INIS)

    Iyer, P.S.; Ganguly, A.K.

    1978-01-01

    Beneficial uses of radioisotopes in medicine, industry, agriculture and research are discussed. In absence of adequate safety precautions, uses of radiation may also result in harmful biological effects or genetic effects. Radiation risks and hazards are evaluated by comparing with other risks and hazards which are routinely encountered. The risk of fatality per year by various causes in U.S.A. is given. It is stated with examples and observations that some of the routine habits and necessities and minor luxuries are more risky than radiation risks. Countrywide radiation safety program in India by the Department of Atomic Energy is described in brief. Data are given to show that the risks from radiation are much lower in comparison with many conventional sources. More efficient equipment such as image intensifier is recommended to help to reduce the patient dose. It is stated that caution has to be exercised while handling the X-ray machines which may be harmful not only to patients but to doctors also. As regards, nuclear medicine, it is mentioned that though it is a fast expanding speciality in India, the number of procedures carried out in various centres is small as compared to U.S.A. and France. Some instances are given to show the consequences of the ignorance of the radiation hazards in operating machines in X-ray and gamma ray beam therapy facilities. A survey made by DRP, BARC revealed that some research laboratories lacked basic radiation protection requirements in using X-ray crystallography or analytical equipment. (B.G.W.)

  8. Ionizing radiation risks to satellite power systems (SPS) workers

    International Nuclear Information System (INIS)

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities

  9. Ionizing radiation risks to satellite power systems (SPS) workers

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

  10. Radiation Risk and Possible Consequences for Ukrainian Population

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, Alexander [Ukrainian State Chemical-Technology Univ., Dnepropetrovsk (Ukraine)

    2006-09-15

    The paper deals with the values of risk related to environmental pollution with radionuclides from the main sources located both on the territory of Ukraine and outside, which affect the Ukrainian population, in the context of long-range outlook. Ratios of risk for stochastic effects occurrence are given per unit of individual or collective dose, as well as for occurrence of fatal cancer, non-fatal cancer or serious hereditary effects. Besides, the paper mentions not only the impact of ionizing radiation, but severe population stress as well, which in certain regions turns into radiophobia. It is shown that for essential decrease of radiation risk in Ukraine, global problems should be solved, first of all, at the governmental level. Whereas a number of issues connected with the Chernobyl catastrophe are at least partially solved, the problems concerning the effects of radon and other radiation-dangerous factors are still to be tackled.

  11. NASA Space Radiation Risk Project: Overview and Recent Results

    Science.gov (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  12. Probabilistic methodology for estimating radiation-induced cancer risk

    International Nuclear Information System (INIS)

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario

  13. Radiation Risk and Possible Consequences for Ukrainian Population

    International Nuclear Information System (INIS)

    Pivovarov, Alexander

    2006-01-01

    The paper deals with the values of risk related to environmental pollution with radionuclides from the main sources located both on the territory of Ukraine and outside, which affect the Ukrainian population, in the context of long-range outlook. Ratios of risk for stochastic effects occurrence are given per unit of individual or collective dose, as well as for occurrence of fatal cancer, non-fatal cancer or serious hereditary effects. Besides, the paper mentions not only the impact of ionizing radiation, but severe population stress as well, which in certain regions turns into radiophobia. It is shown that for essential decrease of radiation risk in Ukraine, global problems should be solved, first of all, at the governmental level. Whereas a number of issues connected with the Chernobyl catastrophe are at least partially solved, the problems concerning the effects of radon and other radiation-dangerous factors are still to be tackled

  14. Influence of the magnetic field in the time evolution of the solar explosion radiation in X-ray and microwaves

    International Nuclear Information System (INIS)

    Costa, J.E.R.

    1983-01-01

    It has been made a theoretical development, sel-consistent with recent models for the explosive source, applied to time delays of peak emission at different microwave frequencies, and between microwaves and hard X-ray emission. A working hipothesis has been assumed with the adoption of a growing magnetic field during the solar flare explosion, and therefore contributing to a growth in microwave emission, differential in frequency, producing delays of maximum emission towards lower microwave frequencies, and delays of microwave maximum emission with respect to hard X-rays. It has been found that these delays are consistent with a growth in the magnetic field of about 14% by assuming both thermal and non-thermal models. This variation in magnetic field has been associated to movements of thermal sources downwards in the solar atmosphere, and it has been found that the estimated velocities of displacement were consistent compared to characteristic velocities of anomalous conduction fronts of thermal models. (Author) [pt

  15. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  16. Magnetic field dependence of microwave radiation in intermediate-length Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Parmentier, R. D.; Christiansen, Peter Leth

    1984-01-01

    furnish the current and field dependence of the oscillation configuration, from which can be calculated average voltages, frequencies, and power spectra. Simulation and experimental results are in good agreement with regard to the lobe structure of the height of the first zero-field step and/or second...... Fiske step in magnetic field and the field dependence of the radiation frequency within the various lobes, including details such as hysteresis between lobes. The simulations predict an alternation of the dominant frequency component with increasing field that accounts well for the experimental...

  17. Epidemiological studies of radiation risks (NRPB Association)

    International Nuclear Information System (INIS)

    Muirhead, C.R.; Kellerer, A.M.; Chmelevsky, D.

    1993-01-01

    Objectives of project are: to analyse data on populations exposed to high doses of radiation, such as the Japanese atomic bomb survivors and groups of uranium miners; to examine data on populations exposed at low doses and methods for analysing such data; to perform preparatory work for the compilation of 'probability of causation' tables that are specific to EC countries and that also cover radon daughter exposures; to study the incidence and mortality from thyroid cancer in a cohort with medical exposures to 131 I; to study cancer incidence and mortality among Swedish patients given radiotherapy for skin haemangioma in childhood; and to examine the incidence of second tumours among Italian patients given radiotherapy for cancer of the head, neck, breast, endometrium, uterine cervix or thyroid. Results of the six contributions for the reporting period are presented. (R.P.) 4 refs

  18. Perception of radiation risk from a cross cultural perspective

    International Nuclear Information System (INIS)

    Brenot, J.; Hessler, A.; Joussen, W.; Sjoeberg, L.

    1996-01-01

    Regarding radiation risk individual coping strategies range from apathy, no worry, avoidance, information seeking, changes in life style, inter alia. How they occur and when, is a necessary information for the development of better risk communication programmes. To address these points four particular situations involving radiation were chosen, namely indoor radon exposure, X-ray diagnostic, consumption of irradiated food, and radioactive waste management. Situations correspond to very different contexts, natural exposure (with indoor radon), daily life (with medical diagnostic and food consumption) and the industrial and energy context (with waste). From a cross-cultural perspective it was deemed fruitful to compare these situations in various countries. (author)

  19. Radiation protection standards: A practical exercise in risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Roger H [National Radiological Protection Board (United Kingdom)

    1992-07-01

    Within 12 months of the discovery of x-rays in 1895, it was reported that large doses of radiation were harmful to living human tissues. The first radiation protection standards were set to avoid the early effects of acute irradiation. By the 1950s, evidence was mounting for late somatic effects - mainly a small excess of cancers - in irradiated populations. In the late 1980's, sufficient human epidemiological data had been accumulated to allow a comprehensive assessment of carcinogenic radiation risks following the delivery of moderately high doses. Workers and the public are exposed to lower doses and dose-rates than the groups from whom good data are available so that risks have had to be estimated for protection purposes. However, in the 1990s, some confirmation of these risk factors has been derived occupationally exposed populations. If an estimate is made of the risk per unit dose, then in order to set dose limits, an unacceptable level of risk must be established for both workers and the public. There has been and continues to be a debate about the definitions of 'acceptable' and 'tolerable' and the attributing of numerical values to these definitions. This paper discusses the issues involved in the quantification of these terms and their application to setting dose limits on risk grounds. Conclusions are drawn about the present protection standards and the application of the methods to other fields of risk assessment. (author)

  20. Radiation protection standards: A practical exercise in risk assessment

    International Nuclear Information System (INIS)

    Clarke, Roger H.

    1992-01-01

    Within 12 months of the discovery of x-rays in 1895, it was reported that large doses of radiation were harmful to living human tissues. The first radiation protection standards were set to avoid the early effects of acute irradiation. By the 1950s, evidence was mounting for late somatic effects - mainly a small excess of cancers - in irradiated populations. In the late 1980's, sufficient human epidemiological data had been accumulated to allow a comprehensive assessment of carcinogenic radiation risks following the delivery of moderately high doses. Workers and the public are exposed to lower doses and dose-rates than the groups from whom good data are available so that risks have had to be estimated for protection purposes. However, in the 1990s, some confirmation of these risk factors has been derived occupationally exposed populations. If an estimate is made of the risk per unit dose, then in order to set dose limits, an unacceptable level of risk must be established for both workers and the public. There has been and continues to be a debate about the definitions of 'acceptable' and 'tolerable' and the attributing of numerical values to these definitions. This paper discusses the issues involved in the quantification of these terms and their application to setting dose limits on risk grounds. Conclusions are drawn about the present protection standards and the application of the methods to other fields of risk assessment. (author)

  1. Fabrication of novel structures to enhance the performance of microwave, millimeter wave and optical radiators

    Science.gov (United States)

    Gbele, Kokou

    full depletion-recovery cycle in the nonequilibrium state. The third part discusses work in the microwave and millimeter wave frequency regimes. A new method to fabricate Luneburg lenses was proposed and demonstrated. This type of lens is well known; it is versatile and has been used for many applications, including high power radars, satellite communications, and remote sensing systems. Because the fabrication of such a lens requires intricate and time consuming processes, we demonstrated the design, fabrication and testing of a Luneburg lens prototype using a 3-D printing rapid prototyping technique both at the X and Ka-V frequency bands. The measured results were in very good agreement with their simulated values. The fabricated X-band lens had a 12 cm diameter and produced a beam having a maximum gain of 20 dB and a beam directivity (half-power beam width (HPBW)) ranging from 12° to 19°). The corresponding Ka-V band lens had a 7 cm diameter; it produced a beam with a HPBW about the same as the X-band lens, but with a maximum gain of more than 20 dB.

  2. A review of radiation risk estimates

    International Nuclear Information System (INIS)

    1991-06-01

    Three authoritative reports (UNSCEAR-1988, BEIR-V-1990, and ICRP-1990 Recommendations) on risk estimates have been reviewed and compared to previous risk estimates published by the same organizations. The ICRP now uses the term 'probability' in place of the term 'risk'. For fatal cancers, the new ICRP probability estimates are 5.0 x 10 -2 Sv -1 for a population of all ages and 4.0 x 10 -2 Sv -1 for a population of working age. For serious hereditary effects summarized over all generations, the ICRP probability coefficients are 1.0 x 10 -2 Sv -1 for a population of all ages and 0.6 x 10 -2 Sv -1 for a population of working age. For prenatal irradiation, at 8 - 15 weeks after conception, there may be a decrease of 30 I.Q. points per Sv and a risk of cancer which may lie in the range of 2 to 10 x 10 -2 Sv -1 . Based mainly on the new probability estimates the ICRP recommends a limit on effective dose of 20 mSv per year, averaged over 5 years (100 mSv in 5 years) with the further provision that the effective dose should not exceed 50 mSv in any single year. For public exposure the ICRP recommends an annual limit on effective dose of 1 mSv. However, in special circumstances, a higher value of effective dose could be allowed in a single year provided that the average over 5 five years does not exceed 1 mSv per year. Once pregnancy has been declared, the conceptus should be protected by applying a supplementary equivalent dose limit to the surface of the woman's abdomen of 2 mSv for the remainder of the pregnancy and by limiting intakes of radionuclides to about 1/20 of the annual limit on intake. A brief survey of epidemiological studies of workers and the risks from radon and thoron progeny is also included. (110 refs, 29 tabs., 10 figs.)

  3. The influence of radiation and microwave agents on some properties of haemopoietic stem cells

    International Nuclear Information System (INIS)

    Barakina, N.F.; Rakhmanina, O.N.

    1985-01-01

    Sublethal irradiation of donors leads to a change in some properties of bone marrow haemopoetic stem cells (HSC) during the exponential growth (days 1-8) of the syngeneic recipients in the spleen. They are: an increase in the rate of proliferation, a slight reduction in time of the population doubling, and a tendency toward an increase in the percentage of cells settled in the spleen after transplantation. Theses changes in the properties of HSC provide a more rapid repopulation thereof as compared to HSC of intact mice. In all appearance, a pretreatment of donors with AET and 2ADT does not influence the HSC changes induced by radiation, and, at the same time, retains the number of HSC at a high level

  4. Radiation risk analysis of tritium in PWR plants

    International Nuclear Information System (INIS)

    Yang Maochun; Wang Shimin

    1999-03-01

    Tritium is a common radionuclide in PWR nuclear power plant. In the normal operation conditions, its radiation risk to plant workers is the internal radiation exposure when tritium existing in air as HTO (hydrogen tritium oxide) is breathed in. As the HTO has the same physical and chemical characteristics as water, the main way that HTO entering the air is by evaporation. There are few opening systems in Nuclear Power Plant, the radiation risk of tritium mainly exists near the area of spent fuel pit and reactor pit. The highest possible radiation risk it may cause--the maximum concentration in air is the level when equilibrium is established between water and air phases for tritium. The author analyzed the relationship among the concentration of HTO in water, in air and the water temperature when equilibrium is established, the equilibrated HTO concentration in air increases with HTO concentration in water and water temperature. The analysis revealed that at 30 degree C, the equilibrated HTO concentration in air might reach 1 DAC (derived air concentration) when the HTO concentration in water is 28 GBq/m 3 . Owing to the operation of plant ventilation systems and the existence of moisture in the input air of the ventilation, the practical tritium concentration in air is much lower than its equilibrated levels, the radiation risk of tritium in PWR plant is quite limited. In 1997, Daya Bay Nuclear Power Plant's practical monitoring result of the HTO concentration in the air of the nuclear island and the urine of workers supported this conclusion. Based on this analysis, some suggestions to the reduction of tritium radiation risk were made

  5. Radiation risk in Republics Belarus after Chernobyl accident

    International Nuclear Information System (INIS)

    Saltanova, I.

    2006-01-01

    Full text: Radiation pollution of the territory of the Republic of Belarus has been considered for a long time as a basic ecological danger source. Since the disaster at Chernobyl, a considerable number of the inhabited areas turned out to be situated on the territory contaminated with the radioactive substances. A risk value of the radiation-inducible affections is used in order to appraise the damage to the health of the population, residing in such regions, in other words - of the long term (stochastic) effects probability, among which malignant neoplasm represents the most serious danger. In many countries the systems of radiological protection and safety criteria are based on ecocentric approaches. Nevertheless the post-Chernobyl situation in the Republic of Belarus is continually producing a wide spectrum of hard questions of human health and social activity on contaminated territories. That is why present work is completely produced in the frameworks of anthropocentric approach. The radiation risk has been evaluated for a number of regions of Gomel areas and Mogilev region in accordance with the linear non-threshold model 'Dose-Effect'. A lifelong risk coefficient of the radiation-inducible cancers of 5% / Zv, offered by the ICRP, is used in the evaluations. The doses, used for the risk assessment, are taken from the Doses Catalogue-1992 of the Ministry of Health, Republic of Belarus, which contains the doses, referring to the years 1991-1992. Correspondingly, our evaluations determine potential cancers, conditioned by the radiation exposure during this period of time. Obtained evaluations do not take into account either the radiation-inducible cancers of the thyroid gland, or the leukemia cases, observed in the liquidators as a result of the radiation exposure in the year 1986. The work also contains an evaluation of the component, specific for the Chernobyl radiation risk, conditioned by the radiation dose, accumulated in the population of the regions

  6. Informing the public about the risks from ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Slovic, P; Fischhoff, B; Lichtenstein, S [Perceptronics, Eugene, OR (USA)

    1981-10-01

    Designers of programs for informing the public about radiation hazards need to consider the difficulties inherent in communicating highly technical information about risk. To be effective, information campaigns must be buttressed by empirical research aimed at determining what people know, what they want to know, and how best to convey that information. Drawing upon studies of risk perception, some of the problems that any information program must confront are described.

  7. Social and psychological factors under realization of radiation risk

    International Nuclear Information System (INIS)

    Sushko, S.N.; Malenchenko, S.A.

    2001-01-01

    In the experiments with mice of Af line, irradiated by gamma-radiation with doses of up to 1.0 Gy and subjected to psycho-emotional effect (the model of 'the provoked aggression') have been investigated the processes of tumour formation. The index of cariogenic efficiency of effects is the number of the induced adenomas in lungs. It has been shown that under separate effect of these factors the frequency of adenomas increases. Under the combined effect the additional number of adenomas per mouse is registered, which exceeds theoretically the expected value assuming additivity of effects, the synergism coefficient was 1.57 (for females). It has been marked that the character of tumour reaction on separate and the combined effect of radiation, as well as the stress-factor has sex distinctions. It has been shown that that real assessment of the radiation risk and the development of the measures system on minimization of medical and biological consequences of the accident should take into account not only the radiation factor, but also a psychological one, especially in those cases when realization of the risk of combined effect of radiation and non-radiation factors can manifest synergism

  8. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  9. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS)

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2015-07-01

    Since July 2015 the study ''ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS) - an international cohort study'' is available. INWORKS comprised data from 300.000 occupational exposed and dosimetric monitored persons from France, USA and UK. The contribution is a critical discussion of this study with respect to the conclusion of a strong evidence of positive associations between protracted low-dose irradiation exposure and leukemia.

  10. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  11. Effects of 2450 MHz microwave radiation on meiosis and reproduction in male mice

    International Nuclear Information System (INIS)

    Manikowska-Czerska, E.; Czerski, P.; Leach, W.M.

    1988-01-01

    A series of studies to examine effects od continuous wave 2450 MHz radiation on meiosis and on chromosomes of germ cells in male CBA/CAY or ICR mice, by means of the spermatocyte (SCT), heritable translocation (HTT) and dominant lethal (DLT) tests is presented. Animals were exposed in an environmentally controlled waveguide system during two consecutive weeks, 30 minutes daily, six days a week. Specific absorption rates (SAR) were used in the range from 0.05 to 20 W/kg. With the SCT, it was demonstrated that chromosomal translocations can be induced by exposure during the first meiotic prophase, particularly during initial and early pachytene stages. The HTT results demonstrated that balanced translocations may be recovered among offspring of exposed males. The DLT provided confirmatory data on effects during prophase and indicated that chromosomal damage may be also induced by exposure of spermatids, during the maturation stage, and of spermatozoa. No changes were observed in spermatogonia. Thus, the effects of exposure were limited to one spermatogenic cycle. Genetically significant effects were induced at an SAR of 2 W/kg in the testes. For comparison, an SAR of 0.4 W/kg is used commonly as a basis for occupational exposure limits

  12. Ionizing radiation causing a risk of cancer in man

    International Nuclear Information System (INIS)

    Fichardt, T.; Sandison, A.G.; Savage, D.J.

    1977-01-01

    An attempt has been made to present, in short review, the most important carcinogens that have been implicated in the development of cancer in the various organ sites of the human body and to demonstrate the relatively minor role played by ionizing radiation, especially radiotherapy, in causing a risk of cancer in man

  13. Medicine and ionizing radiation: help cards for risk analysis

    International Nuclear Information System (INIS)

    Gauron, C.

    2004-01-01

    Following an inquiry in Ile de France on radiation protection, a scientific committee associating several institutions and different experts has elaborated cards for help to risk analysis. A first series of this cards is published in this issue documents for the labour physician and will be next on Internet. the other fields of medical use will be covered in the future. (N.C.)

  14. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  15. Radiation risk in the context of liability for injury

    International Nuclear Information System (INIS)

    Riley, Peter

    2003-01-01

    It is perceived by the man in the street that low-level radiation from a nuclear facility is more dangerous than that from other practices. The radiation protection system, in particular the ALARA principle, leads to concerns that even the smallest exposure to radiation is abnormal and dangerous. Public perception of the radiation risk leads to fear in the minds of the public. A consequence of this fear itself may be damage to health in the form of psychological damage or nervous shock. The paper draws attention to the liability for damages by radiation, in particular under the common law of the UK and US, and how liability, determined by the court, is not necessarily influenced by scientific rationality. A natural conclusion may be that a claimant suffering injury of the type caused by radiation and who had been exposed to radiation, no matter how small a dose, that could be shown to come from a nuclear installation would be awarded damages against the licensee of the site of the installation unless it could be shown that the injury was predominantly caused by another source (radioactive or otherwise)

  16. Biological effects of radiation and estimation of risk to radiation workers

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1987-01-01

    The biological effects of radiation have three stages: physical, chemical and biological. A precise mathematical description of biological effects and of one-to-one correspondence between the initial energy absorption and final effect has not been possible, because several factors are involved in biological effects and their manifestation period varies from less than one second to several years. The mechanism of biological radiation effects is outlined. The two groups of these effects are (1) immediate and (2) delayed. The main aim of radiation protection programme is to eliminate the risk of non-stochastic effects to an acceptable level. The mean annual dose for 30,000 radiation workers in India is 2.7 m Sv. Estimated risk of fatal cancer from this dose is about 50 cases of cancer per year per million workers which is well below the ICRP standard for safe occupation stipulated at fatality rate less than or equal to 100 per year per milion workers. When compared with risk in other occupations, the risk to radiation workers is much less. (M.G.B.)

  17. Industrial assessment of radiofrequency and microwave radiations: case study at electronic manufacturing industries in Penang

    International Nuclear Information System (INIS)

    Mohd Zaid Abdullah

    1996-01-01

    In electronic manufacturing industry, the applications of an equipment emitting radiofrequency radiation (RFR) are numerous and Increasing. It is known that exposure to RFR at sufficiently high intensity and duration can produce a variety of adverse health effects. This paper presents some results from an extensive studies in the RFR field measurements at frequency range from 100 MHz to 1 GHz. All measurements were performed inside factories located at the Penang Free Trade Zone. In this case, the factories chosen are those that manufacture the electronic components whereby the applications of RFR equipment are likely to be intensive compared to other type of industries. The measurement system used in this study are the portable spectrum-analyzer, the passive log-periodic antenna and a desktop computer for data analysis. Results from this study have indicated that the RFR exposure levels in most factories are in the range of 7.7 x 10 sup -4 - 4.31 x 10 sup -3 Wm sup -2 and 0.01 - 0. 741 Vm sup -1 for power density and electric strength measurement respectively. These ranges are at least 100 times lower compared to the RFR protection guidelines proposed by the American National Standard Institute (ANSI). However, the exposure levels inside the factory are consistently 10 sup -3 - 10 sup -4 higher than the levels caused by natural sources and is about 10 sup 2 - 10 sup 6 higher than the levels measured at a distance of 30 m from a low-power output mobile phone transmitter. In the case of the health effect assessment, no sufficient evidence has been found to indicate the potential consequences resulting from excessive RFR exposure. Nonetheless, many factories surveyed are unaware of the existence of the international guidelines and codes on the safe use of radiofrequency energy even though, some measures are being taken to protect their employees against RFR

  18. Adequacy of relative and absolute risk models for lifetime risk estimate of radiation-induced cancer

    International Nuclear Information System (INIS)

    McBride, M.; Coldman, A.J.

    1988-03-01

    This report examines the applicability of the relative (multiplicative) and absolute (additive) models in predicting lifetime risk of radiation-induced cancer. A review of the epidemiologic literature, and a discussion of the mathematical models of carcinogenesis and their relationship to these models of lifetime risk, are included. Based on the available data, the relative risk model for the estimation of lifetime risk is preferred for non-sex-specific epithelial tumours. However, because of lack of knowledge concerning other determinants of radiation risk and of background incidence rates, considerable uncertainty in modelling lifetime risk still exists. Therefore, it is essential that follow-up of exposed cohorts be continued so that population-based estimates of lifetime risk are available

  19. ATM, radiation, and the risk of second primary breast cancer.

    Science.gov (United States)

    Bernstein, Jonine L; Concannon, Patrick

    2017-10-01

    It was first suggested more than 40 years ago that heterozygous carriers for the human autosomal recessive disorder Ataxia-Telangiectasia (A-T) might also be at increased risk for cancer. Subsequent studies have identified the responsible gene, Ataxia-Telangiectasia Mutated (ATM), characterized genetic variation at this locus in A-T and a variety of different cancers, and described the functions of the ATM protein with regard to cellular DNA damage responses. However, an overall model of how ATM contributes to cancer risk, and in particular, the role of DNA damage in this process, remains lacking. This review considers these questions in the context of contralateral breast cancer (CBC). Heterozygous carriers of loss of function mutations in ATM that are A-T causing, are at increased risk of breast cancer. However, examination of a range of genetic variants, both rare and common, across multiple cancers, suggests that ATM may have additional effects on cancer risk that are allele-dependent. In the case of CBC, selected common alleles at ATM are associated with a reduced incidence of CBC, while other rare and predicted deleterious variants may act jointly with radiation exposure to increase risk. Further studies that characterize germline and somatic ATM mutations in breast cancer and relate the detected genetic changes to functional outcomes, particularly with regard to radiation responses, are needed to gain a complete picture of the complex relationship between ATM, radiation and breast cancer.

  20. [Occupational risk related to optical radiation exposure in construction workers].

    Science.gov (United States)

    Gobba, F; Modenese, A

    2012-01-01

    Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.

  1. Modifying EPA radiation risk models based on BEIR VII

    International Nuclear Information System (INIS)

    Pawel, D.; Puskin, J.

    2007-01-01

    This paper summarizes a 'draft White Paper' that provides details on proposed changes in EPA's methodology for estimating radiogenic cancer risks. Many of the changes are based on the contents of a recent National Academy of Sciences (NAS) report (BEIR VII), that addresses cancer and genetic risks from low doses of low-LET radiation. The draft White Paper was prepared for a meeting with the EPA's Science Advisory Board's Radiation Advisory Committee (RAC) in September for seeking advice on the application of BEIR VII and on issues relating to these modifications and expansions. After receiving the Advisory review, we plan to implement the changes by publishing the new methodology in an EPA report, which we expect to submit to the RAC for final review. The revised methodology could then be applied to update the cancer risk coefficients for over 800 radionuclides that are published in EPA's Federal Guidance Report 13. (author)

  2. Combined application of sub-toxic level of silver nanoparticles with low powers of 2450 MHz microwave radiation lead to kill Escherichia coli in a short time

    Directory of Open Access Journals (Sweden)

    Bardia Varastehmoradi

    2013-09-01

    Full Text Available   Objective(s: Electromagnetic radiations which have lethal effects on the living cells are currently also considered as a disinfective physical agent.   Materials and Methods: In this investigation, silver nanoparticles were applied to enhance the lethal action of low powers (100 and 180 W of 2450 MHZ electromagnetic radiation especially against Escherichia coli ATCC 8739. Silver nanoparticles were biologically prepared and used for next experiments. Sterile normal saline solution was prepared and supplemented by silver nanoparticles to reach the sub-inhibitory concentration (6.25 μg/mL. Such diluted silver colloid as well as free-silver nanoparticles solution was inoculated along with test microorganisms, particularly E. coli. These suspensions were separately treated by 2450 MHz electromagnetic radiation for different time intervals in a microwave oven operated at low powers (100 W and 180 W. The viable counts of bacteria before and after each radiation time were determined by colony-forming unit (CFU method. Results: Results showed that the addition of silver nanoparticles significantly decreased the required radiation time to kill vegetative forms of microorganisms. However, these nanoparticles had no combined effect with low power electromagnetic radiation when used against Bacillus subtilis spores. Conclusion: The cumulative effect of silver nanoparticles and low powers electromagnetic radiation may be useful in medical centers to reduce contamination in polluted derange and liquid wastes materials and some devices.

  3. A new perspective on radiation risk communication in Fukushima, Japan

    International Nuclear Information System (INIS)

    Svendsen, E.R.

    2013-01-01

    The March 11, 2011 cascading disasters of the historic earthquake, unprecedented tsunami, and subsequent radioactive substances release from the Fukushima Daiichi nuclear power plant have shocked the world. But the specter of radiation exposure has complicated the earthquake and tsunami disaster aid activities. Herein is a personal commentary on the current status of the risk communication activities within the disaster populations in Fukushima prefecture. A literature review of the current scientific literature was performed focusing on risk communication within the Fukushima region during the disaster recovery phase. I have limited my commentary to only the 5 most relevant of the publications which focus exclusively on the issue of risk communication and the problems which have generated the urgency to improve risk communication. There were several themes which were consistently identified across the articles and echo some of the personal observations of the many types of responses which victims are now demonstrating: fear, anger, distrust, denial, confusion, uncertainty, ambivalence, and hyperbole stood out regarding their varied responses to the current radiological situation and, regarding the government role in risk communication, corruption and lack of transparency. Two recommendations for helping to address these issues in risk communication are the inclusion of a community intermediary and great use of community engagement in the disaster recovery process. Improved risk communication, perhaps using established guidelines and including both community intermediaries and improved community engagement, may prove useful within the radiation affected populations of Japan. (author)

  4. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  5. Communicating Radiation Risk to the Population of Fukushima

    International Nuclear Information System (INIS)

    Takamura, N.; Taira, Y.; Yoshida, K.; Nakashima-Hashiguchi, K.; Orita, M.; Yamashita, S.

    2016-01-01

    Radiological specialists from Nagasaki University have served on the medical relief team organized at Fukushima Medical University Hospital (Fukushima City) ever since the accident at the Fukushima Dai-ichi nuclear power plant. Furthermore, we have conducted the radiation crisis communication efforts by spreading correct information on the health effects of radiation as 'advisors on radiation health risk control'. Nagasaki University has been assisting the reconstruction efforts of Kawauchi Village in Fukushima Prefecture, which was the first village to declare that residents could safely return to their homes because radiation doses were found to be at comparatively low levels. In April 2013, Nagasaki University and the Kawauchi government office concluded an agreement concerning comprehensive cooperation toward reconstruction of the village. As a result, we established a satellite facility of the university in the village. In conclusion, training of specialists who can take responsibility for long-term risk communication regarding the health effects of radiation as well as crisis communication in the initial phase of the accident is an essential component of all such recovery efforts. Establishment of a training system for such specialists will be very important both for Japan and other countries worldwide. (authors)

  6. Radiation effects and risks: overview and a new risk perception index

    International Nuclear Information System (INIS)

    Rehani, M.M.

    2015-01-01

    Uncertainty provides opportunities for differences in perception, and radiation risks at low level of exposures involved in few computed tomography scans fall in this category. While there is good agreement among national and international organisations on risk probability of cancer, risk perception has barely been dealt with by these organisations. Risk perception is commonly defined as the subjective judgment that people make about the characteristics and severity of a risk. Severity and latency are important factors in perception. There is a need to connect all these. Leaving risk perception purely as a subjective judgement provides opportunities for people to amplifying risk. The author postulates a risk perception index as severity divided by latency that becomes determining factor for risk perception. It is hoped that this index will bring rationality in risk perception. (authors)

  7. Microwave Heating of a Liquid Stably Flowing in a Circular Channel Under the Conditions of Nonstationary Radiative-Convective Heat Transfer

    Science.gov (United States)

    Salomatov, V. V.; Puzyrev, E. M.; Salomatov, A. V.

    2018-05-01

    A class of nonlinear problems of nonstationary radiative-convective heat transfer under the microwave action with a small penetration depth is considered in a stabilized coolant flow in a circular channel. The solutions to these problems are obtained, using asymptotic procedures at the stages of nonstationary and stationary convective heat transfer on the heat-radiating channel surface. The nonstationary and stationary stages of the solution are matched, using the "longitudinal coordinate-time" characteristic. The approximate solutions constructed on such principles correlate reliably with the exact ones at the limiting values of the operation parameters, as well as with numerical and experimental data of other researchers. An important advantage of these solutions is that they allow the determination of the main regularities of the microwave and thermal radiation influence on convective heat transfer in a channel even before performing cumbersome calculations. It is shown that, irrespective of the heat exchange regime (nonstationary or stationary), the Nusselt number decreases and the rate of the surface temperature change increases with increase in the intensity of thermal action.

  8. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  9. Urban pollution by electromagnetic radiation. What risk for human health?

    International Nuclear Information System (INIS)

    Bressa, G.

    1999-01-01

    Power lines, domestic appliances, radios, TV sets, cell-phones, radar, etc., they are all instruments which, entering our everyday life, cause electromagnetic pollution. The risks for human health as a consequence of being exposed to this kind of radiation haven't been clearly ascertained yet, even if there is proof of the connection between the onset of some tumoral forms and exposure to electromagnetic fields. Many countries, among which Italy, are tackling the problem of safety distances, necessary to reduce exposure to non-ionising radiation, by issuing bills suitable for human health protection [it

  10. A stochastic model for density-dependent microwave Snow- and Graupel scattering coefficients of the NOAA JCSDA community radiative transfer model

    Science.gov (United States)

    Stegmann, Patrick G.; Tang, Guanglin; Yang, Ping; Johnson, Benjamin T.

    2018-05-01

    A structural model is developed for the single-scattering properties of snow and graupel particles with a strongly heterogeneous morphology and an arbitrary variable mass density. This effort is aimed to provide a mechanism to consider particle mass density variation in the microwave scattering coefficients implemented in the Community Radiative Transfer Model (CRTM). The stochastic model applies a bicontinuous random medium algorithm to a simple base shape and uses the Finite-Difference-Time-Domain (FDTD) method to compute the single-scattering properties of the resulting complex morphology.

  11. Generation and acceleration of high-current annular electron beam in linear induction accelerator and generation of the power microwave radiation from Cherenkov TWT

    International Nuclear Information System (INIS)

    Abubakirov, E.V.; Arkhipov, O.V.; Bobyleva, L.V.

    1990-01-01

    The section of linear induction accelerator (LIA) with a strong guiding magnetic field (up to 1.5 T), with output beam power up to 2 GW and beam pulse duration 60 ns is created and investigated by experiment. The beam energy gain is equal to 10 keV/sm with explosive emission is used; the large length of the beam propagation (1.5 m) without spolling of the beam with high beam energy gain has been established. The microwave radiation power about 30-100 MW has achieved from relativistic Cherenkov travelling wave tube with high exponential gain on the basis of LIA and high-current diode

  12. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  13. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    International Nuclear Information System (INIS)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner; Simon, Steven L; Wojcik, Andrzej; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2009-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222 Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  14. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, Jolyon H; Sohrabi, Mehdi; Burkart, Werner [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna (Austria); Simon, Steven L [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Wojcik, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Cardis, Elisabeth [Centre for Research in Environmental Epidemiology (CREAL), Municipal Institute of Medical Research (IMIM-Hospital del Mar) and CIBER Epidemiologia y Salud Publica - CIBERESP, Barcelona (Spain); Laurier, Dominique; Tirmarche, Margot [Radiobiology and Epidemiology Department, Radiological and Human Health Division, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Hayata, Isamu [National Institute of Radiological Sciences, Chiba (Japan)], E-mail: jhendry2002uk@yahoo.com

    2009-06-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of {sup 222}Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case-control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case-control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

  15. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    Science.gov (United States)

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  16. Radiation related cancer risk after ionization radiation exposure to the Bulgarian population

    International Nuclear Information System (INIS)

    Chobanova, N.; Vasilev, G.; Hadjieva, T.

    2008-01-01

    Average annual individual effective dose of natural radiation background (NRB) for the Bulgarian population is estimated to be 2.33 mSv.a -1 (from 1.60 to 3.06). NRB has been considered nearly constant in time, but during the 20th century the radiation above NRB has gradually increased. It was mainly caused by the medical X-ray and radionuclide diagnostics, radiation treatment, occupational radiation, global radioactive fallout, Chernobyl accident, exploitation of thermal power and nuclear power stations, etc. For the years 1950-2000 collective dose from NRB represents 965 000 man.Sv and radiation over NRB gives 1 042 800 man.Sv. Population risk following radiation exposure is estimated mainly on stochastic health effect by implementation of the so-called Linear non-threshold model (LNM) dose-effect. It postulates no dose threshold for radiation-induced health effects. Using different models, assumptions and assessments, authors have determined the contribution of lethal radiogenic cancer to Bulgarian spontaneous cancer rate to be from 3.7% to 20.6%. Numerous contradictions and concepts about the LNM still persist, because from statistical point of view, LNM can neither be proved nor rejected. (authors)

  17. Total Risk Management for Low Dose Radiation Exposures

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Sterc, D.

    2012-01-01

    Our civilization is witnessing about century of nuclear age mixed with enormous promises and cataclysmic threats. Nuclear energy seems to encapsulate both potential for pure good and evil or at least we humans are able to perceive that. These images are continuously with us and they are both helping and distracting from making best of nuclear potentials for civilization. Today with nuclear use significantly present and with huge potential to further improve our life with energy and medical use it is of enormous importance to try to have calmed, rational, and objective view on potential risks and certain benefits. Because all use of nuclear energy proved that their immediate risks are negligible (i.e., Three Mile Island and Fukushima) or much smaller than from the other alternatives (i.e., Chernobyl) it seems that the most important issue is the amount of risk from the long term effects to people from exposure to small doses of radiation. A similar issue is present in the increased use of modern computational tomography and other radiation sources use in medicine for examination and therapy. Finally, extreme natural exposures are third such potential risk sources. Definition of low doses varies depending on the way of delivery (i.e., single, multiple or continuous exposures), and for this paper usual dose of 100 mSv is selected as yearly upper amount. There are three very different scientifically supported views on the potential risks from the low doses exposure. The most conservative theory is that all radiation is harmful, and even small increments from background levels (i.e., 2-3 mSv) present additional risk. This view is called linear no threshold theory (LNT) and it is accepted as a regulatory conservative simple approach which guarantees safety. Risk is derived from the extrapolation of the measured effects of high levels of radiation. Opposite theory to LNT is hormesis which assumes that in fact small doses of radiation are helpful and they are improving our

  18. National Chernobyl registry of Russia: Radiation risks analysis

    International Nuclear Information System (INIS)

    Ivanov, V.K.; Tsyb, A.F.

    1997-01-01

    Ten years have elapsed after the Chernobyl accident. The problem concerning the estimation of the total integral damage to life and health of people exposed to radiation remains very complicated. A negative influence of the Chernobyl included a spectrum of factors which may reinforce each other. In particular, to date there are no theoretical models or practical recommendations on integral estimating the contribution of social and psycho-emotional factors to the risks of diseases due to radiological accidents. On the other hand, for maximum effective rehabilitation of suffered people the ranging and impartial determination of contribution both of proper radiation and non-radiation components of influence are needed. Therefore, continuation of long-standing investigations is of great practical importance to diminish health consequences of the accident. 5 refs, 7 figs, 4 tabs

  19. National Chernobyl registry of Russia: Radiation risks analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V K; Tsyb, A F [Medical Radiological Research Center (RAMS), Obninsk (Russian Federation)

    1997-09-01

    Ten years have elapsed after the Chernobyl accident. The problem concerning the estimation of the total integral damage to life and health of people exposed to radiation remains very complicated. A negative influence of the Chernobyl included a spectrum of factors which may reinforce each other. In particular, to date there are no theoretical models or practical recommendations on integral estimating the contribution of social and psycho-emotional factors to the risks of diseases due to radiological accidents. On the other hand, for maximum effective rehabilitation of suffered people the ranging and impartial determination of contribution both of proper radiation and non-radiation components of influence are needed. Therefore, continuation of long-standing investigations is of great practical importance to diminish health consequences of the accident. 5 refs, 7 figs, 4 tabs.

  20. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full