WorldWideScience

Sample records for risk assessments pra

  1. PRA (Probabilistic Risk Assessments) Participation versus Validation

    Science.gov (United States)

    DeMott, Diana; Banke, Richard

    2013-01-01

    Probabilistic Risk Assessments (PRAs) are performed for projects or programs where the consequences of failure are highly undesirable. PRAs primarily address the level of risk those projects or programs posed during operations. PRAs are often developed after the design has been completed. Design and operational details used to develop models include approved and accepted design information regarding equipment, components, systems and failure data. This methodology basically validates the risk parameters of the project or system design. For high risk or high dollar projects, using PRA methodologies during the design process provides new opportunities to influence the design early in the project life cycle to identify, eliminate or mitigate potential risks. Identifying risk drivers before the design has been set allows the design engineers to understand the inherent risk of their current design and consider potential risk mitigation changes. This can become an iterative process where the PRA model can be used to determine if the mitigation technique is effective in reducing risk. This can result in more efficient and cost effective design changes. PRA methodology can be used to assess the risk of design alternatives and can demonstrate how major design changes or program modifications impact the overall program or project risk. PRA has been used for the last two decades to validate risk predictions and acceptability. Providing risk information which can positively influence final system and equipment design the PRA tool can also participate in design development, providing a safe and cost effective product.

  2. Probabilistic risk assessment (PRA) reference document. Final report

    International Nuclear Information System (INIS)

    Murphy, J.A.

    1984-09-01

    This document describes the current status of probabilistic risk assessment (PRA) as practiced in the nuclear reactor regulatory process. The PRA studies that have been completed or are under way are reviewed. The levels of maturity of the methodologies used in a PRA are discussed. Insights derived from PRAs are listed. The potential uses of PRA results for regulatory purposes are discussed. This document was issued for comment in February 1984 entitled Probabilistic Risk Assessment (PRA): Status Report and Guidance for Regulatory Application. The comments received on the draft have been considered for this final version of the report

  3. Summary of PRA assessment of transient accident risks, human factors considerations, and PRA methods and applications

    International Nuclear Information System (INIS)

    Carnino, A.

    1984-01-01

    This chapter reviews the progress made in the probabilistic risk assessment (PRA) area to help in solving operational transient problems and to integrate human factors considerations, as discussed at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Topics considered include core-melt frequency, external events (e.g., fires, floods), diagnostic errors, and operator aids. It is concluded that confidence in PRA results, predictions and uses for decisions in both the safety of the plants and their availability will improve

  4. Probabilistic Risk Assessment (PRA): A Practical and Cost Effective Approach

    Science.gov (United States)

    Lee, Lydia L.; Ingegneri, Antonino J.; Djam, Melody

    2006-01-01

    The Lunar Reconnaissance Orbiter (LRO) is the first mission of the Robotic Lunar Exploration Program (RLEP), a space exploration venture to the Moon, Mars and beyond. The LRO mission includes spacecraft developed by NASA Goddard Space Flight Center (GSFC) and seven instruments built by GSFC, Russia, and contractors across the nation. LRO is defined as a measurement mission, not a science mission. It emphasizes the overall objectives of obtaining data to facilitate returning mankind safely to the Moon in preparation for an eventual manned mission to Mars. As the first mission in response to the President's commitment of the journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond, LRO has high-visibility to the public but limited resources and a tight schedule. This paper demonstrates how NASA's Lunar Reconnaissance Orbiter Mission project office incorporated reliability analyses in assessing risks and performing design tradeoffs to ensure mission success. Risk assessment is performed using NASA Procedural Requirements (NPR) 8705.5 - Probabilistic Risk Assessment (PRA) Procedures for NASA Programs and Projects to formulate probabilistic risk assessment (PRA). As required, a limited scope PRA is being performed for the LRO project. The PRA is used to optimize the mission design within mandated budget, manpower, and schedule constraints. The technique that LRO project office uses to perform PRA relies on the application of a component failure database to quantify the potential mission success risks. To ensure mission success in an efficient manner, low cost and tight schedule, the traditional reliability analyses, such as reliability predictions, Failure Modes and Effects Analysis (FMEA), and Fault Tree Analysis (FTA), are used to perform PRA for the large system of LRO with more than 14,000 piece parts and over 120 purchased or contractor

  5. Probabilistic risk assessment (PRA): status report and guidance for regulatory application. Draft report for comment

    International Nuclear Information System (INIS)

    1984-02-01

    This document describes the current status of the methodologies used in probabilistic risk assessment (PRA) and provides guidance for the application of the results of PRAs to the nuclear reactor regulatory process. The PRA studies that have been completed or are underway are reviewed. The levels of maturity of the methodologies used in a PRA are discussed. Insights derived from PRAs are listed. The potential uses of PRA results for regulatory purposes are discussed

  6. Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)

    Science.gov (United States)

    Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.

  7. Probabilistic risk assessment course documentation. Volume 1: PRA fundamentals

    International Nuclear Information System (INIS)

    Breeding, R.J.; Leahy, T.J.; Young, J.

    1985-08-01

    The full range of PRA topics is presented, with a special emphasis on systems analysis and PRA applications. Systems analysis topics include system modeling such as fault tree and event tree construction, failure rate data, and human Reliability. The discussion of PRA applications is centered on past and present PRA based programs, such as WASH-1400 and the Interim Reliability Evaluation Program, as well as on some of the potential future applications of PRA. The relationship of PRA to generic safety issues such as station blackout and Anticipated Transient Without Scram (ATWS) is also discussed. In addition to system modeling, the major PRA tasks of accident process analysis, and consequence analysis are presented. An explanation of the results of these activities, and the techniques by which these results are derived, forms the basis for a discussion of these topics. An additional topic which is presented in this course is the topic of PRA management, organization, and evaluation. 84 figs., 41 tabs

  8. Applicability of PRA methods and data to the financial risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    El-Sheik, K.A.

    1985-01-01

    Financial risk assessment, where the probability and severity of financial consequences are estimated, offers a logical framework for organizing and evaluating data pertinent to nuclear power plant accidents. Under the sponsorship of the Electric Power Research Institute, General Electric investigated the feasibility of financial risk assessment of nuclear power plants and of applying PRA methods and data in such an assessment. This paper summarizes the main findings of this investigation. Specifically, the paper discussed the following topics: definition of financial consequences and financial risk; overall approach for financial risk assessment and how it compares with the approach for PRA used in the Reactor Safety Study; and specific financial risk assessment procedures for defining initiating events, plant response sequences, institutional scenarios, and financial consequences and how they compare to analogous procedures for PRA

  9. Advances in Probabilistic Risk Assessment (PRA): a look into practitioners toolbox

    International Nuclear Information System (INIS)

    Mok, J.; Kaasalainen, S.; Donnelly, K.

    2007-01-01

    The ever-increasing emphasis on the use of Probabilistic Risk Assessment (PRA) in risk-informed decision making translates into increased expectations relating to PRA applications for the groups tasked with developing and maintaining the facility PRAs. In order to succeed in meeting the demand for PRA work, it is essential to develop methodologies and tools (or utilities) that improve the efficiency with which the PRAs are processed and manipulated to obtain a solution. Examples from the Nuclear Safety Solutions (NSS) PRA Practitioners tool box include utilities for cutting logical loops, optimizing fault trees (to decrease run-times), modularizing fault trees, and converting event trees into high level fault tree logic (an important element if the PRA study is to be used to support a risk monitor such as an Equipment Out-of-Service (EOOS) Monitor). The objective of this paper is be to briefly describe the main features of these utilities, and to illustrate the value they have in terms of improving the efficiency and effectiveness of PRA development and maintenance at NSS. (author)

  10. PRA and Risk Informed Analysis

    International Nuclear Information System (INIS)

    Bernsen, Sidney A.; Simonen, Fredric A.; Balkey, Kenneth R.

    2006-01-01

    The Boiler and Pressure Vessel Code (BPVC) of the American Society of Mechanical Engineers (ASME) has introduced a risk based approach into Section XI that covers Rules for Inservice Inspection of Nuclear Power Plant Components. The risk based approach requires application of the probabilistic risk assessments (PRA). Because no industry consensus standard existed for PRAs, ASME has developed a standard to evaluate the quality level of an available PRA needed to support a given risk based application. The paper describes the PRA standard, Section XI application of PRAs, and plans for broader applications of PRAs to other ASME nuclear codes and standards. The paper addresses several specific topics of interest to Section XI. Important consideration are special methods (surrogate components) used to overcome the lack of PRA treatments of passive components in PRAs. The approach allows calculations of conditional core damage probabilities both for component failures that cause initiating events and failures in standby systems that decrease the availability of these systems. The paper relates the explicit risk based methods of the new Section XI code cases to the implicit consideration of risk used in the development of Section XI. Other topics include the needed interactions of ISI engineers, plant operating staff, PRA specialists, and members of expert panels that review the risk based programs

  11. Use of probabilistic risk assessment (PRA) in expert systems to advise nuclear plant operators and managers

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1988-01-01

    The use of expert systems in nuclear power plants to provide advice to managers, supervisors and/or operators is a concept that is rapidly gaining acceptance. Generally, expert systems rely on the expertise of human experts or knowledge that has been codified in publications, books, or regulations to provide advice under a wide variety of conditions. In this work, a probabilistic risk assessment (PRA) of a nuclear power plant performed previously is used to assess the safety status of nuclear power plants and to make recommendations to the plant personnel. Nuclear power plants have many redundant systems and can continue to operate when one or more of these systems is disabled or removed from service for maintenance or testing. PRAs provide a means of evaluating the risk to the public associated with the operation of nuclear power plants with components or systems out of service. While the choice of the source term and methodology in a PRA may influence the absolute probability and consequences of a core melt, the ratio of the PRA calculations for two configurations of the same plant, carried out on a consistent basis, can readily identify the increase in risk associated with going from one configuration to the other

  12. A PRA case study of extended long term decay heat removal for shutdown risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Ragland, W.A.; Hill, D.J.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL). The results of this PRA have shown that the decay heat removal system for EBR-II is extremely robust and reliable. In addition, the methodology used demonstrates how the actions of other systems not normally used for actions of other systems not normally used for decay heat removal can be used to expand the mission time of the decay heat removal system and further increase its reliability. The methodology may also be extended to account for the impact of non-safety systems in enhancing the reliability of other dedicated safety systems

  13. Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modeling and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.

  14. Results of the Level 1 probabilistic risk assessment (PRA) of internal events for heavy water production reactors (U)

    International Nuclear Information System (INIS)

    Tinnes, S.P.; Cramer, D.S.; Logan, V.E.; Topp, S.V.; Smith, J.A.; Brandyberry, M.D.

    1990-01-01

    This paper reports on a full-scope probabilistic risk assessment (PRA) performed for the Savannah River Site (SRS) production reactors. The Level 1 PRA for the K Reactor has been completed and includes the assessment of reactor systems response to accidents and estimates of the severe core melt frequency (SCMF). The internal events spectrum includes those events related directly to plant systems and safety functions for which transients or failures may initiate an accident

  15. Use of probabilistic risk assessment (PRA) in expert systems to advise nuclear plant operators and managers

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1988-01-01

    The use of expert systems in nuclear power plants to provide advice to managers, supervisors and/or operators is a concept that is rapidly gaining acceptance. Generally, expert systems rely on the expertise of human experts or knowledge that has been modified in publications, books, or regulations to provide advice under a wide variety of conditions. In this work, a probabilistic risk assessment (PRA) 3 of a nuclear power plant performed previously is used to assess the safety status of nuclear power plants and to make recommendations to the plant personnel. 5 refs., 1 fig., 2 tabs

  16. The tsunami probabilistic risk assessment (PRA). Example of accident sequence analysis of tsunami PRA according to the standard for procedure of tsunami PRA for nuclear power plants

    International Nuclear Information System (INIS)

    Ohara, Norihiro; Hasegawa, Keiko; Kuroiwa, Katsuya

    2013-01-01

    After the Fukushima Daiichi nuclear power plant (NPP) accident, standard for procedure of tsunami PRA for NPP had been established by the Standardization Committee of AESJ. Industry group had been conducting analysis of Tsunami PRA for PWR based on the standard under the cooperation with electric utilities. This article introduced overview of the standard and examples of accident sequence analysis of Tsunami PRA studied by the industry group according to the standard. The standard consisted of (1) investigation of NPP's composition, characteristics and site information, (2) selection of relevant components for Tsunami PRA and initiating events and identification of accident sequence, (3) evaluation of Tsunami hazards, (4) fragility evaluation of building and components and (5) evaluation of accident sequence. Based on the evaluation, countermeasures for further improvement of safety against Tsunami could be identified by the sensitivity analysis. (T. Tanaka)

  17. Probabilistic risk assessment (PRA) update in light of the accident at Fukushima Daiichi Nuclear Power Station - 15461

    International Nuclear Information System (INIS)

    Maeda, K.; Abe, H.; Hirokawa, N.; Satou, C.

    2015-01-01

    We have performed internal and external event probabilistic risk assessments (PRA) for boiling water reactor power nuclear plants to identify the important accident sequence groups and to evaluate the effectiveness of the additional severe accident measures, regarding to the new regulatory requirements implemented after the accident at Fukushima Daiichi Nuclear Power Station in Japan in 2011. In addition, we will further update our PRA by extracting problems and improvements from the current PRA, by catching up the state-of-the-art knowledge, modern PRA methodologies in order to contribute voluntarily to safety improvement as well as to comply with regulations. In this document, prior to the extensive PRA updates, we would describe technical contents and qualitative results about PRA updates that have been performed preliminary so far, especially about the external event (seismic) PRA and how to model the additionally deployed severe accident measures (e.g. power supply car, fire engine) so that they can be function external hazards, such as component failure rate of equipment, human reliability 'out of control room', and mission time extension. (authors)

  18. Results of the Level 1 probabilistic risk assessment (PRA) of internal events for heavy water production reactors

    International Nuclear Information System (INIS)

    Tinnes, S.P.; Cramer, D.S.; Logan, V.E.; Topp, S.V.; Smith, J.A.; Brandyberry, M.D.

    1990-01-01

    A full-scope probabilistic risk assessment (PRA) is being performed for the Savannah River site (SRS) production reactors. The Level 1 PRA for the K Reactor has been completed and includes the assessment of reactor systems response to accidents and estimates of the severe core melt frequency (SCMF). The internal events spectrum includes those events related directly to plant systems and safety functions for which transients or failures may initiate an accident. The SRS PRA has three principal objectives: improved understanding of SRS reactor safety issues through discovery and understanding of the mechanisms involved. Improved risk management capability through tools for assessing the safety impact of both current standard operations and proposed revisions. A quantitative measure of the risks posed by SRS reactor operation to employees and the general public, to allow comparison with declared goals and other societal risks

  19. Medical Updates Number 5 to the International Space Station Probability Risk Assessment (PRA) Model Using the Integrated Medical Model

    Science.gov (United States)

    Butler, Doug; Bauman, David; Johnson-Throop, Kathy

    2011-01-01

    The Integrated Medical Model (IMM) Project has been developing a probabilistic risk assessment tool, the IMM, to help evaluate in-flight crew health needs and impacts to the mission due to medical events. This package is a follow-up to a data package provided in June 2009. The IMM currently represents 83 medical conditions and associated ISS resources required to mitigate medical events. IMM end state forecasts relevant to the ISS PRA model include evacuation (EVAC) and loss of crew life (LOCL). The current version of the IMM provides the basis for the operational version of IMM expected in the January 2011 timeframe. The objectives of this data package are: 1. To provide a preliminary understanding of medical risk data used to update the ISS PRA Model. The IMM has had limited validation and an initial characterization of maturity has been completed using NASA STD 7009 Standard for Models and Simulation. The IMM has been internally validated by IMM personnel but has not been validated by an independent body external to the IMM Project. 2. To support a continued dialogue between the ISS PRA and IMM teams. To ensure accurate data interpretation, and that IMM output format and content meets the needs of the ISS Risk Management Office and ISS PRA Model, periodic discussions are anticipated between the risk teams. 3. To help assess the differences between the current ISS PRA and IMM medical risk forecasts of EVAC and LOCL. Follow-on activities are anticipated based on the differences between the current ISS PRA medical risk data and the latest medical risk data produced by IMM.

  20. MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment (PRA) Techniques

    Science.gov (United States)

    2014-08-01

    3 2.1 UK Need for a PRA-Based Approach ............................................................... 3 2.2 A Risk-Based Approach to...Figure 6: MATILDA Coordinate Transformations ....................................................... 22  Figure 7: Geocentric and MICS Coordinates...Star-Shaped Condition ................................................................................. 27  Figure 11: Points of Closest Approach

  1. Constellation Probabilistic Risk Assessment (PRA): Design Consideration for the Crew Exploration Vehicle

    Science.gov (United States)

    Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis

    2010-01-01

    Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.

  2. Application of FIVE methodology in probabilistic risk assessment (PRA) of fire events

    International Nuclear Information System (INIS)

    Lopez Garcia, F.J.; Suarez Alonso, J.; Fiolamengual, M.J.

    1993-01-01

    This paper reflects the experience acquired during the process of evaluation and updating of the fire analysis within the Cofrentes NPP PRA. It determines which points are the least precise, either because of their greater uncertainty or because of their excessive conservatism, as well as the subtasks which have involved a larger work load and could be simplified. These aspects are compared with the steps followed in methodology FIVE (Fire Vulnerability Evaluation Methodology) to assess whether application of this methodology would optimize the task, by making it more systematic and realistic and reducing uncertainties. On the one hand, the FIVE methodology does not have the scope sufficient to carry out a quantitative risk evaluation, but it can easily be complemented -without detriment to its systematic nature- by quantifying core damage in significant areas. On the other hand, certain issues such as definition of the fire growth software program which has to be used, are still not fully closed. Nevertheless, the conclusions derived from this assessment are satisfactory, since it is considered that this methodology would serve to unify the criteria and data of the analysis of fire-induced risks, providing a progressive screening method which would considerably simplify the task. (author)

  3. PRA Procedures Guide: a guide to the performance of probabilistic risk assessments for nuclear power plants. Final report, Volume 1 - Chapters 1-8

    International Nuclear Information System (INIS)

    1983-01-01

    This document, the Probabilistic Risk Assessment (PRA) Procedures Guide, is intended to provide an overview of the risk-assessment field as it exists today and to identify acceptable techniques for the systematic assessment of the risk from nuclear power plants. Topics discussed include: organization of PRA; accident-sequence definition and system modeling; human-reliability analysis; data-base development; accident-sequence quantification; physical processes of core-melt accidents; and radionuclide release and transport

  4. Loss of coolant accident (LOCA) analysis for McMaster Nuclear Reactor through probabilistic risk assessment (PRA)

    Energy Technology Data Exchange (ETDEWEB)

    Ha, T.; Garland, W.J. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)]. E-mail: hats@mcmaster.ca

    2006-07-01

    A probabilistic risk assessment (PRA) was conducted for the loss of coolant accident (LOCA) sequence in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the ASEP approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a different time-oriented HRA model was proposed and applied for the estimation of the human error probability (HEP) of core relocation. This HEP estimate was less than that by the ASEP approach by a factor of about 2. These two HEP estimates were used for sensitivity analysis, and modeling uncertainty in the PRA models was quantified. This showed the necessity of appropriate human reliability models in PRA for research reactors. This method could be implemented for the operators' actions which require extensive manual execution with little cognitive load, as might be the case for some maintenance operations in power reactors. (author)

  5. Recovery actions in PRA [probabilistic risk assessment] for the Risk Methods Integration and Evaluation Program (RMIEP): Volume 1, Development of the data-based method

    International Nuclear Information System (INIS)

    Weston, L.M.; Whitehead, D.W.; Graves, N.L.

    1987-06-01

    In a probabilistic risk assessment (PRA) for a nuclear power plant, the analyst identifies a set of potential core damage events consisting of equipment failures and human errors and their estimated probabilities of occurrence. If operator recovery from an event within some specified time is considered, then the probability of this recovery can be included in the PRA. This report provides PRA analysts with an improved methodology for including recovery actions in a PRA. A recovery action can be divided into two distinct phases: a Diagnosis Phase (realizing that there is a problem with a critical parameter and deciding upon the correct course of action) and an Action Phase (physically accomplishing the required action). In this methodology, simulator data are used to estimate recovery probabilities for the diagnosis phase. Different time-reliability curves showing the probability of failure of diagnosis as a function of time from the compelling cue for the event are presented. These curves are based on simulator exercises, and the actions are grouped based upon their operational similarities. This is an improvement over existing diagnosis models that rely greatly upon subjective judgment to obtain such estimates. The action phase is modeled using estimates from available sources. The methodology also includes a recommendation on where and when to apply the recovery action in the PRA process

  6. Interaction of CREDO [Centralized Reliability Data Organization] with the EBR-II [Experimental Breeder Reactor II] PRA [probabilistic risk assessment] development

    International Nuclear Information System (INIS)

    Smith, M.S.; Ragland, W.A.

    1989-01-01

    The National Academy of Sciences review of US Department of Energy (DOE) class 1 reactors recommended that the Experimental Breeder Reactor II (EBR-II), operated by Argonne National Laboratory (ANL), develop a level 1 probabilistic risk assessment (PRA) and make provisions for level 2 and level 3 PRAs based on the results of the level 1 PRA. The PRA analysis group at ANL will utilize the Centralized Reliability Data Organization (CREDO) at Oak Ridge National Laboratory to support the PRA data needs. CREDO contains many years of empirical liquid-metal reactor component data from EBR-II. CREDO is a mutual data- and cost-sharing system sponsored by DOE and the Power Reactor and Nuclear Fuels Development Corporation of Japan. CREDO is a component based data system; data are collected on components that are liquid-metal specific, associated with a liquid-metal environment, contained in systems that interface with liquid-metal environments, or are safety related for use in reliability/availability/maintainability (RAM) analyses of advanced reactors. The links between the EBR-II PRA development effort and the CREDO data collection at EBR-II extend beyond the sharing of data. The PRA provides a measure of the relative contribution to risk of the various components. This information can be used to prioritize future CREDO data collection activities at EBR-II and other sites

  7. Probabilistic risk assessment course documentation. Volume 2. Probability and statistics for PRA applications

    International Nuclear Information System (INIS)

    Iman, R.L.; Prairie, R.R.; Cramond, W.R.

    1985-08-01

    This course is intended to provide the necessary probabilistic and statistical skills to perform a PRA. Fundamental background information is reviewed, but the principal purpose is to address specific techniques used in PRAs and to illustrate them with applications. Specific examples and problems are presented for most of the topics

  8. 'Living PRA' concept for plant risk: Reliability and availability tracking

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    The 'Living PRA' (Probabilistic Risk Assessment) is based on placing a PRA plant model on an interactive computer. This model consists of fault tree analyses for plant systems, event tree analyses for abnormal events and site specific consequence analysis for public and/or financial risks, for a nuclear power plant. A living PRA allows updates and sensitivity analyses by the plant owner throughout the lifetime of a plant. Recently, event and fault trees from two major PRAs were placed in a computerized format. The BYRON PRA study and the Living PRA and Economic Risk examples for Indian Point Unit-3 enabled analysts to gain experience and insight into the problems of plant operation. The above concept is well established for the Nuclear Power Plant evaluation. It has been also used for evaluation of processing facilities. In these studies, systems modeling was carried out by using the GRAFTER system for automated fault tree construction. Presently both the tools and the experience exists to set up useful and viable living PRA models for nuclear and chemical processing plants to enhance risk management by the plant owners through in-house use of micro computer based models

  9. Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization

    International Nuclear Information System (INIS)

    Mohaghegh, Zahra; Kazemi, Reza; Mosleh, Ali

    2009-01-01

    This paper is a result of a research with the primary purpose of extending Probabilistic Risk Assessment (PRA) modeling frameworks to include the effects of organizational factors as the deeper, more fundamental causes of accidents and incidents. There have been significant improvements in the sophistication of quantitative methods of safety and risk assessment, but the progress on techniques most suitable for organizational safety risk frameworks has been limited. The focus of this paper is on the choice of 'representational schemes' and 'techniques.' A methodology for selecting appropriate candidate techniques and their integration in the form of a 'hybrid' approach is proposed. Then an example is given through an integration of System Dynamics (SD), Bayesian Belief Network (BBN), Event Sequence Diagram (ESD), and Fault Tree (FT) in order to demonstrate the feasibility and value of hybrid techniques. The proposed hybrid approach integrates deterministic and probabilistic modeling perspectives, and provides a flexible risk management tool for complex socio-technical systems. An application of the hybrid technique is provided in the aviation safety domain, focusing on airline maintenance systems. The example demonstrates how the hybrid method can be used to analyze the dynamic effects of organizational factors on system risk

  10. Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, Zahra [Center for Risk and Reliability, University of Maryland, College Park, MD 20742 (United States)], E-mail: mohagheg@umd.edu; Kazemi, Reza; Mosleh, Ali [Center for Risk and Reliability, University of Maryland, College Park, MD 20742 (United States)

    2009-05-15

    This paper is a result of a research with the primary purpose of extending Probabilistic Risk Assessment (PRA) modeling frameworks to include the effects of organizational factors as the deeper, more fundamental causes of accidents and incidents. There have been significant improvements in the sophistication of quantitative methods of safety and risk assessment, but the progress on techniques most suitable for organizational safety risk frameworks has been limited. The focus of this paper is on the choice of 'representational schemes' and 'techniques.' A methodology for selecting appropriate candidate techniques and their integration in the form of a 'hybrid' approach is proposed. Then an example is given through an integration of System Dynamics (SD), Bayesian Belief Network (BBN), Event Sequence Diagram (ESD), and Fault Tree (FT) in order to demonstrate the feasibility and value of hybrid techniques. The proposed hybrid approach integrates deterministic and probabilistic modeling perspectives, and provides a flexible risk management tool for complex socio-technical systems. An application of the hybrid technique is provided in the aviation safety domain, focusing on airline maintenance systems. The example demonstrates how the hybrid method can be used to analyze the dynamic effects of organizational factors on system risk.

  11. Validation needs of seismic probabilistic risk assessment (PRA) methods applied to nuclear power plants

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1985-01-01

    An effort to validate seismic PRA methods is in progress. The work concentrates on the validation of plant response and fragility estimates through the use of test data and information from actual earthquake experience. Validation needs have been identified in the areas of soil-structure interaction, structural response and capacity, and equipment fragility. Of particular concern is the adequacy of linear methodology to predict nonlinear behavior. While many questions can be resolved through the judicious use of dynamic test data, other aspects can only be validated by means of input and response measurements during actual earthquakes. A number of past, ongoing, and planned testing programs which can provide useful validation data have been identified, and validation approaches for specific problems are being formulated

  12. Diablo Canyon internal events PRA [Probabilistic Risk Assessment] review: Methodology and findings

    International Nuclear Information System (INIS)

    Fitzpatrick, R.G.; Bozoki, G.; Sabek, M.

    1990-01-01

    The review of the Diablo Canyon Probabilistic Risk Assessment (DCRPA) incorporated some new and innovative approaches. These were necessitated by the unprecedented size, scope and level of detail of the DCRPA, which was submitted to the NRC for licensing purposes. This paper outlines the elements of the internal events portion of the review citing selected findings to illustrate the various approaches employed. The paper also provides a description of the extensive and comprehensive importance analysis applied by BNL to the DCRPA model. Importance calculations included: top event/function level; individual split fractions; pair importances between frontline-support and support-support systems; system importance by initiator; and others. The paper concludes with a brief discussion of the effectiveness of the applied methodology. 3 refs., 5 tabs

  13. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  14. Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors: project overview and strong Wind PRA methodology - 15031

    International Nuclear Information System (INIS)

    Yamano, H.; Nishino, H.; Kurisaka, K.; Okano, Y.; Sakai, T.; Yamamoto, T.; Ishizuka, Y.; Geshi, N.; Furukawa, R.; Nanayama, F.; Takata, T.; Azuma, E.

    2015-01-01

    This paper describes mainly strong wind probabilistic risk assessment (PRA) methodology development in addition to the project overview. In this project, to date, the PRA methodologies against snow, tornado and strong wind were developed as well as the hazard evaluation methodologies. For the volcanic eruption hazard, ash fallout simulation was carried out to contribute to the development of the hazard evaluation methodology. For the forest fire hazard, the concept of the hazard evaluation methodology was developed based on fire simulation. Event sequence assessment methodology was also developed based on plant dynamics analysis coupled with continuous Markov chain Monte Carlo method in order to apply to the event sequence against snow. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or out-take in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6*10 -9 /year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system. (authors)

  15. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.; Smith, Curtis L.

    2017-06-01

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. This often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.

  16. Spatially Informed Plant PRA Models for Security Assessment

    International Nuclear Information System (INIS)

    Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric

    2006-01-01

    Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic risk assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)

  17. PRA research and the development of risk-informed regulation at the U.S. nuclear regulatory commission

    International Nuclear Information System (INIS)

    Siu, Nathan; Collins, Dorothy

    2008-01-01

    Over the years, Probabilistic Risk Assessment (PRA) research activities conducted at the U.S. Nuclear Regulatory Commission (NRC) have played an essential role in support of the agency's move towards risk-informed regulation. These research activities have provided the technical basis for NRC's regulatory activities in key areas; provided PRA methods, tools, and data enabling the agency to meet future challenges; supported the implementation of NRC's 1995 PRA Policy Statement by assessing key sources of risk; and supported the development of necessary technical and human resources supporting NRC's risk-informed activities. PRA research aimed at improving the NRC's understanding of risk can positively affect the agency's regulatory activities, as evidenced by three case studies involving research on fire PRA, Human Reliability Analysis (HRA), and Pressurized Thermal Shock (PTS) PRA. These case studies also show that such research can take a considerable amount of time, and that the incorporation of research results into regulatory practice can take even longer. The need for sustained effort and appropriate lead time is an important consideration in the development of a PRA research program aimed at helping the agency address key sources of risk for current and potential future facilities

  18. Probabilistic Risk Assessment to Inform Decision Making: Frequently Asked Questions

    Science.gov (United States)

    General concepts and principles of Probabilistic Risk Assessment (PRA), describe how PRA can improve the bases of Agency decisions, and provide illustrations of how PRA has been used in risk estimation and in describing the uncertainty in decision making.

  19. The Evaluation of the Adequacy of PRA Results for Risk-informed Decision Makings With Respect to Incompleteness

    International Nuclear Information System (INIS)

    Kang, Kyungmin; Jae, Moosung

    2007-01-01

    PRA(Probabilistic Risk Assessment), as a quantitative tool, has many strengths as well as weaknesses. There are several limitations on the use of PRA techniques for risk modeling and analysis. First, the true values of most model inputs are unknown. Ideally, probability distribution models are well developed and assigned to the unknown input parameters to reflect the analyst's state of knowledge of the values of this input parameter. The problem of overconfidence and lack of confidence in the values of certain model input parameters can lead to inaccurate PRA results. Secondly, the analyst's lack of knowledge of a system's practical application as opposed to its theoretical operation can lead to modeling errors. The quality of PRAs has been addressed by a number of regulatory and industry organizations Some have argued that a good PRA should be a complete, full scope, three level PRA, while others have claimed that the quality of a PRA should be measured with respect to the application and decision supported. we show by way of an example that the adequacy of a PRA results is important to risk-informed decision making process and should be measured with respect to the application and decision supported

  20. PRA for emergency planning: assessing the risk profile of a 3-loop PWR on the basis of US and German risk studies

    International Nuclear Information System (INIS)

    Chakraborty, S.; Fuchs, H.; Gubler, R.; Landolt, J.; Miteff, L.

    1985-01-01

    Emergency planning around nuclear power plants should be based on a realistic assessment of their risk profile. Since the results of the Rasmussen study (WASH-1400) and later of the German risk study (Phase A) were not judged to be fully representative for NPP's in Switzerland, an investigation was started to transfer applicable US and German results to a Swiss 3-loop PWR (Goesgen) and to assess the impact of differences in plant design compared to Surry-1 and Biblis-B. The core melt probability for Goesgen was calculated to be more than a factor of ten smaller than for the US and German studies. This is mainly due to more redundancy/better separation (especially in the emergency feedwater) and to partial automation of cooldown after a small break. The results were instrumental in limiting the release categories to be used as reference cases for emergency planning. Further reduction of postulated accidental releases is expected from the current source term research

  1. Revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (PRA). Updating requirements based on the lessons learned from the Fukushima Dai-ichi NPP Accidents (3). Fragility evaluation and outline of the updated points

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Nakamura, Susumu; Mihara, Yoshinori

    2014-01-01

    Lessons learned from Great East Japan earthquake and other new findings had been accumulated on the fragility evaluation of buildings and components. And also new analysis and evaluation method had been proposed with the advancement of recent analysis and evaluation technology. These were reflected in revision of the AESJ Standard for Seismic Probabilistic Risk Assessment (PRA). Scope of the fragility evaluation were extended to all equipment on the site, severe accident management equipment including portable equipment and earthquake concomitant incident (such as tsunami) countermeasure equipment. This article described outlines of updating points of the fragility evaluation of the AESJ Standard for Seismic PRA; (1) requirements for seismic induced other risk evaluations such as fire, inundation and tsunami, (2) simulation technology based on recent findings such as three dimensional responses of buildings / structures and its effect on equipment, (3) requirements of the fragility evaluation for various failure mode of several equipment such as severe accident management equipment, fine failure mode of buildings / structures, failures of equipment related with earthquake concomitant incidents (embankment and seawall) and spent fuel pool, and (4) requirements for the fragility evaluation of aftershocks and soil deformation due to fault displacement. (T. Tanaka)

  2. An evaluation of the reliability and usefulness of external-initiator PRA [probabilistic risk analysis] methodologies

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally ''mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab

  3. An evaluation of the reliability and usefulness of external-initiator PRA (probabilistic risk analysis) methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Budnitz, R.J.; Lambert, H.E. (Future Resources Associates, Inc., Berkeley, CA (USA))

    1990-01-01

    The discipline of probabilistic risk analysis (PRA) has become so mature in recent years that it is now being used routinely to assist decision-making throughout the nuclear industry. This includes decision-making that affects design, construction, operation, maintenance, and regulation. Unfortunately, not all sub-areas within the larger discipline of PRA are equally mature,'' and therefore the many different types of engineering insights from PRA are not all equally reliable. 93 refs., 4 figs., 1 tab.

  4. Failure Modes Taxonomy for Reliability Assessment of Digital Instrumentation and Control Systems for Probabilistic Risk Analysis - Failure modes taxonomy for reliability assessment of digital I and C systems for PRA

    International Nuclear Information System (INIS)

    Amri, A.; Blundell, N.; ); Authen, S.; Betancourt, L.; Coyne, K.; Halverson, D.; Li, M.; Taylor, G.; Bjoerkman, K.; Brinkman, H.; Postma, W.; Bruneliere, H.; Chirila, M.; Gheorge, R.; Chu, L.; Yue, M.; Delache, J.; Georgescu, G.; Deleuze, G.; Quatrain, R.; Thuy, N.; Holmberg, J.-E.; Kim, M.C.; Kondo, K.; Mancini, F.; Piljugin, E.; Stiller, J.; Sedlak, J.; Smidts, C.; Sopira, V.

    2015-01-01

    Digital protection and control systems appear as upgrades in older nuclear power plants (NPP), and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. Due to the many unique attributes of digital systems (e.g., functions are implemented by software, units of the system interact in a communication network, faults can be identified and handled online), a number of modelling and data collection challenges exist, and international consensus on the reliability modelling has not yet been reached. The objective of the task group called DIGREL has been to develop a taxonomy of failure modes of digital components for the purposes of probabilistic risk analysis (PRA). An activity focused on the development of a common taxonomy of failure modes is seen as an important step towards standardised digital instrumentation and control (I and C) reliability assessment techniques for PRA. Needs from PRA has guided the work, meaning, e.g., that the I and C system and its failures are studied from the point of view of their functional significance point of view. The taxonomy will be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies. The proposed failure modes taxonomy has been developed by first collecting examples of taxonomies provided by the task group organisations. This material showed some variety in the handling of I and C hardware failure modes, depending on the context where the failure modes have been defined. Regarding the software part of I and C, failure modes defined in NPP PRAs have been simple - typically a software CCF failing identical processing units. The DIGREL task group has defined a new failure modes taxonomy based on a hierarchical definition of five levels of abstraction: 1. system level (complete

  5. The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine

    International Nuclear Information System (INIS)

    Kot, C.

    1999-01-01

    Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Department of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments

  6. WASTE-PRA: a computer package for probabilistic risk assessment of shallow-land burial of low-level radioactive waste

    International Nuclear Information System (INIS)

    Cox, N.D.; Atwood, C.L.

    1985-12-01

    This report is a user's manual for a package of computer programs and data files to be used for probabilistic risk assessment of shallow-land burial of low-level radioactive waste. The nuclide transport pathways modeled are an unsaturated groundwater column, an aquifer, and the atmosphere. An individual or the population receives a dose commitment through shine, inhalation, ingestion, direct exposure, and/or a puncture wound. The methodology of risk assessment is based on the response surface method of uncertainty analysis. The parameters of the model for predicting dose commitment due to a release are treated as statistical variables, in order to compute statistical distributions for various contributions to the dose commitment. The likelihood of a release is similarly treated as a statistical variable. Uncertainty distributions are obtained both for the dose commitment and for the corresponding risk. Plots and printouts are produced to aid in comparing the importance of various release scenarios and in assessing the total risk of a set of scenarios. The entire methodology is illustrated by an example. Information is included on parameter uncertainties, reference site characteristics, and probabilities of release events

  7. HTGR accident and risk assessment

    International Nuclear Information System (INIS)

    Silady, F.A.; Everline, C.J.; Houghton, W.J.

    1982-01-01

    This paper is a synopsis of the high-temperature gas-cooled reactor probabilistic risk assessments (PRAs) performed by General Atomic Company. Principal topics presented include: HTGR safety assessments, peer interfaces, safety research, process gas explosions, quantitative safety goals, licensing applications of PRA, enhanced safety, investment risk assessments, and PRA design integration

  8. Overview of the probabilistic risk assessment approach

    International Nuclear Information System (INIS)

    Reed, J.W.

    1985-01-01

    The techniques of probabilistic risk assessment (PRA) are applicable to Department of Energy facilities. The background and techniques of PRA are given with special attention to seismic, wind and flooding external events. A specific application to seismic events is provided to demonstrate the method. However, the PRA framework is applicable also to wind and external flooding. 3 references, 8 figures, 1 table

  9. Review of PRA methodology for LMFBR

    International Nuclear Information System (INIS)

    Yang, J. E.

    1999-02-01

    Probabilistic Risk Assessment (PRA) has been widely used as a tool to evaluate the safety of NPPs (Nuclear Power Plants), which are in the design stage as well as in operation. Recently, PRA becomes one of the licensing requirements for many existing and new NPPs. KALIMER is a Liquid Metal Fast Breeder Reactor (LMFBR) being developed by KAERI. Since the design concept of KALIMER is similar to that of the PRISM plant developed by GE, it would be appropriate to review the PRA methodology of PRISM as the first step of KALIMER PRA. Hence, in this report summarizes the PRA methodology of PRISM plant, and the required works for the PSA of KALIMER based on the reviewed results. The PRA technology of PRISM plant consists of following five major tasks: (1) development of initiating event list, (2) development of system event tree, (3) development of core response event tree, (4) development of containment response event tree, and (5) consequences and risk estimation. The estimated individual and societal risk measures show that the risk from a PRISM module is substantially less than the NRC goal. Each task is compared to the PRA methodology of Light Water Reactor (LWR)/Pressurized Heavy Water Reactor (PHWR). In the report, each task of PRISM PRA methodology is reviewed and compared to the corresponding part of LWR/PHWR PSA performed in Korea. The parts that are not modeled appropriately in PRISM PRA are identified, and the recommendations for KALIMER PRA are stated. (author). 14 refs., 9 tabs., 4 figs

  10. An integrated PRA module for fast determination of risk significance and improvement effectiveness

    International Nuclear Information System (INIS)

    Chao, Chun-Chang; Lin, Jyh-Der

    2004-01-01

    With the widely use of PRA technology in risk-informed applications, to predict the changes of CDF and LERF becomes a standard process for risk-informed applications. This paper describes an integrated PRA module prepared for risk-informed applications. The module contains a super risk engine, a super fault tree engine, an advanced PRA model and a tool for data base maintenance. The individual element of the module also works well for purpose other than risk-informed applications. The module has been verified and validated through a series of scrupulous benchmark tests with similar software. The results of the benchmark tests showed that the module has remarkable accuracy and speed even for an extremely large-size top-logic fault tree as well as for the case in which large amount of MCSs may be generated. The risk monitor for nuclear power plants in Taiwan is the first application to adopt the module. The results predicted by the risk monitor are now accepted by the regulatory agency. A tool to determine the risk significance according to the inspection findings will be the next application to adopt the module in the near future. This tool classified the risk significance into four different color codes according to the level of increase on CDF. Experience of application showed that the flexibility, the accuracy and speed of the module make it useful in any risk-informed applications when risk indexes must be determined by resolving a PRA model. (author)

  11. Human factors assessment in PRA using task analysis linked evaluation technique (TALENT)

    International Nuclear Information System (INIS)

    Wells, J.E.; Banks, W.W.

    1990-01-01

    Human error is a primary contributor to risk in complex high-reliability systems. A 1985 U.S. Nuclear Regulatory Commission (USNRC) study of licensee event reports (LERs) suggests that upwards of 65% of commercial nuclear system failures involve human error. Since then, the USNRC has initiated research to fully and properly integrate human errors into the probabilistic risk assessment (PRA) process. The resulting implementation procedure is known as the Task Analysis Linked Evaluation Technique (TALENT). As indicated, TALENT is a broad-based method for integrating human factors expertise into the PRA process. This process achieves results which: (1) provide more realistic estimates of the impact of human performance on nuclear power safety, (2) can be fully audited, (3) provide a firm technical base for equipment-centered and personnel-centered retrofit/redesign of plants enabling them to meet internally and externally imposed safety standards, and (4) yield human and hardware data capable of supporting inquiries into human performance issues that transcend the individual plant. The TALENT procedure is being field-tested to verify its effectiveness and utility. The objectives of the field-test are to examine (1) the operability of the process, (2) its acceptability to the users, and (3) its usefulness for achieving measurable improvements in the credibility of the analysis. The field-test will provide the information needed to enhance the TALENT process

  12. Linkage of PRA models. Phase 1, Results

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ``Linkage of PRA Models`` project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ``linking`` analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ``generic`` classification scheme to groups plants based upon a particular plant attribute.

  13. Linkage of PRA models. Phase 1, Results

    International Nuclear Information System (INIS)

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ''Linkage of PRA Models'' project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ''linking'' analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ''generic'' classification scheme to groups plants based upon a particular plant attribute

  14. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  15. Management and Organization Influences in PRA

    International Nuclear Information System (INIS)

    Gertman, D.I.; Hallbert, B. P.; Blackman, H. S.

    1998-01-01

    The authors present a research program which aimed at increasing the quality of comprehensiveness of contemporary PRA (Probability Risk Assessment) by providing a tool that allows for incorporating M and O in PRA, at improving the quality of NRC assessments, at conducting research to support the risk informed regulation process, at identifying impact of management and organization, safety culture, workplace environment, down-sizing and deregulation on human performance and reliability

  16. 77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2012-02-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  17. 76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  18. Standardized procedure for tsunami PRA by AESJ

    International Nuclear Information System (INIS)

    Kirimoto, Yukihiro; Yamaguchi, Akira; Ebisawa, Katsumi

    2013-01-01

    After Fukushima Accident (March 11, 2011), the Atomic Energy Society of Japan (AESJ) started to develop the standard of Tsunami Probabilistic Risk Assessment (PRA) for nuclear power plants in May 2011. As Japan is one of the countries with frequent earthquakes, a great deal of efforts has been made in the field of seismic research since the early stage. To our regret, the PRA procedures guide for tsunami has not yet been developed although the importance is held in mind of the PRA community. Accordingly, AESJ established a standard to specify the standardized procedure for tsunami PRA considering the results of investigation into the concept, the requirements that should have and the concrete methods regarding tsunami PRA referring the opinions of experts in the associated fields in December 2011 (AESJ-SC-RK004:2011). (author)

  19. PRA: A PERSPECTIVE ON STRENGTHS, CURRENT LIMITATIONS, AND POSSIBLE IMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ALI MOSLEH

    2014-02-01

    Full Text Available Probabilistic risk assessment (PRA has been used in various technological fields to assist regulatory agencies, managerial decision makers, and systems designers in assessing and mitigating the risks inherent in these complex arrangements. Has PRA delivered on its promise? How do we gage PRA performance? Are our expectations about value of PRA realistic? Are there disparities between what we get and what we think we are getting form PRA and its various derivatives? Do current PRAs reflect the knowledge gained from actual events? How do we address potential gaps? These are some of the questions that have been raised over the years since the inception of the field more than forty years ago. This paper offers a brief assessment of PRA as a technical discipline in theory and practice, its key strengths and weaknesses, and suggestions on ways to address real and perceived shortcomings.

  20. PRA: A Perspective on Strengths, Current Limitations, And Possible Improvements

    International Nuclear Information System (INIS)

    Mosleh, Ail

    2014-01-01

    Probabilistic risk assessment (PRA) has been used in various technological fields to assist regulatory agencies, managerial decision makers, and systems designers in assessing and mitigating the risks inherent in these complex arrangements. Has PRA delivered on its promise? How do we gage PRA performance? Are our expectations about value of PRA realistic? Are there disparities between what we get and what we think we are getting form PRA and its various derivatives? Do current PRAs reflect the knowledge gained from actual events? How do we address potential gaps? These are some of the questions that have been raised over the years since the inception of the field more than forty years ago. This paper offers a brief assessment of PRA as a technical discipline in theory and practice, its key strengths and weaknesses, and suggestions on ways to address real and perceived shortcomings

  1. Insights gained through probabilistic risk assessments

    International Nuclear Information System (INIS)

    Hitchler, M.J.; Burns, N.L.; Liparulo, N.J.; Mink, F.J.

    1987-01-01

    The insights gained through a comparison of seven probabilistic risk assessments (PRA) studies (Italian PUN, Sizewell B, Ringhals 2, Millstone 3, Zion 1 and 2, Oconee 3, and Seabrook) included insights regarding the adequacy of the PRA technology utilized in the studies and the potential areas for improvement and insights regarding the adequacy of plant designs and how PRA has been utilized to enhance the design and operation of nuclear power plants

  2. Real-time risk assessment of operational events

    International Nuclear Information System (INIS)

    Perryman, L.J.; Foster, N.A.S.; Nicholls, D.R.; Grobbelaar, J.F.

    1996-01-01

    Probabilistic risk assessment (PRA) has always been fundamental to the licensing process of Koeberg nuclear power station. Furthermore, over the past 8 years PRA has assisted in many areas of operation. One of these areas is the real-time assessment of abnormal operating events. Over the years, considerable experience has been gained in using PRA to improve plant safety and performance. This paper presents some of the insights obtained in using PRA in such a dynamic role and demonstrates that, by developing and using the plant-specific 'living' PRA, considerable safety and financial gains can be obtained. These insights specifically concern the prerequisites before optimal use of a plant-specific 'living' PRA can be made. Finally, examples are presented of occurrences when PRA was used to improve plant safety and performance. These examples serve to demonstrate the advantages that can be obtained if sufficient resources are placed at the disposal of the PRA team. (orig.)

  3. Insights on PRA Review Practices: Necessity for Model Shaking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inn Seock; Jang, Mi suk; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-05-15

    Probabilistic risk assessment (PRA) is increasingly used as a technique to help ensure design and operational safety of nuclear power plants (NPPs) in the nuclear industry. Hence, there is considerable interest in the PRA quality, and as a result, a peer review of the PRA model is typically performed to ensure its technical adequacy as part of the PRA development process or for any other reason (e.g., regulatory requirement). For the PRA model to be used as a valuable vehicle for risk-informed applications, it is essential that the PRA model must yield correct and physically meaningful accident sequences and minimal cutsets for specific plant configurations or conditions relating to the applications. Hence, the existing peer review guidelines need to be updated to reflect these insights so that risk-informed applications could be more actively pursued with confidence.

  4. PRA and Conceptual Design

    Science.gov (United States)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  5. PRISIM: a computer program that makes PRA useful

    International Nuclear Information System (INIS)

    Fussell, J.B.; Campbell, D.J.; Glynn, J.C.; Burdick, G.R.

    1986-01-01

    PRISIM is an IBM personal computer program that translates probabilistic risk assessment (PRA) information and calculates additional PRA type information for use by those who are not PRA experts. Specifically, PRISIM was developed for the US Nuclear Regulatory Commission for use by their resident inspectors at nuclear power plants. Inspector activities are either scheduled or are in response to a particular status of a plant. PRISIM is useful for either activity

  6. Practical PRA applications at Consumers Power Company

    International Nuclear Information System (INIS)

    Blanchard, D.P.

    1985-01-01

    Consumers Power Company has completed two probabilistic risk assessments (PRAs), one each at its Big Rock Point and Midland plants and is in the process of performing a third study at its Palisades Plant. Each PRA is summarized briefly in this paper. Each PRA has been used to evaluate specific plant design features and make operating and design recommendations to plant and Company management as well as to the regulator. This paper is a sumary of those issues on which Consumers Power Company has applied PRAs to date. The technique used in applying PRA to these issues has varied as more was learned about the plants from the PRA and about PRA itself. Some issue resolutions involved deriving technical arguments from small parts of the PRA only, such as the logic models or consequence analysis. Still others required use of the entire PRA including sequence quantification, plant and containment response, consequence analysis and eventually cost-benefit evaluation of proposed resolutions. The benefits derived from these analyses have also varied and include not only a perceived reduction in the risks associated with plant operation but also economic benefit to the Company in that cost-effective alternatives to resolving safety issues have been permitted

  7. Economic impact assessment in pest risk analysis

    NARCIS (Netherlands)

    Soliman, T.A.A.; Mourits, M.C.M.; Oude Lansink, A.G.J.M.; Werf, van der W.

    2010-01-01

    According to international treaties, phytosanitary measures against introduction and spread of invasive plant pests must be justified by a science-based pest risk analysis (PRA). Part of the PRA consists of an assessment of potential economic consequences. This paper evaluates the main available

  8. Probabilistic risk assessment of HTGRs

    International Nuclear Information System (INIS)

    Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.

    1980-08-01

    Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the US Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed

  9. Probabilistic risk assessment of HTGRs

    International Nuclear Information System (INIS)

    Fleming, K.N.; Houghton, W.J.; Hannaman, G.W.; Joksimovic, V.

    1981-01-01

    Probabilistic Risk Assessment methods have been applied to gas-cooled reactors for more than a decade and to HTGRs for more than six years in the programs sponsored by the U.S. Department of Energy. Significant advancements to the development of PRA methodology in these programs are summarized as are the specific applications of the methods to HTGRs. Emphasis here is on PRA as a tool for evaluating HTGR design options. Current work and future directions are also discussed. (author)

  10. Current status and future expectation concerning probabilistic risk assessment of NPPs. 1. Features and issues of probabilistic risk assessment methodology

    International Nuclear Information System (INIS)

    Yamashita, Masahiro

    2012-01-01

    Probabilistic risk assessment (PRA) of Nuclear Power Plants (NPPs) could play an important role in assuring safety of NPPs. However PRA had not always effectively used, which was indicated in Japanese government's report on Fukushima Daiichi NPP accident. At the Risk Technical Committee (RTC) of Standards Committee of Atomic Energy Society of Japan, preparation of standards (implementing criteria) focusing on PRA methodology and investigation on basic philosophy for use of PRA had been in progress. Based on activities of RTC, a serial in three articles including this described current status and future expectation concerning probabilistic risk assessment of NPPs. This article introduced features and issues of PRA methodology related to the use of PRA. Features of PRA methodology could be shown as (1) systematic and comprehensive understanding of risk, (2) support of grading approach, (3) identification of effective safety upgrade measures and (4) quantitative understanding of effects of uncertainty. Issues of PRA methodology were (1) extension of PRA application area, (2) upgrade of PRA methodology, (3) quality assurance of PRA, (4) treatment of uncertainty and (5) quantitative evaluation criteria. (T. Tanaka)

  11. PRA studies: results, insights and applications

    International Nuclear Information System (INIS)

    Levine, S.; Stetson, F.T.

    1983-01-01

    This paper deals with Probalistic Risk Assessment (PRA) studies and their results. The PRA is a combination of logic structures and analytical techniques that can be used to estimate the likelihood and consequences of events that have not been observed because of their low frequency occurrence. At first attitudes concerning PRA reports were controversial principally because of their new techniques and complex multidisciplinary nature. However these attitudes changed following the accident at Three Mile Island in 1979. Many people after this event came to appreciate the risks associated with the operation of nuclear power plants, and since the TMI accident there has been a rapid expansion, in the use of PRA in the US and other countries. (NEA) [fr

  12. PRA quality and use

    International Nuclear Information System (INIS)

    Okrent, D.; Apostolakis, G.; Whitley, R.; Garrick, B.J.

    1982-10-01

    This report deals with several inter-related aspects of probabilistic risk assessment. Some prior opinion regarding quality assurance, methodology and questions of peer review are reviewed, followed by comments by the authors on these and related subjects. Problems arising in decision-making by different groups concerning the meaning and validity of a PRA are examined, and the role of performance criteria in helping to achieve consensus is treated. Finally, a general approach to the development of performance criteria for systems and functions by the retrospective comparison of existing PRAs is proposed and examined in a preliminary fashion

  13. Development of a methodology for conducting an integrated HRA/PRA --. Task 1, An assessment of human reliability influences during LP&S conditions PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, W.J.; Barriere, M.T.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Wreathall, J. [Wreathall (John) and Co., Dublin, OH (United States); Cooper, S.E. [Science Applications International Corp., McLean, VA (United States)

    1993-06-01

    During Low Power and Shutdown (LP&S) conditions in a nuclear power plant (i.e., when the reactor is subcritical or at less than 10--15% power), human interactions with the plant`s systems will be more frequent and more direct. Control is typically not mediated by automation, and there are fewer protective systems available. Therefore, an assessment of LP&S related risk should include a greater emphasis on human reliability than such an assessment made for power operation conditions. In order to properly account for the increase in human interaction and thus be able to perform a probabilistic risk assessment (PRA) applicable to operations during LP&S, it is important that a comprehensive human reliability assessment (HRA) methodology be developed and integrated into the LP&S PRA. The tasks comprising the comprehensive HRA methodology development are as follows: (1) identification of the human reliability related influences and associated human actions during LP&S, (2) identification of potentially important LP&S related human actions and appropriate HRA framework and quantification methods, and (3) incorporation and coordination of methodology development with other integrated PRA/HRA efforts. This paper describes the first task, i.e., the assessment of human reliability influences and any associated human actions during LP&S conditions for a pressurized water reactor (PWR).

  14. Application of probabilistic risk assessment in the operation of Koeberg nuclear power station

    International Nuclear Information System (INIS)

    Nicholls, D.R.

    1991-01-01

    Probabilistic risk assessment (PRA) calculates the probability that a set of multiple failures could occur, the frequency with which the safety circuits will be required and the consequences of the failure of the safety systems. In this way the frequency with which major accident situations can be expected to happen, can be derived. The world history of PRA is presented, together with the South African history of PRA. The theory of PRA is explained and the application of PRA studies is described. In the last twenty years, PRA has gone from being a theoretical idea to a practical tool for assisting in plant management. 2 figs., 1 ill

  15. Advanced Test Reactor probabilistic risk assessment

    International Nuclear Information System (INIS)

    Atkinson, S.A.; Eide, S.A.; Khericha, S.T.; Thatcher, T.A.

    1993-01-01

    This report discusses Level 1 probabilistic risk assessment (PRA) incorporating a full-scope external events analysis which has been completed for the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory

  16. Documentation design for probabilistic risk assessment

    International Nuclear Information System (INIS)

    Parkinson, W.J.; von Herrmann, J.L.

    1985-01-01

    This paper describes a framework for documentation design of probabilistic risk assessment (PRA) and is based on the EPRI document NP-3470 ''Documentation Design for Probabilistic Risk Assessment''. The goals for PRA documentation are stated. Four audiences are identified which PRA documentation must satisfy, and the documentation consistent with the needs of the various audiences are discussed, i.e., the Summary Report, the Executive Summary, the Main Report, and Appendices. The authors recommend the documentation specifications discussed herein as guides rather than rigid definitions

  17. Innovative probabilistic risk assessment applications: barrier impairments and fracture toughness. Panel Discussion

    International Nuclear Information System (INIS)

    Osterman, Michael; Root, Steven; Li, F.; Modarres, Mohammad; Reinhart, F. Mark; Bradley, Biff; Calhoun, David J.

    2001-01-01

    Full text of publication follows: New probabilistic risk assessment (PRA) applications promise to improve the overall safety and efficiency of nuclear plant operations. This discussion will explore the use of PRA in evaluating barrier integrity with respect to the consequences of natural phenomena such as tornadoes, floods, and harsh environments. Additionally, the session will explore proposals to improve fracture toughness techniques using PRA. (authors)

  18. PRA: a powerful engineering decision tool

    International Nuclear Information System (INIS)

    Carvalho, H.G. de.

    1988-03-01

    The probabilistic risk analysis (PRA) is studied and its historical development is briefly presented. Human factors, sofware and guides, improvement of utility management of nuclear power operations are discussed. The development of a standardized LWR design, optimized for safety, reliability and economy is studied. The impact of risk assessments in public acceptance of nuclear power is discussed. (M.A.C.) [pt

  19. How the chemical industry can benefit from PRA

    International Nuclear Information System (INIS)

    Guymer, P.; Kaiser, G.D.; Mc Kelvey, T.W.; Hannaman, G.W.

    1986-01-01

    Probabilistic Risk Assessment (PRA) is a method of quantifying the frequency of occurrence and the magnitude of the consequences of accidents in systems that contain hazardous materials such as radioactive fission products, and toxic, flammable or explosive chemicals. The frequency and the magnitude of the consequences are the basic elements of any definition or risk, which is often simply expressed as the product of frequency and magnitude, summed over all accident sequences. PRA is now a mature technique that has been used to estimate risk for a number of industrial facilities. In this paper the author gives examples of beneficial uses of PRA

  20. Uses of PRA in nuclear reactor regulation

    International Nuclear Information System (INIS)

    Congel, F.

    1987-01-01

    For the past five years, more than ten probabilistic risk assessment (PRA) studies were conducted by the owners of nuclear utilities and were submitted for the review of US Nuclear Regulatory Commission staff. These PRA studies were reviewed under various types of regulatory activities depending on the nature of plant licensing stage. The reviews of these PRAs provided very valuable uses to both the staff and the licensees on safety matters of the plant operation. The licensees developed perspectives using PRA models on the safety profiles of their plants. These PRA perspectives influenced licensees' major decisions to implement improvements to plant design and operating and emergency procedures to reduce and/or eliminate the plant's vulnerability to core damage accidents. The staff's review of these PRAs particularly emphasized the dominant accident sequences. The resulting findings led to the identification of dominant risk contributors, critical areas of plant locations, mechanisms leading to potential early containment failures, and instances of noncompliances of staff's deterministic criteria. Specific examples include single failure criterion and separation requirements to assess the need for any additional measures to further improve the safety of the plant. Some of these PRAs were reviewed under regulatory activities other than safety review such as environmental review, final design review, and licensing hearings. Most importantly, the risk profiles of generic PRAs will continue to be used in reviewing and evaluating unresolved safety issues and other generic issues. The major regulatory uses of PRAs, a summary of full scope PRA review, a summary of plant improvements as a result of PRA reviews, and the future role of PRA reviews are presented

  1. How Can You Support RIDM/CRM/RM Through the Use of PRA

    Science.gov (United States)

    DoVemto. Tpmu

    2011-01-01

    Probabilistic Risk Assessment (PRA) is one of key Risk Informed Decision Making (RIDM) tools. It is a scenario-based methodology aimed at identifying and assessing Safety and Technical Performance risks in complex technological systems.

  2. A review of NRC staff uses of probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The NRC staff uses probabilistic risk assessment (PRA) and risk management as important elements its licensing and regulatory processes. In October 1991, the NRC`s Executive Director for Operations established the PRA Working Group to address concerns identified by the Advisory Committee on Reactor Safeguards with respect to unevenness and inconsistency in the staff`s current uses of PRA. After surveying current staff uses of PRA and identifying needed improvements, the Working Group defined a set of basic principles for staff PRA use and identified three areas for improvements: guidance development, training enhancements, and PRA methods development. For each area of improvement, the Working Group took certain actions and recommended additional work. The Working Group recommended integrating its work with other recent PRA-related activities the staff completed and improving staff interactions with PRA users in the nuclear industry. The Working Group took two key actions by developing general guidance for two uses of PRA within the NRC (that is, screening or prioritizing reactor safety issues and analyzing such issues in detail) and developing guidance on basic terms and methods important to the staff`s uses of PRA.

  3. A review of NRC staff uses of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The NRC staff uses probabilistic risk assessment (PRA) and risk management as important elements its licensing and regulatory processes. In October 1991, the NRC's Executive Director for Operations established the PRA Working Group to address concerns identified by the Advisory Committee on Reactor Safeguards with respect to unevenness and inconsistency in the staff's current uses of PRA. After surveying current staff uses of PRA and identifying needed improvements, the Working Group defined a set of basic principles for staff PRA use and identified three areas for improvements: guidance development, training enhancements, and PRA methods development. For each area of improvement, the Working Group took certain actions and recommended additional work. The Working Group recommended integrating its work with other recent PRA-related activities the staff completed and improving staff interactions with PRA users in the nuclear industry. The Working Group took two key actions by developing general guidance for two uses of PRA within the NRC (that is, screening or prioritizing reactor safety issues and analyzing such issues in detail) and developing guidance on basic terms and methods important to the staff's uses of PRA

  4. Development of insights from PRAs for non-PRA people

    International Nuclear Information System (INIS)

    Reilly, H.J.; Meale, B.M.

    1992-01-01

    A probabilistic risk assessment (PRA) of the Savannah River K-Reactor was completed in 1990. The PRA estimated the frequency of core damage accidents caused by operational occurrences during power operation of the reactor. The US Department of Energy (DOE) requested Idaho National Engineering Laboratory (INEL) to prepare guidance based on the PRA for use by DOE personnel at the Savannah River Site (SRS). The document had the purpose of informing the DOE system engineers and site representatives about how the information in the PRA might be used to help guide their activities. Opportunities existed to develop a document somewhat different than those developed previously by other programs. The opportunities existed because the audience is different: the principal audience for the document consists of DOE engineers who have continuing oversight responsibility for activities performed by the operating contractor at the K-Reactor, but who may not be knowledgeable about PRA

  5. Uses of human reliability analysis probabilistic risk assessment results to resolve personnel performance issues that could affect safety

    International Nuclear Information System (INIS)

    O'Brien, J.N.; Spettell, C.M.

    1985-10-01

    This report is the first in a series which documents research aimed at improving the usefulness of Probabilistic Risk Assessment (PRA) results in addressing human risk issues. This first report describes the results of an assessment of how well currently available PRA data addresses human risk issues of current concern to NRC. Findings indicate that PRA data could be far more useful in addressing human risk issues with modification of the development process and documentation structure of PRAs. In addition, information from non-PRA sources could be integrated with PRA data to address many other issues. 12 tabs

  6. Bayesian parameter estimation in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Siu, Nathan O.; Kelly, Dana L.

    1998-01-01

    Bayesian statistical methods are widely used in probabilistic risk assessment (PRA) because of their ability to provide useful estimates of model parameters when data are sparse and because the subjective probability framework, from which these methods are derived, is a natural framework to address the decision problems motivating PRA. This paper presents a tutorial on Bayesian parameter estimation especially relevant to PRA. It summarizes the philosophy behind these methods, approaches for constructing likelihood functions and prior distributions, some simple but realistic examples, and a variety of cautions and lessons regarding practical applications. References are also provided for more in-depth coverage of various topics

  7. Use of probabilistic risk assessment in fuel cycle facilities

    International Nuclear Information System (INIS)

    Gonzalez, Felix; Gonzalez, Michelle; Wagner, Brian

    2013-01-01

    As expressed in its Policy Statement on the Use of Probabilistic Risk Assessment (PRA) Methods in Nuclear Regulatory Activities, the U.S Nuclear Regulatory Commission has been working for decades to increase the use of PRA technology in its regulatory activities. Since the policy statement was issued in 1995, PRA has become a core component of the nuclear power plant (NPP) licensing and oversight processes. In the last several years, interest has increased in PRA technologies and their possible application to other areas including, but not limited to, spent fuel handling, fuel cycle facilities, reprocessing facilities, and advanced reactors. This paper describes the application of PRA technology currently used in NPPs and its application in other areas such as fuel cycle facilities and advanced reactors. It describes major challenges that are being faced in the application of PRA into new technical areas and possible ways to resolve them. (authors)

  8. Level 2 PRA for a German BWR

    International Nuclear Information System (INIS)

    Sassen, F.; Rapp, W.; Tietsch, W.; Roess, P.

    2007-01-01

    A concept for a Level 2 Probabilistic Risk Assessment (L2 PRA) for a German Boiling Water Reactor (BWR) has been developed taking into account the role of L2 PRA within the German regulatory landscape. According to this concept, a plant specific evaluation of the severe accident phenomenology as well as analyses of the accident progression for the severe accident scenarios has been performed. Furthermore a plant specific MELCOR 1.8.6 model has been developed and special MELCOR source term calculations have been performed for the different release paths. This paper will present examples from the different areas described above. (author)

  9. Implications of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Cullingford, M.C.; Shah, S.M.; Gittus, J.H.

    1987-01-01

    Probabilistic risk assessment (PRA) is an analytical process that quantifies the likelihoods, consequences and associated uncertainties of the potential outcomes of postulated events. Starting with planned or normal operation, probabilistic risk assessment covers a wide range of potential accidents and considers the whole plant and the interactions of systems and human actions. Probabilistic risk assessment can be applied in safety decisions in design, licensing and operation of industrial facilities, particularly nuclear power plants. The proceedings include a review of PRA procedures, methods and technical issues in treating uncertainties, operating and licensing issues and future trends. Risk assessment for specific reactor types or components and specific risks (eg aircraft crashing onto a reactor) are used to illustrate the points raised. All 52 articles are indexed separately. (U.K.)

  10. Probabilistic commentary: the rise and fall, and rise again, of risk assessment

    International Nuclear Information System (INIS)

    Hendrie, J.M.

    1985-02-01

    Probabilistic risk assessment is mainly concerned with assessing the risks of nuclear power plants. Historically, the field of PRA began with a Senate request for a report on the safety of nuclear reactors in 1972. A quantitative report called WASH-1400 was eventually prepared and published in 1975, and in summary, it stated that nuclear reactors warranted only a low-grade concern in modern society. Criticism of this report and public perception of its results were highly visible subjects in the media, and the criticism led to the fact that PRA fell into disfavor. After Three Mile Island, it was recognized that PRA was a valuable tool for understanding such accidents, and PRA became a bit more popular again by the end of 1979. The usefulness of PRA was also supported by a German study in 1979. PRA played a significant role in the hearings on the Indian Point reactor. The present NRC regards PRA as an important tool in regulatory practice

  11. PRA-Code Upgrade to Handle a Generic Problem

    International Nuclear Information System (INIS)

    Wilson, J. R.

    1999-01-01

    During the probabilistic risk assessment (PRA) for the proposed Yucca Mountain nuclear waste repository, a problem came up that could not be handled by most PRA computer codes. This problem deals with dependencies between sequential events in time. Two similar scenarios that illustrate this problem are LOOP nonrecovery and sequential wearout failures with units of time. The purpose of this paper is twofold: To explain the problem generically, and to show how the PRA code at the INEEL, SAPHIRE, has been modified to solve this problem correctly

  12. Probabilistic risk assessment: A look at the role of artificial intelligence

    International Nuclear Information System (INIS)

    Wang, J.; Modarres, M.; Hunt, R.N.M.

    1988-01-01

    A review of traditional Probabilistic Risk Assessment (PRA) methods used in the nuclear power industry is presented. The shortcomings of the current PRA methods are pointed out. A method of performing a PRA is proposed and is computerized. The role of artificial intelligence in developing and performing the proposed PRA approach is discussed. The proposed PRA approach is verified by comparing the results to previously performed PRAs. The comparisons have supported the adequacy and completeness of the results of the proposed model. A discussion of how the proposed method can be used as an expert system to verify plant status following loss of plant hardware is also presented. (orig.)

  13. Chinshan living PRA model using NUPRA software package

    International Nuclear Information System (INIS)

    Cheng, S.-K.; Lin, T.-J.

    2004-01-01

    A living probabilistic risk assessment (PRA) model has been established for Chinshan Nuclear Power Station (BWR-4, MARK-I) using NUPRA software package. The core damage frequency due to internal events, seismic events and typhoons are evaluated in this model. The methodology and results considering the recent implementation of the 5th emergency diesel generator and automatic boron injection function are presented. The dominant sequences of this PRA model are discussed, and some possible applications of this living model are proposed. (author)

  14. Application of multivariate statistical technique for hydrogeochemical assessment of groundwater within the Lower Pra Basin, Ghana

    Science.gov (United States)

    Tay, C. K.; Hayford, E. K.; Hodgson, I. O. A.

    2017-06-01

    Multivariate statistical technique and hydrogeochemical approach were employed for groundwater assessment within the Lower Pra Basin. The main objective was to delineate the main processes that are responsible for the water chemistry and pollution of groundwater within the basin. Fifty-four (54) (No) boreholes were sampled in January 2012 for quality assessment. PCA using Varimax with Kaiser Normalization method of extraction for both rotated space and component matrix have been applied to the data. Results show that Spearman's correlation matrix of major ions revealed expected process-based relationships derived mainly from the geochemical processes, such as ion-exchange and silicate/aluminosilicate weathering within the aquifer. Three main principal components influence the water chemistry and pollution of groundwater within the basin. The three principal components have accounted for approximately 79% of the total variance in the hydrochemical data. Component 1 delineates the main natural processes (water-soil-rock interactions) through which groundwater within the basin acquires its chemical characteristics, Component 2 delineates the incongruent dissolution of silicate/aluminosilicates, while Component 3 delineates the prevalence of pollution principally from agricultural input as well as trace metal mobilization in groundwater within the basin. The loadings and score plots of the first two PCs show grouping pattern which indicates the strength of the mutual relation among the hydrochemical variables. In terms of proper management and development of groundwater within the basin, communities, where intense agriculture is taking place, should be monitored and protected from agricultural activities. especially where inorganic fertilizers are used by creating buffer zones. Monitoring of the water quality especially the water pH is recommended to ensure the acid neutralizing potential of groundwater within the basin thereby, curtailing further trace metal

  15. The Angra 1 fire PRA project

    International Nuclear Information System (INIS)

    Silva, Luiz E. Massiere de C.; Kassawara, Robert

    2009-01-01

    The Angra 1 Fire PRA (Probabilistic Risk Assessment) is under development by ELETRONUCLEAR jointly with EPRI (Electric Power Research Institute). The project was started January of 2007 and it is foreseen to be finished in the middle of the next year. The study is being conducted according to the newest methodology developed by EPRI and NRC/RES (U.S. Nuclear Regulatory Commission - Office of Regulatory Research) published in 2005 as Fire PRA Methodology for Nuclear Power Facilities (NUREG/CR-6850 or EPRI TR-1011989) [1]. Starting from the Internal Events Angra 1 PRA model Level 1 the project aims to be a comprehensive plant-specific fire analysis to identify the possible consequences of a fire in the plant vital areas which threaten the integrity of systems relevant to the safety, challenging the safety functions and representing a risk of accident that can lead to a core damage. The main tasks include the plant boundary and partitioning, the fire PRA component selection and the identification of the possible fire scenarios (ignition, propagation, detection, extinction and hazards) considering human failure events to establish the fire-induced risk model for quantification of the risk for nuclear core damage taking into account the plant design and its fire protection resources. This work presents a general discussion on the methodology applied to the completed steps of the project. (author)

  16. An Approach to On-line Risk Assessment in NPP

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; O'Brien, J.

    1996-01-01

    Probabilistic Risk Assessment (PRA) can provide safety status information for a plant during different configurations; additional effort is needed to do this in real time for on-line operation. This paper describes an approach to use PRA to achieve these goals. A Risk Assessment On-Line (RAOL) application was developed to monitor maintenance (on-line and planned) activities. RAOL is based on the results from a full-scope PRA, engineering/operational judgment and incorporates a user friendly program interface approach. Results from RAOL can be used by planners or operations to effectively manage the level of risk by controlling the actual plant configuration. (author)

  17. PRA (probabilistic risk analysis) in the nuclear sector. Quantifying human error and human malice

    International Nuclear Information System (INIS)

    Heyes, A.G.

    1995-01-01

    Regardless of the regulatory style chosen ('command and control' or 'functional') a vital prerequisite for coherent safety regulations in the nuclear power industry is the ability to assess accident risk. In this paper we present a critical analysis of current techniques of probabilistic risk analysis applied in the industry, with particular regard to the problems of quantifying risks arising from, or exacerbated by, human risk and/or human error. (Author)

  18. Safety analysis, risk assessment, and risk acceptance criteria

    International Nuclear Information System (INIS)

    Jamali, K.

    1997-01-01

    This paper discusses a number of topics that relate safety analysis as documented in the Department of Energy (DOE) safety analysis reports (SARs), probabilistic risk assessments (PRA) as characterized primarily in the context of the techniques that have assumed some level of formality in commercial nuclear power plant applications, and risk acceptance criteria as an outgrowth of PRA applications. DOE SARs of interest are those that are prepared for DOE facilities under DOE Order 5480.23 and the implementing guidance in DOE STD-3009-94. It must be noted that the primary area of application for DOE STD-3009 is existing DOE facilities and that certain modifications of the STD-3009 approach are necessary in SARs for new facilities. Moreover, it is the hazard analysis (HA) and accident analysis (AA) portions of these SARs that are relevant to the present discussions. Although PRAs can be qualitative in nature, PRA as used in this paper refers more generally to all quantitative risk assessments and their underlying methods. HA as used in this paper refers more generally to all qualitative risk assessments and their underlying methods that have been in use in hazardous facilities other than nuclear power plants. This discussion includes both quantitative and qualitative risk assessment methods. PRA has been used, improved, developed, and refined since the Reactor Safety Study (WASH-1400) was published in 1975 by the Nuclear Regulatory Commission (NRC). Much debate has ensued since WASH-1400 on exactly what the role of PRA should be in plant design, reactor licensing, 'ensuring' plant and process safety, and a large number of other decisions that must be made for potentially hazardous activities. Of particular interest in this area is whether the risks quantified using PRA should be compared with numerical risk acceptance criteria (RACs) to determine whether a facility is 'safe.' Use of RACs requires quantitative estimates of consequence frequency and magnitude

  19. Taking the Risk Out of Risk Assessment

    Science.gov (United States)

    2005-01-01

    The ability to understand risks and have the right strategies in place when risky events occur is essential in the workplace. More and more organizations are being confronted with concerns over how to measure their risks or what kind of risks they can take when certain events transpire that could have a negative impact. NASA is one organization that faces these challenges on a daily basis, as effective risk management is critical to the success of its missions especially the Space Shuttle missions. On July 29, 1996, former NASA Administrator Daniel Goldin charged NASA s Office of Safety and Mission Assurance with developing a probabilistic risk assessment (PRA) tool to support decisions on the funding of Space Shuttle upgrades. When issuing the directive, Goldin said, "Since I came to NASA [in 1992], we've spent billions of dollars on Shuttle upgrades without knowing how much they improve safety. I want a tool to help base upgrade decisions on risk." Work on the PRA tool began immediately. The resulting prototype, the Quantitative Risk Assessment System (QRAS) Version 1.0, was jointly developed by NASA s Marshall Space Flight Center, its Office of Safety and Mission Assurance, and researchers at the University of Maryland. QRAS software automatically expands the reliability logic models of systems to evaluate the probability of highly detrimental outcomes occurring in complex systems that are subject to potential accident scenarios. Even in its earliest forms, QRAS was used to begin PRA modeling of the Space Shuttle. In parallel, the development of QRAS continued, with the goal of making it a world-class tool, one that was especially suited to NASA s unique needs. From the beginning, an important conceptual goal in the development of QRAS was for it to help bridge the gap between the professional risk analyst and the design engineer. In the past, only the professional risk analyst could perform, modify, use, and perhaps even adequately understand PRA. NASA wanted

  20. Risk-informed design of IRIS using a level-1 probabilistic risk assessment from its conceptual design phase

    International Nuclear Information System (INIS)

    Mizuno, Yuko; Ninokata, Hisashi; Finnicum, David J.

    2005-01-01

    In this study, a probabilistic risk assessment (PRA) for the International Reactor Innovative and Secure (IRIS) has been generated to address two key areas as a part of the effort for the pre-application licensing of the IRIS design. First, the IRIS PRA is supporting the evaluation of IRIS design by providing design insights as well as a solid risk basis for the pre-licensing evaluation of the IRIS design. Second, the current PRA task is beginning the preparation of the more complete PRA analyses and documentation that will be required for Design Certification. The initial IRIS PRA is an at-power, Level-1 PRA for internal events that focuses on the evaluation of the IRIS design features to support the risk-informed design of IRIS by application of the PRA insights and the risk information to the design. To accomplish the evaluation, a reasonably complete Level-1 PRA model has been developed. The use of PRA in the early stages of the design has allowed a selection of design and performance features and an optimization of the design of several systems to reduce the potential for events that could lead to core damage via both enhanced prevention and mitigation of challenges. As a result, the total core damage frequency for internal events for the IRIS design has been calculated as 1.2x10 -8 per year

  1. Use of Probabilistic Risk Assessment in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri, L.

    2011-01-01

    This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.

  2. Insights into PRA methodologies

    International Nuclear Information System (INIS)

    Gallagher, D.; Lofgren, E.; Atefi, B.; Liner, R.; Blond, R.; Amico, P.

    1984-08-01

    Probabilistic Risk Assessments (PRAs) for six nuclear power plants were examined to gain insight into how the choice of analytical methods can affect the results of PRAs. The PRA sreflectope considered was limited to internally initiated accidents sequences through core melt. For twenty methodological topic areas, a baseline or minimal methodology was specified. The choice of methods for each topic in the six PRAs was characterized in terms of the incremental level of effort above the baseline. A higher level of effort generally reflects a higher level of detail or a higher degree of sophistication in the analytical approach to a particular topic area. The impact on results was measured in terms of how additional effort beyond the baseline level changed the relative importance and ordering of dominant accident sequences compared to what would have been observed had methods corresponding to the baseline level of effort been employed. This measure of impact is a more useful indicator of how methods affect perceptions of plant vulnerabilities than changes in core melt frequency would be. However, the change in core melt frequency was used as a secondary measure of impact for nine topics where availability of information permitted. Results are presented primarily in the form of effort-impact matrices for each of the twenty topic areas. A suggested effort-impact profile for future PRAs is presented

  3. Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments

    Science.gov (United States)

    2016-01-01

    the NOHD/NSHD or its derivatives. Only those issued with an appropriate level of protection (such as protective eyewear or clothing) would be...developed in the emerging nuclear industry as well as in the established transport, petrochemical, and aerospace sectors, which were expanding...emergence of the PRA technique as an effective means of risk assessment. The origins of PRA lie in the aerospace industry .11,12 PRA is described by the

  4. Probabilistic risk assessment in the CPI

    International Nuclear Information System (INIS)

    Guymer, P.; Kaiser, G.D.; Mc Kelvey, T.C.; Hannaman, G.W.

    1987-01-01

    Probabilistic Risk Assessment (PRA) is a method of quantifying the frequency of occurrence and magnitude of the consequences of accidents in systems that contain hazardous materials such as toxic, flammable or explosive chemicals. The frequency and magnitude of the consequences are the basic elements in the definition of risk, often simply expressed as the product of frequency and magnitude, summed over all accident sequences. PRA is a mature technique that has been used to estimate risk for a number of industrial facilities: for example, the Canvey Island Petrochemical complex; the Port of Rotterdam; the Reactor Safety Study, the first study to put the risks associated with nuclear power into perspective; and the transportation of chlorine. PRA has been developed to a greater level of sophistication in the nuclear industry than in the chemical industry. In the nuclear area, its usefulness has been demonstrated by increased plant safety, engineering insights, and cost-saving recommendations. Data and methods have been developed to increase the level of realism of the treatment of operator actions in PRA studies. It can be stated generally that the same methods can be applied with equal success in the chemical industry. However, there are pitfalls into which the unwary nuclear-oriented PRA analyst may stumble if he does not bear in mind that there are significant differences between nuclear plants and chemical plants

  5. System Analysis and Risk Assessment (SARA) system

    International Nuclear Information System (INIS)

    Krantz, E.A.; Russell, K.D.; Stewart, H.D.; Van Siclen, V.S.

    1986-01-01

    Utilization of Probabilistic Risk Assessment (PRA) related information in the day-to-day operation of plant systems has, in the past, been impracticable due to the size of the computers needed to run PRA codes. This paper discusses a microcomputer-based database system which can greatly enhance the capability of operators or regulators to incorporate PRA methodologies into their routine decision making. This system is called the System Analysis and Risk Assessment (SARA) system. SARA was developed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory to facilitate the study of frequency and consequence analyses of accident sequences from a large number of light water reactors (LWRs) in this country. This information is being amassed by several studies sponsored by the United States Nuclear Regulatory Commission (USNRC). To meet the need of portability and accessibility, and to perform the variety of calculations necessary, it was felt that a microcomputer-based system would be most suitable

  6. A perspective of PC-based probabilistic risk assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Rasmuson, D.M.; Robinson, R.C.; Russell, K.D.; Van Siclen, V.S.

    1987-01-01

    Probabilistic risk assessment (PRA) information has been under-utilized in the past due to the large effort required to input the PRA data and the large expense of the computers needed to run PRA codes. The microcomputer-based Integrated Reliability and Risk Analysis System (IRRAS) and the System Analysis and Risk Assessment (SARA) System, under development at the Idaho National Engineering Laboratory, have greatly enhanced the ability of managers to use PRA techniques in their decision-making. IRRAS is a tool that allows an analyst to create, modify, update, and reanalyze a plant PRA to keep the risk assessment current with the plant's configuration and operation. The SARA system is used to perform sensitivity studies on the results of a PRA. This type of analysis can be used to evaluate proposed changes to a plant or its operation. The success of these two software projects demonstrate that risk information can be made readily available to those that need it. This is the first step in the development of a true risk management capability

  7. Overview of seismic probabilistic risk assessment for structural analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Reed, J.W.

    1989-01-01

    Probabilistic Risk Assessment (PRA) for seismic events is currently being performed for nuclear and DOE facilities. The background on seismic PRA is presented along with a basic description of the method. The seismic PRA technique is applicable to other critical facilities besides nuclear plants. The different approaches for obtained structure fragility curves are discussed and their applications to structures and equipment, in general, are addressed. It is concluded that seismic PRA is a useful technique for conducting probability analysis for a wide range of classes of structures and equipment

  8. Review process and quality assurance in the EBR-II probabilistic risk assessment

    International Nuclear Information System (INIS)

    Roglans, J.; Hill, D.J.; Ragland, W.A.

    1992-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor II (EBR-II), a Department of Energy (DOE) Category A reactor, has recently been completed at Argonne National Laboratory (ANL). Within the scope of the ANL QA Programs, a QA Plan specifically for the EBR-II PRA was developed. The QA Plan covered all aspects of the PRA development, with emphasis on the procedures for document and software control, and the internal and external review process. The effort spent in the quality assurance tasks for the EBR-II PRA has reciprocated by providing acceptance of the work and confidence in the quality of the results

  9. A comparison of integrated safety analysis and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Damon, Dennis R.; Mattern, Kevin S.

    2013-01-01

    The U.S. Nuclear Regulatory Commission conducted a comparison of two standard tools for risk informing the regulatory process, namely, the Probabilistic Risk Assessment (PRA) and the Integrated Safety Analysis (ISA). PRA is a calculation of risk metrics, such as Large Early Release Frequency (LERF), and has been used to assess the safety of all commercial power reactors. ISA is an analysis required for fuel cycle facilities (FCFs) licensed to possess potentially critical quantities of special nuclear material. A PRA is usually more detailed and uses more refined models and data than an ISA, in order to obtain reasonable quantitative estimates of risk. PRA is considered fully quantitative, while most ISAs are typically only partially quantitative. The extension of PRA methodology to augment or supplant ISAs in FCFs has long been considered. However, fuel cycle facilities have a wide variety of possible accident consequences, rather than a few surrogates like LERF or core damage as used for reactors. It has been noted that a fuel cycle PRA could be used to better focus attention on the most risk-significant structures, systems, components, and operator actions. ISA and PRA both identify accident sequences; however, their treatment is quite different. ISA's identify accidents that lead to high or intermediate consequences, as defined in 10 Code of Federal Regulations (CFR) 70, and develop a set of Items Relied on For Safety (IROFS) to assure adherence to performance criteria. PRAs identify potential accident scenarios and estimate their frequency and consequences to obtain risk metrics. It is acceptable for ISAs to provide bounding evaluations of accident consequences and likelihoods in order to establish acceptable safety; but PRA applications usually require a reasonable quantitative estimate, and often obtain metrics of uncertainty. This paper provides the background, features, and methodology associated with the PRA and ISA. The differences between the

  10. Method and system for dynamic probabilistic risk assessment

    Science.gov (United States)

    Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)

    2013-01-01

    The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.

  11. Overview of methods for uncertainty analysis and sensitivity analysis in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.; Helton, J.C.

    1985-01-01

    Probabilistic Risk Assessment (PRA) is playing an increasingly important role in the nuclear reactor regulatory process. The assessment of uncertainties associated with PRA results is widely recognized as an important part of the analysis process. One of the major criticisms of the Reactor Safety Study was that its representation of uncertainty was inadequate. The desire for the capability to treat uncertainties with the MELCOR risk code being developed at Sandia National Laboratories is indicative of the current interest in this topic. However, as yet, uncertainty analysis and sensitivity analysis in the context of PRA is a relatively immature field. In this paper, available methods for uncertainty analysis and sensitivity analysis in a PRA are reviewed. This review first treats methods for use with individual components of a PRA and then considers how these methods could be combined in the performance of a complete PRA. In the context of this paper, the goal of uncertainty analysis is to measure the imprecision in PRA outcomes of interest, and the goal of sensitivity analysis is to identify the major contributors to this imprecision. There are a number of areas that must be considered in uncertainty analysis and sensitivity analysis for a PRA: (1) information, (2) systems analysis, (3) thermal-hydraulic phenomena/fission product behavior, (4) health and economic consequences, and (5) display of results. Each of these areas and the synthesis of them into a complete PRA are discussed

  12. A methodology for reviewing Probabilistic Risk Assessments

    International Nuclear Information System (INIS)

    Derby, S.L.

    1983-01-01

    The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase. The value of this procedure comes from having a systematic framework for the PRA review. Practical constraints limit the time and qualified people needed for an adequate review. Having the established framework from this procedure as a starting point, reviewers can focus most of their attention on the accuracy and the completeness of the calculation. Time wasted at the start of the review is reduced by first using this procedure to sort through the technical details of the PRA and to reconstruct the risk estimate from dominant contributions

  13. Risk-based configuration control: Application of PRA in improving technical specifications and operational safety

    International Nuclear Information System (INIS)

    Samanta, P.K.; Kim, I.S.; Vesely, W.E.

    1991-01-01

    The objective of risk-based configuration control is to detect and control plant configurations form a risk perspective. The configurations of particular interest involve components which are down during power operation. Controlling plant configurations from a risk-perspective can provide more direct risk control and also more operational flexibility by allowing looser control in areas unimportant to risk

  14. Probabilistic risk assessment: Number 219

    International Nuclear Information System (INIS)

    Bari, R.A.

    1985-01-01

    This report describes a methodology for analyzing the safety of nuclear power plants. A historical overview of plants in the US is provided, and past, present, and future nuclear safety and risk assessment are discussed. A primer on nuclear power plants is provided with a discussion of pressurized water reactors (PWR) and boiling water reactors (BWR) and their operation and containment. Probabilistic Risk Assessment (PRA), utilizing both event-tree and fault-tree analysis, is discussed as a tool in reactor safety, decision making, and communications. (FI)

  15. Role of PRA in new NPP projects

    International Nuclear Information System (INIS)

    Julin, A.; Sandberg, J.; Virolainen, R.

    2012-01-01

    In Finland, a plant specific, Level 1 and 2 Probabilistic Risk Analysis (PRA) is required as a prerequisite for issuing the construction license and operating license. The use of PRA in various applications and the main insights are presented. These applications include e.g. PRA support to the design of SSCs (Systems, Structures and Components), definition of pre-service and in-service inspection programs, evaluation of the safety classification of SSCs, development of procedures, training and in definition of risk informed technical specifications, periodic testing and on-line preventive maintenance programs. In addition, PRA shall be used to assess the adequacy and coverage of the phase and system commissioning programs. Also the potential risks related to commissioning tests during nuclear test phase, shall be assessed with the help of PRA. In OL3 project, risk informed approach has been applied on a large scale for the first time in the design, construction and commissioning of a new NPP unit. Pre-nuclear commissioning tests have started at OL3 site and the plant is foreseen to begin commercial operation in 2013. Decisions have been made to launch new NPP projects. Teollisuuden Voima Oyj (TVO) is planning to build a new unit (OL4) at Olkiluoto site and a new utility, Fennovoima, is planning to build one unit at one of two alternative green field sites in Northern parts of Finland. Insights from PRAs of operating NPPs have been used in the evaluation of possible new sites to ensure that the site specific concerns and environmental conditions are adequately taken into account in the design of SSCs. Although the seismic activity at the Olkiluoto site is low, a comprehensive seismic risk analysis is being conducted. Its results support the review of the deterministic seismic design. For new sites, a probabilistic seismic hazard analysis has been carried out for the determination of the design earthquake. Experiences from OL3 licensing have been utilized in the

  16. Probabilistic risk assessment and its role in plant modifications

    International Nuclear Information System (INIS)

    Diederich, A.R.; McElroy, W.F.

    1986-01-01

    Electric Utilities today have a tool available to improve management's ability to evaluate nuclear power plant modifications (MODS). Probabilistic Risk Assessment (PRA), is a tool of choice since it can be applied to a specific situation such as MOD request review, bringing the perspectives of reliability, financial risk and consequences to the public in addition to the more rigid requirements like those associated with Quality Assurance or licensing criteria. The techniques used in the PRA process revolve about the creation and manipulation of Fault Trees and Event Trees, which are used to quantify the event sequences and reliability of plant systems in a logical framework. It is through these methods that chains of sequences, or events, are understood. The degree to which plant systems are modelled in the PRA can vary depending on resources and purpose. Philadelphia Elecrtric Company's PRA modelled ten (10) major systems but this number may increase during the application and updating process

  17. Human reliability assessment and probabilistic risk assessment

    International Nuclear Information System (INIS)

    Embrey, D.E.; Lucas, D.A.

    1989-01-01

    Human reliability assessment (HRA) is used within Probabilistic Risk Assessment (PRA) to identify the human errors (both omission and commission) which have a significant effect on the overall safety of the system and to quantify the probability of their occurrence. There exist a variey of HRA techniques and the selection of an appropriate one is often difficult. This paper reviews a number of available HRA techniques and discusses their strengths and weaknesses. The techniques reviewed include: decompositional methods, time-reliability curves and systematic expert judgement techniques. (orig.)

  18. Human factors assessment in PRA using Task Analysis Linked Evaluation Technique (TALENT)

    International Nuclear Information System (INIS)

    Wells, J.E.; Banks, W.W.

    1991-01-01

    Thirty years ago the US military and US aviation industry, and more recently, in response to the US Three Mile Island and USSR Chernobyl accidents, the US commercial nuclear power industry, acknowledged that human error, as an immediate precursor, and as a latent or indirect influence in the form of training, maintainability, inservice test, and surveillance programs, is a primary contributor to unreality and risk in complex high-reliability systems. A 1985 Nuclear Regulatory Commission (NRC) study of Licensee Event Reports (LERs) suggests that upwards of 65% of commercial nuclear system failures involve human error. Despite the magnitude and nature of human error cited in that study, there has been limited attention to personnel-centered issues, especially person-to-person issues involving group processes, management and organizational environment. The paper discusses NRC integration and applications research with respect to the Task Analysis Linked Evaluation Technique (TALENT) in risk assessment applications

  19. PRA -- Now that operators have it, what do they do with it?

    International Nuclear Information System (INIS)

    Rasmussen, M.A.; Kolo, R.J.

    1996-01-01

    Many utilities have had Probabilistic Risk Assessment (PRA) projects underway for several years in order to satisfy the NRC Generic Letter 88-20 requirement for an Individual Plant Examination, or IPE. Typically the studies have reached the conclusion that there are significant differences in the contribution of different plant components to preventing core damage should a major plant transient occur. How nuclear plant operators can use this knowledge to DECREASE the overall risk of performing the routine tasks of testing and maintenance is not an easy task. 10CFR50.65; ''The Maintenance Rule,'' requires that any plant maintenance performed with the unit on line be evaluated for risk. Byron Station will satisfy the 10CFR50.65 requirement by using PRA methodology to evaluate testing and maintenance activities performed with the unit at power. The challenge is to effectively use the results of PRA studies to aid in plant operations without having to make on shift plant operations personnel experts in PRA. At Byron, PRA is used to help build the weekly work schedules. Operations personnel tasked with reviewing the work schedule are the departmental experts on the use of the PRA results. The on shift SRO's role in implementing the program is to accurately execute and monitor the work week schedule as written, and to react to unforeseen equipment failures with an appropriate level of response. The response to such emergent work items is also predefined. Handling emergent work in a prescribed manner minimizes the overall risk to the unit and also eliminates the need to have PRA expertise available to make emergent work risk evaluations. Thus the on shift operators' required knowledge of PRA methods and intricacies is minimized. PRA is just another of the many tools used by the shift operator to run the plant in a safe, conservative manner

  20. PRA and the implementation of quantitative safety goals

    International Nuclear Information System (INIS)

    Okrent, D.

    1983-01-01

    With the adoption by the U.S. Nuclear Regulatory Commission (NRC) in January, 1983, of a Policy Statement on Safety Goals for the Operation of Nuclear Power Plants, probabilitstic risk assessment (PRA) has taken on increased importance in nuclear reactor safety. Although the Reactor Safety Study, WASH-1400, was a major pioneering effort that revolutionized thinking about reactor safety, PRA was used only on occasion by the NRC regulatory staff prior to the accident at Three Mile Island. Since then, PRA has been used more and more as an important factor in decision making, usually for specific issues. The nuclear industry has also employed PRA, sometimes to make its case on specific issues, sometimes to present a position on overall risk. The advent of the Zion and Indian Point PRAs, with their treatment of risks from fire, wind, and earthquakes, and their examination of the course of core melt accidents, has added a new dimension to the overall picture. Although the NRC has stated that during the next two year evolution period, its quantitative design objectives and PRA are not to enter directly into the licensing process, many important issues will be influenced significantly by the results of risk and reliability studies. In fact, PRA may be coming into a position of great importance before the methodology, data, and process are sufficiently mature for the task. Large gaps still exist in our understanding of phenomena and in input information; and much of the final result depends on subjective input; large differences of opinion can and should be expected to persist. Accepted standards for quality assurance, and adequacy and depth of independent, peer review remain to be formulated and achieved. This paper will summarize the recently adopted NRC safety policy and the two-year evaluation plan, and will provide, by example, some words of caution concerning a few of the difficulties which may arise. (orig.)

  1. Applications of the EBR-II Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Roglans, J.: Ragland, W.A.; Hill, D.J.

    1993-01-01

    A Probabilistic Risk Assessment (PRA) of the Experimental Breeder Reactor 11 (EBR-11), a Department of Energy (DOE) Category A research reactor, has recently been completed at Argonne National Laboratory (ANL), and has been performed with close collaboration between PRA analysts and engineering and operations staff. A product of this Involvement of plant personnel has been a excellent acceptance of the PRA as a tool, which has already resulted In a variety of applications of the EBR-11 PRA. The EBR-11 has been used in support of plant hardware and procedure modifications and In new system design work. A new application in support of the refueling safety analysis will be completed in the near future

  2. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  3. A methodology for reviewing probabilistic risk assessments

    International Nuclear Information System (INIS)

    Derby, S.L.

    1983-01-01

    The starting point for peer review of a Probabilistic Risk Assessment (PRA) is a clear understanding of how the risk estimate was prepared and of what contributions dominate the calculation. The problem facing the reviewers is how to cut through the complex details of a PRA to gain this understanding. This paper presents a structured, analytical procedure that solves this problem. The effectiveness of this solution is demonstrated by an application on the Zion Probabilistic Safety Study. The procedure found the three dominant initiating events and provided a simplified reconstruction of the calculation of the risk estimate. Significant assessments of uncertainty were also identified. If peer review disputes the accuracy of these judgments, then the revised risk estimate could significantly increase

  4. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  5. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  6. Bruce NGS B risk assessment (BBRA) peer review process

    International Nuclear Information System (INIS)

    Kaasalainen, S.; Crocker, W.P.; Webb, W.A.

    2001-01-01

    Risk-informed decision making is considered an effective approach to managing the risk of nuclear power plant operation in a competitive market. Hence, increased reliance on the station probabilistic risk assessments (PRAs) to provide risk perspective inputs is inevitable. With increased reliance on the PRAs it is imperative that PRAs have the characteristics necessary to provide the required information. Recognizing the increased requirements on nuclear power plant PRAs the nuclear industry in the United States has expended significant effort over the past few years defining the required characteristics of a PRA for various applications. More recently several owners groups have drafted guidelines for PRA certification and several U.S. utilities have had their PRAs certified. During the year 2000 Ontario Power Generation, Nuclear (OPG,N) subjected the PRA of one of its stations to the U.S. style certification process. The PRA selected for this process was the Bruce B Risk Assessment (BBRA). BBRA was chosen for this process since it is the first OPG, N PRA to be used for risk-informed applications. However, the strengths of the BBRA identified from the certification process and the lessons learned are also largely applicable to the other OPG, N plant PRAs due to the use of similar methods and tools

  7. Human Reliability Analysis in Support of Risk Assessment for Positive Train Control

    Science.gov (United States)

    2003-06-01

    This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...

  8. Issues and insights of PRA methodology in nuclear and space applications

    International Nuclear Information System (INIS)

    Hsu, F.

    2005-01-01

    This paper presents some important issues and technical insights on the scope, conceptual framework, and essential elements of nuclear power plant Probabilistic Risk Assessments (PRAs) and that of the PRAs in general applications of the aerospace industry, such as the Space Shuttle PRA being conducted by NASA. Discussions are focused on various lessons learned in nuclear power plant PRA applications and their potential applicability to the PRAs in the aerospace and launch vehicle systems. Based on insights gained from PRA projects for nuclear power plants and from the current Space Shuttle PRA effort, the paper explores the commonalities and the differences between the conduct of the different PRAs and the key issues and risk insights derived from extensive modeling practices in both industries of nuclear and space. (author)

  9. Risk Assessment

    Science.gov (United States)

    How the EPA conducts risk assessment to protect human health and the environment. Several assessments are included with the guidelines, models, databases, state-based RSL Tables, local contacts and framework documents used to perform these assessments.

  10. Review insights on the probabilistic risk assessment for the Limerick Generating Station

    International Nuclear Information System (INIS)

    1984-08-01

    In recognition of the high population density around the Limerick Generating Station site and the proposed power level, the Philadelphia Electric Company, in response to NRC staff requests, conducted and submitted between March 1981 and November 1983 a probabilistic risk assessment (PRA) on internal event contributors and a severe accident risk assessment on external event contributors to assess risks posed by operation of the plant. The applicant has developed perspectives using PRA models on the safety profile of the Limerick plant and has altered the plant design to reduce accident vulnerabilities identified in these PRAs. The staff's review of the Limerick PRA has particularly emphasized the dominant accident sequences and the resulting insights into demonstration of compliance with regulatory requirments, unique design features and major plant vulnerabilities to assess the need for any additional measures to further improve the safety of the LGS. The staff's review insights and PRA safety review conclusions are presented in this report

  11. Observations on PRA and its applications

    International Nuclear Information System (INIS)

    Yeh, Y.-C.; Shieh, S.-L.

    2004-01-01

    An overview on the experience of PRA and its prospective application in Taiwan's three nuclear power plants is presented. Through the PRA, plant design improvements are performed and several engineering findings are illuminated. The sensitivity study including the internal, seismic, and typhoon events are conducted to justify items that can significantly reduce core meltdown risk. Its resulted plant betterment plans are thus highlighted accordingly. For PRA application, a risk-based inspection program for allocating inspection human resources has been resulted following the importance ranking of each component. The developing risk-based regulation to rationalize technical specification and maintenance program will also be entailed. To enhance the accuracy of the PRA model and its reproducibility, several issues are considered to have high priority for improvement such as external event data and analyses, uncertainty, common mode failure, human reliability, and the relative component importance. Highlight of their significance along with some typical sensitivity analyses are discussed for further investigation. (author)

  12. Failure rate data for fusion safety and risk assessment

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1993-01-01

    The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components

  13. Risk assessment handbook

    International Nuclear Information System (INIS)

    Farmer, F.G.; Jones, J.L.; Hunt, R.N.; Roush, M.L.; Wierman, T.E.

    1990-09-01

    The Probabilistic Risk Assessment Unit at EG ampersand G Idaho has developed this handbook to provide guidance to a facility manager exploring the potential benefit to be gained by performance of a risk assessment properly scoped to meet local needs. This document is designed to help the manager control the resources expended commensurate with the risks being managed and to assure that the products can be used programmatically to support future needs in order to derive maximum beneflt from the resources expended. We present a logical and functional mapping scheme between several discrete phases of project definition to ensure that a potential customer, working with an analyst, is able to define the areas of interest and that appropriate methods are employed in the analysis. In addition the handbook is written to provide a high-level perspective for the analyst. Previously, the needed information was either scattered or existed only in the minds of experienced analysts. By compiling this information and exploring the breadth of knowledge which exists within the members of the PRA Unit, the functional relationships between the customers' needs and the product have been established

  14. IRIS PRA preliminary results and future direction

    International Nuclear Information System (INIS)

    Finnicum, D.J.; Kling, C.L.; Carelli, M.D.

    2004-01-01

    Westinghouse is currently conducting the pre-application licensing of the International Reactor Innovative and Secure (IRIS) on behalf of the IRIS Consortium. One of the key aspects of the IRIS design is the concept of safety-by-design. The PRA (Probabilistic Risk Analysis) is being used as an integral part of the design process. As part of this effort, a PRA of the initial design was generated to address 2 key areas. First, the IRIS PRA supported the evaluation of IRIS design issues by providing a solid risk basis for design and analyses required for the pre-licensing evaluation of the IRIS design. The PRA provides the tool for quantifying the benefit of the safety-by-design approach. Second, the current PRA task is beginning the preparation of the more complete PRA analyses and documentation eventually required for Design Certification. One of the key risk-related goals for IRIS is to reduce the EPZ (Emergency Protection Zone) to within the exclusion area by demonstrating that the off-site doses are consistent with the US Protective Action Guidelines (PAGs) for initiation of emergency response so that the required protective actions would be limited to the exclusion area. The results of the preliminary PRA indicated a core damage frequency of 1.2 E-08 for internal initiators. This is a very good result but much work is needed to meet the ambitious goal of no emergency response. The next phase of the PRA analyses will involve a two-fold expansion of the PRA. First, as the design and analyses approach a greater level of detail, the assumptions used for the initial PRA will be reviewed and the models will be revised as needed to reflect the improved knowledge of the system design and performance. Furthermore, as the full plant design advances, the PRA will be expanded to incorporate risk associated with external challenges such as seismic and fire, and to address low power and shutdowns modes of operation. As with the initial work, the PRA will serve as a tool to

  15. Use of PRA in the nuclear regulatory field in South Africa

    International Nuclear Information System (INIS)

    Hill, T.F.

    1994-01-01

    The nuclear regulatory authority in South Africa (since 1988 the Council for Nuclear Safety (CNS)), established in 1973 nuclear safety criteria against which to assess the level of safety of any facility using radioactive material. It is a regulatory requirement in South Africa to develop and maintain a living PRA for each facility and thereby to provide the necessary information to demonstrate compliance against these criteria. All safety submissions to the CNS must include at least a risk statement based on an accepted PRA study. The function of the CNS is to regulate all activities in South Africa involving the use of radioactive material and posing a significant risk to the public or plant personnel. This includes most aspects of the nuclear fuel cycle and the Koeberg NPS (two 2775 MW(th) PWRs). A PRA study including source terms for the two Koeberg units was presented by the contractor in 1979. This included the risk due to power and shutdown states and non reactor related accidents involving spent fuel storage, fuel handling and waste treatment related activities. At least 20 PRA studies have been performed for other nuclear facilities in the country. The CNS maintains an in-house PRA capability to perform independent assessments of licensee submission, to participate in developments of PRA methodology in the regulatory field, to perform pro-active safety work and to assist in regulatory decision making. Present ongoing work includes the development of a risk monitor, a risk management system, improvement in PRA codes, models, data collection and analysis, off-site risk assessment methodology and associated regulatory policy. (author). 1 fig

  16. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  17. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  18. Spatial interactions database development for effective probabilistic risk assessment

    International Nuclear Information System (INIS)

    Liming, J. K.; Dunn, R. F.

    2008-01-01

    In preparation for a subsequent probabilistic risk assessment (PRA) fire risk analysis update, the STP Nuclear Operating Company (STPNOC) is updating its spatial interactions database (SID). This work is being performed to support updating the spatial interactions analysis (SIA) initially performed for the original South Texas Project Electric Generating Station (STPEGS) probabilistic safely assessment (PSA) and updated in the STPEGS Level 2 PSA and IPE Report. S/A is a large-scope screening analysis performed for nuclear power plant PRA that serves as a prerequisite basis for more detailed location-dependent, hazard-spec analyses in the PRA, such as fire risk analysis, flooding risk analysis, etc. SIA is required to support the 'completeness' argument for the PRA scope. The objectives of the current SID development effort are to update the spatial interactions analysis data, to the greatest degree practical, to be consistent with the following: the as-built plant as of December 31, 2007 the in-effect STPNOC STPEGS Units 1 and 2 PRA the current technology and intent of NUREG/CR-6850 guidance for lire risk analysis database support the requirements for PRA SIA, including fire and flooding risk analysis, established by NRC Regulatory Guide 1.200 and the ASME PRA Standard (ASME RA-S-2002 updated through ASME RA-Sc-2007,) This paper presents the approach and methodology for state-of-the-art SID development and applications, including an overview of the SIA process for nuclear power plant PRA. The paper shows how current relational database technology and existing, conventional station information sources can be employed to collect, process, and analyze spatial interactions data for the plant in an effective and efficient manner to meet the often challenging requirements of industry guidelines and standards such as NUREG/CR-6850, NRC Regulatory Guide 1.200, and ASME RA-S-2002 (updated through ASME RA-Sc 2007). This paper includes tables and figures illustrating how SIA

  19. Reliability and Probabilistic Risk Assessment - How They Play Together

    Science.gov (United States)

    Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang

    2015-01-01

    PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will

  20. Certification plan for safety and PRA codes

    International Nuclear Information System (INIS)

    Toffer, H.; Crowe, R.D.; Ades, M.J.

    1990-05-01

    A certification plan for computer codes used in Safety Analyses and Probabilistic Risk Assessment (PRA) for the operation of the Savannah River Site (SRS) reactors has been prepared. An action matrix, checklists, and a time schedule have been included in the plan. These items identify what is required to achieve certification of the codes. A list of Safety Analysis and Probabilistic Risk Assessment (SA ampersand PRA) computer codes covered by the certification plan has been assembled. A description of each of the codes was provided in Reference 4. The action matrix for the configuration control plan identifies code specific requirements that need to be met to achieve the certification plan's objectives. The checklist covers the specific procedures that are required to support the configuration control effort and supplement the software life cycle procedures based on QAP 20-1 (Reference 7). A qualification checklist for users establishes the minimum prerequisites and training for achieving levels of proficiency in using configuration controlled codes for critical parameter calculations

  1. PRA: an evaluation of state-of-the-art

    International Nuclear Information System (INIS)

    Joksimovich, V.

    1985-01-01

    Some elements of the probabilistic risk assessment (PRA) methodology can be characterized as mature and are even ready for some kind of a standardization effort. Other elements are still, however, in a rapid state of evolution. Questions are continuously being asked regarding maturity of PRA techniques vis-a-vis a regulatory decision-making process. Establishing a framework for evaluating state-of-the-art in any technological field is a challenging task. An implementation of a selected framework to a satisfactory conclusion is a monumental task. Of course, these types of issues can be discussed meaningfully only if they are tied to a particular application. The author's participation in the NSF-sponsored risk assessment project is discussed in the paper. The evaluation employed here makes use of the following five evaluation criteria: logical soundness, completeness, accuracy, acceptability, and practicality

  2. Risk assessment

    International Nuclear Information System (INIS)

    Kinchin, G.H.

    1983-01-01

    After defining risk and introducing the concept of individual and societal risk, the author considers each of these, restricting considerations to risk of death. Some probabilities of death arising from various causes are quoted, and attention drawn to the care necessary in making comparisons between sets of data and to the distinction between voluntary and involuntary categories and between early and delayed deaths. The presentation of information on societal risk is discussed and examples given. The history of quantified risk assessment is outlined, particularly related to the nuclear industry, the process of assessing risk discussed: identification of hazard causes, the development of accident chains and the use of event trees, the evaluation of probability through the collection of data and their use with fault trees, and the assessment of consequences of hazards in terms of fatalities. Reference is made to the human element and common-made failures, and to studies supporting the development of reliability assessment techniques. Acceptance criteria are discussed for individual and societal risk in the nuclear field, and it is shown that proposed criteria lead to risks conservative by comparison with risks from day-to-day accidents and other potentially hazardous industries. (U.K.)

  3. Application of probabilistic risk assessment methodology to fusion

    International Nuclear Information System (INIS)

    Piet, S.J.

    1985-07-01

    Probabilistic Risk Assessment (PRA) tools are applied to general fusion issues in a systematic way, generally qualitatively. The potential value of PRA to general fusion safety and economic issues is discussed. Several important design insights result: possible fault interactions must be minimized (decouple fault conditions), inherently safe designs must include provision for passively handling loss of site power and loss of coolant conditions, the reliability of the vacuum boundary appears vital to maximizing facility availabilty and minimizing safety risk, and economic analyses appear to be incomplete without consideration of potential availability loss from forced outrages. A modification to PRA formalism is introduced, called the fault interaction matrix. The fault interaction matrix contains information concerning what initial fault condition could lead to other fault conditions and with what frequency. Thus, the fault interaction matrix represents a way to present and measure the degree to which a designer has decoupled possible fault conditions in his design

  4. Seismic PRA of a BWR plant

    International Nuclear Information System (INIS)

    Nishio, Masahide; Fujimoto, Haruo

    2014-01-01

    Since the occurrence of nuclear power plant accidents in the Fukushima Daichi nuclear power station, the regulatory framework on severe accident (SA) has been discussed in Japan. The basic concept is to typify and identify the accident sequences leading to core/primary containment vessel (PCV) damage and to implement SA measures covering internal and external events extensively. As Japan is an earthquake-prone country and earthquakes and tsunami are important natural external events for nuclear safety of nuclear power plants, JNES performed the seismic probabilistic risk assessment (PRA) on a typical nuclear power plant and evaluated the dominant accident sequences leading to core/PCV damage to discuss dominant scenarios of severe accident (SA). The analytical models and the results of level-1 seismic PRA on a 1,100 MWe BWR-5 plant are shown here. Seismic PRA was performed for a typical BWR5 plant. Initiating events with large contribution to core damage frequency are the loss of all AC powers (station blackout) and the large LOCA. The top of dominant accident sequences is the simultaneous occurrence of station blackout and large LOCA. Important components to core damage frequency are electric power supply equipment. It needs to keep in mind that the results are influenced on site geologic characteristic to a greater or lesser. In the process of analysis, issues such as conservative assumptions related to damages of building or structure and success criteria for excessive LOCA are left to be resolved. These issues will be further studied including thermal hydric analysis in the future. (authors)

  5. Development of a methodology for post closure radiological risk analysis of underground waste repositories. Illustrative assessment of the Harwell site

    International Nuclear Information System (INIS)

    Gralewski, Z.A.; Kane, P.; Nicholls, D.B.

    1987-06-01

    A probabilistic risk analysis (pra) is demonstrated for a number of ground water mediated release scenarios at the Harwell Site for a hypothetical repository at a depth of about 150 metres. This is the second stage of development of an overall risk assessment methodology. A procedure for carrying out multi-scenario assessment using available probabilistic risk assessment (pra) models is presented and a general methodology for combining risk contributions is outlined. Appropriate levels of model complexity in pra are discussed. Modelling requirements for the treatment of multiple simultaneous pathways and of site evolution are outlined. Further developments of pra systems are required to increase the realism of both the models and their mode of application, and hence to improve estimates of risk. (author)

  6. Fire PRA requantification studies. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.

    1993-03-01

    This report describes the requantification of two existing fire probabilistic risk assessments (PRAs) using a fire PRA method and data that are being developed by the Electric Power Research Institute (EPRI). The two existing studies are the Seabrook Station Probabilistic Safety Assessment that was made in 1983 and the 1989 NUREG-1150 analysis of the Peach Bottom Plant. Except for the fire methods and data, the original assumptions were used. The results from the requantification show that there were excessive conservatisms in the original studies. The principal reason for a hundredfold reduction in the Peach Bottom core- damage frequency is the determination that no electrical cabinet fire in a switchgear room would damage both offsite power feeds. Past studies often overestimated the heat release from electrical cabinet fires. EPRI's electrical cabinet heat release rates are based on tests that were conducted for Sandia's fire research program. The rates are supported by the experience in the EPRI Fire Events Database for U.S. nuclear plants. Test data and fire event experience also removed excessive conservatisms in the Peach Bottom control and cable spreading rooms, and the Seabrook primary component cooling pump, turbine building relay and cable spreading rooms. The EPRI fire PRA method and data will show that there are excessive conservatisms in studies that were made for many plants and can benefit them accordingly

  7. Engineering aspects of probabilistic risk assessment

    International Nuclear Information System (INIS)

    vonHerrmann, J.L.; Wood, P.J.

    1984-01-01

    Over the last decade, the use of probabilistic risk assessment (PRA) in the nuclear industry has expanded significantly. In these analyses the probabilities of experiencing certain undesired events (for example, a plant accident which results in damage to the nuclear fuel) are estimated and the consequences of these events are evaluated in terms of some common measure. These probabilities and consequences are then combined to form a representation of the risk associated with the plant studied. In the relatively short history of probabilistic risk assessment of nuclear power plants, the primary motivation for these studies has been the quantitative assessment of public risk associated with a single plant or group of plants. Accordingly, the primary product of most PRAs performed to date has been a 'risk curve' in which the probability (or expected frequency) of exceeding a certain consequence level is plotted against that consequence. The most common goal of these assessments has been to demonstrate the 'acceptability' of the calculated risk by comparison of the resultant risk curve to risk curves associated with other plants or with other societal risks. Presented here are brief descriptions of some alternate applications of PRAs, a discussion of how these other applications compare or contrast with the currently popular uses of PRA, and a discussion of the relative benefits of each

  8. Individual plant examination and future PRA applications

    International Nuclear Information System (INIS)

    Monty, B.S.; Sursock, J.P.; Thierry, R.J.

    1992-01-01

    PRA is being used in many areas of plant operation as has been demonstrated in previous studies. With the U.S. NRC's emphasis on the use of risk to identify plant vulnerabilities and the development of plant specific PRA models for all plants, it is expected that the use of PRA will be expanded. Key areas where this is expected to occur include the development of risk-based Technical Specifications, risk management, and risk-centered maintenance programs. This paper focuses on the Individual Plant Examination requirement and the possible uses of risk-based methods in controlling plant operation to enhance plant safety and availability, and how the IPE requirement will potentially further this area of development. (orig./DG)

  9. Risk assessment under deep uncertainty: A methodological comparison

    International Nuclear Information System (INIS)

    Shortridge, Julie; Aven, Terje; Guikema, Seth

    2017-01-01

    Probabilistic Risk Assessment (PRA) has proven to be an invaluable tool for evaluating risks in complex engineered systems. However, there is increasing concern that PRA may not be adequate in situations with little underlying knowledge to support probabilistic representation of uncertainties. As analysts and policy makers turn their attention to deeply uncertain hazards such as climate change, a number of alternatives to traditional PRA have been proposed. This paper systematically compares three diverse approaches for risk analysis under deep uncertainty (qualitative uncertainty factors, probability bounds, and robust decision making) in terms of their representation of uncertain quantities, analytical output, and implications for risk management. A simple example problem is used to highlight differences in the way that each method relates to the traditional risk assessment process and fundamental issues associated with risk assessment and description. We find that the implications for decision making are not necessarily consistent between approaches, and that differences in the representation of uncertain quantities and analytical output suggest contexts in which each method may be most appropriate. Finally, each methodology demonstrates how risk assessment can inform decision making in deeply uncertain contexts, informing more effective responses to risk problems characterized by deep uncertainty. - Highlights: • We compare three diverse approaches to risk assessment under deep uncertainty. • A simple example problem highlights differences in analytical process and results. • Results demonstrate how methodological choices can impact risk assessment results.

  10. Advanced Test Reactor outage risk assessment

    International Nuclear Information System (INIS)

    Thatcher, T.A.; Atkinson, S.A.

    1997-01-01

    Beginning in 1997, risk assessment was performed for each Advanced Test Reactor (ATR) outage aiding the coordination of plant configuration and work activities (maintenance, construction projects, etc.) to minimize the risk of reactor fuel damage and to improve defense-in-depth. The risk assessment activities move beyond simply meeting Technical Safety Requirements to increase the awareness of risk sensitive configurations, to focus increased attention on the higher risk activities, and to seek cost-effective design or operational changes that reduce risk. A detailed probabilistic risk assessment (PRA) had been performed to assess the risk of fuel damage during shutdown operations including heavy load handling. This resulted in several design changes to improve safety; however, evaluation of individual outages had not been performed previously and many risk insights were not being utilized in outage planning. The shutdown PRA provided the necessary framework for assessing relative and absolute risk levels and assessing defense-in-depth. Guidelines were written identifying combinations of equipment outages to avoid. Screening criteria were developed for the selection of work activities to receive review. Tabulation of inherent and work-related initiating events and their relative risk level versus plant mode has aided identification of the risk level the scheduled work involves. Preoutage reviews are conducted and post-outage risk assessment is documented to summarize the positive and negative aspects of the outage with regard to risk. The risk for the outage is compared to the risk level that would result from optimal scheduling of the work to be performed and to baseline or average past performance

  11. Risk management on nuclear power plant. Application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Kojima, Shigeo

    2003-01-01

    In U.S.A., nuclear safety regulation is moving to risk-informed regulation (RIR), so necessity of a standard to provide contents of probabilistic risk assessment (PRA) constructing its roots has been discussed for a long time. In 1998, the Committee on Nuclear Risk Management (CNRM) of the American Society of Mechanical Engineers (ASME) began to investigate the standard, of which last edition was published as the Standard for Probabilistic Risk Management for Nuclear Power Plant Applications: RA-S-2002 (PRMA) on April, 2002. As in the Committee, the Nuclear Regulatory Commission (NRC), electric power companies, national institutes, PRA specialists, and so on took parts to carry out many discussions with full energies of participants on risk management in U.S.A., the standard was finished after about four years' efforts. In U.S.A., risk management having already used PRA is successfully practiced, U.S.A. is at a stage with more advancing steps of the risk management than Japan is. Here was described on the standard of PRA and a concrete method of the risk management carried out at nuclear power stations. (G.K.)

  12. Practical Application of PRA as an Integrated Design Tool for Space Systems

    Science.gov (United States)

    Kalia, Prince; Shi, Ying; Pair, Robin; Quaney, Virginia; Uhlenbrock, John

    2013-01-01

    This paper presents the application of the first comprehensive Probabilistic Risk Assessment (PRA) during the design phase of a joint NASA/NOAA weather satellite program, Geostationary Operational Environmental Satellite Series R (GOES-R). GOES-R is the next generation weather satellite primarily to help understand the weather and help save human lives. PRA has been used at NASA for Human Space Flight for many years. PRA was initially adopted and implemented in the operational phase of manned space flight programs and more recently for the next generation human space systems. Since its first use at NASA, PRA has become recognized throughout the Agency as a method of assessing complex mission risks as part of an overall approach to assuring safety and mission success throughout project lifecycles. PRA is now included as a requirement during the design phase of both NASA next generation manned space vehicles as well as for high priority robotic missions. The influence of PRA on GOES-R design and operation concepts are discussed in detail. The GOES-R PRA is unique at NASA for its early implementation. It also represents a pioneering effort to integrate risks from both Spacecraft (SC) and Ground Segment (GS) to fully assess the probability of achieving mission objectives. PRA analysts were actively involved in system engineering and design engineering to ensure that a comprehensive set of technical risks were correctly identified and properly understood from a design and operations perspective. The analysis included an assessment of SC hardware and software, SC fault management system, GS hardware and software, common cause failures, human error, natural hazards, solar weather and infrastructure (such as network and telecommunications failures, fire). PRA findings directly resulted in design changes to reduce SC risk from micro-meteoroids. PRA results also led to design changes in several SC subsystems, e.g. propulsion, guidance, navigation and control (GNC

  13. Risk Assessment

    OpenAIRE

    Hrdová, Edita

    2012-01-01

    This diploma thesis is focused on companies risk evaluation before endorsement of Loan deriving from business relationships. The aim of this thesis is not only to describe individual steps of risk assessment, but also perfom analysis of particular companies based on available data, i.e. Balance sheet, Profit and Loss statement and external rating and after that propose solution for each company. My analysis will be based on theoretical knowledge, further on experience related to my job role a...

  14. Risk assessment

    DEFF Research Database (Denmark)

    Pedersen, Liselotte; Rasmussen, Kirsten; Elsass, Peter

    2010-01-01

    International research suggests that using formalized risk assessment methods may improve the predictive validity of professionals' predictions of risk of future violence. This study presents data on forensic psychiatric patients discharged from a forensic unit in Denmark in year 2001-2002 (n=107...... and the individual dynamic items strengthen the use of this scheme in clinical practice. (PsycINFO Database Record (c) 2010 APA, all rights reserved) (journal abstract)...

  15. Validation of seismic probabilistic risk assessments of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.

    1994-01-01

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves

  16. Application of database management software to probabilistic risk assessment calculations

    International Nuclear Information System (INIS)

    Wyss, G.D.

    1993-01-01

    Probabilistic risk assessment (PRA) calculations require the management and processing of large amounts of information. This data normally falls into two general categories. For example, a commercial nuclear power plant PRA study makes use of plant blueprints and system schematics, formal plant safety analysis reports, incident reports, letters, memos, handwritten notes from plant visits, and even the analyst's ''engineering judgment''. This information must be documented and cross-referenced in order to properly execute and substantiate the models used in a PRA study. The first category is composed of raw data that is accumulated from equipment testing and operational experiences. These data describe the equipment, its service or testing conditions, its failure mode, and its performance history. The second category is composed of statistical distributions. These distributions can represent probabilities, frequencies, or values of important parameters that are not time-related. Probability and frequency distributions are often obtained by fitting raw data to an appropriate statistical distribution. Database management software is used to store both types of data so that it can be readily queried, manipulated, and archived. This paper provides an overview of the information models used for storing PRA data and illustrates the implementation of these models using examples from current PRA software packages

  17. Nuclear power plant risk assembly and decomposition for risk management

    International Nuclear Information System (INIS)

    Iden, D.C.

    1985-01-01

    The state-of-the-art method for analyzing the risk from nuclear power plants is probabilistic risk assessment (PRA). The intermediate results of a PRA are first assembled to quantify the risk from operating a nuclear power plant in the form of (1) core damage (or core melt) frequency, (2) plant damage state frequencies, (3) release category frequencies, and (4) the frequency of exceeding specific levels of offsite consequences. Once the overall PRA results have been quantified, the next step is to decompose those results into the individual contributors to each of the four forms of risk in some rank order. The way in which the PRA model is set up to assemble and decompose the plant risk determines the ease and usefulness of the PRA model as a risk management tool for evaluating perturbations to the PRA model. These perturbations can take the form of technical specification changes, hardware modifications, procedural changes, etc. The matrix formalism developed by Dr. Stan Kaplan for risk assembly and decomposition represents a significant breakthrough in making the PRA model an effective risk management tool. The key to understanding the matrix formalism and making it a useful tool for managing nuclear power plant risk is the structure of the PRA model. PRA risk model structure and decomposition of the risk results are discussed with the Seabrook PRA as an example

  18. Uncertainty analysis in the applications of nuclear probabilistic risk assessment

    International Nuclear Information System (INIS)

    Le Duy, T.D.

    2011-01-01

    The aim of this thesis is to propose an approach to model parameter and model uncertainties affecting the results of risk indicators used in the applications of nuclear Probabilistic Risk assessment (PRA). After studying the limitations of the traditional probabilistic approach to represent uncertainty in PRA model, a new approach based on the Dempster-Shafer theory has been proposed. The uncertainty analysis process of the proposed approach consists in five main steps. The first step aims to model input parameter uncertainties by belief and plausibility functions according to the data PRA model. The second step involves the propagation of parameter uncertainties through the risk model to lay out the uncertainties associated with output risk indicators. The model uncertainty is then taken into account in the third step by considering possible alternative risk models. The fourth step is intended firstly to provide decision makers with information needed for decision making under uncertainty (parametric and model) and secondly to identify the input parameters that have significant uncertainty contributions on the result. The final step allows the process to be continued in loop by studying the updating of beliefs functions given new data. The proposed methodology was implemented on a real but simplified application of PRA model. (author)

  19. Evaluation of allowed outage time using PRA results

    International Nuclear Information System (INIS)

    Johanson, G.

    1985-01-01

    In a probabilistic risk assessment (PRA) different measures of risk importance can be established. These measures can be used as a basis for further evaluation and determination of allowed outage time for specific components, within safety systems of a nuclear power plant. In order to optimize the allowed outage time (AOT) stipulated in the plant's Technical Specification it is necessary to create a methodology which could incorporate existing PRA data into a quantitative extrapolation. In order to evaluate the plant risk status due to AOT in a quantitative manner, the risk achievement worth is utilized. Risk achievement worth is defined as follows: to measure the worth of a feature, in achieving the present risk, one approach is to remove the feature and then determine how much the risk has increased. Thus, the risk achievement worth is formally defined to be the increase in risk if the feature were assumed not be there or to be failed. Another parameter of interest for this analysis is the shutdown risk increase. The shutdown risk achievement worth must be incorporated into the accident sequence risk achievement worth to arrive at an optimal set of plant specific AOTs

  20. Using level-I PRA for enhanced safety of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Ramsey, C.T.; Linn, M.A.

    1995-01-01

    The phase-1, level-I probabilistic risk assessment (PRA) of the Advanced Neutron Source (ANS) reactor has been completed as part of the conceptual design phase of this proposed research facility. Since project inception, PRA and reliability concepts have been an integral part of the design evolutions contributing to many of the safety features in the current design. The level-I PRA has been used to evaluate the internal events core damage frequency against project goals and to identify systems important to safety and availability, and it will continue to guide and provide support to accident analysis, both severe and nonsevere. The results also reflect the risk value of defense-in-depth safety features in reducing the likelihood of core damage

  1. System 80+TM PRA insights on severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Finnicum, D.J.; Jacob, M.C.; Schneider, R.E.; Weston, R.A.

    2004-01-01

    The System 80 + design is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the ALWR Utility Requirements Document (URD), and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the System 80 + design are described. The results of the System 80 + PRA are presented and the insights gained from the PRA sensitivity analyses are discussed. ABB-CE considered defense-in-depth for accident prevention and mitigation early in the design process and used robust design features to ensure that the System 80 + design achieved a low core damage frequency, low containment conditional failure probability, and excellent deterministic containment performance under severe accident conditions and to ensure that the risk was properly allocated among design features and between prevention and mitigation. (author)

  2. A risk assessment of the SAFR plant

    International Nuclear Information System (INIS)

    Rutherford, P.D.; Mills, J.C.; Lancet, R.T.; Nourjah, P.

    1987-01-01

    The Sodium Advanced Fast Reactor (SAFR) is a modular, advanced concept, Liquid Metal Reactor (LMR), funded by the U.S., and designed by Rockwell International, Bechtel Corporation, and Combustion Engineering. SAFR utilizes the inherently safe features of small fast reactors, including natural convection decay heat removal systems, a self-actuated shutdown system (SASS) and inherent core response to design basis events without scram including transient overpower (TOP), loss of flow (LOF), and loss of heat sink (LOHS) events. A Level 3 probabilistic risk assessment (PRA) has been performed which demonstrates considerable reduction in plant and public risk compared to current commercial reactors. (orig./HSCH)

  3. Task analysis: How far are we from usable PRA input

    International Nuclear Information System (INIS)

    Gertman, D.I.; Blackman, H.S.; Hinton, M.F.

    1984-01-01

    This chapter reviews data collected at the Idaho National Engineering Laboratory for three DOE-owned reactors (the Advanced Test Reactor, the Power Burst Facility, and the Loss of Fluids Test Reactor) in order to identify usable Probabilistic Risk Assessment (PRA) input. Task analytic procedures involve the determination of manning and skill levels as a means of determining communication requirements, in assessing job performance aids, and in assessing the accuracy and completeness of emergency and maintenance procedures. The least understood aspect in PRA and plant reliability models is the human factor. A number of examples from the data base are discussed and offered as a means of providing more meaningful data than has been available to PRA analysts in the past. It is concluded that the plant hardware-procedures-personnel interfaces are essential to safe and efficient plant operations and that task analysis is a reasonably sound way of achieving a qualitative method for identifying those tasks most strongly associated with task difficulty, severity of consequence, and error probability

  4. Space shuttle main propulsion pressurization system probabilistic risk assessment

    International Nuclear Information System (INIS)

    Plastiras, J.K.

    1989-01-01

    This paper reports that, in post-Challenger discussions with Congressional Committees and the National Research Council Risk Management Oversight Panel, criticism was levied against NASA because of the inability to prioritize the 1300+ single point failures. In the absence of a ranking it was difficult to determine where special effort was needed in failure evaluation, in design improvement, in management review of problems, and in flight readiness reviews. The belief was that the management system was overwhelmed by the quantity of critical hardware items that were on the Critical Items List (CIL) and that insufficient attention was paid to the items that required it. Congressional staff members from Congressman Markey's committee who have oversight responsibilities in the nuclear industry, and specifically over the nuclear power supplies for NASA's Galileo and Ulysses missions, felt very strongly that the addition of Probabilistic Risk Assessment (PRA) to the existing Failure Mode Effects Analysis/Hazard Analysis (FMEA/HA) methods was exceedingly important. Specifically, the Markey committee recognized that the inductive, qualitative component-oriented FMEA could be supplemented by the deductive, quantitative systems-oriented PRA. Furthermore, they felt that the PRA approach had matured to the extent that it could be used to assess risk, even with limited shuttle-specific failure data. NASA responded with arguments that the FMEA/HA had illuminated all significant failure modes satisfactorily and that no failure rate data base was available to support the PRA approach

  5. MAAP4.0.7 analysis and justification for PRA level 1 mission success criteria

    International Nuclear Information System (INIS)

    Butler, J.S.; Kapitz, D.; Martin, R.P.; Seifaee, F.; Sundaram, R.K.

    2008-01-01

    The U.S. EPR is a 4590 MWth evolutionary pressurized water reactor that incorporates proven technology with innovative system architecture to provide an unprecedented level of safety. One of the measures of safety is provided by Probability Risk Assessment (PRA). PRA Level 1 concerns the evaluation of core damage frequency based on various initiating events and the success or failure of various plant event mitigation features. Determination of this measure requires mission success criteria, which are used to build the logic that makes up the fault trees and event trees of the Level 1 PRA. Developing mission success criteria for the wide variety of accident sequences modeled in the PRA Level 1 model requires a large number of thermal hydraulic calculations. The MAAP4 code, developed by Fauske and Associates, Inc. and distributed by EPRI, was chosen to perform these calculations because of its fast computation times relative to more sophisticated thermal-hydraulics codes This is a unique application of MAAP4, which was developed specifically for severe accident and PRA Level 2 analysis. As such, a study was performed to assess MAAP4 's thermal-hydraulic response capabilities against AREVA 's S-RELAP5 best-estimate integral systems thermal-hydraulic analysis code. (authors)

  6. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.

  7. Development of a methodology for post closure radiological risk analysis of underground waste repositories. Illustrative assessment of the Harwell site. V.1

    International Nuclear Information System (INIS)

    Gralewski, Z.A.; Kane, P.; Nicholls, D.B.

    1987-06-01

    A probabilistic risk analysis (pra) is demonstrated for a number of ground water mediated release scenarios at the Harwell Site for a hypothetical repository at a depth of about 150 metres. This is the second stage of development of an overall risk assessment methodology. A procedure for carrying out multi-scenario assessment using available probabilistic risk assessment (pra) models is presented and a general methodology for combining risk contributions is outlined. Appropriate levels of model complexity in pra are discussed. Modelling requirements for the treatment of multiple simultaneous pathways and of site evolution are outlined. Further developments of pra systems are required to increase the realism of both the models and their mode of application, and hence to improve estimates of risk. (author)

  8. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 3: PRA and HRA; Probabilistic seismic hazard assessment and seismic siting criteria

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: PRA and HRA and probabilistic seismic hazard assessment and seismic siting criteria. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos has been based on a thorough review and understanding of proposed operations of changes to operations, involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgement, that certain accident sequences were credible and had to be reduced in likelihood either by administrative controls or by equipment design and others were not credible, and thus did not warrant expenditures to further reduce their likelihood. The extent of analysis and documentation was generally in proportion to the complexity of the operation but did not include quantified risk assessments. During the last three years nuclear criticality safety related Probabilistic Risk Assessments (PRAs) have been preformed on operations in two Los Alamos facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRA's as they apply to largely ''hands-on'' operations with fissile material for which human errors or equipment failures significant to criticality safety are both rare and unique. Based on these two applications and an appreciation of the historical criticality accident record (frequency and consequences) it is apparent that quantified risk assessments should be performed very selectively

  11. 77 FR 61446 - Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    Science.gov (United States)

    2012-10-09

    ... Severe Accident Evaluation for New Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... its Standard Review Plan (SRP), Section 19.0, ``Probabilistic Risk Assessment and Severe Accident... assessment (PRA) information and severe accident assessments for new reactors submitted to support design...

  12. Cable Hot Shorts and Circuit Analysis in Fire Risk Assessment

    International Nuclear Information System (INIS)

    LaChance, Jeffrey; Nowlen, Steven P.; Wyant, Frank

    1999-01-01

    Under existing methods of probabilistic risk assessment (PRA), the analysis of fire-induced circuit faults has typically been conducted on a simplistic basis. In particular, those hot-short methodologies that have been applied remain controversial in regards to the scope of the assessments, the underlying methods, and the assumptions employed. To address weaknesses in fire PRA methodologies, the USNRC has initiated a fire risk analysis research program that includes a task for improving the tools for performing circuit analysis. The objective of this task is to obtain a better understanding of the mechanisms linking fire-induced cable damage to potentially risk-significant failure modes of power, control, and instrumentation cables. This paper discusses the current status of the circuit analysis task

  13. Risk assessment

    International Nuclear Information System (INIS)

    1983-01-01

    The report is in sections, entitled: preface; summary and conclusions; introduction (historical and organizational); estimating engineering risks (techniques of risk estimation and forms of expression of risk); laboratory experiments for estimation of biological risks; estimation of risk from observations on man (travel, medical procedures; occupations; sport); the perception of risks; (as an example of attitudes towards a single hazard, studies of nuclear power are considered among other topics in this section); risk management (estimation; perception; acceptability, analysis of risk, costs and benefits; safety standards; decision-making process; possible guidelines). (U.K.)

  14. Development of infrastructure for the regulatory authority to implement risk-informed regulation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    It is important to assure the technical adequacy of probabilistic risk assessment (PRA) to implement risk-informed regulation of nuclear power plants (NPPs). JNES has been conducting various activities, such as development of PRA model, method, and data base, in order to assure the technical adequacy of PRA as development of the infrastructure for the regulatory authority to implement risk-informed regulation. In 2012, JNES updated the reliability data base used in PRA and improved PRA models to enhance the technical bases of PRA. In addition, JNES has been establishing the PRA model for fuel damage in the spent fuel storage pool in NPPs. As for improvement of PRA model for core damage in reactor, JNES conducted the study including feasibility of a simplified reliability model for digital I and C system developed by the digital I and C task group of OECD/NEA CSNI WGRISK by reproducing the sample calculation, and improvement of PRA models of individual NPPs in Japan. JNES is making effort to develop the procedures of internal fire PRA and internal flooding PRA. To improve the internal fire PRA, JNES is participating in OECD/NEA FIRE project to obtain the latest information and to validate and improve the fire propagation analysis codes and the parameters. JNES is establishing a method for analyzing internal influence due to flooding in NPPs, and this method is the base to develop the procedure of internal flooding PRA. (author)

  15. Probabilistic risk assessment in the nuclear power industry

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Hall, R.E.

    1988-01-01

    This book describes the more important improvements in risk assessment methodology developed over the last decade. The book covers the following areas - a general view of risk pertaining to nuclear power, mathematics necessary to understand the text, a concise overview of the light water reactors and their features for protecting the public, probabilities and consequences calculated to form risk assessment to the plant, and 34 applications of probabilistic risk assessment (PRA) in the power generation industry. There is a glossary of acronyms and unusual words and a list of references. (author)

  16. A desktop PRA

    International Nuclear Information System (INIS)

    Dolan, B.J.; Weber, B.J.

    1989-01-01

    This paper reports that Duke Power Company has completed full-scope PRAs for each of its nuclear stations - Oconee, McGuire and Catawba. These living PRAs are being maintained using desktop personal computers. Duke's PRA group now has powerful personal computer-based tools that have both decreased direct costs (computer analysis expenses) and increased group efficiency (less time to perform analyses). The shorter turnaround time has already resulted in direct savings through analyses provided in support of justification for continued station operation. Such savings are expected to continue with similar future support

  17. Use of probabilistic risk assessment in expert system usage for nuclear power plant safety

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1987-01-01

    The introduction of probability risk assessments (PRA's) to nuclear power plants in the Rasmussen Report (WASH-1400) gave us a means of evaluating the risk to the public associated with the operation of nuclear power plants, at least on a relative basis. While the choice of the ''source term'' and methodology in a PRA significantly influence the absolute probability and the consequences of core melt, comparison of two PRA calculations for two configurations of the same plant, carried out on a consistent basis, can be readily identify the increase in risk associated with going from one configuration of a plant to another by removing components or systems from service. This ratio of core melt probabilities (assuming no recovery of failed systems) obtained from two PRA calculations for different configurations was the criterion (called ''risk factor'') chosen as a basis for making a decision in an expert system as to what mitigating action, if any, would be taken to avoid a trip situation from developing. PRISIM was developed by JBF Associates of Knoxville under the sponsorship of the NRC as a system for Resident Inspectors at nuclear power plants to provide them with a relative safety status of the plant under all configurations. PRISIM calculated the risk factor---the ration of core melt probabilities of the plant under the current configuration relative to the normal configuration with all systems functioning---using an algorithm that emulates the results of the original PRA. It also presents time and core melt (assuming no recovery of systems or components)

  18. HTGR containment design options: an application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1977-08-01

    Through the use of probabilistic risk assessment (PRA), it is possible to quantitatively evaluate the radiological risk associated with a given reactor design and to place such risk into perspective with alternative designs. The merits are discussed for several containment alternatives for the HTGR from the viewpoints of economics and licensability, as well as public risk. The quantification of cost savings and public risk indicates that presently acceptable public risk can be maintained and cost savings of $40 million can result from use of a vented confinement for the HTGR

  19. Probabilistic risk assessment methodology for risk management and regulatory applications

    International Nuclear Information System (INIS)

    See Meng Wong; Kelly, D.L.; Riley, J.E.

    1997-01-01

    This paper discusses the development and potential applications of PRA methodology for risk management and regulatory applications in the U.S. nuclear industry. The new PRA methodology centers on the development of This paper discusses the time-dependent configuration risk profile for evaluating the effectiveness of operational risk management programs at U.S. nuclear power plants. Configuration-risk profiles have been used as risk-information tools for (1) a better understanding of the impact of daily operational activities on plant safety, and (2) proactive planning of operational activities to manage risk. Trial applications of the methodology were undertaken to demonstrate that configuration-risk profiles can be developed routinely, and can be useful for various industry and regulatory applications. Lessons learned include a better understanding of the issues and characteristics of PRA models available to industry, and identifying the attributes and pitfalls in the developement of risk profiles

  20. Analysis of dependent failures in risk assessment and reliability evaluation

    International Nuclear Information System (INIS)

    Fleming, K.N.; Mosleh, A.; Kelley, A.P. Jr.; Gas-Cooled Reactors Associates, La Jolla, CA)

    1983-01-01

    The ability to estimate the risk of potential reactor accidents is largely determined by the ability to analyze statistically dependent multiple failures. The importance of dependent failures has been indicated in recent probabilistic risk assessment (PRA) studies as well as in reports of reactor operating experiences. This article highlights the importance of several different types of dependent failures from the perspective of the risk and reliability analyst and provides references to the methods and data available for their analysis. In addition to describing the current state of the art, some recent advances, pitfalls, misconceptions, and limitations of some approaches to dependent failure analysis are addressed. A summary is included of the discourse on this subject, which is presented in the Institute of Electrical and Electronics Engineers/American Nuclear Society PRA Procedures Guide

  1. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    International Nuclear Information System (INIS)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-01-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  2. Nuclear Regulatory Commission probabilistic risk assessment implementation program: A status report

    International Nuclear Information System (INIS)

    Rubin, M.P.; Caruso, M.A.

    1996-01-01

    The US Nuclear Regulatory Commission (NRC) is undertaking a number of activities intended to increase the consideration of risk significance in its decision processes and the effective use of risk-based technologies in its regulatory activities. Although the NRC is moving toward risk-informed regulation throughout its areas of responsibilities, this paper focuses primarily on those issues associated with reactor regulation. As the NRC completed significant milestones in its development of probabilistic risk assessment (PRA) methodology and gained considerable experience in the limited application of risk assessment to selected regulatory activities, it became evident that a much broader use of risk informed approaches offered advantages to both the NRC and the US commercial nuclear industry. This desire to enhance the use of risk assessment is driven by the clear belief that application of PRA methods will result in direct improvements in nuclear power plant operational safety from the perspective of both the regulator and the plant operator. The NRC believed that an overall policy on the use of PRA methods in nuclear regulatory activities should be established so that the many potential applications of PRA could be implemented in a consistent and predictable manner that would promote regulatory stability and efficiency. This paper describes the key activities that the NRC has undertaken to implement the initial stages of an integrated risk-informed regulatory framework

  3. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    International Nuclear Information System (INIS)

    Papouchado, K.; Salaymeh, J.

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field

  4. Two decades of PRA: What next?

    International Nuclear Information System (INIS)

    Rasmussen, N.C.

    1992-01-01

    Two decades ago, in the spring of 1972, the Reactor Safety Study was undertaken for the US Atomic Energy Commission (AEC). The goal of this study was to assess the risk to the public posed by the nuclear power plants operating in the US. Some three and one-half years later in October 1975, the study group issued its final report titled The Reactor Safety Study, also commonly known by its document number WASH 1400. Because it was issued at a time of heated public debate about nuclear safety, WASH 1400 received considerable critical review. By the late 1970s, as a result of the Lewis Report and the accident at Three Mile Island, the value of the WASH 1400 methodology was gradually recognized. A number of utilities undertook such studies of their own plants. The field of probabilistic risk assessment (PRA) developed from these efforts. Challenges remain. Among these are how to effectively communicate the results of the analysis. Just what does a probability of one in a million mean? Is there a de minimis probability - one so small that it can be ignored? How should society make decisions under substantial uncertainty? A number of these questions pose real challenges for the future

  5. Hiperurisemia pada Pra Diabetes

    Directory of Open Access Journals (Sweden)

    Ellyza Nasrul

    2012-09-01

    Full Text Available AbstrakAsam urat (AU merupakan produk akhir dari katabolisme adenin dan guanin yang berasal dari pemecahannukleotida purin. Urat dihasilkan oleh sel yang mengandung xanthine oxidase, terutama hepar dan usus kecil.Hiperurisemia adalah keadaan kadar asam urat dalam darah lebih dari 7,0 mg/dL.Pra diabetes adalah subjek yangmempunyai kadar glukosa plasma meningkat akan tetapi peningkatannya masih belum mencapai nilai minimaluntuk kriteria diagnosis diabetes melitus (DM. Glukosa darah puasa terganggu merupakan keadaan dimanapeningkatan kadar FPG≥100 mg/dL dan <126 mg/dL. Toleransi glukosa terganggu merupakan peningkatanglukosa plasma 2 jam setelah pembebanan 75 gram glukosa oral (≥140 mg/dL dan <200mg/dL dengan FPG<126 mg/dL.Insulin juga berperan dalam meningkatkan reabsorpsi asam urat di tubuli proksimal ginjal. Sehinggapada keadaan hiperinsulinemia pada pra diabetes terjadi peningkatan reabsorpsi yang akan menyebabkanhiperurisemia. Transporter urat yang berada di membran apikal tubuli renal dikenal sebagai URAT-1 berperandalam reabsorpsi urat.Kata kunci: Hiperurisemia, Pra DiabetesAbstractUric acid (AU is the end product of the catabolism of adenine and guanine nucleotides derived from thebreakdown of purines. Veins produced by cells containing xanthine oxidase, especially the liver and small intestine.Hyperuricemia is a state in the blood uric acid levels over 7.0 mg / dL.Pre-diabetes is a subject which has a plasmaglucose level will rise but the increase is still not reached the minimum value for the diagnostic criteria for diabetesmellitus (DM. Impaired fasting blood glucose is a condition in which increased levels of FPG ≥ 100 mg / dL and<126 mg / dL. Impaired glucose tolerance is an increase in plasma glucose 2 hours after 75 gram oral glucose load(≥ 140 mg / dL and <200mg/dl with FPG <126 mg / dL.Insulin also plays a role in increasing the reabsorption ofuric acid in renal proximal tubule. So that the hyperinsulinemia in the pre

  6. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  7. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  8. Simplified probabilistic risk assessment in fuel reprocessing

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000

  9. Introduction to risk assessment

    International Nuclear Information System (INIS)

    Raina, V.M.

    2002-01-01

    This paper gives an introduction to risk assessment. It discusses the basic concepts of risk assessment, nuclear risk assessment process and products, the role of risk assessment products in nuclear safety assurance, the relationship between risk assessment and other safety analysis and risk assessment and safe operating envelope

  10. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    International Nuclear Information System (INIS)

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs

  11. Seabrook Station Level 2 PRA Update to Include Accident Management

    International Nuclear Information System (INIS)

    Lutz, Robert; Lucci, Melissa; Kiper, Kenneth; Henry, Robert

    2006-01-01

    A ground-breaking study was recently completed as part of the Seabrook Level 2 PRA update. This study updates the post-core damage phenomena to be consistent with the most recent information and includes accident management activities that should be modeled in the Level 2 PRA. Overall, the result is a Level 2 PRA that fully meets the requirements of the ASME PRA Standard with respect to modeling accident management in the LERF assessment and NRC requirements in Regulatory Guide 1.174 for considering late containment failures. This technical paper deals only with the incorporation of operator actions into the Level 2 PRA based on a comprehensive study of the Seabrook Station accident response procedures and guidance. The paper describes the process used to identify the key operator actions that can influence the Level 2 PRA results and the development of success criteria for these key operator actions. This addresses a key requirement of the ASME PRA Standard for considering SAMG. An important benefit of this assessment was the identification of Seabrook specific accident management insights that can be fed back into the Seabrook Station accident management procedures and guidance or the training provided to plant personnel for these procedures and guidance. (authors)

  12. Integration of human reliability analysis into the probabilistic risk assessment process: phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1985-01-01

    The US Nuclear Regulatory Commission and Pacific Northwest Laboratory initiated a research program in 1984 to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  13. Integration of human reliability analysis into the probabilistic risk assessment process: Phase 1

    International Nuclear Information System (INIS)

    Bell, B.J.; Vickroy, S.C.

    1984-10-01

    A research program was initiated to develop a testable set of analytical procedures for integrating human reliability analysis (HRA) into the probabilistic risk assessment (PRA) process to more adequately assess the overall impact of human performance on risk. In this three-phase program, stand-alone HRA/PRA analytic procedures will be developed and field evaluated to provide improved methods, techniques, and models for applying quantitative and qualitative human error data which systematically integrate HRA principles, techniques, and analyses throughout the entire PRA process. Phase 1 of the program involved analysis of state-of-the-art PRAs to define the structures and processes currently in use in the industry. Phase 2 research will involve developing a new or revised PRA methodology which will enable more efficient regulation of the industry using quantitative or qualitative results of the PRA. Finally, Phase 3 will be to field test those procedures to assure that the results generated by the new methodologies will be usable and acceptable to the NRC. This paper briefly describes the first phase of the program and outlines the second

  14. The development and application of an integrated radiological risk assessment procedure using time-dependent probabilistic risk analysis

    International Nuclear Information System (INIS)

    Laurens, J.M.; Thompson, B.G.J.; Sumerling, T.J.

    1990-01-01

    During the past decade, the UKDoE has funded the development of an integrated assessment procedure centred around probabilistic risk analysis (p.r.a.) using Monte Carlo simulation techniques to account for the effects of parameter value uncertainty, including those associated with temporal changes in the environment over a postclosure period of about one million years. The influence of these changes can now be incorporated explicitly into the p.r.a. simulator VANDAL (Variability ANalysis of Disposal ALternatives) briefly described here. Although a full statistically converged time-dependent p.r.a. will not be demonstrated until the current Dry Run 3 trial is complete, illustrative examples are given showing the ability of VANDAL to represent spatially complex groundwater and repository systems evolving under the influence of climatic change. 18 refs., 10 figs., 1 tab

  15. Challenges in Risk Assessment: Quantitative Risk Assessment

    OpenAIRE

    Jacxsens, Liesbeth; Uyttendaele, Mieke; De Meulenaer, Bruno

    2016-01-01

    The process of risk analysis consists out of three components, risk assessment, risk management and risk communication. These components are internationally well spread by Codex Alimentarius Commission as being the basis for setting science based standards, criteria on food safety hazards, e.g. setting maximum limits of mycotoxins in foodstuffs. However, the technical component risk assessment is hard to elaborate and to understand. Key in a risk assessment is the translation of biological or...

  16. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    Science.gov (United States)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn

  17. Beyond informed choice: Prenatal risk assessment, decision-making and trust

    Directory of Open Access Journals (Sweden)

    Nete Schwennesen

    2008-05-01

    Full Text Available In 2004 prenatal risk assessment (PRA was implemented as a routine offer to all pregnant women in Denmark. It was argued that primarily the new programme would give all pregnant women an informed choice about whether to undergo prenatal testing. On the basis of ethnographic fieldwork in an ultrasound clinic in Denmark and interviews with pregnant women and their partners, we call into question the assumption underlying the new guidelines that more choice and more objective information is a source of empowerment and control. We focus on one couple's experience of PRA. This case makes it evident how supposed choices in the context of PRA may not be experienced as such. Rather, they are experienced as complicated processes of meaning-making in the relational space between the clinical setting, professional authority and the social life of the couples. PRA users are reluctant to make choices and abandon health professionals as authoritative experts in the face of complex risk knowledge. When assumptions about autonomy and self-determination are inscribed into the social practice of PRA, authority is transferred to the couple undergoing PRA and a new configuration of responsibility evolves between the couple and their relationship to the foetus. It is argued that al-though the new programme of prenatal testing in Denmark presents itself in opposition to quasi-eugenic and paternalistic forms of governing couples' decisions it represents another form of government that works through the notion of choice. An ethics of a shared responsibility of PRA and its outcome would be more in agreement with how decisions are actually made.http://dx.doi.org/10.5324/eip.v2i1.1687

  18. Use of probabilistic risk assessment in maintenance activities at Palo Verde

    International Nuclear Information System (INIS)

    Lindquist, R.C.; Pobst, D.S.

    1993-01-01

    Probabilistic risk assessment (PRA) is an important tool in addressing various maintenance activities. At the Palo Verde nuclear generating station (PVNGS), the PRA has been used in a variety of ways to support a wide and diverse selection of maintenance-related activities. For on-line or at-power maintenance, the PRA was used to evaluate combinations of maintenance activities possible with the 12-week or floating maintenance schedule. The maintenance schedule was evaluated to identify any higher risk, undesirable combinations of equipment outages, such as the sole steam-driven auxiliary feedwater pump and the same train emergency diesel generator. Table I is a sampling of the results from the maintenance schedule evaluation in terms of increase in conditional core damage frequency (CDF) above the base- line value due to maintenance on some important key safety systems and combinations thereof. The baseline CDF is 7.4 x 10 -7 per 72 h

  19. A probabilistic risk assessment of Oconee Unit 3. Executive highlights 60

    International Nuclear Information System (INIS)

    1984-04-01

    In 1980 the Nuclear Safety Analysis Center and Duke Power Co. joined in a project to provide the utility industry with a practical, useful example of the application of probabilistic risk assessment (PRA) methods. PRA is a structured analysis technique that accounts for all the failure possibilities that might conceivably lead to core damage. The technique uses probabilities as discriminators to determine which are most significant. The following were project objectives: to provide the host utility with an analytic model of the plant that describes and estimates the likelihood of failure combinations that could lead to core melt; to evaluate the risks to the plant and to the public; to improve utility capabilities in PRA methods and applications

  20. Implementation of condition-dependent probabilistic risk assessment using surveillance data on passive components

    International Nuclear Information System (INIS)

    Lewandowski, Radoslaw; Denning, Richard; Aldemir, Tunc; Zhang, Jinsuo

    2016-01-01

    Highlights: • Condition-dependent probabilistic risk assessment (PRA). • Time-dependent characterization of plant-specific risk. • Containment bypass involving in secondary system piping and SCC in SG tubes. - Abstract: A great deal of surveillance data are collected for a nuclear power plant that reflect the changing condition of the plant as it ages. Although surveillance data are used to determine failure probabilities of active components for the plant’s probabilistic risk assessment (PRA) and to indicate the need for maintenance activities, they are not used in a structured manner to characterize the evolving risk of the plant. The present study explores the feasibility of using a condition-dependent PRA framework that takes a first principles approach to modeling the progression of degradation mechanisms to characterize evolving risk, periodically adapting the model to account for surveillance results. A case study is described involving a potential containment bypass accident sequence due to the progression of flow-accelerated corrosion in secondary system piping and stress corrosion cracking of steam generator tubes. In this sequence, a steam line break accompanied by failure to close of a main steam isolation valve results in depressurization of the steam generator and induces the rupture of one or more faulted steam generator tubes. The case study indicates that a condition-dependent PRA framework might be capable of providing early identification of degradation mechanisms important to plant risk.

  1. SHARP - a framework for incorporating human interactions into PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Joksimovich, V.; Spurgin, A.J.; Worledge, D.H.

    1985-01-01

    Recently, increased attention has been given to understanding the role of humans in the safe operation of nuclear power plants. By virtue of the ability to combine equipment reliability with human reliability probabilistic risk assessment (PRA) technology was deemed capable of providing significant insights about the contributions of human interations in accident scenarios. EPRI recognized the need to strengthen the methodology for incorporating human interactions into PRAs as one element of their broad research program to improve the credibility of PRAs. This research project lead to the development and detailed description of SHARP (Systematic Human Application Reliability Procedure) in EPRI NP-3583. The objective of this paper is to illustrate the SHARP framework. This should help PRA analysts state more clearly their assumptions and approach no matter which human reliability assessment technique is used. SHARP includes a structure of seven analysis steps which can be formally or informally performed during PRAs. The seven steps are termed definition, screening, breakdown, representation, impact assessment, quantification, and documentation

  2. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    International Nuclear Information System (INIS)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein

  3. Results of the AP600 advanced plant probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bueter, T.; Sancaktar, S.; Freeland, J.

    1997-01-01

    The AP600 Probabilistic Risk Assessment (PRA) includes detailed models of the plant systems, including the containment and containment systems that would be used to mitigate the consequences of a severe accident. The AP600 PRA includes a level 1 analysis (core damage frequency), and a level 2 analysis (environmental consequences), an assessment of the plant vulnerability to accidents caused by fire or floods, and a seismic margins analysis. Numerous sensitivities are included in the AP600 PRA including one that assumes no credit for non-safety plant systems. The core damage frequency for the AP600 of 1.7E-07/year is small compared with other PRAs performed in the nuclear industry. The AP600 large release frequency of 1.8E-08/year is also small and shows the ability of the containment systems to prevent a large release should a severe accident occur. Analyses of potential consequences to the environment from a severe accident show that a release would be small, and that containment still provides significant protection 24 hours after an assumed accident. Sensitivity analyses show that plant risk (as measured by core damage frequency and large release frequency) is not sensitive to the reliability of operator actions. 6 refs., 1 fig., 1 tab

  4. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    Science.gov (United States)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  5. Risk assessment of a fusion-reactor fuel-processing system

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Holland, D.F.

    1983-07-01

    The probabilistic risk assessment (PRA) methodology provides a means to systematically examine the potential for accidents that may result in a release of hazardous materials. This report presents the PRA for a typical fusion reactor fuel processing system. The system used in the analysis is based on the Tritium Systems Test Assembly, which is being operated at the Los Alamos National Laboratory. The results of the evaluation are presented in a probability-consequence plot that describes the probability of various accidental tritium release magnitudes

  6. Controlling principles for prior probability assignments in nuclear risk assessment

    International Nuclear Information System (INIS)

    Cook, I.; Unwin, S.D.

    1986-01-01

    As performed conventionally, nuclear probabilistic risk assessment (PRA) may be criticized as utilizing inscrutable and unjustifiably ''precise'' quantitative informed judgment or extrapolation from that judgment. To meet this criticism, controlling principles that govern the formulation of probability densities are proposed, given only the informed input that would be required for a simple bounding analysis. These principles are founded upon information theoretic ideas of maximum uncertainty and cover both cases in which there exists a stochastic model of the phenomenon of interest and cases in which these is no such model. In part, the principles are conventional, and such an approach is justified by appealing to certain analogies in accounting practice and judicial decision making. Examples are given. Appropriate employment of these principles is expected to facilitate substantial progress toward PRA scrutability and transparency

  7. International Space Station End-of-Life Probabilistic Risk Assessment

    Science.gov (United States)

    Duncan, Gary W.

    2014-01-01

    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  8. A framework to integrate software behavior into dynamic probabilistic risk assessment

    International Nuclear Information System (INIS)

    Zhu Dongfeng; Mosleh, Ali; Smidts, Carol

    2007-01-01

    Software plays an increasingly important role in modern safety-critical systems. Although, research has been done to integrate software into the classical probabilistic risk assessment (PRA) framework, current PRA practice overwhelmingly neglects the contribution of software to system risk. Dynamic probabilistic risk assessment (DPRA) is considered to be the next generation of PRA techniques. DPRA is a set of methods and techniques in which simulation models that represent the behavior of the elements of a system are exercised in order to identify risks and vulnerabilities of the system. The fact remains, however, that modeling software for use in the DPRA framework is also quite complex and very little has been done to address the question directly and comprehensively. This paper develops a methodology to integrate software contributions in the DPRA environment. The framework includes a software representation, and an approach to incorporate the software representation into the DPRA environment SimPRA. The software representation is based on multi-level objects and the paper also proposes a framework to simulate the multi-level objects in the simulation-based DPRA environment. This is a new methodology to address the state explosion problem in the DPRA environment. This study is the first systematic effort to integrate software risk contributions into DPRA environments

  9. Probabilistic risk assessment methodology

    International Nuclear Information System (INIS)

    Shinaishin, M.A.

    1988-06-01

    The objective of this work is to provide the tools necessary for clear identification of: the purpose of a Probabilistic Risk Study, the bounds and depth of the study, the proper modeling techniques to be used, the failure modes contributing to the analysis, the classical and baysian approaches for manipulating data necessary for quantification, ways for treating uncertainties, and available computer codes that may be used in performing such probabilistic analysis. In addition, it provides the means for measuring the importance of a safety feature to maintaining a level of risk at a Nuclear Power Plant and the worth of optimizing a safety system in risk reduction. In applying these techniques so that they accommodate our national resources and needs it was felt that emphasis should be put on the system reliability analysis level of PRA. Objectives of such studies could include: comparing systems' designs of the various vendors in the bedding stage, and performing grid reliability and human performance analysis using national specific data. (author)

  10. Probabilistic risk assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Shinaishin, M A

    1988-06-15

    The objective of this work is to provide the tools necessary for clear identification of: the purpose of a Probabilistic Risk Study, the bounds and depth of the study, the proper modeling techniques to be used, the failure modes contributing to the analysis, the classical and baysian approaches for manipulating data necessary for quantification, ways for treating uncertainties, and available computer codes that may be used in performing such probabilistic analysis. In addition, it provides the means for measuring the importance of a safety feature to maintaining a level of risk at a Nuclear Power Plant and the worth of optimizing a safety system in risk reduction. In applying these techniques so that they accommodate our national resources and needs it was felt that emphasis should be put on the system reliability analysis level of PRA. Objectives of such studies could include: comparing systems' designs of the various vendors in the bedding stage, and performing grid reliability and human performance analysis using national specific data. (author)

  11. Application of Risk Assessment Tools in the Continuous Risk Management (CRM) Process

    Science.gov (United States)

    Ray, Paul S.

    2002-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) is currently implementing the Continuous Risk Management (CRM) Program developed by the Carnegie Mellon University and recommended by NASA as the Risk Management (RM) implementation approach. The four most frequently used risk assessment tools in the center are: (a) Failure Modes and Effects Analysis (FMEA), Hazard Analysis (HA), Fault Tree Analysis (FTA), and Probabilistic Risk Analysis (PRA). There are some guidelines for selecting the type of risk assessment tools during the project formulation phase of a project, but there is not enough guidance as to how to apply these tools in the Continuous Risk Management process (CRM). But the ways the safety and risk assessment tools are used make a significant difference in the effectiveness in the risk management function. Decisions regarding, what events are to be included in the analysis, to what level of details should the analysis be continued, make significant difference in the effectiveness of risk management program. Tools of risk analysis also depends on the phase of a project e.g. at the initial phase of a project, when not much data are available on hardware, standard FMEA cannot be applied; instead a functional FMEA may be appropriate. This study attempted to provide some directives to alleviate the difficulty in applying FTA, PRA, and FMEA in the CRM process. Hazard Analysis was not included in the scope of the study due to the short duration of the summer research project.

  12. Development of a methodology for conducting an integrated HRA/PRA --

    International Nuclear Information System (INIS)

    Luckas, W.J.; Barriere, M.T.; Brown, W.S.; Wreathall, J.; Cooper, S.E.

    1993-01-01

    During Low Power and Shutdown (LP ampersand S) conditions in a nuclear power plant (i.e., when the reactor is subcritical or at less than 10--15% power), human interactions with the plant's systems will be more frequent and more direct. Control is typically not mediated by automation, and there are fewer protective systems available. Therefore, an assessment of LP ampersand S related risk should include a greater emphasis on human reliability than such an assessment made for power operation conditions. In order to properly account for the increase in human interaction and thus be able to perform a probabilistic risk assessment (PRA) applicable to operations during LP ampersand S, it is important that a comprehensive human reliability assessment (HRA) methodology be developed and integrated into the LP ampersand S PRA. The tasks comprising the comprehensive HRA methodology development are as follows: (1) identification of the human reliability related influences and associated human actions during LP ampersand S, (2) identification of potentially important LP ampersand S related human actions and appropriate HRA framework and quantification methods, and (3) incorporation and coordination of methodology development with other integrated PRA/HRA efforts. This paper describes the first task, i.e., the assessment of human reliability influences and any associated human actions during LP ampersand S conditions for a pressurized water reactor (PWR)

  13. Development of a methodology for conducting an integrated HRA/PRA --

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, W.J.; Barriere, M.T.; Brown, W.S. (Brookhaven National Lab., Upton, NY (United States)); Wreathall, J. (Wreathall (John) and Co., Dublin, OH (United States)); Cooper, S.E. (Science Applications International Corp., McLean, VA (United States))

    1993-01-01

    During Low Power and Shutdown (LP S) conditions in a nuclear power plant (i.e., when the reactor is subcritical or at less than 10--15% power), human interactions with the plant's systems will be more frequent and more direct. Control is typically not mediated by automation, and there are fewer protective systems available. Therefore, an assessment of LP S related risk should include a greater emphasis on human reliability than such an assessment made for power operation conditions. In order to properly account for the increase in human interaction and thus be able to perform a probabilistic risk assessment (PRA) applicable to operations during LP S, it is important that a comprehensive human reliability assessment (HRA) methodology be developed and integrated into the LP S PRA. The tasks comprising the comprehensive HRA methodology development are as follows: (1) identification of the human reliability related influences and associated human actions during LP S, (2) identification of potentially important LP S related human actions and appropriate HRA framework and quantification methods, and (3) incorporation and coordination of methodology development with other integrated PRA/HRA efforts. This paper describes the first task, i.e., the assessment of human reliability influences and any associated human actions during LP S conditions for a pressurized water reactor (PWR).

  14. Prioritization of motor operated valves based on risk importances

    International Nuclear Information System (INIS)

    Vesely, W.E.; Weidenhamer, G.H.

    1994-01-01

    The plant Probabilistic Risk Assessment (PRA) can be a potentially useful and powerful tool for helping to define an effective response to GL 89-10. The plant PRA can be used to prioritize the Motor Operated Valves (MOV) dynamic test. The plant PRA can also be used to determine test schedules for the MOVs. In order for the PRA to be validly used to respond to GL 89-10, various issues need to be validly addressed. Eleven issues are specifically identified and responses to these issues are outlined. The issues of joint MOV importance, PRA truncation, and validation of the proposed approach are specifically highlighted and more detailed response considerations are described. As in all PRA applications, sensitivity studies and uncertainty considerations should be incorporated in the PRA evaluations. 4 refs, 3 tabs

  15. Probabilistic risk assessment (PRA) on the effectiveness of a core rescue system (SSN) for PWRs

    International Nuclear Information System (INIS)

    Petrangeli, G.; Valeri, A.

    1983-01-01

    Safety systems for the prevention of LWR core severe damage have recently been studied, which are based on automatic primary system depressurization and on borated water injection by low pressure accumulators. These systems have been named Core Rescue System (SSN). The present study evaluates the reduction in core melt probability brought about by the installation of a SSN system on the RSS (WASH 1400) PWR plant (Surry 1). The calculated result is a core melt probability reduction factor of about 250. Taking into account the possible effect of external or internal unknown events of negligible, yet undefined, probability it is concluded that a SSN system can make a plant ten times safer. The first part of a review report by Prof. N.C.Rasmussen, MIT, dealing with general comment, is attached

  16. Probabilistic risk assessment support of emergency preparedness at the Savannah River Site

    International Nuclear Information System (INIS)

    O'Kula, K.R.; Baker, W.H.; Simpkins, A.A.; Taylor, R.P.; Wagner, K.C.; Amos, C.N.

    1992-01-01

    Integration of the Probabilistic Risk Assessment (PRA) for K Reactor operation into related technical areas at the Savannah River Site (SRS) includes coordination with several onsite organizations responsible for maintaining and upgrading emergency preparedness capabilities. Major functional categories of the PRA application are scenario development and source term algorithm enhancement. Insights and technologies from the SRS PRA have facilitated development of: (1) credible timelines for scenarios; (2) algorithms tied to plant instrumentation to provide best-estimate source terms for dose projection; and (3) expert-system logic models to implement informed counter-measures to assure onsite and offsite safety following accidental releases. The latter methodology, in particular, is readily transferable to other reactor and non-reactor facilities at SRS and represents a distinct advance relative to emergency preparedness capabilities elsewhere in the DOE complex

  17. Application of sensitivity analysis in nuclear power plant probabilistic risk assessment studies

    International Nuclear Information System (INIS)

    Hirschberg, S.; Knochenhauer, M.

    1986-01-01

    Nuclear power plant probabilistic risk assessment (PRA) studies utilise many models, simplifications and assumptions. Also subjective judgement is widely applied due to lack of actual data. This results in significant uncertainties. Three general types of uncertainties have been identified: (1) parameter uncertainties, (2) modelling uncertainties, and (3) completeness uncertainties. The significance of some of the modelling assumptions and simplifications cannot be investigated by assignment and propagation of parameter uncertainties. In such cases the impact of different options may (and should) be studied by performing sensitivity analyses, which concentrate on the most critical elements. This paper describes several items suitable for close examination by means of application of sensitivity analysis, when performing a level 1 PRA. Sensitivity analyses are performed with respect to: (1) boundary conditions (success criteria, credit for non-safety systems, degree of detail in modelling of support functions), (2) operator actions, (3) treatment of common cause failures (CCFs). The items of main interest are continuously identified in the course of performing a PRA study, as well as by scrutinising the final results. The practical aspects of sensitivity analysis are illustrated by several applications from a recent PRA study. The critical importance of modelling assumptions is also demonstrated by implementation of some modelling features from another level 1 PRA into the reference model. It is concluded that sensitivity analysis leads to insights important for analysts, reviewers and decision makers. (author)

  18. Can we trust PRA?

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S. [ABS Consulting, Koraku Mori, Building, 1-4-14 Koraku Chome, Bunkyo-ku, Tokyo 112-0004 (Japan)]. E-mail: sepstein@absconsulting.com; Rauzy, A. [Institut de Mathematique de Luminy (IML/CNRS), 163 Avenue de Luminy, Case 907, Marseille, Cedex 913288 (France)]. E-mail: arauzy@iml.univ-mrs.fr

    2005-06-01

    The Fault-Tree/Event-Tree method is widely used in industry as the underlying formalism of probabilistic risk assessment. Almost all of the tools available to assess Event-Tree models implement the 'classical' assessment technique based on minimal cutsets and the rare event approximation. Binary decision diagrams (BDDs) are an alternative approach, but they were up to now limited to medium size models because of the exponential blow up of the memory requirements. We have designed a set of heuristics, which make it possible to quantify, by means of BDD, all of the sequences of a large Event-Tree model coming from the nuclear industry. For the first time, it was possible to compare results of the classical approach with those of the BDD approach, i.e. with exact results. This article reports this comparison and shows that the minimal cutsets technique gives overestimated results in a significant proportion of cases and underestimated results in some cases as well. Hence, the (indeed provocative) question in the title of this article.

  19. Integrated Level 3 risk assessment for the LaSalle Unit 2 nuclear power plant

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Brown, T.D.; Miller, L.A.

    1991-01-01

    An integrated Level 3 probabilistic risk assessment (PRA) was performed on the LaSalle County Station nuclear power plant using state-of-the-art PRA analysis techniques. The objective of this study was to provide an estimate of the risk to the offsite population during full power operation of the plant and to include a characterization of the uncertainties in the calculated risk values. Uncertainties were included in the accident frequency analysis, accident progression analysis, and the source term analysis. Only weather uncertainties were included in the consequence analysis. In this paper selected results from the accident frequency, accident progression, source term, consequence, and integrated risk analyses are discussed and the methods used to perform a fully integrated Level 3 PRA are examined. LaSalle County Station is a two-unit nuclear power plant located 55 miles southwest of Chicago, Illinois. Each unit utilizes a Mark 2 containment to house a General Electric 3323 MWt BWR-5 reactor. This PRA, which was performed on Unit 2, included internal as well as external events. External events that were propagated through the risk analysis included earthquakes, fires, and floods. The internal event accident scenarios included transients, transient-induced LOCAs (inadvertently stuck open relief valves), anticipated transients without scram, and loss of coolant accidents

  20. Hepatitis Risk Assessment

    Science.gov (United States)

    ... please visit this page: About CDC.gov . Hepatitis Risk Assessment Recommend on Facebook Tweet Share Compartir Viral Hepatitis. Are you at risk? Take this 5 minute Hepatitis Risk Assessment developed ...

  1. Uncertainty and sensitivity studies supporting the interpretation of the results of TVO I/II PRA

    International Nuclear Information System (INIS)

    Holmberg, J.

    1992-01-01

    A comprehensive Level 1 probabilistic risk assessment (PRA) has been performed for the TVO I/II nuclear power units. As a part of the PRA project, uncertainties of risk models and methods were systematically studied in order to describe them and to demonstrate their impact by way of results. The uncertainty study was divided into two phases: a qualitative and a quantitative study. The qualitative study contained identification of uncertainties and qualitative assessments of their importance. The PRA was introduced, and identified assumptions and uncertainties behind the models were documented. The most significant uncertainties were selected by importance measures or other judgements for further quantitative studies. The quantitative study included sensitivity studies and propagation of uncertainty ranges. In the sensitivity studies uncertain assumptions or parameters were varied in order to illustrate the sensitivity of the models. The propagation of the uncertainty ranges demonstrated the impact of the statistical uncertainties of the parameter values. The Monte Carlo method was used as a propagation method. The most significant uncertainties were those involved in modelling human interactions, dependences and common cause failures (CCFs), loss of coolant accident (LOCA) frequencies and pressure suppression. The qualitative mapping out of the uncertainty factors turned out to be useful in planning quantitative studies. It also served as internal review of the assumptions made in the PRA. The sensitivity studies were perhaps the most advantageous part of the quantitative study because they allowed individual analyses of the significance of uncertainty sources identified. The uncertainty study was found reasonable in systematically and critically assessing uncertainties in a risk analysis. The usefulness of this study depends on the decision maker (power company) since uncertainty studies are primarily carried out to support decision making when uncertainties are

  2. Review of the Diablo Canyon probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program

  3. Performing Probabilistic Risk Assessment Through RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. Kinoshita

    2013-06-01

    The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data mining module

  4. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal.

    Science.gov (United States)

    Stehle, Sebastian; Knäbel, Anja; Schulz, Ralf

    2013-08-01

    Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

  5. NRC Support for the Kalinin (VVER) probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bley, D.; Diamond, D.J.; Chu, T.L.; Azarm, A.; Pratt, W.T.; Johnson, D.; Szukiewicz, A.; Drouin, M.; El-Bassioni, A.; Su, T.M.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) and the Federal Nuclear and Radiation Safety Authority of the Russian Federation have been working together since 1994 to carry out a probabilistic risk assessment (PRA) of a VVER-1000 in the Russian Federation. This was a recognition by both parties that this technology has had a profound effect on the discipline of nuclear reactor safety in the West and that the technology should be transferred to others so that it can be applied to Soviet-designed plants. The NRC provided funds from the Agency for International Development and technical support primarily through Brookhaven National Laboratory and its subcontractors. The latter support was carried out through workshops, by documenting the methodology to be used in a set of guides, and through periodic review of the technical activity. The result of this effort to date includes a set of procedure guides, a draft final report on the Level 1 PRA for internal events (excluding internal fires and floods), and progress reports on the fire, flood, and seismic analysis. It is the authors belief that the type of assistance provided by the NRC has been instrumental in assuring a quality product and transferring important technology for use by regulators and operators of Soviet-designed reactors. After a thorough review, the report will be finalized, lessons learned will be applied in the regulatory and operational regimes in the Russian Federation, and consideration will be given to supporting a containment analysis in order to complete a simplified Level 2 PRA

  6. Dutch Risk Assessment tools

    NARCIS (Netherlands)

    Venema, A.

    2015-01-01

    The ‘Risico- Inventarisatie- en Evaluatie-instrumenten’ is the name for the Dutch risk assessment (RA) tools. A RA tool can be used to perform a risk assessment including an evaluation of the identified risks. These tools were among the first online risk assessment tools developed in Europe. The

  7. Risk-Informed Safety Assurance and Probabilistic Assessment of Mission-Critical Software-Intensive Systems

    Science.gov (United States)

    Guarro, Sergio B.

    2010-01-01

    This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.

  8. Efforts to utilize risk assessment at nuclear power plants

    International Nuclear Information System (INIS)

    Narumiya, Yoshiyuki

    2015-01-01

    Risk assessment means the use of the outputs that have been obtained through risk identification and risk analysis (risk information), followed by the determination of the response policy by comparing these outputs with the risk of judgement standards. This paper discusses the use of risk information with multifaceted nature and its significance, and the challenges to the further penetration of these items. As the lessons and risk assessment learnt from the past accidents, this paper takes up the cases of the severe accidents of Three Mile Island, Chernobyl, and Fukushima Daiichi power stations, and discusses their causes and expansion factors. In particular, at Fukushima Daiichi Nuclear Power Station, important lessons were shortage in measures against the superimposition of earthquake and tsunami, and the insufficient use of risk assessment. This paper classified risk assessment from the viewpoint of risk information, and showed the contents and index for each item of risk reduction trends, risk increase trends, and measures according to the importance of risk. As the benefits of activities due to risk assessment, this paper referred to the application cases of the probabilistic risk assessment (PRA) of IAEA, and summarized the application activities of 10 items of risk indexes by classifying them to safety benefits and operational benefits. For example, in the item of flexible Allowed Outage Time (AOT), the avoidance of plant shutdown and the flexibility improvement of maintenance scheduling at a plant are corresponding to the above-mentioned benefits, respectively. (A.O.)

  9. The implications of probabilistic risk assessment for safety policy

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1987-01-01

    The use of PRA results in decision making requires a level of understanding on the part of the decision maker which is higher than that obtaining previously. The most important application of PRA lies not in the final results but in the intermediate results which refer to specific systems and operations. Such intermediate results are of great value either at the design stage or later during operation. One of the most 'visible' uses of PRA results is in comparing calculated plant risks with either proposed acceptability criteria, or with other plant, or even natural events. The capability to perform PRA has been established. Only the incorporation of PRA into the licensing process is lacking. The principal conclusions on the implications of PRA for safety policy are as follows: regardless of its state of development, PRA is the only means available for calculating public risk, being able to quantify risk is important in policy related to risk acceptability and to national energy policy. PRAs will be used to establish research and development priorities. Any hazardous plant can be treated using the same methods. More sophisticated methods will be used for solving engineering problems. (author)

  10. 2009 Space Shuttle Probabilistic Risk Assessment Overview

    Science.gov (United States)

    Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.

    2010-01-01

    Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.

  11. An approach for using risk assessment in risk-informed decisions on plant-specific changes to the licensing basis

    International Nuclear Information System (INIS)

    Caruso, Mark A.; Cheok, Michael C.; Cunningham, Mark A.; Holahan, Gary M.; King, Thomas L.; Parry, Gareth W.; Ramey-Smith, Ann M.; Rubin, Mark P.; Thadani, Ashok C.

    1999-01-01

    This paper discusses an acceptable approach that the US Nuclear Regulatory Commission staff has proposed for using Probabilistic Risk Assessment in making decisions on changes to the licensing basis of a nuclear power plant. First, the overall philosophy of risk-informed decision-making, and the process framework are described. The philosophy is encapsulated in five principles, one of which states that, if the proposed change leads to an increase in core damage frequency or risk, the increases must be small and consistent with the intent of the Nuclear Regulatory Commission's Safety Goal Policy Statement. The second part of the paper discusses the use of PRA to demonstrate that this principle has been met. The discussion focuses on the acceptance guidelines, and on comparison of the PRA results with those guidelines. The difficulties that arise because of limitations in scope and analytical uncertainties are discussed and approaches to accommodate these difficulties in the decision-making are described

  12. The development by means of trial assessments, of a procedure for radiological risk assessment of underground disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Thompson, B.G.J.

    1987-01-01

    Seven trials are outlined showing the development and testing of a procedure based upon pra using Monte Carlo simulators, to assess post closure risks from the underground disposal of low and intermediate level radioactive wastes. The PRA method is found to be more justifiable than the use of 'best estimates'. Problems of accounting for long-term environmental changes and of future human intrusions are discussed. The importance of achieving statistical convergence within practical time scales and resources and of accounting for the influence of different sources of systematic bias is emphasised. (orig.)

  13. Assessment and presentation of uncertainties in probabilistic risk assessment: how should this be done

    International Nuclear Information System (INIS)

    Garlick, A.R.; Holloway, N.J.

    1987-01-01

    Despite continuing improvements in probabilistic risk assessment (PRA) techniques, PRA results, particularly those including degraded core analysis, will have maximum uncertainties of several orders of magnitude. This makes the expression of results, a matter no less important than their estimation. We put forward some ideas on the assessment and expression of highly uncertain quantities, such as probabilities of outcomes of a severe accident. These do not form a consistent set, but rather a number of alternative approaches aimed at stimulating discussion. These include non-probability expressions, such as fuzzy logic or Schafer's support and plausibility which abandon the purely probabilistic expression of risk for a more flexible type of expression, in which other types of measure are possible. The 'risk equivalent plant' concepts represent the opposite approach. Since uncertainty in a risk measure is in itself a form of risk, an attempt is made to define a 'risk equivalent' which is a risk with perfectly defined parameters, regarded (by means of suitable methods of judgement) as 'equally undesirable' with the actual plant. Some guidelines are given on the use of Bayesian methods in data-free or limited data situations. (author)

  14. Significance of earthquake risk in nuclear power plant probabilistic risk assessments

    International Nuclear Information System (INIS)

    Sues, R.H.; Amico, P.J.; Campbell, R.D.

    1990-01-01

    During the last eight years, approximately 25 utility-sponsored probabilistic risk assessments (PRAs) have been conducted for US nuclear reactors. Of these, ten have been published, seven of which have included complete seismic risk assessment. The results of the seven published PRAs are reviewed here in order to ascertain the significance of the risk due to earthquake initiating events. While PRA methodology has been in a state of development over the past seven years, and the results are subject to interpretation (as discussed in the paper), from the review conducted it is clear that earthquake-induced initiating events are important risk contributors. It is concluded that earthquake initiating events should not be dismissed, a priori, in any nuclear plant risk assessment. (orig.)

  15. Results and insights of a level-1 internal event PRA of a PWR during mid-loop operations

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M.; Holmes, B.; Su, R.F.; Dang, V.; Siu, N.; Bley, D.; Johnson, D.; Lin, J.

    1994-01-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analysis that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by BNL and SNL. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. The objective of this paper is to present the approach utilized in the level-1 PRA for the Surry plant, and discuss the results obtained. A comparison of the results with those of other shutdown studies is provided. Relevant safety issues such as plant and hardware configurations, operator training, and instrumentation and control is discussed

  16. Use of plant-specific PRA in an EOP scope audit

    International Nuclear Information System (INIS)

    O'Brien, J.J.

    1991-01-01

    Traditionally, decisions on which accident scenarios to proceduralize as emergency operating procedures (EOPs) have been based on existing design basis analyses, engineering judgment, and probabilistic risk assessments (PRAs) on generic plants. This approach has important strengths and limits. The major limitation of generic PRAs is their inability to account for plant-specific features. Use of plant-specific PRA to determine the impact of proceduralizing, or not proceduralizing, responses to scenarios considers plant-specific features. This helps to eliminate unnecessary EOPs, thus allowing resources to be concentrated on scenarios that are more important for a particular plant. In preparation for a US Nuclear Regulatory Commission audit, a plant-specific PRA was used to assess and quantify the plant's previous decision not to implement six reference emergency response guidelines (ERGs) as procedures. The original justification for nonimplementation of the ERGs was based on engineering judgment. The PRA provided a quantitative justification for implementation/nonimplementation of each guidelines. This analysis accounted for plant-specific design features not common to all reference plants

  17. Assessment of cardiovascular risk.

    LENUS (Irish Health Repository)

    Cooney, Marie Therese

    2010-10-01

    Atherosclerotic cardiovascular disease (CVD) is the most common cause of death worldwide. Usually atherosclerosis is caused by the combined effects of multiple risk factors. For this reason, most guidelines on the prevention of CVD stress the assessment of total CVD risk. The most intensive risk factor modification can then be directed towards the individuals who will derive the greatest benefit. To assist the clinician in calculating the effects of these multiple interacting risk factors, a number of risk estimation systems have been developed. This review address several issues regarding total CVD risk assessment: Why should total CVD risk be assessed? What risk estimation systems are available? How well do these systems estimate risk? What are the advantages and disadvantages of the current systems? What are the current limitations of risk estimation systems and how can they be resolved? What new developments have occurred in CVD risk estimation?

  18. GM Risk Assessment

    Science.gov (United States)

    Sparrow, Penny A. C.

    GM risk assessments play an important role in the decision-making process surrounding the regulation, notification and permission to handle Genetically Modified Organisms (GMOs). Ultimately the role of a GM risk assessment will be to ensure the safe handling and containment of the GMO; and to assess any potential impacts on the environment and human health. A risk assessment should answer all ‘what if’ scenarios, based on scientific evidence.

  19. A socio-technical, probabilistic risk assessment model for surgical site infections in ambulatory surgery centers.

    Science.gov (United States)

    Bish, Ebru K; El-Amine, Hadi; Steighner, Laura A; Slonim, Anthony D

    2014-10-01

    To understand how structural and process elements may affect the risk for surgical site infections (SSIs) in the ambulatory surgery center (ASC) environment, the researchers employed a tool known as socio-technical probabilistic risk assessment (ST-PRA). ST-PRA is particularly helpful for estimating risks in outcomes that are very rare, such as the risk of SSI in ASCs. Study objectives were to (1) identify the risk factors associated with SSIs resulting from procedures performed at ASCs and (2) design an intervention to mitigate the likelihood of SSIs for the most common risk factors that were identified by the ST-PRA for a particular surgical procedure. ST-PRA was used to study the SSI risk in the ASC setting. Both quantitative and qualitative data sources were utilized, and sensitivity analysis was performed to ensure the robustness of the results. The event entitled "fail to protect the patient effectively" accounted for 51.9% of SSIs in the ambulatory care setting. Critical components of this event included several failure risk points related to skin preparation, antibiotic administration, staff training, proper response to glove punctures during surgery, and adherence to surgical preparation rules related to the wearing of jewelry, watches, and artificial nails. Assuming a 75% reduction in noncompliance on any combination of 2 of these 5 components, the risk for an SSI decreased from 0.0044 to between 0.0027 and 0.0035. An intervention that targeted the 5 major components of the major risk point was proposed, and its implications were discussed.

  20. Results and insights of a level-1 internal event PRA of a PWR during mid-loop operations

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1993-01-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analysis that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. The objective of this paper is to present the approach utilized in the level-1 PRA for the Surry plant, and discuss the results obtained. A comparison of the results with those of other shutdown studies is provided. Relevant safety issues such as plant and hardware configurations, operator training, and instrumentation and control is discussed

  1. Strategic Risk Assessment

    Science.gov (United States)

    Derleth, Jason; Lobia, Marcus

    2009-01-01

    This slide presentation provides an overview of the attempt to develop and demonstrate a methodology for the comparative assessment of risks across the entire portfolio of NASA projects and assets. It includes information about strategic risk identification, normalizing strategic risks, calculation of relative risk score, and implementation options.

  2. Preliminary ATWS analysis for the IRIS PRA

    International Nuclear Information System (INIS)

    Maddalena Barra; Marco S Ghisu; David J Finnicum; Luca Oriani

    2005-01-01

    Full text of publication follows: The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002. IRIS has been primarily focused on establishing a design with innovative safety characteristics. The first line of defense in IRIS is to eliminate event initiators that could potentially lead to core damage. In IRIS, this concept is implemented through the 'safety by design' approach, which allows to minimize the number and complexity of the safety systems and required operator actions. The end result is a design with significantly reduced complexity and improved operability, and extensive plant simplifications to enhance construction. To support the optimization of the plant design and confirm the effectiveness of the safety by design approach in mitigating or eliminating events and thus providing a significant reduction in the probability of severe accidents, the PRA is being used as an integral part of the design process. A preliminary but extensive Level 1 PRA model has been developed to support the pre-application licensing of the IRIS design. As a result of the Preliminary IRIS PRA, an optimization of the design from a reliability point of view was completed, and an extremely low (about 1.2 E -8 ) core damage frequency (CDF) was assessed to confirm the impact of the safety by design approach. This first assessment is a result of a PRA model including internal initiating events. During this assessment, several assumptions were necessary to complete the CDF evaluation. In particular Anticipated Transients Without Scram (ATWS) were not included in this initial assessment, because their contribution to core damage frequency was assumed

  3. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joo Eon

    2009-01-01

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: · Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA · Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding · Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs

  4. Insights from Guideline for Performance of Internal Flooding Probabilistic Risk Assessment (IFPRA)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Yeong; Yang, Joo Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    An internal flooding (IF) risk assessment refers to the quantitative probabilistic safety assessment (PSA) treatment of flooding as a result of pipe and tank breaks inside the plants, as well as from other recognized flood sources. The industry consensus standard for Internal Events Probabilistic Risk Assessment (ASME-RA-Sb-2005) includes high-level and supporting technical requirements for developing internal flooding probabilistic risk assessment (IFPRA). This industry standard is endorsed in Regulatory Guide 1.200, Revision 1 as an acceptable approach for addressing the risk contribution from IF events for risk informed applications that require U.S. Nuclear Regulatory commission (NRC) approval. In 2006, EPRI published a draft report for IFPRA that addresses the requirements of the ASME PRA consensus standard and have made efforts to refine and update the final EPRI IFPRA guideline. Westinghouse has performed an IFPRA analysis for several nuclear power plants (NPPs), such as Watts Bar and Fort Calhoun, using the draft EPRI guidelines for development of an IFPRA. Proprietary methodologies have been developed to apply the EPRI guidelines. The objectives of the draft report for IFPRA guideline are to: {center_dot} Provide guidance for PSA practitioners in the performance of the elements of a PRA associated with internal flooding events consistent with the current state of the art for internal flooding PRA {center_dot} Provide guidance regarding acceptable approaches that is sufficient to meeting the requirements of the ASME PRA Standard associated with internal flooding {center_dot} Incorporate lessons learned in the performance of internal flooding PRAs including those identified as pilot applications of earlier drafts of this procedures guide The purpose of this paper is to present a vision for domestic nuclear power plants' IFPRA by comparing the method of the draft EPRI guidelines with the existing IFPRA method for domestic NPPs.

  5. Licensing topical report: application of probabilistic risk assessment in the selection of design basis accidents

    International Nuclear Information System (INIS)

    Houghton, W.J.

    1980-06-01

    A probabilistic risk assessment (PRA) approach is proposed to be used to scrutinize selection of accident sequences. A technique is described in this Licensing Topical Report to identify candidates for Design Basis Accidents (DBAs) utilizing the risk assessment results. As a part of this technique, it is proposed that events with frequencies below a specified limit would not be candidates. The use of the methodology described is supplementary to the traditional, deterministic approach and may result, in some cases, in the selection of multiple failure sequences as DBAs; it may also provide a basis for not considering some traditionally postulated events as being DBAs. A process is then described for selecting a list of DBAs based on the candidates from PRA as supplementary to knowledge and judgments from past licensing practice. These DBAs would be the events considered in Chapter 15 of Safety Analysis Reports of high-temperature gas-cooled reactors

  6. Ecological risk assessment

    National Research Council Canada - National Science Library

    Suter, Glenn W; Barnthouse, L. W. (Lawrence W)

    2007-01-01

    Ecological risk assessment is commonly applied to the regulation of chemicals, the remediation of contaminated sites, the monitoring of importation of exotic organisms, the management of watersheds...

  7. Risk Assessment Overview

    Science.gov (United States)

    Prassinos, Peter G.; Lyver, John W., IV; Bui, Chinh T.

    2011-01-01

    Risk assessment is used in many industries to identify and manage risks. Initially developed for use on aeronautical and nuclear systems, risk assessment has been applied to transportation, chemical, computer, financial, and security systems among others. It is used to gain an understanding of the weaknesses or vulnerabilities in a system so modification can be made to increase operability, efficiency, and safety and to reduce failure and down-time. Risk assessment results are primary inputs to risk-informed decision making; where risk information including uncertainty is used along with other pertinent information to assist management in the decision-making process. Therefore, to be useful, a risk assessment must be directed at specific objectives. As the world embraces the globalization of trade and manufacturing, understanding the associated risk become important to decision making. Applying risk assessment techniques to a global system of development, manufacturing, and transportation can provide insight into how the system can fail, the likelihood of system failure and the consequences of system failure. The risk assessment can identify those elements that contribute most to risk and identify measures to prevent and mitigate failures, disruptions, and damaging outcomes. In addition, risk associated with public and environment impact can be identified. The risk insights gained can be applied to making decisions concerning suitable development and manufacturing locations, supply chains, and transportation strategies. While risk assessment has been mostly applied to mechanical and electrical systems, the concepts and techniques can be applied across other systems and activities. This paper provides a basic overview of the development of a risk assessment.

  8. Biosafety Risk Assessment Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, Susan Adele [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Salerno, Reynolds Mathewson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). International Biological Threat Reduction Program; Wagner, Stefan M. [Public Health Agency of Canada, Winnipeg, MB (Canada). Canadian Science Centre for Human and Animal Health (CSCHAH); Shigematsu, Mika [National Inst. of Infectious Diseases (NIID), Tokyo (Japan); Risi, George [Infectious Disease Specialists, P.C, Missoula, MT (United States); Kozlovac, Joe [US Dept. of Agriculture (USDA)., Beltsville, MD (United States); Halkjaer-Knudsen, Vibeke [Statens Serum Inst., Copenhagen (Denmark); Prat, Esmeralda [Bayer CropScience, Monheim am Rhein (Germany)

    2010-10-01

    Laboratories that work with biological agents need to manage their safety risks to persons working the laboratories and the human and animal community in the surrounding areas. Biosafety guidance defines a wide variety of biosafety risk mitigation measures, which include measures which fall under the following categories: engineering controls, procedural and administrative controls, and the use of personal protective equipment; the determination of which mitigation measures should be used to address the specific laboratory risks are dependent upon a risk assessment. Ideally, a risk assessment should be conducted in a manner which is standardized and systematic which allows it to be repeatable and comparable. A risk assessment should clearly define the risk being assessed and avoid over complication.

  9. Offshore risk assessment

    CERN Document Server

    Vinnem, Jan-Erik

    2014-01-01

      Offshore Risk Assessment was the first book to deal with quantified risk assessment (QRA) as applied specifically to offshore installations and operations. Risk assessment techniques have been used for more than three decades in the offshore oil and gas industry, and their use is set to expand increasingly as the industry moves into new areas and faces new challenges in older regions.   This updated and expanded third edition has been informed by a major R&D program on offshore risk assessment in Norway and summarizes research from 2006 to the present day. Rooted with a thorough discussion of risk metrics and risk analysis methodology,  subsequent chapters are devoted to analytical approaches to escalation, escape, evacuation and rescue analysis of safety and emergency systems.   Separate chapters analyze the main hazards of offshore structures: fire, explosion, collision, and falling objects as well as structural and marine hazards. Risk mitigation and control are discussed, as well as an illustrat...

  10. MATILDA Version-2: Rough Earth TIALD Model for Laser Probabilistic Risk Assessment in Hilly Terrain - Part II

    Science.gov (United States)

    2017-07-28

    risk assessment for “unsafe” scenarios. Recently, attention in the DoD has turned to Probabilistic Risk Assessment (PRA) models [5,6] as an...corresponding to the CRA undershoot boundary. The magenta- coloured line represents the portion of the C-RX(U) circle that would contribute to the...Tertiary Precaution Surface. Undershoot related laser firing restrictions within the green- coloured C-RX(U) can be ignored. Figure 34

  11. EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

    International Nuclear Information System (INIS)

    2004-01-01

    This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding (RS.1) and an accompanying Fire Research Addendum (RS.2). Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

  12. Operational risk assessment.

    Science.gov (United States)

    McKim, Vicky L

    2017-06-01

    In the world of risk management, which encompasses the business continuity disciplines, many types of risk require evaluation. Financial risk is most often the primary focus, followed by product and market risks. Another critical area, which typically lacks a thorough review or may be overlooked, is operational risk. This category encompasses many risk exposure types including those around building structures and systems, environmental issues, nature, neighbours, clients, regulatory compliance, network, data security and so on. At times, insurance carriers will assess internal hazards, but seldom do these assessments include more than a cursory look at other types of operational risk. In heavily regulated environments, risk assessments are required but may not always include thorough assessments of operational exposures. Vulnerabilities may linger or go unnoticed, only to become the catalyst for a business disruption at a later time, some of which are so severe that business recovery becomes nearly impossible. Businesses may suffer loss of clients as the result of a prolonged disruption of services. Comprehensive operational risk assessments can assist in identifying such vulnerabilities, exposures and threats so that the risk can be minimised or removed. This paper lays out how an assessment of this type can be successfully conducted.

  13. Augmenting Probabilistic Risk Assesment with Malevolent Initiators

    International Nuclear Information System (INIS)

    Smith, Curtis; Schwieder, David

    2011-01-01

    As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This paper explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering 'random' failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts.

  14. Risk assessment [Chapter 9

    Science.gov (United States)

    Dennis S. Ojima; Louis R. Iverson; Brent L. Sohngen; James M. Vose; Christopher W. Woodall; Grant M. Domke; David L. Peterson; Jeremy S. Littell; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary W. Yohe; Megan M. Friggens

    2014-01-01

    What is "risk" in the context of climate change? How can a "risk-based framework" help assess the effects of climate change and develop adaptation priorities? Risk can be described by the likelihood of an impact occurring and the magnitude of the consequences of the impact (Yohe 2010) (Fig. 9.1). High-magnitude impacts are always...

  15. Chemical Risk Assessment

    Science.gov (United States)

    This course is aimed at providing an overview of the fundamental guiding principles and general methods used in chemical risk assessment. Chemical risk assessment is a complex and ever-evolving process. These principles and methods have been organized by the National Research Cou...

  16. Survey of probabilistic methods in safety and risk assessment for nuclear power plant licensing

    International Nuclear Information System (INIS)

    1984-04-01

    After an overview about the goals and general methods of probabilistic approaches in nuclear safety the main features of probabilistic safety or risk assessment (PRA) methods are discussed. Mostly in practical applications not a full-fledged PRA is applied but rather various levels of analysis leading from unavailability assessment of systems over the more complex analysis of the probable core damage stages up to the assessment of the overall health effects on the total population from a certain practice. The various types of application are discussed in relation to their limitation and benefits for different stages of design or operation of nuclear power plants. This gives guidance for licensing staff to judge the usefulness of the various methods for their licensing decisions. Examples of the application of probabilistic methods in several countries are given. Two appendices on reliability analysis and on containment and consequence analysis provide some more details on these subjects. (author)

  17. International status of application of probabilistic risk analysis

    International Nuclear Information System (INIS)

    Cullingford, M.C.

    1984-01-01

    Probabilistic Risk Assessment (PRA) having been practised for about ten years and with more than twenty studies completed has reached a level of maturity such that the insights and other products derived from specific studies may be assessed. The first full-scale PRA studies were designed to develop the methodology and assess the overall risk from nuclear power. At present PRA is performed mostly for individual plants to identify core damage accident sequences and significant contributors to such sequences. More than 25 countries are utilizing insights from PRA, some from full-scale PRA studies and other countries by performing reliability analyses on safety systems identified as important contributors to one or more core melt sequences. Many Member States of the IAEA fall into one of three groups: those having (a) a large, (b) a medium number of reactor-years of operating experience and (c) those countries in the planning or feasibility study stages of a nuclear power programme. Of the many potential uses of PRA the decision areas of safety improvement by backfitting, development of operating procedures and as the basis of standards are felt to be important by countries of all three groups. The use of PRA in showing compliance with safety goals and for plant availability studies is held to be important only by those countries which have operating experience. The evolution of the PRA methodology has led to increased attention to quantification of uncertainties both in the probabilities and consequences. Although many products from performing a PRA do not rely upon overall risk numbers, increasing emphasis is being placed on the interpretation of uncertainties in risk numbers for use in decisions. International co-operation through exchange of information regarding experience with PRA methodology and its application to nuclear safety decisions will greatly enhance the widespread use of PRA. (author)

  18. Overview of risk assessment

    International Nuclear Information System (INIS)

    Rimington, J.D.

    1992-01-01

    The paper begins by defining some terms, and then refer to a number of technical and other difficulties. Finally it attempts to set out why risk assessment is important and what its purposes are. 2) First, risk and risk assessment - what are they?. 3) Risk is a subject of universal significance. Life is very uncertain, and we can achieve no object or benefit in it except by approaching nearer to particular hazards which lie between us and our objects. That approach represents acceptance of risk. 4) Risk assessment is a way of systematising our approach to hazard with a view to determining what is more and what is less risky. It helps us in the end to diminish our exposure while obtaining whatever benefits we have in mind, or to optimise the risks and the benefits

  19. Overview of risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rimington, J D [Health and Safety Executive (United Kingdom)

    1992-07-01

    The paper begins by defining some terms, and then refer to a number of technical and other difficulties. Finally it attempts to set out why risk assessment is important and what its purposes are. 2) First, risk and risk assessment - what are they?. 3) Risk is a subject of universal significance. Life is very uncertain, and we can achieve no object or benefit in it except by approaching nearer to particular hazards which lie between us and our objects. That approach represents acceptance of risk. 4) Risk assessment is a way of systematising our approach to hazard with a view to determining what is more and what is less risky. It helps us in the end to diminish our exposure while obtaining whatever benefits we have in mind, or to optimise the risks and the benefits.

  20. Assessing risk from intelligent attacks: A perspective on approaches

    International Nuclear Information System (INIS)

    Guikema, Seth D.; Aven, Terje

    2010-01-01

    Assessing the uncertainties in and severity of the consequences of intelligent attacks are fundamentally different from risk assessment for accidental events and other phenomena with inherently random failures. Intelligent attacks against a system involve adaptation on the part of the adversary. The probabilities of the initiating events depend on the risk management actions taken, and they may be more difficult to assess due to high degrees of epistemic uncertainty about the motivations and future actions of adversaries. Several fundamentally different frameworks have been proposed for assessing risk from intelligent attacks. These include basing risk assessment and management on game theoretic modelling of attacker actions, using a probabilistic risk analysis (PRA) approach based on eliciting probabilities of different initiating events from appropriate experts, assessing uncertainties beyond probabilities and expected values, and ignoring the probabilities of the attacks and choosing to protect highest valued targets. In this paper we discuss and compare the fundamental assumptions that underlie each of these approaches. We then suggest a new framework that makes the fundamental assumptions underlying the approaches clear to decision makers and presents them with a suite of results from conditional risk analysis methods. Each of the conditional methods presents the risk from a specified set of fundamental assumptions, allowing the decision maker to see the impacts of these assumptions on the risk management strategies considered and to weight the different conditional results with their assessments of the relative likelihood of the different sets of assumptions.

  1. State of risk assessment

    International Nuclear Information System (INIS)

    Conrad, J.

    1978-03-01

    In view of the growing importance assumed in recent years by scientific work on the calculation, quantification, evaluation and acceptance as well as behavior in the face of risks in general and more specifically, the risks of large industrial plants, the report attempts to provide a survey of the current situation, results and evaluation of this new branch of research, risk assessment. The emphasis of the report is on the basic discussion and criticism of the theoretical and methodological approaches used in the field of risk assessment (section 3). It is concerned above all with - methodical problems of determining and quantifying risks (3.1) - questions of the possibility of risk evaluation and comp arison (3.1, 3.2) - the premises of normative and empirical studies on decision making under risk (3.2, 3.3) - investigations into society's acceptance of risks involved in the introduction of new technologies (3.4) - attempts to combine various aspects of the field of risk assessment in a unified concept (3.5, 3.6, 3.7). Because risk assessment is embedded in the framework of decision theory and technology assessment, it can be implicitly evaluated at a more general level within this framework, as far as its possibilities and weaknesses of method and application are concerned (section 4). Sections 2 and 5 deal with the social context of origin and utilization of risk assessment. Finally, an attempt is made at a summary indicating the possible future development of risk assessment. (orig./HP) [de

  2. Patient caries risk assessment

    DEFF Research Database (Denmark)

    Twetman, Svante; Fontana, Margherita

    2009-01-01

    Risk assessment is an essential component in the decision-making process for the correct prevention and management of dental caries. Multiple risk factors and indicators have been proposed as targets in the assessment of risk of future disease, varying sometimes based on the age group at which...... they are targeted. Multiple reviews and systematic reviews are available in the literature on this topic. This chapter focusses primarily on results of reviews based on longitudinal studies required to establish the accuracy of caries risk assessment. These findings demonstrate that there is a strong body...... of evidence to support that caries experience is still, unfortunately, the single best predictor for future caries development. In young children, prediction models which include a variety of risk factors seem to increase the accuracy of the prediction, while the usefulness of additional risk factors...

  3. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    Science.gov (United States)

    Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis; hide

    2011-01-01

    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was

  4. The EBR-II Probabilistic Risk Assessment: Results and insights

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1993-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1. 6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The probability of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquake) is 3.6 10 -6 yr -1 . overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double, vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  5. GAR Global Risk Assessment

    Science.gov (United States)

    Maskrey, Andrew; Safaie, Sahar

    2015-04-01

    Disaster risk management strategies, policies and actions need to be based on evidence of current disaster loss and risk patterns, past trends and future projections, and underlying risk factors. Faced with competing demands for resources, at any level it is only possible to priorities a range of disaster risk management strategies and investments with adequate understanding of realised losses, current and future risk levels and impacts on economic growth and social wellbeing as well as cost and impact of the strategy. The mapping and understanding of the global risk landscape has been greatly enhanced by the latest iteration of the GAR Global Risk Assessment and the objective of this submission is to present the GAR global risk assessment which contributed to Global Assessment Report (GAR) 2015. This initiative which has been led by UNISDR, was conducted by a consortium of technical institutions from around the world and has covered earthquake, cyclone, riverine flood, and tsunami probabilistic risk for all countries of the world. In addition, the risks associated with volcanic ash in the Asia-Pacific region, drought in various countries in sub-Saharan Africa and climate change in a number of countries have been calculated. The presentation will share thee results as well as the experience including the challenges faced in technical elements as well as the process and recommendations for the future of such endeavour.

  6. Innovative real time simulation training and nuclear probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reisinger, M.F.

    1991-01-01

    Operator errors have been an area of public concern for the safe operation of nuclear power plants since the TMI2 incident. Simply stated, nuclear plants are very complex systems and the public is skeptical of the operators' ability to comprehend and deal with the vast indications and complexities of potential nuclear power plant events. Prior to the TMI2 incident, operator errors and human factors were not included as contributing factors in the Probabilistic Risk Assessment (PRA) studies of nuclear power plant accidents. More recent efforts in nuclear risk assessment have addressed some of the human factors affecting safe nuclear plant operations. One study found four major factors having significant impact on operator effectiveness. This paper discusses human factor PRAs, new applications in simulation training and the specific potential benefits from simulation in promoting safer operation of future power plants as well as current operating power plants

  7. Sovereign default risk assessment

    NARCIS (Netherlands)

    Rijken, H.A.; Altman, E.I.

    2013-01-01

    We propose a new approach toward assessing sovereign risk by examining rigorously the health and aggregate default risk of a nation's private corporate sector. Models can be utilised to measure the probability of default of the non-financial sector cumulatively for five years, both as an absolute

  8. RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

    Energy Technology Data Exchange (ETDEWEB)

    C. Rabiti; D. Mandelli; A. Alfonsi; J. Cogliati; R. Kinoshita; D. Gaston; R. Martineau; C. Curtis

    2013-06-01

    Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new high fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish this task, Reactor Analysis and Virtual Control Environment (RAVEN) has been designed to provide an easy to use Graphical User Interface (GUI) for building plant models and to leverage artificial intelligence algorithms in order to reduce computational time, improve results, and help the user to identify the behavioral pattern of the Nuclear Power Plants (NPPs). In this paper we will present the GUI implementation and its current capability status. We will also introduce the support vector machine algorithms and show our evaluation of their potentiality in increasing the accuracy and reducing the computational costs of PRA analysis. In this evaluation we will refer to preliminary studies performed under the Risk Informed Safety Margins Characterization (RISMC) project of the Light Water Reactors Sustainability (LWRS) campaign [3]. RISMC simulation needs and algorithm testing are currently used as a guidance to prioritize RAVEN developments relevant to PRA.

  9. Current and future applications of PRA in regulatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P.; Murphy, J.A.; Cunningham, M.A. [Nuclear Regulatory Commission, Washington, DC (United States)] [and others

    1995-04-01

    Probabilistic Risk Assessments (PRAs) have proven valuable in providing the regulators, the nuclear plant operators, and the reactor designers insights into plant safety, reliability, design and operation. Both the NRC Commissioners and the staff have grown to appreciate the valuable contributions PRAs can have in the regulatory arena, though I will admit the existence of some tendencies for strict adherence to the deterministic approach within the agency and the public at large. Any call for change, particularly one involving a major adjustment in approach to the regulation of nuclear power, will meet with a certain degree of resistance and retrenchment. Change can appear threatening and can cause some to question whether the safety mission is being fulfilled. This skepticism is completely appropriate and is, in fact, essential to a proper transition towards risk and performance-based approaches. Our task in the Office of Nuclear Regulatory Research is to increase the PRA knowledge base within the agency and develop appropriate guidance and methods needed to support the transitioning process.

  10. The tsunami probabilistic risk assessment of nuclear power plant (3). Outline of tsunami fragility analysis

    International Nuclear Information System (INIS)

    Mihara, Yoshinori

    2012-01-01

    Tsunami Probabilistic Risk Assessment (PRA) standard was issued in February 2012 by Standard Committee of Atomic Energy Society of Japan (AESJ). This article detailed tsunami fragility analysis, which calculated building and structure damage probability contributing core damage and consisted of five evaluation steps: (1) selection of evaluated element and damage mode, (2) selection of evaluation procedure, (3) evaluation of actual stiffness, (4) evaluation of actual response and (5) evaluation of fragility (damage probability and others). As an application example of the standard, calculation results of tsunami fragility analysis investigation by tsunami PRA subcommittee of AESJ were shown reflecting latest knowledge of damage state caused by wave force and others acted by tsunami from the 'off the Pacific Coast of Tohoku Earthquake'. (T. Tanaka)

  11. External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H.

    1989-01-01

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10 -4 . In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  12. System Analysis and Risk Assessment system (SARA) Version 4.0

    International Nuclear Information System (INIS)

    Sattison, M.B.; Russell, K.D.; Skinner, N.L.

    1992-01-01

    This NUREG is the tutorial for the System Analysis and Risk Assessment System (SARA) Version 4.0, a microcomputer-based system used to analyze the safety issues of a family [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. A series of lessons are provided that walk the user through some basic steps common to most analyses performed with SARA. The example problems presented in the lessons build on one another, and in combination, lead the user through all aspects of SARA sensitivity analysis

  13. Chlorine transportation risk assessment

    International Nuclear Information System (INIS)

    Lautkaski, Risto; Mankamo, Tuomas.

    1977-02-01

    An assessment has been made on the toxication risk of the population due to the bulk rail transportation of liquid chlorine in Finland. Fourteen typical rail accidents were selected and their probability was estimated using the accident file of the Finnish State Railways. The probability of a chlorine leak was assessed for each type of accident separately using four leak size categories. The assessed leakage probability was dominated by station accidents, especially by collisions of a chlorine tanker and a locomotive. Toxication hazard areas were estimated for the leak categories. A simple model was constructed to describe the centring of the densely populated areas along the railway line. A comparison was made between the obtained risk and some other risks including those due to nuclear reactor accidents. (author)

  14. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  15. An assessment of the low seismic risk of the inherently safe sodium advanced fast reactor (SAFR)

    International Nuclear Information System (INIS)

    Rutherford, P.D.

    1988-01-01

    A recent probabilistic risk assessment (PRA) of the sodium advanced fast reactor (SAFR) demonstrated the inherently low risk of advanced liquid-metal, pool-type fast reactors with inherent safety systems. As a result, it was recognized that external events, especially seismic events, may not only be a major contributor to risk (as shown in several LWR PRAs) but also may completely dominate the risk. Accordingly, a seismic risk assessment has been completed for SAFR, which resulted in a core damage frequency of 2 x 10 -7 /year and a large release frequency of 4 x 10 -9 /year. This paper reports that public health risk in terms of early fatality risk and latent fatality risk were also several orders of magnitude below the NRC safety goals and below recent LWR risks reported in NUREB/CR1150

  16. A pilot with computer-assisted psychosocial riskassessment for refugees

    Directory of Open Access Journals (Sweden)

    Ahmad Farah

    2012-07-01

    Full Text Available Abstract Background Refugees experience multiple health and social needs. This requires an integrated approach to care in the countries of resettlement, including Canada. Perhaps, interactive eHealth tools could build bridges between medical and social care in a timely manner. The authors developed and piloted a multi-risk Computer-assisted Psychosocial Risk Assessment (CaPRA tool for Afghan refugees visiting a community health center. The iPad based CaPRA survey was completed by the patients in their own language before seeing the medical practitioner. The computer then generated individualized feedback for the patient and provider with suggestions about available services. Methods A pilot randomized trial was conducted with adult Afghan refugees who could read Dari/Farsi or English language. Consenting patients were randomly assigned to the CaPRA (intervention or usual care (control group. All patients completed a paper-pencil exit survey. The primary outcome was patient intention to see a psychosocial counselor. The secondary outcomes were patient acceptance of the tool and visit satisfaction. Results Out of 199 approached patients, 64 were eligible and 50 consented and one withdrew (CaPRA = 25; usual care = 24. On average, participants were 37.6 years of age and had lived 3.4 years in Canada. Seventy-two percent of participants in CaPRA group had intention to visit a psychosocial counselor, compared to 46 % in usual care group [X2 (1=3.47, p = 0.06]. On a 5-point scale, CaPRA group participants agreed with the benefits of the tool (mean = 4 and were ‘unsure’ about possible barriers to interact with the clinicians (mean = 2.8 or to privacy of information (mean = 2.8 in CaPRA mediated visits. On a 5-point scale, the two groups were alike in patient satisfaction (mean = 4.3. Conclusion The studied eHealth tool offers a promising model to integrate medical and social care to address the health and settlement

  17. Guidelines on the scope, content, and use of comprehensive risk assessment in the management of high-level nuclear waste transportation

    International Nuclear Information System (INIS)

    Golding, D.; White, A.

    1990-12-01

    This report discusses the scope of risk assessment strategies in the management of the transport of high-level radioactive wastes. In spite of the shortcomings of probabilistic risk assessment(PRA), the Transportation Needs Assessment recommended this as the preferred methodology to assess the risks of high level nuclear waste (HLNW) transportation. A PRA also will need to heed the lessons learned from the development and application of PRA elsewhere, such as in the nuclear power industry. A set of guidelines will aid this endeavor by outlining the appropriate scope, content, and use of a risk assessment which is more responsive to the uncertainties, human-technical interactions, social forces, and iterative relationship with risk management strategies, than traditional PRAS. This more expansive definition, which encompasses but is not totally reliant on rigorous data requirements and quantitative probability estimates, we term Comprehensive Risk Assessment (CRA) Guidelines will be developed in three areas: the limitations of existing methodologies and suggested modifications; CRA as part of a flexible, effective, adaptive risk management system for HLNW transportation; and, the use of CRA in risk communication

  18. Concerning ethical risk assessment

    International Nuclear Information System (INIS)

    Boeckle, F.

    1991-01-01

    After a fundamental consideration of the concept of responsibility and 'long-term responsibility' for late sequelae, the problems of an ehtical assessment of risks were illustrated: The concept of risk itself poses three problems - predicting the probability of occurrence, assessing the damage = subjective classification of the degree of damage, determining whether the advantages outweigh the risks. It is not possible to weigh the advantages and risks against each other without assessing the goals and the priorities which have been set. Here ethics is called for, because it concerns itself with the reasonableness of evaluative decisions. Its task is to enable us to become aware of and comprehend our system of values in all of its complexity in reference to real life. Ethics can only fulfill its task if it helps us to adopt an integral perspective, i.e. if it centers on the human being. 'One must assess all technical and economic innovations in terms of whether they are beneficial to the development of mankind on a long-term basis. They are only to be legitimized insofar as they prove themselves to be a means of liberating mankind and contributing to his sense of dignity and identity, as a means of bringing human beings together and encouraging them to care for one another, and as a means of protecting the natural basis of our existence. (orig./HSCH) [de

  19. Organizational extension of PRA models and NASA application

    International Nuclear Information System (INIS)

    Pate-Cornell, E.

    1989-01-01

    This paper describes a probabilistic method which extends classical PRA to include some characteristics of the organization that processes or manages an engineering system. Ataxonomy of errors is presented and their organizational roots are examined. An assembly model is proposed for the analysis of the resulting spectrum of capacities of the system. The management of the Thermal Protection system of the Space Shuttle is used as an illustration. The model allows assessment of the benefits of organizational improvements of the orbiter's processing

  20. An overview of insights gained and lessons learned from U.S. plant-specific PRA studies

    International Nuclear Information System (INIS)

    Joksimovich, V.

    1985-01-01

    Probabilistic Risk Assessment (PRA) has been under development for over twenty years, but it has reached the level of widespread use only in the aftermath of the TMI accident. Over thirty PRAs have now been completed in the U.S. PRAs have been in the mainstream of many licensing decisions because the NRC recognizes that they provide independent and comprehensive plant safety audit. Some difficulties have been experienced leading to interpretive and intercomparison studies. Numerous global and plant-specific insights have been derived. A new application termed risk management is clearly emerging. (orig./HP)

  1. The application of probabilistic risk assessment to inherently safe reactors

    International Nuclear Information System (INIS)

    Cave, L.; Kastenberg, W.E.

    1987-01-01

    In the development of safety goals and design criteria for 'inherently safe' reactors a question which arises is 'To what extent is PRA relevant.' To answer this question it is necessary to consider both the risk to the public and the investment risk to the utility. In this paper the factors which are likely to determine safety objectives and their allocation are presented. (orig.)

  2. Seismic Probabilistic Risk Assessment (SPRA), approach and results

    International Nuclear Information System (INIS)

    Campbell, R.D.

    1995-01-01

    During the past 15 years there have been over 30 Seismic Probabilistic Risk Assessments (SPRAs) and Seismic Probabilistic Safety Assessments (SPSAs) conducted of Western Nuclear Power Plants, principally of US design. In this paper PRA and PSA are used interchangeably as the overall process is essentially the same. Some similar assessments have been done for reactors in Taiwan, Korea, Japan, Switzerland and Slovenia. These plants were also principally US supplied or built under US license. Since the restructuring of the governments in former Soviet Bloc countries, there has been grave concern regarding the safety of the reactors in these countries. To date there has been considerable activity in conducting partial seismic upgrades but the overall quantification of risk has not been pursued to the depth that it has in Western countries. This paper summarizes the methodology for Seismic PRA/PSA and compares results of two partially completed and two completed PRAs of soviet designed reactors to results from earlier PRAs on US Reactors. A WWER 440 and a WWER 1000 located in low seismic activity regions have completed PRAs and results show the seismic risk to be very low for both designs. For more active regions, partially completed PRAs of a WWER 440 and WWER 1000 located at the same site show the WWER 440 to have much greater seismic risk than the WWER 1000 plant. The seismic risk from the 1000 MW plant compares with the high end of seismic risk for earlier seismic PRAs in the US. Just as for most US plants, the seismic risk appears to be less than the risk from internal events if risk is measured is terms of mean core damage frequency. However, due to the lack of containment for the earlier WWER 440s, the risk to the public may be significantly greater due to the more probable scenario of an early release. The studies reported have not taken the accident sequences beyond the stage of core damage hence the public heath risk ratios are speculative. (author)

  3. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-11-15

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  4. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-01-01

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  5. Risk assessment: 'A consumer's perspective'

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Rachel [Consumer' s Association, Health and Safety Commission (United Kingdom)

    1992-07-01

    The paper assesses the concept of risk, risk assessment and tolerability of risk from consumer point of view. Review of existing UK and EC directives on certain products and appliances is also covered.

  6. Risk assessment: 'A consumer's perspective'

    International Nuclear Information System (INIS)

    Waterhouse, Rachel

    1992-01-01

    The paper assesses the concept of risk, risk assessment and tolerability of risk from consumer point of view. Review of existing UK and EC directives on certain products and appliances is also covered

  7. Information Uncertainty to Compare Qualitative Reasoning Security Risk Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Gregory M [Los Alamos National Laboratory; Key, Brian P [Los Alamos National Laboratory; Zerkle, David K [Los Alamos National Laboratory; Shevitz, Daniel W [Los Alamos National Laboratory

    2009-01-01

    The security risk associated with malevolent acts such as those of terrorism are often void of the historical data required for a traditional PRA. Most information available to conduct security risk assessments for these malevolent acts is obtained from subject matter experts as subjective judgements. Qualitative reasoning approaches such as approximate reasoning and evidential reasoning are useful for modeling the predicted risk from information provided by subject matter experts. Absent from these approaches is a consistent means to compare the security risk assessment results. Associated with each predicted risk reasoning result is a quantifiable amount of information uncertainty which can be measured and used to compare the results. This paper explores using entropy measures to quantify the information uncertainty associated with conflict and non-specificity in the predicted reasoning results. The measured quantities of conflict and non-specificity can ultimately be used to compare qualitative reasoning results which are important in triage studies and ultimately resource allocation. Straight forward extensions of previous entropy measures are presented here to quantify the non-specificity and conflict associated with security risk assessment results obtained from qualitative reasoning models.

  8. Role of seismic PRA in seismic safety decisions of nuclear power plants

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Kennedy, R.P.; Sues, R.H.

    1985-01-01

    This paper highlights the important roles that seismic probabilistic risk assessments (PRAs) can play in the seismic safety decisions of nuclear power plants. If a seismic PRA has been performed for a plant, its results can be utilized to evaluate the seismic capability beyond the safe shutdown event (SSE). Seismic fragilities of key structures and equipment, fragilities of dominant plant damage states and the frequencies of occurrence of these plant damage states are reviewed to establish the seismic safety of the plant beyond the SSE level. Guidelines for seismic margin reviews and upgrading may be developed by first identifying the generic classes of structures and equipment that have been shown to be dominant risk contributors in the completed seismic PRAs, studying the underlying causes for their contribution and examining why certain other items (e.g., piping) have not proved to be high-risk-contributors

  9. Integral risk assessment

    International Nuclear Information System (INIS)

    Chakraborty, S.; Yadigaroglu, G.

    1991-01-01

    The series of lectures which forms the basis of this book and took place in the winter of 1989/90 at the ETH in Zuerich were held for the purpose of discussing the stage of development of our system of ethics in view of the extremely fast pace of technological progress and the risks which accompany it. Legal, psychological and political aspects of the problem were examined, but the emphasis was placed on ethical aspects. The effects which are examined in conventional risk analyses can be considered as a part of the ethical and social aspects involved, and in turn, the consideration of ethical and social aspects can be viewed as an extension of the conventional form of risk analysis. In any case, among risk experts, the significance of ethical and social factors is uncontested, especially as regards activities which can have far-reaching repurcussions. Some objective difficulties interfere with this goal, however: - No generally acknowledged set of ethical values exists. - Cultural influences and personal motives can interfere. - Normally a risk assessment is carried out in reference to individual facilities and within a small, clearly defined framework. Under certain circumstances, generalizations which are made for complete technological systems can lead to completely different conclusions. One contribution deals with integral views of the risks of atomic energy from an ethical and social perspective. (orig.) [de

  10. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  11. Risk assessment and risk evaluation

    International Nuclear Information System (INIS)

    Niehaus, F.

    1978-01-01

    With the help of results of investigations and model calculations the risk of nuclear energy in routine operation is shown. In this context it is pointed out that the excellent operation results of reactors all over the world have led to the acceptability of risks from local loads no longer being in question. The attention of radiation protection is therefore focused on the emissions of long-living isotopes which collect in the atmosphere. With LWRs the risk of accidents is so minimal that statistical data is, and never will be available. One has to therefore fall back upon the so-called fault tree analyses. On the subject of risk evalution the author referred to a poll in Austria. From the result of this investigation one might conclude that nuclear energy serves as a crystallization point for a discussion of varying concepts for future development. More attention should be paid to this aspect from both sides, in order to objectify the further expansion of this source of energy. (orig./HP) [de

  12. Review of seismic probabilistic risk assessment and the use of sensitivity analysis

    International Nuclear Information System (INIS)

    Shiu, K.K.; Reed, J.W.; McCann, M.W. Jr.

    1985-01-01

    This paper presents results of sensitivity reviews performed to address a range of questions which arise in the context of seismic probabilistic risk assessment (PRA). In a seismic PRA, sensitivity evaluations can be divided into three areas: hazard, fragility, and system modeling. As a part of the review of standard boiling water reactor seismic PRA which was performed by General Electric (GE), a reassessment of the plant damage states frequency and a detailed sensitivity analysis were conducted at Brookhaven National Laboratory. The rationale for such an undertaking is that in this case: (1) the standard plant may be sited anywhere in the eastern US (i.e., in regions with safety shutdown earthquake (SSE) values equal to or less than 0.3g peak ground acceleration), (2) it may have equipment whose fragility values could vary over a wide range; and (3) there are variations in system designs outside the original defined scope. Seismic event trees and fault trees were developed to model the different system and plant accident sequences. Hazard curves which represent various sites on the east coast were obtained; alternate structure and equipment fragility data were postulated. Various combinations of hazard and fragility data were analyzed. In addition, system modeling was perturbed to examine the impact upon the final results. Orders of magnitude variation were observed in the plant damage state frequency among the different cases. 7 references, 3 figures, 2 tables

  13. Cyber security risk assessment for SCADA and DCS networks.

    Science.gov (United States)

    Ralston, P A S; Graham, J H; Hieb, J L

    2007-10-01

    The growing dependence of critical infrastructures and industrial automation on interconnected physical and cyber-based control systems has resulted in a growing and previously unforeseen cyber security threat to supervisory control and data acquisition (SCADA) and distributed control systems (DCSs). It is critical that engineers and managers understand these issues and know how to locate the information they need. This paper provides a broad overview of cyber security and risk assessment for SCADA and DCS, introduces the main industry organizations and government groups working in this area, and gives a comprehensive review of the literature to date. Major concepts related to the risk assessment methods are introduced with references cited for more detail. Included are risk assessment methods such as HHM, IIM, and RFRM which have been applied successfully to SCADA systems with many interdependencies and have highlighted the need for quantifiable metrics. Presented in broad terms is probability risk analysis (PRA) which includes methods such as FTA, ETA, and FEMA. The paper concludes with a general discussion of two recent methods (one based on compromise graphs and one on augmented vulnerability trees) that quantitatively determine the probability of an attack, the impact of the attack, and the reduction in risk associated with a particular countermeasure.

  14. Hazard waste risk assessment

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1986-01-01

    Pacific Northwest Laboratory continued to provide technical assistance to the Department of Energy (DOE) Office of Operational Safety (OOS) in the area of risk assessment for hazardous and radioactive-mixed waste management. The overall objective is to provide technical assistance to OOS in developing cost-effective risk assessment tools and strategies for bringing DOE facilities into compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) and the Resource Conservation and Recovery Act (RCRA). Major efforts during FY 1985 included (1) completing the modification of the Environmental Protection Agency (EPA) Hazard Ranking System (HRS) and developing training manuals and courses to assist in field office implementation of the modified Hazard Ranking System (mHRS); (2) initiating the development of a system for reviewing field office HRS/mHRS evaluations for appropriate use of data and appropriate application of the methodology; (3) initiating the development of a data base management system to maintain all field office HRS/mHRS scoring sheets and to support the master OOS environmental data base system; (4) developing implementation guidance for Phase I of the DOE CERCLA Program, Installation Assessment; (5) continuing to develop an objective, scientifically based methodology for DOE management to use in establishing priorities for conducting site assessments under Phase II of the DOE CERCLA Program, Confirmation; and (6) participating in developing the DOE response to EPA on the proposed listing of three sites on the National Priorities List

  15. Nuclear power plant personnel errors in decision-making as an object of probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reer, B.

    1993-09-01

    The integration of human error - also called man-machine system analysis (MMSA) - is an essential part of probabilistic risk assessment (PRA). A new method is presented which allows for a systematic and comprehensive PRA inclusions of decision-based errors due to conflicts or similarities. For the error identification procedure, new question techniques are developed. These errors are shown to be identified by looking at retroactions caused by subordinate goals as components of the overall safety relevant goal. New quantification methods for estimating situation-specific probabilities are developed. The factors conflict and similarity are operationalized in a way that allows their quantification based on informations which are usually available in PRA. The quantification procedure uses extrapolations and interpolations based on a poor set of data related to decision-based errors. Moreover, for passive errors in decision-making a completely new approach is presented where errors are quantified via a delay initiating the required action rather than via error probabilities. The practicability of this dynamic approach is demonstrated by a probabilistic analysis of the actions required during the total loss of feedwater event at the Davis-Besse plant 1985. The extensions of the ''classical'' PRA method developed in this work are applied to a MMSA of the decay heat removal (DHR) of the ''HTR-500''. Errors in decision-making - as potential roots of extraneous acts - are taken into account in a comprehensive and systematic manner. Five additional errors are identified. However, the probabilistic quantification results a nonsignificant increase of the DHR failure probability. (orig.) [de

  16. Recent case studies and advancements in probabilistic risk assessment

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1985-01-01

    During the period from 1977 to 1984, Pickard, Lowe and Garrick, Inc., had the lead in preparing several full scope probabilistic risk assessments for electric utilities. Five of those studies are discussed from the point of view of advancements and lessons learned. The objective and trend of these studies is toward utilization of the risk models by the plant owners as risk management tools. Advancements that have been made are in presentation ad documentation of the PRAs, generation of more understandable plant level information, and improvements in methodology to facilitate technology transfer. Specific areas of advancement are in the treatment of such issues as dependent failures, human interaction, and the uncertainty in the source term. Lessons learned cover a wide spectrum and include the importance of plant specific models for meaningful risk management, the role of external events in risk, the sensitivity of contributors to choice of risk index, and the very important finding that the public risk is extremely small. The future direction of PRA is to establish less dependence on experts for in-plant application. Computerizing the PRAs such that they can be accessed on line and interactively is the key

  17. 2007 TOXICOLOGY AND RISK ASSESSMENT ...

    Science.gov (United States)

    EPA has announced The 2007 Toxicology and Risk Assessment Conference Cincinnati Marriott North, West Chester (Cincinnati), OHApril 23- 26, 2007 - Click to register!The Annual Toxicology and Risk Assessment Conference is a unique meeting where several Government Agencies come together to discuss toxicology and risk assessment issues that are not only of concern to the government, but also to a broader audience including academia and industry. The theme of this year's conference is Emerging Issues and Challenges in Risk Assessment and the preliminary agenda includes: Plenary Sessions and prominent speakers (tentative) include: Issues of Emerging Chemical ContaminantsUncertainty and Variability in Risk Assessment Use of Mechanistic data in IARC evaluationsParallel Sessions:Uncertainty and Variability in Dose-Response Assessment Recent Advances in Toxicity and Risk Assessment of RDX The Use of Epidemiologic Data for Risk Assessment Applications Cumulative Health Risk Assessment:

  18. Human reliability analysis in support of a level 1 PRA for Surry during midloop operations

    International Nuclear Information System (INIS)

    Lin, J.C.; Bley, D.C.; Chu, T.-L.

    2004-01-01

    The objectives of this Level 1 probabilistic risk assessment (PRA) are to evaluate the important accident sequences initiated during midloop operations and to compare the qualitative and quantitative results with those for accidents initiated during power operations. The primary types of human actions analyzed in this study involve the dynamic operator actions and recovery actions that take place during the accident sequence following an initiating event. Two parts of the human actions were analyzed: failure to diagnose and failure to perform the action. The scope of the Level 1 PRA for Surry during midloop operations includes internal, fire, and flood initiating events. The major categories of dynamic operator actions taken during the accident sequence following an initiating event are: providing makeup to the reactor coolant system (RCS), restoring residual heat removal (RHR) cooling, establishing steam generator reflux cooling, establishing primary feed and spill, establishing gravity feed from refueling water storage tank (RWST), establishing high pressure recirculation, establishing recirculation spray, and cross-connecting RWSTs. All categories are not applicable to all initiating events and all plant operating states (POS). (author)

  19. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  20. The NUREG-1150 probabilistic risk assessment for the Sequoyah nuclear plant

    International Nuclear Information System (INIS)

    Gregory, J.J.; Breeding, R.J.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Murfin, W.B.

    1992-01-01

    This paper summarizes the findings of the probabilistic risk assessment (PRA) for Unit 1 of the Sequoyah Nuclear Plant performed in support of NUREG-1150. The emphasis is on the 'back-end' analyses, the accident progression, source term, and consequence analyses, and the risk results obtained when the results of these analyses are combined with the accident frequency analysis. The results of this PRA indicate that the offsite risk from internal initiating events at Sequoyah are quite low with respect to the safety goals. The containment appears likely to withstand the loads that might be placed upon it if the reactor vessel fails. A good portion of the risk, in this analysis, comes from initiating events which bypass the containment. These events are estimated to have a relatively low frequency of occurrence, but their consequences are quite large. Other events that contribute to offsite risk involve early containment failures that occur during degradation of the core or near the time of vessel breach. Considerable uncertainty is associated with the risk estimates produced in this analysis. Offsite risk from external initiating events was not included in this analysis. (orig.)

  1. Surgery Risk Assessment (SRA) Database

    Data.gov (United States)

    Department of Veterans Affairs — The Surgery Risk Assessment (SRA) database is part of the VA Surgical Quality Improvement Program (VASQIP). This database contains assessments of selected surgical...

  2. A probabilistic risk assessment for field radiography based on expert judgment and opinion

    International Nuclear Information System (INIS)

    Jang, Han-Ki; Ryu, Hyung-Joon; Kim, Ji-Young; Lee, Jai-Ki; Cho, Kun-Woo

    2011-01-01

    A probabilistic approach was applied to assess radiation risk associated with the field radiography using gamma sources. The Delphi method based on the expert judgments and opinions was used in the process of characterization of parameters affecting risk, which are inevitably subject to large uncertainties. A mathematical approach applying the Bayesian inferences was employed for data processing to improve the Delphi results. This process consists of three phases: (1) setting prior distributions, (2) constructing the likelihood functions and (3) deriving the posterior distributions based on the likelihood functions. The approach for characterizing input parameters using the Bayesian inference is provided for improved risk estimates without intentional rejection of part of the data, which demonstrated utility of Bayesian updating of distributions of uncertain input parameters in PRA (Probabilistic Risk Assessment). The data analysis portion for PRA in field radiography is addressed for estimates of the parameters used to determine the frequencies and consequences of the various events modeled. In this study, radiological risks for the worker and the public member in the vicinity of the work place are estimated for field radiography system in Korea based on two-dimensional Monte Carlo Analysis (2D MCA). (author)

  3. Risk evaluation of accident management strategies

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, A.

    1992-01-01

    The use of Probabilistic Risk Assessment (PRA) methods to evaluate accident management strategies in nuclear power plants discussed in this paper. The PRA framework allows an integrated evaluation to be performed to give the full implications of a particular strategy. The methodology is demonstrated for a particular accident management strategy, intentional depressurization of the reactor coolant system to avoid containment pressurization during the ejection of molten debris at vessel breach

  4. Lessons learned from first generation nuclear plant probabalistic risk assessments

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1984-01-01

    The paper by Garrick summarizes the state-of-the-art in what are perhaps the most archetypical probabilistic risk assessments (PRAs). Because of its unique regulatory environment and because of the high levels of perceived (not necessarily actual) risk, the nuclear industry more than any other has been concerned with quantitative risk analysis. Garrick's paper summarizes the lessons learned from ten PRA's conducted in the nuclear industry, including six that can be characterized as full-scope risk studies. Most of the quantitative data, though, came from two especially thorough studies done for the Zion and Indian Point power plants, operated by Commonwealth Edison and Consolidated Edison respectively. The principal conclusions of the Garrick survey are that the public risk (from radiation release) is now known to be very small for commercial nuclear power plants, but that the risk to utilities (from core damage) is somewhat larger. Significant radiation releases require both core meltdown -- an event occurring only about once every 10,000 reactor-years -- and containment failure, occurring only about once in every hundred meltdowns

  5. Assessment of technical risks

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T A [Bundesanstalt fuer Materialpruefung, Berlin (Germany, F.R.)

    1978-01-01

    The safety of technical systems is so difficult to assess because the concept 'risk' contains technical-scientific factors as well as components of individual and social psychology. Immediate or short-term hazards of human life as i.e. caused by the operation of industrial plants and mediate and thus long-term hazards have to be distinguished. Characteristic for the second hazard groups is the great time-lag before the effect takes place. Thus a causal relationship can be recognized only late and not definitely. Even when the causes have been obviated the effects still show. The development of a systems-analytical model as a basis of decisive processes for the introduction of highly endangered large-scale technologies seems particularly difficult. A starting point for the quantification of the risk can still be seen in the product of the probability of realization and the extent of the damage. Public opinion, however, does not base its evaluations on an objective concept of risk but tends to have an attitude of aversion against great and disastrous accidents. On the other hand, plenty of slight accidents are accepted much more easily, even when the amount of deadly victims from accidents reaches dimensions beyond those of the rare large-scale accidents. Here, mostly the damage possible but not the probability of its occurence is seen, let alone the general use of the new technology. The value of the mathematical models for estimating risks is mainly due to the fact that they are able to clear up decisions.

  6. Risk Management at NASA and Its Applicability to the Oil and Gas Industry

    Science.gov (United States)

    Kaplan, David

    2018-01-01

    NASA has a world-class capability for quantitatively assessing the risk of highly-complex, isolated engineering structures operated in extremely hostile environments. In particular, the International Space Station (ISS) represents a reasonable risk analog for High Pressure, High Temperature drilling and production operations on deepwater rigs. Through a long-term U.S. Government Interagency Agreement, BSEE has partnered with NASA to modify NASA's Probabilistic Risk Assessment (PRA) capabilities for application to deepwater drilling and production operations. The immediate focus of the activity will be to modify NASA PRA Procedure Guides and Methodology Documents to make them applicable to the Oil &Gas Industry. The next step will be for NASA to produce a PRA for a critical drilling system component, such as a Blowout Preventer (BOP). Subsequent activities will be for NASA and industry partners to jointly develop increasingly complex PRA's that analyze other critical drilling and production system components, including both hardware and human reliability. In the presentation, NASA will provide the objectives, schedule, and current status of its PRA activities for BSEE. Additionally, NASA has a Space Act Agreement with Anadarko Petroleum Corporation to develop a PRA for a generic 20K BOP. NASA will summarize some of the preliminary insights gained to date from that 20K BOP PRA as an example of the distinction between quantitative versus qualitative risk assessment.

  7. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  8. Use of probabilistic risk assessments to define areas of possible exemption from regulatory requirements

    International Nuclear Information System (INIS)

    Thompson, C.A.; Carlson, D.; Kolaczkowski, A.; LaChance, J.

    1988-01-01

    The Risk-Based Licensing Program (RBLP) was sponsored by the Department of Energy for the purpose of establishing and demonstrating an approach for identifying potential areas for exemption from current regulatory requirements in the licensing of nuclear power plants. Such an approach could assist in the improvement of the regulatory process for both current and future nuclear plant designs. Use of the methodology could result in streamlining the regulatory process by eliminating unnecessarily detailed reviews of portions of a plant design not important to risk. The RBLP methodology utilizes probabilistic risk assessments, (PRAs), which are required of all future applicants for nuclear power plant licenses. PRA results are used as a screening tool to determine the risk significance of various plant features which are correlated to the risk importance of regulations to identify potential areas for regulatory exemption. Additional consideration is then given to non-risk factors in the final determination of exemption candidates. The RBLP methodology was demonstrated using an existing PRA. The results of the demonstration are highlighted. 10 refs

  9. Comparison between Canadian probabilistic safety assessment methods formulated by Atomic Energy of Canada limited and probabilistic risk assessment methods

    International Nuclear Information System (INIS)

    Shapiro, H.S.; Smith, J.E.

    1989-01-01

    The procedures used by Atomic Energy of Canada Limited (AECL) to perform probabilistic safety assessments (PRAs) differ somewhat from conventionally accepted probabilistic risk assessment (PRA) procedures used elsewhere. In Canada, PSA is used by AECL as an audit tool for an evolving design. The purpose is to assess the safety of the plant in engineering terms. Thus, the PSA procedures are geared toward providing engineering feedback so that necessary changes can be made to the design at an early stage, input can be made to operating procedures, and test and maintenance programs can be optimized in terms of costs. Most PRAs, by contrast, are performed in plants that are already built. Their main purpose is to establish the core melt frequency and the risk to the public due to core melt. Also, any design modification is very expensive. The differences in purpose and timing between PSA and PRA have resulted in differences in methodology and scope. The PSA procedures are used on all plants being designed by AECL

  10. Risk assessment and risk management of mycotoxins.

    Science.gov (United States)

    2012-01-01

    Risk assessment is the process of quantifying the magnitude and exposure, or probability, of a harmful effect to individuals or populations from certain agents or activities. Here, we summarize the four steps of risk assessment: hazard identification, dose-response assessment, exposure assessment, and risk characterization. Risk assessments using these principles have been conducted on the major mycotoxins (aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, and zearalenone) by various regulatory agencies for the purpose of setting food safety guidelines. We critically evaluate the impact of these risk assessment parameters on the estimated global burden of the associated diseases as well as the impact of regulatory measures on food supply and international trade. Apart from the well-established risk posed by aflatoxins, many uncertainties still exist about risk assessments for the other major mycotoxins, often reflecting a lack of epidemiological data. Differences exist in the risk management strategies and in the ways different governments impose regulations and technologies to reduce levels of mycotoxins in the food-chain. Regulatory measures have very little impact on remote rural and subsistence farming communities in developing countries, in contrast to developed countries, where regulations are strictly enforced to reduce and/or remove mycotoxin contamination. However, in the absence of the relevant technologies or the necessary infrastructure, we highlight simple intervention practices to reduce mycotoxin contamination in the field and/or prevent mycotoxin formation during storage.

  11. Caries risk assessment

    DEFF Research Database (Denmark)

    Mejàre, I; Axelsson, S; Dahlén, G

    2014-01-01

    OBJECTIVE: To assess the ability of multivariate models and single factors to correctly identify future caries development in pre-school children and schoolchildren/adolescents. STUDY DESIGN: A systematic literature search for relevant papers was conducted with pre-determined inclusion criteria...... predictors, baseline caries experience had moderate/good accuracy in pre-school children and limited accuracy in schoolchildren/adolescents. The period of highest risk for caries incidence in permanent teeth was the first few years after tooth eruption. In general, the quality of evidence was limited....... CONCLUSIONS: Multivariate models and baseline caries prevalence performed better in pre-school children than in schoolchildren/adolescents. Baseline caries prevalence was the most accurate single predictor in all age groups. The heterogeneity of populations, models, outcome criteria, measures and reporting...

  12. Survey and evaluation of aging risk assessment methods and applications

    International Nuclear Information System (INIS)

    Sanzo, D.; Kvam, P.; Apostolakis, G.; Wu, J.; Milici, T.; Ghoniem, N.; Guarro, S.

    1994-11-01

    The US Nuclear Regulatory Commission initiated the nuclear power plant aging research program about 6 years ago to gather information about nuclear power plant aging. Since then, this program has collected a significant amount of information, largely qualitative, on plant aging and its potential effects on plant safety. However, this body of knowledge has not yet been integrated into formalisms that can be used effectively and systematically to assess plant risk resulting from aging, although models for assessing the effect of increasing failure rates on core damage frequency have been proposed. This report surveys the work on the aging of systems, structures, and components (SSCs) of nuclear power plants, as well as associated data bases. We take a critical look at the need to revise probabilistic risk assessments (PRAs) so that they will include the contribution to risk from plant aging, the adequacy of existing methods for evaluating this contribution, and the adequacy of the data that have been used in these evaluation methods. We identify a preliminary framework for integrating the aging of SSCs into the PRA and include the identification of necessary data for such an integration

  13. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications

    International Nuclear Information System (INIS)

    Nusbaumer, O. P. M.

    2007-01-01

    This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these deficiencies

  14. Methods of risk assessment

    International Nuclear Information System (INIS)

    Jones, D.R.

    1981-01-01

    The subject is discussed under the headings: introduction (identification, quantification of risk); some approaches to risk evaluation (use of the 'no risk' principle; the 'acceptable risk' method; risk balancing; comparison of risks, benefits and other costs); cost benefit analysis; an alternative approach (tabulation and display; description and reduction of the data table); identification of potential decision sets consistent with the constraints. Some references are made to nuclear power. (U.K.)

  15. Modeling and Quantification of Team Performance in Human Reliability Analysis for Probabilistic Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. JOe; Ronald L. Boring

    2014-06-01

    Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understand from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.

  16. Risk assessments ensure safer power

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-19

    A growth industry is emerging devoted to the study and comparison of the economic, social and health risks posed by large industrial installations. Electricity generation is one area coming under particularly close scrutiny. Types of risk, ways of assessing risk and the difference between experts' analyses and the public perception of risk are given. An example of improved risk assessment helping to reduce deaths and injuries in coal mining is included.

  17. Defense Programs Transportation Risk Assessment

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1994-01-01

    This paper provides an overview of the methodology used in a probabilistic transportation risk assessment conducted to assess the probabilities and consequences of inadvertent dispersal of radioactive materials arising from severe transportation accidents. The model was developed for the Defense Program Transportation Risk Assessment (DPTRA) study. The analysis incorporates several enhancements relative to previous risk assessments of hazardous materials transportation including newly-developed statistics on the frequencies and severities of tractor semitrailer accidents and detailed route characterization using the 1990 Census data

  18. Risk assessment for halogenated solvents

    International Nuclear Information System (INIS)

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area

  19. Risk Factor Assessment Branch (RFAB)

    Science.gov (United States)

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  20. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol

    2013-01-01

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  1. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.; Song, J.

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two

  2. Statistically based uncertainty assessments in nuclear risk analysis

    International Nuclear Information System (INIS)

    Spencer, F.W.; Diegert, K.V.; Easterling, R.G.

    1987-01-01

    Over the last decade, the problems of estimation and uncertainty assessment in probabilistics risk assessment (PRAs) have been addressed in a variety of NRC and industry-sponsored projects. These problems have received attention because of a recognition that major uncertainties in risk estimation exist, which can be reduced by collecting more and better data and other information, and because of a recognition that better methods for assessing these uncertainties are needed. In particular, a clear understanding of the nature and magnitude of various sources of uncertainty is needed to facilitate descision-making on possible plant changes and research options. Recent PRAs have employed methods of probability propagation, sometimes involving the use of Bayes Theorem, and intended to formalize the use of ''engineering judgment'' or ''expert opinion.'' All sources, or feelings, of uncertainty are expressed probabilistically, so that uncertainty analysis becomes simply a matter of probability propagation. Alternatives to forcing a probabilistic framework at all stages of a PRA are a major concern in this paper, however

  3. Information needs for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, C.T.; Choudhury, H.; Schoeny, R.S.

    1990-12-31

    Risk assessment can be thought of as a conceptual approach to bridge the gap between the available data and the ultimate goal of characterizing the risk or hazard associated with a particular environmental problem. To lend consistency to and to promote quality in the process, the US Environmental Protection Agency (EPA) published Guidelines for Risk Assessment of Carcinogenicity, Developmental Toxicity, Germ Cell Mutagenicity and Exposure Assessment, and Risk Assessment of Chemical Mixtures. The guidelines provide a framework for organizing the information, evaluating data, and for carrying out the risk assessment in a scientifically plausible manner. In the absence of sufficient scientific information or when abundant data are available, the guidelines provide alternative methodologies that can be employed in the risk assessment. 4 refs., 3 figs., 2 tabs.

  4. Exploration Health Risks: Probabilistic Risk Assessment

    Science.gov (United States)

    Rhatigan, Jennifer; Charles, John; Hayes, Judith; Wren, Kiley

    2006-01-01

    Maintenance of human health on long-duration exploration missions is a primary challenge to mission designers. Indeed, human health risks are currently the largest risk contributors to the risks of evacuation or loss of the crew on long-duration International Space Station missions. We describe a quantitative assessment of the relative probabilities of occurrence of the individual risks to human safety and efficiency during space flight to augment qualitative assessments used in this field to date. Quantitative probabilistic risk assessments will allow program managers to focus resources on those human health risks most likely to occur with undesirable consequences. Truly quantitative assessments are common, even expected, in the engineering and actuarial spheres, but that capability is just emerging in some arenas of life sciences research, such as identifying and minimize the hazards to astronauts during future space exploration missions. Our expectation is that these results can be used to inform NASA mission design trade studies in the near future with the objective of preventing the higher among the human health risks. We identify and discuss statistical techniques to provide this risk quantification based on relevant sets of astronaut biomedical data from short and long duration space flights as well as relevant analog populations. We outline critical assumptions made in the calculations and discuss the rationale for these. Our efforts to date have focussed on quantifying the probabilities of medical risks that are qualitatively perceived as relatively high risks of radiation sickness, cardiac dysrhythmias, medically significant renal stone formation due to increased calcium mobilization, decompression sickness as a result of EVA (extravehicular activity), and bone fracture due to loss of bone mineral density. We present these quantitative probabilities in order-of-magnitude comparison format so that relative risk can be gauged. We address the effects of

  5. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  6. Issues related to structural aging in probabilistic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, Bruce R.

    1998-01-01

    Structural components and systems have an important safety function in nuclear power plants. Although they are essentially passive under normal operating conditions, they play a key role in mitigating the impact of extreme environmental events such as earthquakes, winds, fire and floods on plant safety. Moreover, the importance of structural components and systems in accident mitigation is amplified by common-cause effects. Reinforced concrete structural components and systems in NPPs are subject to a phenomenon known as aging, leading to time-dependent changes in strength and stiffness that may impact their ability to withstand various challenges during their service lives from operation, the environment and accidents. Time-dependent changes in structural properties as well as challenges to the system are random in nature. Accordingly, condition assessment of existing structures should be performed within a probabilistic framework. The mathematical formalism of a probabilistic risk assessment (PRA) provides a means for identifying aging structural components that may play a significant role in mitigating plant risk. Structural condition assessments supporting a decision regarding continued service can be rendered more efficient if guided by the logic of a PRA

  7. Track 6: safety and risk management. Plant operational risk management. Plant Configuration Risk Assessment Methodology Development for Periodic Maintenance

    International Nuclear Information System (INIS)

    Yang, Huichang; Chung, Chang Hyun; Sung, Key Yong

    2001-01-01

    plant risk level. Such a change in the arrangement of the plant equipment and system at a given time period can be represented as the plant configuration. The plant configuration risk assessment methodology that was developed during this study consists of six steps, as follows: 1. Identification of plant configuration: In this step, various events that occurred in the plant should be identified through a review of the plant operation records such as the periodic maintenance and inspection schedules, maintenance or repair request logs, trouble reports, and other documents related to operational activity. 2. Evaluation of probabilistic risk assessment (PRA) model and computer codes: For the effective evaluation of plant risk during normal operation, an appropriate plant risk model should 273 be used, and the capability of computer codes should be evaluated. There might be numerous events that require the maintenance activity during normal operation. To handle these events during the risk calculation, an optimized plant PRA model and a risk analysis tool of fast calculation capacity are needed. 3. Development of baseline risk model and evaluation of baseline risk: The baseline risk model is a risk model similar to that used for the level 1 PRA, but the maintenance-related events are excluded. This methodology focuses on the relative risk change caused by the usual plant events. For this purpose, the baseline risk that will be the reference of risk variation should be evaluated as reasonably as possible. 4. Analysis of components and systems: For the detailed risk analysis, it is useful to perform the importance analysis for the target components or systems before calculating the plant risks. In terms of system unavailability analysis and importance analysis, information of specific components and systems should be performed for the detailed risk analysis 5. Evaluation of configuration risks and sensitivity analysis: Using the configuration and the system information from

  8. Implications of an HRA framework for quantifying human acts of commission and dependency: Development of a methodology for conducting an integrated HRA/PRA

    International Nuclear Information System (INIS)

    Barriere, M.T.; Luckas, W.J.; Brown, W.S.; Cooper, S.E.; Wreathall, J.; Bley, D.C.

    1993-01-01

    To support the development of a refined human reliability analysis (HRA) framework, to address identified HRA user needs and improve HRA modeling, unique aspects of human performance have been identified from an analysis of actual plant-specific events. Through the use of the refined framework, relationships between the following HRA, human factors and probabilistic risk assessment (PRA) elements were described: the PRA model, plant states, plant conditions, PRA basic events, unsafe human actions, error mechanisms, and performance shaping factors (PSFs). The event analyses performed in the context of the refined HRA framework, identified the need for new HRA methods that are capable of: evaluating a range of different error mechanisms (e.g., slips as well as mistakes); addressing errors of commission (EOCs) and dependencies between human actions; and incorporating the influence of plant conditions and multiple PSFs on human actions. This report discusses the results of the assessment of user needs, the refinement of the existing HRA framework, as well as, the current status on EOCs, and human dependencies

  9. Implications of an HRA framework for quantifying human acts of commission and dependency: Development of a methodology for conducting an integrated HRA/PRA

    International Nuclear Information System (INIS)

    Barriere, M.T.; Luckas, W.J.; Brown, W.S.; Cooper, S.E.; Wreathall, J.; Bley, D.C.

    1994-01-01

    To support the development of a refined human reliability analysis (HRA) framework, to address identified HRA user needs and improve HRA modeling, unique aspects of human performance have been identified from an analysis of actual plant-specific events. Through the use of the refined framework, relationships between the following HRA, human factors and probabilistic risk assessment (PRA) elements were described: the PRA model, plant states, plant conditions, PRA basic events, unsafe human actions, error mechanisms, and performance shaping factors (PSFs). The event analyses performed in the context of the refined HRA framework, identified the need for new HRA methods that are capable of: evaluating a range of different error mechanisms (e.g., slips as well as mistakes); addressing errors of commission (EOCs) and dependencies between human actions; and incorporating the influence of plant conditions and multiple PSFs on human actions. This report discusses the results of the assessment of user needs, the refinement of the existing HRA framework, as well as, the current status on EOCs, and human dependencies

  10. [Forensic assessment of violence risk].

    Science.gov (United States)

    Pujol Robinat, Amadeo; Mohíno Justes, Susana; Gómez-Durán, Esperanza L

    2014-03-01

    Over the last 20 years there have been steps forward in the field of scientific research on prediction and handling different violent behaviors. In this work we go over the classic concept of "criminal dangerousness" and the more current of "violence risk assessment". We analyze the evolution of such assessment from the practice of non-structured clinical expert opinion to current actuarial methods and structured clinical expert opinion. Next we approach the problem of assessing physical violence risk analyzing the HCR-20 (Assessing Risk for Violence) and we also review the classic and complex subject of the relation between mental disease and violence. One of the most problematic types of violence, difficult to assess and predict, is sexual violence. We study the different actuarial and sexual violence risk prediction instruments and in the end we advise an integral approach to the problem. We also go through partner violence risk assessment, describing the most frequently used scales, especially SARA (Spouse Assault Risk Assessment) and EPV-R. Finally we give practical advice on risk assessment, emphasizing the importance of having maximum information about the case, carrying out a clinical examination, psychopathologic exploration and the application of one of the described risk assessment scales. We'll have to express an opinion about the dangerousness/risk of future violence from the subject and some recommendations on the conduct to follow and the most advisable treatment. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  11. Risk assessment and regulation

    International Nuclear Information System (INIS)

    1981-01-01

    The approach to determining how safe is safe for the nuclear industry is to ensure that the risks are comparable with or less than those of other safe industries. There are some problems in implementing such an approach, because the effects of low levels of radiation are stochastic and assumptions are required in estimating the risks. A conservative approach has generally been adopted. Risk estimates across different activities are a useful indication of where society may be overspending or underspending to reduce risk, but the analysis has to take account of public preferences. Once risks have been estimated, limits may be chosen which the industry is expected to meet under normal and postulated accident conditions. Limits have been set so that nuclear risks do not exceed those in safe industries, and under normal conditions nuclear facilities operate at levels far below these specified limits

  12. Reviewing the development of an artificial intelligence based risk program

    International Nuclear Information System (INIS)

    Dixon, B.W.; Hinton, M.F.

    1985-01-01

    A successful application of nonconventional programming methods has been achieved in computer-assisted probabilistic risk assessment (PRA). The event tree sequence importance calculator, SQUIMP, provides for prompted data entry, generic expansion, on-line pruning, boolean reductions, and importance factor selection. SQUIMP employs constructs typically found in artificial intelligence (AI) programs. The development history of SQUIMP is outlined and its internal structure described as background for a discussion on the applicability of symbolic programming methods in PRA

  13. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  14. Using risk assessment in periodontics.

    Science.gov (United States)

    Woodman, Alan J

    2014-08-01

    Risk assessment has become a regular feature in both dental practice and society as a whole, and principles used to assess risk in society are similar to those used in a clinical setting. Although the concept of risk assessment as a prognostic indicator for periodontal disease incidence and activity is well established in the management of periodontitis, the use of risk assessment to manage the practical treatment of periodontitis and its sequelae appears to have less foundation. A simple system of initial risk assessment - building on the use of the Basic Periodontal Examination (BPE), clinical, medical and social factors - is described, linked to protocols for delivering care suited to general dental practice and stressing the role of long-term supportive care. The risks of not treating the patient are considered, together with the possible causes of failure, and the problems of successful treatment are illustrated by the practical management of post-treatment recession.

  15. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha; Parisi, Carlo; Prescott, Steven R.; Gupta, Abhinav

    2016-01-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  16. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Veeraraghavan, Swetha [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gupta, Abhinav [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporates deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.

  17. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    International Nuclear Information System (INIS)

    Kwag, Shinyoung; Gupta, Abhinav

    2017-01-01

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  18. Probabilistic risk assessment framework for structural systems under multiple hazards using Bayesian statistics

    Energy Technology Data Exchange (ETDEWEB)

    Kwag, Shinyoung [North Carolina State University, Raleigh, NC 27695 (United States); Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [North Carolina State University, Raleigh, NC 27695 (United States)

    2017-04-15

    Highlights: • This study presents the development of Bayesian framework for probabilistic risk assessment (PRA) of structural systems under multiple hazards. • The concepts of Bayesian network and Bayesian inference are combined by mapping the traditionally used fault trees into a Bayesian network. • The proposed mapping allows for consideration of dependencies as well as correlations between events. • Incorporation of Bayesian inference permits a novel way for exploration of a scenario that is likely to result in a system level “vulnerability.” - Abstract: Conventional probabilistic risk assessment (PRA) methodologies (USNRC, 1983; IAEA, 1992; EPRI, 1994; Ellingwood, 2001) conduct risk assessment for different external hazards by considering each hazard separately and independent of each other. The risk metric for a specific hazard is evaluated by a convolution of the fragility and the hazard curves. The fragility curve for basic event is obtained by using empirical, experimental, and/or numerical simulation data for a particular hazard. Treating each hazard as an independently can be inappropriate in some cases as certain hazards are statistically correlated or dependent. Examples of such correlated events include but are not limited to flooding induced fire, seismically induced internal or external flooding, or even seismically induced fire. In the current practice, system level risk and consequence sequences are typically calculated using logic trees to express the causative relationship between events. In this paper, we present the results from a study on multi-hazard risk assessment that is conducted using a Bayesian network (BN) with Bayesian inference. The framework can consider statistical dependencies among risks from multiple hazards, allows updating by considering the newly available data/information at any level, and provide a novel way to explore alternative failure scenarios that may exist due to vulnerabilities.

  19. Environmental Risk Communication through Qualitative Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sabre J. Coleman

    2014-06-01

    Full Text Available Environmental analysts are often hampered in communicating the risks of environmental contaminants due to the myriad of regulatory requirements that are applicable. The use of a qualitative, risk-based control banding strategy for assessment and control of potential environmental contaminants provides a standardized approach to improve risk communication. Presented is a model that provides an effective means for determining standardized responses and controls for common environmental issues based on the level of risk. The model is designed for integration within an occupational health and safety management system to provide a multidisciplinary environmental and occupational risk management approach. This environmental model, which utilizes multidisciplinary control banding strategies for delineating risk, complements the existing Risk Level Based Management System, a proven method in a highly regulated facility for occupational health and safety. A simplified environmental risk matrix is presented that is stratified over four risk levels. Examples of qualitative environmental control banding strategies are presented as they apply to United States regulations for construction, research activities, facility maintenance, and spill remediation that affect air, water, soil, and waste disposal. This approach offers a standardized risk communication language for multidisciplinary issues that will improve communications within and between environmental health and safety professionals, workers, and management.

  20. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different

  1. Use of PRA techniques to optimize the design of the IRIS nuclear power plant

    International Nuclear Information System (INIS)

    Muhlheim, M.D.; Cletcher, J.W. II

    2003-01-01

    True design optimization of a plants inherent safety and performance characteristics results when a probabilistic risk assessment (PRA) is integrated with the plant-level design process. This is the approach being used throughout the design of the International Reactor Innovative and Secure (IRIS) nuclear power plant to maximize safety. A risk-based design optimization tool employing a 'one-button' architecture is being developed by the Oak Ridge National Laboratory to evaluate design changes; new modeling approaches, methods, or theories modeling uncertainties and completeness; physical assumptions; and data changes on component, cabinet, train, and system bases. Unlike current PRAs, the one-button architecture allows components, modules, and data to be interchanged at will with the probabilistic effect immediately apparent. Because all of the current and previous design, and data sets are available via the one-button architecture, the safety ramifications of design options are evaluated, feedback on design alternatives is immediate, and true optimization and understanding can be achieved. Thus, for the first time, PRA analysts and designers can easily determine the probabilistic implications of different design configurations and operating conditions in various combinations for the entire range of initiating events. The power of the one-button architecture becomes evident by the number of design alternatives that can be evaluated C11 component choices yielded 160 design alternatives. Surprisingly, the lessons learned can be counter-intuitive and significant. For example, one of the alternative designs for IRIS evaluated via this architecture revealed that because of common-cause failure probabilities, using the most reliable components actually decreased systems' reliability. (author)

  2. Level-1 seismic probabilistic risk assessment for a PWR plant

    International Nuclear Information System (INIS)

    Kondo, Keisuke; Nishio, Masahide; Fujimoto, Haruo; Ichitsuka, Akihiro

    2014-01-01

    In Japan, revised Seismic Design Guidelines for the domestic light water reactors was published on September 19, 2006. These new guidelines have introduced the purpose to confirm that residual risk resulting from earthquake that exceeds the design limit seismic ground motion (Ss) is sufficiently small, based on the probabilistic risk assessment (PRA) method, in addition to conventional deterministic design base methodology. In response to this situation, JNES had been working to improve seismic PRA (SPRA) models for individual domestic light water reactors. In case of PWR in Japan, total of 24 plants were grouped into 11 categories to develop individual SPRA model. The new regulatory rules against the Fukushima dai-ichi nuclear power plants' severe accidents occurred on March 11, 2011, are going to be enforced in July 2013 and utilities are necessary to implement additional safety measures to avoid and mitigate severe accident occurrence due to external events such as earthquake and tsunami, by referring to the results of severe accident study including SPRA. In this paper a SPRA model development for a domestic 3-loop PWR plant as part of the above-mentioned 11 categories is described. We paid special attention to how to categorize initiating events that are specific to seismic phenomena and how to confirm the effect of the simultaneous failure probability calculation model for the multiple components on the result of core damage frequency evaluation. Simultaneous failure probability for multiple components has been evaluated by power multiplier method. Then tentative level-1 seismic probabilistic risk assessment (SPRA) has been performed by the developed SPSA model with seismic hazard and fragility data. The base case was evaluated under the condition with calculated fragility data and conventional power multiplier. The difference in CDF between the case of conventional power multiplier and that of power multiplier=1 (complete dependence) was estimated to be

  3. Establishment of safety goal and its quantification based on risk assessment

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Muramatsu, Ken

    2017-01-01

    We must clarify the safety objectives sought by society in securing the safety of nuclear reactors and nuclear power plants. For that purpose, it is useful to utilize risk assessment. Quantitative methods including probabilistic risk assessment (PRA) are superior in terms of scientific rationality and quantitative performance compared with conventional deterministic methods, and able to indicate an objective numerical value of safety level. Consequently, quantitative methods can enhance the transparency, consistency, compliance, predictability, and explanatory power of regulatory decisions toward business operators and citizens. Business operators can explain the validity of their own safety assurance activities to regulators and citizens. The goal to be secured becomes clear by incorporating the safety goal into the specific performance goal required for the nuclear power plant from the viewpoint of deep safeguard, and it becomes easy to evaluate the effectiveness of the safety measures. It helps us greatly in judging and selecting the appropriateness of safety measures. It should be noted: the fact that the result of implementing the PRA satisfies the safety goal is not a sufficient condition in the sense of guaranteeing complete safety but a necessary condition. The nuclear power field is a region with large uncertainty, and research/efforts for accuracy improvement and evaluation validity will be required continuously. (A.O.)

  4. Operational Performance Risk Assessment in Support of A Supervisory Control System

    Energy Technology Data Exchange (ETDEWEB)

    Denning, Richard S. [Self Employed; Muhlheim, Michael David [ORNL; Cetiner, Sacit M. [ORNL; Guler Yigitoglu, Askin [ORNL

    2017-06-01

    Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activating plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.

  5. System Analysis and Risk Assessment System (SARA), Version 4.0

    International Nuclear Information System (INIS)

    Russell, K.D.; Sattison, M.B.; Skinner, N.L.; Stewart, H.D.; Wood, S.T.

    1992-02-01

    This NUREG is the reference manual for the System Analysis and Risk Assessment (SARA) System Version 4.0, a microcomputer-based system used to analyze the safety issues of a family [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. The SARA data base contains PRA data for the dominant accident sequences of a family and descriptive information about the family including event trees, fault trees, and system model diagrams. The number of facility data bases that can be accessed is limited only by the amount of disk storage available. To simulate changes to family systems, SARA users change the failure rates of initiating and basic events and/or modify the structure of the cut sets that make up the event trees, fault trees, and systems. The user then evaluates the effects of these changes through the recalculation of the resultant accident sequence probabilities and importance measures. The results are displayed in tables and graphs

  6. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    Science.gov (United States)

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  7. Integrating risk management and safety culture in a framework for risk informed decision making

    International Nuclear Information System (INIS)

    Nelson, W.R.

    2009-01-01

    Operators and regulators of nuclear power plants agree on the importance of maintaining safety and controlling accident risks. Effective safety and risk management requires treatment of both technical and organizational components. Probabilistic Risk Assessment (PRA) provides tools for technical risk management. However, organizational factors are not treated in PRA, but are addressed using different approaches. To bring both components together, a framework of Risk Informed Decision Making (RIDM) is needed. The objective tree structure of the International Atomic Energy Agency (IAEA) is a promising approach to combine both elements. Effective collaboration involving regulatory and industry groups is needed to accomplish the integration. (author)

  8. Risk indices in comparative risk assessment studies

    International Nuclear Information System (INIS)

    Hubert, P.

    1984-01-01

    More than a decade ago the development of comparative risk assessment studies aroused overwhelming interest. There was no doubt that data on the health and safety aspects of energy systems would greatly benefit, or even end, the debate on nuclear energy. Although such attempts are still strongly supported, the rose-coloured expectations of the early days have faded. The high uncertainties, and the contradictory aspect, of the first results might explain this evolution. The loose connection between the range of computed risk indices and the questions on which the debate was focused is another reason for this decline in interest. Important research work is being carried out aiming at reducing the different kinds of uncertainties. Rather than the uncertainties, the paper considers the meaning of available risk indices and proposes more significant indices with respect to the goals of risk assessment. First, the indices which are of frequent use in comparative studies are listed. The stress is put on a French comparative study from which most examples are drawn. Secondly, the increase in magnitude of the indices and the decrease in the attributability of the risk to a given system is shown to be a consequence of the trend towards more comprehensive analyses. Thirdly, the ambiguity of such indices as the collective occupational risk is underlined, and a possible solution is suggested. Whenever risk assessments are related to pragmatic decision making problems it is possible to find satisfactory risk indices. The development of cost-effectiveness analyses and the proposals for quantitative safety goals clearly demonstrate this point. In the field of comparison of social impacts some proposals are made, but there remain some gaps still to be filled. (author)

  9. Toward risk assessment 2.0: Safety supervisory control and model-based hazard monitoring for risk-informed safety interventions

    International Nuclear Information System (INIS)

    Favarò, Francesca M.; Saleh, Joseph H.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a staple in the engineering risk community, and it has become to some extent synonymous with the entire quantitative risk assessment undertaking. Limitations of PRA continue to occupy researchers, and workarounds are often proposed. After a brief review of this literature, we propose to address some of PRA's limitations by developing a novel framework and analytical tools for model-based system safety, or safety supervisory control, to guide safety interventions and support a dynamic approach to risk assessment and accident prevention. Our work shifts the emphasis from the pervading probabilistic mindset in risk assessment toward the notions of danger indices and hazard temporal contingency. The framework and tools here developed are grounded in Control Theory and make use of the state-space formalism in modeling dynamical systems. We show that the use of state variables enables the definition of metrics for accident escalation, termed hazard levels or danger indices, which measure the “proximity” of the system state to adverse events, and we illustrate the development of such indices. Monitoring of the hazard levels provides diagnostic information to support both on-line and off-line safety interventions. For example, we show how the application of the proposed tools to a rejected takeoff scenario provides new insight to support pilots’ go/no-go decisions. Furthermore, we augment the traditional state-space equations with a hazard equation and use the latter to estimate the times at which critical thresholds for the hazard level are (b)reached. This estimation process provides important prognostic information and produces a proxy for a time-to-accident metric or advance notice for an impending adverse event. The ability to estimate these two hazard coordinates, danger index and time-to-accident, offers many possibilities for informing system control strategies and improving accident prevention and risk mitigation

  10. Tools for Microbiological risk assessment

    DEFF Research Database (Denmark)

    Bassett, john; Nauta, Maarten; Lindqvist, Roland

    can increase the understanding of microbiological risks in foods. It is timely to inform food safety professionals about the availability and utility of MRA tools. Therefore, the focus of this report is to aid the food safety manager by providing a concise summary of the tools available for the MRA......Microbiological Risk Assessment (MRA) has emerged as a comprehensive and systematic approach for addressing the risk of pathogens in specific foods and/or processes. At government level, MRA is increasingly recognised as a structured and objective approach to understand the level of risk in a given...... food/pathogen scenario. Tools developed so far support qualitative and quantitative assessments of the risk that a food pathogen poses to a particular population. Risk can be expressed as absolute numbers or as relative (ranked) risks. The food industry is beginning to appreciate that the tools for MRA...

  11. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...... of such a framework is demonstrated by means of a risk assessment of flooding from extreme precipitation for the city of Odense, Denmark. A sensitivity analysis shows how the presence of particularly important assets, such as cultural and historical heritage, may be addressed in assessing such risks. The output...

  12. Overview of NRC PRA research program

    International Nuclear Information System (INIS)

    Cunningham, M.A.; Drouin, M.T.; Ramey-Smith, A.M.; VanderMolen, M.T.

    1997-01-01

    The NRC's research program in probabilistic risk analysis includes a set of closely-related elements, from basic research to regulatory applications. The elements of this program are as follows: (1) Development and demonstration of methods and advanced models and tools for use by the NRC staff and others performing risk assessments; (2) Support to agency staff on risk analysis and statistics issues; (3) Reviews of risk assessments submitted by licensees in support of regulatory applications, including the IPEs and IPEEEs. Each of these elements is discussed in the paper, providing highlights of work within an element, and, where appropriate, describing important support and feedback mechanisms among elements

  13. Carcinogen risk assessment

    International Nuclear Information System (INIS)

    Hazelwoold, R.N.

    1987-01-01

    This article describes the methods by which risk factors for carcinogenic hazards are determined and the limitations inherent in the process. From statistical and epidemiological studies, the major identifiable factors related to cancer in the United States were determined to be cigarette smoking, diet, reproductive and sexual behavior, infections, ultraviolet and ionizing radiation, and alcohol consumption. The incidence of lung cancer due to air pollutants was estimated to be less than 2%. Research needs were discussed

  14. Probabilistic risk assessment, Volume I

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This book contains 158 papers presented at the International Topical Meeting on Probabilistic Risk Assessment held by the American Nuclear Society (ANS) and the European Nuclear Society (ENS) in Port Chester, New York in 1981. The meeting was second in a series of three. The main focus of the meeting was on the safety of light water reactors. The papers discuss safety goals and risk assessment. Quantitative safety goals, risk assessment in non-nuclear technologies, and operational experience and data base are also covered. Included is an address by Dr. Chauncey Starr

  15. Risk assessment in maritime transportation

    International Nuclear Information System (INIS)

    Soares, C. Guedes; Teixeira, A.P.

    2001-01-01

    A review is presented of different approaches to quantify the risk in maritime transportation. The discussion of several accident statistics provides a global assessment of the risk levels and its differentiation in ship types and main types of ship losses. Early studies in the probability of ship loss by foundering and capsizing are reviewed. The approaches used to assess the risk of structural design are addressed. Finally a brief account is given of recent development of using formal safety assessments to support decision making on legislation applicable internationally to maritime transportation

  16. Framework for ecological risk assessment

    International Nuclear Information System (INIS)

    Rodier, D.; Norton, S.

    1992-02-01

    Increased interest in ecological issues such as global climate change, habitat loss, acid deposition, reduced biological diversity, and the ecological impacts of pesticides and toxic chemicals prompts this U.S. Environmental Protection Agency (EPA) report, A Framework for Ecological Risk Assessment ('Framework Report'). The report describes basic elements, or a framework, for evaluating scientific information on the adverse effects of physical and chemical stressors on the environment. The framework offers starting principles and a simple structure as guidance for current ecological risk assessments and as a foundation for future EPA proposals for risk assessment guidelines

  17. Risk Assessment and Integration Team (RAIT) Portfolio Risk Analysis Strategy

    Science.gov (United States)

    Edwards, Michelle

    2010-01-01

    Impact at management level: Qualitative assessment of risk criticality in conjunction with risk consequence, likelihood, and severity enable development of an "investment policy" towards managing a portfolio of risks. Impact at research level: Quantitative risk assessments enable researchers to develop risk mitigation strategies with meaningful risk reduction results. Quantitative assessment approach provides useful risk mitigation information.

  18. Quantitative risk assessment system (QRAS)

    Science.gov (United States)

    Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Mosleh, Ali (Inventor); Chang, Yung-Hsien (Inventor); Swaminathan, Sankaran (Inventor); Groen, Francisco J (Inventor); Tan, Zhibin (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  19. Risk assessment: An employer's perspective

    International Nuclear Information System (INIS)

    Williams, K.C.

    1992-01-01

    There is no question that a careful assessment of risk is essential for safe industrial operations. For that reason, a thoughtful analysis of the effectiveness of available risk assessment technologies is prerequisite for responsible corporate decision making. An 'employer's' perspective on risk assessment cannot be constrained by any artificial restrictions which that term may imply. In reality, all those who are involved in the execution of an industrial enterprise: managers, regulators, the affected public, and especially those employees exposed to hazards, are necessarily partners in assessment of risk. The perspective of this paper is that of the oil and gas industry, in which the author's organization, Exxon Company, International, participates. The paper addresses what Exxon requires to assess and manage risk in its worldwide operations. The author is aware, however, through contacts with industry colleagues, that some of Exxon's initiatives are representative of similar actions being taken by others. 1992 is the European Year of Safety, Health and Hygiene, coinciding with the United Kingdom's Presidency of the European Council. It is also the year in which new 'goal-setting' regulations covering safety in the U.K. offshore oil industry were put forward by the Health and Safety Commission. These regulations, based largely on Lord Cullen's recommendations following the Piper Alpha tragedy, set the pace for safety in the British North Sea and will significantly impact the safety of offshore oil installations worldwide. The requirement for risk assessment, using a systematic process of analysing and evaluating risk, is a key component of this safety regime

  20. Risk assessment: An employer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K C [Exxon International (United States)

    1992-07-01

    There is no question that a careful assessment of risk is essential for safe industrial operations. For that reason, a thoughtful analysis of the effectiveness of available risk assessment technologies is prerequisite for responsible corporate decision making. An 'employer's' perspective on risk assessment cannot be constrained by any artificial restrictions which that term may imply. In reality, all those who are involved in the execution of an industrial enterprise: managers, regulators, the affected public, and especially those employees exposed to hazards, are necessarily partners in assessment of risk. The perspective of this paper is that of the oil and gas industry, in which the author's organization, Exxon Company, International, participates. The paper addresses what Exxon requires to assess and manage risk in its worldwide operations. The author is aware, however, through contacts with industry colleagues, that some of Exxon's initiatives are representative of similar actions being taken by others. 1992 is the European Year of Safety, Health and Hygiene, coinciding with the United Kingdom's Presidency of the European Council. It is also the year in which new 'goal-setting' regulations covering safety in the U.K. offshore oil industry were put forward by the Health and Safety Commission. These regulations, based largely on Lord Cullen's recommendations following the Piper Alpha tragedy, set the pace for safety in the British North Sea and will significantly impact the safety of offshore oil installations worldwide. The requirement for risk assessment, using a systematic process of analysing and evaluating risk, is a key component of this safety regime.

  1. Building Better Environmental Risk Assessments

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines. PMID:26301217

  2. Building Better Environmental Risk Assessments.

    Science.gov (United States)

    Layton, Raymond; Smith, Joe; Macdonald, Phil; Letchumanan, Ramatha; Keese, Paul; Lema, Martin

    2015-01-01

    Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision-making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERAs) for genetically modified (GM) crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems - examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data), and adapting advances in risk analysis from other relevant disciplines.

  3. Building better environmental risk assessments

    Directory of Open Access Journals (Sweden)

    Raymond eLayton

    2015-08-01

    Full Text Available Risk assessment is a reasoned, structured approach to address uncertainty based on scientific and technical evidence. It forms the foundation for regulatory decision making, which is bound by legislative and policy requirements, as well as the need for making timely decisions using available resources. In order to be most useful, environmental risk assessments (ERA for genetically modified (GM crops should provide consistent, reliable, and transparent results across all types of GM crops, traits, and environments. The assessments must also separate essential information from scientific or agronomic data of marginal relevance or value for evaluating risk and complete the assessment in a timely fashion. Challenges in conducting ERAs differ across regulatory systems – examples are presented from Canada, Malaysia, and Argentina. One challenge faced across the globe is the conduct of risk assessments with limited resources. This challenge can be overcome by clarifying risk concepts, placing greater emphasis on data critical to assess environmental risk (for example, phenotypic and plant performance data rather than molecular data, and adapting advances in risk analysis from other relevant disciplines.

  4. Risk assessment in international operations

    International Nuclear Information System (INIS)

    Stricklin, Daniela L.

    2008-01-01

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently

  5. Preliminary risk assessment of the Integral Inherently-Safe Light Water Reactor

    International Nuclear Information System (INIS)

    McCarroll, Kellen R.; Lee, John C.; Manera, Annalisa; Memmott, Matthew J.; Ferroni, Paolo

    2017-01-01

    The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) concept seeks to significantly increase nuclear power plant safety. The project implements a safety-by-design philosophy, eliminating several initiating events and providing novel, passive safety systems at the conceptual phase. Pursuit of unparalleled safety employs an integrated development process linking design with deterministic and probabilistic safety analyses. Unique aspects of the I 2 S-LWR concept and design process present challenges to the probabilistic risk assessment (PRA), particularly regarding overall flexibility, auditability and resolution of results. Useful approaches to initiating events and conditional failures are presented. To exemplify the risk-informed design process using PRA, a trade-off study of two safety system configurations is presented. Although further optimization is required, preliminary results indicate that the I 2 S-LWR can achieve a core damage frequency (CDF) from internal events less than 1.01 × 10 −8 /ry, including reactor vessel ruptures. Containment bypass frequency due to primary heat exchanger rupture is found to be comparable to non-vessel rupture CDF.

  6. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1998-01-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  7. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D J; Ragland, W A; Roglans, J

    1998-11-01

    This paper summarizes the results from the EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10{sup -6} yr{sup -1}, even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10{sup -6} yr{sup -1} and the contribution of seismic events is 1.7 10{sup -5} yr{sup -1}. Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability.

  8. The EBR-II probabilistic risk assessment lessons learned regarding passive safety

    International Nuclear Information System (INIS)

    Hill, D.J.; Ragland, W.A.; Roglans, J.

    1994-01-01

    This paper summarizes the results from the recently completed EBR-II Probabilistic Risk Assessment (PRA) and provides an analysis of the source of risk of the operation of EBR-II from both internal and external initiating events. The EBR-II PRA explicitly accounts for the role of reactivity feedbacks in reducing fuel damage. The results show that the expected core damage frequency from internal initiating events at EBR-II is very low, 1.6 10 -6 yr -1 , even with a wide definition of core damage (essentially that of exceeding Technical Specification limits). The annual frequency of damage, primarily due to liquid metal fires, from externally initiated events (excluding earthquakes) is 3.6 10 -6 yr -1 and the contribution of seismic events is 1.7 10 -5 yr -1 . Overall these results are considerably better than results for other research reactors and the nuclear industry in general and stem from three main sources: low likelihood of loss of coolant due to low system pressure and top entry double vessels; low likelihood of loss of decay heat removal due to reliance on passive means; and low likelihood of power/flow mismatch due to both passive feedbacks and reliability of rod scram capability

  9. Assessment and perception of risk

    Energy Technology Data Exchange (ETDEWEB)

    Daglish, J

    1981-01-01

    A recent two-day meeting was called by the Royal Society to discuss all types of risks, but symptomatic of the concerns of most of those present, the discussion centred mainly on the risks inherent in energy production and use. Among the subjects considered were public perception of differing risks, and how these are ranked, and risks versus benefits. Quotations from and summaries of many of the papers presented show that it was generally felt that scientists must be very careful in the way that they use numerical assessments of risk and that they should pay more attention than they have to social and political factors.

  10. Probablistic risk assessment methodology application to Indian pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Babar, A.K.; Grover, R.B.; Mehra, V.K.; Gangwal, D.K.; Chakraborty, G.

    1987-01-01

    Probabilistic risk assessment in the context of nuclear power plants is associated with models that predict the offsite radiological releases resulting from reactor accidents. Level 1 PRA deals with the identification of accident sequences relevant to the design of a system and also with their quantitative estimation. It is characterised by event tree, fault tree analysis. The initiating events applicable to pressurised heavy water reactors have been considered and the dominating initiating events essential for detailed studies are identified in this paper. Reliability analysis and the associated problems encountered during the case studies are mentioned briefly. It is imperative to validate the failure data used for analysis. Bayesian technique has been employed for the same and a brief account is included herein. A few important observations, e.g. effects of the presence of moderator, made during the application of probabilistic risk assessment methodology are also discussed. (author)

  11. Risk assessment for the intentional depressurization strategy in PWRs

    International Nuclear Information System (INIS)

    Dingman, S.E.

    1994-03-01

    An accident management strategy has been proposed in which the reactor coolant system is intentionally depressurized during an accident. The aim is to reduce the containment pressurization that would result from high pressure ejection of molten debris at vessel breach. Probabilistic risk assessment (PRA) methods were used to evaluate this strategy for the Surry nuclear power plant. Sensitivity studies were conducted using event trees that were developed for the NUREG-1150 study. It was found that depressurization (intentional or unintentional) had minimal impact on the containment failure probability at vessel breach for Surry because the containment loads assessed for NUREG-1150 were not a great threat to the containment survivability. An updated evaluation of the impact of intentional depressurization on the probability of having a high pressure melt ejection was then made that reflected analyses that have been performed since NUREG-1150 was completed. The updated evaluation confirmed the sensitivity study conclusions that intentional depressurization has minimal impact on the probability of a high pressure melt ejection. The updated evaluation did show a slight benefit from depressurization because depressurization delayed core melting, which led to a higher probability of recovering emergency core coolant injection, thereby arresting the core damage

  12. Research on Methodology to Prioritize Critical Digital Assets based on Nuclear Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonjik; Kwon, Kookheui; Kim, Hyundoo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    Digital systems are used in nuclear facilities to monitor and control various types of field devices, as well as to obtain and store vital information. Therefore, it is getting important for nuclear facilities to protect digital systems from cyber-attack in terms of safety operation and public health since cyber compromise of these systems could lead to unacceptable radiological consequences. Based on KINAC/RS-015 which is a cyber security regulatory standard, regulatory activities for cyber security at nuclear facilities generally focus on critical digital assets (CDAs) which are safety, security, and emergency preparedness related digital assets. Critical digital assets are estimated over 60% among all digital assets in a nuclear power plant. Therefore, it was required to prioritize critical digital assets to improve efficiency of regulation and implementation. In this paper, the research status on methodology development to prioritize critical digital assets based on nuclear risk assessment will be introduced. In this paper, to derive digital asset directly affect accident, PRA results (ET, FT, and minimal cut set) are analyzed. According to result of analysis, digital systems related to CD are derived ESF-CCS (safety-related component control system) and Process-CCS (non-safety-related component control system) as well as Engineered Safety Features Actuation System (ESFAS). These digital assets can be identified Vital Digital Asset (VDA). Hereafter, to develop general methodology which was identified VDA related to accident among CDAs, (1) method using result of minimal cut set in PRA model will be studied and (2) method quantifying result of Digital I and C PRA which is performed to reflect all digital cabinet related to system in FT will be studied.

  13. Research on Methodology to Prioritize Critical Digital Assets based on Nuclear Risk Assessment

    International Nuclear Information System (INIS)

    Kim, Wonjik; Kwon, Kookheui; Kim, Hyundoo

    2016-01-01

    Digital systems are used in nuclear facilities to monitor and control various types of field devices, as well as to obtain and store vital information. Therefore, it is getting important for nuclear facilities to protect digital systems from cyber-attack in terms of safety operation and public health since cyber compromise of these systems could lead to unacceptable radiological consequences. Based on KINAC/RS-015 which is a cyber security regulatory standard, regulatory activities for cyber security at nuclear facilities generally focus on critical digital assets (CDAs) which are safety, security, and emergency preparedness related digital assets. Critical digital assets are estimated over 60% among all digital assets in a nuclear power plant. Therefore, it was required to prioritize critical digital assets to improve efficiency of regulation and implementation. In this paper, the research status on methodology development to prioritize critical digital assets based on nuclear risk assessment will be introduced. In this paper, to derive digital asset directly affect accident, PRA results (ET, FT, and minimal cut set) are analyzed. According to result of analysis, digital systems related to CD are derived ESF-CCS (safety-related component control system) and Process-CCS (non-safety-related component control system) as well as Engineered Safety Features Actuation System (ESFAS). These digital assets can be identified Vital Digital Asset (VDA). Hereafter, to develop general methodology which was identified VDA related to accident among CDAs, (1) method using result of minimal cut set in PRA model will be studied and (2) method quantifying result of Digital I and C PRA which is performed to reflect all digital cabinet related to system in FT will be studied

  14. Deterministic quantitative risk assessment development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jane; Colquhoun, Iain [PII Pipeline Solutions Business of GE Oil and Gas, Cramlington Northumberland (United Kingdom)

    2009-07-01

    Current risk assessment practice in pipeline integrity management is to use a semi-quantitative index-based or model based methodology. This approach has been found to be very flexible and provide useful results for identifying high risk areas and for prioritizing physical integrity assessments. However, as pipeline operators progressively adopt an operating strategy of continual risk reduction with a view to minimizing total expenditures within safety, environmental, and reliability constraints, the need for quantitative assessments of risk levels is becoming evident. Whereas reliability based quantitative risk assessments can be and are routinely carried out on a site-specific basis, they require significant amounts of quantitative data for the results to be meaningful. This need for detailed and reliable data tends to make these methods unwieldy for system-wide risk k assessment applications. This paper describes methods for estimating risk quantitatively through the calibration of semi-quantitative estimates to failure rates for peer pipeline systems. The methods involve the analysis of the failure rate distribution, and techniques for mapping the rate to the distribution of likelihoods available from currently available semi-quantitative programs. By applying point value probabilities to the failure rates, deterministic quantitative risk assessment (QRA) provides greater rigor and objectivity than can usually be achieved through the implementation of semi-quantitative risk assessment results. The method permits a fully quantitative approach or a mixture of QRA and semi-QRA to suit the operator's data availability and quality, and analysis needs. For example, consequence analysis can be quantitative or can address qualitative ranges for consequence categories. Likewise, failure likelihoods can be output as classical probabilities or as expected failure frequencies as required. (author)

  15. Probabilistic risk assessment for back-end facilities: Improving the treatment of fire and explosion scenarios

    International Nuclear Information System (INIS)

    Sunman, C.R.J.; Campbell, R.J.; Wakem, M.J.

    1996-01-01

    The nuclear reprocessing facilities at Sellafield are a key component of the International business of BNFL. The operations carried out at the site extend from the receipt and storage of irradiated fuel, chemical reprocessing, plutonium and uranium finishing, through mixed oxide fuel production. Additionally there are a wide range of supporting processes including solid waste encapsulation, vitrification, liquid waste evaporation and treatment. Decommissioning of the site's older facilities is also proceeding. The comprehensive range of these activities requires that the safety assessment team keeps up to date with developments in the field, as well as conducting and sponsoring appropriate research into methodologies and modelling in order to deliver a cost effective, timely service. This paper will review the role of Probabilistic Risk Assessment (PRA) in safety cases for operations at Sellafield and go on to describe some areas of PRA methodology development in the UK and in which BNFL is a contributor. Finally the paper will summarise some specific areas of methodology development associated with improving the modelling of fire and explosion hazards which are specific to BNFL. (author)

  16. Modern biogeochemistry environmental risk assessment

    CERN Document Server

    Bashkin, Vladimir N

    2006-01-01

    Most books deal mainly with various technical aspects of ERA description and calculationsAims at generalizing the modern ideas of both biogeochemical and environmental risk assessment during recent yearsAims at supplementing the existing books by providing a modern understanding of mechanisms that are responsible for the ecological risk for human beings and ecosystem

  17. Risk assessment future cash flows

    OpenAIRE

    Chachina H. G.

    2012-01-01

    This article is about risk assessment in planning future cash flows. Discount rate in DCF-model must include four factors: risk cash flow, inflation, value of investments, turnover assets. This has an influence net present value cash flow and make his incomparable.

  18. Test reactor risk assessment methodology

    International Nuclear Information System (INIS)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor

  19. Anthropic Risk Assessment on Biodiversity

    Science.gov (United States)

    Piragnolo, M.; Pirotti, F.; Vettore, A.; Salogni, G.

    2013-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niches, with consequence of loss of biodiversity. Ecological risk assessment applied on Natura 2000 network, is needed to best practice of management and monitoring of environment and natural resources. Threats, pressure and activities, stress and indicators may be managed by geodatabase and analysed using GIS technology. The method used is the classic risk assessment in ecological context, and it defines the natural hazard as influence, element of risk as interference and vulnerability. Also it defines a new parameter called pressure. It uses risk matrix for the risk analysis on spatial and temporal scale. The methodology is qualitative and applies the precautionary principle in environmental assessment. The final product is a matrix which excludes the risk and could find application in the development of a territorial information system.

  20. Cloud computing assessing the risks

    CERN Document Server

    Carstensen, Jared; Golden, Bernard

    2012-01-01

    Cloud Computing: Assessing the risks answers these questions and many more. Using jargon-free language and relevant examples, analogies and diagrams, it is an up-to-date, clear and comprehensive guide the security, governance, risk, and compliance elements of Cloud Computing.

  1. Improving pandemic influenza risk assessment

    Science.gov (United States)

    Assessing the pandemic risk posed by specific non-human influenza A viruses remains a complex challenge. As influenza virus genome sequencing becomes cheaper, faster and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk asses...

  2. Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems

    International Nuclear Information System (INIS)

    Groth, Katrina; Wang Chengdong; Mosleh, Ali

    2010-01-01

    This paper introduces an integrated framework and software platform for probabilistic risk assessment (PRA) and safety monitoring of complex socio-technical systems. An overview of the three-layer hybrid causal logic (HCL) modeling approach and corresponding algorithms, implemented in the Trilith software platform, are provided. The HCL approach enhances typical PRA methods by quantitatively including the influence of soft causal factors introduced by human and organizational aspects of a system. The framework allows different modeling techniques to be used for different aspects of the socio-technical system. The HCL approach combines the power of traditional event sequence diagram (ESD)event tree (ET) and fault tree (FT) techniques for modeling deterministic causal paths, with the flexibility of Bayesian belief networks for modeling non-deterministic cause-effect relationships among system elements (suitable for modeling human and organizational influences). Trilith enables analysts to construct HCL models and perform quantitative risk assessment and management of complex systems. The risk management capabilities included are HCL-based risk importance measures, hazard identification and ranking, precursor analysis, safety indicator monitoring, and root cause analysis. This paper describes the capabilities of the Trilith platform and power of the HCL algorithm by use of example risk models for a type of aviation accident (aircraft taking off from the wrong runway).

  3. Hybrid causal methodology and software platform for probabilistic risk assessment and safety monitoring of socio-technical systems

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina, E-mail: kgroth@umd.ed [Center for Risk and Reliability, 0151 Glenn L. Martin Hall, University of Maryland, College Park, MD 20742 (United States); Wang Chengdong; Mosleh, Ali [Center for Risk and Reliability, 0151 Glenn L. Martin Hall, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    This paper introduces an integrated framework and software platform for probabilistic risk assessment (PRA) and safety monitoring of complex socio-technical systems. An overview of the three-layer hybrid causal logic (HCL) modeling approach and corresponding algorithms, implemented in the Trilith software platform, are provided. The HCL approach enhances typical PRA methods by quantitatively including the influence of soft causal factors introduced by human and organizational aspects of a system. The framework allows different modeling techniques to be used for different aspects of the socio-technical system. The HCL approach combines the power of traditional event sequence diagram (ESD)event tree (ET) and fault tree (FT) techniques for modeling deterministic causal paths, with the flexibility of Bayesian belief networks for modeling non-deterministic cause-effect relationships among system elements (suitable for modeling human and organizational influences). Trilith enables analysts to construct HCL models and perform quantitative risk assessment and management of complex systems. The risk management capabilities included are HCL-based risk importance measures, hazard identification and ranking, precursor analysis, safety indicator monitoring, and root cause analysis. This paper describes the capabilities of the Trilith platform and power of the HCL algorithm by use of example risk models for a type of aviation accident (aircraft taking off from the wrong runway).

  4. Evaluation of thermal risk assessment

    International Nuclear Information System (INIS)

    Loos, J.J.; Perry, E.S.

    1993-01-01

    Risk assessment was done in 1983 to estimate the ecological hazard of increasing the generating load and thermal output of an electric generating station. Subsequently, long-term monitoring in the vicinity of the station allowed verification of the predictions made in the risk assessment. This presentation will review the efficacy of early risk assessment methods in producing useful predictions from a resource management point of view. In 1984, the Chalk Point Generating facility of the Potomac Electric Power Company increased it's median generating load by 100%. Prior to this operational change, the Academy of Natural Sciences of Philadelphia synthesized site specific data, model predictions, and results from literature to assess the risk of additional waste heat to the Patuxent River subestuary of Chesapeake Bay. Risk was expressed as the number of days per year that various species of fish and the blue crab would be expected to avoid the discharge vicinity. Accuracy of these predictions is assessed by comparing observed fish and crab distributions and their observed frequencies of avoidance to those predicted. It is concluded that the predictions of this early risk assessment were sufficiently accurate to produce a reliable resource management decision

  5. A risk assessment methodology to evaluate the risk failure of managed aquifer recharge in the Mediterranean Basin

    Science.gov (United States)

    Rodríguez-Escales, Paula; Canelles, Arnau; Sanchez-Vila, Xavier; Folch, Albert; Kurtzman, Daniel; Rossetto, Rudy; Fernández-Escalante, Enrique; Lobo-Ferreira, João-Paulo; Sapiano, Manuel; San-Sebastián, Jon; Schüth, Christoph

    2018-06-01

    Managed aquifer recharge (MAR) can be affected by many risks. Those risks are related to different technical and non-technical aspects of recharge, like water availability, water quality, legislation, social issues, etc. Many other works have acknowledged risks of this nature theoretically; however, their quantification and definition has not been developed. In this study, the risk definition and quantification has been performed by means of fault trees and probabilistic risk assessment (PRA). We defined a fault tree with 65 basic events applicable to the operation phase. After that, we have applied this methodology to six different managed aquifer recharge sites located in the Mediterranean Basin (Portugal, Spain, Italy, Malta, and Israel). The probabilities of the basic events were defined by expert criteria, based on the knowledge of the different managers of the facilities. From that, we conclude that in all sites, the perception of the expert criteria of the non-technical aspects were as much or even more important than the technical aspects. Regarding the risk results, we observe that the total risk in three of the six sites was equal to or above 0.90. That would mean that the MAR facilities have a risk of failure equal to or higher than 90 % in the period of 2-6 years. The other three sites presented lower risks (75, 29, and 18 % for Malta, Menashe, and Serchio, respectively).

  6. Pathology and risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Programs for providing basic data for use in evaluating the hazard to man from exposure to radiation and other energy-related pollutants are reviewed. A computer program was developed that takes the existing mortality and fertility data on a given population and applies dose-response coefficients and estimated increments of exposure to chemical or radioactive effluents and derives the excess deaths by age and sex for 5-year intervals. The program was used in an analysis of the health effects of airborne coal combustion effluents. Preliminary results are reported from a study of the influence of products of fossil fuel combustion on the spontaneous activity patterns and daily metabolic cycles of mice as a factor of age, environment, and genetic constitution. Preliminary results are reported from studies on the early and late effects of polycyclic hydrocarbons on the immune competence of mice. Studies to determine the risk to human populations from radionuclides released to the environment from nuclear energy facilities use relative toxicity and dose response data from laboratory animals of different body size and life span and comparisons of the effects of internal exposure with those of external exposure to fission neutrons or gamma sources

  7. Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Yorg, Richard; Lucek, Heather; Bouchard, Jim; Jukkola, Ray; Phan, Duan

    2011-01-01

    The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it would have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.

  8. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  9. Competing risk theory and radiation risk assessment

    International Nuclear Information System (INIS)

    Groer, P.G.

    1980-01-01

    New statistical procedures are applied to estimate cumulative distribution functions (c.d.f.), force of mortality, and latent period for radiation-induced malignancies. It is demonstrated that correction for competing risks influences the shape of dose response curves, estimates of the latent period, and of the risk from ionizing radiations. The equivalence of the following concepts is demonstrated: force of mortality, hazard rate, and age or time specific incidence. This equivalence makes it possible to use procedures from reliability analysis and demography for radiation risk assessment. Two methods used by reliability analysts - hazard plotting and total time on test plots - are discussed in some detail and applied to characterize the hazard rate in radiation carcinogenesis. C.d.f.'s with increasing, decreasing, or constant hazard rate have different shapes and are shown to yield different dose-response curves for continuous irradiation. Absolute risk is shown to be a sound estimator only if the force of mortality is constant for the exposed and the control group. Dose-response relationships that use the absolute risk as a measure for the effect turn out to be special cases of dose-response relationships that measure the effect with cumulative incidence. (H.K.)

  10. Caries risk assessment in children

    DEFF Research Database (Denmark)

    Twetman, S

    2016-01-01

    PURPOSE: To summarise the findings of recent systematic reviews (SR) covering caries risk assessment in children, updated with recent primary studies. METHODS: A search for relevant papers published 2012-2014 was conducted in electronic databases. The systematic reviews were quality assessed...... displayed a high risk of bias. CONCLUSIONS: Based on the present summary of literature, it may be concluded: (1) a caries risk assessment should be carried out at the child's first dental visit and reassessments should be done during childhood (D); (2) multivariate models display a better accuracy than...... the use of single predictors and this is especially true for preschool children (C); (3) there is no clearly superior method to predict future caries and no evidence to support the use of one model, program, or technology before the other (C); and (4) the risk category should be linked to appropriate...

  11. Assessing Risk of Innovation

    International Nuclear Information System (INIS)

    Allgood, GO

    2001-01-01

    Today's manufacturing systems and equipment must perform at levels thought impossible a decade ago. Companies must push operations, quality, and efficiencies to unprecedented levels while holding down costs. In this new economy, companies must be concerned with market shares, equity growth, market saturation, and profit. U.S. manufacturing is no exception and is a prime example of businesses forced to adapt to constant and rapid changes in customer needs and product mixes, giving rise to the term ''Agile Manufacturing''. The survival and ultimate success of the American Manufacturing economy may depend upon its ability to create, innovate, and quickly assess the impact that new innovations will have on its business practices. Given the need for flexibility, companies need proven methods to predict and measure the impact that new technologies and strategies will have on overall plant performance from an enterprise perspective. The Value-Derivative Model provides a methodology and approach to assess such impacts in terms of energy savings, production increases, quality impacts, emission reduction, and maintenance and operating costs as they relate to enabling and emerging technologies. This is realized by calculating a set of first order sensitivity parameters obtained from expanding a Taylor Series about the system's operating point. These sensitivity parameters are invariant economic and operational indicators that quantify the impact of any proposed technology in terms of material throughput, efficiency, energy usage, environmental effects, and costs. These parameters also provide a mechanism to define metrics and performance measures that can be qualified in terms of real economic impact. Value-Derivative Analysis can be applied across all manufacturing and production segments of our economy and has found specific use in steel and textiles. Where economic models give the cost of conducting a business, Value-Derivative Analysis provides the cost to conduct

  12. Risk assessment research and technology assessment

    International Nuclear Information System (INIS)

    Albach, H.; Schade, D.; Sinn, H.

    1991-01-01

    The concepts and approaches for technology assessment, the targets and scientific principles, as well as recognizable deficits and recommendations concerning purposeful strategies for the promotion of this research field require a dialog between those concerned. Conception, deficits, and the necessary measures for risk assessment research and technology assessment were discussed as well as ethical aspects. The problematic nature of using organisms altered through genetic engineering in the open land, traffic and transport, site restoration, nuclear energy, and isotope applications were subjects particularly dealt with. (DG) [de

  13. Risk assessment for transport operations

    International Nuclear Information System (INIS)

    Appleton, P.R.; Miles, J.C.

    1990-01-01

    The world-wide safety of the transport of radioactive material is based on the IAEA Transport Regulations. Risk assessment can provide quantitative data to help in the demonstration, understanding and improvement of the effectiveness of the Regulations in assuring safety. In this Paper the methodology, data and computer codes necessary and available for transport risk assessment are reviewed. Notable examples of assessments carried out over the past 15 years are briefly described along with current research, and the benefits and limitations of the techniques are discussed. (author)

  14. Analytical solutions of linked fault tree probabilistic risk assessments using binary decision diagrams with emphasis on nuclear safety applications[Dissertation 17286

    Energy Technology Data Exchange (ETDEWEB)

    Nusbaumer, O. P. M

    2007-07-01

    This study is concerned with the quantification of Probabilistic Risk Assessment (PRA) using linked Fault Tree (FT) models. Probabilistic Risk assessment (PRA) of Nuclear Power Plants (NPPs) complements traditional deterministic analysis; it is widely recognized as a comprehensive and structured approach to identify accident scenarios and to derive numerical estimates of the associated risk levels. PRA models as found in the nuclear industry have evolved rapidly. Increasingly, they have been broadly applied to support numerous applications on various operational and regulatory matters. Regulatory bodies in many countries require that a PRA be performed for licensing purposes. PRA has reached the point where it can considerably influence the design and operation of nuclear power plants. However, most of the tools available for quantifying large PRA models are unable to produce analytically correct results. The algorithms of such quantifiers are designed to neglect sequences when their likelihood decreases below a predefined cutoff limit. In addition, the rare event approximation (e.g. Moivre's equation) is typically implemented for the first order, ignoring the success paths and the possibility that two or more events can occur simultaneously. This is only justified in assessments where the probabilities of the basic events are low. When the events in question are failures, the first order rare event approximation is always conservative, resulting in wrong interpretation of risk importance measures. Advanced NPP PRA models typically include human errors, common cause failure groups, seismic and phenomenological basic events, where the failure probabilities may approach unity, leading to questionable results. It is accepted that current quantification tools have reached their limits, and that new quantification techniques should be investigated. A novel approach using the mathematical concept of Binary Decision Diagram (BDD) is proposed to overcome these

  15. Risk assessment and the environment

    International Nuclear Information System (INIS)

    Fisk, D.J.

    1992-01-01

    This paper reviews the use of risk assessment techniques in the field of environment protection. I will argue that in some important instances the development of environment policy has been a source of fruitful development of a risk based methodologies. In other cases the importation of risk assessment techniques has proved much more problematic. As the scope of environmental regulation increases so does the possibility of inconsistent and arbitrary solutions to problems. The need for a more systematic approach to the development of environmental regulation has never been stronger, so it is important to understand the reasons for the mixed success of risk assessment. This applies equally to those nations with long traditions of the regulation of private sector industry and those just beginning on this course. The way ahead may be to extend our ideas of how to express risk and uncertainty. Some of the recent cause celebres of environment policy show this challenge very clearly. As an example, this paper will look at the problem of assessing the risk of man-made climate change

  16. Risk assessment and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, D J [Department of the Environment (United Kingdom)

    1992-07-01

    This paper reviews the use of risk assessment techniques in the field of environment protection. I will argue that in some important instances the development of environment policy has been a source of fruitful development of a risk based methodologies. In other cases the importation of risk assessment techniques has proved much more problematic. As the scope of environmental regulation increases so does the possibility of inconsistent and arbitrary solutions to problems. The need for a more systematic approach to the development of environmental regulation has never been stronger, so it is important to understand the reasons for the mixed success of risk assessment. This applies equally to those nations with long traditions of the regulation of private sector industry and those just beginning on this course. The way ahead may be to extend our ideas of how to express risk and uncertainty. Some of the recent cause celebres of environment policy show this challenge very clearly. As an example, this paper will look at the problem of assessing the risk of man-made climate change.

  17. Assessing Your Weight and Health Risk

    Science.gov (United States)

    ... Health Professional Resources Assessing Your Weight and Health Risk Assessment of weight and health risk involves using ... risk for developing obesity-associated diseases or conditions. Risk Factors for Health Topics Associated With Obesity Along ...

  18. Activity risk coefficients for living generations

    International Nuclear Information System (INIS)

    Raicevic, J.; Merkle, M.; Ninkovic, M. M.

    1993-01-01

    This paper deals with the new concept of the Activity risk coefficients, ARCs, which are in Probabilistic risk assessment PRA computer codes used for the calculation of the stochastic effects due to low dose exposures. As an example, ARC expressions for the Cloudshine is derived. (author)

  19. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  20. Risk assessment and nuclear power

    International Nuclear Information System (INIS)

    Bodansky, D.

    1982-01-01

    The range of risk perceptions involving nuclear power is so great that there is little hope of bridging extreme positions, but a consensus based upon reasoned discussion among uncommitted people could determine a sensible path. Our concerns over the uncertainties of risk assessment have made it increasingly difficult to make responsible decisions fast enough to deal with modern needs. The result is an immobility in energy matters that can point to a 2% reduction in oil use as its only triumph. The risk of nuclear war as a result of military action over energy issues suggests to some that the solution is to abolish nuclear power (however impractical) and to others that a rapid spread of nuclear power will eliminate energy as an incentive for war. If nuclear war is the major risk to consider, risk assessments need to include the risks of war, as well as those of carbon dioxide buildup and socio-economic disruptions, all of which loom larger than the risks of nuclear-plant accidents. Energy choices should be aimed at diminishing these major risks, even if they include the use of nuclear power. 26 references

  1. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  2. Development of fragility descriptions of equipment for seismic risk assessment of nuclear power plants

    International Nuclear Information System (INIS)

    Hardy, G.S.; Campbell, R.D.

    1983-01-01

    Probabilistic risk assessment (PRA) of a nuclear power plant for postulated hazard requires the development of fragility relationships for the plants' safety related equipment. The objective of this paper is to present some general results and conclusions concerning the development of these seismic fragility levels. Participation in fragility-related research and experience gained from the completion of several PRA studies of a variety of nuclear power plants have provided much insight as to the most vulnerable equipment and the most efficient use of resources for development of fragilities. Plants studied had seismic design bases ranging from very simple equivalent static analysis for some of the earlier plants to state-of-the-art complex multimode dyanamic analyses for plants currently under construction. Increased sophistication and rigor in seismic qualification of equipment has resulted for the most part in increased seismic resistance. The majority of equipment has been found, however, to possess more than adequate resistance to seismic loading regardless of the degree of sophistication utilized in design as long as seismic loading was included in the design process. This paper presents conclusions of the authors as to which items of equipment typically require an individual ''plant-specific'' fragility analysis and which can be treated in a generic fashion. In addition, general conclusions on the relative seismic capacity levels and most frequent failure modes are summarized for generic equipment groups

  3. Risk Informed Design as Part of the Systems Engineering Process

    Science.gov (United States)

    Deckert, George

    2010-01-01

    This slide presentation reviews the importance of Risk Informed Design (RID) as an important feature of the systems engineering process. RID is based on the principle that risk is a design commodity such as mass, volume, cost or power. It also reviews Probabilistic Risk Assessment (PRA) as it is used in the product life cycle in the development of NASA's Constellation Program.

  4. Risk assessment application to NRC inspection

    International Nuclear Information System (INIS)

    Campbell, D.J.; Guthrie, V.H.; Flanagan, G.F.

    1987-01-01

    Inspectors must make many decisions on the allocation of their efforts. To date, these decisions have been made based upon their own judgment and guidance from inspection procedures. The program described in this paper provides PRA information as an additional aid to inspectors. A structured approach for relating PRA information to specific inspection decisions has been developed. The use of PRA information as an aid in optimal decision making (1) in response to the current plant status and (2) in the scheduling of effort over an extended period of time is considered. (orig.)

  5. Systamatic approach to integration of a human reliability analysis into a NPP probabalistic risk assessment

    International Nuclear Information System (INIS)

    Fragola, J.R.

    1984-01-01

    This chapter describes the human reliability analysis tasks which were employed in the evaluation of the overall probability of an internal flood sequence and its consequences in terms of disabling vulnerable risk significant equipment. Topics considered include the problem familiarization process, the identification and classification of key human interactions, a human interaction review of potential initiators, a maintenance and operations review, human interaction identification, quantification model selection, the definition of operator-induced sequences, the quantification of specific human interactions, skill- and rule-based interactions, knowledge-based interactions, and the incorporation of human interaction-related events into the event tree structure. It is concluded that an integrated approach to the analysis of human interaction within the context of a Probabilistic Risk Assessment (PRA) is feasible

  6. Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment.

    Science.gov (United States)

    Phung, Dung; Connell, Des; Rutherford, Shannon; Chu, Cordia

    2017-06-01

    A systematic review (SR) and meta-analysis cannot provide the endpoint answer for a chemical risk assessment (CRA). The objective of this study was to apply SR and meta-regression (MR) analysis to address this limitation using a case study in cardiovascular risk from arsenic exposure in Vietnam. Published studies were searched from PubMed using the keywords of arsenic exposure and cardiovascular diseases (CVD). Random-effects meta-regression was applied to model the linear relationship between arsenic concentration in water and risk of CVD, and then the no-observable-adverse-effect level (NOAEL) were identified from the regression function. The probabilistic risk assessment (PRA) technique was applied to characterize risk of CVD due to arsenic exposure by estimating the overlapping coefficient between dose-response and exposure distribution curves. The risks were evaluated for groundwater, treated and drinking water. A total of 8 high quality studies for dose-response and 12 studies for exposure data were included for final analyses. The results of MR suggested a NOAEL of 50 μg/L and a guideline of 5 μg/L for arsenic in water which valued as a half of NOAEL and guidelines recommended from previous studies and authorities. The results of PRA indicated that the observed exposure level with exceeding CVD risk was 52% for groundwater, 24% for treated water, and 10% for drinking water in Vietnam, respectively. The study found that systematic review and meta-regression can be considered as an ideal method to chemical risk assessment due to its advantages to bring the answer for the endpoint question of a CRA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A

    2018-01-01

    A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision

  8. Use of PRA in Shuttle Decision Making Process

    Science.gov (United States)

    Boyer, Roger L.; Hamlin, Teri L.

    2010-01-01

    How do you use PRA to support an operating program? This presentation will explore how the Shuttle Program Management has used the Shuttle PRA in its decision making process. It will reveal how the PRA has evolved from a tool used to evaluate Shuttle upgrades like Electric Auxiliary Power Unit (EAPU) to a tool that supports Flight Readiness Reviews (FRR) and real-time flight decisions. Specific examples of Shuttle Program decisions that have used the Shuttle PRA as input will be provided including how it was used in the Hubble Space Telescope (HST) manifest decision. It will discuss the importance of providing management with a clear presentation of the analysis, applicable assumptions and limitations, along with estimates of the uncertainty. This presentation will show how the use of PRA by the Shuttle Program has evolved overtime and how it has been used in the decision making process providing specific examples.

  9. Environmental Risk Assessment of Nanomaterials

    Science.gov (United States)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  10. Something important is missing from PRA

    International Nuclear Information System (INIS)

    Ward, D.A.

    1991-01-01

    This paper provides some views on priorities and directions for the future or risk management. There are some problems with the priorities and directions that now seem dominant. Norm Rasmussen of MIT and the late Saul Levine, who was then with the U.S. Atomic Energy Commission (AEC) (the NRC's predecessor), and their colleagues deserve much credit for the invention of the art of Probabilistic Risk Assessment. Certainly the elements of risk analysis were well known and used, at least implicitly, in much of engineering and technology. But, WASH-1400, The Reactor Safety Study issued in 1975, put these elements together in a comprehensive and courageously rational way

  11. Risk assessment of DOE defense program packages in a beyond 10 CFR 71.73 transportation accident environment

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Bennion, J.S.; Moore, J.E.

    1992-01-01

    A comprehensive program is being conducted by the DOE to determine the risks related to the domestic transportation of radioactive and hazardous materials associated with nuclear weapons. The program is designed to identify, quantify and manage potential risks to public health and safety including potential radiological and toxicological health consequences which may exceed the 10 CFR 71.73 transportation accident environment A major objective of this program being performed by the Lawrence Livermore National Laboratory (LLNL) and the University of Utah is to provide the DOE with the methodology and bases for evaluating highway transportation activities by DOE contractors. This paper describes the approach and the HITRA model which is based upon probabilistic risk assessment (PRA) methodology and route specific data associated with the proposed transportation activity. The model is capable of providing detailed, location and time specific data for assessing projected risks to public health and safety from DOE defense program materials shipments

  12. Risk assessment using probabilistic standards

    International Nuclear Information System (INIS)

    Avila, R.

    2004-01-01

    A core element of risk is uncertainty represented by plural outcomes and their likelihood. No risk exists if the future outcome is uniquely known and hence guaranteed. The probability that we will die some day is equal to 1, so there would be no fatal risk if sufficiently long time frame is assumed. Equally, rain risk does not exist if there was 100% assurance of rain tomorrow, although there would be other risks induced by the rain. In a formal sense, any risk exists if, and only if, more than one outcome is expected at a future time interval. In any practical risk assessment we have to deal with uncertainties associated with the possible outcomes. One way of dealing with the uncertainties is to be conservative in the assessments. For example, we may compare the maximal exposure to a radionuclide with a conservatively chosen reference value. In this case, if the exposure is below the reference value then it is possible to assure that the risk is low. Since single values are usually compared; this approach is commonly called 'deterministic'. Its main advantage lies in the simplicity and in that it requires minimum information. However, problems arise when the reference values are actually exceeded or might be exceeded, as in the case of potential exposures, and when the costs for realizing the reference values are high. In those cases, the lack of knowledge on the degree of conservatism involved impairs a rational weighing of the risks against other interests. In this presentation we will outline an approach for dealing with uncertainties that in our opinion is more consistent. We will call it a 'fully probabilistic risk assessment'. The essence of this approach consists in measuring the risk in terms of probabilities, where the later are obtained from comparison of two probabilistic distributions, one reflecting the uncertainties in the outcomes and one reflecting the uncertainties in the reference value (standard) used for defining adverse outcomes. Our first aim

  13. Optimization method to branch-and-bound large SBO state spaces under dynamic probabilistic risk assessment via use of LENDIT scales and S2R2 sets

    International Nuclear Information System (INIS)

    Nielsen, Joseph; Tokuhiro, Akira; Khatry, Jivan; Hiromoto, Robert

    2014-01-01

    Traditional probabilistic risk assessment (PRA) methods have been developed to evaluate risk associated with complex systems; however, PRA methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. In order to address this combinatorial complexity, a branch-and-bound optimization technique is applied to the DPRA formalism to control the combinatorial state explosion. In addition, a new characteristic scaling metric (LENDIT – length, energy, number, distribution, information and time) is proposed as linear constraints that are used to guide the branch-and-bound algorithm to limit the number of possible states to be analyzed. The LENDIT characterization is divided into four groups or sets – 'state, system, resource and response' (S2R2) – describing reactor operations (normal and off-normal). In this paper we introduce the branch-and-bound DPRA approach and the application of LENDIT scales and S2R2 sets to a station blackout (SBO) transient. (author)

  14. Probabilistic risk assessment as an aid to risk management

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1982-01-01

    Probabilistic risk assessments are providing important insights into nuclear power plant safety. Their value is two-fold: first as a means of quantifying nuclear plant risk including contributors to risk, and second as an aid to risk management. A risk assessment provides an analytical plant model that can be the basis for performing meaningful decision analyses for controlling safety. It is the aspect of quantitative risk management that makes probabilistic risk assessment an important technical discipline of the future

  15. Methodology for technical risk assessment

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A methodology has been developed for and applied to the assessment of the technical risks associated with an evolving technology. This methodology, originally developed for fusion by K. W. Billman and F. R. Scott at EPRI, has been applied to assess the technical risk of a fuel system for a fusion reactor. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications (i.e. probability of failure). The individual steps in the technical risk assessment are summarized. The first step in this methodology is to clearly and completely quantify the technical requirements for the particular system being examined. The next step is to identify and define subsystems and various options which appear capable of achieving the required technical performance. The subsystem options are then characterized regarding subsystem functions, interface requirements with the subsystems and systems, important components, developmental obstacles and technical limitations. Key technical subsystem performance parameters are identified which directly or indirectly relate to the system technical specifications. Past, existing and future technical performance data from subsystem experts are obtained by using a Bayesian Interrogation technique. The input data is solicited in the form of probability functions. Thus the output performance of the system is expressed as probability functions

  16. Ecological risk assessment: Lessons learned?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This conference was held November 14--18, 1993 in Houston, Texas for the purpose of providing a forum for exchange of state-of-the-art information on ecological risk assessment. This book is comprised of the abstracts of the presentations at this symposium. Individual abstracts have been processed separately for inclusion in the appropriate data bases

  17. Where You Live: Risk Assessment

    Science.gov (United States)

    Where you live page shows visitors to the risk assessment website how to contact their local regional office by state. Since these link to pages maintained by the local offices they will have the most up-to-date contact information.

  18. Examination of Conservatism in Early/Latent Fatality Estimation in Level 3 PRA

    International Nuclear Information System (INIS)

    Kim, Sung-yeop; Lee, Haneol; Yim, Man-Sung

    2014-01-01

    Due to the computational model driven-nature of the work, there exist various sources of uncertainty in level 3 PRA. They are related with source release, environmental transport and deposition, human behavior involved in dosimetry, health effect and risk assessment. For instance, a total of 376 parameters have been considered in Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA and the details on the number of parameters in each analysis are listed in Table 1. In 2012, the report of NPP accident consequence simulation was distributed by the Korean Federation for Environmental Movement (KFEM). They insisted that Kori Nuclear Power Plant (NPP) accident would lead to 48,000 early fatalities and 850,000 cancer fatalities in Busan and Hanbit NPP accident would lead to 550,000 cancer fatalities in Seoul. This report exemplifies the misuse of collective dose, that is effective dose multiplied by population and time. Even though very low effective dose is considered, collective dose could give over-conservative estimate when high population and long time period is multiplied. International Commission on Radiological Protection (ICRP) forewarned about the misuse of collective dose, in their ICRP Publication 103, such as applying it to simplified calculation of fatality and risk. As part of investigation of conservatism in early and latent fatality estimation, the existing methods of early and latent fatality calculation was reviewed and the results from the use of the existing methodology were examined in this study. The method of early and latent fatality estimation in level 3 PRA was investigated and the conservatism in the result was examined in this study. For the purpose of estimating both early and latent fatality, appropriate dose distributions among the affected population are found to be important. This study showed that large conservatism may be involved in the estimated fatality if the distribution of population dose as a function of

  19. Examination of Conservatism in Early/Latent Fatality Estimation in Level 3 PRA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-yeop; Lee, Haneol; Yim, Man-Sung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Due to the computational model driven-nature of the work, there exist various sources of uncertainty in level 3 PRA. They are related with source release, environmental transport and deposition, human behavior involved in dosimetry, health effect and risk assessment. For instance, a total of 376 parameters have been considered in Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA and the details on the number of parameters in each analysis are listed in Table 1. In 2012, the report of NPP accident consequence simulation was distributed by the Korean Federation for Environmental Movement (KFEM). They insisted that Kori Nuclear Power Plant (NPP) accident would lead to 48,000 early fatalities and 850,000 cancer fatalities in Busan and Hanbit NPP accident would lead to 550,000 cancer fatalities in Seoul. This report exemplifies the misuse of collective dose, that is effective dose multiplied by population and time. Even though very low effective dose is considered, collective dose could give over-conservative estimate when high population and long time period is multiplied. International Commission on Radiological Protection (ICRP) forewarned about the misuse of collective dose, in their ICRP Publication 103, such as applying it to simplified calculation of fatality and risk. As part of investigation of conservatism in early and latent fatality estimation, the existing methods of early and latent fatality calculation was reviewed and the results from the use of the existing methodology were examined in this study. The method of early and latent fatality estimation in level 3 PRA was investigated and the conservatism in the result was examined in this study. For the purpose of estimating both early and latent fatality, appropriate dose distributions among the affected population are found to be important. This study showed that large conservatism may be involved in the estimated fatality if the distribution of population dose as a function of

  20. An approach to risk assessment

    DEFF Research Database (Denmark)

    Simonsen, L.; Lund, S. P.; Hass, Ulla

    1998-01-01

    of Ministers with the task to propose criteria for neurotoxicity. Functional effects on the nervous system, such as reduction in memory and learning ability, decrease in attention, and alteration of behavior due to toxic chemicals in the environment is now being acknowledged as an important public health...... indicate that numerous persons are exposed in the working as well as in the general environment to several chemicals, for which almost no data on the effect on subtle neurophysiological functions are available. Development of an approach to risk assessment dealing with this problem is a major challenge...... in the nineties. Different approaches to risk assessment are discussed, the quality of the databases available for hazard assessment are evaluated, and the needs for further research are identified. (C) 1996 Intox Press, Inc....

  1. 24 CFR 35.315 - Risk assessment.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Risk assessment. 35.315 Section 35... Provided by a Federal Agency Other Than HUD § 35.315 Risk assessment. Each owner shall complete a risk assessment in accordance with 40 CFR 745.227(d). Each risk assessment shall be completed in accordance with...

  2. Risk assessment of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Kai, Michiaki

    2012-01-01

    This commentary describes the radiation cancer risk assessed by international organizations other than ICRP, assessed for radon and for internal exposure, in the series from the aspect of radiation protection of explaining the assessments done until ICRP Pub. 103. Statistic significant increase of cancer formation is proved at higher doses than 100-200 mSv. At lower doses, with use of mathematical model, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported the death probability due to the excess lifetime risk (ELR) at 100 mSv of 0.36-0.77% for solid tumors and 0.03-0.05% for leukemia, and NRC in US, the risk of exposure-induced prevalence and death (REID) per 100 thousands persons of 800 (male)/1,310 (female) and 410/610, respectively. Both are essentially based on findings in A-bomb survivors. The assessment for Rn is described here not on dose. UK and US analyses of pooled raw data in case control studies revealed the significant increase of lung cancer formation at as low level as 100 Bq Rn/m3. Their analyses also showed the significance of smoking, which had been realized as a confounding factor in risk analysis of Rn for uranium miners. The death probability until the age of 85 y was found to be 1.2 x 10 -4 in non-smokers and 24 x 10 -4 in smokers/ Working Level Month (WLM). Increased thyroid cancer incidence has been known in Chernobyl Accident, which is realized as a result of internal exposure of radioiodine; however, the relationship between the internal dose to thyroid and its cancer prevalence resembles that in the case of external exposure. There is no certain evidence against the concept that risk of internal exposure is similar to and/or lower than, the external one although assessment of the internal exposure risk accompanies uncertainty depending on the used model and ingested dose. International Commission on Radiological Protection (ICRP) recommendations hitherto have been important and precious despite

  3. Need to use probabilistic risk approach in performance assessment of waste disposal facilities

    International Nuclear Information System (INIS)

    Bonano, E.J.; Gallegos, D.P.

    1991-01-01

    Regulations governing the disposal of radioactive, hazardous, and/or mixed wastes will likely require, either directly or indirectly, that the performance of disposal facilities be assessed quantitatively. Such analyses, commonly called ''performance assessments,'' rely on the use of predictive models to arrive at a quantitative estimate of the potential impact of disposal on the environment and the safety and health of the public. It has been recognized that a suite of uncertainties affect the results of a performance assessment. These uncertainties are conventionally categorized as (1) uncertainty in the future state of the disposal system (facility and surrounding medium), (2) uncertainty in models (including conceptual models, mathematical models, and computer codes), and (3) uncertainty in data and parameters. Decisions regarding the suitability of a waste disposal facility must be made in light of these uncertainties. Hence, an approach is needed that would allow the explicit consideration of these uncertainties so that their impact on the estimated consequences of disposal can be evaluated. While most regulations for waste disposal do not prescribe the consideration of uncertainties, it is proposed that, even in such cases, a meaningful decision regarding the suitability of a waste disposal facility cannot be made without considering the impact of the attendant uncertainties. A probabilistic risk assessment (PRA) approach provides the formalism for considering the uncertainties and the technical basis that the decision makers can use in discharging their duties. A PRA methodology developed and demonstrated for the disposal of high-level radioactive waste provides a general framework for assessing the disposal of all types of wastes (radioactive, hazardous, and mixed). 15 refs., 1 fig., 1 tab

  4. Performance assessment - risk assessment vive la differences

    International Nuclear Information System (INIS)

    Nitschke, R.L.

    1997-01-01

    In the sister worlds of radioactive waste management disposal and environmental restoration, there are two similar processes and computational approaches for determining the acceptability of the proposed activities. While similar, these two techniques can lead to confusion and misunderstanding if the differences are not recognized and appreciated. In the case of radioactive waste management, the performance assessment process is used to determine compliance with certain prescribed 'performance objectives'. These objectives are designed to ensure that the disposal of radioactive (high-level, low-level, and/or transuranic) waste will be protective of human health and the environment. The environmental link is primarily through assuring protection of the groundwater as a resource. In the case of environmental restoration, the risk assessment process is used to determine the proper remedial action response, if any, for a past hazardous waste release. The process compares the 'no action' or 'leave as is' option with both carcinogenic and noncarcinogenic values for human health to determine the need for any action and to help to help determine just what the appropriate action would need to be. The impacts to the ecological system are evaluated in a slightly, different but similar fashion. Now the common objectives between these two processes notwithstanding. There are some key and fundamental differences that need to be answered that make direct comparisons or a common approach inappropriate. Failure to recognize this can lead to confusion and misunderstanding. This can be particularly problematic when one is faced with an active disposal facility located within the boundaries of an environmental restoration site as is the case at the Idaho National Engineering Laboratory (INEL). Through a critical evaluation of the performance assessment and risk assessment processes, highlighting both similarities and differences, it is hoped that greater understanding and appreciation

  5. 77 FR 66649 - Proposed Revision to Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    Science.gov (United States)

    2012-11-06

    ... and Severe Accident Evaluation for New Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Assessment and Severe Accident Evaluation for New Reactors.'' The NRC is extending the public comment period... assessment (PRA) information and severe accident assessments for new reactors submitted to support design...

  6. RELEVANCE OF PROCESS RISK ASSESSMENT IN AIRLINES

    OpenAIRE

    Oksana G. Feoktistova; Igor K. Turkin; Sergey V. Barinov

    2017-01-01

    The notion of “the concept on assumed risk” that took over from the outdated concept of absolute security is analyzed, the increasing significance of operating risk assessment at the present stage is noted. Some basic risk assessment techniques are considered. Matrix technique of risk assessment is considered more thoroughly, and it may be used in risk assessment of airlines in the context of labour protection management system.The ability to correctly assess risks and develop appropriate pre...

  7. Using risk based tools in emergency response

    International Nuclear Information System (INIS)

    Dixon, B.W.; Ferns, K.G.

    1987-01-01

    Probabilistic Risk Assessment (PRA) techniques are used by the nuclear industry to model the potential response of a reactor subjected to unusual conditions. The knowledge contained in these models can aid in emergency response decision making. This paper presents requirements for a PRA based emergency response support system to date. A brief discussion of published work provides background for a detailed description of recent developments. A rapid deep assessment capability for specific portions of full plant models is presented. The program uses a screening rule base to control search space expansion in a combinational algorithm

  8. Risk assessment and societal choices

    Energy Technology Data Exchange (ETDEWEB)

    Otway, H J

    1975-02-15

    Many countries are experiencing a period in which traditional values are being questioned; plans for further technological progress are being met by a variety of demands for a closer examination of the benefits and risks of large-scale technologies. In this paper the concepts of risk assessment are presented and a model is proposed which illustrates the importance of socio-psychological mechanisms in the acceptance of technological risks. The research plan of the Joint IAEA/IIASA Research Project is outlined: this work is directed toward gaining an improved understanding of how societies judge the acceptability of technologies and how societal attitudes and anticipated responses may be better integrated into the decision-making process. Some preliminary results are reported. (author)

  9. Risk assessment and societal choices

    International Nuclear Information System (INIS)

    Otway, H.J.

    1975-01-01

    Many countries are experiencing a period in which traditional values are being questioned; plans for further technological progress are being met by a variety of demands for a closer examination of the benefits and risks of large-scale technologies. In this paper the concepts of risk assessment are presented and a model is proposed which illustrates the importance of socio-psychological mechanisms in the acceptance of technological risks. The research plan of the Joint IAEA/IIASA Research Project is outlined: this work is directed toward gaining an improved understanding of how societies judge the acceptability of technologies and how societal attitudes and anticipated responses may be better integrated into the decision-making process. Some preliminary results are reported. (author)

  10. Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2000-01-01

    Quantitative fire risk assessment can serve as an additional tool to assess the safety level of a nuclear power plant (NPP) and to set priorities for fire protection improvement measures. The recommended approach to be applied within periodic safety reviews of NPPs in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis using a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. Results of the first quantitative fire risk studies performed in Germany are reported. (author)

  11. Hydrocarbons pipeline transportation risk assessment

    Science.gov (United States)

    Zanin, A. V.; Milke, A. A.; Kvasov, I. N.

    2018-04-01

    The pipeline transportation applying risks assessment issue in the arctic conditions is addressed in the paper. Pipeline quality characteristics in the given environment has been assessed. To achieve the stated objective, the pipelines mathematical model was designed and visualized by using the software product SOLIDWORKS. When developing the mathematical model the obtained results made possible to define the pipeline optimal characteristics for designing on the Arctic sea bottom. In the course of conducting the research the pipe avalanche collapse risks were examined, internal longitudinal and circular loads acting on the pipeline were analyzed, as well as the water impact hydrodynamic force was taken into consideration. The conducted calculation can contribute to the pipeline transport further development under the harsh climate conditions of the Russian Federation Arctic shelf territory.

  12. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos National Laboratory (LANL) has been based on a thorough review and understanding of proposed operations or changes to operations involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgment, that certain accident sequences were credible and had to be precluded by design; others were incredible and thus did not warrant expenditures to further reduce their likelihood. The extent of documentation was generally in proportion to the complexity of the operation but never as detailed as that associated with quantified risk assessments. During the last 3 yr, nuclear criticality safety-related probabilistic risk assessments (PRAs) have been performed on operations in two LANL facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRAs as they apply to largely hands-on operations with fissile material

  13. Evaluation of safety issues on newly regulated nuclear power plant by tsunami-level 1 PRA

    International Nuclear Information System (INIS)

    Tsuji, Yutaro; Miwa, Shuichiro; Mori, Michitsugu

    2014-01-01

    The tsunami caused by the Great East Japan Earthquake triggered severe accidents involving the units 1 to 4 at the Fukushima Dai-ichi nuclear power station (NPS). In order to re-operate existing nuclear power plants it should be necessary to reduce the core damage frequency on risk by tsunami. In this work, effects of the off-site power supply installation on resuming operation of nuclear power plants were investigated by utilizing the Tsunami-Level 1 Probability Risk Assessment (PRA). Unit 2 of the Onagawa nuclear power station, which resembled units 2 and 3 of Fukushima Dai-ichi, was selected for PRA. First, event-tree was created for the units of the Onagawa nuclear power station with the safety systems such as Emergency Core Cooling System (ECCS), investigating the plant situation at the time of the earthquake and tsunami occurrences. It was assumed that the magnitude of the tsunami was equivalent to the Great East Japan Earthquake. The accident-analytical progression-time was 36 hours, determined from the core-damage occurrence of the unit 3 of Fukushima Dai-ichi nuclear power station. Failure probabilities were calculated by the fault tree, which was created from the elements listed in the event tree. For the calculation, failure rates reported by the NUCIA (NUClear Information Archives) were primarily utilized. Then, obtained failure probabilities were embedded to the event tree. Core damage probabilities were evaluated by calculating success and failure rates for each accidental progression and scenarios. Restoration of the failed equipment and machineries was not considered in the analysis. Installation of the power supply vehicles at the nuclear power plant site reduced the core damage probability from 2.58×10 -6 to 8.56×10 -7 . However, continued addition of the power supply vehicles could not lower the core damage probability further more. In the case of Unit 2 of Onagawa nuclear power station, there could be a limit to lower the core damage

  14. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  15. Uncertainties in risk assessment at USDOE facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms{open_quote} risk assessment{close_quote} and{open_quote} risk management{close_quote} are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of {open_quotes}... the most significant data and uncertainties...{close_quotes} in an assessment. Significant data and uncertainties are {open_quotes}...those that define and explain the main risk conclusions{close_quotes}. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation.

  16. Uncertainties in risk assessment at USDOE facilities

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.F.; Morris, S.C.; Rowe, M.D.

    1994-01-01

    The United States Department of Energy (USDOE) has embarked on an ambitious program to remediate environmental contamination at its facilities. Decisions concerning cleanup goals, choices among cleanup technologies, and funding prioritization should be largely risk-based. Risk assessments will be used more extensively by the USDOE in the future. USDOE needs to develop and refine risk assessment methods and fund research to reduce major sources of uncertainty in risk assessments at USDOE facilities. The terms open-quote risk assessment close-quote and open-quote risk management close-quote are frequently confused. The National Research Council (1983) and the United States Environmental Protection Agency (USEPA, 1991a) described risk assessment as a scientific process that contributes to risk management. Risk assessment is the process of collecting, analyzing and integrating data and information to identify hazards, assess exposures and dose responses, and characterize risks. Risk characterization must include a clear presentation of open-quotes... the most significant data and uncertainties...close quotes in an assessment. Significant data and uncertainties are open-quotes...those that define and explain the main risk conclusionsclose quotes. Risk management integrates risk assessment information with other considerations, such as risk perceptions, socioeconomic and political factors, and statutes, to make and justify decisions. Risk assessments, as scientific processes, should be made independently of the other aspects of risk management (USEPA, 1991a), but current methods for assessing health risks are based on conservative regulatory principles, causing unnecessary public concern and misallocation of funds for remediation

  17. The radioprotective effect of a new aminothiol (20-PRA)

    International Nuclear Information System (INIS)

    Dolabela, M.F.; Lopes, M.T.P.; Pereira, M.T.; Steffani, G.M.; Pilo-Veloso, D.; Salas, C.E.; Nelson, D.L.

    1998-01-01

    We examined the radioprotective effect of aminothiol 2-N-propylamine-cyclohexane thiol (20-PRA) on a human leukemic cell line (K562) following various radiation doses (5,7.5 and 20 Gy) using a source of 60 Co γ-rays. At 5 Gy and 1nM 20-PRA, a substantial protective effect (58%) was seen 24 h after irradiation, followed by a decrease at 48 h (11%). At the high radiation dose (20 Gy) a low protective effect was also seen (35%). In addition, the anti tumorigenic potential of 10 nM 20-PRA was shown by the inhibition of crown gall formation induced by Agrobacterium tumefaciens. The radioprotective potency of 20-PRA is 10 5- 10 6 times higher than that of the aminothiol WR-1065 (N(2-mercaptoethyl)-1,3-diamino propane) whose protective effect is in the 0.1 to 1.0 nM range. (author)

  18. The radioprotective effect of a new aminothiol (20-PRA

    Directory of Open Access Journals (Sweden)

    M.F. Dolabela

    1998-08-01

    Full Text Available We examined the radioprotective effect of aminothiol 2-N-propylamine-cyclo-hexanethiol (20-PRA on a human leukemic cell line (K562 following various radiation doses (5, 7.5 and 20 Gy using a source of 60Co g-rays. At 5 Gy and 1 nM 20-PRA, a substantial protective effect (58% was seen 24 h after irradiation, followed by a decrease at 48 h (11%. At the high radiation dose (20 Gy a low protective effect was also seen (35%. In addition, the antitumorigenic potential of 10 nM 20-PRA was shown by the inhibition of crown gall formation induced by Agrobacterium tumefaciens. The radioprotective potency of 20-PRA is 105-106 times higher than that of the aminothiol WR-1065 (N-(2-mercaptoethyl-1,3-diaminopropane whose protective effect is in the 0.1 to 1.0 mM range.

  19. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  20. Reevaluating Interrater Reliability in Offender Risk Assessment

    NARCIS (Netherlands)

    van der Knaap, L.M.; Leenarts, L.E.W.; Born, M.P.; Oosterveld, P.

    2012-01-01

    Offender risk and needs assessment, one of the pillars of the risk-need-responsivity model of offender rehabilitation, usually depends on raters assessing offender risk and needs. The few available studies of interrater reliability in offender risk assessment are, however, limited in the

  1. Reevaluating Interrater Reliability in Offender Risk Assessment

    Science.gov (United States)

    van der Knaap, Leontien M.; Leenarts, Laura E. W.; Born, Marise Ph.; Oosterveld, Paul

    2012-01-01

    Offender risk and needs assessment, one of the pillars of the risk-need-responsivity model of offender rehabilitation, usually depends on raters assessing offender risk and needs. The few available studies of interrater reliability in offender risk assessment are, however, limited in the generalizability of their results. The present study…

  2. Total cardiovascular disease risk assessment: a review.

    LENUS (Irish Health Repository)

    Cooney, Marie Therese

    2011-09-01

    The high risk strategy for the prevention of cardiovascular disease (CVD) requires an assessment of an individual\\'s total CVD risk so that the most intensive risk factor management can be directed towards those at highest risk. Here we review developments in the assessment and estimation of total CVD risk.

  3. [Risk Assessment and Risk Management of Chemicals in China].

    Science.gov (United States)

    Wang, Tie-yu; Zhou, Yun-qiao; Li, Qi-feng; Lü, Yong-long

    2016-02-15

    Risk assessment and risk management have been increasingly approved as an effective approach for appropriate disposal and scientific management of chemicals. This study systematically analyzed the risk assessment methods of chemicals from three aspects including health risk, ecological risk and regional risk. Based on the current situation of classification and management towards chemicals in China, a specific framework of risk management on chemicals was proposed by selecting target chemicals, predominant industries and related stakeholders as the objects. The results of the present study will provide scientific support for improving risk assessment and reasonable management of chemicals in China.

  4. Risk communication and environmental risk assessment

    International Nuclear Information System (INIS)

    Petts, J.

    1994-01-01

    This paper attempts to provide a broad context for consideration of appropriate risk communication approaches. It examines the basis of public concerns and in particular the non-risk dimensions. The latter are so important in any risk decision that means of communication which can deal with them are required which extend beyond understanding how to present risk estimates. These means relate to (a) the decision processes themselves and the extent to which they provide for involvement of the public in decisions, (b) the communication skills of experts, and (c) the robustness of the risk information which is available. (Author)

  5. Molecular radiobiology and risk assessment

    International Nuclear Information System (INIS)

    Georgieva, R.

    2009-01-01

    Full text: Attitudes towards the radiation protection standards on in Europe and the world largely depends on scientific knowledge, periodically published by the United Nations Scientific Committee (UNSCEAR) and the recommendations of the International Commission on Radiation Protection (ICRP), which also comply with the research. The new scientific evidence by conducting an additional research is a crucial element in the process of protection of people, workers and patients in medicine from the adverse health effects. Although these standards are clear and easy to apply, there is serious doubt from a scientific perspective about the level of health risk at low doses, which keep up a fierce debate, both eight scientific and political society. The answer to this question requires the integrated efforts of many scientific disciplines. Increasingly rapid advances in biological and medical knowledge provide the necessary conditions for achieving this aim. This lecture tries to shed light on the current state of knowledge, the main unresolved problems in science in the context of radiation protection and risk assessment, and on those lines of research that have the greatest potential to address the issues. They mainly concern issues of doses and biological effects of different types of ionisation radiation, biological effects in cells/tissues which initiate health effects at low doses, individual variability and direct health risk assessment by epidemiological studies of groups exposed to lower doses irradiation

  6. The NUREG-1150 probabilistic risk assessment for the Grand Gulf nuclear station

    International Nuclear Information System (INIS)

    Brown, T.D.; Breeding, R.J.; Jow, H.N.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.

    1992-01-01

    This paper summarizes the findings of the probabilistic risk assessment (PRA) for Unit 1 of the Grand Gulf Nuclear Station performed in support of NUREG-1150. The emphasis is on the 'back-end' analyses, that is, the acident progression, source term, consequence analsyes, and risk results obtained when the results of these analyses are combined with the accident frequency analysis. The offsite risk from internal initiating events was found to be quite low, both with respect to the safety goals and to the other plants analyzed in NUREG-1150. The offsite risk is dominated by short-term station blackout plant damage states. The long-term blackout group and the anticiptated transients without scram (ATWS) group contribute considerably less to risk. Transients in which the power conversion system is unavailable are very minor contributors to risk. The low values for risk can be attributed to low core damage frequency, good emergency response, and plant features that reduce the potential source term. (orig.)

  7. Probabilistic risk criteria and their application to nuclear chemical plant design

    International Nuclear Information System (INIS)

    Arthur, T.; Barnes, D.S.; Brown, M.L.; Taig, A.R.; Johnston, B.D.; Hayns, M.

    1989-01-01

    A nuclear chemical plant safety strategy is presented. The use of risk criteria in design is demonstrated by reference to a particular area of the plant. This involves the application of Probabilistic Risk Assessment (PRA) techniques. Computer programs developed by the UK Atomic Energy Authority (UKAEA) at its Safety and Reliability Directorate (SRD) are used toe valuate and analyze the resultant fault trees. the magnitude of releases are estimated and individual and societal risks determined. The paper concludes that the application of PRA to a nuclear chemical plant can be structured in such a way as to allow a designer to work to quantitative risk targets

  8. Research items regarding seismic residual risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  9. Concept of risk: risk assessment and nuclear safety

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1980-01-01

    The dissertation is a critical examination of risk assessment and its role in public policy. Nuclear power safety safety issues are selected as the primary source of illustrations and examples. The dissertation examines how risk assessment studies develop a concept of risk which becomes decisive for policy choices. Risk-assessment techniques are interpreted as instruments which secure an evaluation of risk which, in turn, figures prominently in technical reports on nuclear power. The philosophical critique is mounted on two levels. First, an epistemological critique surveys distinctions between the technical concept of risk and more familiar senses of risk. The critique shows that utilization of risk assessment re-structures the concept of risk. The technical concept is contrasted to the function of risk within a decision-maker's conceptual agenda and hierarchy of values. Second, an ethical critique exposes the value commitments of risk assessment recommendations. Although some of these values might be defended for policy decisions, the technical character of risk assessment obfuscates normative issues. Risk assessment is shown to be a form of factual enquiry which, nonetheless, represents a commitment to a specific selection of ethical and social values. Risk assessment should not be interpreted as a primary guide to decision unless the specific values incorporated into its concept of risk are stated explicitly and justified philosophically. Such a statement would allow value questions which have been sublimated by the factual tone of the analytic techniques to be debated on clear, social and ethical grounds

  10. Risk assessment terminology: risk communication part 1

    Directory of Open Access Journals (Sweden)

    Gaetano Liuzzo

    2016-03-01

    Full Text Available The paper describes the terminology of risk communication in the view of food safety: the theory of stakeholders, the citizens’ involvement and the community interest and consultation are reported. Different aspects of risk communication (public communication, scientific uncertainty, trust, care, consensus and crisis communication are discussed.

  11. RISK MANAGEMENT: AN INTEGRATED APPROACH TO RISK MANAGEMENT AND ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Szabo Alina

    2012-12-01

    Full Text Available Purpose: The objective of this paper is to offer an overview over risk management cycle by focusing on prioritization and treatment, in order to ensure an integrated approach to risk management and assessment, and establish the ‘top 8-12’ risks report within the organization. The interface with Internal Audit is ensured by the implementation of the scoring method to prioritize risks collected from previous generated risk report. Methodology/approach: Using evidence from other research in the area and the professional expertise, this article outlines an integrated approach to risk assessment and risk management reporting processes, by separating the risk in two main categories: strategic and operational risks. The focus is on risk prioritization and scoring; the final output will comprise a mix of strategic and operational (‘top 8-12’ risks, which should be used to establish the annual Internal Audit plan. Originality/value: By using an integrated approach to risk assessment and risk management will eliminate the need for a separate Internal Audit risk assessment over prevailing risks. It will reduce the level of risk assessment overlap by different functions (Tax, Treasury, Information System over the same risk categories as a single methodology, is used and will align timings of risk assessment exercises. The risk prioritization by usage of risk and control scoring criteria highlights the combination between financial and non-financial impact criteria allowing risks that do not naturally lend themselves to a financial amount to be also assessed consistently. It is emphasized the usage of score method to prioritize the risks included in the annual audit plan in order to increase accuracy and timelines.

  12. Risks, risk assessment and risk competence in toxicology

    Science.gov (United States)

    Stahlmann, Ralf; Horvath, Aniko

    2015-01-01

    Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage) assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems. PMID:26195922

  13. Risks, risk assessment and risk competence in toxicology.

    Science.gov (United States)

    Stahlmann, Ralf; Horvath, Aniko

    2015-01-01

    Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage) assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems.

  14. Risks, risk assessment and risk competence in toxicology

    Directory of Open Access Journals (Sweden)

    Stahlmann, Ralf

    2015-07-01

    Full Text Available Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems.

  15. Risk Importance Measures in the Designand Operation of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Vrbanic I.; Samanta P.; Basic, I

    2017-10-31

    This monograph presents and discusses risk importance measures as quantified by the probabilistic risk assessment (PRA) models of nuclear power plants (NPPs) developed according to the current standards and practices. Usually, PRA tools calculate risk importance measures related to a single ?basic event? representing particular failure mode. This is, then, reflected in many current PRA applications. The monograph focuses on the concept of ?component-level? importance measures that take into account different failure modes of the component including common-cause failures (CCFs). In opening sections the roleof risk assessment in safety analysis of an NPP is introduced and discussion given of ?traditional?, mainly deterministic, design principles which have been established to assign a level of importance to a particular system, structure or component. This is followed by an overview of main risk importance measures for risk increase and risk decrease from current PRAs. Basic relations which exist among the measures are shown. Some of the current practical applications of risk importancemeasures from the field of NPP design, operation and regulation are discussed. The core of the monograph provides a discussion on theoreticalbackground and practical aspects of main risk importance measures at the level of ?component? as modeled in a PRA, starting from the simplest case, single basic event, and going toward more complexcases with multiple basic events and involvements in CCF groups. The intent is to express the component-level importance measures via theimportance measures and probabilities of the underlying single basic events, which are the inputs readily available from a PRA model andits results. Formulas are derived and discussed for some typical cases. The formulas and their results are demonstrated through some practicalexamples, done by means of a simplified PRA model developed in and run by RiskSpectrum? tool, which are presented in the appendices. The

  16. A framework for combining social impact assessment and risk assessment

    NARCIS (Netherlands)

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify

  17. A framework for combining social impact assessment and risk assessment

    NARCIS (Netherlands)

    Mahmoudi, Hossein; Renn, Ortwin; Vanclay, Frank; Hoffmann, Volker; Karami, Ezatollah

    2013-01-01

    An increasing focus on integrative approaches is one of the current trends in impact assessment. There is potential to combine impact assessment with various other forms of assessment, such as risk assessment, to make impact assessment and the management of social risks more effective. We identify

  18. The assessment of technical risks

    International Nuclear Information System (INIS)

    Jaeger, T.A.

    1978-01-01

    The safety of technical systems is so difficult to assess because the concept 'risk' contains technical-scientific factors as well as components of individual and social psychology. Immediate or short-term hazards of human life as i.e. caused by the operation of industrial plants and mediate and thus long-term hazards have to be distinguished. Characteristic for the second hazard groups is the great time-lag before the effect takes place. Thus a causal relationship can be recognized only late and not definitely. Even when the causes have been obviated the effects still show. The development of a systems-analytical model as a basis of decisive processes for the introduction of highly endangered large-scale technologies seems particularly difficult. A starting point for the quantification of the risk can still be seen in the product of the probability of realization and the extent of the damage. Public opinion, however, does not base its evaluations on an objective concept of risk but tends to have an attitude of aversion against great and disastrous accidents. On the other hand, plenty of slight accidents are accepted much more easily, even when the amount of deadly victims from accidents reaches dimensions beyond those of the rare large-scale accidents. Here, mostly the damage possible but not the probability of its occurence is seen, let alone the general use of the new technology. The value of the mathematical models for estimating risks is mainly due to the fact that they are able to clear up decisions. (orig./HP) [de

  19. A 3S Risk ?3SR? Assessment Approach for Nuclear Power: Safety Security and Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert; Reinhardt, Jason Christian; Wheeler, Timothy A.; Williams, Adam David

    2017-11-01

    Safety-focused risk analysis and assessment approaches struggle to adequately include malicious, deliberate acts against the nuclear power industry's fissile and waste material, infrastructure, and facilities. Further, existing methods do not adequately address non- proliferation issues. Treating safety, security, and safeguards concerns independently is inefficient because, at best, it may not take explicit advantage of measures that provide benefits against multiple risk domains, and, at worst, it may lead to implementations that increase overall risk due to incompatibilities. What is needed is an integrated safety, security and safeguards risk (or "3SR") framework for describing and assessing nuclear power risks that can enable direct trade-offs and interactions in order to inform risk management processes -- a potential paradigm shift in risk analysis and management. These proceedings of the Sandia ePRA Workshop (held August 22-23, 2017) are an attempt to begin the discussions and deliberations to extend and augment safety focused risk assessment approaches to include security concerns and begin moving towards a 3S Risk approach. Safeguards concerns were not included in this initial workshop and are left to future efforts. This workshop focused on four themes in order to begin building out a the safety and security portions of the 3S Risk toolkit: 1. Historical Approaches and Tools 2. Current Challenges 3. Modern Approaches 4. Paths Forward and Next Steps This report is organized along the four areas described above, and concludes with a summary of key points. 2 Contact: rforres@sandia.gov; +1 (925) 294-2728

  20. Component Degradation Susceptibilities As The Bases For Modeling Reactor Aging Risk

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-01-01

    The extension of nuclear power plant operating licenses beyond 60 years in the United States will be necessary if we are to meet national energy needs while addressing the issues of carbon and climate. Characterizing the operating risks associated with aging reactors is problematic because the principal tool for risk-informed decision-making, Probabilistic Risk Assessment (PRA), is not ideally-suited to addressing aging systems. The components most likely to drive risk in an aging reactor - the passives - receive limited treatment in PRA, and furthermore, standard PRA methods are based on the assumption of stationary failure rates: a condition unlikely to be met in an aging system. A critical barrier to modeling passives aging on the wide scale required for a PRA is that there is seldom sufficient field data to populate parametric failure models, and nor is there the availability of practical physics models to predict out-year component reliability. The methodology described here circumvents some of these data and modeling needs by using materials degradation metrics, integrated with conventional PRA models, to produce risk importance measures for specific aging mechanisms and component types. We suggest that these measures have multiple applications, from the risk-screening of components to the prioritization of materials research.

  1. The relation of risk assessment and health impact assessment

    DEFF Research Database (Denmark)

    Ádám, Balázs; Gulis, Gabriel

    2013-01-01

    than assessing a present situation. As part of this process, however, methods applied in risk assessment are used. Risk assessment typically characterises relation of a well-defined risk factor to a well-defined health outcome. Within HIA usually several individual risk assessments are needed...... of the causal chain from the proposal through related health determinants and risk factors to health outcomes. The stepwise analysis, systematic prioritization and consideration of horizontal interactions between the causal pathways make it feasible to use widely recognized risk assessment methods in the HIA......The level and distribution of health risks in a society is substantially influenced by measures of various policies, programmes or projects. Risk assessment can evaluate the nature, likelihood and severity of an adverse effect. Health impact assessment (HIA) provides similar function when used...

  2. Radiological risk assessment for the public under the loss of medium and large sources using bayesian methodology

    International Nuclear Information System (INIS)

    Kim, Joo Yeon; Jang, Han Ki; Lee, Jai Ki

    2005-01-01

    Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5% Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative for risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety

  3. Getting fire risk assessment right.

    Science.gov (United States)

    Charters, David

    2012-06-01

    The NHS has one of the world's largest and most varied estates, which at any time accommodates many of the most dependent people in society. With around 6,000 fires occurring in NHS premises each year, its duty of care--and that of other healthcare providers--demands very close attention to fire safety. Here Dr David Charters BSc, PhD, CEng, FIFireE, MIMechE, MSFPE, director of Fire Engineering at BRE Global, an independent third party approvals body offering certification of fire, security, and sustainability products and services, examines the critical role of fire risk assessment, and explains why the process should provide the 'foundation' for effective fire safety measures.

  4. Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components.

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    Full Text Available The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such "indirect risks" can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their "at-risk status" designations. Risk assessments are not a replacement for impact assessments, but-by considering the potential for indirect risks as we demonstrate here-they offer a crucial complementary perspective for the management of ecosystems and the organisms within.

  5. Social aspects of risk assessment

    International Nuclear Information System (INIS)

    Otway, H.J.; Linnerooth, J.; Niehaus, F.

    1977-01-01

    Plans for technological development have often been met by demands for a closer examination of the associated benefits and risks and the consideration of social values in public planning and decision processes. A theoretical framework for inter-disciplinary risk assessment studies is presented to aid the balancing of technical data with social values in decision making. Methods for obtaining value measures are reviewed and an attitude-based method is developed in detail; this model allows identification of the relative importance of the technical, psychological and social factors which underlie attitudes and indicates which factors differentiate between social groups. Results of a pilot application to nuclear power are summarized. For these subjects, different attitudes between pro and con were primarily due to strongly differing beliefs about the benefits of nuclear power. Preliminary results are reported of an application of this model with a heterogeneous sample drawn from the general public. The cognitive limitations which affect rationality in intuitive decision making are summarized as background to introduce formal decision methodologies for the use of attitude data in public decision making

  6. Colorectal Cancer Risk Assessment Tool

    Science.gov (United States)

    ... 11/12/2014 Risk Calculator About the Tool Colorectal Cancer Risk Factors Download SAS and Gauss Code Page ... Rectal Cancer: Prevention, Genetics, Causes Tests to Detect Colorectal Cancer and Polyps Cancer Risk Prediction Resources Update November ...

  7. Perceptions of LWR risk for decision making

    International Nuclear Information System (INIS)

    Young, J.; Asselin, S.

    1984-01-01

    The Industry Degraded Core (IDCOR) Program was designed to develop a comprehensive, technically sound position on the issues related to potential accidents in light water reactors. One of the goals is to acquire knowledge and data so that a more realistic approach to the problem is possible. Some of the IDCOR tasks develop information in a Probabilistic Risk Assessment (PRA) framework. The PRA approach is structured upon reliability characteristics for individual components, such as pumps, valves and relays, which can be used to predict the frequency of system failures. System failure combinations can then be used to predict the probability of undesirable plant response to given initiating events. The IDCOR PRA tasks provide a significant amount of information related to the response of the plant to severe accidents. This information has been derived in a logical and consistent manner and so provides a coherent and rational basis for decision-making

  8. Dependent failure analysis research for the US NRC Risk Methods Integration and Evaluation Program

    International Nuclear Information System (INIS)

    Bohn, M.P.; Stack, D.W.; Campbell, D.J.; Rooney, J.J.; Rasmuson, D.M.

    1985-01-01

    The Risk Methods Integration and Evaluation Program (RMIEP), which is being performed for the Nuclear Regulatory Commission by Sandia National Laboratories, has the goals of developing new risk assessment methods and integrating the new and existing methods in a uniform procedure for performing an in-depth probabilistic risk assessment (PRA) with consistent levels of analysis for internal, external, and dependent failure scenarios. An important part of RMIEP is the recognition of the crucial importance of dependent common cause failures (CCFs) and the pressing need to develop effective methods for analyzing CCFs as part of a PRA. The NRC-sponsored Integrated Dependent Failure Methodology Program at Sandia is addressing this need. This paper presents a preliminary approach for analyzing CCFs as part of a PRA. A nine-step procedure for efficiently screening and analyzing dependent failure scenarios is presented, and each step is discussed

  9. Risk assessment of forensic patients: nurses' role.

    Science.gov (United States)

    Encinares, Maxima; McMaster, Jeff James; McNamee, Jim

    2005-03-01

    One of the unique roles of forensic nurses is to conduct risk assessments. Establishing a therapeutic nurse-patient relationship helps forensic nurses perform accurate and useful risk assessments. Accurate risk assessments can facilitate formulation of individualized risk management plans, designed to meet patients' needs and ensure public safety. The importance of forensic nurses' knowledge and application of appropriate communication and proper documentation cannot be overemphasized.

  10. Radiological safety and risk assessment

    International Nuclear Information System (INIS)

    Hunter, P.H.; Barg, D.C.; Baird, R.D.; Card, D.H.; de Souza, F.; Elder, J.; Felthauser, K.; Jensen, C.; Winkler, V.

    1982-02-01

    A brief radiological safety and risk assessment of a nuclear power generation center with an adjacent on-site waste disposal facility at a specific site in the State of Utah is presented. The assessment was conducted to assist in determining the feasibility and practicality of developing a nuclear energy center (NEC) in Utah consisting of nine 1250 MWe nuclear pressurized water reactor (PWR) electrical generating units arranged in 3 clusters of 3 units each known as triads. The site selected for this conceptual study is in the Horse Bench area about 15 miles directly south of the town of Green River, Utah. The radiological issues included direct radiation exposures to on-site workers and the off-site population, release of radioactive material, and effects of these releases for both normal operations and accidental occurrences. The basic finding of this study is that the concept of an NEC in the Green River area, specifically at the Horse Bench site, is radiologically feasible

  11. Risk assessment - The future trend

    International Nuclear Information System (INIS)

    Marks, G.A.

    1991-01-01

    Many organizations today are faced with cleaning a site or facility, selecting appropriate remedial alternatives, or explaining the potential effects on human health and the environment caused by the releases of toxic compounds into the air, soil, and water, The use of risk assessment (RA) as a management tool is increasing because it offers an integrated approach to the analysis of toxicological, geological, physio-chemical, meteorological, statistical, and biological parameters that must be evaluated in the assessment of potential impacts to human health. The regulatory atmosphere in the 1990s is leaning toward the adoption of further laws requiring the completion of the RA process. Any industry involved in submitting permit applications to Air Quality Management Districts or complying with California's Proposition 65 and AB 2588 will be required to prepare RAs. Several guidance documents are available that support the RA process including the California Site Mitigation Decision Tree Manual published by the State Department of Health Services (DHS), which bases its approach on developing cleanup objectives (Applied Action Levels) on RA. This presentation focuses on the applications RA can have to the petroleum industry and the kinds of data that each case should develop to make maximum use of the RA process

  12. Gender differences in risk assessment

    Directory of Open Access Journals (Sweden)

    Christine R. Harris

    2006-07-01

    Full Text Available Across many real-world domains, men engage in more risky behaviors than do women. To examine some of the beliefs and preferences that underlie this difference, 657 participants assessed their likelihood of engaging in various risky activities relating to four different domains (gambling, health, recreation, and social, and reported their perceptions of (1 probability of negative outcomes, (2 severity of potential negative outcomes, and (3 enjoyment expected from the risky activities. Women's greater perceived likelihood of negative outcomes and lesser expectation of enjoyment partially mediated their lower propensity toward risky choices in gambling, recreation, and health domains. Perceptions of severity of potential outcomes was a partial mediator in the gambling and health domains. The genders did not differ in their propensity towards taking social risks. A fifth domain of activities associated with high potential payoffs and fixed minor costs was also assessed. In contrast to other domains, women reported being more likely to engage in behaviors in this domain. This gender difference was partially mediated by women's more optimistic judgments of the probability of good outcomes and of

  13. Risk management activities at the DOE Class A reactor facilities

    International Nuclear Information System (INIS)

    Sharp, D.A.; Hill, D.J.; Linn, M.A.; Atkinson, S.A.; Hu, J.P.

    1993-01-01

    The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented

  14. Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components

    Science.gov (United States)

    Mach, Megan E.; Martone, Rebecca G.; Singh, Gerald G.; O, Miriam; Chan, Kai M. A.

    2016-01-01

    The multi-scalar complexity of social-ecological systems makes it challenging to quantify impacts from human activities on ecosystems, inspiring risk-based approaches to assessments of potential effects of human activities on valued ecosystem components. Risk assessments do not commonly include the risk from indirect effects as mediated via habitat and prey. In this case study from British Columbia, Canada, we illustrate how such “indirect risks” can be incorporated into risk assessments for seventeen ecosystem components. We ask whether (i) the addition of indirect risk changes the at-risk ranking of the seventeen ecosystem components and if (ii) risk scores correlate with trophic prey and habitat linkages in the food web. Even with conservative assumptions about the transfer of impacts or risks from prey species and habitats, the addition of indirect risks in the cumulative risk score changes the ranking of priorities for management. In particular, resident orca, Steller sea lion, and Pacific herring all increase in relative risk, more closely aligning these species with their “at-risk status” designations. Risk assessments are not a replacement for impact assessments, but—by considering the potential for indirect risks as we demonstrate here—they offer a crucial complementary perspective for the management of ecosystems and the organisms within. PMID:27632287

  15. Risk assessment and risk management in managed aquifer recharge

    CSIR Research Space (South Africa)

    Page, D

    2012-06-01

    Full Text Available This chapter presents the methodologies used for risk assessment and risk management in MAR in Australia and the European Union, qualitative and quantitative approaches adopted within the RECLAIM Water project and case studies where the outcomes...

  16. Regional scale ecological risk assessment: using the relative risk model

    National Research Council Canada - National Science Library

    Landis, Wayne G

    2005-01-01

    ...) in the performance of regional-scale ecological risk assessments. The initial chapters present the methodology and the critical nature of the interaction between risk assessors and decision makers...

  17. Probabilistic risk assessment for salt repository conceptual design of subsurface facilities: A techical basis for Q-list determination

    International Nuclear Information System (INIS)

    Chen, C.P.; Mayberry, J.J.; Shepherd, J.; Koza, H.; Rahmani, H.; Sinsky, J.

    1987-12-01

    Subpart G ''Quality Assurance'' of 10 CFR Part 60 requires that the US Department of Energy (DOE) apply a quality assurance program to ''all systems, structures, and components important to safety'' and to ''design and characterization of barriers important to waste isolation.'' In April 1986, DOE's Office of Geologic Repositories (OGR) issued general guidance for formulating a list of such systems, structures, and components---the Q-list. This guidance called for the use of probabilistic risk assessment (PRA) techniques to identify Q-list items. In this report, PRA techniques are applied to the underground facilities and systems described in the conceptual design report for the Salt Repository Project (SRP) in Deaf Smith County, Texas. Based on probability and dose consequence calculations, no specific items were identified for the Q-list. However, evaluation of the analyses indicated that two functions are important in precluding off-site releases of radioactivity: disposal container integrity; and isolation of the underground facility by the heating, ventilation, and air conditioning (HVAC) systems. Items related to these functions are recommended for further evaluation as the repository design progresses. 13 refs., 20 figs

  18. Applicability of PRISM PRA Methodology to the Level II Probabilistic Safety Analysis of KALIMER-600 (I) (Core Damage Event Tree Analysis Part)

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Ha, K. S.; Lee, B. Y.

    2009-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the PSA domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of KALIMER-600 reactor. An applicability of the PSA of the PRISM plant to the KALIMER-600 has been studied. The study is confined to a core damage event tree analysis which is a part of a level 2 PSA. Assuming that the accident types, which can be developed from level 1 PSA, are same as the PRISM PRA, core damage categories are defined and core damage event trees are developed for the KALIMER-600 reactor. Fission product release fractions of the core damage categories and branch probabilities of the core damage event trees are referred from the PRISM PRA temporarily. Plant specific data will be used during the detail analysis

  19. Development of regulatory guidance for risk-informing digital system reviews

    International Nuclear Information System (INIS)

    Arndt, S. A.

    2006-01-01

    In 1995, the U.S. Nuclear Regulatory Commission (NRC) issued the Probabilistic Risk Assessment (PRA) Policy Statement, which encourages the increased use of PRA and associated analyses in all regulatory matters to the extent supported by the state-of-the-art in PRA and the data. This policy applies, in part, to the review of digital systems, which offer the potential to improve plant safety and reliability through such features as increased hardware reliability and stability and improved failure detection capability. However, there are presently no universally accepted methods for modeling digital systems in current-generation PRAs. Further, there are ongoing debates among the PRA technical community regarding the level of detail that any digital system reliability model must have to adequately model the complex system interactions that can contribute to digital system failure modes. Moreover, for PRA modeling of digital reactor protection and control systems, direct interactions between system components and indirect interactions through controlled/supervised plant processes may necessitate the use of dynamic PRA methodologies. This situation has led the NRC to consider developing performance based rather than prescriptive regulatory guidance in this area. This paper will discuss the development of this guidance and some preliminary concepts. (authors)

  20. Modelling and mapping spread in pest risk analysis: a generic approach

    NARCIS (Netherlands)

    Kehlenbeck, H.; Robinet, C.; Werf, van der W.; Kriticos, D.; Reynaud, P.; Baker, R.

    2012-01-01

    Assessing the likelihood and magnitude of spread is one of the cornerstones of pest risk analysis (PRA), and is usually based on qualitative expert judgment. This paper proposes a suite of simple ecological models to support risk assessors who also wish to estimate the rate and extent of spread,

  1. Review of KSNP LPSD PSA model based of ANS LPSD PRA standard, rev.0

    International Nuclear Information System (INIS)

    Jang, S. C.; Park, J. H.; Kim, T. W.; Lim, H. G.; Yang, J. E.; Ha, J. J.

    2004-02-01

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). One of these efforts is the Risk Informed/Performance-based Operation (RIPBO). This approach uses the risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In RIPBO, PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of PSA. NEI (Nuclear Energy Institute) has developed a guidance called 'NEI PRA Peer Review Guidance,' and NRC (Nuclear Regulatory Committee) and ASME have developed the 'PRA Standard.' In Korea, several projects are on going now, such as the extension of AOT/STI of RPS/ESFAS, Risk-informed In-service Inspection (RI-ISI). However, in Korea, there have been no attempts to evaluate the quality of PSA model itself. Therefore, we cannot be sure about the quality of PSA whether or not the present PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of PSA model quality is the basis for the RIPBO. In this report, we have evaluated the quality of PSA model at Low power and Shutdown operation model for Yongkwang 5 and 6 units based on the ANS LPSD PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of LPSD PSA model and how it can be improved. This report can be used as the base of RIPBO work in Korea

  2. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  3. Model of MSD Risk Assessment at Workplace

    OpenAIRE

    K. Sekulová; M. Šimon

    2015-01-01

    This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.

  4. Risk assessment and management in IOR projects

    International Nuclear Information System (INIS)

    Goodyear, S.G.; Gregory, A.T.

    1994-01-01

    The application of IOR techniques is one of the investment opportunities open to Exploration and Production companies. A project will only go forward if the perceived balance between the rewards and the risks is acceptable. IOR projects may be ruled out because they are considered to involve significantly higher risks than conventional developments. Therefore, some means of evaluating the actual level of risk may be required if the full economic benefits from IOR techniques are to be realized. Risk assessment is a key element in safety cases, where a well-established methodology for quantifying risk exists. This paper discusses the extension of these methods to IOR project risk assessment. Combining reservoir and IOR technique uncertainties with their impact on project performance allows project risk to be better quantified. The results of the risk assessment are presented in terms of a risk-reward diagram that plots the probability surface for possible project outcomes as a function of NPV (reward) and exposure (risk)

  5. Methodology of environmental risk assessment management

    Directory of Open Access Journals (Sweden)

    Saša T. Bakrač

    2012-04-01

    Full Text Available Successful protection of environment is mostly based on high-quality assessment of potential and present risks. Environmental risk management is a complex process which includes: identification, assessment and control of risk, namely taking measures in order to minimize the risk to an acceptable level. Environmental risk management methodology: In addition to these phases in the management of environmental risk, appropriate measures that affect the reduction of risk occurrence should be implemented: - normative and legal regulations (laws and regulations, - appropriate organizational structures in society, and - establishing quality monitoring of environment. The emphasis is placed on the application of assessment methodologies (three-model concept, as the most important aspect of successful management of environmental risk. Risk assessment methodology - European concept: The first concept of ecological risk assessment methodology is based on the so-called European model-concept. In order to better understand this ecological risk assessment methodology, two concepts - hazard and risk - are introduced. The European concept of environmental risk assessment has the following phases in its implementation: identification of hazard (danger, identification of consequences (if there is hazard, estimate of the scale of consequences, estimate of consequence probability and risk assessment (also called risk characterization. The European concept is often used to assess risk in the environment as a model for addressing the distribution of stressors along the source - path - receptor line. Risk assessment methodology - Canadian concept: The second concept of the methodology of environmental risk assessment is based on the so-called Canadian model-concept. The assessment of ecological risk includes risk arising from natural events (floods, extreme weather conditions, etc., technological processes and products, agents (chemical, biological, radiological, etc

  6. Review of UCN 5,6 Fire PSA Model based on ANS Fire PRA Standard

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Lee, Yoon Hwan

    2006-12-01

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). This approach uses the fire risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In fire risk informed/performance-based decision/operation, fire PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of fire PSA. ANS (American Nuclear Society) has developed a guidance called 'ANS Fire PRA Methodology Standard'. However, in Korea, there have been no attempts to evaluate the quality of fire PSA model itself. Therefore, we cannot be sure about the quality of fire PSA whether or not the present fire PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of fire PSA model quality is the basis for the fire risk informed/performance-based decision/operation. In this report, we have evaluated the quality of fire PSA model for Ulchin 5 and 6 units based on the ANS Fire PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of fire PSA model and how it can be improved. This report can be used as the base of the fire risk informed/performance-based decision/operation work in Korea

  7. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0. Volume 5, Systems Analysis and Risk Assessment (SARA) tutorial manual

    International Nuclear Information System (INIS)

    Sattison, M.B.; Russell, K.D.; Skinner, N.L.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs) primarily for nuclear power plants. This volume is the tutorial manual for the Systems Analysis and Risk Assessment (SARA) System Version 5.0, a microcomputer-based system used to analyze the safety issues of a open-quotes familyclose quotes [i.e., a power plant, a manufacturing facility, any facility on which a probabilistic risk assessment (PRA) might be performed]. A series of lessons is provided that guides the user through some basic steps common to most analyses performed with SARA. The example problems presented in the lessons build on one another, and in combination, lead the user through all aspects of SARA sensitivity analysis capabilities

  8. Apperception and assessment of technological risks

    International Nuclear Information System (INIS)

    Hoyos, C.; Hauke, G.

    1986-01-01

    Risk is defined to be the possibility to induce damage or loss. Any person confronted with risk in his activities has to assess the risk in every case. The author explains a number of actions and events that have been worked out to train people in better management of risk, especially in the working environment. (DG) [de

  9. Performing the lockout/tagout risk assessment.

    Science.gov (United States)

    Wallace, W Jon

    2007-03-01

    Lockout/tagout provides the greatest level routine, repetitive, and integral to the production process, a risk assessment should be performed. If the task performed poses an unacceptable risk, acceptable risk reduction methods should be implemented to reduce the risk to acceptable levels.

  10. Risk communication in environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rahm-Crites, L. [Lawrence Livermore National Lab., Germantown, MD (United States). Washington Operations Office

    1996-08-26

    Since the enactment of NEPA and other environmental legislation, the concept of `risk communication` has expanded from simply providing citizens with scientific information about risk to exploring ways of making risk information genuinely meaningful to the public and facilitating public involvement in the very processes whereby risk is analyzed and managed. Contemporary risk communication efforts attempt to find more effective ways of conveying increasingly complex risk information and to develop more democratic and proactive approaches to community involvement, in particular to ensuring the participation of diverse populations in risk decisions. Although considerable progress has been made in a relatively short time, risk communication researchers and practitioners currently face a number of challenges in a time of high expectations, low trust, and low budgets.

  11. Thyroid Cancer Risk Assessment Tool

    Science.gov (United States)

    The R package thyroid implements a risk prediction model developed by NCI researchers to calculate the absolute risk of developing a second primary thyroid cancer (SPTC) in individuals who were diagnosed with a cancer during their childhood.

  12. INCORPORATING NONCHEMICAL STRESSORS INTO CUMMULATIVE RISK ASSESSMENTS

    Science.gov (United States)

    The risk assessment paradigm has begun to shift from assessing single chemicals using "reasonable worst case" assumptions for individuals to considering multiple chemicals and community-based models. Inherent in community-based risk assessment is examination of all stressors a...

  13. Examining the realities of risk management

    International Nuclear Information System (INIS)

    Garrick, B.J.

    1985-01-01

    Sufficient experience now exists, especially in the nuclear industry, to consider the progress that has been made toward meaningful tools or aids for the control and, hence, management of risk. The considerable activity in the field of probabilistic risk assessment (PRA) suggests a high level of interest and application. It is the purpose of this paper to examine our own experience in this regard and to offer some observations and opinions about current practices in risk management and the requirements for success

  14. [Urban ecological risk assessment: a review].

    Science.gov (United States)

    Wang, Mei-E; Chen, Wei-Ping; Peng, Chi

    2014-03-01

    With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.

  15. Colon Cancer Risk Assessment - Gauss Program

    Science.gov (United States)

    An executable file (in GAUSS) that projects absolute colon cancer risk (with confidence intervals) according to NCI’s Colorectal Cancer Risk Assessment Tool (CCRAT) algorithm. GAUSS is not needed to run the program.

  16. Risk assessment theory, methods, and applications

    CERN Document Server

    Rausand, Marvin

    2011-01-01

    With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding light on applications, essential resources, and advantages and disadvantages. Following an introduction that provides an overview of risk assessment, the book is organized into two sections that outline key theory, methods, and applications. * Introduction to Risk Assessment defines key concepts and details the steps of a thorough risk assessment along with the necessary quantitative risk measures. Chapters outline...

  17. Risk assessment - black art or science?

    International Nuclear Information System (INIS)

    Moore, G.

    1988-01-01

    Measures of risk can be divided into two categories, those that observe or calculate the risk of a process or project, and those that rely on the level of risk as perceived by the people during the assessment. Collection of data of accidents (where cause and effect are obvious) and experiments on animals which can then be extrapolated to humans, are two ways of risk assessment. Mathematical models and computerized simulations, using either fault tree analysis or Monte Carlo methods are explained simply. Using these methods, experts are able to perceive risk fairly realistically. However, the general public's perception of risk is often quite different, as potential risk is assessed in different ways. The concept of tolerable risk is considered, particularly with reference to nuclear reactors such as Sizewell-B. The need to inform the public of safeguards and safety procedures so they have a better understanding of the risks of nuclear power is stressed. (U.K.)

  18. Facts and values in risk assessment

    International Nuclear Information System (INIS)

    Cross, Frank B.

    1998-01-01

    Risk, as commonly understood, is a complex melange of facts, values, and fears. While this complexity of public risk perception is now broadly recognized, its implications are insufficiently explored. Public risk perceptions offer p poor guide for public policymaking. Popular assessments of risk are tainted by misinformation and unreliable heuristics. While subjective considerations, often called values, play a role in public perception of risk, those 'values' are often inappropriate for government decisionmaking. Reliance on public perceptions of risk means more premature deaths. Public risk perception also is systematically skewed contrary to the interests of the disadvantaged. Strict probabilistic risk measures generally provide a superior guide for government regulatory policy

  19. Life Cycle Assessment and Risk Assessment

    DEFF Research Database (Denmark)

    Olsen, Stig Irving

    Life Cycle Assessment (LCA) is a tool for environmental assessment of product and systems – over the whole life cycle from acquisition of raw materials to the end-of-life of the product – and encompassing all environmental impacts of emissions and resource usage, e.g. global warming, acidification...... cycle. The models for assessing toxic impacts in LCA are to a large extent based on those developed for RA, e.g. EUSES, and require basic information about the inherent properties of the emissions like solubility, LogKow,ED50 etc. Additionally, it is a prerequisite to know how to characterize...

  20. Assessment of uncertainties in severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Catton, I.; Dhir, V.K.; Okrent, D.

    1990-01-01

    Recent progress on the development of Probabilistic Risk Assessment (PRA) as a tool for qualifying nuclear reactor safety and on research devoted to severe accident phenomena has made severe accident management an achievable goal. Severe accident management strategies may involve operational changes, modification and/or addition of hardware, and institutional changes. In order to achieve the goal of managing severe accidents, a method for assessment of strategies must be developed which integrates PRA methodology and our current knowledge concerning severe accident phenomena, including uncertainty. The research project presented in this paper is aimed at delineating uncertainties in severe accident progression and their impact on severe accident management strategies