WorldWideScience

Sample records for risk analysis fire

  1. A Method of Fire Scenarios Identification in a Consolidated Fire Risk Analysis

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Yang, Joon Eon

    2010-01-01

    Conventional fire PSA consider only two cases of fire scenarios, that is one for fire without propagation and the other for single propagation to neighboring compartment. Recently, a consolidated fire risk analysis using single fault tree (FT) was developed. However, the fire scenario identification in the new method is similar to conventional fire analysis method. The present study develops a new method of fire scenario identification in a consolidated fire risk analysis method. An equation for fire propagation is developed to identify fire scenario and a mapping method of fire scenarios into internal event risk model is discussed. Finally, an algorithm for automatic program is suggested

  2. Modeling issues in nuclear plant fire risk analysis

    International Nuclear Information System (INIS)

    Siu, N.

    1989-01-01

    This paper discusses various issues associated with current models for analyzing the risk due to fires in nuclear power plants. Particular emphasis is placed on the fire growth and suppression models, these being unique to the fire portion of the overall risk analysis. Potentially significant modeling improvements are identified; also discussed are a variety of modeling issues where improvements will help the credibility of the analysis, without necessarily changing the computed risk significantly. The mechanistic modeling of fire initiation is identified as a particularly promising improvement for reducing the uncertainties in the predicted risk. 17 refs., 5 figs. 2 tabs

  3. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    1991-05-01

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  4. Rocky Flats Plant Live-Fire Range Risk Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Nicolosi, S.L.; Rodriguez, M.A.

    1994-04-01

    The objective of the Live-Fire Range Risk Analysis Report (RAR) is to provide an authorization basis for operation as required by DOE 5480.16. The existing Live-Fire Range does not have a safety analysis-related authorization basis. EG&G Rocky Flats, Inc. has worked with DOE and its representatives to develop a format and content description for development of an RAR for the Live-Fire Range. Development of the RAR is closely aligned with development of the design for a baffle system to control risks from errant projectiles. DOE 5480.16 requires either an RAR or a safety analysis report (SAR) for live-fire ranges. An RAR rather than a SAR was selected in order to gain flexibility to more closely address the safety analysis and conduct of operation needs for a live-fire range in a cost-effective manner.

  5. Applying Multi-Criteria Analysis Methods for Fire Risk Assessment

    Directory of Open Access Journals (Sweden)

    Pushkina Julia

    2015-11-01

    Full Text Available The aim of this paper is to prove the application of multi-criteria analysis methods for optimisation of fire risk identification and assessment process. The object of this research is fire risk and risk assessment. The subject of the research is studying the application of analytic hierarchy process for modelling and influence assessment of various fire risk factors. Results of research conducted by the authors can be used by insurance companies to perform the detailed assessment of fire risks on the object and to calculate a risk extra charge to an insurance premium; by the state supervisory institutions to determine the compliance of a condition of object with requirements of regulations; by real state owners and investors to carry out actions for decrease in degree of fire risks and minimisation of possible losses.

  6. Cable Hot Shorts and Circuit Analysis in Fire Risk Assessment

    International Nuclear Information System (INIS)

    LaChance, Jeffrey; Nowlen, Steven P.; Wyant, Frank

    1999-01-01

    Under existing methods of probabilistic risk assessment (PRA), the analysis of fire-induced circuit faults has typically been conducted on a simplistic basis. In particular, those hot-short methodologies that have been applied remain controversial in regards to the scope of the assessments, the underlying methods, and the assumptions employed. To address weaknesses in fire PRA methodologies, the USNRC has initiated a fire risk analysis research program that includes a task for improving the tools for performing circuit analysis. The objective of this task is to obtain a better understanding of the mechanisms linking fire-induced cable damage to potentially risk-significant failure modes of power, control, and instrumentation cables. This paper discusses the current status of the circuit analysis task

  7. Some insights from fire risk analysis of US nuclear power plants

    International Nuclear Information System (INIS)

    Kazarians, M.; Lambright, J.A.; Frank, M.V.

    1998-01-01

    Fire risk analysis has been conducted for a significant portion of the nuclear power plants in the U.S. using either Probabilistic Risk Assessments (PRAs) or FIVE or a combination of the two methodologies. Practically all fire risk studies have used step-wise, screening approach. To establish the contents of a compartment, the cable routing information collected for Appendix R compliance have been used in practically all risk studies. In several cases, the analysts have gone beyond the Appendix R and have obtained the routing of additional cables. For fire impact analysis typically an existing PRA model is used. For fire frequencies, typically, a generic data base is used. Fire scenarios are identified in varying levels of detail. The most common approach, in the early stages of screening, is based on the assumption that given a fire, the entire contents of the compartment are lost. Less conservative scenarios are introduced at later stages of the analysis which may include fire propagation patterns, fires localized to an item. and suppression of the fire before critical damage. For fire propagation and damage analysis, a large number of studies have used FIVE and many have used COMPBRN. For detection and suppression analysis, the generic suppression system unavailabilities given in FIVE have been used. The total core damage frequencies typically range between 1x10 -6 to 1x10 -4 per year. Control rooms and cable spreading rooms are the two most common areas found to be significant contributors to fire risk. Other areas are mainly from the Auxiliary Building (in the case of PWRs) and Reactor Building (in the case of BWRs). Only in one case, the main contributor to fire is the turbine building, which included several safety related equipment and cables. (author)

  8. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    Science.gov (United States)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  9. Fire Risk Analysis and Optimization of Fire Prevention Management for Green Building Design and High Rise Buildings: Hong Kong Experience

    Directory of Open Access Journals (Sweden)

    Yau Albert

    2014-12-01

    Full Text Available There are many iconic high rise buildings in Hong Kong, for example, International Commercial Centre, International Financial Centre, etc. Fire safety issue in high rise buildings has been raised by local fire professionals in terms of occupant evacuation, means of fire-fighting by fire fighters, sprinkler systems to automatically put off fires in buildings, etc. Fire risk becomes an important issue in building fire safety because it relates to life safety of building occupants where they live and work in high rise buildings in Hong Kong. The aim of this research is to identify the fire risk for different types of high rise buildings in Hong Kong and to optimise the fire prevention management for those high rise buildings with higher level of fire risk and to validate the model and also to carry out the study of the conflict between the current fire safety building code and the current trend of green building design. Survey via the 7-point scale questionnaire was conducted through 50 participants and their responses were received and analysed via the statistical tool SPSS software computer program. A number of statistical methods of testing for significantly difference in samples were adopted to carry out the analysis of the data received. When the statistical analysis was completed, the results of the data analysis were validated by two Fire Safety Experts in this area of specialisation and also by quantitative fire risk analysis.

  10. Probabilistic methods in fire-risk analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.

    1989-01-01

    The first part of this work outlines a method for assessing the frequency of ignition of a consumer product in a building and shows how the method would be used in an example scenario utilizing upholstered furniture as the product and radiant auxiliary heating devices (electric heaters, wood stoves) as the ignition source. Deterministic thermal models of the heat-transport processes are coupled with parameter uncertainty analysis of the models and with a probabilistic analysis of the events involved in a typical scenario. This leads to a distribution for the frequency of ignition for the product. In second part, fire-risk analysis as currently used in nuclear plants is outlines along with a discussion of the relevant uncertainties. The use of the computer code COMPBRN is discussed for use in the fire-growth analysis along with the use of response-surface methodology to quantify uncertainties in the code's use. Generalized response surfaces are developed for temperature versus time for a cable tray, as well as a surface for the hot gas layer temperature and depth for a room of arbitrary geometry within a typical nuclear power plant compartment. These surfaces are then used to simulate the cable tray damage time in a compartment fire experiment

  11. Fire risk analysis for nuclear power plants: Methodological developments and applications

    International Nuclear Information System (INIS)

    Kazarians, M.; Apostolakis, G.; Siv, N.O.

    1985-01-01

    A methodology to quantify the risk from fires in nuclear power plants is described. This methodology combines engineering judgment, statistical evidence, fire phenomenology, and plant system analysis. It can be divided into two major parts: (1) fire scenario identification and quantification, and (2) analysis of the impact on plant safety. This article primarily concentrates on the first part. Statistical analysis of fire occurrence data is used to establish the likelihood of ignition. The temporal behaviors of the two competing phenomena, fire propagation and fire detection and suppression, are studied and their characteristic times are compared. Severity measures are used to further specialize the frequency of the fire scenario. The methodology is applied to a switchgear room of a nuclear power plant

  12. Risk Assessment of the Main Control Room Fire Using Fire Simulations

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung Cheol

    2013-01-01

    KAERI is performing a fire PSA for a reference plant, Ulchin Unit 3, as part of developing the Korean site risk profile (KSRP). Fire simulations of the MCR fire were conducted using the CFAST (Consolidated Fire Growth and Smoke Transport) model and FDS (fire dynamic simulator) to improve the uncertainty in the MCR fire risk analysis. Using the fire simulation results, the MCR abandonment risk was evaluated. Level 1 PSA (probabilistic safety assessment) results of Ulchin Unit 3 using the EPRI PRA (probabilistic risk assessment) implementation guide showed that the MCR (main control room) fire was the main contributor to the core damage frequency. Recently, U. S. NRC and EPRI developed NUREG/CR-6850 to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial NPP

  13. Cutting costs through detailed probabilistic fire risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz; Huser, Asmund; Vianna, Savio [Det Norske Veritas PRINCIPIA, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new procedure for calculation of fire risks to offshore installations has been developed. The purposes of the procedure are to calculate the escalation and impairment frequencies to be applied in quantitative risk analyses, to optimize Passive Fire Protection (PFP) arrangement, and to optimize other fire mitigation means. The novelties of the procedure are that it uses state of the art Computational Fluid Dynamics (CFD) models to simulate fires and radiation, as well as the use of a probabilistic approach to decide the dimensioning fire loads. A CFD model of an actual platform was used to investigate the dynamic properties of a large set of jet fires, resulting in detailed knowledge of the important parameters that decide the severity of offshore fires. These results are applied to design the procedure. Potential increase in safety is further obtained for those conditions where simplified tools may have failed to predict abnormal heat loads due to geometrical effects. Using a field example it is indicated that the probabilistic approach can give significant reductions in PFP coverage with corresponding cost savings, still keeping the risk at acceptable level. (author)

  14. Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2000-01-01

    Quantitative fire risk assessment can serve as an additional tool to assess the safety level of a nuclear power plant (NPP) and to set priorities for fire protection improvement measures. The recommended approach to be applied within periodic safety reviews of NPPs in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis using a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. Results of the first quantitative fire risk studies performed in Germany are reported. (author)

  15. Risk analysis of the LHC underground area fire risk due to faulty electrical equipment

    CERN Document Server

    Harrison, A

    2007-01-01

    The European Organisation for Nuclear Research (CERN) in Geneva, Switzerland, is currently building the latest generation of particle accelerators, the LHC (Large Hadron Collider). The machine is housed in a circular tunnel of 27 km of circumference and is situated approximately 100 metres beneath the surface astride the Franco-Swiss border. Electrically induced fires in the LHC are a major concern, since an incident could present a threat to CERN personnel as well as the public. Moreover, the loss of equipment would result in significant costs and downtime. However, the amount of electrical equipment in the underground area required for operation, supervision and control of the machine is essential. Thus the present thesis is assessing the risk of fire due to faulty electrical equipment in both a qualitative as well as quantitative way. The recommendations following the qualitative analysis suggest the introduction of fire protection zones for the areas with the highest risk of fire due to a combination of p...

  16. Advanced methods for a probabilistic safety analysis of fires. Development of advanced methods for performing as far as possible realistic plant specific fire risk analysis (fire PSA)

    International Nuclear Information System (INIS)

    Hofer, E.; Roewekamp, M.; Tuerschmann, M.

    2003-07-01

    In the frame of the research project RS 1112 'Development of Methods for a Recent Probabilistic Safety Analysis, Particularly Level 2' funded by the German Federal Ministry of Economics and Technology (BMWi), advanced methods, in particular for performing as far as possible realistic plant specific fire risk analyses (fire PSA), should be developed. The present Technical Report gives an overview on the methodologies developed in this context for assessing the fire hazard. In the context of developing advanced methodologies for fire PSA, a probabilistic dynamics analysis with a fire simulation code including an uncertainty and sensitivity study has been performed for an exemplary scenario of a cable fire induced by an electric cabinet inside the containment of a modern Konvoi type German nuclear power plant taking into consideration the effects of fire detection and fire extinguishing means. With the present study, it was possible for the first time to determine the probabilities of specified fire effects from a class of fire events by means of probabilistic dynamics supplemented by uncertainty and sensitivity analyses. The analysis applies a deterministic dynamics model, consisting of a dynamic fire simulation code and a model of countermeasures, considering effects of the stochastics (so-called aleatory uncertainties) as well as uncertainties in the state of knowledge (so-called epistemic uncertainties). By this means, probability assessments including uncertainties are provided to be used within the PSA. (orig.) [de

  17. Cable fire risk of a nuclear power plant

    International Nuclear Information System (INIS)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined

  18. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    Science.gov (United States)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  19. A fire risk analysis method for nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Ormieres, Yannick; Lacoue, Jocelyne [Institut de Radioprotection et de Surete Nucleaire (IRSN), PSN-RES, SA2I, Fontenay-aux-Roses (France)

    2013-07-01

    A fire safety analysis (FSA) is requested to justify the adequacy of fire protection measures set by the operator of a nuclear facility. An IRSN document outlines a global process for such a comprehensive fire safety analysis and focuses on compliance with performance criteria for fire protection measures. These performance criteria are related to the vulnerability of targets to effects of fire, and not only based upon outside radiological consequences caused by a fire. In his FSA, the operator has to define the safety functions to be preserved in the case of a fire in order to be compliant with nuclear safety objectives. Then, the operator has to justify the adequacy of fire protection measures, defined according to defence in depth principles. One of the key points of the fire analysis is the assessment of possible fire scenarios in the facility. Given the large number of possible fire scenarios, it is then necessary to evaluate ''reference fires'' which are envelope of all possible fire scenarios and which are used by the operator for the design of fire protection measures. (orig.)

  20. Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios

    DEFF Research Database (Denmark)

    Berchtold, Florian; Knaust, Christian; Arnold, Lukas

    2018-01-01

    Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics...... complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios...... used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement...

  1. Fire safety analysis: methodology

    International Nuclear Information System (INIS)

    Kazarians, M.

    1998-01-01

    From a review of the fires that have occurred in nuclear power plants and the results of fire risk studies that have been completed over the last 17 years, we can conclude that internal fires in nuclear power plants can be an important contributor to plant risk. Methods and data are available to quantify the fire risk. These methods and data have been subjected to a series of reviews and detailed scrutiny and have been applied to a large number of plants. There is no doubt that we do not know everything about fire and its impact on a nuclear power plants. However, this lack of knowledge or uncertainty can be quantified and can be used in the decision making process. In other words, the methods entail uncertainties and limitations that are not insurmountable and there is little or no basis for the results of a fire risk analysis fail to support a decision process

  2. Risk-informed decision-making analysis for the electrical raceway fire barrier systems on a BWR-4 plant

    International Nuclear Information System (INIS)

    Wu, Ching-Hui; Lin, Tsu-Jen; Kao, Tsu-Mu; Chen, Chyn-Rong

    2003-01-01

    This paper describes a risk-informed decision-making approach used to resolve the fire barrier issue in a BWR-4 nuclear plant where Appendix R separation requirements cannot be met without installing additional fire protection features such as electrical raceway fire barrier system. The related risk measures in CDF (core damage frequency) and LERF (large early release frequency) of the fire barrier issue can be determined by calculating the difference in plant risks between various alternative cases and that met the requirement of the Appendix R. In some alternative cases, additional early-detection and fast-response fire suppression systems are suggested. In some other cases, cable re-routing of some improper layout of non-safety related cables are required. Sets of fire scenarios are re-evaluated more detailed by reviewing the cable damage impact for the BWR-4 plant. The fire hazard model, COMPBRM III-e, is used in this study and the dominant results in risk measures are benchmarked with the CFD code, FDS 2.0, to ensure that the risk impact of fire barrier is estimated accurately in the risk-informed decision making. The traditional deterministic qualitative methods, such as defense-in-depth, safety margin and post-fire safety shutdown capability are also proceeded. The value-impact analysis for proposed alternatives of fire wrapping required by Appendix R has been completed for technical basis of the exemption on Appendix R application. The outcome of the above analysis should be in compliance with the regulatory guidelines (RG) 1.174 and 1.189 for the applications in the risk-informed decision-making of the fire wrapping issues. (author)

  3. Fire Risk Scoping Study: Investigation of nuclear power plant fire risk, including previously unaddressed issues

    International Nuclear Information System (INIS)

    Lambright, J.A.; Nowlen, S.P.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    An investigation of nuclear power plant fire risk issues raised as a result of the USNRC sponsored Fire Protection Research Program at Sandia National Laboratories has been performed. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments (PRAs) in light of updated data bases made available as a result of USNRC sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. In performance of the fire risk scenario requantifications several important insights were gained. It was found that utilization of a more extensive operational experience base resulted in both fire occurrence frequencies and fire duration times (i.e., time required for fire suppression) increasing significantly over those assumed in the original works. Additionally, some thermal damage threshold limits assumed in the original works were identified as being nonconservative based on more recent experimental data. Finally, application of the COMPBRN III fire growth model resulted in calculation of considerably longer fire damage times than those calculated in the original works using COMPBRN I. 14 refs., 2 figs., 16 tabs

  4. Development of the fire PSA methodology and the fire analysis computer code system

    International Nuclear Information System (INIS)

    Katsunori, Ogura; Tomomichi, Ito; Tsuyoshi, Uchida; Yusuke, Kasagawa

    2009-01-01

    Fire PSA methodology has been developed and was applied to NPPs in Japan for power operation and LPSD states. CDFs of preliminary fire PSA for power operation were the higher than that of internal events. Fire propagation analysis code system (CFAST/FDS Network) was being developed and verified thru OECD-PRISME Project. Extension of the scope for LPSD state is planned to figure out the risk level. In order to figure out the fire risk level precisely, the enhancement of the methodology is planned. Verification and validation of phenomenological fire propagation analysis code (CFAST/FDS Network) in the context of Fire PSA. Enhancement of the methodology such as an application of 'Electric Circuit Analysis' in NUREG/CR-6850 and related tests in order to quantify the hot-short effect precisely. Development of seismic-induced fire PSA method being integration of existing seismic PSA and fire PSA methods is ongoing. Fire PSA will be applied to review the validity of fire prevention and mitigation measures

  5. Risk Insights Gained from Fire Incidents

    International Nuclear Information System (INIS)

    Kazarians, Mardy; Nowlen, Steven P.

    1999-01-01

    There now exist close to 20 years of history in the application of Probabilistic Risk Assessment (PRA) for the analysis of fire risk at nuclear power plants. The current methods are based on various assumptions regarding fire phenomena, the impact of fire on equipment and operator response, and the overall progression of a fire event from initiation through final resolution. Over this same time period, a number of significant fire incidents have occurred at nuclear power plants around the world. Insights gained from US experience have been used in US studies as the statistical basis for establishing fire initiation frequencies both as a function of the plant area and the initiating fire source.To a lesser extent, the fire experience has also been used to assess the general severity and duration of fires. However, aside from these statistical analyses, the incidents have rarely been scrutinized in detail to verify the underlying assumptions of fire PRAs. This paper discusses an effort, under which a set of fire incidents are being reviewed in order to gain insights directly relevant to the methods, data, and assumptions that form the basis for current fire PRAs. The paper focuses on the objectives of the effort, the specific fire events being reviews methodology, and anticipated follow-on activities

  6. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  7. Risk assessment of main control board fire using fire dynamics simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol; Yoo, Seong Yeon

    2015-01-01

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk

  8. Cable fire risk of a nuclear power plant; Ydinvoimalaitoksen kaapelipaloriski

    Energy Technology Data Exchange (ETDEWEB)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined. 62 refs.

  9. An evaluation of risk methods for prioritizing fire protection features: a procedure for fire barrier penetration seals

    International Nuclear Information System (INIS)

    Dey, M.K.

    2004-01-01

    This paper generally evaluates risk methods available for prioritizing fire protection features. Risk methods involving both the use of qualitative insights, and quantitative results from a fire probabilistic risk analysis are reviewed. The applicability of these methods to develop a prioritized list of fire barrier penetration seals in a plant based on risk significance is presented as a procedure to illustrate the benefits of the methods. The paper concludes that current fire risk assessment methods can be confidently used to prioritize plant fire protection features, specifically fire barrier penetration seals. Simple prioritization schemes, using qualitative assessments and insights from fire PRA methodology may be implemented without the need for quantitative results. More elaborate prioritization schemes that allow further refinements to the categorization process may be implemented using the quantitative results of the screening processes in good fire PRAs. The use of the quantitative results from good fire PRAs provide several benefits for risk prioritization of fire protection features at plants, mainly from the plant systems analyses conducted for a fire PRA

  10. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    Science.gov (United States)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher

  11. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  12. Fire risk in California

    Science.gov (United States)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger

  13. Fire risk assessment in Germany. Procedure, data, results

    International Nuclear Information System (INIS)

    Berg, H.P.

    2000-01-01

    The recommended approach for a quantitative fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones and is followed by a quantitative analysis using a standard event tree with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. For that purpose, a comprehensive data base is needed which has been developed in particular for active fire protection measures. As an example results of one fire PSA are reported. (author)

  14. An overview of the fire risk scoping study

    International Nuclear Information System (INIS)

    Nowlen, S.P.; Lambright, J.A.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    The Fire Risk Scoping Study was sponsored by the US Nuclear Regulatory Commission and performed at Sandia National Laboratories. The study was initiated as a result of previous USNRC-sponsored fire research efforts that had identified certain fire risk issues that had not been addressed in previously completed commercial nuclear power plant fire risk analyses. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments in light of updated data bases made available as a result of USNRC-sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. 9 refs., 3 tabs

  15. Fire risk analysis, fire simulation, fire spreading and impact of smoke and heat on instrumentation electronics - State-of-the-Art Report

    International Nuclear Information System (INIS)

    Roewekamp, M.; Bertrand, R.; Bonneval, F.; Hamblen, D.; Siu, N.; Aulamo, H.; Martila, J.; Sandberg, J.; Virolainen, R.

    2000-01-01

    Numerous fire PSAs (probabilistic safety assessments) have shown that fire can be a major contributor to nuclear power plant risk. However, there are considerable uncertainties in the results of these assessments, due to significant gaps in current abilities to perform realistic assessments. These gaps involve multiple aspects of fire PSA, including the estimation of the probability of important fire scenarios, the modeling of fire growth and suppression, the prediction of fire-induced damage to equipment (including the effects of smoke), and the treatment of plant and operator responses to the fire. In response to recommendations of /VIR 93/, CSNI/PWG5 established a Task Group to review the present status and maturity of current methods used in fire risk assessments for operating nuclear power plants. The Task Group issued a questionnaire in May 1997 to all nuclear power generating OECD countries. The prime focus of the questionnaire (see Appendix A) was on a number of important issues in fire PSA: Fire PSA methodology and applications; Fire simulation codes; Ignition and damageability data; Modeling of fire spread on cables or other equipment; Modeling of smoke production and spread; Impact of smoke and heat on instrumentation, electronics, or other electrical equipment; Impact of actual cable fires on safety systems. The questionnaire requested specific information on these topics (e.g., computer codes used in fire PSAs, the physical parameters used to model ignition). Responses to the questionnaire were provided by Finland, France, Germany, Hungary, Japan, Spain, Switzerland, United Kingdom, and the USA. This report summarizes the questionnaire responses and thereby: a) provides a perspective on the current fire PSA state of the art (SOAR) with respect to the issues listed above, and b) provides numerous references for more detailed information regarding these issues. The main responsibility for writing different chapters of this report was divided between some

  16. Current Status of Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2002-01-01

    The approach for fire risk assessment to be applied within periodic safety reviews of nuclear power plants in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis. For that purpose, a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. This standard event tree has to be adapted to each critical fire zone or room. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. In order to perform a quantitative fire risk assessment, a basic data base must be established which should, e.g., include initiating frequencies, reliability data for all fire protection measures, fire barriers, etc. Detailed plant-specific information is needed on ignition sources, detection and extinguishing systems, manual fire fighting, stationary fire suppression systems. As one contributor to fire specific PSA input data, reliability data for the active fire protection measures are required for the application in the fire specific event tree analysis. These data needed to be estimated are unavailabilities per demand or failure rates per hour of plant operation for those components or systems belonging to the active fire protection means. The data on potential failures or unavailabilities per demand of the respective fire protection measures were gained from the plant specific documentation of inspection and maintenance. The assessment whether the detected findings are estimated as failures or only as deficiencies or deteriorations requires a deep insight in the plant specific operating conditions for the fire protection means and needs careful engineering

  17. The influence of sodium fires on LMFBRs safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Justin, F [DSN/Centre de Fontenay-aux-Roses, Fontenay-aux-Roses (France)

    1979-03-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs.

  18. The influence of sodium fires on LMFBRs safety analysis

    International Nuclear Information System (INIS)

    Justin, F.

    1979-01-01

    In a sodium cooled reactor, sodium fires are accidental conditions to be taken into account in safety analysis. For the various sodium categories, fire conditions, associated risks, safety analysis objectives and detailed corresponding issues are indicated, An experimental research program can be deduced from these considerations. This report covers the following: safety analysis methodology; primary sodium fires; secondary sodium fires; auxiliary sodium fires, and related experimental research programs

  19. Probabilistic analysis of fires in nuclear plants

    International Nuclear Information System (INIS)

    Unione, A.; Teichmann, T.

    1985-01-01

    The aim of this paper is to describe a multilevel (i.e., staged) probabilistic analysis of fire risks in nuclear plants (as part of a general PRA) which maximizes the benefits of the FRA (fire risk assessment) in a cost effective way. The approach uses several stages of screening, physical modeling of clearly dominant risk contributors, searches for direct (e.g., equipment dependences) and secondary (e.g., fire induced internal flooding) interactions, and relies on lessons learned and available data from and surrogate FRAs. The general methodology is outlined. 6 figs., 10 tabs

  20. Analyzing the Risk of Fire in a Hospital Complex by “Fire Risk Assessment Method for Engineering”(FRAME

    Directory of Open Access Journals (Sweden)

    Sarsangi V.* MSc,

    2016-08-01

    Full Text Available Aims The occurrence of fire in residential buildings, commercial complexes and large and small industries cause physical, environmental and financial damages to many different communities. Fire safety in hospitals is sensitive and it is believed that the society takes the responsibility to care sick people. The goal of this study was to use Fire Risk Assessment Method for Engineering (FRAME in a hospital complex environment and assess the level of fire risks. Materials & Methods This descriptive study was conducted in Kashan Shahid Beheshti hospital in 2013. The FRAME is designed based on the empirical and scientific knowledge and experiment and have acceptable reliability for assessing the building fire risk. Excel software was used to calculate the risk level and finally fire risk (R was calculated separately for different units. Findings Calculated Rs were less than 1for health, autoclave, office of nursing and infection control units. R1s were greater than 1 for all units. R2s were less than 1 for office of nursing and infection control units. Conclusion FRAME is an acceptable tool for assessing the risk of fire in buildings and the fire risk is high in Shahid Beheshti Hospital Complex of Kashan and damages can be intolerable in the case of fire.

  1. Fire hazard analysis of the radioactive mixed waste trenchs

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation's activity. Transient flammables and combustibles present that support the operation's activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0

  2. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  3. Nuclear insurance fire risk

    International Nuclear Information System (INIS)

    Dressler, E.G.

    2001-01-01

    Nuclear facilities operate under the constant risk that radioactive materials could be accidentally released off-site and cause injuries to people or damages to the property of others. Management of this nuclear risk, therefore, is very important to nuclear operators, financial stakeholders and the general public. Operators of these facilities normally retain a portion of this risk and transfer the remainder to others through an insurance mechanism. Since the nuclear loss exposure could be very high, insurers usually assess their risk first-hand by sending insurance engineers to conduct a nuclear insurance inspection. Because a serious fire can greatly increase the probability of an off-site release of radiation, fire safety should be included in the nuclear insurance inspection. This paper reviews essential elements of a facility's fire safety program as a key factor in underwriting nuclear third-party liability insurance. (author)

  4. Operating room fires: a closed claims analysis.

    Science.gov (United States)

    Mehta, Sonya P; Bhananker, Sanjay M; Posner, Karen L; Domino, Karen B

    2013-05-01

    To assess patterns of injury and liability associated with operating room (OR) fires, closed malpractice claims in the American Society of Anesthesiologists Closed Claims Database since 1985 were reviewed. All claims related to fires in the OR were compared with nonfire-related surgical anesthesia claims. An analysis of fire-related claims was performed to identify causative factors. There were 103 OR fire claims (1.9% of 5,297 surgical claims). Electrocautery was the ignition source in 90% of fire claims. OR fire claims more frequently involved older outpatients compared with other surgical anesthesia claims (P fire claims (P fires (n = 93) increased over time (P fires occurred during head, neck, or upper chest procedures (high-fire-risk procedures). Oxygen served as the oxidizer in 95% of electrocautery-induced OR fires (84% with open delivery system). Most electrocautery-induced fires (n = 75, 81%) occurred during monitored anesthesia care. Oxygen was administered via an open delivery system in all high-risk procedures during monitored anesthesia care. In contrast, alcohol-containing prep solutions and volatile compounds were present in only 15% of OR fires during monitored anesthesia care. Electrocautery-induced fires during monitored anesthesia care were the most common cause of OR fires claims. Recognition of the fire triad (oxidizer, fuel, and ignition source), particularly the critical role of supplemental oxygen by an open delivery system during use of the electrocautery, is crucial to prevent OR fires. Continuing education and communication among OR personnel along with fire prevention protocols in high-fire-risk procedures may reduce the occurrence of OR fires.

  5. Fire hazard analysis for the fuel supply shutdown storage buildings

    International Nuclear Information System (INIS)

    REMAIZE, J.A.

    2000-01-01

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility

  6. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  7. Risk Analysis in Road Tunnels – Most Important Risk Indicators

    DEFF Research Database (Denmark)

    Berchtold, Florian; Knaust, Christian; Thöns, Sebastian

    2016-01-01

    Methodologies on fire risk analysis in road tunnels consider numerous factors affecting risks (risk indicators) and express the results by risk measures. But only few comprehensive studies on effects of risk indicators on risk measures are available. For this reason, this study quantifies...... the effects and highlights the most important risk indicators with the aim to support further developments in risk analysis. Therefore, a system model of a road tunnel was developed to determine the risk measures. The system model can be divided into three parts: the fire part connected to the fire model Fire...... Dynamics Simulator (FDS); the evacuation part connected to the evacuation model FDS+Evac; and the frequency part connected to a model to calculate the frequency of fires. This study shows that the parts of the system model (and their most important risk indicators) affect the risk measures in the following...

  8. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  9. A conceptual framework for formulating a focused and cost-effective fire protection program based on analyses of risk and the dynamics of fire effects

    International Nuclear Information System (INIS)

    Dey, M.K.

    1999-01-01

    This paper proposes a conceptual framework for developing a fire protection program at nuclear power plants based on probabilistic risk analysis (PRA) of fire hazards, and modeling the dynamics of fire effects. The process for categorizing nuclear power plant fire areas based on risk is described, followed by a discussion of fire safety design methods that can be used for different areas of the plant, depending on the degree of threat to plant safety from the fire hazard. This alternative framework has the potential to make programs more cost-effective, and comprehensive, since it will allow a more systematic and broader examination of fire risk, and provide a means to distinguish between high and low risk fire contributors. (orig.)

  10. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  11. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    International Nuclear Information System (INIS)

    JOHNSON, B.H.

    1999-01-01

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met

  12. Wild Fire Risk Map in the Eastern Steppe of Mongolia Using Spatial Multi-Criteria Analysis

    Science.gov (United States)

    Nasanbat, Elbegjargal; Lkhamjav, Ochirkhuyag

    2016-06-01

    Grassland fire is a cause of major disturbance to ecosystems and economies throughout the world. This paper investigated to identify risk zone of wildfire distributions on the Eastern Steppe of Mongolia. The study selected variables for wildfire risk assessment using a combination of data collection, including Social Economic, Climate, Geographic Information Systems, Remotely sensed imagery, and statistical yearbook information. Moreover, an evaluation of the result is used field validation data and assessment. The data evaluation resulted divided by main three group factors Environmental, Social Economic factor, Climate factor and Fire information factor into eleven input variables, which were classified into five categories by risk levels important criteria and ranks. All of the explanatory variables were integrated into spatial a model and used to estimate the wildfire risk index. Within the index, five categories were created, based on spatial statistics, to adequately assess respective fire risk: very high risk, high risk, moderate risk, low and very low. Approximately more than half, 68 percent of the study area was predicted accuracy to good within the very high, high risk and moderate risk zones. The percentages of actual fires in each fire risk zone were as follows: very high risk, 42 percent; high risk, 26 percent; moderate risk, 13 percent; low risk, 8 percent; and very low risk, 11 percent. The main overall accuracy to correct prediction from the model was 62 percent. The model and results could be support in spatial decision making support system processes and in preventative wildfire management strategies. Also it could be help to improve ecological and biodiversity conservation management.

  13. CONSIDERATIONS ON RISK MANAGEMENT APPLIED TO FOREST FIRES

    Directory of Open Access Journals (Sweden)

    Ioan Valentin Marcel Posea

    2016-07-01

    Full Text Available Forest risk and management are ubiquitous in any socio-economic activity. Forestry, more than any other field, is at risk from fire. Consequently, it appears the necessity to implement a fire risk management that could resolve, at least partially, the specific problems. This study attempts to identify the specific stages and processes of forest fire risk management and their content. At the same time, I will try to highlight how a forest fire risk management process planning can be achieved and to present a way of achieving the Plan. I also deem necessary a forest fire risk monitoring and control system that I have built using the Deming cycle.

  14. One Approach to the Fire PSA Uncertainty Analysis

    International Nuclear Information System (INIS)

    Simic, Z.; Mikulicic, V.; Vukovic, I.

    2002-01-01

    Experienced practical events and findings from the number of fire probabilistic safety assessment (PSA) studies show that fire has high relative importance for nuclear power plant safety. Fire PSA is a very challenging phenomenon and a number of issues are still in the area of research and development. This has a major impact on the conservatism of fire PSA findings. One way to reduce the level of conservatism is to conduct uncertainty analysis. At the top-level, uncertainty of the fire PSA can be separated in to three segments. The first segment is related to fire initiating events frequencies. The second uncertainty segment is connected to the uncertainty of fire damage. Finally, there is uncertainty related to the PSA model, which propagates this fire-initiated damage to the core damage or other analyzed risk. This paper discusses all three segments of uncertainty. Some recent experience with fire PSA study uncertainty analysis, usage of fire analysis code COMPBRN IIIe, and uncertainty evaluation importance to the final result is presented.(author)

  15. WILD FIRE RISK MAP IN THE EASTERN STEPPE OF MONGOLIA USING SPATIAL MULTI-CRITERIA ANALYSIS

    Directory of Open Access Journals (Sweden)

    E. Nasanbat

    2016-06-01

    Full Text Available Grassland fire is a cause of major disturbance to ecosystems and economies throughout the world. This paper investigated to identify risk zone of wildfire distributions on the Eastern Steppe of Mongolia. The study selected variables for wildfire risk assessment using a combination of data collection, including Social Economic, Climate, Geographic Information Systems, Remotely sensed imagery, and statistical yearbook information. Moreover, an evaluation of the result is used field validation data and assessment. The data evaluation resulted divided by main three group factors Environmental, Social Economic factor, Climate factor and Fire information factor into eleven input variables, which were classified into five categories by risk levels important criteria and ranks. All of the explanatory variables were integrated into spatial a model and used to estimate the wildfire risk index. Within the index, five categories were created, based on spatial statistics, to adequately assess respective fire risk: very high risk, high risk, moderate risk, low and very low. Approximately more than half, 68 percent of the study area was predicted accuracy to good within the very high, high risk and moderate risk zones. The percentages of actual fires in each fire risk zone were as follows: very high risk, 42 percent; high risk, 26 percent; moderate risk, 13 percent; low risk, 8 percent; and very low risk, 11 percent. The main overall accuracy to correct prediction from the model was 62 percent. The model and results could be support in spatial decision making support system processes and in preventative wildfire management strategies. Also it could be help to improve ecological and biodiversity conservation management.

  16. A method for mapping fire hazard and risk across multiple scales and its application in fire management

    Science.gov (United States)

    Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds

    2010-01-01

    This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...

  17. Forest fire risk zonation mapping using remote sensing technology

    Science.gov (United States)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  18. Getting fire risk assessment right.

    Science.gov (United States)

    Charters, David

    2012-06-01

    The NHS has one of the world's largest and most varied estates, which at any time accommodates many of the most dependent people in society. With around 6,000 fires occurring in NHS premises each year, its duty of care--and that of other healthcare providers--demands very close attention to fire safety. Here Dr David Charters BSc, PhD, CEng, FIFireE, MIMechE, MSFPE, director of Fire Engineering at BRE Global, an independent third party approvals body offering certification of fire, security, and sustainability products and services, examines the critical role of fire risk assessment, and explains why the process should provide the 'foundation' for effective fire safety measures.

  19. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    International Nuclear Information System (INIS)

    MYOTT, C.F.

    2000-01-01

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved

  20. Fire risk analysis in ITER tritium building

    International Nuclear Information System (INIS)

    Lignini, Franck; Uzan-Elbez, Joelle; Girard, Jean-Philippe; Porfiri, Maria Teresa; Rodriguez-Rodrigo, Lina

    2005-01-01

    Events, such as fire, have been considered in ITER documentation of low probability and a general approach has been defined in [Technical basis for the ITER final design, EDA Documentation Series I, No. 22, IAEA, Vienna, 2001] to be developed later for the ITER specific site. It was said that 'these hazards will be treated according to the industrial safety regulations and practices of the host country'. In the framework of studies for the European ITER site in Cadarache, an assessment of fire hazard has been done in order to ensure compliance with French safety requirements. In this report, a summary of existing laws is presented and an example of the deterministic approach to be followed for the preliminary safety report (PSR) is given on the analysis of tritium building design

  1. Managing the risks of risk management on large fires

    Science.gov (United States)

    Donald G. MacGregor; Armando González-Cabán

    2013-01-01

    Large fires pose risks to a number of important values, including the ecology, property and the lives of incident responders. A relatively unstudied aspect of fire management is the risks to which incident managers are exposed due to organizational and sociopolitical factors that put them in a position of, for example, potential liability or degradation of their image...

  2. Fire hazards analysis for the uranium oxide (UO3) facility

    International Nuclear Information System (INIS)

    Wyatt, D.M.

    1994-01-01

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO 3 complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities

  3. 75 FR 40845 - Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires

    Science.gov (United States)

    2010-07-14

    ... NIOSH 141-A] Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at... publication entitled ``Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at... fires in unoccupied structures to using established risk management principles at all structure fires...

  4. Internal fire analysis screening methodology for the Salem Nuclear Generating Station

    International Nuclear Information System (INIS)

    Eide, S.; Bertucio, R.; Quilici, M.; Bearden, R.

    1989-01-01

    This paper reports on an internal fire analysis screening methodology that has been utilized for the Salem Nuclear Generating Station (SNGS) Probabilistic Risk Assessment (PRA). The methodology was first developed and applied in the Brunswick Steam Electric Plant (BSEP) PRA. The SNGS application includes several improvements and extensions to the original methodology. The SNGS approach differs significantly from traditional fire analysis methodologies by providing a much more detailed treatment of transient combustibles. This level of detail results in a model which is more usable for assisting in the management of fire risk at the plant

  5. POZHARNYYe RISKI I IKH VLIYANIYe NA RISK-ORIYENTIROVANNYY PODKHOD PRI ORGANIZATSII I OSUSHCHESTVLENII FEDERAL'NOGO GOSUDARSTVENNOGO POZHARNOGO NADZORA [Fire risks and their impact on the risk-oriented approach in the organization and implementation of federal state fire supervision

    Directory of Open Access Journals (Sweden)

    Fomin A.I.

    2017-09-01

    Full Text Available The essence of fire risks and risk-oriented approaches in the organization and implementation of supervisory measures to fulfill the requirements in the field of fire safety is described. In accordance with the regulatory legal acts of the Russian Federation, the criteria for the assignment of protection objects and the frequency of conducting scheduled inspections with respect to them by the bodies of the federal state fire supervision are given. The influence of various factors on the risk category is given. Measures aimed at reducing the risk category and, as a result, reducing administrative barriers to the activities of legal entities and individuals have been identified. The analysis of the parameters influencing the magnitude of fire risks, as well as the risk category of the protection object, is given. The foregoing is provided in the form of an accessible scheme for persons who do not have special knowledge in meeting the requirements of fire safety. The urgency of developing a methodology and a criterion for reducing the hazard category of fire safety surveillance facilities is determined, taking into account the fulfillment by legal entities and individuals of previously issued regulations. That means: methodology, the application of which is possible when conducting unscheduled inspections by federal fire safety authorities.

  6. Climate effect on forest fire static risk assessment

    Science.gov (United States)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    The availability of a long data series of fire perimeters combined with a detailed knowledge of topography and land cover allow to understand which are the main features involved in forest fire occurrences and their behaviour. In addition, climate indexes obtained from the analysis of time series with more than 20 years of complete records allow to understand the role of climate on fire regime, both in terms of direct effects on fire behaviour and the effect on vegetation cover. In particular, indices of extreme events have been considered like CDD (maximum number of consecutive dry days) and HWDI (heat wave duration index: maximum period > 5 consecutive days with Tmax >5°C above the 1961-1990 daily Tmax normal), together with the usual indices describing rainfall and temperature regimes. As a matter of fact, based on this information it is possible to develop statistical methods for the objective classification of forest fire static risk at regional scale. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is almost absent in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to consider almost all the species and the climate conditions that characterize the Mediterranean region. More than 10000 fire perimeters that burnt about 800 km2 were considered in the analysis

  7. Application of fire models for risk analysis in french nuclear power plants

    International Nuclear Information System (INIS)

    Brauns, P.

    1989-04-01

    Numerical simulations of compartment fires have been carried out in the French 900 MW and 1 300 MW nuclear power plants, to obtain quantitative data about this particular kind of risk: characteristic spreading times from one redundant electrical train to the other one, behaviour of important electrical components... The main stages of both studies were the following: selection of rooms, the location or function of which are essential for the plant safety in case of fire, on-site inspections to collect information about these rooms (amount of fuel, openings...), definition of fire scenarios, improvement of the fire model VESTA-PLUS, and, finally calculations using this computer code. The simulations have shown two major trends: i) the spreading times, without taking into account any external intervention, are always greater than half an hour, and ii) the specific design of the 1 300 MW power plants generally prevents one of the redundant train from being damaged due to a fire occurring in a room containing the other one. Examples of typical results obtained are given, showing the capability of application of the improved fire model to complex problems

  8. German data for risk based fire safety assessment

    International Nuclear Information System (INIS)

    Roewekamp, M.; Berg, H.P.

    1998-01-01

    Different types of data are necessary to perform risk based fire safety assessments and, in particular, to quantify the fire event tree considering the plant specific conditions. Data on fire barriers, fire detection and extinguishing, including also data on secondary effects of a fire, have to be used for quantifying the potential hazard and damage states. The existing German database on fires in nuclear power plants (NPPs) is very small. Therefore, in general generic data, mainly from US databases, are used for risk based safety assessments. Due to several differences in the plant design and conditions generic data can only be used as conservative assumptions. World-wide existing generic data on personnel failures in case of fire fighting have only to be adapted to the plant specific conditions inside the NPP to be investigated. In contrary, unavailabilities of fire barrier elements may differ strongly depending on different standards, testing requirements, etc. In addition, the operational behaviour of active fire protection equipment may vary depending on type and manufacturer. The necessity for more detailed and for additional plant specific data was the main reason for generating updated German data on the operational behaviour of active fire protection equipment/features in NPPs to support risk based fire safety analyses being recommended to be carried out as an additional tool to deterministic fire hazard analyses in the frame of safety reviews. The results of these investigations revealed a broader and more realistic database for technical reliability of active fire protection means, but improvements as well as collection of further data are still necessary. (author)

  9. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    Flye, R.E.

    2000-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  10. Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements

    Directory of Open Access Journals (Sweden)

    John Twigg

    2017-02-01

    Full Text Available Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix.

  11. Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements.

    Science.gov (United States)

    Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis

    2017-02-01

    Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix.

  12. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    Science.gov (United States)

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  14. Deriving forest fire ignition risk with biogeochemical process modelling☆

    Science.gov (United States)

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  15. Development of a risk informed fire protection program

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; McDevitt, B.; Sawyer, O.; Volk, M.A.; Drennan, J.; Sweely, C.

    2015-07-01

    Over the past decade, one of the largest challenges for the Nuclear Power Plant (NPP) Operator in the United States has been the implementation of risk-informed, performance-based (RI-PB) fire protection strategies into their fire protection program. Regardless of whether a utility decides to fully transition their licensing basis from deterministic to risk based, or if they simply complete a fire probabilistic risk assessment (FPRA) in order to augment their current program, it is clear that risk-informed, performance based fire protection strategies and the associated challenges are the growing trend in the United States and are here to stay. The experience of the nuclear industry in the United States with the implementation of RI-PB fire protection strategies can provide a great deal of insight for plants and utilities that follow, either by choice or necessity, a similar path. The similarities in the design of the United States and Spanish nuclear plants make these insights even more significant contributions to the strategy and planning for the Spanish fleet. The experience in United States will provide guidance to avoid similar missteps and better plan for the challenges of the transition process. As the Spanish fleet develops risk-informed and deterministic strategies to improve fire safety, an understanding of the challenges and lessons learned from the United States experience will save time and money. (Author)

  16. Fire analysis. Relevant aspects from Spanish nuclear power plants experience

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Pedro; Villar, Tomas [Empresarios Agrupados A.I.E., Madrid (Spain). Nuclear Safety Dept.

    2015-12-15

    Empresarios Agrupados A.I.E. leads the development and updating of fire analysis for the Spanish NPP's. Some of them decided to voluntarily adopt standard NFPA-805 as an alternative to the current fire protection rules. Fire Probabilistic Risk Assessment (PRA) methodologies have been continuously evolving during recent years. This paper will briefly present experience gained in relationship with some relevant aspects of fire risk analysis. Associated circuits need to be evaluated to determine if cable faults can prevent or cause the maloperation of redundant safety related systems. If a circuit is not properly protected by an isolation device, fire damage to a cable could propagate to other safe shutdown cables. In order to check that the coordination is adequate, existing electrical protections coordination studies have been analyzed and, for some plants, additional analyses have been performed for DC and AC for instrumentation an control (I and C) systems. Spurious actuations are also a basic part of the analysis of the consequence of a fire, which should consider any possible actuation that can prevent or affect the performance of a system or safety function. In this context, it was furthermore necessary to take into account the possibility of a combination of several spurious actuations that can result in a specific consequence, according to Appendix G of NEI 00-01 Rev. 2. These are the so-called Multiple Spurious Operations (MSOs). One key element in fire analysis is the availability of validated fire models used to estimate the spread of fire and the failure time of cable raceways. NFPA 805 states that fire models shall only be applied within the limitations of the given model. The applicability of the validation results is determined using normalized parameters traditionally used in fire modeling applications. Normalized parameters assessed in NUREG-1934 may be used to compare NPP fire scenarios with validation experiments. If some of the parameters do

  17. Modeling fire susceptibility to delineate wildland-urban interface for municipal-scale fire risk management.

    Science.gov (United States)

    Whitman, Ellen; Rapaport, Eric; Sherren, Kate

    2013-12-01

    The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to -1 SD from the mean FS value ([Formula: see text]), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.

  18. More stapler firings increase the risk of perioperative morbidity after laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Major, Piotr; Wysocki, Michał; Pędziwiatr, Michał; Pisarska, Magdalena; Małczak, Piotr; Wierdak, Mateusz; Dembiński, Marcin; Migaczewski, Marcin; Rubinkiewicz, Mateusz; Budzyński, Andrzej

    2018-03-01

    Staple-line bleeding and leakage are the most common serious complications of laparoscopic sleeve gastrectomy. The relationship between multiple stapler firings and higher risk of postoperative complications is well defined in colorectal surgery but has not been addressed in bariatric procedures so far. Identification of new factors such as "the numbers of stapler firings used during laparoscopic sleeve gastrectomy (LSG)" as a predictor for complications can lead to optimization of the patient care at bariatric centers. To determine the association between perioperative morbidity and the number of stapler firings during laparoscopic sleeve gastrectomy. This observational study was based on retrospective analysis of prospectively collected data in patients operated on for morbid obesity in a teaching hospital/tertiary referral center for general surgery. The patients who underwent LSG were analyzed in terms of the number of stapler firings used as a new potential risk predictor for postoperative complications after surgery, adjusting for other patient- and treatment-related factors. The study included 333 patients (209 women, 124 men, mean age: 40 ±11). During the first 30 days after surgery, complications were observed in 18 (5.41%) patients. Multivariate analysis showed that prolonging operative time increased morbidity (every minute, OR = 1.01; 95% CI: 1.00-1.02) and the complication rate increased with the number of stapler firings (every firing, OR = 1.91; 95% CI: 1.09-3.33; p = 0.023). Additional stapler firings above the usual number and a prolonged operation should alert a surgeon and the whole team about increased risk of postoperative complications.

  19. National Fire Risk Map for Continental USA: Creation and Validation

    International Nuclear Information System (INIS)

    Zhang, Q; Wollersheim, M; Griffiths, S; Maddox, I

    2014-01-01

    A nation-wide fire risk map for the continental USA has been created based on a hybrid fire risk model, incorporating a combination of static risk indicators which change very slowly over time, and dynamic risk indicators that may vary significantly from week-to-week. Static risk indicators include: terrain elevation, terrain slope, terrain aspect, and distance from roads and settlements. Each of the static risk indicators are derived from Intermap's high-accuracy NEXTMap ® USA database. The dynamic risk indicators are derived from satellite-based multi-spectral imagery and provide a snapshot of the fuel-moisture conditions during fire seasons. Each of these risk indicators are combined to produce a map provided at 5m posting and normalized to the range of 0 (very low risk) and 255 (very high risk). The map has been validated in two selected areas using historical fire information

  20. GEOPROCESSING APPLIED TO RISK ASSESSMENT OF FOREST FIRES IN THE MUNICIPALITY OF BODOQUENA, MATO GROSSO DO SUL

    Directory of Open Access Journals (Sweden)

    Vitor Matheus Bacani

    Full Text Available ABSTRACT Forest fires are a permanent threat in urban-forest interface areas and cause considerable environmental damage, especially in protected areas. An efficient way to assist decision-making to prevent an increase in forest fires is risk assessment using geographical information systems (GIS. The objective of this study was to evaluate the risk of forest fires in the municipality of Bodoquena, Mato Grosso do Sul, Brazil, using remote sensing data and spatial analysis techniques implemented in a GIS. The procedures of the methodology are based on spatial analysis techniques to prepare maps of the likelihood of fire based on calculations of the Euclidean distance, the Kernel statistical method and fuzzy transformation and to combine these maps via the increasing diffuse overlay method. The results showed a high risk of forest fires on the margins of the urban area, rural settlements and main roads that cross the municipality, as well as the surrounding areas. It is concluded that the municipality of Bodoquena has a high risk of forest fires in areas with high biodiversity, especially the areas surrounding the Serra da Bodoquena National Park and Mato Grosso do Sul Pantanal.

  1. Modeling of Electrical Cable Failure in a Dynamic Assessment of Fire Risk

    Science.gov (United States)

    Bucknor, Matthew D.

    Fires at a nuclear power plant are a safety concern because of their potential to defeat the redundant safety features that provide a high level of assurance of the ability to safely shutdown the plant. One of the added complexities of providing protection against fires is the need to determine the likelihood of electrical cable failure which can lead to the loss of the ability to control or spurious actuation of equipment that is required for safe shutdown. A number of plants are now transitioning from their deterministic fire protection programs to a risk-informed, performance based fire protection program according to the requirements of National Fire Protection Association (NFPA) 805. Within a risk-informed framework, credit can be taken for the analysis of fire progression within a fire zone that was not permissible within the deterministic framework of a 10 CFR 50.48 Appendix R safe shutdown analysis. To perform the analyses required for the transition, plants need to be able to demonstrate with some level of assurance that cables related to safe shutdown equipment will not be compromised during postulated fire scenarios. This research contains the development of new cable failure models that have the potential to more accurately predict electrical cable failure in common cable bundle configurations. Methods to determine the thermal properties of the new models from empirical data are presented along with comparisons between the new models and existing techniques used in the nuclear industry today. A Dynamic Event Tree (DET) methodology is also presented which allows for the proper treatment of uncertainties associated with fire brigade intervention and its effects on cable failure analysis. Finally a shielding analysis is performed to determine the effects on the temperature response of a cable bundle that is shielded from a fire source by an intervening object such as another cable tray. The results from the analyses demonstrate that models of similar

  2. Investment appraisal using quantitative risk analysis.

    Science.gov (United States)

    Johansson, Henrik

    2002-07-01

    Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.

  3. Risk Quantitative Determination of Fire and Explosion in a Process Unit By Dow’s Fire and Explosion Index

    Directory of Open Access Journals (Sweden)

    S. Varmazyar

    2008-04-01

    Full Text Available Background and aims   Fire and explosion hazards are the first and second of major hazards in process industries, respectively. This study has been done to determine fire and explosion risk severity,radius of exposure and estimating of most probable loss.   Methods   In this quantitative study process unit has been selected with affecting parameters on  fire and explosion risk. Then, it was analyzed by DOW's fire and explosion index (F&EI. Technical data were obtained from process documents and reports, fire and explosion guideline.After calculating of DOW's index, radius of exposure determined and finally most  probable loss was estimated.   Results   The results showed an F&EI value of 226 for this process unit.The F&EI was extremely  high and unacceptable.Risk severity was categorized in sever class.Radius of exposure and damage factor were calculated 57 meters and 83%,respectively. As well as most probable loss was  estimated about 6.7 million dollars.   Conclusion   F&EI is a proper technique for risk assessment and loss estimation of fire and  explosion in process industries.Also,It is an important index for detecting high risk and low risk   areas in an industry. At this technique, all of factors affecting on fire and explosion risk was  showed as index that is a base for judgement risk class. Finally, estimated losses could be used as  a base of fire and explosion insurance.

  4. Internal fire protection analysis for the United Kingdom EPR design

    Energy Technology Data Exchange (ETDEWEB)

    Laid, Abdallah [Nuclear New Build Generation Company Ltd. (NNB GenCo), Barnwood (United Kingdom). EDF Energy Plc.; Cesbron, Mickael [Service Etudes et Project Thermiques et Nucleaires (SEPTEN), Lyon (France). EDF-SA

    2015-12-15

    In the deterministic design basis analysis of the United Kingdom (UK) EPR based nuclear power plants all postulated initiating events are grouped into two different types, internal faults and internal/external hazards. ''Internal Fires'' is one of the internal hazards analysed at the design stage of the UK EPR. In effect, the main safety objective for fire protection is to ensure that all the required safety functions are performed in the event of an internal fire. To achieve this safety objective, provisions for protection against fire risks are taken to: (i) limit the spread of a fire, protect the safety functions of the facility; (ii) limit the propagation of smoke and dispersion of toxic, radioactive, inflammable, corrosive or explosive materials, and (iii) ensure the achievement of a safe shutdown state, personnel evacuation and all other necessary emergency actions. This paper presents the UK EPR approach on how the above provisions are applied. Such provisions involve implementing means of fire prevention, surveillance, firefighting and limiting fire consequences, appropriate to the risks inherent to the facility. Overall, the design of the UK EPR fire protection systems is based on three types of measures: prevention, containment and control.

  5. Comparison of the characteristics of fire and non-fire households in the 2004-2005 survey of fire department-attended and unattended fires.

    Science.gov (United States)

    Greene, Michael A

    2012-06-01

    Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 pfire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.

  6. Fire Risk in MTBF Evaluation for UPS System

    Directory of Open Access Journals (Sweden)

    Stefano Elia

    2016-01-01

    Full Text Available The reliability improvement of no-break redundant electrical systems is the first aim of the proposed strategy. The failure of some UPS (Uninterruptible Power Supply system may lead to the fire occurrence. The most used electrical configurations are presented and discussed in the paper. The innovation of the proposed method consists of taking into account the fire risk to improve the accuracy of wiring configuration and component’s failure rate. Thorough research on MTBF (Mean Time Between Failure data has been performed for each wiring component and UPS. The fire risk is taken into account introducing an equivalent fire block in the Reliability Block Diagram scheme; it has an MTBF value calculated form yearly statistics of UPS fire events. The reliability of the most used UPS electrical configurations is evaluated by means of the RBD method. Different electrical systems have been investigated and compared based on MTBF. The importance of fire compartmentation between two or more UPS’ connected in parallel is proved here.

  7. Evaluation Logic of Main Control Board Fire Risk

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Kim, Kilyoo; Lim, Ho Gon [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The main control board (MCB) is defined as the collection of control panels inside the main control room (MCR) of a nuclear power plant (NPP). As the MCB has the control and instrumentation circuits of redundant trains for almost all plant systems, small fires within the control panels may be detrimental to the safe shutdown capability. A big fire affecting many panels in the MCB can cause a forced MCR abandonment of the operators as well as function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel electrically and physically independent from the MCR. Because the MCB consist of many electrical panels, it may have internal barriers between them to prevent a fire from spreading from its origin to neighboring locations. However, most MCBs of domestic NPPs do not have internal barriers within them. If the MCB cabinets are not separated by a double wall with an air gap, the fire propagation of an MCB panel fire cannot be ruled out. Recently, Joglar et al. proposed a new evaluation logic for the MCB panel fires and mentioned that an MCB fire can be divided into propagation and non-propagating fires for abandonment and non-abandonment fire scenarios. However, they did not present the details on the fire modeling approaches and probability formulas for the fire scenarios. In this paper, a decision tree for evaluating the risk of an MCB fire is proposed to systematically determine the fire scenarios in terms of the fire modeling approaches. This paper proposed a decision tree for evaluating the risk of an MCB fire to systematically determine the fire scenarios in terms of fire modeling approaches.

  8. Modelling of spatial prediction of fire ignition risk in the Antalya-Manavgat district

    Directory of Open Access Journals (Sweden)

    Coşkun Okan Güney

    2016-07-01

    Full Text Available The aim of this study was to present the fire ignition risk for Manavgat-Antalya District to enable the planning of firefighting sources in a more qualified way. From sites within the study area, where forest fires broke out or not during the past five years, we obtained geographical coordinates, climate data, topographical data and variables like bedrock, stand types, settlement areas, roads and power lines and prepared them with geographical information systems. For all variables we performed Wilcoxon rank-sum test, interspecific correlation analysis and logistic regression analysis and obtained 4 different models. When ROC analysis was applied to these models, model 4 was determined as the most significant model and therefore used to prepare the fire ignition risk map for the Manavgat-Antalya District. According to this map, ignition risk within the study area was highest in and around settlement areas where roads and power lines concentrate and Turkish red pine is distributed, but it was lowest afar of settlement areas without roads and where species apart from Turkish red pine are distributed. According to the results some suggestions were made.

  9. Uncertainty and risk in wildland fire management: A review

    Science.gov (United States)

    Matthew P. Thompson; Dave E. Calkin

    2011-01-01

    Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to...

  10. LNG pool fire simulation for domino effect analysis

    International Nuclear Information System (INIS)

    Masum Jujuly, Muhammad; Rahman, Aziz; Ahmed, Salim; Khan, Faisal

    2015-01-01

    A three-dimensional computational fluid dynamics (CFD) simulation of liquefied natural gas (LNG) pool fire has been performed using ANSYS CFX-14. The CFD model solves the fundamental governing equations of fluid dynamics, namely, the continuity, momentum and energy equations. Several built-in sub-models are used to capture the characteristics of pool fire. The Reynolds-averaged Navier–Stokes (RANS) equation for turbulence and the eddy-dissipation model for non-premixed combustion are used. For thermal radiation, the Monte Carlo (MC) radiation model is used with the Magnussen soot model. The CFD results are compared with a set of experimental data for validation; the results are consistent with experimental data. CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. - Highlights: • Simulation of pool fire using computational fluid dynamics (CFD) model. • Integration of CFD based pool fire model with domino effect. • Application of the integrated CFD based domino effect analysis

  11. An overview of the fire risk scoping study objectives, approach, findings and follow-on efforts

    International Nuclear Information System (INIS)

    Nowlen, S.P.; Lambright, J.A.; Nicolette, V.F.; Bohn, M.P.

    1989-01-01

    The Fire Risk Scoping Study was sponsored by the US Nuclear Regulatory Commission and performed at Sandia National Laboratories. The study was initiated as a result of previous USNRC-sponsored fire research efforts that had identified certain fire risk issues which had not been addressed in previously completed commercial nuclear power plant fire risk analyses. The specific objectives of this study were (1) to review and requantify fire risk scenarios from four fire probabilistic risk assessments (PRAs) in light of updated data bases made available as a result of USNRC sponsored Fire Protection Research Program and updated computer fire modeling capabilities, (2) to identify potentially significant fire risk issues that have not been previously addressed in a fire risk context and to quantify the potential impact of those identified fire risk issues where possible, and (3) to review current fire regulations and plant implementation practices for relevance to the identified unaddressed fire risk issues. 8 refs., 2 tabs

  12. Quantitative Risk Modeling of Fire on the International Space Station

    Science.gov (United States)

    Castillo, Theresa; Haught, Megan

    2014-01-01

    The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.

  13. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach

    Science.gov (United States)

    Cassandra Johnson Gaither; Neelam C. Poudyal; Scott Goodrick; J. M. Bowker; Sparkle L Malone; Jianbang. Gan

    2011-01-01

    The southeastern U.S. is one of the more wildland fire prone areas of the country and also contains some of the poorest or most socially vulnerable rural communities. Our project addresses wildland fire risk in this part of the U.S and its intersection with social vulnerability. We examine spatial association between high wildland fire prone areas which also rank high...

  14. Application of FIVE methodology in probabilistic risk assessment (PRA) of fire events

    International Nuclear Information System (INIS)

    Lopez Garcia, F.J.; Suarez Alonso, J.; Fiolamengual, M.J.

    1993-01-01

    This paper reflects the experience acquired during the process of evaluation and updating of the fire analysis within the Cofrentes NPP PRA. It determines which points are the least precise, either because of their greater uncertainty or because of their excessive conservatism, as well as the subtasks which have involved a larger work load and could be simplified. These aspects are compared with the steps followed in methodology FIVE (Fire Vulnerability Evaluation Methodology) to assess whether application of this methodology would optimize the task, by making it more systematic and realistic and reducing uncertainties. On the one hand, the FIVE methodology does not have the scope sufficient to carry out a quantitative risk evaluation, but it can easily be complemented -without detriment to its systematic nature- by quantifying core damage in significant areas. On the other hand, certain issues such as definition of the fire growth software program which has to be used, are still not fully closed. Nevertheless, the conclusions derived from this assessment are satisfactory, since it is considered that this methodology would serve to unify the criteria and data of the analysis of fire-induced risks, providing a progressive screening method which would considerably simplify the task. (author)

  15. Fire Hazards Analysis for the 200 Area Interim Storage Area

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards

  16. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    Science.gov (United States)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  17. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  18. Developing an assessment of fire-setting to guide treatment in secure settings: the St Andrew's Fire and Arson Risk Instrument (SAFARI).

    Science.gov (United States)

    Long, Clive G; Banyard, Ellen; Fulton, Barbara; Hollin, Clive R

    2014-09-01

    Arson and fire-setting are highly prevalent among patients in secure psychiatric settings but there is an absence of valid and reliable assessment instruments and no evidence of a significant approach to intervention. To develop a semi-structured interview assessment specifically for fire-setting to augment structured assessments of risk and need. The extant literature was used to frame interview questions relating to the antecedents, behaviour and consequences necessary to formulate a functional analysis. Questions also covered readiness to change, fire-setting self-efficacy, the probability of future fire-setting, barriers to change, and understanding of fire-setting behaviour. The assessment concludes with indications for assessment and a treatment action plan. The inventory was piloted with a sample of women in secure care and was assessed for comprehensibility, reliability and validity. Staff rated the St Andrews Fire and Risk Instrument (SAFARI) as acceptable to patients and easy to administer. SAFARI was found to be comprehensible by over 95% of the general population, to have good acceptance, high internal reliability, substantial test-retest reliability and validity. SAFARI helps to provide a clear explanation of fire-setting in terms of the complex interplay of antecedents and consequences and facilitates the design of an individually tailored treatment programme in sympathy with a cognitive-behavioural approach. Further studies are needed to verify the reliability and validity of SAFARI with male populations and across settings.

  19. Root cause analysis for fire events at nuclear power plants

    International Nuclear Information System (INIS)

    1999-09-01

    Fire hazard has been identified as a major contributor to a plant' operational safety risk. The International nuclear power community (regulators, operators, designers) has been studying and developing tools for defending against this hazed. Considerable advances have been achieved during past two decades in design and regulatory requirements for fire safety, fire protection technology and related analytical techniques. The IAEA endeavours to provide assistance to Member States in improving fire safety in nuclear power plants. A task was launched by IAEA in 1993 with the purpose to develop guidelines and good practices, to promote advanced fire safety assessment techniques, to exchange state of the art information, and to provide engineering safety advisory services and training in the implementation of internationally accepted practices. This TECDOC addresses a systematic assessment of fire events using the root cause analysis methodology, which is recognized as an important element of fire safety assessment

  20. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    2000-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include 'engineering tools' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire probabilistic risk analyses (PRA) are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (orig.) [de

  1. Economic efficiency and risk character of fire management programs, Northern Rocky Mountains

    Science.gov (United States)

    Thomas J. Mills; Frederick W. Bratten

    1988-01-01

    Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...

  2. Risks due to fires at Big Rock Point

    International Nuclear Information System (INIS)

    Brinsfield, W.A.; Blanchard, D.P.

    1983-01-01

    The unique and older designs of the Big Rock Point nuclear plant is such that fires contribute significantly to the probability of core damage predicted in the probabilistic risk assessment performed for this plant. The methodology employed to determine this contribution reflects the unique, as constructed, plant design, while systematically and logically addressing the true effect of fires on the operation of the plant and the safety of the public. As a result of the methodology utilized in the PRA, recommendations are made which minimize the risk of core damage due to fires. Included in these recommendations is a proposal for equipment and controls to be included on the Big Rock Point alternate shutdown panel

  3. Assessing Wildland Fire Risk Transmission to Communities in Northern Spain

    Directory of Open Access Journals (Sweden)

    Fermín J. Alcasena

    2017-01-01

    Full Text Available We assessed potential economic losses and transmission to residential houses from wildland fires in a rural area of central Navarra (Spain. Expected losses were quantified at the individual structure level (n = 306 in 14 rural communities by combining fire model predictions of burn probability and fire intensity with susceptibility functions derived from expert judgement. Fire exposure was estimated by simulating 50,000 fire events that replicated extreme (97th percentile historical fire weather conditions. Spatial ignition probabilities were used in the simulations to account for non-random ignitions, and were estimated from a fire occurrence model generated with an artificial neural network. The results showed that ignition probability explained most of spatial variation in risk, with economic value of structures having only a minor effect. Average expected loss to residential houses from a single wildfire event in the study area was 7955€, and ranged from a low of 740 to the high of 28,725€. Major fire flow-paths were analyzed to understand fire transmission from surrounding municipalities and showed that incoming fires from the north exhibited strong pathways into the core of the study area, and fires spreading from the south had the highest likelihood of reaching target residential structures from the longest distances (>5 km. Community firesheds revealed the scale of risk to communities and extended well beyond administrative boundaries. The results provided a quantitative risk assessment that can be used by insurance companies and local landscape managers to prioritize and allocate investments to treat wildland fuels and identify clusters of high expected loss within communities. The methodological framework can be extended to other fire-prone southern European Union countries where communities are threatened by large wildland fires.

  4. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks

    International Nuclear Information System (INIS)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-01

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  5. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk

    Science.gov (United States)

    Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller

    2009-01-01

    Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...

  6. Technical methods for a risk-informed, performance-based fire protection program at nuclear power plants

    International Nuclear Information System (INIS)

    Dey, M.K.

    1998-01-01

    This paper presents a technical review and examination of technical methods that are available for developing a risk-informed, performance-based fire protection program at a nuclear plant. The technical methods include ''engineering tools'' for examining the fire dynamics of fire protection problems, reliability techniques for establishing an optimal fire protection surveillance program, fire computer codes for analyzing important fire protection safety parameters, and risk-informed approaches that can range from drawing qualitative insights from risk information to quantifying the risk impact of alternative fire protection approaches. Based on this technical review and examination, it is concluded that methods for modeling fires, and reliability and fire PRA analyses are currently available to support the initial implementation of simple risk-informed, performance-based approaches in fire protection programs. (author)

  7. Fire risk and adaptation strategies in Northern Eurasian forests

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the

  8. The French fire protection concept. Vulnerability analysis

    International Nuclear Information System (INIS)

    Kaercher, M.

    1998-01-01

    The French fire protection concept is based on a principle of three levels of defence in depth: fire prevention, fire containing and fire controlling. Fire prevention is based on arrangements which prevent the fire from starting or which make difficult for the fire to start. Fire containing is based on design measures so that the fire will have no impact on the safety of the installation. For fire controlling, equipment nad personnel are on duty in order to detect, to fight and to gain control over the fire as early as possible. The French fire protection concept gives priority to fire containing based on passive structural measures. All buildings containing safety equipment are divided into fire compartments (or fire areas) and fire cells (or fire zones). Basically, a compartment houses safety equipment belonging to one division (or train) so that the other division is always available to reach the plant safe shut down or to mitigate an accident. Because there is a large number of fire compartments and fire cells, deviations from the general principle can be observed. To this reason the RCC-I (Design and Construction Rules applicable for fire protection) requires to implement an assessment of the principle of division. This assessment is called vulnerability analysis. The vulnerability analysis is usually performed at the end of the project, before erection. It is also possible to perform a vulnerability analysis in an operating nuclear power plant in the scope of a fire safety upgrading programme. In the vulnerability analysis, the functional failure of all the equipment (except for those protected by a qualified fire barrier, designed or able to withstand the fire consequences) within the fire compartment or cell, where the fire breaks out, is postulated. The potential consequences for the plant safety are analysed

  9. Study on probability distribution of fire scenarios in risk assessment to emergency evacuation

    International Nuclear Information System (INIS)

    Chu Guanquan; Wang Jinhui

    2012-01-01

    Event tree analysis (ETA) is a frequently-used technique to analyze the probability of probable fire scenario. The event probability is usually characterized by definite value. It is not appropriate to use definite value as these estimates may be the result of poor quality statistics and limited knowledge. Without addressing uncertainties, ETA will give imprecise results. The credibility of risk assessment will be undermined. This paper presents an approach to address event probability uncertainties and analyze probability distribution of probable fire scenario. ETA is performed to construct probable fire scenarios. The activation time of every event is characterized as stochastic variable by considering uncertainties of fire growth rate and other input variables. To obtain probability distribution of probable fire scenario, Markov Chain is proposed to combine with ETA. To demonstrate the approach, a case study is presented.

  10. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    Science.gov (United States)

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  11. Fire Risk Assessment: A Systematic Review of the Methodology and Functional Areas

    Directory of Open Access Journals (Sweden)

    Parisa Moshashaei

    2017-01-01

    Full Text Available Fire is a physical and social phenomenon that affects both individuals and the environment. Fire risk assessment is a critical part of a fire prevention program. In this process, the fire risk associated with the possibility of occurrence and severity of damage resulting from the fire is estimated and calculated. In this paper, a classification scheme and a systematic literature review are presented in order to classify and interpret the current researches on fire risk assessment methodologies and applications. Based on the scheme, 93 scholarly papers from 13 journals are categorized into application areas and other categories. The application areas include the papers on the topics of environmental impact, production and industry, transportation, buildings, power industry, oil and gas industry, urban fires and other topics. Scholarly papers are also classified by (1 year of publication, (2 journal of publication, (3 year of publication and application areas and (4 authors’ nationality. The survey results show that the largest number of papers was published during the period 2010-2012 with 31 (33.33%, the most of the studies have been carried out on environmental impact (47.31%, the journal of Forest Ecology and Management had the highest percentage of articles with 26.88%. It is hoped that the paper can meet the needs of researchers for easy references of fire risk assessment methodologies and applications. Therefore, this work would be able to provide useful insights into the anatomy of the fire-risk assessment methods, and suggest academic researchers and experts a framework for future attempts and researches.

  12. Domains of Risk in the Developmental Continuity of Fire Setting

    OpenAIRE

    McCarty, Carolyn A.; McMahon, Robert J.

    2005-01-01

    Juvenile fire setting is a serious, dangerous, and costly behavior. The majority of research examining youth fire setting has been cross-sectional. We sought to examine early risk attributes that could differentiate fire setters from non–fire setters, in addition to examining their association with the developmental continuity of fire-setting behavior into late childhood. Using a sample of 361 youth drawn from 4 different U.S. communities, this study examined the association between a broad a...

  13. Proximity to vacant buildings is associated with increased fire risk in Baltimore, Maryland, homes.

    Science.gov (United States)

    Schachterle, Stephen E; Bishai, David; Shields, Wendy; Stepnitz, Rebecca; Gielen, Andrea C

    2012-04-01

    Fires and burns are a leading cause of unintentional injury death in the USA. Although it has been anecdotally reported that vacant dwellings are at a higher risk for fire, the association between vacancy and fire risk at the individual household level has not been empirically measured. In this cross-sectional study, geocoded residential vacant properties (VP) and fire events are analysed in Baltimore City at the census tract level and the individual household level. On average, a 10% increase in the proportion of vacancies in a census tract was associated with a 9.9% increase in fires (95% CI: 5% to 15%). Random-effects Poisson models, controlling for housing and neighbourhood conditions, found contagion effects. The risk of fire in an occupied dwelling increased by 8% (95% CI: 1% to 10%) for every vacant structure within 10 m, and the risk of fire decreased by half (95% CI: 45% to 62%) for every km between an occupied dwelling and vacant building. Close proximity to VP was associated with trash fires within dwellings (p=0.039) and structure fires (p=0.012). We believe that this is the first study to demonstrate increased risk posed by nearby VP at the household level, confirming earlier ecological analyses of the role of VP as strong correlates of home fires. Measurement of this risk can motivate property owners, policy makers and insurers to invest in risk reduction measures that include building maintenance and trash removal.

  14. Risk assessment study of fire following earthquake: a case study of petrochemical enterprises in China

    Science.gov (United States)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2013-04-01

    After an earthquake, the fire risk of petrochemistry enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprises earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  15. Analysis of fire and smoke threat to off-gas HEPA filters in a transuranium processing plant

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1988-01-01

    The author performed an analysis of fire risk to the high-efficiency particulate air (HEPA) filters that provide ventilation containment for a transuranium processing plant at the Oak Ridge National Laboratory. A fire-safety survey by an independent fire-protection consulting company had identified the HEPA filters in the facility's off-gas containment ventilation system as being at risk from fire effects. Independently studied were the ventilation networks and flow dynamics, and typical fuel loads were analyzed. It was found that virtually no condition for fire initiation exists and that, even if a fire started, its consequences would be minimal as a result of standard shut-down procedures. Moreover, the installed fire-protection system would limit any fire and thus would further reduce smoke or heat exposure to the ventilation components. 4 references, 4 figures, 5 tables

  16. Analysis of fire risk in French pressurized water reactors

    International Nuclear Information System (INIS)

    Savornin; Brauns; Deletre; Laborde; Malet; Haller; Vachon; Rebuffat

    1988-10-01

    In a nuclear power station, as in other industrial Installations, fire can be the cause of considerable damage involving loss of capital for the operator along with loss of availability for electrical energy production which must be made up for at a later date. But to make matters worse, fire could also compromise safety of the installation, in order words it could be the cause of an accident involving discharge of radioactivity into the environment, if special precautions were not taken. Clearly then, in view of installation availability and of the very high level of safety which must be guaranteed, fire protection becomes an issue of the utmost importance. Although, practically speaking, fire protection is a composite issue affecting availability as much as installation safety, it is the latter subject which we intend to discuss in our paper

  17. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  18. Integrated approach to fire safety at the Krsko nuclear power plant - fire protection action plan

    International Nuclear Information System (INIS)

    Lambright, J.A.; Cerjak, J.; Spiler, J.; Ioannidi, J.

    1998-01-01

    Nuclear Power Plant Krsko (NPP Krsko) is a Westinghouse design, single-unit, 1882 Megawatt thermal (MWt), two-loop, pressurized water nuclear power plant. The fire protection program at NPP Krsko has been reviewed and reports issued recommending changes and modifications to the program, plant systems and structures. Three reports were issued, the NPP Krsko Fire Hazard Analysis (Safe Shout down Separation Analysis Report), the ICISA Analysis of Core Damage Frequency Due to Fire at the NPP Krsko and IPEEE (Individual Plant External Event Examination) related to fire risk. The Fire Hazard Analysis Report utilizes a compliance - based deterministic approach to identification of fire area hazards. This report focuses on strict compliance from the perspective of US Nuclear Regulatory Commission (USNRC), standards, guidelines and acceptance criteria and does not consider variations to comply with the intent of the regulations. The probabilistic analysis methide used in the ICISA and IPEEE report utilizes a risk based nad intent based approach in determining critical at-risk fire areas. NPP Krsko has already completed the following suggestions/recommendations from the above and OSART reports in order to comply with Appendix R: Installation of smoke detectors in the Control Room; Installation of Emergency Lighting in some plant areas and of Remote Shout down panels; Extension of Sound Power Communication System; Installation of Fire Annunciator Panel at the On-site Fire Brigade Station; Installation of Smoke Detection System in the (a) Main Control Room Panels, (b) Essential Service Water Building. (c) Component Cooling Building pump area, chiller area and HVAC area, (d) Auxiliary Building Safety pump rooms, (e) Fuel Handling room, (f) Intermediate Building AFFW area and compressor room, and (g) Tadwaste building; inclusion of Auxiliary operators in the Fire Brigade; training of Fire Brigade Members in Plant Operation (9 week course); Development of Fire Door Inspection and

  19. Investigation of Lab Fire Prevention Management System of Combining Root Cause Analysis and Analytic Hierarchy Process with Event Tree Analysis

    Directory of Open Access Journals (Sweden)

    Cheng-Chan Shih

    2016-01-01

    Full Text Available This paper proposed a new approach, combining root cause analysis (RCA, analytic hierarchy process (AHP, and event tree analysis (ETA in a loop to systematically evaluate various laboratory safety prevention strategies. First, 139 fire accidents were reviewed to identify the root causes and draw out prevention strategies. Most fires were caused due to runaway reactions, operation error and equipment failure, and flammable material release. These mostly occurred in working places of no prompt fire protection. We also used AHP to evaluate the priority of these strategies and found that chemical fire prevention strategy is the most important control element, and strengthening maintenance and safety inspection intensity is the most important action. Also together with our surveys results, we proposed that equipment design is also critical for fire prevention. Therefore a technical improvement was propounded: installing fire detector, automatic sprinkler, and manual extinguisher in the lab hood as proactive fire protections. ETA was then used as a tool to evaluate laboratory fire risks. The results indicated that the total risk of a fire occurring decreases from 0.0351 to 0.0042 without/with equipment taking actions. Establishing such system can make Environment, Health and Safety (EH&S office not only analyze and prioritize fire prevention policies more practically, but also demonstrate how effective protective equipment improvement can achieve and the probabilities of the initiating event developing into a serious accident or controlled by the existing safety system.

  20. Probabilistic fire risk assessment for Koeberg Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Grobbelaar, J.F.; Foster, N.A.S.; Luesse, L.J.

    1995-01-01

    A probabilistic fire risk assessment was done for Koeberg Nuclear Power Station Unit 1. Areas where fires are likely to start were identified. Equipment important to safety, as well as their power and/or control cable routes were identified in each fire confinement sector. Fire confinement sectors where internal initiating events could be caused by fire were identified. Detection failure and suppression failure fault trees and event trees were constructed. The core damage frequency associated with each fire confinement sector was calculated, and important fire confinement sectors were identified. (author)

  1. Computer simulations of a generic truck cask in a regulatory fire using the Container Analysis Fire Environment (CAFE) code

    International Nuclear Information System (INIS)

    Ju, H.; Greiner, M.; Suo-Anttila, A.

    2002-01-01

    The Container Analysis Fire Environment (CAFE) computer code is designed to predict accurately convection and radiation heat transfer to a thermally massive object engulfed in a large pool fire. It is well suited for design and risk analyses of spent nuclear fuel transport systems. CAFE employs computational fluid dynamics and several fire and radiation models. These models must be benchmarked using experimental results. In this paper, a set of wind velocity conditions are determined which allow CAFE accurately to reproduce recent heat transfer measurements for a thick walled calorimeter in a ST-1 regulatory pool fire. CAFE is then used to predict the response of an intack (thin walled) generic legal weight truck cask. The maximum temperatures reached by internal components are within safe limits. A simple 800 deg. C, grey-radiation fire model gives maximum component temperatures that are somewhat below those predicted by CAFE. (author)

  2. Safety improvements made at the Loviisa nuclear power plant to reduce fire risks originating from the turbine generators

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Comprehensive upgrading measures have been completed for the Loviisa Nuclear Power Plant (modified VVER440/V213). These were carried out from the start of the design phase and during operation to ensure safe plant shutdown in the event of a large turbine generator oil fire. These modifications were made mainly on a deterministic basis according to specific risk studies and fire analyses. As part of the probabilistic safety assessment, a fire risk analysis was made that confirmed the importance of these upgrading measures. In fact, they should be considered as design basis modifications for all VVER440 plants. (author)

  3. FIRE SAFETY IN NUCLEAR POWER PLANTS: A RISK-INFORMED AND PERFORMANCE-BASED APPROACH

    International Nuclear Information System (INIS)

    AZARM, M.A.; TRAVIS, R.J.

    1999-01-01

    The consideration of risk in regulatory decision-making has long been a part of NRC's policy and practice. Initially, these considerations were qualitative and were based on risk insights. The early regulations relied on good practices, past insights, and accepted standards. As a result, most NRC regulations were prescriptive and were applied uniformly to all areas within the regulatory scope. Risk technology is changing regulations by prioritizing the areas within regulatory scope based on risk, thereby focusing on the risk-important areas. Performance technology, on the other hand, is changing the regulations by allowing requirements to be adjusted based on the specific performance expected and manifested, rather than a prior prescriptive requirement. Consistent with the objectives of risk-informed and performance-based regulatory requirements, BNL evaluated the feasibility of applying risk- and performance-technologies to modifying NRC's current regulations on fire protection for nuclear power plants. This feasibility study entailed several case studies (trial applications). This paper describes the results of two of them. Besides the case studies, the paper discusses an overall evaluation of methodologies for fire-risk analysis to support the risk-informed regulation. It identifies some current shortcomings and proposes some near-term solutions

  4. Estimating Fire Risks at Industrial Nuclear Facilities

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1999-01-01

    The Savannah River Site (SRS) has a wide variety of nuclear production facilities that include chemical processing facilities, machine shops, production reactors, and laboratories. Current safety documentation must be maintained for the nuclear facilities at SRS. Fire Risk Analyses (FRAs) are used to support the safety documentation basis. These FRAs present the frequency that specified radiological and chemical consequences will be exceeded. The consequence values are based on mechanistic models assuming specific fire protection features fail to function as designed

  5. WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland

    Science.gov (United States)

    Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej

    2016-04-01

    Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The

  6. Motorcoach Fire Safety Analysis.

    Science.gov (United States)

    2009-07-01

    This purpose of this study was to collect and analyze information from Government, industry, and media sources on the causes, frequency, and severity of motorcoach fires in the U.S., and to identify potential risk reduction measures. The Volpe Center...

  7. Mitigation of fire damage and escalation by fireproofing: A risk-based strategy

    International Nuclear Information System (INIS)

    Tugnoli, Alessandro; Cozzani, Valerio; Di Padova, Annamaria; Barbaresi, Tiziana; Tallone, Fabrizio

    2012-01-01

    Passive fire protection by the application of fireproofing materials is a crucial safety barrier in the prevention of the escalation of fire scenarios. Fireproofing improves the capacity of process items and of support structures to maintain their structural integrity during a fire, preventing or at least delaying the collapse of structural elements. Maintenance and cost issues require, however, to apply such protection only where an actual risk of severe fire scenarios is present. Available methodologies for fireproofing application in on-shore installation do not consider the effect of jet-fires. In the present study, a risk-based methodology aimed at the protection from both pool fire and jet fire escalation was developed. The procedure addresses both the prevention of domino effect and the mitigation of asset damage due to the primary fire scenario. The method is mainly oriented to early design application, allowing the identification of fireproofing zones in the initial phases of lay-out definition.

  8. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  9. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  10. Comparison of inhalation risks : oil- versus gas-fired urban power plants

    International Nuclear Information System (INIS)

    Levin, L.

    2000-01-01

    The risks due to inhalation of emitted trace substances from natural gas-fired power plants tend to be significantly lower than those from oil- or coal-fired plants. A 1994 study suggested that the median inhalation life-time cancer risk from gas-fired plants was about 4 in one billion. This is an acceptable risk range according to the United States Environmental Protection Agency (US EPA) classification of risks. In the same study, median oil plant risks were 8 in one billion. coal plant median risks ranged from 2 to 3 in one billion depending on the grade of coal being burned. The US EPA classifies risks from 1 to one million to one to 10,000 as being in an acceptable risk range. In some cases, gas plants were shown to exhibit higher inhalation risks than oil plants due to terrain, air circulation patterns, enhanced stack or building downwash or mechanical turbulence. Higher concentrations of very potent trace substances could also result in high inhalation risks. An examination of several power plants in an urban area showed that initial judgements about risk can often be incorrect

  11. Fire risk assessment for hydrogen at EDG/battery room

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Moon Hak; Hong, Sung Yull; Choi, Kwang Hee; Jung, Hyun Jong; Park, Kyung Hyum [Korea electric Power Research Institute, Taejon (Korea, Republic of); Song, Jin Bae [KHNP, Wolsong (Korea, Republic of)

    2004-07-01

    At the design stage of Nuclear Power Plant, the fire hazard analysis for the fire zone or compartment is implemented according to the fire protection requirement and the document is required for the licensing approval. On the basis of fire hazard analysis, the evaluation for the safe shutdown capability is preceded for each fire zone that contains safety-important systems and facilities. The primary philosophy for the fire safety is to secure fire defense-in-depth at Nuclear Power Plants that represents fire prevention, fire protection, and mitigation from fire damage. One of the concerning fire zones that need quantitative fire hazard analysis as well as qualitative fire evaluation at Nuclear Power Plants is the battery room at Emergency Diesel Generator (EDG) Room. For an example, Emergency Power Supply System called as EPS at Wolsong Nuclear Power Plant generates emergency power and supply the electric power to the safety-related systems and essential facilities during the loss of on-site and off-site AC power. For the start of emergency power generator, it needs DC power from the battery units inside the EPS room. For the emergency supply of DC power, the battery at EPS room should be recharged during the standby period to compensate the reduced chemical energy that was converted to the electric energy or depleted through the natural process. During the recharge process, especially at the time of charging current becoming greater than the nominal floating current or at the time of over-charging period, the hydrogen and the oxygen are generated from the positive plate and cathodic part respectively and escaped through the vent holes or crevices. In this context, the fire hazard assessment should be done for the EPS/battery room with quantitative approach and the fire safety evaluation for the explosion of hydrogen gas must be done under the specific fire protection program at Nuclear Power Plants.

  12. Fire risk assessment for hydrogen at EDG/battery room

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Hong, Sung Yull; Choi, Kwang Hee; Jung, Hyun Jong; Park, Kyung Hyum; Song, Jin Bae

    2004-01-01

    At the design stage of Nuclear Power Plant, the fire hazard analysis for the fire zone or compartment is implemented according to the fire protection requirement and the document is required for the licensing approval. On the basis of fire hazard analysis, the evaluation for the safe shutdown capability is preceded for each fire zone that contains safety-important systems and facilities. The primary philosophy for the fire safety is to secure fire defense-in-depth at Nuclear Power Plants that represents fire prevention, fire protection, and mitigation from fire damage. One of the concerning fire zones that need quantitative fire hazard analysis as well as qualitative fire evaluation at Nuclear Power Plants is the battery room at Emergency Diesel Generator (EDG) Room. For an example, Emergency Power Supply System called as EPS at Wolsong Nuclear Power Plant generates emergency power and supply the electric power to the safety-related systems and essential facilities during the loss of on-site and off-site AC power. For the start of emergency power generator, it needs DC power from the battery units inside the EPS room. For the emergency supply of DC power, the battery at EPS room should be recharged during the standby period to compensate the reduced chemical energy that was converted to the electric energy or depleted through the natural process. During the recharge process, especially at the time of charging current becoming greater than the nominal floating current or at the time of over-charging period, the hydrogen and the oxygen are generated from the positive plate and cathodic part respectively and escaped through the vent holes or crevices. In this context, the fire hazard assessment should be done for the EPS/battery room with quantitative approach and the fire safety evaluation for the explosion of hydrogen gas must be done under the specific fire protection program at Nuclear Power Plants

  13. Presentation of a Software Method for Use of Risk Assessment in Building Fire Safety Measure Optimization

    Directory of Open Access Journals (Sweden)

    A. R. Koohpaei

    2012-05-01

    Full Text Available Background and aims: The property loss and physical injuries due to fire events in buildings demonstrate the necessity of implementation of efficient and performance based fire safety measures. Effective and high efficiency protection is possible when design and selection of protection measures are based on risk assessment. This study aims at presenting a software method to make possible selection and design of building fire safety measures based upon quantitative risk assessment and building characteristics. Methods: based on “Fire Risk Assessment Method for Engineer (FRAME” a program in MATLB software was written. The first section of this program, according to the FRAME method and based on the specification of a building, calculates the potential risk and acceptable risk level. In the second section, according to potential risk, acceptable risk level and the fire risk level that user want, program calculate concession of protective factor for that building.Results: The prepared software make it possible to assign the fire safety measure based on quantitative risk level and all building specifications. All calculations were performed with 0.001 of precision and the accuracy of this software was assessed with handmade calculations. During the use of the software if an error occurs in calculations, it can be distinguished in the output. Conclusion: Application of quantitative risk assessment is a suitable tool for increasing of efficiency in designing and execution of fire protection measure in building. With using this software the selected fire safety measure would be more efficient and suitable since the selection of fire safety measures performed on risk assessment and particular specification of a building. Moreover fire risk in the building can be managed easily and carefully.

  14. A fire risk assessment model for residential high-rises with a single stairwell

    DEFF Research Database (Denmark)

    Hansen, N. D.; Steffensen, F.B.; Valkvist, M.B.

    2018-01-01

    As few or none prescriptive guidelines for fire risk assessment of residential high-rise buildings exist, it has been unclear which fire safety design features constitute an acceptable (adequate) safety level. In order to fill this gap a simplified risk-based decision-support tool, the Fire Risk...... Model (FRM), was developed. The FRM evaluates both the risk level to the occupants and the property risk level as a function of the building characteristics, height and fire safety features for single stairwell residential high-rise buildings. The acceptability of a high-rise design is then defined......, and the associated performance of the FRM evaluated. It was found that compartmentation and the door configurations in the egress path play an important role, along with sprinklers, in order for the design to successfully keep the stairwell free from smoke. Specifically, modern curtain wall facades were found...

  15. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  16. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  17. Fire and lightning: what are the risks and how to be protected?

    International Nuclear Information System (INIS)

    Rigal, F.

    2011-01-01

    This article reviews the risks of fire and lightning on photovoltaic panels installed on roofs. It appears that the risk of lighting must be taken into account since the direct impact of lightning on photovoltaic panels can be disastrous. The installation of lightning rods or lightning protector is recommended. Concerning fire risks, technical failures or the presence of electric arcs can put fire on solar panels but their occurrence is very low (only about 20 cases reported in Europe for the last 10 years). Tests have shown that standard photovoltaic panels play a low part in the progressing of a fire. There is an electrocution hazard for firemen intervening on a roof bearing solar panels. A device cutting the continuous current generating by the panels is being studied. (A.C.)

  18. Utilization of the safety functional analysis techniques to optimize the separation requirements in case of fire

    International Nuclear Information System (INIS)

    Alvarez, L.M.

    1983-01-01

    The present philosophy for the fire protection of the safe shutdown capability in nuclear power plants is based on the separation of the safety-related systems in different fire areas in such a way that the redundant systems are not subject to damage from a single fire risk. The purpose ofthis paper is to show the experience gained in the application of a symmetric method of analysis to minimize the number of fire barriers being compatible with the regulatory requirements and with capability of achieving and maintaining the safe plant shutdown in the event of a fire. As a conclusion of the analysis, the separation criteria for the divisions involved in the safe plant shutdown are obtained

  19. Risk assessment study of fire following an earthquake: a case study of petrochemical enterprises in China

    Science.gov (United States)

    Li, J.; Wang, Y.; Chen, H.; Lin, L.

    2014-04-01

    After an earthquake, the fire risk of petrochemical enterprises is higher than that of other enterprises as it involves production processes with inflammable and explosive characteristics. Using Chinese petrochemical enterprises as the research object, this paper uses a literature review and case summaries to study, amongst others, the classification of petrochemical enterprises, the proportion of daily fires, and fire loss ratio. This paper builds a fire following an earthquake risk assessment model of petrochemical enterprises based on a previous earthquake fire hazard model, and the earthquake loss prediction assessment method, calculates the expected loss of the fire following an earthquake in various counties and draws a risk map. Moreover, this research identifies high-risk areas, concentrating on the Beijing-Tianjin-Tangshan region, and Shandong, Jiangsu, and Zhejiang provinces. Differences in enterprise type produce different levels and distribution of petrochemical enterprise earthquake fire risk. Furthermore, areas at high risk of post-earthquake fires and with low levels of seismic fortification require extra attention to ensure appropriate mechanisms are in place.

  20. Combining ungrouped and grouped wildfire data to estimate fire risk

    KAUST Repository

    Hernandez-Magallanes, I.

    2013-10-11

    © 2013 John Wiley & Sons, Ltd. Frequently, models are required to combine information obtained from different data sources and on different scales. In this work, we are interested in estimating the risk of wildfire ignition in the USA for a particular time and location by merging two levels of data, namely, individual points and aggregate count of points into areas. The data for federal lands consist of the point location and time of each fire. Nonfederal fires are aggregated by county for a particular year. The probability model is based on the wildfire point process. Assuming a smooth intensity function, a locally weighted likelihood fit is used, which incorporates the group effect. A logit model is used under the assumption of the existence of a latent process, and fuel conditions are included as a covariate. The model assessment is based on a residual analysis, while the False Discovery Rate detects spatial patterns. A benefit of the proposed model is that there is no need of arbitrary aggregation of individual fires into counts. A map of predicted probability of ignition for the Midwest US in 1990 is included. The predicted ignition probabilities and the estimated total number of expected fires are required for the allocation of resources.

  1. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  2. Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?

    Science.gov (United States)

    Syphard, Alexandra D.; Butsic, Van; Bar-Massada, Avi; Keeley, Jon E.; Tracey, Jeff A.; Fisher, Robert N.

    2016-01-01

    Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely

  3. FIRE SAFETY IN NUCLEAR POWER PLANTS: A RISK-INFORMED AND PERFORMANCE-BASED APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    AZARM,M.A.; TRAVIS,R.J.

    1999-11-14

    The consideration of risk in regulatory decision-making has long been a part of NRC's policy and practice. Initially, these considerations were qualitative and were based on risk insights. The early regulations relied on good practices, past insights, and accepted standards. As a result, most NRC regulations were prescriptive and were applied uniformly to all areas within the regulatory scope. Risk technology is changing regulations by prioritizing the areas within regulatory scope based on risk, thereby focusing on the risk-important areas. Performance technology, on the other hand, is changing the regulations by allowing requirements to be adjusted based on the specific performance expected and manifested, rather than a prior prescriptive requirement. Consistent with the objectives of risk-informed and performance-based regulatory requirements, BNL evaluated the feasibility of applying risk- and performance-technologies to modifying NRC's current regulations on fire protection for nuclear power plants. This feasibility study entailed several case studies (trial applications). This paper describes the results of two of them. Besides the case studies, the paper discusses an overall evaluation of methodologies for fire-risk analysis to support the risk-informed regulation. It identifies some current shortcomings and proposes some near-term solutions.

  4. Evaluation of fire probabilistic safety assessment for a PWR plant

    International Nuclear Information System (INIS)

    Wu, C.H.; Lin, T.J.; Kao, T.M.

    2001-01-01

    The internal fire analysis of the level 1 power operation probability safety assessment (PSA) for Maanshan (PWR) Nuclear Power Plant (MNPP) was updated. The fire analysis adopted a scenario-based PSA approach to systematically evaluate fire and smoke hazards and their associated risk impact to MNPP. The result shows that the core damage frequency (CDF) due to fire is about six times lower than the previous one analyzed by the Atomic Energy Council (AEC), Republic of China in 1987. The plant model was modified to reflect the impact of human events and recovery actions during fire. Many tabulated EXCEL spread-sheets were used for evaluation of the fire risk. The fire-induced CDF for MNPP is found to be 2.1 E-6 per year in this study. The relative results of the fire analysis will provide the bases for further risk-informed fire protection evaluation in the near future. (author)

  5. Risk of hospitalization for fire-related burns during extreme cold weather.

    Science.gov (United States)

    Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie

    2017-10-01

    Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Forest landowner decisions and the value of information under fire risk.

    Science.gov (United States)

    Gregory S. Amacher; Arun S. Malik; Robert G. Haight

    2005-01-01

    We estimate the value of three types of information about fire risk to a nonindustrial forest landowner: the relationship between fire arrival rates and stand age, the magnitude of fire arrival rates, and the efficacy of fuel reduction treatment. Our model incorporates planting density and the level and timing of fuel reduction treatment as landowner decisions. These...

  7. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    Science.gov (United States)

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-04

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.

  8. Assessment of the fire hazard in nuclear facilities

    International Nuclear Information System (INIS)

    Liemersdorf, H.

    1986-01-01

    The fire protection for conventional buildings and in the industrial area is essentially an empirical discipline. But, for nuclear facilities, the objectives of fire protection are higher than those used in the conventional field. Consequently, it is necessary to develop methods to strengthen or to supplement the empirical evaluation methods on a scientific basis. This paper describes the method for fire hazard analysis developed for this purpose and presents some important results of its application to nuclear power plants. The analysis has the objective, on the one hand, of quantifying the risk contribution of a fire to the overall risk of a nuclear power plant and, on the other, to gain a balanced concept of individual fire protection measures. The results show that the fire risk contribution is relatively small in comparison with the contribution of other events and does not dominate the overall risk of the plant. This justifies the fire protection concepts of the facilities which have been examined. Additionally, it can be shown that further optimization is possible. The analysis method, which has been developed to evaluate the fire hazards of nuclear power plants is also expected to be applied to other nuclear facilities in future. In principal, though, the method may also be applied to the conventional field. (orig.) [de

  9. Fire hazards analysis of the Radioactive Waste Management Complex Air Support Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.L.; Satterwhite, D.G.

    1989-09-01

    This report describes the methods, analyses, results, and conclusions of a fire hazards risk analysis performed for the RWMC Air Support Buildings. An evaluation of the impact for adding a sprinkler system is also presented. Event and fault trees were used to model and analyze the waste storage process. Tables are presented indicating the fire initiators providing the highest potential for release of radioactive materials into the environment. Engineering insights drawn form the data are also provided.

  10. Fire hazards analysis of the Radioactive Waste Management Complex Air Support Buildings

    International Nuclear Information System (INIS)

    Davis, M.L.; Satterwhite, D.G.

    1989-09-01

    This report describes the methods, analyses, results, and conclusions of a fire hazards risk analysis performed for the RWMC Air Support Buildings. An evaluation of the impact for adding a sprinkler system is also presented. Event and fault trees were used to model and analyze the waste storage process. Tables are presented indicating the fire initiators providing the highest potential for release of radioactive materials into the environment. Engineering insights drawn form the data are also provided

  11. Study of methodology for low power/shutdown fire PSA

    International Nuclear Information System (INIS)

    Yan Zhen; Li Zhaohua; Li Lin; Song Lei

    2014-01-01

    As a risk assessment technology based on probability, the fire PSA is accepted abroad by nuclear industry in its application in the risk assessment for nuclear power plants. Based on the industry experience, the fire-induced impact on the plant safety during low power and shutdown operation cannot be neglected, therefore fire PSA can be used to assess the corresponding fire risk. However, there is no corresponding domestic guidance/standard as well as accepted analysis methodology up to date. Through investigating the latest evolvement on fire PSA during low power and shutdown operation, and integrating its characteristic with the corresponding engineering experience, an engineering methodology to evaluate the fire risk during low power and shutdown operation for nuclear power plant is established in this paper. In addition, an analysis demonstration as an example is given. (authors)

  12. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  13. Nuclear power plant fire protection: philosophy and analysis

    International Nuclear Information System (INIS)

    Berry, D.L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method

  14. Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?

    Directory of Open Access Journals (Sweden)

    Alexandra D. Syphard

    2016-09-01

    Full Text Available Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region

  15. Applying information network analysis to fire-prone landscapes: implications for community resilience

    Directory of Open Access Journals (Sweden)

    Derric B. Jacobs

    2017-03-01

    Full Text Available Resilient communities promote trust, have well-developed networks, and can adapt to change. For rural communities in fire-prone landscapes, current resilience strategies may prove insufficient in light of increasing wildfire risks due to climate change. It is argued that, given the complexity of climate change, adaptations are best addressed at local levels where specific social, cultural, political, and economic conditions are matched with local risks and opportunities. Despite the importance of social networks as key attributes of community resilience, research using social network analysis on coupled human and natural systems is scarce. Furthermore, the extent to which local communities in fire-prone areas understand climate change risks, accept the likelihood of potential changes, and have the capacity to develop collaborative mitigation strategies is underexamined, yet these factors are imperative to community resiliency. We apply a social network framework to examine information networks that affect perceptions of wildfire and climate change in Central Oregon. Data were collected using a mailed questionnaire. Analysis focused on the residents' information networks that are used to gain awareness of governmental activities and measures of community social capital. A two-mode network analysis was used to uncover information exchanges. Results suggest that the general public develops perceptions about climate change based on complex social and cultural systems rather than as patrons of scientific inquiry and understanding. It appears that perceptions about climate change itself may not be the limiting factor in these communities' adaptive capacity, but rather how they perceive local risks. We provide a novel methodological approach in understanding rural community adaptation and resilience in fire-prone landscapes and offer a framework for future studies.

  16. Sensitivity Analysis of a Simplified Fire Dynamic Model

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2015-01-01

    This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity analysis can be used when individual parameters affecting fire safety are assessed...

  17. Fire safety engineering

    International Nuclear Information System (INIS)

    Smith, D.N.

    1989-01-01

    The periodic occurrence of large-scale, potentially disastrous industrial accidents involving fire in hazardous environments such as oilwell blowouts, petrochemical explosions and nuclear installations highlights the need for an integrated approach to fire safety engineering. Risk reduction 'by design' and rapid response are of equal importance in the saving of life and property in such situations. This volume of papers covers the subject thoroughly, touching on such topics as hazard analysis, safety design and testing, fire detection and control, and includes studies of fire hazard in the context of environment protection. (author)

  18. Risk analysis procedure for post-wildfire natural hazards in British Columbia

    Science.gov (United States)

    Jordan, Peter

    2010-05-01

    Following a severe wildfire season in 2003, and several subsequent damaging debris flow and flood events, the British Columbia Forest Service developed a procedure for analysing risks to public safety and infrastructure from such events. At the same time, the Forest Service undertook a research program to determine the extent of post-wildfire hazards, and examine the hydrologic and geomorphic processes contributing to the hazards. The risk analysis procedure follows the Canadian Standards Association decision-making framework for risk management (which in turn is based on international standards). This has several steps: identification of risk, risk analysis and estimation, evaluation of risk tolerability, developing control or mitigation strategies, and acting on these strategies. The Forest Service procedure deals only with the first two steps. The results are passed on to authorities such as the Provincial Emergency Program and local government, who are responsible for evaluating risks, warning residents, and applying mitigation strategies if appropriate. The objective of the procedure is to identify and analyse risks to public safety and infrastructure. The procedure is loosely based on the BAER (burned area emergency response) program in the USA, with some important differences. Our procedure focuses on identifying risks and warning affected parties, not on mitigation activities such as broadcast erosion control measures. Partly this is due to limited staff and financial resources. Also, our procedure is not multi-agency, but is limited to wildfires on provincial forest land; in British Columbia about 95% of forest land is in the publicly-owned provincial forest. Each fire season, wildfires are screened by size and proximity to values at risk such as populated areas. For selected fires, when the fire is largely contained, the procedure begins with an aerial reconnaissance of the fire, and photography with a hand-held camera, which can be used to make a

  19. Radiological risk associated with a fire scenario in a radioactive waste deposit

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, E.N.; Lima, Z.R. de, E-mail: erica.ndomingos@gmail.com, E-mail: zelmolima@yahoo.com.br [Instituto de Engenharia Nuclear (PPGIEN/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, L.A., E-mail: aguiar.lais@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro-RJ (Brazil)

    2017-07-01

    A fire at the disposal of radioactive waste can result in significant damage, as well as serious risks to the environment and the health of the general public. The norms of CNEN (Comissão Nacional de Energia Nuclear), CNEN 2.03; CNEN 2.04 and CNEN 8.02 include fire protection regulations and have criteria and requirements that aim to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive and/or toxic mate-rial present in the installations. For decision making due to a fire scenario containing radioactive material, it is fundamental to have information that can allow the estimate of the dose to which the population will be submitted. This work proposes to identify the radiological risk of cancer in the respiratory system using the BEIR V model, associated with a fire scenario containing radioactive material generated in the Hotspot code. (author)

  20. Quantitative risk assessment of continuous liquid spill fires based on spread and burning behaviours

    DEFF Research Database (Denmark)

    Zhao, Jinlong; Huang, Hong; Li, Yuntao

    2017-01-01

    Spill fires usually occur during the storage and transportation of hazardous materials, posing a threat to the people and environment in their immediate proximity. In this paper, a classical Quantitative Risk Assessment (QRA) method is used to assess the risk of spill fires. In this method......, the maximum spread area and the steady burning area are introduced as parameters to clearly assess the range of influence of the spill fire. In the calculations, a modified spread model that takes into consideration the burning rate variation is established to calculate the maximum spread area. Furthermore......, large-scale experiments of spill fires on water and a glass sheet were conducted to verify the accuracy and application of the model. The results show that the procedure we developed can be used to quantitatively calculate the risk associated with a continuous spill fire....

  1. Forest fire risk assessment-an integrated approach based on multicriteria evaluation.

    Science.gov (United States)

    Goleiji, Elham; Hosseini, Seyed Mohsen; Khorasani, Nematollah; Monavari, Seyed Masoud

    2017-11-06

    The present study deals with application of the weighted linear combination method for zoning of forest fire risk in Dohezar and Sehezar region of Mazandaran province in northern Iran. In this study, the effective criteria for fires were identified by the Delphi method, and these included ecological and socioeconomic parameters. In this regard, the first step comprised of digital layers; the required data were provided from databases, related centers, and field data collected in the region. Then, the map of criteria was digitized in a geographic information system, and all criteria and indexes were normalized by fuzzy logic. After that, the geographic information system (GIS 10.3) was integrated with the Weighted Linear Combination and the Analytical Network Process, to produce zonation of the forest fire risk map in the Dohezar and Sehezar region. In order to analyze accuracy of the evaluation, the results obtained from the study were compared to records of former fire incidents in the region. This was done using the Kappa coefficient test and a receiver operating characteristic curve. The model showing estimations for forest fire risk explained that the prepared map had accuracy of 90% determined by the Kappa coefficient test and the value of 0.924 by receiver operating characteristic. These results showed that the prepared map had high accuracy and efficacy.

  2. Assessing fire risk in the wildland-urban interface.

    Science.gov (United States)

    Robert G. Haight; David T. Cleland; Roger B. Hammer; Volker B. Radeloff; T. Scott Rupp

    2004-01-01

    Identifying areas of the wildland-urban interface (WUI) that are prone to severe wildfire is an important step in prioritizing fire prevention and preparedness projects. Our objective is to determine at a regional scale the relative risk of severe wildfire in WUI areas and the numbers of people and houses in high-risk areas. For a study area in northern lower Michigan...

  3. Evaluation of Human Performance Issues for Fire Risk

    International Nuclear Information System (INIS)

    Bley, Dennis C.; Cooper, Susan E.; Forester, John A.; Kolaczkowski, Alan M.; Ramey-Smith, Ann; Thompson, Catherine M.; Whitehead, Donnie W.; Wreathall, John

    1999-01-01

    This paper summarizes the current status of the treatment of human reliability in fire risk analyses for nuclear power plants and identifies areas that need to be addressed. A new approach is suggested to improve the modeling

  4. Analysis of Fire Data in Oman

    Directory of Open Access Journals (Sweden)

    K.S. Al-Jabri

    2003-06-01

    Full Text Available The aim of this study is to illustrate the problem of fire accidents in the Sultanate of Oman and their causes in order to find out how the existing data could be used as a base to improve fire resistance, to detect the weak points (vulnerability to fire in existing structures, and to minimize fire occurrences in places where it is high. This will also provide useful recommendations with regard to fire safety including causes, people’s awareness and education, etc.  Fire data in Oman were collected from two sources: The Directorate General of Civil Defence (Public Relations Department and Sultan Qaboos University library. The collected data represent the number of fires in Oman during the last decade.  It also includes fire distribution by type and averages.  The analysis shows that there is a linear increase in the number of fire accidents in the last decade with time.  Many factors are included as potential sources, which are explained in the paper, and suggestions are made for possible control.

  5. The state of the residential fire fatality problem in Sweden: Epidemiology, risk factors, and event typologies.

    Science.gov (United States)

    Jonsson, Anders; Bonander, Carl; Nilson, Finn; Huss, Fredrik

    2017-09-01

    Residential fires represent the largest category of fatal fires in Sweden. The purpose of this study was to describe the epidemiology of fatal residential fires in Sweden and to identify clusters of events. Data was collected from a database that combines information on fatal fires with data from forensic examinations and the Swedish Cause of Death-register. Mortality rates were calculated for different strata using population statistics and rescue service turnout reports. Cluster analysis was performed using multiple correspondence analysis with agglomerative hierarchical clustering. Male sex, old age, smoking, and alcohol were identified as risk factors, and the most common primary injury diagnosis was exposure to toxic gases. Compared to non-fatal fires, fatal residential fires more often originated in the bedroom, were more often caused by smoking, and were more likely to occur at night. Six clusters were identified. The first two clusters were both smoking-related, but were separated into (1) fatalities that often involved elderly people, usually female, whose clothes were ignited (17% of the sample), (2) middle-aged (45-64years old), (often) intoxicated men, where the fire usually originated in furniture (30%). Other clusters that were identified in the analysis were related to (3) fires caused by technical fault, started in electrical installations in single houses (13%), (4) cooking appliances left on (8%), (5) events with unknown cause, room and object of origin (25%), and (6) deliberately set fires (7%). Fatal residential fires were unevenly distributed in the Swedish population. To further reduce the incidence of fire mortality, specialized prevention efforts that focus on the different needs of each cluster are required. Cooperation between various societal functions, e.g. rescue services, elderly care, psychiatric clinics and other social services, with an application of both human and technological interventions, should reduce residential fire

  6. Operating room fires in otolaryngology: risk factors and prevention.

    Science.gov (United States)

    Smith, Lee P; Roy, Soham

    2011-01-01

    The aim of the study was to characterize the causes of operating room (OR) fires in otolaryngology. A questionnaire was designed to elicit the characteristics of OR fires experienced by otolaryngologists. The survey was advertised to 8523 members of the American Academy of Otolaryngology-Head and Neck Surgery. Three hundred forty-nine questionnaires were completed. Eighty-eight surgeons (25.2%) witnessed at least one OR fire in their career, 10 experienced 2 fires each, and 2 reported 5 fires each. Of 106 reported fires, details were available for 100. The most common ignition sources were an electrosurgical unit (59%), a laser (32%), and a light cord (7%). Twenty-seven percent of fires occurred during endoscopic airway surgery, 24% during oropharyngeal surgery, 23% during cutaneous or transcutaneous surgery of the head and neck, and 18% during tracheostomy; 7% were related to a light cord, and 1% was related to an anesthesia machine. Eighty-one percent of fires occurred while supplemental oxygen was in use. Common fuels included an endotracheal tube (31%), OR drapes/towels (18%), and flash fire (where no substrate burned) (11%). Less common fuels included alcohol-based preparation solution, gauze sponges, patient's hair or skin, electrosurgical unit with retrofitted insulation over the tip, tracheostomy tube, tonsil sponge, suction tubing, a cottonoid pledget, and a red rubber catheter. OR fire may occur in a wide variety of clinical settings; endoscopic airway surgery, oropharyngeal surgery, cutaneous surgery, and tracheostomy present the highest risk for otolaryngologists. Electrosurgical devices and lasers are the most likely to produce ignition. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Evaluating the impact of climate on forest vulnerability to fires

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2015-01-01

    Full Text Available The assessment of the threat of forest fires usually includes identification of factors and quantification of risk levels. This work presents an approach to modeling the risk of forest fires caused by climate impacts. Climate Impact Assessment is based on the significance of air temperature, rainfall and relative air humidity. The analysis is based on the meteorological data obtained from 26 meteorological stations in Serbia for the period from 1981 to 2010. The analysis is used to predict the areas where the expected rate of fire is high. The method is simple; it describes the key variables for the risk under climate impacts and the spatial pattern of risk. It is suitable for operational use by authorized services. The risk of forest fire is classified as negligible, small, medium and large. The database and analysis results were used to build the matrix of risk assessment of forest fires in Serbia. A great part of the territory of Serbia is relatively highly sensitive to forest fires. The lowest consequences of climate impacts are visible in the areas of Kopaonik and Zlatibor. In Serbia, there is no place where there is a negligible risk of fire. Further research, especially in terms of the relationship between climate change and the adaptive capacity of existing forest ecosystems, species and existing genotypes, is urgently needed in Serbia.

  8. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole

  9. Heightened fire risk in Indonesia in response to increasing temperature

    Science.gov (United States)

    Fernandes, K.; Baethgen, W.; Verchot, L. V.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.

    2016-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  10. Integrating fire management analysis into land management planning

    Science.gov (United States)

    Thomas J. Mills

    1983-01-01

    The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...

  11. Risk management of emergency service vehicle crashes in the United States fire service: process, outputs, and recommendations.

    Science.gov (United States)

    Bui, David P; Pollack Porter, Keshia; Griffin, Stephanie; French, Dustin D; Jung, Alesia M; Crothers, Stephen; Burgess, Jefferey L

    2017-11-17

    Emergency service vehicle crashes (ESVCs) are a leading cause of death in the United States fire service. Risk management (RM) is a proactive process for identifying occupational risks and reducing hazards and unwanted events through an iterative process of scoping hazards, risk assessment, and implementing controls. We describe the process, outputs, and lessons learned from the application of a proactive RM process to reduce ESVCs in US fire departments. Three fire departments representative of urban, suburban, and rural geographies, participated in a facilitated RM process delivered through focus groups and stakeholder discussion. Crash reports from department databases were reviewed to characterize the context, circumstances, hazards and risks of ESVCs. Identified risks were ranked using a risk matrix that considered risk likelihood and severity. Department-specific control measures were selected based on group consensus. Interviews, and focus groups were used to assess acceptability and utility of the RM process and perceived facilitators and barriers of implementation. Three to six RM meetings were conducted at each fire department. There were 7.4 crashes per 100 personnel in the urban department and 10.5 per 100 personnel in the suburban department; the rural department experienced zero crashes. All departments identified emergency response, backing, on scene struck by, driver distraction, vehicle/road visibility, and driver training as high or medium concerns. Additional high priority risks varied by department; the urban department prioritized turning and rear ending crashes; the suburban firefighters prioritized inclement weather/road environment and low visibility related crashes; and the rural volunteer fire department prioritized exiting station, vehicle failure, and inclement weather/road environment related incidents. Selected controls included new policies and standard operating procedures to reduce emergency response, cameras to enhance driver

  12. Fire hazard analysis at the first unit of the Ignalina nuclear power plant: 1. Analysis of fire prevention and ventilation systems and secondary effects

    International Nuclear Information System (INIS)

    Poskas, P.; Simonis, V.; Zujus, R. and others

    2004-01-01

    Evaluation of the fire prevention and ventilation systems and the secondary effects on safety at the Ignalina NPP from the point of view of fire hazard using computerized system is presented. Simplified screening algorithms for fire prevention, ventilation and the evaluation of secondary effects are developed, which allow accelerating fire hazard analysis at the Ignalina NPP. The analysis indicated that the fire prevention systems practically meet the national requirements and international recommendations for fire prevention. But it is necessary to introduce in separate rooms the measures improving fire prevention to guarantee the effective functioning of the ventilation systems and the reduction of the influence of secondary effects on safety. Computerized system of fire prevention and ventilation systems and evaluation of secondary effects on safety can be easily applied for fire hazard analysis at different big plants. (author)

  13. Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future

    Science.gov (United States)

    Miller, D.; Bradley, R. S.

    2017-12-01

    One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.

  14. Fire Risk Assessment of Adaptive Re-Use of Historic Shop Houses for Sleeping Accommodations in Malaysia

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available Heritage buildings were generally constructed without regard for fire risks or the requirements for fire protection, as are obligatory in new constructions. When a heritage building undergoes a change to its original function, improvements to the building’s fire safety are necessary to meet the needs of possible increases in occupancy loads and to account for fire risks related to the new usage. This research focuses on fire safety risks, fire protection and safety systems as well as the rules and regulations that an adaptive reuse heritage shop house is bound to when transitioning to a sleeping accommodation, which, in this case, means becoming a hotel. In this research, six heritage shop houses were chosen as case studies. The objectives of this research were to evaluate current fire emergency plans as well as to identify and assess possible fire hazards created by adaptive reuse of heritage shop houses to sleeping accommodations in Penang through a series of observations and interviews. The results of the research show that most of the buildings were provided with inadequate fire safety systems.

  15. FRANX. Application for analysis and quantification of the APS fire

    International Nuclear Information System (INIS)

    Snchez, A.; Osorio, F.; Ontoso, N.

    2014-01-01

    The FRANX application has been developed by EPRI within the Risk and Reliability User Group in order to facilitate the process of quantification and updating APS Fire (also covers floods and earthquakes). By applying fire scenarios are quantified in the central integrating the tasks performed during the APS fire. This paper describes the main features of the program to allow quantification of an APS Fire. (Author)

  16. Understanding the long-term fire risks in forests affected by sudden oak death

    Science.gov (United States)

    Yana Valachovic; Chris Lee; Radoslaw Glebocki; Hugh Scanlon; J. Morgan Varner; David. Rizzo

    2010-01-01

    It is assumed that large numbers of dead and down tanoak in forests infested by Phytophthora ramorum contribute to increased fire hazard risk and fuel loading. We studied the impact of P. ramorum infestation on surface fuel loading, potential fire hazard, and potential fire behavior in Douglas-fir- (Pseudotsuga...

  17. Bulletin of Forest Fire risk in Albania- The experience of the Albania National Centre for forecast and Monitoring of Natural Risks

    Science.gov (United States)

    Berdufi, I.; Jaupaj, O.; Marku, M.; Deda, M.; Fiori, E.; D'Andrea, M.; Biondi, G.; Fioruci, P.; Massabò, M.; Zorba, P.; Gjonaj, M.

    2012-04-01

    In the territory of Albania usually every year around 1000 ha are affected by forest fires, from which about 500 ha are completely destroyed. The number of forest fires (nf), with the burning surface (bs) in years has been like this: during the years 1988-1998: nf / bs = 2.19, 1998-2001: nf / bs = 5.66, year 2002 -2005: nf / bs = 8.2, and during the years 2005-2006: nf / bs = 11.9, while economic losses in a year by forest fires is about 2 million of Euro. The increase in years of these figures and the last floods which happened in the last two years in Shkoder, led to an international cooperation, that between the Italian Civil Protection Department and the Albania General Directorate of Civil Emergency. The focus of this cooperation was the building capacity of the Albanian National System of Civil Protection in forecasting, monitoring and prevention forest fires and floods risks. As a result of this collaboration the "National Center for the Forecast and Monitoring of Natural Risks", was set up at the Institute of Geosciences, Energy, Water and Environment. The Center is the first of its kind in Albania. The mission of the Center is the prediction and monitoring of the forest fire and flood risk in the Albanian territory, as a tools for risk reduction and mitigation. The first step to achieve this strategy was the implementation of the forest fires risk forecast model "RISICO". RISICO was adapted for whole Albania territory by CIMA Research Foundation. The Center, in the summer season, issues a daily bulletin. The bulletin reports the potential risk scenarios related with the ignition and propagation of fires in Albania. The bulletin is broadcasted through email or fax within 12.00 AM of each working day. It highlights where and when severe risk conditions may occur within the next 48 hours

  18. Analysis of sodium pool fire in SFEF for assessing the limiting pool fire

    International Nuclear Information System (INIS)

    Mangarjuna Rao, P.; Ramesh, S.S.; Nashine, B.K.; Kasinathan, N.; Chellapandi, P.

    2011-01-01

    Accidental sodium leaks and resultant sodium fires in Liquid Metal Fast Breeder Reactor (LMFBR) systems can create a threat to the safe operation of the plant. To avoid this defence-in depth approach is implemented from the design stage of reactor itself. Rapid detection of sodium leak and fast dumping of the sodium into the storage tank of a defective circuit, leak collection trays, adequate lining of load bearing structural concrete and extinguishment of the sodium fire are the important defensive measures in the design, construction and operation of a LMFBR for protection against sodium leaks and their resultant fires. Evaluation of sodium leak events and their consequences by conducting large scale engineering experiments is very essential for effective implementation of the above protection measures for sodium fire safety. For this purpose a Sodium Fire Experimental Facility (SFEF) is constructed at SED, IGCAR. SFEF is having an experimental hall of size 9 m x 6 m x 10 m with 540 m 3 volume and its design pressure is 50 kPa. It is a concrete structure and provided with SS 304 liner, which is fixed to the inside surfaces of walls, ceiling and floor. A leak tight door of size (1.8 m x 2.0 m) is provided to the experimental hall and the facility is provided with a sodium equipment hall and a control room. Experimental evaluation of sodium pool fire consequences is an important activity in the LMFBR sodium fire safety related studies. An experimental program has been planned for different types of sodium fire studies in SFEF. A prior to that numerical analysis have been carried out for enclosed sodium pool fires using SOFIRE-II sodium pool fire code for SFEF experimental hall configuration to evaluate the limiting pool fire. This paper brings out results of the analysis carried out for this purpose. Limiting pool fire of SFEF depends on the exposed surface area of the pool, amount of sodium in the pool, oxygen concentration and initial sodium temperature. Limiting

  19. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2002-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  20. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2002-01-01

    This paper presents an analysis of the possibilities for improving the efficiency of an indirectly biomass-fired gas turbine (IBFGT) by supplementary direct gas-firing. The supplementary firing may be based on natural gas, biogas, or pyrolysis gas. {The interest in this cycle arise from a recent...... demonstration of a two-stage gasification process through construction of several plants.} A preliminary analysis of the ideal recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  1. Fire and the endangered Indiana bat

    Science.gov (United States)

    Matthew B. Dickinson; Michael J. Lacki; Daniel R. Cox

    2009-01-01

    Fire and Indiana bats (Myotis sodalis) have coexisted for millennia in the central hardwoods region, yet past declines in populations of this endangered species, and the imperative of fire use in oak silviculture and ecosystem conservation, call for an analysis of both the risks and opportunities associated with using fires on landscapes in...

  2. Post Fire Safe Shutdown Analysis Using a Fault Tree Logic Model

    International Nuclear Information System (INIS)

    Yim, Hyun Tae; Park, Jun Hyun

    2005-01-01

    Every nuclear power plant should have its own fire hazard analysis including the fire safe shutdown analysis. A safe shutdown (SSD) analysis is performed to demonstrate the capability of the plant to safely shut down for a fire in any given area. The basic assumption is that there will be fire damage to all cables and equipment located within a common fire area. When evaluating the SSD capabilities of the plant, based on a review of the systems, equipment and cables within each fire area, it should be determined which shutdown paths are either unaffected or least impacted by a postulated fire within the fire area. Instead of seeking a success path for safe shutdown given all cables and equipment damaged by a fire, there can be an alternative approach to determine the SSD capability: fault tree analysis. This paper introduces the methodology for fire SSD analysis using a fault tree logic model

  3. Impact of fires on nuclear safety

    International Nuclear Information System (INIS)

    Skvarka, P.; Zmajkovic, I.

    1990-01-01

    Factors which are relevant with respect to fire hazard are summarized based on Revision 1 of IAEA Safety Guide No. 50-SG-D2, ''Fire Protection in Nuclear Power Plants'', of 1990. They include data acquisition, quantification of fire risks, assessment of adequacy of fire protection measures, modification of the fire protection system proposed. According to the above document, fire hazard analysis should define and document those parts of the fire protection system that must be present in order to secure safe operation of the nuclear power plant. (Z.M.). 2 appendices, 4 refs

  4. CCDP evaluation of the fire areas of KSNP using CFAST

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kim, Jong Hoon

    2005-01-01

    During the past decade, the nuclear power industry has been moving away from prescriptive rules and practices toward risk-informed and performance-based engineering analysis to support the decision making for plant fire protection programs. For example, the National Fire Protection Association (NFPA) prepared NFPA 805, Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants 2001 Edition. One crucial element in supporting the risk-informed fire protection is availability of simple and reliable methods and tools for evaluating the likelihood and consequences of fire scenarios. These tools directly benefit risk-informed and performance-based fire protection and application of risk information to resolve fire protection issues. Now the deterministic analysis results for the cable integrity is not given in case of performing the fire PSA. So it is necessary to apply the results for the fire modeling to the fire PSA model to develop the more realistic model. This document is intended to analyze the peak temperature of the upper gas layer using the fire modeling code, CFAST , to evaluate the integrity of the cable located on the dominant pump rooms, and to assess the CCDP(Conditional Core Damage Probability) using the results of the cable integrity. Accordingly, the fire safety assessment for the dominant fire areas using the fire modeling code will be capable of evaluating the consequences of the fire scenario, of reducing the the uncertainty, and to develop a more realistic model

  5. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    In 1995 Mr. Joseph DiNunno of the Defense Nuclear Facilities Safety Board issued an approach to describe the concept of an integrated safety management program which incorporates hazard and safety analysis to address a multitude of hazards affecting the public, worker, property, and the environment. Since then the U S . Department of Energy (DOE) has adopted a policy to systematically integrate safety into management and work practices at all levels so that missions can be completed while protecting the public, worker, and the environment. While the DOE and its contractors possessed a variety of processes for analyzing fire hazards at a facility, activity, and job; the outcome and assumptions of these processes have not always been consistent for similar types of hazards within the safety analysis and the fire hazard analysis. Although the safety analysis and the fire hazard analysis are driven by different DOE Orders and requirements, these analyses should not be entirely independent and their preparation should be integrated to ensure consistency of assumptions, consequences, design considerations, and other controls. Under the DOE policy to implement an integrated safety management system, identification of hazards must be evaluated and agreed upon to ensure that the public. the workers. and the environment are protected from adverse consequences. The DOE program and contractor management need a uniform, up-to-date reference with which to plan. budget, and manage nuclear programs. It is crucial that DOE understand the hazards and risks necessarily to authorize the work needed to be performed. If integrated safety management is not incorporated into the preparation of the safety analysis and the fire hazard analysis, inconsistencies between assumptions, consequences, design considerations, and controls may occur that affect safety. Furthermore, confusion created by inconsistencies may occur in the DOE process to grant authorization of the work. In accordance with

  6. Survival analysis and classification methods for forest fire size.

    Science.gov (United States)

    Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.

  7. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Kubicek, J. L.

    2001-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  8. Risk perceptions and behavioral context: U.S. Forest Service fire management professionals

    Science.gov (United States)

    Taylor, Jonathan G.; Carpenter, Edwin H.; Cortner, Hanna J.; Cleaves, David A.

    1989-01-01

    Fire managers from the U.S. Forest Service were surveyed to determine which decision factors most strongly influenced their fire‐risk decisions. Safety, the resources at risk, public opinion, and the reliability of information were important influences on these decisions. This research allowed direct comparison between fire managers’ perceptions of factor importance and how their fire‐risk decisions changed in response to those factors. These risk decisions were highly responsive to changes in context (an escaped wildfire decision versus a prescribed burning decision) as well as to changing factors. The results demonstrate the utility of using scenarios in risk research and the vital importance of context in studying risk‐taking behavior. Research which attempts to remove risk decisions from their real‐world context may well distort the nature of risk‐taking behavior.

  9. The analysis of fire losses and characteristics of residential fires based on investigation data in Selangor, 2012-2014

    Directory of Open Access Journals (Sweden)

    Tan Yi Rong

    2016-01-01

    Full Text Available This is a research in progress where authors seek to investigate the factors of residential fires. As part of the research, this paper aims to analyse the fire problems faced by the community of Malaysia. Data regarding residential fires between 2012 and 2014 was collected from fire investigation reports prepared by the Selangor Fire and Rescue Department. Descriptive analysis is conducted to summarize the data collected and describe the common phenomenon of residential fires. The distributions of the fire characteristics suggested that residential fires are commonly occurred during daytime, confined within the room of fire origin, caused by electrical failure and cooking negligence, started from kitchen, and occurred in multi-units housing. Further analysis will be conducted in order to investigate the relationships between the characteristics and residential fires.

  10. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.

    Science.gov (United States)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  11. Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece

    Science.gov (United States)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  12. Survival analysis and classification methods for forest fire size

    Science.gov (United States)

    2018-01-01

    Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497

  13. Risk reduction in road and rail LPG transportation bij passive fire protection

    NARCIS (Netherlands)

    Molag e.a., M. (Menso)

    2009-01-01

    The potential reduction of risk in LPG (Liquified Petroleum Gas) road transport due to the adoption of passive fire protectionswas investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements

  14. Risk reduction in road and rail LPG transportation by passive fire protection

    NARCIS (Netherlands)

    Paltrinieri, N.; Landucci, G.; Molag, M.; Bonvicini, S.; Spadoni, G.; Cozzani, V.

    2009-01-01

    The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements

  15. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  16. WHC-SD-W252-FHA-001, Rev. 0: Preliminary fire hazard analysis for Phase II Liquid Effluent Treatment and Disposal Facility, Project W-252

    International Nuclear Information System (INIS)

    Barilo, N.F.

    1995-01-01

    A Fire Hazards Analysis was performed to assess the risk from fire and other related perils and the capability of the facility to withstand these hazards. This analysis will be used to support design of the facility

  17. Applying the Wildland Fire Decision Support System (WFDSS) to support risk-informed decision making: The Gold Pan Fire, Bitterroot National Forest, Montana, USA

    Science.gov (United States)

    Erin K. Noonan-Wright; Tonja S. Opperman

    2015-01-01

    In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...

  18. SFPE handbook of fire protection engineering

    CERN Document Server

    Gottuk, Daniel; Jr, John; Harada, Kazunori; Kuligowski, Erica; Puchovsky, Milosh; Torero, Jose´; Jr, John; WIECZOREK, CHRISTOPHER

    2016-01-01

    Revised and significantly expanded, the fifth edition of this classic work offers both new and substantially updated information. As the definitive reference on fire protection engineering, this book provides thorough treatment of the current best practices in fire protection engineering and performance-based fire safety. Over 130 eminent fire engineers and researchers contributed chapters to the book, representing universities and professional organizations around the world. It remains the indispensible source for reliable coverage of fire safety engineering fundamentals, fire dynamics, hazard calculations, fire risk analysis, modeling and more. With seventeen new chapters and over 1,800 figures, the this new edition contains: • Step-by-step equations that explain engineering calculations • Comprehensive revision of the coverage of human behavior in fire, including several new chapters on egress system design, occupant evacuation scenarios, combustion toxicity and data for human behavior analysis • Rev...

  19. Fire hazards analysis for W-413, West Area Tank Farm Storage and Staging Facility

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.; Lott, D.T.

    1994-01-01

    In accordance with DOE Order 5480.7A, a Fire Hazards Analysis must be performed for all new facilities. The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objectives of the Order are met. The Order acknowledges a graded approach commensurate with the hazards involved. Tank Farms Operations must sore/stage material and equipment such as pipes, fittings, conduit, instrumentation and others related items until work packages are ready to work. Consumable materials, such as nut, bolts and welding rod, are also requires to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This facility is classified as a safety class 4 building

  20. Modelling the probability of building fires

    Directory of Open Access Journals (Sweden)

    Vojtěch Barták

    2014-12-01

    Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.

  1. Fires in rooms containing electrical components - incident planning, fire fighting tactics, risks; Braender i driftrum - Insatsplaner, slaeckteknik, risker

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Tommy; Ottosson, Jan; Lindskog, BertiI; Soederquist Bende, Evy; Eriksson, Fredrik; Haffling, Stefan

    2006-12-15

    On July 1, 2005 a fire occurred within an electrical switch room at Forsmark Nuclear Power Plant. At the evaluation of the incident it was identified that the pre-fire plans did not give sufficient information in order to make the appropriate decisions. Questions raised based on the incident are how decisions are made and orders are delegated with respect to the incident command, which fire fighting tactic should be used, which types of extinguishing media should be used, what are the risks with respect to safety of staff and safety of the reactor. Lessons learned from the fire at Forsmark were that pre-incident planning was at hand but the information was not sufficient to make the correct initial decisions that might be critical for life and property. One of the most crucial ingredients in all safety related work is to utilize previous experience in order to maintain a high degree of safety. Lessons learnt are also the foundation on which the ability to construct or create strong barriers against a certain fault phenomena, fault mechanism or type of initial event. In the case of nuclear processes, fire is considered as an important and critical initial event which has to be recognized in a number of cases in order to maintain a safe process. The likelihood for a fire to represent an initial event should not be underestimated and can therefore not be neglected, probabilistically or deterministically, unless the inherent safety systems can not control the event in an acceptable manner. Regardless of safety measures and lessons learnt from previous experiences in the construction and the operation of the nuclear facility, fires can occur. Previous experiences point out that process system, e.g. systems that are part of the turbine, are more frequently subject to fire incidents compared to ordinary safety systems. Fires in electrical components, often electrical cabinets, can be difficult to handle and to extinguish quickly. This report presents the background work

  2. The Angra 1 fire PRA project

    International Nuclear Information System (INIS)

    Silva, Luiz E. Massiere de C.; Kassawara, Robert

    2009-01-01

    The Angra 1 Fire PRA (Probabilistic Risk Assessment) is under development by ELETRONUCLEAR jointly with EPRI (Electric Power Research Institute). The project was started January of 2007 and it is foreseen to be finished in the middle of the next year. The study is being conducted according to the newest methodology developed by EPRI and NRC/RES (U.S. Nuclear Regulatory Commission - Office of Regulatory Research) published in 2005 as Fire PRA Methodology for Nuclear Power Facilities (NUREG/CR-6850 or EPRI TR-1011989) [1]. Starting from the Internal Events Angra 1 PRA model Level 1 the project aims to be a comprehensive plant-specific fire analysis to identify the possible consequences of a fire in the plant vital areas which threaten the integrity of systems relevant to the safety, challenging the safety functions and representing a risk of accident that can lead to a core damage. The main tasks include the plant boundary and partitioning, the fire PRA component selection and the identification of the possible fire scenarios (ignition, propagation, detection, extinction and hazards) considering human failure events to establish the fire-induced risk model for quantification of the risk for nuclear core damage taking into account the plant design and its fire protection resources. This work presents a general discussion on the methodology applied to the completed steps of the project. (author)

  3. Effects of risk attitudes on extended attack fire management decisionmaking

    Science.gov (United States)

    Donald G. MacGregor; Armando González-Cabán

    2009-01-01

    Fire management inherently involves the assessment and management of risk, and decision making under uncertainty. Although organizational standards and guides are an important determinant of how decision problems are structured and framed, decision makers may view risk-based decisions from a perspective that is unique to their background and experience. Previous...

  4. Numerical prediction of heat-flux to massive calorimeters engulfed in regulatory fires with the cask analysis fire environment (CAFE) model

    International Nuclear Information System (INIS)

    Koski, Jorman A.; Suo-Antitla, Ahti; Kramer M, Alex; Greiner, Miles

    2000-01-01

    Recent observations show that the thermal boundary conditions within large-scale fires are significantly affected by the presence of thermally massive objects. These objects cool the soot and gas near their surfaces, and these effects reduce the incoming radiant heat-flux to values lower than the levels expected from simple σT fire 4 models. They also affect the flow and temperature fields in the fire far from their surfaces. The Cask Analysis Fire Environment (CAFE) code has been developed at Sandia National Laboratories to provide an enhanced fire boundary condition for the design of radioactive material packages. CAFE is a set of computer subroutines that use computational fluid mechanics methods to predict convective heat transfer and mixing. It also includes models for fuel and oxygen transport, chemical reaction, and participating-media radiation heat transfer. This code uses two-dimensional computational models so that it has reasonably short turnaround times on standard workstations and is well suited for design and risk studies. In this paper, CAFE is coupled with a commercial finite-element program to model a large cylindrical calorimeter fully engulfed in a pool fire. The time-dependent heat-flux to the calorimeter and the calorimeter surface temperature are determined for several locations around the calorimeter circumference. The variation of heat-flux with location is determined for calorimeters with different diameters and wall thickness, and the observed effects discussed

  5. Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility

    International Nuclear Information System (INIS)

    Elicson, Tom; Harwood, Bentley; Yorg, Richard; Lucek, Heather; Bouchard, Jim; Jukkola, Ray; Phan, Duan

    2011-01-01

    The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it would have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.

  6. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    Brumburgh, G.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  7. Manual fire fighting tactics at Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jee, Moon Hak; Moon, Chan Kook

    2012-01-01

    The general requirements of fire protection at nuclear power plant (NPP) are fire protection program, fire hazard analysis, and fire prevention features. In addition, specific fire protection requirements such as water supplies, fire detection, fire protection of safe related equipment, and safe shutdown capabilities must be provided. Particularly, manual fire fighting is required as specific requirements with the provisions to secure manual fire suppression, fire brigade and its training, and administrative controls for manual fire fighting. If a fire is alarmed and confirmed to be a real fire, the fire brigade must take manual fire fighting activities as requested at fire protection program. According to the present requirements in itself, there is not any specific manual fire fighting ways or practical strategies. In general, fire zones or compartments at NPPs are built in a confined condition. In theory, the fire condition will change from a combustible-controlled fire to a ventilation-governing fire with the time duration. In case of pool fire with the abundant oxygen and flammable liquid, it can take just a few minutes for the flash-over to occur. For the well-confined fire zone, it will change from a flame fire to a smoldering state before the entrance door is opened by the fire brigade. In this context, the manual fire fighting activities must be based on a quantitative analysis and a fire risk evaluation. At this paper, it was suggested that the fire zones at NPPs should be grouped on the inherent functions and fire characteristics. Based on the fire risk characteristics and the fire zone grouping, the manual fire fighting tactics are suggested as an advanced fire fighting solution

  8. Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania.

    Directory of Open Access Journals (Sweden)

    Andrea I Zambrano

    Full Text Available Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors.Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9 yrs were invited to a survey where both eyelids were graded for follicular (TF and intense trachoma (TI using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis.5240 (79% of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00-3·27 and TI OR 4·06, 1·96-8·42. Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking.In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation.

  9. Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania.

    Science.gov (United States)

    Zambrano, Andrea I; Muñoz, Beatriz E; Mkocha, Harran; West, Sheila K

    2015-01-01

    Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors. Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9 yrs were invited to a survey where both eyelids were graded for follicular (TF) and intense trachoma (TI) using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis. 5240 (79%) of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00-3·27 and TI OR 4·06, 1·96-8·42). Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking. In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation.

  10. Evaluation of a temporal fire risk index in Mediterranean forests from NOAA thermal IR

    International Nuclear Information System (INIS)

    Vidal, A.; Pinglo, F.; Durand, H.; Devaux-Ros, C.; Maillet, A.

    1994-01-01

    Mediterranean forests are regularly subjected to a large number of fires; 537,000 ha were burned during the severe European drought of 1990. The French Ministries of Environment, Interior, and Agriculture are trying to implement efficient methods to prevent forest fires and to reduce their incidence. Fire risk is composed of human, ecological, and climatic factors that are already accounted for in prevention methods. However, the importance of biophysical factors, especially the water status of forest trees, bushes, grasses, and litter should also be considered. In a first step, thermal infrared data from NOAA-AVHRR daily images covering an 18-month period were used to estimate temporal variations of forest evapotranspiration through an energy budget-based relationship. Results were related to statistics on fire starts, in order to derive a fire risk index that can be used for a real-time regional alarm. (author)

  11. Risk of commercial truck fires in the United States : an exploratory data analysis

    Science.gov (United States)

    2012-06-29

    Large trucks are involved in only 8 percent of fatal crashes per year, but 17 percent of fatal fires. The scope of the current body of research is limited. Studies have treated truck fires generally as a subset of vehicle fires or in their own right ...

  12. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  13. Deterministic analysis of mid scale outdoor fire

    International Nuclear Information System (INIS)

    Vidmar, P.; Petelin, S.

    2003-01-01

    The idea behind the article is how to define fire behaviour. The work is based on an analytical study of fire origin, its development and spread. Mathematical fire model called FDS (Fire Dynamic Simulator) is used in the presented work. A CFD (Computational Fluid Dynamic) model using LES (Large Eddie Simulation) is used to calculate fire development and spread of combustion products in the environment. The fire source is located in the vicinity of the hazardous plant, power, chemical etc. The article presents the brief background of the FDS computer program and the initial and boundary conditions used in the mathematical model. Results discuss output data and check the validity of results. The work also presents some corrections of the physical model used, which influence the quality of results. The obtained results were discussed and compared with the Fire Safety Analysis report included in the Probabilistic Safety Assessment of Krsko nuclear power plant. (author)

  14. Catching fire? Social interactions, beliefs, and wildfire risk mitigation behaviors

    Science.gov (United States)

    Katherine Dickinson; Hannah Brenkert-Smith; Patricia Champ; Nicholas Flores

    2015-01-01

    Social interactions are widely recognized as a potential influence on risk-related behaviors. We present a mediation model in which social interactions (classified as formal/informal and generic-fire-specific) are associated with beliefs about wildfire risk and mitigation options, which in turn shape wildfire mitigation behaviors. We test this model using survey data...

  15. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  16. Wildfire risk reduction in the United States: Leadership staff perceptions of local fire department roles and responsibilities

    Science.gov (United States)

    Rachel S. Madsen; Hylton J. G. Haynes; Sarah M. McCaffrey

    2018-01-01

    As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around...

  17. Advanced risk analysis of systems endangered by ESD

    International Nuclear Information System (INIS)

    Kiss, Istvan; Szedenik, Norbert; Nemeth, Balint; Gulyas, Attila; Berta, Istvan

    2008-01-01

    Evaluation of industrial processes to determine risk of fire or explosion caused by electrostatic discharge (ESD) is even nowadays qualitative in most cases. Although qualitative analysis significantly helps to make an industrial process safer, it is based on the survey of the process and strongly subjective, depending on the estimation of an expert. Fault tree analysis is a traditional method to quantify the risk; it helps to select optimal protection. However, determination of top event, secondary events and basic events of the fault tree is difficult, especially the quantification of the probabilities of the basic events. In several cases no statistical information is available for most of the events. Using fuzzy membership functions instead of simple numbers for the quantification of probabilities makes it possible to take this uncertainty into consideration. Fuzzy logic based fault tree analysis of chemical processes were made to determine the effect of basic events on the probability of the top event (explosion or fire) and its reliability.

  18. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  19. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  20. Fire hazard analysis for the K basin fuel transfer system anneses project A-15

    International Nuclear Information System (INIS)

    BARILO, N.F.

    2001-01-01

    The purpose of the Fuel Transfer System (FTS) is to move the spent nuclear fuel currently stored in the K East (KE) Basin and transfer it by shielded cask to the K West (KW) Basin. The fuel will then be processed through the existing fuel cleaning and loading system prior to being loaded into Multi-Canister Overpacks (MCO). The FTS operation is considered an intra-facility transfer because the spent fuel will stay within the 100 K area and between the K Basins. This preliminary Fire Hazards Analysis (FHA) for the K Basin FTS Annexes addresses fire hazards or fire-related concerns in accordance with U.S. Department of Energy (DOE) 420.1 (DOE 2000), and RLID 420.1 (DOE 1999), resulting from or related to the processes and equipment. It is intended to assess the risk from fire associated within the FTS Annexes to ensure that there are no undue fire hazards to site personnel and the public; the potential for the occurrence of a fire is minimized; process control and safety systems are not damaged by fire or related perils; and property damage from fire and related perils does not exceed an acceptable level. Consistent with the preliminary nature of the design information, this FHA is performed on a graded approach

  1. A Revised Historical Fire Regime Analysis in Tunisia (1985–2010 from a Critical Analysis of the National Fire Database and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chiraz Belhadj-Khedher

    2018-01-01

    Full Text Available Long-term fire history reconstructions provide fruitful information in the context of global change. Global remotely-sensed burned areas offer a uniform estimate of fire regimes worldwide, but hardly capture small fire events and cover only the last 20 years. Burned areas from national statistics often lack credibility due to discrepancies in fire report protocols between countries, partial data records and uncertain burned area estimates from field observations. However, they constitute a unique and valuable alternative long-term key source of information. We provide here a detailed critical analysis of the fire database in Tunisia, on the southern boundary of the Mediterranean basin and with a contrasted socio-economic environment compared to the more studied European side. We analyzed the fire record database with a quality checking protocol, combined with remote sensing burned area characterization from Landsat images. The high uncertainties in fire numbers could not lead to any conclusion for an accurate trend estimate. The corrected burned area lead to an average yearly burned area of 1799 ha year−1 compared to previous estimates of 1017 ha year−1, leading to a fraction of burnable land affected by fires of 0.19%, on the lowest range of observations in the Mediterranean basin. From this corrected database, we revised the usually assumed burned area decrease in this region, with no significant trend detected over the 1985–2010 period. We conclude on the need for thorough assessment of data quality in fire history reconstruction from national statistics to prevent misleading conclusions, and for an increased credibility, in order to be further used in fire models benchmarking or fire weather analysis. Our results can contribute to the under-represented fire regime analysis on the southern boundary of the Mediterranean basin.

  2. A comparative analysis of risk and quality

    DEFF Research Database (Denmark)

    Lynette, Jennifer Elyse

    2017-01-01

    Within the field of emergency management and fire response, risk and quality are conceptualized to some degree in every response effort. Quality is viewed as a relatively new concept within the field of emergency management and fire response. Whereas, within this same field the concept of risk is....... This understanding can serve to facilitate more informed and effective decision making that incorporates both risk and quality before, during, and after emergency events....... independently, decision making and judgement processes have the potential to be positively impacted by furthering research and developing a deeper understanding of these constructs. By understanding risk management principles and combining that with a quality systems approach, decision making can be improved......Within the field of emergency management and fire response, risk and quality are conceptualized to some degree in every response effort. Quality is viewed as a relatively new concept within the field of emergency management and fire response. Whereas, within this same field the concept of risk...

  3. First Approximations of Prescribed Fire Risks Relative to Other Management Techniques Used on Private Lands.

    Directory of Open Access Journals (Sweden)

    Dirac Twidwell

    Full Text Available Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier technique relative to other land management options. Due to the lack of data available to directly test this notion, we use a combination of approaches including 1 a comparison of fatalities resulting from different occupations that are proxies for techniques employed in land management, 2 a comparison of fatalities resulting from wildland fire versus prescribed fire, and 3 an exploration of causal factors responsible for wildland fire-related fatalities. This approach establishes a first approximation of the relative risk of fatality to private citizens using prescribed fire compared to other management techniques that are readily used in ecosystem management. Our data do not support using risks of landowner fatalities as justification for the use of alternative land management techniques, such as mechanical (machine-related equipment, over prescribed fire. Vehicles and heavy machinery are consistently leading reasons for fatalities within occupations selected as proxies for management techniques employed by ranchers and agricultural producers, and also constitute a large proportion of fatalities among firefighters. Our study provides the foundation for agencies to establish data-driven decisions regarding the degree of support they provide for prescribed burning on private lands.

  4. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  5. High-fire-risk behavior in critical fire areas

    Science.gov (United States)

    William S. Folkman

    1977-01-01

    Observations of fire-related behavior of wildland visitors were made in three types of areas-wilderness, established campground, and built-up commercial and residential areas-within the San Bernardino National Forest, California. Interviews were conducted with all persons so observed. Types of fire-related behavior differed markedly from one area to another, as did the...

  6. Fire prevention in industrial installations presenting a risk for man and environment (ICPE)

    International Nuclear Information System (INIS)

    Moche, L.

    2000-01-01

    The most likely accident in industrial installations is fire. 59 out of 100 accidents reported in 1999 describe a fire outbreak, the fire is either the initiating cause of the accident or the form into which the event eventually evolves. This article briefly describes the why and the wherefore of French regulations on fire prevention in installations presenting a risk for man and environment. The French system is based on the responsibility of the plant operator and on the result of inspections performed by authorities to check the conformity of the installation with current regulations. (A.C.)

  7. Safety analysis of the existing 850 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 850 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives, which was classified as a moderate hazard per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  8. Safety analysis of the existing 851 Firing Facility

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 851 Firing Facility at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The normal operations and credible accidents that might have an effect on these facilities or have off-site consequences were considered. It was determined by this analysis that all but two of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exceptions were the linear accelerator and explosives, which were classified as moderate hazards per the requirements given in DOE Order 5481.1A. This safety analysis concluded that the operation at this facility will present no undue risk to the health and safety of LLNL employees or the public

  9. Wildfire disturbance, erosion and sedimentation risks following the Waldo Canyon Fire in Colorado

    Science.gov (United States)

    Flint, K.; Kinoshita, A. M.; Chin, A.; Florsheim, J. L.; Nourbakhshbeidokhti, S.

    2016-12-01

    Wildfire is a landscape-scale disturbance that causes abrupt changes to hydrological responses and sediment flux during subsequent storms. Burning hillslope vegetation during wildfires induces changes to sediment supply and stream flow magnitude. Altered post-fire processes such as channel erosion and sedimentation or flooding enhance downstream hazards that may threaten human populations and physical aquatic habitat over various time scales. Using data from a small drainage basin (Williams Canyon, 4.7 km2) in the Colorado front range burned by the 2012 Waldo Fire as a case study, we investigate post-fire recovery and assess changes in fire-related risks to downstream areas. Our local ground-based precipitation, field measurements, terrestrial Light Detection and Ranging (LiDAR) scanning together with satellite-based remote sensing data (i.e. Landsat) provide a basis for time series analyses of reach-scale erosion and sedimentation response to rainfall patterns as vegetation patterns change following the wildfire. As a first step in quantifying the likelihood and consequences of specific risk scenarios, we examine changes in the combined probability of storm flows and post-fire erosion and sedimentation as vegetation recovers within the study watershed. We explore possible feedbacks and thresholds related to vegetation-hydrology-sediment interactions following wildfire under changing climate regimes. This information is needed to assist in post-fire management to promote sustainability of wildland fluvial systems.

  10. Development and validation of sodium fire analysis code ASSCOPS

    International Nuclear Information System (INIS)

    Ohno, Shuji

    2001-01-01

    A version 2.1 of the ASSCOPS sodium fire analysis code was developed to evaluate the thermal consequences of a sodium leak and consequent fire in LMFBRs. This report describes the computational models and the validation studies using the code. The ASSCOPS calculates sodium droplet and pool fire, and consequential heat/mass transfer behavior. Analyses of sodium pool or spray fire experiments confirmed that this code and parameters used in the validation studies gave valid results on the thermal consequences of sodium leaks and fires. (author)

  11. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  12. Quantitative analysis of forest fire extinction efficiency

    Directory of Open Access Journals (Sweden)

    Miguel E. Castillo-Soto

    2015-08-01

    Full Text Available Aim of study: Evaluate the economic extinction efficiency of forest fires, based on the study of fire combat undertaken by aerial and terrestrial means. Area of study, materials and methods: Approximately 112,000 hectares in Chile. Records of 5,876 forest fires that occurred between 1998 and 2009 were analyzed. The area further provides a validation sector for results, by incorporating databases for the years 2010 and 2012. The criteria used for measuring extinction efficiency were economic value of forestry resources, Contraction Factor analysis and definition of the extinction costs function. Main results: It is possible to establish a relationship between burnt area, extinction costs and economic losses. The method proposed may be used and adapted to other fire situations, requiring unit costs for aerial and terrestrial operations, economic value of the property to be protected and speed attributes of fire spread in free advance. Research highlights: The determination of extinction efficiency in containment works of forest fires and potential projection of losses, different types of plant fuel and local conditions favoring the spread of fire broaden the admissible ranges of a, φ and Ce considerably.

  13. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire

    International Nuclear Information System (INIS)

    Salellas, J.

    2015-01-01

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  14. Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level.

    Science.gov (United States)

    Ahmed, M Razu; Rahaman, Khan Rubayet; Hassan, Quazi K

    2018-05-15

    Wildland fires are some of the critical natural hazards that pose a significant threat to the communities located in the vicinity of forested/vegetated areas. In this paper, our overall objective was to study the structural damages due to the 2016 Horse River Fire (HRF) that happened in Fort McMurray (Alberta, Canada) by employing primarily very high spatial resolution optical satellite data, i.e., WorldView-2. Thus, our activities included the: (i) estimation of the structural damages; and (ii) delineation of the wildland-urban interface (WUI) and its associated buffers at certain intervals, and their utilization in assessing potential risks. Our proposed method of remote sensing-based estimates of the number of structural damages was compared with the ground-based information available from the Planning and Development Recovery Committee Task Force of Regional Municipality of Wood Buffalo (RMWB); and found a strong linear relationship (i.e., r² value of 0.97 with a slope of 0.97). Upon delineating the WUI and its associated buffer zones at 10 m, 30 m, 50 m, 70 m and 100 m distances; we found existence of vegetation within the 30 m buffers from the WUI for all of the damaged structures. In addition, we noticed that the relevant authorities had removed vegetation in some areas between 30 m and 70 m buffers from the WUI, which was proven to be effective in order to protect the structures in the adjacent communities. Furthermore, we mapped the wildland fire-induced vulnerable areas upon considering the WUI and its associated buffers. Our analysis revealed that approximately 30% of the areas within the buffer zones of 10 m and 30 m were vulnerable due to the presence of vegetation; in which, approximately 7% were burned during the 2016 HRF event that led the structural damages. Consequently, we suggest to remove the existing vegetation within these critical zones and also monitor the region at a regular interval in order to reduce the wildland fire-induced risk.

  15. A different approach to quantifying fire risks when decision making

    International Nuclear Information System (INIS)

    Hay, Adrian

    1991-01-01

    This article outlines an alternative approach to fire safety design which involves decision making on the basis of risk considerations. The methodology is being developed in conjunction with the nuclear industry but is considered equally applicable to other industrial facilities. (author)

  16. Loft fire protection

    International Nuclear Information System (INIS)

    White, E.R.; Jensen, J.D.

    1980-01-01

    Quantified criteria that was developed and applied to provide in-depth fire protection for the Loss of Fluid Test (LOFT) Facility are presented. The presentation describes the evolution process that elevated the facility's fire protection from minimal to that required for a highly protected risk or improved risk. Explored are some infrequently used fire protection measures that are poorly understood outside the fire protection profession

  17. Identification of fire modeling issues based on an analysis of real events from the OECD FIRE database

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Dominik [Swiss Federal Nuclear Safety Inspectorate ENSI, Brugg (Switzerland)

    2017-03-15

    Precursor analysis is widely used in the nuclear industry to judge the significance of events relevant to safety. However, in case of events that may damage equipment through effects that are not ordinary functional dependencies, the analysis may not always fully appreciate the potential for further evolution of the event. For fires, which are one class of such events, this paper discusses modelling challenges that need to be overcome when performing a probabilistic precursor analysis. The events used to analyze are selected from the Organisation for Economic Cooperation and Development (OECD) Fire Incidents Records Exchange (FIRE) Database.

  18. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  19. Fire propagation equation for the explicit identification of fire scenarios in a fire PSA

    International Nuclear Information System (INIS)

    Lim, Ho Gon; Han, Sang Hoon; Moon, Joo Hyun

    2011-01-01

    When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a 2x3 rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification

  20. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  1. Managing the changing risk of fire in the South African landscape

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2008-11-01

    Full Text Available and to develop early-warning syatem that will help to reduce or manage these risks. It also aims to quantify probabilities and consequences to help improve fire management approaches....

  2. Risk management: Core principles and practices, and their relevance to wildland fire

    Science.gov (United States)

    Matthew P. Thompson; Donald G. MacGregor; Dave Calkin

    2016-01-01

    The Forest Service, U.S. Department of Agriculture faces a future of increasing complexity and risk, pressing financial issues, and the inescapable possibility of loss of human life. These issues are perhaps most acute for wildland fire management, the highest risk activity in which the Forest Service engages. Risk management (RM) has long been put forth as an...

  3. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    International Nuclear Information System (INIS)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-01-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  4. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  5. Multifractal analysis of forest fires in complex regions

    Science.gov (United States)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  6. Risk-Based Fire Safety Experiment Definition for Manned Spacecraft

    Science.gov (United States)

    Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.

    1989-01-01

    Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.

  7. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  8. Review of UCN 5,6 Fire PSA Model based on ANS Fire PRA Standard

    International Nuclear Information System (INIS)

    Yang, Joon Eon; Lee, Yoon Hwan

    2006-12-01

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). This approach uses the fire risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In fire risk informed/performance-based decision/operation, fire PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of fire PSA. ANS (American Nuclear Society) has developed a guidance called 'ANS Fire PRA Methodology Standard'. However, in Korea, there have been no attempts to evaluate the quality of fire PSA model itself. Therefore, we cannot be sure about the quality of fire PSA whether or not the present fire PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of fire PSA model quality is the basis for the fire risk informed/performance-based decision/operation. In this report, we have evaluated the quality of fire PSA model for Ulchin 5 and 6 units based on the ANS Fire PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of fire PSA model and how it can be improved. This report can be used as the base of the fire risk informed/performance-based decision/operation work in Korea

  9. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Science.gov (United States)

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  10. Solution of Fire Protection in Historic Buildings

    Science.gov (United States)

    Iringová, Agnes; Idunk, Róbert

    2016-12-01

    The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.

  11. Fire characteristics associated with firefighter injury on large federal wildland fires.

    Science.gov (United States)

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A methodology for analyzing the detection and suppression of fires in nuclear power plants

    International Nuclear Information System (INIS)

    Siu, N.; Apostolakis, G.

    1986-01-01

    The assessment of the fire risk in nuclear power plants requires the analysis of fire scenarios within specified rooms. A methodology that integrates the fire protection features of a given room into an existing fire risk analysis framework is developed. An important component of this methodology is a model for the time required to detect and suppress a fire in a given room, called the ''hazard time.'' This model accounts for the reliability of fire detection and suppression equipment, as well as for the characteristics rates of the detection and suppression processes. Because the available evidence for fire detection and suppression in nuclear power plants is sparse and often qualitative, a second component of this methodology is a set of methods needed to employ imprecise information in a statistical analysis. These methods can be applied to a wide variety of problems

  13. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  14. Advanced analysis of forest fire clustering

    Science.gov (United States)

    Kanevski, Mikhail; Pereira, Mario; Golay, Jean

    2017-04-01

    Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index

  15. Urban users of wildland areas as forest fire risks

    Science.gov (United States)

    William S. Folkman

    1979-01-01

    A telephone survey of 1500 households in metropolitan Los Angeles and San Francisco was made to (1) determine extent of wildland use by residents of the two metropolitan areas, reasons for non-use, and the characteristics of users; (2) describe and analyze activities, knowledge, and attitudes of users which may contribute to their fire risk; and (3) assess selected...

  16. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...... are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing...

  17. Experimental Benchmarking of Fire Modeling Simulations. Final Report

    International Nuclear Information System (INIS)

    Greiner, Miles; Lopez, Carlos

    2003-01-01

    A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions. The test data were used to benchmark and adjust the Container Analysis Fire Environment (CAFE) computer code. CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses

  18. Economic assessment of coal-fired and nuclear power generation in the year 2000 -Equal health hazard risk basis-

    International Nuclear Information System (INIS)

    Seong, Ki Bong; Lee, Byong Whi

    1989-01-01

    On the basis of equal health hazard risk, economic assessment of nuclear was compared with that of coal for the expansion planning of electric power generation in the year 2000. In comparing health risks, the risk of coal was roughly ten times higher than that of nuclear according to various previous risk assessments of energy system. The zero risk condition can never be achievable. Therefore, only excess relative health risk of coal over nuclear was considered as social cost. The social cost of health risk was estimated by calculation of mortality and morbidity costs. Mortality cost was $250,000 and morbidity cost was $90,000 in the year 2000.(1986US$) Through Cost/Benefit Analysis, the optimal emission standards of coal-fired power generation were predicted. These were obtained at the point of least social cost for power generation. In the year 2000, the optimal emission standard of SO x was analyzed as 165ppm for coal-fired power plants in Korea. From this assessment, economic comparison of nuclear and coal in the year 2000 showed that nuclear would be more economical than coal, whereas uncertainty of future power generation cost of nuclear would be larger than that of coal. (Author)

  19. Detecting fire in video stream using statistical analysis

    Directory of Open Access Journals (Sweden)

    Koplík Karel

    2017-01-01

    Full Text Available The real time fire detection in video stream is one of the most interesting problems in computer vision. In fact, in most cases it would be nice to have fire detection algorithm implemented in usual industrial cameras and/or to have possibility to replace standard industrial cameras with one implementing the fire detection algorithm. In this paper, we present new algorithm for detecting fire in video. The algorithm is based on tracking suspicious regions in time with statistical analysis of their trajectory. False alarms are minimized by combining multiple detection criteria: pixel brightness, trajectories of suspicious regions for evaluating characteristic fire flickering and persistence of alarm state in sequence of frames. The resulting implementation is fast and therefore can run on wide range of affordable hardware.

  20. Canadian Wildland Fire Strategy: A vision for an innovative and integrated approach to managing the risks

    Science.gov (United States)

    Canadian Wildland Fire Strategy Project Management Team

    2006-01-01

    The Canadian Wildland Fire Strategy (CWFS) provides a vision for a new, innovative, and integrated approach to wildland fire management in Canada. It was developed under the auspices of the Canadian Council of Forest Ministers and seeks to balance the social, ecological, and economic aspects of wildland fire through a risk management framework that emphasizes hazard...

  1. Wildfires and post-fire erosion risk in a coastal area under severe anthropic pressure associated with the touristic fluxes

    Science.gov (United States)

    Canu, Annalisa; Arca, Bachisio; Pellizzaro, Grazia; Valeriano Pintus, Gian; Ferrara, Roberto; Duce, Pierpaolo

    2017-04-01

    In the last decades a rapid and intense development of the tourism industry led to an increasing of anthropic pressure on several coastal areas of Sardinia. This fact not only modified the coastal aesthetics, but has also generated an increase of risk for the environment. This phenomenon affected also the ancient structure of the landscape with a negative impact mainly caused by the following factors: land abandonment, wildfire occurrence, post-fire erosion, urbanization. These regional changes can be analyzed in detail by considering the geo-diachronic dynamics. The main objectives of this work were i) to perform a diachronic analysis of land use and land cover dynamics, ii) to analyse the recent dynamics of wildfires, and iii) to predict the soil erosion risk in relation to land use change occurred between the 1950s and the 2000s. The study was realized in a coastal area located in North-East Sardinia where the geo-historical processes were summarized and organized in a geographic information system that has been employed to examine the landscape variations at three different time steps: 1954, 1977 and 2000. In addition, different scenarios of wildfire propagation were simulated by FlamMap in order to estimate the spatial pattern of fire danger factors in the study area. Afterwards, maps of post-fire soil erosion were produced to identify the temporal and spatial variations of the erosion risk. The results show how the changes in land use and the significant and rapid increase of the residential areas affect the risk of both wildfires and post-fire soil erosion. The study reveals the capabilities of this type of approach and can be used by management agencies and policy makers e in sustainable landscape management planning. This approach can be extended to other regions of the Mediterranean basin characterized by complex interactions among landscape and anthropic factors affecting the environmental risk.

  2. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Lim, Ho Gon

    2015-01-01

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time

  3. Sensitivity Analysis on Fire Modeling of Main Control Board Fire Using Fire Dynamics Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number for fire initiation places. Hanul Unit 3 NPP was selected as a reference plant for this study. In this study, sensitivity analyses for an MCB fire were performed to identify the effects on the MCR forced abandonment time according to the changes of height and number of fire initiation places. A main control board (MCB) fire can cause a forced main control room (MCR) abandonment of the operators as well as the function failures or spurious operations of the control and instrumentation-related components. If the MCR cannot be habitable, a safe shutdown from outside the MCR can be achieved and maintained at an alternate shutdown panel independent from the MCR. When the fire modeling for an electrical cabinet such as an MCB was performed, its many input parameters can affect the fire simulation results. This study results showed that the decrease in the height of fire ignition place and the use of single fire ignition place in fire modeling for the propagating fire shortened MCR abandonment time.

  4. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    2011-03-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  5. Earth, wind, and fire: Wildfire risk perceptions in a hurricane-prone environment

    Science.gov (United States)

    Soren M. Newman; Matthew S. Carroll; Pamela J. Jakes; Daniel R. Williams; Lorie L. Higgins

    2014-01-01

    Wildfire is one of several potential disturbances that could have extraordinary impacts on individuals and communities in fire-prone areas. In this article we describe disturbance risk perceptions from interviews with residents in three Florida communities that face significant wildfire and hurricane risk. Although they live in areas characterized by emergency managers...

  6. IRSN global process for leading a comprehensive fire safety analysis for nuclear installations

    International Nuclear Information System (INIS)

    Ormieres, Yannick; Lacoue, Jocelyne

    2013-01-01

    A fire safety analysis (FSA) is requested to justify the adequacy of fire protection measures set by the operator. A recent document written by IRSN outlines a global process for such a comprehensive fire safety analysis. Thanks to the French nuclear fire safety regulation evolutions, from prescriptive requirements to objective requirements, the proposed fire safety justification process focuses on compliance with performance criteria for fire protection measures. These performance criteria are related to the vulnerability of targets to effects of fire, and not only based upon radiological consequences out side the installation caused by a fire. In his FSA, the operator has to define the safety functions that should continue to ensure its mission even in the case of fire in order to be in compliance with nuclear safety objectives. Then, in order to maintain these safety functions, the operator has to justify the adequacy of fire protection measures, defined according to defence in depth principles. To reach the objective, the analysis process is based on the identification of targets to be protected in order to maintain safety functions, taken into account facility characteristics. These targets include structures, systems, components and personal important to safety. Facility characteristics include, for all operating conditions, potential ignition sources and fire protections systems. One of the key points of the fire analysis is the assessment of possible fire scenarios in the facility. Given the large number of possible fire scenarios, it is then necessary to evaluate 'reference fires' which are the worst case scenarios of all possible fire scenarios and which are used by the operator for the design of fire protection measures. (authors)

  7. MELTER: A model of the thermal response of cargos transported in the Safe-Secure Trailer subject to fire environments for risk assessment applications

    International Nuclear Information System (INIS)

    Larsen, M.E.

    1994-08-01

    MELTER is an analysis of cargo responses inside a fire-threatened Safe-Secure Trailer (SST) developed for the Defense Program Transportation Risk Assessment (DPTRA). Many simplifying assumptions are required to make the subject problem tractable. MELTER incorporates modeling which balances the competing requirements of execution speed, generality, completeness of essential physics, and robustness. Input parameters affecting the analysis include those defining the fire scenario, those defining the cargo loaded in the SST, and those defining properties of the SST. For a specified fire, SST, and cargo geometry MELTER predicts the critical fire duration that will lead to a failure. The principal features of the analysis include: (a) Geometric considerations to interpret fire-scenario descriptors in terms of a thermal radiation boundary condition, (b) a simple model of the SST's wall combining the diffusion model for radiation through optically-thick media with an endothermic reaction front to describe the charring of dimensional, rigid foam in the SST wall, (c) a transient radiation enclosure model, (d) a one-dimensional, spherical idealization of the shipped cargos providing modularity so that cargos of interest can be inserted into the model, and (e) associated numerical methods to integrate coupled, differential equations and find roots

  8. ASTM standards for fire debris analysis: a review.

    Science.gov (United States)

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  9. A new technique for fire risk estimation in the wildland urban interface

    Science.gov (United States)

    Dasgupta, S.; Qu, J. J.; Hao, X.

    A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER

  10. Tech assist/fire safety assessment of 100K area facilities

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    This Tech Assist/Fire Safety Assessment provides a comprehensive assessment of the 100K Area Facilities at the U.S. Department of Energy's Hanford Site for fire protection upgrades that may be needed given the limited remaining service life of these facilities. This assessment considers the relative nature of observed fire risks and whether the installed fire protection systems adequately control this risk. The analysis is based on compliance with DOE Orders, NFPA Codes and Standards, and recognized industry practice. Limited remaining service life (i.e., 6 to 12 years), current value of each facility, comparison to the best protected class of industrial risk, and the potential for exemptions from DOE requirements are key factors for recommendations presented in this report

  11. Procedures and applications to enlarge the level 1+ PSA to internal fires in German nuclear power plants

    International Nuclear Information System (INIS)

    Berg, H.P.; Breiling, G.; Hoffmann, H.H.

    1997-01-01

    Investigations have shown that the consequences from fires in nuclear power plants can be significant. Methodologies considering fire in probabilistic safety analyses have been evolving in the last few years. In order to provide a basis for further discussions on benefits and limits of such an analysis in Germany, current methods are investigated. As a result a qualitative screening process is proposed to identify critical fire zones followed by a quantitative event tree analysis in which the fire caused frequency of initiating events and different core damage states will be determined. The models and data proposed for a probabilistic fire risk analysis have been successfully applied in complete and partial fire risk assessments in German nuclear power plants

  12. Calibration of the CAFE-3D fire code with controlled indoor fire data

    International Nuclear Information System (INIS)

    Lopez, C.; Koski, J.A.; Khalil, I.; Suo-Anttila, A.

    2004-01-01

    The Container Analysis Fire Environment (CAFE) code contains a computational fluid dynamics (CFD) based fire model that has been successfully coupled to standard finite element computer codes. This coupling of CFD and finite element codes allows for a more realistic modeling of the thermal performance of objects engulfed in fire, which aids in the design and risk analysis of radioactive material packages. The CAFE fire model is based on a three-dimensional finite volume formulation of basic fire chemistry and fluid dynamics. This fire model includes a variable-density primitive-variable formulation of mass, momentum, energy and species equations. Multiple chemical species and soot formation are included in the combustion model. Thermal radiation is modeled as diffusive radiation transport inside the flame zone and as view-factor radiation outside the flame zone. Turbulence is modeled with an eddy diffusivity model. The soot model is coupled to the diffusive radiation formulation using the Rosseland approximation and the optical properties of soot. In order to verify and improve the accuracy of computers codes, they should be benchmarked against test data. This paper describes a set of experiments that were performed at the Fire Laboratory for Accreditation of Modeling by Experiment (FLAME) fire facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The paper also describes how the data collected from the experiments was used to calibrate and benchmark the CAFE-3D fire code. Detailed description of the tests performed and comparisons between the calculated results and the collected data from the experiments are provided

  13. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    Brumburgh, G.P.

    1995-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  14. Behavior of one-way reinforced concrete slabs subjected to fire

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-12-01

    Full Text Available A finite difference analysis was performed to investigate the behavior of one-way reinforced concrete slabs exposed to fire. The objective of the study was to investigate the fire resistance and the fire risk after extinguishing the fire. Firstly, the fire resistance was obtained using the ISO834 standard fire without cooling phase. Secondly, the ISO834 parametric fire with cooling phase was applied to study the effect of cooling time. Accordingly, the critical time for cooling was identified and the corresponding failure time was calculated. Moreover, the maximum risk time which is the time between the fire extinguishing and the collapse of slab was obtained. Sixteen one-way reinforced concrete slabs were considered to study the effect of important parameters namely: the concrete cover thickness; the plaster; and the live load ratio. Equations for heat transfer through the slab thickness were used in the fire resistance calculations. Studying the cooling time revealed that the slabs are still prone to collapse although they were cooled before their fire resistance. Moreover, increasing the concrete cover thickness and the presence of plaster led to an increase in the maximum risk time. However, the variation in the live load ratio has almost no effect on such time.

  15. Predicting hydrological and erosional risks in fire-affected watersheds: recent advances and research gaps

    Science.gov (United States)

    Nunes, João Pedro; Keizer, Jan Jacob

    2017-04-01

    Models can be invaluable tools to assess and manage the impacts of forest fires on hydrological and erosion processes. Immediately after fires, models can be used to identify priority areas for post-fire interventions or assess the risks of flooding and downstream contamination. In the long term, models can be used to evaluate the long-term implications of a fire regime for soil protection, surface water quality and potential management risks, or determine how changes to fire regimes, caused e.g. by climate change, can impact soil and water quality. However, several challenges make post-fire modelling particularly difficult: • Fires change vegetation cover and properties, such as by changing soil water repellency or by adding an ash layer over the soil; these processes, however are not described in currently used models, so that existing models need to be modified and tested. • Vegetation and soils recover with time since fire, changing important model parameters, so that the recovery processes themselves also need to be simulated, including the role of post-fire interventions. • During the window of vegetation and soil disturbance, particular weather conditions, such as the occurrence of severe droughts or extreme rainfall events, can have a large impact on the amount of runoff and erosion produced in burnt areas, so that models that smooth out these peak responses and rather simulate "long-term" average processes are less useful. • While existing models can simulate reasonable well slope-scale runoff generation and associated sediment losses and their catchment-scale routing, few models can accommodate the role of the ash layer or its transport by overland flow, in spite of its importance for soil fertility losses and downstream contamination. This presentation will provide an overview of the importance of post-fire hydrological and erosion modelling as well as of the challenges it faces and of recent efforts made to overcome these challenges. It will

  16. Development of new index for forest fire risk using satellite images in Indonesia through the direct spectral measurements of soil

    Science.gov (United States)

    Hashimoto, A.; Akita, M.; Takahashi, Y.; Suzuki, H.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In recent years, the smoke caused by the forest fires in Indonesia has become a serious problem. Most of the land in Indonesia is covered with peat moss, which occurs the expanding of fires due to the burning itself. Thus, the surface soil water, reflecting the amount of precipitation in the area, can become the indication of the risk of fires. This study aims to develop a new index reflecting the risk of forest fires in Indonesia using satellite remote sensing through the direct spectral measurements of peat moss soil.We have prepared the peat moss in 7 steps of soil water content measured at an accuracy of ±15 percent (Field pro, WD-3). We obtained spectra between 400nm and 1050nm (Source: halogen lamp, spectroscope: self-made space time, spectral analysis kit) from the peat moss.The obtained spectra show the difference from the previous spectral measurement for the soil in various water content. There are the features, especially, in the wavelength range of ultraviolet (400-450nm) and infrared (530-800nm) as shown in the figure; the more the soil water increases, the lower the reflectance becomes. We have developed a new index using the New deep blue band (433 453nm and NIR band 845 885nm of Landsat 8. The resulting satellite images calculated by our original index appears to reflect the risk of forest fires rather than well-known indices such as Normalized Difference Water Index and Normalized difference Soil Index.In conclusion, we have created a new index that highly reflects to the degree of soil water of a peat soil in Indonesia.

  17. Fatigue risk management by volunteer fire-fighters: Use of informal strategies to augment formal policy.

    Science.gov (United States)

    Dawson, Drew; Mayger, Katherine; Thomas, Matthew J W; Thompson, Kirrilly

    2015-11-01

    An increasing number and intensity of catastrophic fire events in Australia has led to increasing demands on a mainly volunteer fire-fighting workforce. Despite the increasing likelihood of fatigue in the emergency services environment, there is not yet a systematic, unified approach to fatigue management in fire agencies across Australia. Accordingly, the aim of this study was to identify informal strategies used in volunteer fire-fighting and examine how these strategies are transmitted across the workforce. Thirty experienced Australian volunteer fire-fighters were interviewed in August 2010. The study identified informal fatigue-management behaviours at the individual, team and brigade level that have evolved in fire-fighting environments and are regularly implemented. However, their purpose was not explicitly recognized as such. This apparent paradox - that fatigue proofing behaviours exist but that they are not openly understood as such - may well resolve a potential conflict between a culture of indefatigability in the emergency services sector and the frequent need to operate safely while fatigued. However, formal controls require fire-fighters and their organisations to acknowledge and accept their vulnerability. This suggests two important areas in which to improve formal fatigue risk management in the emergency services sector: (1) identifying and formalising tacit or informal fatigue coping strategies as legitimate elements of the fatigue risk management system; and (2) developing culturally appropriate techniques for systematically communicating fatigue levels to self and others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Missile Firing

    International Nuclear Information System (INIS)

    Jones, Daniel Steven; Efroymson, Rebecca Ann; Hargrove, William Walter; Suter, Glenn; Pater, Larry

    2008-01-01

    A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper describes the ecological risk assessment for the missile launch and detonation. The primary stressor associated with this activity was sound. Other minor stressors included the detonation impact, shrapnel, and fire. Exposure to desert mule deer (Odocoileus hemionus crooki) was quantified using the Army sound contour program BNOISE2, as well as distances from the explosion to deer. Few effects data were available from related studies. Exposure-response models for the characterization of effects consisted of human 'disturbance' and hearing damage thresholds in units of C-weighted decibels (sound exposure level) and a distance-based No Observed Adverse Effects Level for moose and cannonfire. The risk characterization used a weight-of-evidence approach and concluded that risk to mule deer behavior from the missile firing was likely for a negligible number of deer, but that no risk to mule deer abundance and reproduction is expected

  19. Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: cluster randomized controlled study.

    Science.gov (United States)

    Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles

    2012-04-01

    In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Fire protection and fire fighting in nuclear installations

    International Nuclear Information System (INIS)

    1989-01-01

    Fires are a threat to all technical installations. While fire protection has long been a well established conventional discipline, its application to nuclear facilities requires special considerations. Nevertheless, for a long time fire engineering has been somewhat neglected in the design and operation of nuclear installations. In the nuclear industry, the Browns Ferry fire in 1975 brought about an essential change in the attention paid to fire problems. Designers and plant operators, as well as insurance companies and regulators, increased their efforts to develop concepts and methods for reducing fire risks, not only to protect the capital investment in nuclear plants but also to consider the potential secondary effects which could lead to nuclear accidents. Although the number of fires in nuclear installations is still relatively large, their overall importance to the safety of nuclear power plants was not considered to be very high. Only more recently have probabilistic analyses changed this picture. The results may well have to be taken into account more carefully. Various aspects of fire fighting and fire protection were discussed during the Symposium, the first of its kind to be organized by the IAEA. It was convened in co-operation with several organizations working in the nuclear or fire protection fields. The intention was to gather experts from nuclear engineering areas and the conventional fire protection field at one meeting with a view to enhancing the exchange of information and experience and to presenting current knowledge on the various disciplines involved. The presentations at the meeting were subdivided into eight sessions: standards and licensing (6 papers); national fire safety practices (7 papers); fire safety by design (11 papers); fire fighting (2 papers); computer fire modeling (7 papers); fire safety in fuel center facilities (7 papers); fire testing of materials (3 papers); fire risk assessment (5 papers). A separate abstract was

  1. Assessing Wildfire Risk in Cultural Heritage Properties Using High Spatial and Temporal Resolution Satellite Imagery and Spatially Explicit Fire Simulations: The Case of Holy Mount Athos, Greece

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2016-02-01

    Full Text Available Fire management implications and the design of conservation strategies on fire prone landscapes within the UNESCO World Heritage Properties require the application of wildfire risk assessment at landscape level. The objective of this study was to analyze the spatial variation of wildfire risk on Holy Mount Athos in Greece. Mt. Athos includes 20 monasteries and other structures that are threatened by increasing frequency of wildfires. Site-specific fuel models were created by measuring in the field several fuel parameters in representative natural fuel complexes, while the spatial extent of the fuel types was determined using a synergy of high-resolution imagery and high temporal information from medium spatial resolution imagery classified through object-based analysis and a machine learning classifier. The Minimum Travel Time (MTT algorithm, as it is embedded in FlamMap software, was applied in order to evaluate Burn Probability (BP, Conditional Flame Length (CFL, Fire Size (FS, and Source-Sink Ratio (SSR. The results revealed low burn probabilities for the monasteries; however, nine out of the 20 monasteries have high fire potential in terms of fire intensity, which means that if an ignition occurs, an intense fire is expected. The outputs of this study may be used for decision-making for short-term predictions of wildfire risk at an operational level, contributing to fire suppression and management of UNESCO World Heritage Properties.

  2. Potential fire or explosion risks in reprocessing plants

    International Nuclear Information System (INIS)

    Lefort, G.

    1983-05-01

    Installation for reprocessing are large chemical plants handling large quantities of inflammable solvents and products allowing large risk of fire. Further, the chemical process involves the use of oxidizer and reducer agents which can have a very strong chemical activity and by certain circumstances create overpressures or large explosions. This paper shows the principal radioactive consequences we can retain in safety analyses. As an example the combustion phenomenon involved in a solid waste storage silo with irradiated uranium traces is described [fr

  3. 105-DR Large Sodium Fire Facility decontamination, sampling, and analysis plan

    International Nuclear Information System (INIS)

    Knaus, Z.C.

    1995-01-01

    This is the decontamination, sampling, and analysis plan for the closure activities at the 105-DR Large Sodium Fire Facility at Hanford Reservation. This document supports the 105-DR Large Sodium Fire Facility Closure Plan, DOE-RL-90-25. The 105-DR LSFF, which operated from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility in the 100-D Area of the Hanford Site. The LSFF was established to investigate fire fighting and safety associated with alkali metal fires in the liquid metal fast breeder reactor facilities. The decontamination, sampling, and analysis plan identifies the decontamination procedures, sampling locations, any special handling requirements, quality control samples, required chemical analysis, and data validation needed to meet the requirements of the 105-DR Large Sodium Fire Facility Closure Plan in compliance with the Resource Conservation and Recovery Act

  4. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de; Aguiar, Laís Alencar de

    2017-01-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  5. Simulation of fire in a deposit of radioactive waste and the radiological risk associated to this scenario

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Érica Nascimento; Lima, Zelmo Rodrigues de, E-mail: erica.ndomingos@gmail.com, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Aguiar, Laís Alencar de, E-mail: laguiars@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    A fire at radioactive waste deposit can result in significant damage as well as serious risks to the environment and the health of the general public. The CNEN (National Commission of Nuclear Energy) norms have fire protection regulations criteria and requirements to prevent the occurrence, neutralize the action and minimize the effects of the fire on the radioactive material present on the plant. These norms it is for to avoid or limit to the lowest possible levels the effects of ionizing radiation or toxic substances on humans and the environment. Before a possible fire containing radioactive material is necessary information that can estimate the dose in which the population will be submitted. In this work the proposal is to simulate a fire scenario containing radioactive material using Hotspot Health Physics simulation code and to identify the radiological risk of cancer in the respiratory system associated with this scenario using the BEIR V model. (author)

  6. Combined Hydrologic (AGWA-KINEROS2) and Hydraulic (HEC2) Modeling for Post-Fire Runoff and Inundation Risk Assessment through a Set of Python Tools

    Science.gov (United States)

    Barlow, J. E.; Goodrich, D. C.; Guertin, D. P.; Burns, I. S.

    2016-12-01

    Wildfires in the Western United States can alter landscapes by removing vegetation and changing soil properties. These altered landscapes produce more runoff than pre-fire landscapes which can lead to post-fire flooding that can damage infrastructure and impair natural resources. Resources, structures, historical artifacts and others that could be impacted by increased runoff are considered values at risk. .The Automated Geospatial Watershed Assessment tool (AGWA) allows users to quickly set up and execute the Kinematic Runoff and Erosion model (KINEROS2 or K2) in the ESRI ArcMap environment. The AGWA-K2 workflow leverages the visualization capabilities of GIS to facilitate evaluation of rapid watershed assessments for post-fire planning efforts. High relative change in peak discharge, as simulated by K2, provides a visual and numeric indicator to investigate those channels in the watershed that should be evaluated for more detailed analysis, especially if values at risk are within or near that channel. Modeling inundation extent along a channel would provide more specific guidance about risk along a channel. HEC-2 and HEC-RAS can be used for hydraulic modeling efforts at the reach and river system scale. These models have been used to address flood boundaries and, accordingly, flood risk. However, data collection and organization for hydraulic models can be time consuming and therefore a combined hydrologic-hydraulic modeling approach is not often employed for rapid assessments. A simplified approach could streamline this process and provide managers with a simple workflow and tool to perform a quick risk assessment for a single reach. By focusing on a single reach highlighted by large relative change in peak discharge, data collection efforts can be minimized and the hydraulic computations can be performed to supplement risk analysis. The incorporation of hydraulic analysis through a suite of Python tools (as outlined by HEC-2) with AGWA-K2 will allow more rapid

  7. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    Science.gov (United States)

    Sturtevant, Brian R.; Miranda, Brian R.; Shinneman, Douglas J.; Gustafson, Eric J.; Wolter, Peter T.

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more “big pines” (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction

  8. Development of fire risk assessment method caused by earthquake

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsukura, Hiroshi; Matsuoka, Takeshi; Suzuki, Kazutaka

    2000-01-01

    The purpose of this research is to establish the assessment method of the risk of the multiple fires caused by earthquake, in the framework of PSA. In order to establish this method, we have settled four tasks and started a five years research project in 1999 for five years. These results will be useful for not only nuclear power plants but also chemical plants, traffic systems etc. (author)

  9. Back to Basics: Preventing Surgical Fires.

    Science.gov (United States)

    Spruce, Lisa

    2016-09-01

    When fires occur in the OR, they are devastating and potentially fatal to both patients and health care workers. Fires can be prevented by understanding the fire triangle and methods of reducing fire risk, conducting fire risk assessments, and knowing how to respond if a fire occurs. This Back to Basics article addresses the basics of fire prevention and the steps that can be taken to prevent fires from occurring. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  10. Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.

    Science.gov (United States)

    Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto

    2016-05-15

    A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-01

    Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price risk in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.

  12. NACOM - a code for sodium spray fire analysis

    International Nuclear Information System (INIS)

    Rao, P.M.; Kannan, S.E.

    2002-01-01

    Full text: In liquid metal fast breeder reactors (LMFBR), leakage of sodium can result in a spray fire. Because of higher burning rates in droplet form combustion of sodium in spray fire, thermal consequences are more severe than that in a sodium pool fire. The code NACOM was developed for the analysis of sodium spray fires in LMFBRs facilities. The code uses the validated model for estimating the falling droplet burning rates in pre-ignition and vapour phase combustion stages. It uses a distribution system to generate the droplet groups of different diameters that represent the spray. The code requires about 20 input parameters like sodium leak rates, sodium temperature, initial cell conditions like oxygen concentration, temperature and dimensions. NACOM is a validated code based on experiments with sodium inventory up to 650 kg in 0 to 21 % O 2 atmospheres. The paper brings out the salient features of the code along with the sensitivity analysis of the main input parameters like spray volume mean diameter, oxygen concentration etc. based on the results obtained. The limitations of the code and the confidence margins applicable to results obtained are also brought out

  13. Fire simulation in radioactive waste disposal and the radiation risk associated

    International Nuclear Information System (INIS)

    Domingos, Érica Nascimento

    2018-01-01

    An atmospheric dispersion of radioactive material is one of the possible consequences of an accident scenario in nuclear installations, radiative and radioactive waste deposit. Taking into account a possibility of this release of radioactive material into the atmosphere this work proposes a modeling of the atmospheric dispersion from a fire scenario in a deposit of radioactive waste of low and middle level of radiation varying the amount of inventory released in the fire. For this simulation was adopted the software of physical codes of medical health, the HotSpot Health Physics Codes which uses the Gaussian model to calculate an atmospheric dispersion based on the Pasquill atmospheric stability classes. This software calculates a total effective dose in relation to distance, such as a compromised dose in a list of specific organs, among them the lung, object of work study for calculating the risk of cancer associated with a low dose of radiation. The radiological risk calculation is held by the BEIR V model, Biological Effects of Ionizing Radiations, one of the models to estimate the relative risk of cancer induced by ionizing radiation. (author)

  14. Forest Fires in the Metropolitan District of Quito (DMQ: Risk knowledge and public intervention

    Directory of Open Access Journals (Sweden)

    Jairo Estacio

    2013-10-01

    Full Text Available Every summer, the Metropolitan District of Quito (MDQ is subject to the recurrence of forest fires with different consequences in terms of loss of protected areas of great biodiversity, affectation of public and private spaces of different use and impact on the population well-being. The management of municipal authorities of this type of risks is still limited, since there is no decisional tool that can improve the preventive planning and the response to the annual presence of these events. For this reason, the generation of a study on potential fores fires represents the first step towards the comprehension and the reduction of risks. The present article presents the result of this study, the mechanisms and the efforts of the municipal technicians that made possible the achievement of these tools in the frame of the Risk Reduction Program of the Metropolitan District of Quito. The obtained results allowed the implementation of prevention actions in areas with very valuable ecosystems services but fragile in the same time, as well as the improvement of the fire emergency plans in order to optimize resources and reinforce local capacities. 

  15. A Framework for Assessment of Intentional Fires

    Directory of Open Access Journals (Sweden)

    Iraj Mohammadfam

    2014-04-01

    Full Text Available Background & Objectives : It is not possible to live without using fire. However, fire could destruct human properties in a short time. One of the most important types of fire is intentional fire. This type of fire has become a great problem for insurance companies, fire departments, industries, government and business in the recent years. This study aimed to provide a framework for risk assessment of intentional fires . Methods: In the present study, risk assessment and management model for protecting critical properties and security vulnerability assessment model were used to develop a comprehensive framework for risk assessment of intentional fires. The framework was examined in an automotive industry . Results : The designed framework contained five steps as 1 asset inventory and prioritizing them according to their importance, 2 invasion assessment, 3 vulnerability assessment, 4 risk assessment and design and 5 implementation and evaluating the effectiveness of corrective/preventive actions. Thirty different scenarios for intentional fires were identified by implementing the designed framework in an automotive company, and then the associated risk of each scenario was quantitatively determined. Conclusion : Compared to seven models, the proposed framework represents its comprehension. Development of safety and security standards and a central security information bank to reduce security risks, including the risk of intentional fires is recommended .

  16. PREFER: a European service providing forest fire management support products

    Science.gov (United States)

    Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George

    2015-06-01

    PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.

  17. Humans, Fires, and Forests - Social science applied to fire management

    Science.gov (United States)

    Hanna J. Cortner; Donald R. Field; Pam Jakes; James D. Buthman

    2003-01-01

    The 2000 and 2002 fire seasons resulted in increased political scrutiny of the nation's wildland fire threats, and given the fact that millions of acres of lands are still at high risk for future catastrophic fire events, the issues highlighted by the recent fire seasons are not likely to go away any time soon. Recognizing the magnitude of the problem, the...

  18. Understanding the transmission of wildfire risk on a fire prone landscape - A Case study from Central Oregon

    Science.gov (United States)

    Ager, Alan; Barros, Ana; Day, Michelle; Preisler, Haiganoush; Evers, Cody

    2015-04-01

    We develop the idea of risk transmission from large wildfires and apply network analyses to understand its importance within the 3.2 million ha Fire-People-Forest study area in central Oregon, US. Historic wildfires within the study and elsewhere in the western US frequently burn over long distances (e.g., 20-50 km) through highly fragmented landscapes with respect to ownership, fuels, management intensity, population density, and ecological conditions. The collective arrangement of fuel loadings in concert with weather and suppression efforts ultimately determines containment and the resulting fire perimeter. While spatial interactions among land parcels in terms of fire spread and intensity have been frequently noted by fire managers, quantifying risk and exposure transmission is not well understood. In this paper we used simulation modeling to quantify wildfire transmission and built a transmission network among and within land owners and communities within the study area. The results suggested that 84% of the predicted area burned within the 25 communities in the study area was from simulated fires that ignited on federal lands. The wildland urban interface surrounding the communities was predicted to burn at a rate of 2 % per year, with 57% of the area burned from fires ignited on federal lands. The node degree for communities indicated that simulated fires originated on about 6 different landowners. Network analyses in general revealed independent variation in transmitted fire among landowners in terms of both node degree (diversity of landowners exchanging fire) and transmitted fire, indicating that both the spatial grain of land ownership and wildfire topology contribute to transmission among land parcels. We discuss how network analyses of wildfire transmission can inform fire management goals for creating fire adapted communities, conserving biodiversity, and resolving competing demands for fire-prone ecosystem services. We also discuss how biophysical

  19. Fire in longleaf pine stand management: an economic analysis

    Science.gov (United States)

    Rodney L. Busby; Donald G. Hodges

    1999-01-01

    A simulation analysis of the economics of using prescribed fire as a forest management tool in the management of longleaf pine (Pinus palustris Mill.) plantations was conducted. A management regime using frequent prescribed fire was compared to management regimes involving fertilization and chemical release, chemical control, and mechanical control. Determining the...

  20. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  1. The state of art of internal fire PSA in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Xinli; Zhao Bo; Zheng Xiangyang

    2010-01-01

    The operational experiences of nuclear power plants (NPPs) show that the internal fires challenge effectively the nuclear safety of NPPs. Thus, the authorities having jurisdiction in the world have enhanced the supervision on fire safety in NPPs, asking the licensees to perform fire hazard analysis and evaluate the fire risk. This article mainly describes the state of art of internal fire probabilistic safety assessment (PSA) in the world, and compares the main methods and standards for internal fire PSA. (authors)

  2. Crisis management with applicability on fire fighting plants

    Science.gov (United States)

    Panaitescu, M.; Panaitescu, F. V.; Voicu, I.; Dumitrescu, L. G.

    2017-08-01

    The paper presents a case study for a crisis management analysis which address to fire fighting plants. The procedures include the steps of FTA (Failure tree analysis). The purpose of the present paper is to describe this crisis management plan with tools of FTA. The crisis management procedures have applicability on anticipated and emergency situations and help to describe and planning a worst-case scenario plan. For this issue must calculate the probabilities in different situations for fire fighting plants. In the conclusions of paper is analised the block diagram with components of fire fighting plant and are presented the solutions for each possible risk situations.

  3. Fire hazard analysis for the Westinghouse Hanford Company managed low-level mixed waste Trench 31 and 34

    International Nuclear Information System (INIS)

    Howard, B.J.

    1995-01-01

    This analysis is to assess comprehensively the risks from fire within the new lined landfills, provided by W-025 and designated Trench 31 and 34 of Burial Ground 218-W-5; they are located in the 200 West area of the Hanford Site, and are designed to receive low-level mixed waste

  4. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2018-01-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  5. The Pictorial Fire Stroop: A Measure of Processing Bias for Fire-Related Stimuli

    Science.gov (United States)

    Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele

    2009-01-01

    Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and…

  6. Demographic controls of future global fire risk

    Science.gov (United States)

    Knorr, W.; Arneth, A.; Jiang, L.

    2016-08-01

    Wildfires are an important component of terrestrial ecosystem ecology but also a major natural hazard to societies, and their frequency and spatial distribution must be better understood. At a given location, risk from wildfire is associated with the annual fraction of burned area, which is expected to increase in response to climate warming. Until recently, however, only a few global studies of future fire have considered the effects of other important global environmental change factors such as atmospheric CO2 levels and human activities, and how these influence fires in different regions. Here, we contrast the impact of climate change and increasing atmospheric CO2 content on burned area with that of demographic dynamics, using ensembles of climate simulations combined with historical and projected population changes under different socio-economic development pathways for 1901-2100. Historically, humans notably suppressed wildfires. For future scenarios, global burned area will continue to decline under a moderate emissions scenario, except for low population growth and fast urbanization, but start to increase again from around mid-century under high greenhouse gas emissions. Contrary to common perception, we find that human exposure to wildfires increases in the future mainly owing to projected population growth in areas with frequent wildfires, rather than by a general increase in burned area.

  7. Uncertainty analysis for parameters of CFAST in the main control room fire scenario

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanhong; Guo, Yun; Peng, Changhong [Univ. of Science and Technology of China No. 96, Anhui (China). School of Nuclear Science and Technology

    2017-07-15

    The fire accident is one of important initial events in the nuclear power plant. Moreover, the fire development process is extremely difficult and complex to predict accurately. As a result, the plant internal fire accidents have become one of the most realistic threat on the safety of the nuclear power plants. The main control room contains all the control and monitoring equipment that operators need. Once it is on fire, hostile environments would greatly impact on the safety of human operations. Therefore, fire probability safety analysis on the main control room has become a significant task. By using CFAST and Monte Carlo sampling method as a tool for fire modeling to simulate main control room on fire, we can examine uncertainty analysis for the important parameters of CFAST.

  8. Forest fire situation analysis over forest reserve land in Tomsk petroleum province

    International Nuclear Information System (INIS)

    Pasko, O A; Baranova, A V

    2015-01-01

    The paper delivers the analysis of space-time characteristics of forest fire ignition and spread in the North of Tomsk oblast, i.e. petroleum production area (Kargasok, Parabel and Teguldet districts). It also presents long-term and seasonal forest fire behavior including fire ignition and spread frequency (annual and seasonal), the fire season duration and their zonality. The main driving factors of forest fire ignition both human and natural ones are revealed

  9. Analysis of pressurization of plutonium oxide storage vials during a postulated fire

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.; Kesterson, M.; Hensel, S.

    2015-02-10

    The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporation of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.

  10. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  11. Study on the Post-Fire Safe-Shutdown Analysis for CANDU NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Hwan; Kim, Yun Jung; Park, Mun Hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this paper is to study a method of the Post-Fire Safe-Shutdown Analysis in order to apply to CANDU NPPs when one group of the Safety Structures, Systems and Components(SCCs) is failed by Fire. The purpose of Fire Protection is prevention, suppression of the fire and mitigation of the effect on the Nuclear Safety. When fire takes place at the Nuclear Power Plants(NPPs), the reactor should achieve and maintain safe shut-down condition and minimize radioactive material release to an environment. The purpose of the Post-Fire SSA process is an evaluation process during a fire at NPPs. At this study, the process was conceptually adopted for control room complex of CANDU NPPs. The Core Damage Frequency of the Reactor will be evaluated more accurately if the SSA is adopted adequately at a fire.

  12. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Science.gov (United States)

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  13. Managing Fire Risk During Drought: The Influence of Certification and El Nino on Fire-Driven Forest Conversion for Oil Palm in Southeast Asia

    Science.gov (United States)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-01-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification

  14. Nonlinear phased analysis of reinforced concrete tunnels under fire exposure

    NARCIS (Netherlands)

    Lilliu, G.; Meda, A.

    2013-01-01

    Fire analysis of precast segmental tunnels involves several problems, mainly related to the soil-structure interaction during fire exposure, coupled with material degradation. Temperature increase in the tunnel is the cause of thermal expansion of the lining, which is resisted by the soil pressure.

  15. Spatiotemporal Modeling of Community Risk

    Science.gov (United States)

    2016-03-01

    Ertugay, and Sebnem Duzgun, “Exploratory and Inferential Methods for Spatio-Temporal Analysis of Residential Fire Clustering in Urban Areas,” Fire ...response in communities.”26 In “Exploratory and Inferential Methods for Spatio-temporal Analysis of Residential Fire Clustering in Urban Areas,” Ceyhan...of fire resources spread across the community. Spatiotemporal modeling shows that actualized risk is dynamic and relatively patterned. Though

  16. Risk terminology primer: Basic principles and a glossary for the wildland fire management community

    Science.gov (United States)

    Matthew P. Thompson; Tom Zimmerman; Dan Mindar; Mary Taber

    2016-01-01

    Risk management is being increasingly promoted as an appropriate method for addressing wildland fire management challenges. However, a lack of a common understanding of risk concepts and terminology is hindering effective application. In response, this General Technical Report provides a set of clear, consistent, understandable, and usable definitions for terms...

  17. Global sensitivity analysis using emulators, with an example analysis of large fire plumes based on FDS simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Adrian [Health and Safety Laboratory, Harpur Hill, Buxton (United Kingdom)

    2015-12-15

    Uncertainty in model predictions of the behaviour of fires is an important issue in fire safety analysis in nuclear power plants. A global sensitivity analysis can help identify the input parameters or sub-models that have the most significant effect on model predictions. However, to perform a global sensitivity analysis using Monte Carlo sampling might require thousands of simulations to be performed and therefore would not be practical for an analysis based on a complex fire code using computational fluid dynamics (CFD). An alternative approach is to perform a global sensitivity analysis using an emulator. Gaussian process emulators can be built using a limited number of simulations and once built a global sensitivity analysis can be performed on an emulator, rather than using simulations directly. Typically reliable emulators can be built using ten simulations for each parameter under consideration, therefore allowing a global sensitivity analysis to be performed, even for a complex computer code. In this paper we use an example of a large scale pool fire to demonstrate an emulator based approach to global sensitivity analysis. In that work an emulator based global sensitivity analysis was used to identify the key uncertain model inputs affecting the entrainment rates and flame heights in large Liquefied Natural Gas (LNG) fire plumes. The pool fire simulations were performed using the Fire Dynamics Simulator (FDS) software. Five model inputs were varied: the fire diameter, burn rate, radiative fraction, computational grid cell size and choice of turbulence model. The ranges used for these parameters in the analysis were determined from experiment and literature. The Gaussian process emulators used in the analysis were created using 127 FDS simulations. The emulators were checked for reliability, and then used to perform a global sensitivity analysis and uncertainty analysis. Large-scale ignited releases of LNG on water were performed by Sandia National

  18. How well does the Post-fire Erosion Risk Management Tool (ERMiT) really work?

    Science.gov (United States)

    Robichaud, Peter; Elliot, William; Lewis, Sarah; Miller, Mary Ellen

    2016-04-01

    The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) was developed to assist post fire assessment teams identify high erosion risk areas and effectiveness of various mitigation treatments to reduce that risk. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties which are then used as WEPP inputs. Since 2007, the model has been used in making hundreds of land management decisions in the US and elsewhere. We use eight published field study sites in the Western US to compare ERMiT predictions to observed hillslope erosion rates. Most sites experience only a few rainfall events that produced runoff and sediment except for a California site with a Mediterranean climate. When hillslope erosion occurred, significant correlations occurred between the observed hillslope erosion and those predicted by ERMiT. Significant correlation occurred for most mitigation treatments as well as the five recovery years. These model validation results suggest reasonable estimates of probabilistic post-fire hillslope sediment delivery when compared to observation.

  19. Governance of Land Use Planning to Reduce Fire Risk to Homes Mediterranean France and California

    Directory of Open Access Journals (Sweden)

    Susan D. Kocher

    2017-03-01

    Full Text Available Wildfire is a natural part of forested Mediterranean systems. As humans continue to live and build housing in these areas, wildfire is a constant threat to homes and lives. The goal of this paper is to describe aspects of land-use planning that are used to reduce wildfire risk in institutionally divergent regions; southern France and California. By reviewing relevant legislation and planning documents and conducting in person interviews with fire and planning professionals, we identify the institutions which participate in land use planning to reduce fire risk and the key laws and regulations that guide planning decisions. Our results indicate that France has a more centralized system for planning for fire, with national level entities heavily involved in local land use planning. California, on the other hand sees almost no federal oversite, and, while state law requires local plans to include wildfire risk, most fine grain decisions are left to local planners and decision makers. In both regions, however, we see a reliance on technical support provided from outside local jurisdictions. Increased coordination between local, regional, and national governments could improve land use planning in both locations.

  20. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Ager, A.; Finney, M.

    2009-04-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of fires and generate burn probability and intensity maps over large areas (10,000 - 2,000,000 ha). The MTT algorithm is parallelized for multi-threaded processing and is imbedded in a number of research and applied fire modeling applications. High performance computers (e.g., 32-way 64 bit SMP) are typically used for MTT simulations, although the algorithm is also implemented in the 32 bit desktop FlamMap3 program (www.fire.org). Extensive testing has shown that this algorithm can replicate large fire boundaries in the heterogeneous landscapes that typify much of the wildlands in the western U.S. In this paper, we describe the application of the MTT algorithm to understand spatial patterns of burn probability (BP), and to analyze wildfire risk to key human and ecological values. The work is focused on a federally-managed 2,000,000 ha landscape in the central interior region of Oregon State, USA. The fire-prone study area encompasses a wide array of topography and fuel types and a number of highly valued resources that are susceptible to fire. We quantitatively defined risk as the product of the probability of a fire and the resulting consequence. Burn probabilities at specific intensity classes were estimated for each 100 x 100 m pixel by simulating 100,000 wildfires under burn conditions that replicated recent severe wildfire events that occurred under conditions where fire suppression was generally ineffective (97th percentile, August weather). We repeated the simulation under milder weather (70th percentile, August weather) to replicate a "wildland fire use scenario" where suppression is minimized to

  1. EPRI/NRC-RES fire PRA guide for nuclear power facilities. Volume 1, summary and overview

    International Nuclear Information System (INIS)

    2004-01-01

    This report documents state-of-the-art methods, tools, and data for the conduct of a fire Probabilistic Risk Assessment (PRA) for a commercial nuclear power plant (NPP) application. The methods have been developed under the Fire Risk Re-quantification Study. This study was conducted as a joint activity between EPRI and the U. S. NRC Office of Nuclear Regulatory Research (RES) under the terms of an EPRI/RES Memorandum of Understanding (RS.1) and an accompanying Fire Research Addendum (RS.2). Industry participants supported demonstration analyses and provided peer review of this methodology. The documented methods are intended to support future applications of Fire PRA, including risk-informed regulatory applications. The documented method reflects state-of-the-art fire risk analysis approaches. The primary objective of the Fire Risk Study was to consolidate recent research and development activities into a single state-of-the-art fire PRA analysis methodology. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events (IPEEE) fire analyses, have been addressed to the extent allowed by the current state-of-the-art and the overall project scope. Methodological debates were resolved through a consensus process between experts representing both EPRI and RES. The consensus process included a provision whereby each major party (EPRI and RES) could maintain differing technical positions if consensus could not be reached. No cases were encountered where this provision was invoked. While the primary objective of the project was to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advancement over previously documented methods. In several areas, this project has, in fact, developed new methods and approaches. Such advances typically relate to areas of past methodological debate.

  2. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.

    2018-02-01

    We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  3. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    Directory of Open Access Journals (Sweden)

    M. M. Pinto

    2018-02-01

    Full Text Available We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF and the European Centre for Medium-Range Weather Forecasts (ECMWF. Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004–2016 and validated against the period of January–September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS or the Fire Risk Map (FRM product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  4. Structural Test and Analysis of RC Slab After Fire Loading

    International Nuclear Information System (INIS)

    Chung, Chulhun; Im, Cho Rong; Park, Jaegyun

    2013-01-01

    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber

  5. Structural Test and Analysis of RC Slab After Fire Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chulhun; Im, Cho Rong; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-04-15

    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

  6. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    Science.gov (United States)

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  7. Research on Influence and Prediction Model of Urban Traffic Link Tunnel curvature on Fire Temperature Based on Pyrosim--SPSS Multiple Regression Analysis

    Science.gov (United States)

    Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long

    2018-05-01

    The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.

  8. A probabilistic method for optimization of fire safety in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Sprey, W.

    1986-01-01

    As part of a comprehensive fire safety study for German Nuclear Power Plants a probabilistic method for the analysis and optimization of fire safety has been developed. It follows the general line of the American fire hazard analysis, with more or less important modifications in detail. At first, fire event trees in selected critical plant areas are established taking into account active and passive fire protection measures and safety systems endangered by the fire. Failure models for fire protection measures and safety systems are formulated depending on common parameters like time after ignition and fire effects. These dependences are properly taken into account in the analysis of the fire event trees with the help of first-order system reliability theory. In addition to frequencies of fire-induced safety system failures relative weights of event paths, fire protection measures within these paths and parameters of the failure models are calculated as functions of time. Based on these information optimization of fire safety is achieved by modifying primarily event paths, fire protection measures and parameters with the greatest relative weights. This procedure is illustrated using as an example a German 1300 MW PWR reference plant. It is shown that the recommended modifications also reduce the risk to plant personnel and fire damage

  9. Fire protection in ventilation systems and in case of fire operating ventilation systems

    International Nuclear Information System (INIS)

    Zitzelsberger, J.

    1983-01-01

    The fire risks in ventilation systems are discussed. It follows a survey of regulations on fire prevention and fire protection in ventilation systems and smoke and heat exhaust systems applicable to nuclear installations in the Federal Republic of Germany. Fire protection concepts for normal systems and for systems operating also in case of fire will be given. Several structural elements for fire protection in those systems will be illustrated with regard to recent research findings

  10. Safety analysis of the existing 804 and 845 firing facilities

    International Nuclear Information System (INIS)

    Odell, B.N.

    1986-01-01

    A safety analysis was performed to determine if normal operations and/or potential accidents at the 804 and 845 Firing Facilities at Site 300 could present undue hazards to the general public, peronnel at Site 300, or have an adverse effect on the environment. The normal operation and credible accident that might have an effect on these facilities or have off-site consequence were considered. It was determined by this analysis that all but one of the hazards were either low or of the type or magnitude routinely encountered and/or accepted by the public. The exception was explosives. Since this hazard has the potential for causing significant on-site and minimum off-site consequences, Bunkers 804 and 845 have been classified as moderate hazard facilties per DOE Order 5481.1A. This safety analysis concluded that the operation at these facilities will present no undue risk to the health and safety of LLNL employees or the public

  11. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013).

    Science.gov (United States)

    Fox, D M; Carrega, P; Ren, Y; Caillouet, P; Bouillon, C; Robert, S

    2018-04-15

    Wildfires burn >450,000ha of forest every year in Euro-Mediterranean countries. Many fires originate in the Wildland Urban Interface (WUI) where housing density and weather conditions affect fire occurrence. Housing density is determined by long term land use policies while weather conditions evolve quickly. The first objective was to quantify the impacts of land use policy on WUI characteristics and fire risk in SE France during 1990-2012. The second objective was to quantify how Fire Weather Index (FWI) is related to fire occurrence. WUI was mapped from 1990, 1999, and 2012 building layers and crossed with a NDVI derived vegetation layer. In all, 12 WUI categories were derived: 4 building density classes and 3 vegetation layers. The I87 FWI was based on daily temperature, wind speed, relative humidity and soil water content. Despite a 30% increase in the number of new buildings, WUI area increased by only 5% as new housing filled in open space in existing WUI area. This trend can be linked to national level urban planning legislation and forest fire protection laws. Major driver variables determining housing location were aspect, slope, and distance to city centers. Fire frequency and burned area were nonlinearly related to FWI: 73% of the 99 fires occurred during weeks with FWI values ≥90 even though these accounted for only 44% of all weeks. Burned area was even more sensitive to FWI since 97% of total burned area occurred during weeks with mean FWI values ≥90. All days with burned areas >100ha had FWI values >150. The study demonstrated that WUI legislation can be an efficient tool to limit WUI fire risk. FWI results suggest the predicted increase in extreme summer heat events with global warming could increase burned area as firefighting resources are stretched beyond capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fire regime in Mediterranean ecosystem

    Science.gov (United States)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  13. Modeling of compartment fire

    International Nuclear Information System (INIS)

    Sathiah, P.; Siccama, A.; Visser, D.; Komen, E.

    2011-01-01

    Fire accident in a containment is a serious threat to nuclear reactors. Fire can cause substantial loss to life and property. The risk posed by fire can also exceed the risk from internal events within a nuclear reactor. Numerous research efforts have been performed to understand and analyze the phenomenon of fire in nuclear reactor and its consequences. Modeling of fire is an important subject in the field of fire safety engineering. Two approaches which are commonly used in fire modeling are zonal modeling and field modeling. The objective of this work is to compare zonal and field modeling approach against a pool fired experiment performed in a well-confined compartment. Numerical simulations were performed against experiments, which were conducted within PRISME program under the framework of OECD. In these experiments, effects of ventilation flow rate on heat release rate in a confined and mechanically ventilated compartment is investigated. Time dependent changes in gas temperature and oxygen mass fraction were measured. The trends obtained by numerical simulation performed using zonal model and field model compares well with experiments. Further validation is needed before this code can be used for fire safety analyses. (author)

  14. Fire Safety. Managing School Facilities, Guide 6.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…

  15. THE REACTION TO FIRE TEST FOR FIRE RETARDANT AND FOR COMBUSTIBLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Adelaida FANFAROVÁ

    2016-12-01

    Full Text Available Currently the natural materials become popular building material for houses, buildings and recreational property. The risk of fires in residential timber construction or eco houses cannot be completely ruled out, therefore there is a need for proper and correct implementing preventive measures and application of all available solutions, which may reduce the risk of fire as far as possible, to slow down the combustion process, to protect the life of people, animals and also the building itself until arrival members of the Fire and Rescue Services. Fireproofing of combustible materials is a specific area of fire protection. For scientific research as well as for real-life practice, not only their structural and physical properties, but also fire-technical characteristics are really important. The present researchers mostly focus on fire-retardant treatment of wood that is why the authors of this contribution focused on a different combustible material. This research article presents the experimental testing and examination of the reaction to fire test of the selected thermal insulation of hemp fiber that was impregnated by the selected fire retardant in laboratory conditions.

  16. Forum for fire protection and safety in power plants[Norway

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference contains 16 presentations on topics in the fields of fire protection and safety in plants in Western Norway, reorganization and reconstruction of power systems and plants in Norway, various aspects of risk and vulnerability analysis, technological aspects of plant management and construction and problems and risks with particularly transformers. Some views on challenges of the fire departments and the new Norwegian regulations for electrical power supply systems are included. One presentation deals with challenges for Icelandic power production plants.

  17. Application Study of Fire Severity Classification

    International Nuclear Information System (INIS)

    Kim, In Hwan; Kim, Hyeong Taek; Jee, Moon Hak; Kim, Yun Jung

    2013-01-01

    This paper introduces the Fire Incidents Severity Classification Method for Korean NPPs that may be derived directly from the data fields and feasibility study for domestic uses. FEDB was characterized in more detail and assessed based on the significance of fire incidents in the updated database and five fire severity categories were defined. The logical approach to determine the fire severity starts from the most severe characteristics, namely challenging fires, and continues to define the less challenging and undetermined categories in progress. If the FEDB is utilized for Korean NPPs, the ways of Fire Severity Classification suggested in 2.4 above can be utilized for the quantitative fire risk analysis in future. The Fire Events Database (FEDB) is the primary source of fire data which are used for fire frequency in Fire PSA (Probabilistic Safety Assessment). The purpose of its development is to calculate the quantitative fire frequency at the comprehensive and consolidated source derived from the fire incident information available for Nuclear Power Plants (NPPs). Recently, the Fire Events Database (FEDB) was updated by Electric Power Research Institute (EPRI) and Nuclear Regulatory Commission (NRC) in U. S. The FEDB is intended to update the fire event history up to 2009. A significant enhancement to it is the reorganization and refinement of the database structure and data fields. It has been expanded and improved data fields, coding consistency, incident detail, data review fields, and reference data source traceability. It has been designed to better support several Fire PRA uses as well

  18. A fire hazard analysis at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Joerud, F.; Magnusson, T.

    1998-01-01

    The fire hazard analysis (FHA) of the Ignalina Nuclear Power Plant (INPP) Unit no.1 was initiated during 1997 and is estimated to finalise in summer 1998. The reason for starting a FHA was a recommendation in the Safety Analysis Report and its review to prioritise a systematic FHA. Fire protection improvements had earlier been based on engineering assessments, but further improvements required a systematic FHA. It is also required by the regulator for licensing of unit no.1. In preparation of the analysis it was decided to perform a deterministic FHA to fulfil the requirements in the IAEA draft of a Safety Practice ''Preparation of Fire Hazard Analyses for Nuclear Power Plants''. As a supporting document the United States Department of Energy Reactor Core Protection Evaluation Methodology for Fires at RBMK and WWER Nuclear Power Plants (RCPEM) was agreed to be used. The assistance of the project is performed as a bilateral activity between Sweden and UK. The project management is the responsibility of the INPP. In order to transfer knowledge to the INPP project group, training activities are arranged by the western team. The project will be documented as a safety case. The project consists of parties from INPP, Sweden, UK and Russia which makes the project very dependent of good communication procedures. The most difficult problems is except from the problems with translation, the problems with different standards and lack of testing protocols of the fire protection installations and problems to set the right level of screening criteria. There is also the new dimension of making it possible to take credit for the fire brigade in the safety case, which can bring the project into difficulties. The most interesting challenges for the project are to set the most sensible safety levels in the screening phase, to handle the huge volume of rooms for survey and screening, to maintain the good exchange of fire- and nuclear safety information between all the parties involved

  19. Performance Assessment and analysis of national building codes with fire safety in all wards of a hospital

    Directory of Open Access Journals (Sweden)

    M. Mahdinia

    2009-04-01

    Full Text Available Background and aimsAIDS as a re-emergent disease and Viral hepatitis (B and C as one of thBackground and objective: Fire safety is an important problem in hospitals. Movement less, lack of awareness and special situation of residents are the reasons of this subject. In more countries such as Iran, fire protection regulations have compiled within the framework of national building codes. Current building codes don't create sufficient safety for patient in the hospitals in different situations and more of the advanced countries in the world effort to establish building code, base  on performance. This study to be accomplished with this goal that determination of fire risk level in the wards of a hospital and survey the efficiency of the national building codes. Methodsfire risk assesses is done, using "engineering fire risk assessment method" with the checklist for Data gathering. In this manner, risk calculate in all compartments and in the next  stage for survey the effect of building codes, with this supposition that all compartment is  conforming to building code requirement, risk level calculate in two situation.Resultsthe results of present study reveals that, risk level in all wards is more than one and even though risk less than one is acceptable, consequently minimum of safely situations didn't  produce in most wards. The results show the national building code in the different conditions  don't have appropriate efficient for creation of suitable safety. Conclusionin order to access to a fire safety design with sufficient efficiency, suitable selection is use of risk assessment based on, design methods.

  20. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal fire events for Plant Operational State 5 during a refueling outage. Volume 3

    International Nuclear Information System (INIS)

    Lambright, J.; Yakle, J.

    1994-07-01

    This report, Volume 3, presents the details of the analysis of core damage frequency due to fire during shutdown Plant Operational State 5 at the Grand Gulf Nuclear Station. Insights from previous fire analyses (Peach Bottom, Surry, LaSalle) were used to the greatest extent possible in this analysis. The fire analysis was fully integrated utilizing the same event trees and fault trees that were used in the internal events analysis. In assessing shutdown risk due to fire at Grand Gulf, a detailed screening was performed which included the following elements: (a) Computer-aided vital area analysis; (b) Plant inspections; (c) Credit for automatic fire protection systems; (d) Recovery of random failures; (e) Detailed fire propagation modeling. This screening process revealed that all plant areas had a negligible (<1.0E-8 per year) contribution to fire-induced core damage frequency

  1. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Science.gov (United States)

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  2. Crown Fire Potential

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Crown fire potential was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The...

  3. Industry participation in the development of a risk-informed, performance-based regulation for fire protection at US nuclear power plants

    International Nuclear Information System (INIS)

    Emerson, F.A.

    1998-01-01

    The USNRC staff have recently been directed by the NRC Commissioners to evaluate quickly the development of a risk-informed, performance-based fire protection regulation to replace the current regulations. The US nuclear industry does not believe a new rule is necessary to increase fire safety, and believes that there are significant risks and potentially significant benefits depending on the construction of the rule. However, the industry will actively work with NRC staff if rulemaking proceeds such that the risks are minimized and the benefits maximized. A Nuclear Energy Institute (NEI) Issue Task Force (ITF) has been established to guide the participation of industry in any rulemaking activity. If rulemaking proceeds, a framework should be established for the evolution of a fire protection rule from the current prescriptive basis to a risk-informed, performance-based rule. (author)

  4. The Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry: A Domino Effect-Based Study

    OpenAIRE

    Kadri , Farid; Chatelet , E.; Lallement , Patrick

    2013-01-01

    International audience; In the field of risks analysis, the domino effect has been documented in technical literature since 1947. The accidents caused by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion are among the most frequent primary accidents for a domino effect due to the units under pressure and the storage of flammable and dangerous substances. Heat radiation and overpressure are one of major factors leading to domino effect on ind...

  5. History of Fire Events in the U.S. Commercial Nuclear Industry

    International Nuclear Information System (INIS)

    Bijan Najafi; Joglar-Biloch, Francisco; Kassawara, Robert P.; Khalil, Yehia

    2002-01-01

    made significant progress towards improving the quality of the fire events data through use of multiple collection methods as well as its review and verification. To date EPRI has used this data to develop a generic fire ignition frequency model for U.S. nuclear power industry (Ref. 1, 4 and 5) as well as to support other models in support of EPRI Fire Risk Methods such as a cable fire manual suppression model. EPRI will continue its effort to collect and analyze operating data to support risk informed/performance based fire safety engineering, including collection and analysis of impairment data for fire protection systems and features. This paper provides details on the collection and application of fire events to risk informed/performance based fire protection. The paper also provides valuable insights into improving both collection and use of fire events data. (authors)

  6. Risk management of key issues of FPSO

    Science.gov (United States)

    Sun, Liping; Sun, Hai

    2012-12-01

    Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.

  7. Probabilistic safety analysis for fire events for the NPP Isar 2

    International Nuclear Information System (INIS)

    Schmaltz, H.; Hristodulidis, A.

    2007-01-01

    The 'Probabilistic Safety Analysis for Fire Events' (Fire-PSA KKI2) for the NPP Isar 2 was performed in addition to the PSA for full power operation and considers all possible events which can be initiated due to a fire. The aim of the plant specific Fire-PSA was to perform a quantitative assessment of fire events during full power operation, which is state of the art. Based on simplistic assumptions referring to the fire induced failures, the influence of system- and component-failures on the frequency of the core damage states was analysed. The Fire-PSA considers events, which will result due to fire-induced failures of equipment on the one hand in a SCRAM and on the other hand in events, which will not have direct operational effects but because of the fire-induced failure of safety related installations the plant will be shut down as a precautionary measure. These events are considered because they may have a not negligible influence on the frequency of core damage states in case of failures during the plant shut down because of the reduced redundancy of safety related systems. (orig.)

  8. Electrical Switchgear Building No. 5010-ESF Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    N.M. Ruonavaara

    2001-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event

  9. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose

    Directory of Open Access Journals (Sweden)

    Barbara Falatová

    2018-06-01

    Full Text Available In arson attacks the detection of ignitable liquid residues (ILRs at fire scenes provides key evidence since ignitable liquids, such as gasoline, are commonly used to initiate the fire. In most forensic laboratories gas chromatography-mass spectrometry is employed for the analysis of ILRs. When a fire occurs, suppression agents are used to extinguish the fire and, before the scene is investigated, the samples at the scene are subjected to a variety of processes such as weathering, which can significantly modify the chemical composition and thus lead to erroneous conclusions. In order to avoid this possibility, the application of chemometric tools that help the analyst to extract useful information from data is very advantageous. The study described here concerned the application of a headspace-mass spectrometry electronic nose (HS-MS eNose combined with chemometric tools to determine the presence/absence of gasoline in weathered fire debris samples. The effect of applying two suppression agents (Cafoam Aquafoam AF-6 and Pyro-chem PK-80 Powder and delays in the sampling time (from 0 to 48 h were studied. It was found that, although the suppression systems affect the mass spectra, the HS-MS eNose in combination with suitable pattern recognition chemometric tools, such as linear discriminant analysis, is able to identify the presence of gasoline in any of the studied situations (100% correct classification.

  10. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    Science.gov (United States)

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Burn Severities, Fire Intensities, and Impacts to Major Vegetation Types from the Cerro Grande Fire

    Energy Technology Data Exchange (ETDEWEB)

    Balice, Randy G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, Kathryn D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2004-12-15

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE.

  12. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  13. Use of fire hazard analysis to cost effectively manage facility modifications

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, K., E-mail: kkruger@plcfire.com [PLC Fire Safety Solutions, Fredericton, NB (Canada); Cronk, R., E-mail: rcronk@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    In Canada, licenced Nuclear power facilities, or facilities that process, handle or store nuclear material are required by the Canadian Nuclear Safety Commission to have a change control process in place. These processes are in place to avoid facility modifications that could result in an increase in fire hazards, or degradation of fire protection systems. Change control processes can have a significant impact on budgets associated with plant modifications. A Fire Hazard Analysis (FHA) is also a regulatory requirement for licenced facilities in Canada. An FHA is an extensive evaluation of a facility's construction, nuclear safety systems, fire hazards, and fire protection features. This paper is being presented to outline how computer based data management software can help organize facilities' fire safety information, manage this information, and reduce the costs associated with preparation of FHAs as well as facilities' change control processes. (author)

  14. Econometric analysis of fire suppression production functions for large wildland fires

    Science.gov (United States)

    Thomas P. Holmes; David E. Calkin

    2013-01-01

    In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews, dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire suppression inputs...

  15. Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

    Science.gov (United States)

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...

  16. Risk of post-fire metal mobilization into surface water resources: A review.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2017-12-01

    One of the significant economic benefits to communities around the world of having pristine forest catchments is the supply of substantial quantities of high quality potable water. This supports a saving of around US$ 4.1 trillion per year globally by limiting the cost of expensive drinking water treatments and provision of unnecessary infrastructure. Even low levels of contaminants specifically organics and metals in catchments when in a mobile state can reduce these economic benefits by seriously affecting the water quality. Contamination and contaminant mobility can occur through natural and anthropogenic activities including forest fires. Moderate to high intensity forest fires are able to alter soil properties and release sequestered metals from sediments, soil organic matter and fragments of vegetation. In addition, the increase in post-fire erosion rate by rainfall runoff and strong winds facilitates the rapid transport of these metals downslope and downstream. The subsequent metal deposition in distal soil and water bodies can influence surface water quality with potential impacts to the larger ecosystems inclusive of negative effects on humans. This is of substantial concern as 4 billion hectares of forest catchments provide high quality water to global communities. Redressing this problem requires quantification of the potential effects on water resources and instituting rigorous fire and environmental management plans to mitigate deleterious effects on catchment areas. This paper is a review of the current state of the art literature dealing with the risk of post-fire mobilization of the metals into surface water resources. It is intended to inform discussion on the preparation of suitable management plans and policies during and after fire events in order to maintain potable water quality in a cost-effective manner. In these times of climate fluctuation and increased incidence of fires, the need for development of new policies and management frameworks

  17. 10th Asia-Oceania Symposium on Fire Science and Technology

    CERN Document Server

    Matsuyama, Ken; Himoto, Keisuke; Nakamura, Yuji; Wakatsuki, Kaoru

    2017-01-01

    This book focuses on topics in the entire spectrum of fire safety science, targeting research in fires, explosions, combustion science, heat transfer, fluid dynamics, risk analysis, structural engineering, and other subjects. The book contributes to a gain in advanced scientific knowledge and presents or advances new ideas in all topics in fire safety science. Two decades ago, the 1st Asia-Oceania Symposium on Fire Science and Technology was held in Hefei, China. Since then, the Asia-Oceania Symposia have grown in size and quality. This book, reflecting that growth, helps readers to understand fire safety technology, design, and methodology in diverse areas including historical buildings, photovoltaic panels, batteries, and electric vehicles.

  18. Analysis of fire deaths in Poland and influence of smoke toxicity.

    Science.gov (United States)

    Giebułtowicz, Joanna; Rużycka, Monika; Wroczyński, Piotr; Purser, David A; Stec, Anna A

    2017-08-01

    Dwelling fires have changed over the years because building contents and the materials used in then have changed. They all contribute to an ever-growing diversity of chemical species found in fires, many of them highly toxic. These arise largely from the changing nature of materials in interior finishes and furniture, with an increasing content of synthetic materials containing higher levels of nitrogen, halogen and phosphorus additives. While there is still a belief that carbon monoxide is the major lethal toxic agent in fires, the hydrogen cyanide and acid gases released from these additives are now well-recognised as major contributory causes of incapacitation, morbidity and mortality in domestic fires. Data for the total number of 263 fire death cases in the Mazowieckie region (mainly Warsaw area) of Poland between 2003-2011 for dwellings fires were obtained from pathologists, forensic toxicologists, fire fighters and analysed. Factors contributing to the death such as the findings of the full post mortem examination (age, sex, health status, burns), the toxicological analysis (carbon monoxide, alcohol etc.), and a thorough investigation of the scene (fire conditions, fuel, etc.) were taken into account and are summarised. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    Science.gov (United States)

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  20. Fire PRA requantification studies. Final report

    International Nuclear Information System (INIS)

    Parkinson, W.

    1993-03-01

    This report describes the requantification of two existing fire probabilistic risk assessments (PRAs) using a fire PRA method and data that are being developed by the Electric Power Research Institute (EPRI). The two existing studies are the Seabrook Station Probabilistic Safety Assessment that was made in 1983 and the 1989 NUREG-1150 analysis of the Peach Bottom Plant. Except for the fire methods and data, the original assumptions were used. The results from the requantification show that there were excessive conservatisms in the original studies. The principal reason for a hundredfold reduction in the Peach Bottom core- damage frequency is the determination that no electrical cabinet fire in a switchgear room would damage both offsite power feeds. Past studies often overestimated the heat release from electrical cabinet fires. EPRI's electrical cabinet heat release rates are based on tests that were conducted for Sandia's fire research program. The rates are supported by the experience in the EPRI Fire Events Database for U.S. nuclear plants. Test data and fire event experience also removed excessive conservatisms in the Peach Bottom control and cable spreading rooms, and the Seabrook primary component cooling pump, turbine building relay and cable spreading rooms. The EPRI fire PRA method and data will show that there are excessive conservatisms in studies that were made for many plants and can benefit them accordingly

  1. Fire Power

    Science.gov (United States)

    Denker, Deb; West, Lee

    2009-01-01

    For education administrators, campus fires are not only a distressing loss, but also a stark reminder that a campus faces risks that require special vigilance. In many ways, campuses resemble small communities, with areas for living, working and relaxing. A residence hall fire may raise the specter of careless youth, often with the complication of…

  2. Alcohol skin preparation causes surgical fires.

    Science.gov (United States)

    Rocos, B; Donaldson, L J

    2012-03-01

    Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring.

  3. Thermodynamic Analysis of Supplementary-Fired Gas Turbine Cycles

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Henriksen, Ulrik Birk; Qvale, Einar Bjørn

    2003-01-01

    to result in a high marginal efficiency. The paper shows that depending on the application, this is not always the case. The interest in this cycle arises from a recent demonstration of the feasibility of a two-stage gasification process through construction of several plants. The gas from this process...... could be divided into two streams, one for primary and one for supplementary firing. A preliminary analysis of the ideal, recuperated Brayton cycle shows that for this cycle any supplementary firing will have a marginal efficiency of unity per extra unit of fuel. The same result is obtained...

  4. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    Science.gov (United States)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-08-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification

  5. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    Directory of Open Access Journals (Sweden)

    P. Noojipady

    2017-08-01

    Full Text Available Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO, include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However

  6. Fire and lightning: what are the risks and how to be protected?; Incendie et foudre: Quel sont les risques et comment se proteger?

    Energy Technology Data Exchange (ETDEWEB)

    Rigal, F.

    2011-04-15

    This article reviews the risks of fire and lightning on photovoltaic panels installed on roofs. It appears that the risk of lighting must be taken into account since the direct impact of lightning on photovoltaic panels can be disastrous. The installation of lightning rods or lightning protector is recommended. Concerning fire risks, technical failures or the presence of electric arcs can put fire on solar panels but their occurrence is very low (only about 20 cases reported in Europe for the last 10 years). Tests have shown that standard photovoltaic panels play a low part in the progressing of a fire. There is an electrocution hazard for firemen intervening on a roof bearing solar panels. A device cutting the continuous current generating by the panels is being studied. (A.C.)

  7. Economic aspects of ecological risk due to nuclear and coal-fired electricity production (general comparison, related to the USSR)

    International Nuclear Information System (INIS)

    Novikov, V.; Wahlstroem, B.; Demin, V.; Lebedev, O.; Ignatiyev, V.

    1991-05-01

    The content of this paper is reflected in the chapter headings: (1) Introduction (2) Environmental problems relating to the coal-fired power plants (3) Costs of environmental protection for coal-fired power plants (4) Comparison of economic efficiency of nuclear and coal-fired power plants (5) Cost of environmental protection for normal operation of a nuclear power plant and its fuel facilities (6) Accidental risk from off-reactor nuclear fuel cycle facilities (7) Conclusion. (Quittner)

  8. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2016-05-01

    Full Text Available Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose has been developed for the analysis of Ignitable Liquid Residues (ILRs. The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA and linear discriminant analysis (LDA were applied to the MS data (45–200 m/z to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin were used to ignite different substrates (wood, cotton, cork, paper and paperboard. A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.

  9. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  10. Improving disaster risk reduction capacity of District Civil Protection Units in managing veld fires: A case of Mangwe District in Matabeleland South Province, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Ernest Dube

    2015-05-01

    Full Text Available This article analysed disaster risk reduction capacity of District Civil Protection Units (DCPUs in managing veld fires in Mangwe District of Matabeleland South Province, Zimbabwe. Veld fires have resulted in unnecessary material, environmental and economic losses. Communities’ livelihoods and property have been destroyed, and the natural environment depleted. The research sought to improve disaster risk reduction capacity of DCPUs in managing veld fires, through new intervention strategies and a new model. The objectives of the study were to investigate the main causes of veld fires; to analyse their impacts; to examine the effectiveness of the current intervention strategies; and to identify challenges in implementing these interventions. Furthermore, the study sought to recommend new possible intervention strategies. This mainly qualitative study employed self-administered questionnaires, interviews and focus-group discussions. Questionnaires were used to investigate members of the DCPU’s ideas, views and experiences, interviews solicited perceptions of community leaders and their subjects, whilst focus-group discussions assisted with information from members of the District Civil Protection Planning Committee. Veld fires in the district are mainly caused by human activities, and they are prevalent during the months of September and October. They affect livelihoods and the natural environment the most. This study found that DCPUs are not prepared to manage veld fires and therefore recommended new strategies and adoption of the community-based disaster risk reduction model. The new strategies include involving community leaders and members of the communities in DCPUs; regular training and workshops to members of DCPUs on veld fire management; creation of fire protection associations; regular campaigns and rehearsal of emergency drills by the DCPU personnel; the introduction of competitions and incentives in veld fire management; vigorous

  11. Assessing European wild fire vulnerability

    Science.gov (United States)

    Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.

    2012-04-01

    Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However

  12. An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for CO2 separation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2015-01-01

    Highlights: • Two variants of a CHP plant – with and without integration with CCS were analyzed. • For the CHP plant main investment risk factors were identified. • For two variants risk analyses based on Monte Carlo method have been carried out. • For evaluation of the investment risk four indices were defined and calculated. - Abstract: For two variants of a supercritical coal-fired combined heat and power plant a thermodynamic, economic and risk analyses were carried out. The first variant consists of a unit working without realization of CO 2 capture process. The second one is the unit integrated with a chemical absorption CO 2 capture installation. In this variant the heat required for the desorption process is supplied with steam extracted from the steam turbine. The developed model of the CHP plant allowed to obtain main operation characteristics for annual change of load. For the two analyzed variants the characteristics of the amount of produced electricity (gross and net), generated heat and consumed chemical energy of fuel, as a function of the cogeneration unit operation time per year, were determined. In the next stage of calculations these characteristics were required to carry out the economic and risk analysis. Economic performances were evaluated in terms of the break-even price of electricity. The performed analysis proves that both investment projects will achieve the same economic effect, i.e. 85.26 €/MW h, if the price of emissions allowances reaches the value of 47.88 €/MgCO 2 . In this case, the potentially better variant of the system may be indicated based on the result of the risk analysis. In order to perform the risk analysis the main technical and economic risk factors concerning implementation of this technology were identified. The risk analysis was conducted with the use of Monte Carlo method. Based on the determined cumulative probability curves of obtaining specified values of the break-even price of electricity, it

  13. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    International Nuclear Information System (INIS)

    Duan Lixia; Lu Qishao

    2006-01-01

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing

  14. Codimension-two bifurcation analysis on firing activities in Chay neuron model

    Energy Technology Data Exchange (ETDEWEB)

    Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)]. E-mail: qishaolu@hotmail.com

    2006-12-15

    Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing.

  15. Experience gained from fires in nuclear power plants: Lessons learned

    International Nuclear Information System (INIS)

    2004-11-01

    In 1993, the IAEA launched a programme to assist Member States in improving fire safety in nuclear power plants (NPPs). The review of fire safety assessment in many plants has shown that fire is one of the most important risk contributors for NPPs. Moreover, operational experience has confirmed that many events have a similar root cause, initiation and development mechanism. Therefore, many States have improved the analysis of their operational experience and its feedback. States that operate NPPs play an important role in the effort to improve fire safety by circulating their experience internationally - this exchange of information can effectively prevent potential events. When operating experience is well organized and made accessible, it can feed an improved fire hazard assessment on a probabilistic basis. The practice of exchanging operational experience seems to be bearing fruit: serious events initiated by fire are on the decline at plants in operating States. However, to maximize this effort, means for communicating operational experience need to be continuously improved and the pool of recipients of operational experience data enlarged. The present publication is the third in a series started in 1998 on fire events, the first two were: Root Cause Analysis for Fire Events (IAEA-TECDOC-1112) and Use of Operational Experience in Fire Safety Assessment of Nuclear Power Plants (IAEA-TECDOC-1134). This TECDOC summarizes the experience gained and lessons learned from fire events at operating plants, supplemented by specific Member State experiences. In addition, it provides a possible structure of an international fire and explosion event database aimed at the analysis of experience from fire events and the evaluation of fire hazard. The intended readership of this is operators of plants and regulators. The present report includes a detailed analysis of the most recent events compiled with the IAEA databases and other bibliographic sources. It represents a

  16. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    Science.gov (United States)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  17. Assessing values of air quality and visibility at risk from wildland fires.

    Science.gov (United States)

    Sue A. Ferguson; Steven J. McKay; David E. Nagel; Trent Piepho; Miriam L. Rorig; Casey Anderson; Lara. Kellogg

    2003-01-01

    To assess values of air quality and visibility at risk from wildland fire in the United States, we generated a 40-year database that includes twice daily values of wind, mixing height, and a ventilation index that is the product of windspeed and mixing height. The database provides the first nationally consistent map of surface wind and ventilation index. In addition,...

  18. Need for a probabilistic fire analysis at nuclear power plants

    International Nuclear Information System (INIS)

    Calabuig Beneyto, J. L.; Ibanez Aparicio, J.

    1993-01-01

    Although fire protection standards for nuclear power plants cover a wide scope and are constantly being updated, the existence of certain constraints makes it difficult to precisely evaluate plant response to different postulatable fires. These constraints involve limitations such as: - Physical obstacles which impede the implementation of standards in certain cases; - Absence of general standards which cover all the situations which could arise in practice; - Possible temporary noncompliance of safety measures owing to unforeseen circumstances; - The fact that a fire protection standard cannot possibly take into account additional damages occurring simultaneously with the fire; Based on the experience of the ASCO NPP PSA developed within the framework of the joint venture, INITEC-INYPSA-EMPRESARIOS AGRUPADOS, this paper seeks to justify the need for a probabilistic analysis to overcome the limitations detected in general application of prevailing standards. (author)

  19. All fired up

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Members of the Directorate and their support staff took part in a fire-fighting course organised by the CERN Fire Brigade just before the end-of-year break.  The Bulletin takes a look at the fire-fighting training on offer at CERN.   At CERN the risk of fire can never be under-estimated. In order to train personnel in the use of fire extinguishers, CERN's fire training centre in Prévessin acquired a fire-simulation platform in 2012. On the morning of 17 December 2012, ten members of the CERN directorate and their support staff tried out the platform, following in the footsteps of 400 other members of the CERN community who had already attended the course. The participants were welcomed to the training centre by Gilles Colin, a fire-fighter and instructor, who gave them a 30-minute introduction to general safety and the different types of fire and fire extinguishers, followed by an hour of practical instruction in the simulation facility. There they were able to pract...

  20. Joint modeling of human dwellings and the natural ecosystem at the wildland-urban interface helps mitigation of forest-fire risk

    Science.gov (United States)

    Ghil, M.; Spyratos, V.; Bourgeron, P. S.

    2007-12-01

    The late summer of 2007 has seen again a large number of catastrophic forest fires in the Western United States and Southern Europe. These fires arose in or spread to human habitats at the so-called wildland-urban interface (WUI). Within the conterminous United States alone, the WUI occupies just under 10 percent of the surface and contains almost 40 percent of all housing units. Recent dry spells associated with climate variability and climate change make the impact of such catastrophic fires a matter of urgency for decision makers, scientists and the general public. In order to explore the qualitative influence of the presence of houses on fire spread, we considered only uniform landscapes and fire spread as a simple percolation process, with given house densities d and vegetation flammabilities p. Wind, topography, fuel heterogeneities, firebrands and weather affect actual fire spread. The present theoretical results would therefore, need to be integrated into more detailed fire models before practical, quantitative applications of the present results. Our simple fire-spread model, along with housing and vegetation data, shows that fire-size probability distributions can be strongly modified by the density d and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability p and house density d. The sharpness of this transition is related to the critical thresholds that arise in percolation theory for an infinite domain; it is their translation into our model's finite-area domain, which is a more realistic representation of actual fire landscapes. Many actual fire landscapes in the United States appear to have spreading properties close to this transition zone. Hence, and despite having neglected additional complexities, our idealized model's results indicate that more detailed models used for assessing fire risk in the WUI should integrate the density and flammability of houses in these areas. Furthermore, our

  1. Fires in storages of LFO: Analysis of hazard of structural collapse of steel–aluminium containers

    Energy Technology Data Exchange (ETDEWEB)

    Rebec, A., E-mail: andrej.rebec@zag.si [ZAG – Slovenian National Building and Civil Engineering Institute, Fire Laboratory and Fire Engineering, Dimičeva 12, SI-1000 Ljubljana (Slovenia); Kolšek, J. [ZAG – Slovenian National Building and Civil Engineering Institute, Fire Laboratory and Fire Engineering, Dimičeva 12, SI-1000 Ljubljana (Slovenia); Plešec, P. [ZAG – Slovenian National Building and Civil Engineering Institute, Laboratory for the Efficient Use of Energy, Renewables, and Acoustics, Dimičeva 12, SI-1000 Ljubljana (Slovenia)

    2016-04-05

    Highlights: • Pool fires of light fuel oil (LFO) in above-ground storages are discussed. • Hazard of structural collapse of steel–aluminium containers of LFO is analysed. • Experiments were performed for determination of heat radiation from LFO pool fires. • Elasto-plastic material data were derived with tests for 3xxx and 6xxx aluminium. • High-temperature creep of 3xxx aluminium is discussed. - Abstract: Pool fires of light fuel oil (LFO) in above-ground storages with steel–aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300 cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium.

  2. Forest fires in Pennsylvania.

    Science.gov (United States)

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  3. Analysis of large urban fires

    International Nuclear Information System (INIS)

    Kang, S.W.; Reitter, T.A.; Takata, A.N.

    1984-11-01

    Fires in urban areas caused by a nuclear burst are analyzed as a first step towards determining their smoke-generation chacteristics, which may have grave implications for global-scale climatic consequences. A chain of events and their component processes which would follow a nuclear attack are described. A numerical code is currently being developed to calculate ultimately the smoke production rate for a given attack scenario. Available models for most of the processes are incorporated into the code. Sample calculations of urban fire-development history performed in the code for an idealized uniform city are presented. Preliminary results indicate the importance of the wind, thermal radiation transmission, fuel distributions, and ignition thresholds on the urban fire spread characteristics. Future plans are to improve the existing models and develop new ones to characterize smoke production from large urban fires. 21 references, 18 figures

  4. Passive fire protection role and evolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cerosky, Tristan [NUVIA (France); Perdrix, Johan [NUVIA Protection (France)

    2015-12-15

    Major incidents associated with nuclear power plants often invoke a re-examination of key safety barriers. Fire hazard, in particular, is a key concern for safe operation of nuclear power plants given its propensity to damage safety systems which could ultimately lead to radioactive release into the atmosphere. In the recent past, events such as the Fukushima disaster have led to an industry-wide push to improve nuclear safety arrangements. As part of these measures, upgrading of fire safety systems has received significant attention. In addition to the inherent intricacies associated with such a complex undertaking, factors such as frequent changes in the national and European fire regulations also require due attention while formulating a fire protection strategy. This paper will highlight some salient aspects underpinning an effective fire protection strategy. This will involve: A) A comprehensive introduction to the different aspects of fire safety (namely prevention, containment and mitigation) supported by a review of the development of the RCC-I from 1993 to 1997 editions and the ETC-F (AFCEN codes used by EDF in France). B) Development of the fire risk analysis methodology and the different functions of passive fire protection within this method involving confinement and protection of safety-related equipment. C) A review of the benefits of an effective passive fire protection strategy, alongside other arrangements (such as active fire protection) to a nuclear operator in term of safety and cost savings. It is expected that the paper will provide nuclear operators useful guidelines for strengthening existing fire protection systems.

  5. THERMAL HYDRAULIC ANALYSIS OF FIRE DIVERTOR

    International Nuclear Information System (INIS)

    C.B. bAXI; M.A. ULRICKSON; D.E. DRIMEYER; P. HEITZENROEDER

    2000-01-01

    The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the US magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating. The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m 2 . A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush. The finite element (FE) analysis shows that for an inlet water temperature of 30 C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m 2 . The peak copper temperature is 490 C, peak tungsten temperature is 1560 C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements

  6. Fire spread estimation on forest wildfire using ensemble kalman filter

    Science.gov (United States)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  7. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    CERN Document Server

    Singh, G

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

  8. Fire safety assessment for the fire areas of the nuclear power plant using fire model CFAST

    International Nuclear Information System (INIS)

    Lee, Yoon Hwan; Yang, Joon Eon; Kim, Jong Hoon

    2005-03-01

    Now the deterministic analysis results for the cable integrity is not given in case of performing the fire PSA. So it is necessary to develop the assessment methodology for the fire growth and propagation. This document is intended to analyze the peak temperature of the upper gas layer using the fire modeling code, CFAST, to evaluate the integrity of the cable located on the dominant pump rooms, and to assess the CCDP(Conditional Core Damage Probability) using the results of the cable integrity. According to the analysis results, the cable integrity of the pump rooms is maintained and CCDP is reduced about two times than the old one. Accordingly, the fire safety assessment for the dominant fire areas using the fire modeling code will capable to reduce the uncertainty and to develop a more realistic model

  9. Analysis of Architectural Building Design Influences on Fire Spread in Densely Urban Settlement using Cellular Automata

    Science.gov (United States)

    Tambunan, L.; Salamah, H.; Asriana, N.

    2017-03-01

    This study aims to determine the influence of architectural design on the risk of fire spread in densely urban settlement area. Cellular Automata (CA) is used to analyse the fire spread pattern, speed, and the extent of damage. Four cells represent buildings, streets, and fields characteristic in the simulated area, as well as their flammability level and fire spread capabilities. Two fire scenarios are used to model the spread of fire: (1) fire origin in a building with concrete and wood material majority, and (2) fire origin in building with wood material majority. Building shape, building distance, road width, and total area of wall openings are considered constant, while wind is ignored. The result shows that fire spread faster in the building area with wood majority than with concrete majority. Significant amount of combustible building material, absence of distance between buildings, narrow streets and limited fields are factors which influence fire spread speed and pattern as well as extent of damage when fire occurs in the densely urban settlement area.

  10. Oil well fires of Operation Desert Storm--defining troop exposures and determining health risks.

    Science.gov (United States)

    Heller, Jack M

    2011-07-01

    During Operation Desert Storm, in February 1991, Iraqi troops began burning Kuwaiti oil wells. Almost immediately there was concern about possible adverse health effects in U.S. personnel exposed to crude oil combustion products. Combustions products were predicted from the known composition of Kuwaiti crude oil. Monitoring sites were established in Saudi Arabia and Kuwait; about 5,000 environmental samples were studied. Data collected were used to develop health risk assessments for the geographic areas sampled. This initial approach to assessing risk had to be greatly expanded when Congress passed Public Law 102-190, requiring development of means to calculate environmental exposures for individual U.S. service members. To estimate daily exposure levels for the entire area over 10 months for all U.S. troops, air dispersion modeling was used in conjunction with satellite imagery and geographic information system technology. This methodology made it possible to separate the risk caused by oil fire smoke from the total risk from all sources for each service member. The U.S. military responses to health concerns related to the oil well fires and to Public Law 102-190 were reviewed. Consideration was given to changes in technology, practices, and policies over the last two decades that might impact a similar contemporary response.

  11. Focus on the studies in support of fire safety analysis. IRSN modelling approach for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Espargilliere, Julien; Meyrand, Raphael; Vinot, Thierry [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2015-12-15

    For a fire safety analysis, in order to comply with nuclear safety goals, a nuclear fuel facility operator has to define the elements important for safety to be maintained, even in the case of a fire. One of the key points of this fire analysis is the assessment of possible fire scenarios in the facility. This paper presents the IRSN method applied to a case study to assess fire scenarios which have the most harmful effects on safety targets. The layout consists in a central room (fire cell) containing three glove boxes with radioactive material and three electrical cabinets. This room is linked to two connecting compartments (the fire cell and these two compartments define the containment cell) and then to two corridors. Each room is equipped with a mechanical ventilation system, and a pressure cascade is established from the corridors to the central room. A fire scenario was studied with fire ignition occurring in an electrical cabinet. This scenario has a set of safety goals (prevention of fire cell and containment device failure, propagation of the fire). This case study was conducted with the IRSN code SYLVIA based on two zones modelling. Safety goals were associated with key parameters and performance criteria to be fulfilled. Modelling assumptions were defined in order to maximize physical effects of the fire. Sensitivity studies were also conducted on key parameters such as oxygen limitation, equivalent-fuel definition. Eventually, a critical analysis of the code models was carried out.

  12. Validation analysis of pool fire experiment (Run-F7) using SPHINCS code

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    1998-04-01

    SPHINCS (Sodium Fire Phenomenology IN multi-Cell System) code has been developed for the safety analysis of sodium fire accident in a Fast Breeder Reactor. The main features of the SPHINCS code with respect to the sodium pool fire phenomena are multi-dimensional modeling of the thermal behavior in sodium pool and steel liner, modeling of the extension of sodium pool area based on the sodium mass conservation, and equilibrium model for the chemical reaction of pool fire on the flame sheet at the surface of sodium pool during. Therefore, the SPHINCS code is capable of temperature evaluation of the steel liner in detail during the small and/or medium scale sodium leakage accidents. In this study, Run-F7 experiment in which the sodium leakage rate is 11.8 kg/hour has been analyzed. In the experiment the diameter of the sodium pool is approximately 60 cm and the maximum steel liner temperature was 616 degree C. The analytical results tell us the agreement between the SPHINCS analysis and the experiment is excellent with respect to the time history and spatial distribution of the liner temperature, sodium pool extension behavior, as well as atmosphere gas temperature. It is concluded that the pool fire modeling of the SPHINCS code has been validated for this experiment. The SPHINCS code is currently applicable to the sodium pool fire phenomena and the temperature evaluation of the steel liner. The experiment series are continued to check some parameters, i.e., sodium leakage rate and the height of sodium leakage. Thus, the author will analyze the subsequent experiments to check the influence of the parameters and applies SPHINCS to the sodium fire consequence analysis of fast reactor. (author)

  13. Development of CFD fire models for deterministic analyses of the cable issues in the nuclear power plant

    International Nuclear Information System (INIS)

    Lin, C.-H.; Ferng, Y.-M.; Pei, B.-S.

    2009-01-01

    Additional fire barriers of electrical cables are required for the nuclear power plants (NPPs) in Taiwan due to the separation requirements of Appendix R to 10 CFR Part 50. The risk-informed fire analysis (RIFA) may provide a viable method to resolve these fire barrier issues. However, it is necessary to perform the fire scenario analyses so that RIFA can quantitatively determine the risk related to the fire barrier wrap. The CFD fire models are then proposed in this paper to help the RIFA in resolving these issues. Three typical fire scenarios are selected to assess the present CFD models. Compared with the experimental data and other model's simulations, the present calculated results show reasonable agreements, rendering that present CFD fire models can provide the quantitative information for RIFA analyses to release the cable wrap requirements for NPPs

  14. Barriers to implementation of risk management for federal wildland fire management agencies in the United States

    Science.gov (United States)

    Dave Calkin; Matthew P. Thompson; Alan A. Ager; Mark Finney

    2010-01-01

    In this presentation we review progress towards the implementation of a risk-based management framework for U.S. Federal wildland fire policy and operations. We first describe new developments in wildfire simulation technology that catalyzed the development of risk-based decision support systems for strategic wildfire management. These systems include new analytical...

  15. Burn Severities, Fire Intensities, and Impacts to Major Vegation Types from the Cerro Grande Fire

    International Nuclear Information System (INIS)

    Balice, R.G.; Bennett, K.D.; Wright, M.A.

    2005-01-01

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE. According to the burn severity map and the fire intensity map, the Cerro Grande Fire is estimated to have covered 42,885.4 acres and 42,854.7 acres, respectively. Of this, 57.0 percent was burned at low severity and 34.7 percent was burned at high severity. Similarly, 40.0 percent of the Cerro Grande Fire burned at high fire intensity, greater than 70 percent mortality, while 33.1 percent burned at moderately low intensity, 10 to 40 percent mortality. The most frequently burned cover types over the entire Cerro Grande Fire were ponderosa pine forest and mixed conifer forest, at approximately 43 percent each. However, portions of the fire that burned on Los Alamos National Laboratory (LANL) property were predominantly in ponderosa pine forests, whereas the Cerro Grande Fire burned primarily in mixed conifer forests on lands managed by other agencies. Some of the polygons of burn severities and fire intensities were extensive. The two largest burn severity polygons were 10,111 acres and 10,903 acres and these were burned at low severity. The next two largest polygons were 8999 acres (14 square miles) and 1551 acres (2.4 square miles) and both of these polygons

  16. Parametric analysis of fire model CFAST

    International Nuclear Information System (INIS)

    Lee, Y. H.; Yang, J. Y.; Kim, J. H.

    2004-01-01

    This paper describes the pump room fire of the nuclear power plant using CFAST fire modeling code developed by NIST. It is determined by the constrained or unconstrained fire, Lower Oxygen Limit (LOL), Radiative Fraction (RF), and the times to open doors, which are the input parameters of CAFST. According to the results, pump room fire is ventilation-controlled fire, so it is adequate that the value of LOL is 10% which is also the default value. It is appeared that the RF does not change the temperature of the upper gas layer. But the level of opening of the penetrating area and the times to opening it have an effect on the temperature of the upper layer, so it is determined that the results of it should be carefully analyzed

  17. Refugee camps, fire disasters and burn injuries

    Science.gov (United States)

    Atiyeh, B.S.; Gunn, S.W.A.

    2017-01-01

    Summary In the past five years, no fewer than 15 conflicts have brought unspeakable tragedy and misery to millions across the world. At present, nearly 20 people are forcibly displaced every minute as a result of conflict or persecution, representing a crisis of historic proportions. Many displaced persons end up in camps generally developing in an impromptu fashion, and are totally dependent on humanitarian aid. The precarious condition of temporary installations puts the nearly 700 refugee camps worldwide at high risk of disease, child soldier and terrorist recruitment, and physical and sexual violence. Poorly planned, densely packed refugee settlements are also one of the most pathogenic environments possible, representing high risk for fires with potential for uncontrolled fire spread and development over sometimes quite large areas. Moreover, providing healthcare to refugees comes with its own unique challenges. Internationally recognized guidelines for minimum standards in shelters and settlements have been set, however they remain largely inapplicable. As for fire risk reduction, and despite the high number of fire incidents, it is not evident that fire safety can justify a higher priority. In that regard, a number of often conflicting influences will need to be considered. The greatest challenge remains in balancing the various risks, such as the need/cost of shelter against the fire risk/cost of fire protection. PMID:29849526

  18. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    Science.gov (United States)

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  19. Millennials in the Fire Service: The Effectiveness of Fire Service Recruiting, Testing, and Retention

    Science.gov (United States)

    2017-12-01

    Administration/US-fire-department-profile. 50 Taro Yamane, Statistics : An Introductory Analysis, 2nd ed. (New York: Harper and Rowe, 1967), 886. 15...241096018-Is-there-a-better-approach-for-fire-department-testing/. Yamane, Taro. Statistics : An Introductory Analysis, 2nd ed. New York: Harper and...Fire Protection Association, January 2016), 21, http://www.nfpa.org/News-and-Research/Fire- statistics - and-reports/Fire- statistics /The-fire-service

  20. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    OpenAIRE

    Shan, Xian; Liu, Kang; Sun, Pei-Liang

    2017-01-01

    Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential...

  1. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  2. Fire impact and assessment of post-fire actions of a typical Mediterranean forest from SW Spain

    Science.gov (United States)

    Jiménez-González, Marco A.; María De la Rosa, José; Jiménez-Morillo, Nicasio T.; Zavala, Lorena M.; Knicker, Heike

    2015-04-01

    Wildfires may cause significant changes in soil physical and chemical properties. In addition, soil organic matter (SOM) content and chemical properties are usually affected by fire. Fire impacts may negatively affect soil health and quality, and induce or enhance runoff generation and, thereby, soil erosion risk and cause damages to the habitat of species. This fact is especially dramatic in Mediterranean ecosystems, where forest fires are a frequent phenomenon and restoration strategies are a key issue. The goals of this study are to determine: i) the immediate effects of fire on soil properties, including changes occurred in the quantity and quality of SOM and ii) the effect of post-fire actions on soil properties. In August 2012, a wildfire affected a forest area of approx. 90 ha in Montellano (Seville, SW Spain; longitude 37.00 °, latitude -5.56 °). This area is dominated by pines (Pinus pinaster and Pinus halepensis), and eucalypts (Eucaliptus globulus) with a Mediterranean climate. Dominant soil types are Rendzic Leptosols and Calcaric Haplic Regosols. It is a poorly limestone-developed soil (usually swallower than 25 cm). Four soil subsamples were collected 1 month and 25 months after fire within an area of approximately 200 m2. Subsamples were mixed together, homogenized, air-dried, crushed and sieved (2 mm). One control sample was collected in an adjacent area. The litter layer was removed by hand and studied separately. Branches, stems, bushes and plant residues on the fire-affected area were removed 16 months after the fire using heavy machinery as part of the post-fire management. The present research focuses on the study of the elemental composition (C, H and N) and physical properties (pH, water holding capacity, electrical conductivity) of bulk soil samples, and on the spectroscopic analysis (FT-IR, 13C NMR) and analytical pyrolysis data obtained from bulk the oils and from the humic acid fraction. immediate effects of fire, including the charring

  3. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  4. Prevention of Fire and Risk of Explosions in “Porofor” Production

    Directory of Open Access Journals (Sweden)

    Urbane Valentina

    2015-11-01

    Full Text Available We think that not enough attention is devoted to the aspect of safety along with the development of dangerous technologies, equipment and machinery, as well as discovery of new manufacturing methods. This issue concerns essentially enterprises and areas, which contain explosive materials and toxics. Therefore, special attention should be devoted to these kinds of enterprises to define the level of risk of technogenic breakdowns and disasters, involving fire and explosion. When producing Porofor, we offer precise methods and means to decrease dangerous risks related to working with explosive and flammable substances, for example, we propose the protection package to prevent the explosion hazards during the technological process of manufacturing the forming agents.

  5. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  6. Analysis of fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Schneider, U.

    1982-01-01

    Regulations and test specifications for fire prevention in nuclear power plants are presented as well as the fire protection measures in a newly constructed nuclear power plant. Although the emphasis is placed differently, all rules are based on the following single measures: Fire prevention, fire detection, fire fighting, fire checking, attack, flight, and rescue, organisational measures. (orig./GL) [de

  7. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    Science.gov (United States)

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  8. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  9. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  10. General considerations on fire and explosions in a nuclear facility. Interaction with ventilation

    International Nuclear Information System (INIS)

    Savornin, J.

    1983-05-01

    After a brief survey of French regulations and documents used in defining fire and explosion precautions, a number of fires which have broken out in French nuclear power plants and their effects on ventilation are mentioned. Past or current tests and experiments in France are described, and the provisions made to create computer codes for refining fire safety analysis are presented. The regulations which have been established to reduce the risk of fire or explosion and to contain it without failure of the containment barrier provided by the ventilation system are then given [fr

  11. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  12. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Directory of Open Access Journals (Sweden)

    Sumalika Biswas

    Full Text Available Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas and woody savannas (non-protected areas. The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  13. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    Science.gov (United States)

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  14. Cinema Fire Modelling by FDS

    International Nuclear Information System (INIS)

    Glasa, J; Valasek, L; Weisenpacher, P; Halada, L

    2013-01-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  15. Cinema Fire Modelling by FDS

    Science.gov (United States)

    Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.

    2013-02-01

    Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations

  16. The OECD FIRE database

    International Nuclear Information System (INIS)

    Angner, A.; Berg, H.P.; Roewekamp, M.; Werner, W.; Gauvain, J.

    2007-01-01

    Realistic modelling of fire scenarios is still difficult due to the scarcity of reliable data needed for deterministic and probabilistic fire safety analysis. Therefore, it has been recognized as highly important to establish a fire event database on an international level. In consequence, several member countries of the Nuclear Energy Agency of the OECD have decided in 2000 to establish the International Fire Data Exchange Project (OECD FIRE) to encourage multilateral co-operation in the collection and analysis of data related to fire events at nuclear power plants. This paper presents the OECD FIRE project objectives, work scope and current status of the OECD FIRE database after 3 years of operation as well as first preliminary statistical insights gained from the collected data. (orig.)

  17. Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft

    Science.gov (United States)

    Gross, D.; Miller, D. R.; Soland, R. M.

    1980-01-01

    The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.

  18. A heuristic expert system for forest fire guidance in Greece.

    Science.gov (United States)

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85

  19. Holistic stakeholder-oriented and case study-based risk analysis

    Science.gov (United States)

    Heisterkamp, Tobias

    2013-04-01

    Case studies of storm events in the Berlin conurbation demonstrate the chance of a holistic approach and its potential data sources. Data sets of population, but also data provided by insurance and transport companies, and operating data provided by fire brigades, are used. Various indicators for risk analysis are constructed to identify hot spots. These hot spots can be shortcomings or critical aspects in structure, communication, the warning chain, or even in the structure of potentially affected stakeholders or in the civil protection system itself. Due to increasing complexity of interactions and interdependencies in or between societies and nature, it is important to choose a holistic approach. For risk analyses like the storms in Berlin, it captures many important factors with their effects. For risk analyses, it is important to take potential users into concern: The analysis gets important due to its use later on. In addition to a theoretical background, a focus on the application should be set from the beginning on. To get usable results, it is helpful to complement the theoretical meta-level by a stakeholder-oriented level. An iterative investigation and combination of different layers for the risk analysis explores important influencing factors and allows a tailoring of results to different stakeholder groups. Layers are indicators, gained from data sets like losses from insurance data. Tailoring is important, because of different requirements e.g. by technical or medical assistance. Stakeholders' feedback in the iterative investigation also shows structural limitations for later applications, like special laws the fire brigades have to deal with. Additionally, using actors' perspectives offers the chance to convince practitioners of taking part in the analysis. Their participation is an essential component in applied science. They are important data suppliers, whose goodwill is needed to ensure good results. Based on their experience, they can also help

  20. The social construction of risk in a rural community: Responses of local residents to the 1990 Hagersville (Ontario) tire fire

    International Nuclear Information System (INIS)

    Eyles, J.; Taylor, S.M.; Baxter, J.; Sider, D.; Willms, D.

    1993-01-01

    This paper presents the findings of research relating to the 1990 Hagersville (Ontario) tire fire. After reviewing the literature on risk and risk perception, it begins by describing the event as well as the community in which it occurred. The reasons for adopting a qualitative research design are then established practical, conceptual, and methodological. The residents' accounts of the fire, evacuation, and aftermath in terms of concerns, anxieties, and responses are described. Five themes emerge: economic, community, health, environmental, and governance. The paper concludes by putting forward a case study-derived model of risk appraisal and management, and by relating the findings to policy issues. 48 refs., 1 fig

  1. Evacuation routes performances and fire safety of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Residential buildings, public and business facilities with large number of occupants are particularly exposed to the risk of event with catastrophic consequences, especially in case of fire. Evacuation routes must be separated fire compartments with surfaces made of non-combustible materials. Safe evacuation of building occupants in case of fire is a crucial requirement for the preservation of human life in building. In our engineering practice, calculation model is usually applied in order to determine the time required for evacuation (SRPS TP 21. However, evacuation simulation models are more present in research papers, contributing to better assessment of flow of evacuation in the real time. These models could provide an efficient way of testing the safety of a building in the face of fire and indicate critical points at the evacuation paths. Computer models enable the development and analysis of multiple various scenarios during a fire event, contributing to defining the measures for improving the safety of the building in case of fire. This paper analyses the fulfilment of technical requirements for the safe evacuation and proposes improvement measures based on a comparative analysis of the time required for occupants' evacuation from the building (Department of Civil Engineering and Geodesy in Novi Sad, obtained by calculation model and by using evacuation simulation software.

  2. Reducing The Risk Of Fires In Conveyor Transport

    Science.gov (United States)

    Cheremushkina, M. S.; Poddubniy, D. A.

    2017-01-01

    The paper deals with the actual problem of increasing the safety of operation of belt conveyors in mines. Was developed the control algorithm that meets the technical requirements of the mine belt conveyors, reduces the risk of fires of conveyors belt, and enables energy and resource savings taking into account random sort of traffic. The most effective method of decision such tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. Was designed the mathematical model of the system "variable speed multiengine drive - conveyor - control system of conveyors", that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows to reduce the dynamic overload in the belt to (15-20)%.

  3. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    Science.gov (United States)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  4. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  5. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    Science.gov (United States)

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  6. Simulating spatial and temporally related fire weather

    Science.gov (United States)

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  7. Object-based Forest Fire Analysis for Pedrógão Grande Fire Using Landsat 8 OLI and Sentinel-2A Imagery

    Science.gov (United States)

    Tonbul, H.; Kavzoglu, T.

    2017-12-01

    Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.

  8. Research and development supporting risk-based wildfire effects prediction for fuels and fire management: Status and needs

    Science.gov (United States)

    Kevin Hyde; Matthew B. Dickinson; Gil Bohrer; David Calkin; Louisa Evers; Julie Gilbertson-Day; Tessa Nicolet; Kevin Ryan; Christina Tague

    2013-01-01

    Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on...

  9. Sodium fire studies in France safety tests and applications on an LMFBR

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; de Cuy, G.D.; Justin, J.; Duco, J.; Fourest, B.

    1976-01-01

    The risk of sodium fires in an LMFBR requires thorough analysis, and the possible consequences of an accidental fire must be accurately determined. Not only must means of prevention and detection be perfected, but techniques must be developed to limit the damage caused by a fire: extinguishment, aerosol containment, protection of reactor structures. The program currently undertaken by the CEA's Nuclear Safety Department covering these problems is described. The major results obtained as well as their application to the SUPER-PHENIX reactor are included

  10. Highlighting biome-specific sensitivity of fire size distributions to time-gap parameter using a new algorithm for fire event individuation

    NARCIS (Netherlands)

    Oom, Duarte; Silva, Pedro C.; Bistinas, Ioannis; Pereira, José M.C.

    2016-01-01

    Detailed spatial-temporal characterization of individual fire dynamics using remote sensing data is important to understand fire-environment relationships, to support landscape-scale fire risk management, and to obtain improved statistics on fire size distributions over broad areas. Previously,

  11. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  12. Qualitative Analysis Results for Applications of a New Fire Probabilistic Safety Assessment Method to Ulchin Unit 3

    International Nuclear Information System (INIS)

    Kang, Daeil; Kim, Kilyoo; Jang, Seungcheol

    2013-01-01

    The fire PRA Implementation Guide has been used for performing a fire PSA for NPPs in Korea. Recently, US NRC and EPRI developed a new fire PSA method, NUREG/CR-6850, to provide state-of-the-art methods, tools, and data for the conduct of a fire PSA for a commercial nuclear power plant (NPP). Due to the limited budget and man powers for the development of KSRP, hybrid PSA approaches, using NUREG/CR-6850 and Fire PRA Implementation Guide, will be employed for conducting a fire PSA of Ulchin Unit 3. In this paper, the qualitative analysis results for applications of a new fire PSA method to Ulchin Unit 3 are presented. This paper introduces the qualitative analysis results for applications of a new fire PSA method to Ulchin Unit 3. Compared with the previous industry, the number of fire areas for quantification identified and the number of equipment selected has increased

  13. What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology.

    Science.gov (United States)

    Paschalidou, A K; Kassomenos, P A

    2016-01-01

    Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  15. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  16. Fire protection for launch facilities using machine vision fire detection

    Science.gov (United States)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  17. thermal analysis of a small scale solid waste-fired steam boiler

    African Journals Online (AJOL)

    user

    Thermal analysis of a small scale solid waste-fired steam generator is presented in this paper. The analysis was based on the chosen design specifications which are operating steam ... include: wind, bio-energy, geothermal, solar thermal,.

  18. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  19. Impact of the buildings areas on the fire incidence.

    Science.gov (United States)

    Srekl, Jože; Golob, Janvit

    2010-03-01

    A survey of statistical studies shows that probability of fires is expressed by the equation P(A) = KAα, where A = total floor area of the building and K and  are constants for an individual group, or risk category. This equation, which is based on the statistical data on fires in Great Britain, does not include the impact factors such as the number of employees and the activities carried out in these buildings. In order to find out possible correlations between the activities carried out in buildings, the characteristics of buildings and number of fires, we used a random sample which included 134 buildings as industrial objects, hotels, restaurants, warehouses and shopping malls. Our study shows that the floor area of buildings has low impact on the incidence of fires. After analysing the sample of buildings by using multivariate analysis we proved a correlation between the number of fires, floor area of objects, work operation period (per day) and the number of employees in objects.

  20. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  1. Tending for Cattle: Traditional Fire Management in Ethiopian Montane Heathlands

    Directory of Open Access Journals (Sweden)

    Maria U. Johansson

    2012-09-01

    Full Text Available Fire has long been a principal tool for manipulating ecosystems, notably for pastoralist cultures, but in modern times, fire use has often been a source of conflicts with state bureaucracies. Despite this, traditional fire management practices have rarely been examined from a perspective of fire behavior and fire effects, which hampers dialogue on management options. In order to analyze the rationale for fire use, its practical handling, and ecological effects in high-elevation ericaceous heathlands in Ethiopia, we used three different information sources: interviews with pastoralists, field observations of fires, and analysis of vegetation age structure at the landscape level. The interviews revealed three primary reasons for burning: increasing the grazing value, controlling a toxic caterpillar, and reducing predator attacks. Informants were well aware of critical factors governing fire behavior, such as slope, wind, vertical and horizontal fuel structure, and fuel moisture. Recent burns (1-4 years since fire were used as firebreaks to control the size of individual burns, which resulted in a mosaic of vegetation of different ages. The age structure indicated an average fire return interval of ~10 years. At these elevations (> 3500 m, the dry period is unreliable, with occasional rains. Of all observed fires, 83% were ignited during very high Fire Weather Index levels, reached during only 11% of all days of the year. Burning is illegal, but if this ban was respected, our data suggest that the Erica shrubs would grow out of reach of cattle within a few years only, creating a dense and continuous canopy. This would also create a risk of large high-intensity wildfires since the landscape is virtually devoid of natural fuel breaks. Under the present management regime, this heathland ecosystem should be quite resilient to degradation by fire due to a relatively slow fuel buildup (limiting fire intervals and an effective regrowth of Erica shoots

  2. Fire protection at hot laboratories: Prevention, surveillance and fire-fighting

    International Nuclear Information System (INIS)

    Chappellier, A.M.

    1976-01-01

    After pointing out that fire in a hot laboratory can be an important factor contributing to a radioactivity accident, the author briefly recalls the items to be taken into account in a fire hazard analysis. He then describes various important aspects of prevention, detection and fire-fighting which - at the French Commissariat a l'Energie Atomique - are governed by already defined rules or by guidelines which are sufficiently advanced to give a clear idea of the final conclusions to be drawn therefrom. From the point of view protection, the concept of fire sector has been evolved, at hot laboratories, becomes the fire and contamination sector, so as to ensure under all circumstances the containment of any radioactive materials dispersed in the premises on fire. Regarding fire detection, a study should be made on the constraints specific to the facility and liable to affect detector operation. These include ventilation, radiations, neutral or corrosive atmosphere, etc. As regards fire-fighting, two particular aspects are dealt with, namely the question of using water in case of fire and action to be taken concerning ventilation. A practical example - the protection of a ventilation system - is described. In conclusion the paper refers to the need for a thorough analysis specific to each hot laboratory, and to the importance of preparing an operational plan so as to avoid any dangerous improvisations in case of an accident. (author)

  3. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Science.gov (United States)

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  4. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  5. N reactor external events probabilistic risk assessment

    International Nuclear Information System (INIS)

    Baxter, J.T.

    1989-01-01

    An external events probabilistic risk assessment of the N Reactor has been completed. The methods used are those currently being proposed for external events analysis in NUREG-1150. Results are presented for the external hazards that survived preliminary screening. They are earthquake, fire, and external flood. Core damage frequencies for these hazards are shown to be comparable to those for commercial pressurized water reactors. Dominant fire sequences are described and related to 10 CFR 50, Appendix R design requirements. Potential remedial measures that reduce fire core damage risk are described including modifications to fire protection systems, procedure changes, and addition of new administrative controls. Dominant seismic sequences are described. The effect of non-safety support system dependencies on seismic risk is presented

  6. Human influence on California fire regimes.

    Science.gov (United States)

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  7. Material Analysis for a Fire Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alexander; Nemer, Martin B.

    2014-08-01

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  8. Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy

    Science.gov (United States)

    Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan

    2018-02-01

    Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.

  9. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  10. An assessment of fire occurrence regime and performance of Canadian fire weather index in south central Siberian boreal region

    OpenAIRE

    Chu, T.; Guo, X.

    2014-01-01

    Wildfire is the dominant natural disturbance in Eurasian boreal region, which acts as a major driver of the global carbon cycle. An effectiveness of wildfire management requires suitable tools for fire prevention and fire risk assessment. This study aims to investigate fire occurrence patterns in relation to fire weather conditions in the remote south central Siberia region. The Canadian Fire Weather Index derived from large-scale meteorol...

  11. Estimation of time to rupture in a fire using 6FIRE, a lumped parameter UF6 cylinder transient heat transfer/stress analysis model

    International Nuclear Information System (INIS)

    Williams, W.R.; Anderson, J.C.

    1995-01-01

    The transportation of UF 6 is subject to regulations requiring the evaluation of packaging under a sequence of hypothetical accident conditions including exposure to a 30-min 800 degree C (1475 degree F) fire [10 CFR 71.73(c)(3)]. An issue of continuing interest is whether bare cylinders can withstand such a fire without rupturing. To address this issue, a lumped parameter heat transfer/stress analysis model (6FIRE) has been developed to simulate heating to the point of rupture of a cylinder containing UF 6 when it is exposed to a fire. The model is described, then estimates of time to rupture are presented for various cylinder types, fire temperatures, and fill conditions. An assessment of the quantity of UF 6 released from containment after rupture is also presented. Further documentation of the model is referenced

  12. Locating Spatial Variation in the Association Between Wildland Fire Risk and Social Vulnerability Across Six Southern States

    Science.gov (United States)

    Poudyal, Neelam C.; Johnson-Gaither, Cassandra; Goodrick, Scott; Bowker, J. M.; Gan, Jianbang

    2012-03-01

    Wildland fire in the South commands considerable attention, given the expanding wildland urban interface (WUI) across the region. Much of this growth is propelled by higher income retirees and others desiring natural amenity residential settings. However, population growth in the WUI increases the likelihood of wildfire fire ignition caused by people, as humans account for 93% of all wildfires fires in the South. Coexisting with newly arrived, affluent WUI populations are working class, poor or otherwise socially vulnerable populations. The latter groups typically experience greater losses from environmental disasters such as wildfire because lower income residents are less likely to have established mitigation programs in place to help absorb loss. We use geographically weighted regression to examine spatial variation in the association between social vulnerability (SOVUL) and wildfire risk. In doing so, we identify "hot spots" or geographical clusters where SOVUL varies positively with wildfire risk across six Southern states—Alabama, Arkansas, Florida, Georgia, Mississippi, and South Carolina. These clusters may or may not be located in the WUI. These hot spots are most prevalent in South Carolina and Florida. Identification of these population clusters can aid wildfire managers in deciding which communities to prioritize for mitigation programming.

  13. Metal fires and their implications for advanced reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  14. 76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  15. The economics of fire protection

    CERN Document Server

    Ramachandran, Ganapathy

    2003-01-01

    This important new book, the first of its kind in the fire safety field, discusses the economic problems faced by decision-makers in the areas of fire safety and fire precautions. The author considers the theoretical aspects of cost-benefit analysis and other relevant economic problems with practical applications to fire protection systems. Clear examples are included to illustrate these techniques in action. The work covers: * the performance and effectiveness of passive fire protection measures such as structural fire resistance and means of escape facilities, and active systems such as sprinklers and detectors * the importance of educating for better understanding and implementation of fire prevention through publicity campaigns and fire brigade operations * cost-benefit analysis of fire protection measures and their combinations, taking into account trade-offs between these measures. The book is essential reading for consultants and academics in construction management, economics and fire safety, as well ...

  16. A spatio-temporal analysis of fires in South Africa

    Directory of Open Access Journals (Sweden)

    Sheldon Strydom

    2016-11-01

    Full Text Available The prevalence and history of fires in Africa has led to the continent being named "the fire continent". Fires are common on the continent and lead to a high number of annual fire disasters which result in many human fatalities and considerable financial loss. Increased population growth and concentrated settlement planning increase the probability of fire disasters and the associated loss of human life and financial loss when disasters occur. In order to better understand the spatial and temporal variations and characteristics of fires in South Africa, an 11-year data set of MODIS-derived Active Fire Hotspots was analysed using an open source geographic information system. The study included the mapping of national fire frequency over the 11-year period. Results indicate that the highest fire frequency occurred in the northeastern regions of South Africa, in particular the mountainous regions of KwaZulu-Natal and Mpumalanga, and in the Western Cape. Increasing trends in provincial fire frequency were observed in eight of the nine provinces of South Africa, with Mpumalanga the only province for which a decrease in annual fire frequency was observed. Temporally, fires were observed in all months for all provinces, although distinct fire seasons were observed and were largely driven by rainfall seasons. The southwestern regions of South Africa (winter-rainfall regions experienced higher fire frequencies during the summer months and the rest of the country (summer-rainfall regions during the winter months. Certain regions those which experienced bimodal rainfall seasons did not display distinct fire seasons because of the complex wet and dry seasons. Investigation into the likely effects of climate change on South African fire frequency revealed that increased air temperatures and events such as La Niña have a marked effect on fire activity.

  17. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    Science.gov (United States)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp

  18. Southern African advanced fire information system

    CSIR Research Space (South Africa)

    McFerren, G

    2009-05-01

    Full Text Available of ecosystems, yet fires threaten natural systems, infrastructure and life. Spatio-temporal awareness of fire likelihood, occurrence and behaviour is key to appropriate prevention, response and management. This paper focuses on wildfire risk to infrastructure... to pinpoint the location and possibly information on fire temperature and size. Previously, Eskom line managers depended on local residents for necessary information about fire occurrences and locations. Eskom and CSIR, a South African research institute...

  19. 77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA

    Science.gov (United States)

    2012-02-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  20. FIRE PERMIT NOW ON EDH!

    CERN Multimedia

    TIS General Safety Group or

    2001-01-01

    The electronic version of the Fire Permit form is now active. The aim of the Fire Permit procedure is to reduce the risk of fire or explosion. It is mandatory when performing 'hot work' (mainly activities which involve the use of naked flames or other heat sources - e.g. welding, brazing, cutting, grinding, etc.). Its use is explained in the CERN Fire Protection Code E. (Fire Protection) The new electronic form, which is substantially unchanged from the previous authorizing procedure, will be available on the Electronic Document Handling system (https://edh.cern.ch/) as of 1st September 2001. From this date use of the paper version should be discontinued.

  1. Optimization of investment economic in PCI using the methodology of benefits design in analysis of the spread of fires with FDS (Fire Dynamics Simulator) in areas of nuclear fire; Optimizacion de la inversion economica en PCI mediante la metodologia de diseo prestaional en el analisis de la propagacion de incendios con FDS (Fire Dynnamics Simulator) en areas de fuego de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Salellas, J.

    2015-07-01

    Fire simulation analysis allows knowing the evolution and spread fire in areas of interest within a NPP such as control room, cable room and multi zone comportment among others. fires are a main concern regarding safety analysis of NPP. IDOM has the capability to carry out fire simulations, taken in to account smoke control, fire spread, toxicity levels, ventilation and all physical phenomena. As a result, appropriate fire protection measures can be assessed in each scenario. CFD tools applied to fire simulations can determine with higher resolution all damages caused during the fire. Furthermore, such tools can reduce costs due to a lower impact of design modifications. (Author)

  2. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    Science.gov (United States)

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  3. Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.

    Science.gov (United States)

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2011-11-01

    The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.

  4. Use of regionalisation approach to develop fire frequency curves for Victoria, Australia

    Science.gov (United States)

    Khastagir, Anirban; Jayasuriya, Niranjali; Bhuyian, Muhammed A.

    2017-11-01

    It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec-Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews' curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC's were developed in order to estimate the regionalised fire occurrence characteristics.

  5. Fire simulation of pool fire with effects of a ventilation controlled compartment by using a fire model, CFAST

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Shirai, Koji; Eguchi, Yuzuru; Matsuyama, Ken

    2015-01-01

    The basic performance for numerical analysis of fire parameters in a compartment by using a zone model, CFAST (Consolidated model of Fire growth And Smoke Transport), which has been widely applied for fire protection design of buildings, was examined. Special attentions were paid to the effects of compartment geometry under poor ventilation conditions with mechanical systems. The simulations were carried out under conditions corresponding to previous experiments, in which fire parameters have been precisely measured. The comparison between numerical simulations and experiments indicated that the CFAST principally has a capability to represent the time-histories of air-temperature in the high air-temperature layer generated in the vicinity of ceiling of the compartment, by applying the proper boundary conditions. These results suggest that numerical analysis for time-series of air temperature and smoke concentration in compartments must be a powerful tool for discussion on validity of fire protection schemes. (author)

  6. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. V. Zhovna

    2008-01-01

    Full Text Available The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these documents is to ensure the required level of  fire safety. On the basis of the obtained results concerning  economic analysis of efficiency optimization directions are defined for selection of technical means of fire-fighting protection at objects of industrial purpose.

  7. Surface Accessibility with Spatial Analysis During Fire Extinguishing Procedures: Example on the Island of Vis

    Directory of Open Access Journals (Sweden)

    Kruno Lepoglavec

    2017-01-01

    Full Text Available Background and Purpose: The existing public and forest transport infrastructure (truck forest roads are permanent objects used when passing through forests. They also serve as a firefighter belt and provide direct access to firefighting vehicles, or are used as the starting point where firefighting teams extinguish fires or move toward remote fires. The paper identifies the existing fire road network (including public roads, forest roads, non-classified roads and fire roads for access of firefighting vehicles during fire extinguishing interventions. Material and Methods: An analysis of the intervention rate was conducted on a dispersive sample (35 positions from two volunteer fire associations (VFA on the island of Vis. Also, an analysis of the surface availability to fire vehicles concerning the time of departure from the fire station was conducted, as well as the comparison with the Standard time of intervention defined by the regulations on fire department organization in the Republic of Croatia. Results: For each simulated fire location for intervention of two existing volunteer fire associations: VFA Komiža and VFA Vis, results show that for a few fire locations, despite a smaller distance from the VFA Komiža, a quicker intervention is possible from the VFA Vis (locations 4, 5 and 14, and vice versa (locations 21, 22 and 25. With the use of a New Service Area, tool intervention times regarding different areas were calculated. Intervention times were divided into intervals: 25 min. The last two categories of area are beyond reach for firefighters within the Standard time of intervention (15 min and together they comprise to 27.88% of the total research area. Conclusions: The results of Closest Facility tool indicate that for the simulated fire position the best/fastest route is not always the shortest one, because of a significant effect of the structural elements of each road, the state of the road and the longitudinal slope of the road

  8. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    Science.gov (United States)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-12-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  9. Risk and sensitivity analysis in relation to external events

    International Nuclear Information System (INIS)

    Alzbutas, R.; Urbonas, R.; Augutis, J.

    2001-01-01

    This paper presents risk and sensitivity analysis of external events impacts on the safe operation in general and in particular the Ignalina Nuclear Power Plant safety systems. Analysis is based on the deterministic and probabilistic assumptions and assessment of the external hazards. The real statistic data are used as well as initial external event simulation. The preliminary screening criteria are applied. The analysis of external event impact on the NPP safe operation, assessment of the event occurrence, sensitivity analysis, and recommendations for safety improvements are performed for investigated external hazards. Such events as aircraft crash, extreme rains and winds, forest fire and flying parts of the turbine are analysed. The models are developed and probabilities are calculated. As an example for sensitivity analysis the model of aircraft impact is presented. The sensitivity analysis takes into account the uncertainty features raised by external event and its model. Even in case when the external events analysis show rather limited danger, the sensitivity analysis can determine the highest influence causes. These possible variations in future can be significant for safety level and risk based decisions. Calculations show that external events cannot significantly influence the safety level of the Ignalina NPP operation, however the events occurrence and propagation can be sufficiently uncertain.(author)

  10. Advanced fire prevention techniques for ITER-INDIA laboratory building, IPR

    International Nuclear Information System (INIS)

    Modi, D.V.; Channa Reddy, D.

    2016-01-01

    Just as air and water, survival of human life without fire is unimaginable. However, fire can be a boon as well as a bane. The ability to control the use of fire is an art towards improved industrial development. The same phenomenon is also applicable for research and development sector. Fire Safety is a key issue for any kind of research laboratories. Fire hazards in laboratories arise from the storage and use of flammable materials and electrical installations and from hazardous operations carried out there. The risk of damage due to fire depends on the combustible available, their physical arrangement, the geometry of the building, likelihood of the ignition, etc. The risk is also controlled by the fire protection measures in place, which relate to both fire prevention and fire control. (author)

  11. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    Science.gov (United States)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land

  12. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    Science.gov (United States)

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  13. Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

    Directory of Open Access Journals (Sweden)

    Xian Shan

    2017-01-01

    Full Text Available Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

  14. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  15. Pilot fire radius size and its variation regarding the uncertainty in fire risk assessment

    International Nuclear Information System (INIS)

    Argirov, J.

    1998-01-01

    The impact of a combustible load with limited amount of heat on the characteristics of fire generated local environment is considered. The combustible load apportionment on the floor and its ability to release the heat at a different rate regarding the temperatures and heat flux in zones formed in the NPP compartments is studied using calculations. Several ways of variation of a pilot fire radius in the same range are compared. (author)

  16. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  17. Application of wildfire simulation methods to assess wildfire exposure in a Mediterranean fire-prone area (Sardinia, Italy)

    Science.gov (United States)

    Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.

    2012-12-01

    Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009

  18. Improvement of infrastructure for risk-informed regulation

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Tanji, Junichi; Kondo, Keisuke; Uchida, Tsuyoshi; Ito, Tomomichi

    2011-01-01

    Improvement of the infrastructure of probabilistic safety assessment (PSA) is essential to the risk-informed regulation for nuclear power plants. JNES conducted update of initiating event frequency and improvement of method for uncertainty analysis to enhance the technology bases of PSA in 2010. Furthermore, JNES improved human reliability assessment method and reliability assessment method for digital reactor protection systems. JNES estimated initiating event frequencies both for power and shutdown operation based on the recent operating experiences in NPPs of Japan using hierarchical Bayesian method. As for improvement of uncertainty analysis method, JNES conducted trial analysis using SOKC (State-Of-Knowledge Correlation) for representative PWR and BWR of Japan. The study on the advanced HRA method with operator cognitive action model was conducted. The study on reliability analysis method for digital reactor protection systems using Bayesian Network Method was conducted. In order to ensure the quality of PSA, JNES studied requirements and methods for PSA peer review via the preparation of peer review for PSA of a representative Japanese BWR plant conducted by JNES. As an effort to develop the procedures of internal fire PSA and internal flooding PSA, trial analyses were conducted to grasp the risk level cause by fire and flooding in nuclear power plants. JNES participated in OECD/NEA PRISME and FIRE project to obtain the latest information and data to validate and improve the fire propagation analysis codes and the parameters for fire PSA. Furthermore, JNES studies schemes for endorsement and application in risk-informed regulation of PSA standards established by Atomic Energy Society of Japan. (author)

  19. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    Directory of Open Access Journals (Sweden)

    G. Matt Davies

    2016-11-01

    Full Text Available Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  20. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    Science.gov (United States)

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  1. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  2. Advanced numerical modelling of a fire. Final report

    International Nuclear Information System (INIS)

    Heikkilae, L.; Keski-Rahkonen, O.

    1996-03-01

    Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem 'Prediction of effects caused by a cable fire experiment within the HDR-facility'. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.)

  3. FRANX. Application for analysis and quantification of the APS fire; FRANK. Aplicacion para el analisis y cuantificacion de los APS de incendios

    Energy Technology Data Exchange (ETDEWEB)

    Snchez, A.; Osorio, F.; Ontoso, N.

    2014-07-01

    The FRANX application has been developed by EPRI within the Risk and Reliability User Group in order to facilitate the process of quantification and updating APS Fire (also covers floods and earthquakes). By applying fire scenarios are quantified in the central integrating the tasks performed during the APS fire. This paper describes the main features of the program to allow quantification of an APS Fire. (Author)

  4. Fire test of DOT 7A Boxes

    International Nuclear Information System (INIS)

    Jensen, J.D.

    1979-05-01

    The primary objective of conducting the full-scale fire tests of the DOT (Department of Transportation) 7A FRP Boxes was to provide information to assist in quantifying the fire hazard of the storage located at the Radioactive Waste Management Complex (RWMC), and to learn if changing the storage array will decrease the fire risk. Also, the level of fire fighting and fire protection required to maintain the risk at the RWMC within acceptable DOE guidelines was investigated. Two full-scale fire tests were conducted at Southwest Research Institute (SwRI) in June 1978, using the DOE 7A FRP Plywood Storage Containers. The fire tests showed that when subjected to a substantial ignition source, the boxes will propagate fire as long as no fire-suppression measures are taken. Fire will breach the boxes and spread the radioactive contaminated waste if it is not extinguished. As the fire progresses, additional boxes will become involved, and eventually the entire storage array will ignite. It is recommended that the use of DOT 7A Boxes be discontinued and replaced with noncombustible storage containers. In the event this is not practicable, guidance recommendations are presented to minimize the large fire loss potential. It is also recommended that an investigation be conducted into the number of boxes that can be destroyed and still maintain a safe environment for employees and the public. This investigation should include how far radioactive contamination will spread, what cleanup will be required, anticipated exposure of the people within the area, and the public impact of such a fire

  5. A study on fire spreading model for the safety distance between the neighborhood occupancies and historical buildings in Taiwan

    Science.gov (United States)

    Chen, C. H.; Chien, S. W.; Ho, M. C.

    2015-08-01

    Cultural heritages and historical buildings are vulnerable against severe threats from fire. Since the 1970s, ten fire-spread events involving historic buildings have occurred in Taiwan, affecting a total of 132 nearby buildings. Developed under the influence of traditional Taiwanese culture, historic buildings in Taiwan are often built using non-fire resistant brick-wood structure and located in proximity to residential occupancies. Fire outbreak in these types of neighborhood will lead to severe damage of antiquities, leaving only unrecoverable historical imagery. This study is aimed to investigate the minimal safety distance required between a historical building and its surroundings in order to reduce the risk of external fire. This study is based on literature analysis and the fire spread model using a Fire Dynamics Simulator. The selected target is Jingmei Temple in Taipei City. This study explored local geography to identify patterns behind historical buildings distribution. In the past, risk reduction engineering for cultural heritages and historical buildings focused mainly on fire equipment and the available personnel with emergency response ability, and little attention was given to external fire risks and the affected damage. Through discussions on the required safety distance, this research provides guidelines for the following items: management of neighborhoods with historical buildings and consultation between the protection of cultural heritages and disaster prevention, reducing the frequency and extent of fire damages, and preserving cultural resource.

  6. Comparative funding consequences of large versus small gas-fired power generation units

    International Nuclear Information System (INIS)

    Johnson, N.G.

    1995-01-01

    Gas producers are increasingly looking to privately-owned gas-fired power generation as a major growth market to support the development of new fields being discovered across Australia. Gas-fired generating technology is more environmentally friendly than coal-fired power stations, has lower unit capital costs and has higher efficiency levels. With the recent downward trends in gas prices for power generation (especially in Western Australia) it is likely that gas will indeed be the consistently preferred fuel for generation in Australia. Gas producers should be sensitive to the different financial and risk characteristics of the potential market represented by large versus small gas-fired private power stations. These differences are exaggerated by the much sharper focus given by the private sector to quantify risk and to its allocation to the parties best able to manage it. The significant commercial differences between classes of generation projects result in gas producers themselves being exposed to diverging risk profiles through their gas supply contracts with generating companies. Selling gas to larger generation units results in gas suppliers accepting proportionately (i.e. not just prorata to the larger installed capacity) higher levels of financial risk. Risk arises from the higher probability of a project not being completed, from the increased size of penalty payments associated with non-delivery of gas and from the rising level of competition between gas suppliers. Gas producers must fully understand the economics and risks of their potential electricity customers and full financial analysis will materially help the gas supplier in subsequent commercial gas contract negotiations. (author). 1 photo

  7. Disaster risk assessment at Roburnia Plantation, Mpumalanga, South Africa

    Directory of Open Access Journals (Sweden)

    Rudzani A. Makhado

    2013-07-01

    Full Text Available This study reports about disaster risk assessment undertaken at Roburnia Plantation, Mpumalanga Province, South Africa. Both quantitative and qualitative approaches were followed to collect data. A total of eight experienced foresters and fire fighters were purposively sampled for interview at Roburnia Plantation. A questionnaire survey was also used to collect the data. Risk levels were quantified using the risks equations of Wisner et al. (2004 and the United Nations International Strategy for Disaster Reduction (UNISDR 2002. Data were analysed using descriptive and inferential statistics. Analysis of variance (ANOVA, single factor was also applied. This study found that Roburnia Plantation is highly exposed to fire risks. The mean (± s.d. output from the Wisner risk equation shows that fire is the highest risk at 7.7 ± 0.3, followed by harsh weather conditions at 5.6 ± 0.4 and least by tree diseases, pests and pathogens at 2.3 ± 0.2. Similarly, the mean (± s.d. output from the UNISDR risk equation also shows that fire is the highest risk at 2.9 ± 0.2, followed by harsh weather conditions at 2.2 ± 0.3 and least by tree diseases, pests and pathogens at 1.3 ± 0.2. There was no significant deference in the risk analysis outputs (p = 0.13. This study also found that the number of fire incidents were low during summer, but increased during winter and spring. This variation is mainly due to a converse relationship with rainfall, because the availability of rain moistens the area as well as the fuel. When the area and fuel is moist, fire incidents are reduced, but they increase with a decrease in fuel moisture.

  8. Users manual for CAFE-3D : a computational fluid dynamics fire code

    International Nuclear Information System (INIS)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-01-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included

  9. Improvement of fire protection measures for nuclear power plants

    International Nuclear Information System (INIS)

    2012-01-01

    Improvements of fire protection measures for nuclear power plants were performed as following items: Development of fire hazard analysis method. Application of developed Fire Dynamic tool to actual plants, With regard to fire tests for the fire data acquisition, cable fire test and oil fire test were performed. Implementation of fire hazard analysis code and simulation were performed as following items: Fire analysis codes FDS, SYLVIA, CFAST were implemented in order to analyze the fire progression phenomena, Trial simulation of fire hazard as Metal-Clad Switch Gear Fire of ONAGAWA NPP in Tohoku earthquake (HEAF accident). (author)

  10. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia

    Science.gov (United States)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.

    2012-12-01

    statistically exploring the demographic and environmental factors of fire risk, such as land surface temperature, precipitation, and NDVI .4.) A dynamic fire risk evaluation able to generate a dynamic map of ignition risk based on statistical analysis factors. This study aims to research integrating MODIS, Landsat and ASTER data along with in-situ data on environmental parameters from the Corporation of the Cauca Valley River (CVC) along with other data on social, economical and cultural variables obtained by researchers of the Wild Fire Observatory (OCIF) from the "Universidad Autónoma de Occidente" in order to create an ignition cause model, dynamic fire risk evaluation system and compile any and all geospatial data generated for the region. In this way the research will help predict and forecast fire vulnerabilities in the region. The team undertook this project through SERVIR with the guidance of the scientist, Victor Hugo Ramos, who was the leader and principal investigator on the SIGMA-I.

  11. Evaluation of Imminent Fire Hazards of Inheritance Ancestral Temple and Mansion in Georgetown, Penang

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Fire hazards of the inheritance buildings are often been neglected, causing fire to take place. Most of the heritage buildings are of large scale, flammable priceless contents and large numbers of visitors, however, the existing structures are weak in fire resistance. There are a few factors that contribute to the fire in these unique yet vulnerable structures Therefore, fire risk assessment plays an important role as many historic buildings in Penang are significant in their architectural value and historically importantt and their destructions by fire are great irreplaceable losses. Thus, this study is intended to identify the current fire emergency plan of heritage temples and mansions in Penang which includes 4 buildings such as Khoo Kongsi, Cheah Kongsi, Hock Teik Chen Shin Temple and Teochew Temple. The possible fire risks of these heritage buildings will be identified and evaluated comprehensively. The previous fire cases will be considered as well in order to discover the common factors contributing to the fire cases at heritage buildings. Time and again, people do not record their findings upon completing the fire risk assessment. Hence this particular research will prepare a complete record of the fire risk assessment. Having a fire risk assessment in the heritage building in Penang can be an interesting study to find out the current situation of heritage building fire protection awareness.

  12. Trend analysis of fire events at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Hiroki

    2007-01-01

    We performed trend analyses to compare fire events occurring overseas (1995-2005) and in Japan (1966-2006). We decided to do this after extracting data on incidents (storms, heavy rain, tsunamis, fires, etc.) occurring at overseas nuclear power plants from the Events Occurred at Overseas Nuclear Power Plants recorded in the Nuclear Information Database at the Institute of Nuclear Safety System (INSS) and finding that fires were the most common of the incidents. Analyses compared the number of fires occurring domestically and overseas and analyzed their causes and the effect of the fires on the power plants. As a result, we found that electrical fires caused by such things as current overheating and electric arcing, account for over one half of the domestic and overseas incidents of fire, which indicates that maintenance management of electric facilities is the most important aspect of fire prevention. Also, roughly the same number of operational fires occurred at domestic and overseas plants, judging from the figures for annual occurrences per unit. However, the overall number of fires per unit at domestic facilities is one fourth that of overseas facilities. We surmise that, while management of operations that utilizes fire is comparable for overseas and domestic plants, this disparity results from differences in the way maintenance is carried out at facilities. (author)

  13. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  14. Reducing Community Vulnerability to Wildland Fires in Southern California

    Science.gov (United States)

    Keeley, J. E.

    2010-12-01

    In the US fires are not treated like other hazards such as earthquakes but rather as preventable through landscape fuel treatments and aggressive fire suppression. In southern California extreme fire weather has made it impossible to control all fires and thus loss of homes and lives is a constant threat to communities. There is growing evidence that indicate we are not likely to ever eliminate fires on these landscapes. Thus, it is time to reframe the fire problem and think of fires like we do with other natural hazards such as earthquakes. We do not attempt to stop earthquakes, rather the primary emphasis is on altering human infrastructure in ways that minimize community vulnerability. In other words we need to change our approach from risk elimination to risk management. This approach means we accept that we cannot eliminate fires but rather learn to live with fire by communities becoming more fire adapted. We potentially can make great strides in reducing community vulnerability by finding those factors with high impacts and are sensitive to changes in management. Presently, decision makers have relatively little guidance about which of these is likely to have the greatest impact. Future reductions in fire risk to communities requires we address both wildland and urban elements that contribute to destructive losses. Damage risk or D is determined by: D = f (I, S, E, G, H) where I = the probability of a fire starting in the landscape S = the probability of the fire reaching a size sufficient to reach the urban environment E = probability of it encroaching into the urban environment G = probability of fire propagating within the built environment H = probability of a fire, once within the built environment, resulting in the destruction of a building. In southern California, reducing I through more strategic fire prevention has potential for reducing fire risk. There are many ignition sources that could be reduced, such as replacing power line ignitions with

  15. Mitigating operating room fires: development of a carbon dioxide fire prevention device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-04-01

    Operating room fires are sentinel events that present a real danger to surgical patients and occur at least as frequently as wrong-sided surgery. For fire to occur, the 3 points of the fire triad must be present: an oxidizer, an ignition source, and fuel source. The electrosurgical unit (ESU) pencil triggers most operating room fires. Carbon dioxide (CO2) is a gas that prevents ignition and suppresses fire by displacing oxygen. We hypothesize that a device can be created to reduce operating room fires by generating a cone of CO2 around the ESU pencil tip. One such device was created by fabricating a divergent nozzle and connecting it to a CO2 source. This device was then placed over the ESU pencil, allowing the tip to be encased in a cone of CO2 gas. The device was then tested in 21%, 50%, and 100% oxygen environments. The ESU was activated at 50 W cut mode while placing the ESU pencil tip on a laparotomy sponge resting on an aluminum test plate for up to 30 seconds or until the sponge ignited. High-speed videography was used to identify time of ignition. Each test was performed in each oxygen environment 5 times with the device activated (CO2 flow 8 L/min) and with the device deactivated (no CO2 flow-control). In addition, 3-dimensional spatial mapping of CO2 concentrations was performed with a CO2 sampling device. The median ± SD [range] ignition time of the control group in 21% oxygen was 2.9 s ± 0.44 [2.3-3.0], in 50% oxygen 0.58 s ± 0.12 [0.47-0.73], and in 100% oxygen 0.48 s ± 0.50 [0.03-1.27]. Fires were ignited with each control trial (15/15); no fires ignited when the device was used (0/15, P fire prevention device can be created by using a divergent nozzle design through which CO2 passes, creating a cone of fire suppressant. This device as demonstrated in a flammability model effectively reduced the risk of fire. CO2 3-dimensional spatial mapping suggests effective fire reduction at least 1 cm away from the tip of the ESU pencil at 8 L/min CO2 flow

  16. Fire-accident analysis code (FIRAC) verification

    International Nuclear Information System (INIS)

    Nichols, B.D.; Gregory, W.S.; Fenton, D.L.; Smith, P.R.

    1986-01-01

    The FIRAC computer code predicts fire-induced transients in nuclear fuel cycle facility ventilation systems. FIRAC calculates simultaneously the gas-dynamic, material transport, and heat transport transients that occur in any arbitrarily connected network system subjected to a fire. The network system may include ventilation components such as filters, dampers, ducts, and blowers. These components are connected to rooms and corridors to complete the network for moving air through the facility. An experimental ventilation system has been constructed to verify FIRAC and other accident analysis codes. The design emphasizes network system characteristics and includes multiple chambers, ducts, blowers, dampers, and filters. A larger industrial heater and a commercial dust feeder are used to inject thermal energy and aerosol mass. The facility is instrumented to measure volumetric flow rate, temperature, pressure, and aerosol concentration throughout the system. Aerosol release rates and mass accumulation on filters also are measured. We have performed a series of experiments in which a known rate of thermal energy is injected into the system. We then simulated this experiment with the FIRAC code. This paper compares and discusses the gas-dynamic and heat transport data obtained from the ventilation system experiments with those predicted by the FIRAC code. The numerically predicted data generally are within 10% of the experimental data

  17. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    Science.gov (United States)

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  18. Climatic and socio-economic fire drivers in the Mediterranean basin at a century scale: Analysis and modelling based on historical fire statistics and dynamic global vegetation models (DGVMs)

    Science.gov (United States)

    Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.

    2017-12-01

    Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the

  19. Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy

    Directory of Open Access Journals (Sweden)

    Alan A. Ager

    2017-12-01

    Full Text Available Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million ha landscape in the eastern Cascades of Oregon, USA. We hypothesized that at some level of burned area fuels would limit the growth of new fires, and fire effects on the composition and structure of forests would eventually reduce future fire intensity and severity. We found that doubling current rates of wildfire resulted in detectable feedbacks in area burned and fire intensity. Area burned in a given simulation year was reduced about 18% per unit area burned in the prior five years averaged across all scenarios. The reduction in area burned was accompanied by substantially lower fire severity, and vegetation shifted to open forest and grass-shrub conditions at the expense of old growth habitat. Negative fire feedbacks were slightly moderated by longer-term positive feedbacks, in which the effect of prior area burned diminished during the simulation. We discuss trade-offs between managing fuels with wildfire versus prescribed fire and mechanical fuel treatments from a social and policy standpoint. The study provides a useful modeling framework to consider the potential value of fire feedbacks as part of overall land management strategies to build fire resilient landscapes and reduce wildfire risk to communities in the western U.S. The results are also relevant to prior climate-wildfire studies that did not consider fire feedbacks in projections of future

  20. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...