WorldWideScience

Sample records for riparian forest populus

  1. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  2. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  3. Spatial Pattern of Populus euphratica Forest Change as Affected by Water Conveyance in the Lower Tarim River

    Directory of Open Access Journals (Sweden)

    Shuhong Peng

    2014-01-01

    Full Text Available To restore declining species, including Populus euphratica and other riparian communities, in the river ecosystem of the lower Tarim River, the ecological water conveyance project (EWCP, as a part of an integrated water resource management plan, was implemented in 2000. The EWCP aims to schedule and manage the water resources in the upper reaches and transfer water to the lower reaches by a series of intermittent water deliveries. The delivered water flows along a modified river channel and nourishes riparian communities by river overflow flooding. Since it began, it has caused a fierce debate over the response of riparian vegetation to the water conveyance scheme. This study focuses on the lower Tarim River, where Populus euphratica forests have undergone watering, due to the EWCP. Twelve Landsat sensor images and one IKONOS satellite imagery acquired between 1999 and 2009 were used to monitor the change in Populus euphratica forests. Bi-temporal change detection and temporal trajectory analysis were employed to represent the spatial pattern of the forest change. Field investigations were used to analyze the driving forces behind forest change from the perspectives of anthropogenic activities and natural forces. The results showed that Populus euphratica forest have been declining in area, which implies that ecological risks have been increased during the watering process. However, forests areas have increased in the regions where the water supply is abundant, and vice versa.

  4. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    Science.gov (United States)

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  5. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  6. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  7. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    Science.gov (United States)

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  8. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  9. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available The establishment of riparian protection forests in the Three Gorges Reservoir (TGR is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ. Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress

  10. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    Science.gov (United States)

    Merritt, David M; Poff, N LeRoy

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  11. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests in

  12. Function, Design, and Establishment of Riparian Forest Buffers: A Review

    OpenAIRE

    Klapproth, Julia Caldwell

    1999-01-01

    Through the interaction of their soils, hydrology, and biotic communities, riparian forests protect and improve water quality, provide habitat for plants and animals, support aquatic communities, and provide many benefits to humans. Virginia, along with other states in the Chesapeake Bay region, has recognized the importance of riparian forests by implementing a plan to restore forested buffers along streams, rivers, and lakes. This project reviews selected literature on riparian forest bu...

  13. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    Science.gov (United States)

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  14. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to

  15. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    Science.gov (United States)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  16. SNAG AND LARGE WOODY DEBRIS DYNAMICS IN RIPARIAN FORESTS

    Science.gov (United States)

    Important components of riparian forests are snags and streamside large woody debris (LWD) because they are functional in maintaining water quality and providing habitat for numerous plants and animals. To effectively manage riparian forests, it is important to understand the dy...

  17. Evaluation of the riparian forest state program in Pitangueiras county, Parana

    OpenAIRE

    Peres, Marli Candalaft Alcantara Parra; Universidade Estadual de Londrina/UEL; Ralisch, Ricardo; Universidade Estadual de Londrina/UEL; Ripol, Cristovon Videira; Instituto Paranaense de Assistência Técnica e Extensão Rural do Paraná/EMATER

    2009-01-01

    Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environment...

  18. Adaptation of the QBR index for use in riparian forests of central Ohio

    Science.gov (United States)

    Stephanie R. Colwell; David M. Hix

    2008-01-01

    Although high quality riparian forests are an endangered ecosystem type throughout the world, there has been no ecological index to measure the habitat quality of riparian forests in Ohio. The QBR (qualitat del bosc de ribera, or riparian forest quality) index was developed to assess the quality of habitat in Mediterranean forested riparian areas, and we have modified...

  19. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China.

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Zhou, Honghua; Chen, Yapeng; XinmingHao; Fu, Aihong; Ma, Jianxin

    2017-06-01

    Studying the water use processes of desert riparian vegetation in arid regions and analyzing the response and adaptation strategies of plants to drought stress are of great significance for developing ecological restoration measures. Based on field monitoring and test analyses of physiological ecological indicators of dominant species (Populus euphratica and Tamarix chinensis) in the desert riparian forest in the lower reaches of the Tarim River, the water relations of P. euphratica and T. chinensis under drought stress are discussed and some water use strategies put forward. The results show that (1) concerning plant water uptake, desert riparian forests depend mainly on groundwater to survive under long-term water stress. (2) Concerning plant water distribution, the survival of P. euphratica and nearby shallow root plants is mainly due to the hydraulic lift and water redistribution of P. euphratica under drought stress. (3) Concerning plant water transport, P. euphratica sustains the survival of competitive and advantageous branches by improving their ability to acquire water while restraining the growth of inferior branches. (4) Concerning plant transpiration, the sap flow curves of daily variations of P. euphratica and T. chinensis were wide-peak sin and narrower-peak respectively. T. chinensis has better environmental adaptability.

  20. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool

    Science.gov (United States)

    Gonzalez, Eduardo; Martinez-Fernandez, Vanesa; Shafroth, Patrick B.; Sher, Anna A.; Henry, Annie L.; Garofano-Gomez, Virginia; Corenblit, Dov

    2018-01-01

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceaeregeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component.

  1. Regeneration of Salicaceae riparian forests in the Northern Hemisphere: A new framework and management tool.

    Science.gov (United States)

    González, Eduardo; Martínez-Fernández, Vanesa; Shafroth, Patrick B; Sher, Anna A; Henry, Annie L; Garófano-Gómez, Virginia; Corenblit, Dov

    2018-04-25

    Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Soil organic carbon in riparian forests, rice fields, and pastures in Piedras, Tolima, Colombia.

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade-Castañeda

    2016-06-01

    Full Text Available The aim of the study was to estimate the soil organic carbon (SOC storage in the interface between riparian forests and a matrix of rice fields and pastures with organic management. The study took place in Piedras, Tolima, Colombia. Two plots in production (rice and pasture were selected and SOC was estimated in these areas and in the edge and the interior of adjacent riparian forests at a depth of 0 to 20 cm. Bulk density and SOC concentration were quantified between May and July, 2013. Potential change in SOC storage due to land use change among rice fields, pastures, and riparian forests was estimated. The interfaces rice field-riparian forest and pasture-riparian forest stored an average of 65.6 and 61.3 t C/ha, respectively, with no statistical differences (p>0.05. Statistical differences were not detected (p>0.05 between agricultural matrices (rice fields and pastures in any of the variables. The sampling position (matrix and the edge and interior of forests had a significant impact (p<0.05 just in bulk density: 1.7 vs 1.1 vs 1.0 g/cm3 in interior and edge of the riparian forests and the matrix, respectively. SOC was not statistically affected (p>0.05 by the position in the riparian forest-matrix interface. Conversion from riparian forests to rice fields or pastures with organic management is not emitting greenhouse gases, on the contrary, it is increasing SOC in 3.2 t C/ha. 

  3. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  4. Natural hybridization between Populus nigra L. and P. x canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands

    NARCIS (Netherlands)

    Smulders, M.J.M.; Beringen, R.; Volosyanchuk, R.; Vanden Broeck, A.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.

    2008-01-01

    Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and

  5. Pavement and riparian forest shape the bird community along an urban river corridor

    Directory of Open Access Journals (Sweden)

    Christopher J.W. McClure

    2015-07-01

    Full Text Available Knowledge of habitat use by animals within urban-riparian corridors during the breeding season is important for conservation, yet remains understudied. We examined the bird community along an urban-riparian corridor through metropolitan Boise, Idaho and predicted that occupancy of individual species and species richness would be greater in forested areas than in urbanized areas. We surveyed birds throughout the summers of 2009 and 2010 and quantified the m2 of each cover-type within 50-m, 100-m, and 200-m buffers surrounding each survey location using satellite imagery. Occupancy modeling revealed that eight of 14 species analyzed were positively associated with riparian forest, and no species avoided forest. Species richness was negatively associated with the amount of paved surface within 100 m of a survey site with richness declining by more than two species for every hectare of paved surface. Most associations with cover-types–especially riparian forest–were at ⩾100 m. Therefore, the riparian forest within 100 m of a given site along an urban-riparian corridor should be the most important for maintaining species richness.

  6. Dynamics of Plains Cottonwood ( Populus deltoides) Forests and Historical Landscape Change along Unchannelized Segments of the Missouri River, USA

    Science.gov (United States)

    Dixon, Mark D.; Johnson, W. Carter; Scott, Michael L.; Bowen, Daniel E.; Rabbe, Lisa A.

    2012-05-01

    Construction of six large dams and reservoirs on the Missouri River over the last 50-75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood ( Populus deltoides). We quantified changes in land cover from 1892-1950s and the 1950s-2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892-1950s and 1950s-2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s-2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25-50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25-50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.

  7. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  8. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  9. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  10. EnviroAtlas - Memphis, TN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  11. PHYTOCOENOSES OF URBAN RIPARIAN FORESTS ON THE EXAMPLE OF THE LAS OSOBOWICKI FOREST (WROCŁAW

    Directory of Open Access Journals (Sweden)

    Ewa Stefańska-Krzaczek

    2014-10-01

    Full Text Available The Las Osobowicki forest is remnant riparian woodland of the Odra valley. Floristic data were collected from circular 100m2 plots (with a radius of 5.64m which were systematically chosen in forest communities. Four plant communities were determined within data set. They were represented Fagetalia order and Querco-Fagetea class. Flood prevention caused disappearance of riparian forest species, expansion of common hornbeam and Norway maple expansion and a decrease of species richness. However, spatial distribution of phytocoenoses proves the river influence on the vegetation.

  12. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  13. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  15. EnviroAtlas - Austin, TX - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. Cicada emergence in southwestern riparian forest: Influences of wildfire and vegetation composition

    Science.gov (United States)

    D. Max Smith; Jeffrey Kelly; Deborah M. Finch

    2006-01-01

    Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown....

  17. The negative influences of the new brazilian forest code on the conservation of riparian forests

    Directory of Open Access Journals (Sweden)

    Silva Normandes Matos da

    2017-12-01

    Full Text Available More than one million hectares of riparian forests were degraded or altered in Mato Grosso State (Brazil up to 2009. The aim of the research is to set a comparative scenario to show differences in the quantification of environmental liabilities in riparian forest areas resulting from the change in native vegetation protection rules due to the transition between Laws 4771/65 and 12651/2012. Data collection took place in a marginal stretch of Vermelho River in Rondonópolis County, Mato Grosso State. The following data set was taken into consideration: aerial images derived from unmanned aerial vehicle, Rapid Eye satellite images and orbital images hosted at Google Earth. The spatial resolution of those images was compared. The aerial photos composed a mosaic that was photo-interpreted to generate land use and occupation classes. The riparian forest areas of a rural property were used as parameter, and their environmental situation was compared in 05 meter and 100 meter strips. Thus, by taking into consideration the current rules, 23,501 m2 of area ceased to be an environmental liability within the riparian forest and became a consolidated rural area. According to the previous Forest Code, in a different scenario, that is, in a set of rural properties, the public authority would receive USD 68,600.00 in fines. The new Brazilian Forestry Code of 2012, which replaces the previous one made in 1965, exempts those responsible for rural property from regenerating previously deforested native vegetation - an obligation established by older Forest Code. We have shown that the new Forest Code has diminished the legal responsibility of the rural owners in relation to the maintenance of forest fragments in their properties.

  18. EnviroAtlas - New York, NY - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  19. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  20. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. Forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  1. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  2. Understanding the Science Behind Riparian Forest Buffers: Effects on Plant and Animal Communities

    OpenAIRE

    Klapproth, Julia C.; Johnson, James E. (James Eric), 1952-

    2009-01-01

    Discusses riparian forests' ability to support many species of wildlife and explains that the importance of a particular riparian area for wildlife will depend on the size of the area, adjoining land uses, riparian vegetation, features inside the area, and the wildlife species of interest.

  3. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines tree buffer for this community as only trees and forest. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  5. Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning

    Science.gov (United States)

    Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann

    2016-01-01

    Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...

  6. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  7. Linked in: connecting riparian areas to support forest biodiversity

    Science.gov (United States)

    Marie Oliver; Kelly Burnett; Deanna Olson

    2010-01-01

    Many forest-dwelling species rely on both terrestrial and aquatic habitat for their survival. These species, including rare and little-understood amphibians and arthropods, live in and around headwater streams and disperse overland to neighboring headwater streams. Forest management policies that rely on riparian buffer strips and structurebased management—practices...

  8. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  9. EnviroAtlas - Minneapolis/St. Paul, MN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody...

  10. Avian nest box selection and nest success in burned and unburned southwestern riparian forests

    Science.gov (United States)

    D. Max Smith; Jeffrey F. Kelly; Deborah M. Finch

    2007-01-01

    Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered...

  11. Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002-06

    Science.gov (United States)

    Landon, Matthew K.; Rus, David L.; Dietsch, Benjamin J.; Johnson, Michaela R.; Eggemeyer, Kathleen D.

    2009-01-01

    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable

  12. Water uptake in woody riparian phreatophytes of the southwestern United States: a stable isotope study

    International Nuclear Information System (INIS)

    Busch, D.E.; Ingraham, N.L.; Smith, S.D.

    1992-01-01

    Alluvial forest associations are often dominated by woody phreatophytes, plants that are tightly linked to aquifers for water uptake. Anthropogenic hydrological alterations (e.g., water impoundment or diversion) are of clear importance to riparian ecosystem function. Because decreased frequency of flooding and depression of water tables may, in effect, sever riparian plants from their natural water sources, research was undertaken to determine water uptake patterns for the dominant native and introduced woody taxa of riparian plant communities of the southwestern United States. At floodplain study sites along the Bill Williams and lower Colorado Rivers (Arizona, USA), naturally occurring D and 18 O were used to distinguish among potential water sources. Isotopic ratios from potential uptake locations were compared to water extracted from the dominant woody taxa of the study area (Populus fremontii, Salix gooddingii, and Tamarix ramosissima) to elucidate patterns of water absorption. Isotopic composition of water obtained from sapwood cores did not differ significantly from heartwood or branch water, suggesting that heartwood water exchange, stem capacitance, and phloem sap mixing may be inconsequential in actively transpiring Salix and Populus. There was evidence for close hydrologic linkage of river, ground, and soil water during the early part of the growing season. Surface soils exhibited D enrichment due to cumulative exposure to evaporation as the growing season progressed. Isotopic ratios of water extracted from Populus and Salix did not exhibit isotopic enrichment and were not significantly different from groundwater or saturated soil water sources, indicating a phreatophytic uptake pattern. Associations of isotopic ratios with water relations parameters indicated high levels of canopy evaporation and possible use of moisture from unsaturated alluvial soils in addition to groundwater in Tamarix. (author)

  13. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees and Forest and Woody Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  14. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

    Directory of Open Access Journals (Sweden)

    Tayierjiang Aishan

    2018-04-01

    Full Text Available Carbon management in forests has become the most important agenda of the first half of the 21st century in China in the context of the mitigation of climate change impact. As the main producer of the inland river basin ecosystem in arid region of Northwest China, the desert riparian forest maintains the regional environment and also holds a great significance in regulating the regional/global carbon cycle. In this study, we estimated the total biomass, carbon storage, as well as monetary ecosystem service values of desert riparian Populus euphratica Oliv. in the lower reaches of the Tarim River based on terrestrial forest inventory data within an area of 100 ha (100 plots with sizes of 100 m × 100 m and digitized tree data within 1000 ha (with 10 m × 10 m grid using a statistical model of biomass estimation against tree height (TH and diameter at breast height (DBH data. Our results show that total estimated biomass and carbon storage of P. euphratica within the investigated area ranged from 3.00 to 4317.00 kg/ha and from 1.82 to 2158.73 kg/ha, respectively. There was a significant negative relationship (p < 0.001 between biomass productivity of these forests and distance to the river and groundwater level. Large proportions of biomass (64% of total biomass are estimated within 200 m distance to the river where groundwater is relatively favorable for vegetation growth and biomass production. However, our data demonstrated that total biomass showed a sharp decreasing trend with increasing distance to the river; above 800 m distance, less biomass and carbon storage were estimated. The total monetary value of the ecosystem service “carbon storage” provided by P. euphratica was estimated to be $6.8 × 104 USD within the investigated area, while the average monetary value was approximately $70 USD per ha, suggesting that the riparian forest ecosystem in the Tarim River Basin should be considered a relevant regional carbon sink. The findings of

  15. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  16. EnviroAtlas - Portland, Maine - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Portland, OR - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. EnviroAtlas - Woodbine, Iowa - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  5. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  6. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    Science.gov (United States)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  7. The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna

    Directory of Open Access Journals (Sweden)

    IC Valle

    Full Text Available We assessed two dimensions of stream connectivity: longitudinal (between forest patches along the stream and lateral (riparian vegetation, using macroinvertebrate assemblages as bioindicators. Sites representing different land-uses were sampled in a lowland basin that holds a mosaic of protected areas. Land-use analysis, forest successional stages and riparian zone widths were calculated by the GIS analysis. Macroinvertebrate fauna was strongly affected by land-use. We observed a continuous decrease in the number of sensitive species, %Shredders and IBE-IOC biotic index from the upstream protected area to highly deforested sites, increasing again where the stream crosses a Biological Reserve. When analysing buffer strips, we found aquatic fauna responding to land-use alterations beyond the 30 m riparian corridor (60 m and 100 m wide. We discussed the longitudinal connectivity between forest patches and the riparian vegetation buffer strips necessary to hold high macroinvertebrate diversity. We recommend actions for the increase/maintenance of biodiversity in this and other lowland basins.

  8. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  9. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    Science.gov (United States)

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  10. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  11. EnviroAtlas - Durham, NC - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  12. EnviroAtlas - Phoenix, AZ - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  13. EnviroAtlas - Tampa, FL - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  14. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  15. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the...

  16. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  17. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  18. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area.This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  19. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Forest Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  1. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  2. A phytosociological study of riparian forests in Benin (West Africa)

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2004-01-01

    Floristic ordination and classification of riparian forests in Benin were derived from a comprehensive floristic inventory. TWINSPAN classification and DCA analysis of a data set of 818 plant species and 180 releve's yielded 12 plant communities. Importance of waterways, relief, topography, latitude

  3. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    Science.gov (United States)

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  4. Breeding birds in riparian and upland dry forests of the Cascade Range

    Science.gov (United States)

    John F. Lehmkuhl; E. Dorsey Burger; Emily K. Drew; John P. Lindsey; Maryellen Haggard; Kent Z. Woodruff

    2007-01-01

    We quantified breeding bird abundance, diversity, and indicator species in riparian and upland dry forests along six third- to fourth-order streams on the east slope of the Cascade Range, Washington, USA. Upland mesic forest on southerly aspects was dominated by open ponderosa pine (Pinus ponderosa) and dry Douglas-fir (Pseudotsuga menziesii...

  5. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  6. Do Riparian Buffers Protect Stream Invertebrate Communities in South American Atlantic Forest Agricultural Areas?

    Science.gov (United States)

    Hunt, L.; Marrochi, N.; Bonetto, C.; Liess, M.; Buss, D. F.; Vieira da Silva, C.; Chiu, M.-C.; Resh, V. H.

    2017-12-01

    We investigated the influence and relative importance of insecticides and other agricultural stressors in determining variability in invertebrate communities in small streams in intensive soy-production regions of Brazil and Paraguay. In Paraguay we sampled 17 sites on tributaries of the Pirapó River in the state of Itapúa and in Brazil we sampled 18 sites on tributaries of the San Francisco River in the state of Paraná. The riparian buffer zones generally contained native Atlantic forest remnants and/or introduced tree species at various stages of growth. In Brazil the stream buffer width was negatively correlated with sediment insecticide concentrations and buffer width was found to have moderate importance in mitigating effects on some sensitive taxa such as mayflies. However, in both regions insecticides had low relative importance in explaining variability in invertebrate communities, while various habitat parameters were more important. In Brazil, the percent coverage of soft depositional sediment in streams was the most important agriculture-related explanatory variable, and the overall stream-habitat score was the most important variable in Paraguay streams. Paraguay and Brazil both have laws requiring forested riparian buffers. The ample forested riparian buffer zones typical of streams in these regions are likely to have mitigated the effects of pesticides on stream invertebrate communities. This study provides evidence that riparian buffer regulations in the Atlantic Forest region are protecting stream ecosystems from pesticides and other agricultural stressors. Further studies are needed to determine the minimum buffer widths necessary to achieve optimal protection.

  7. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  8. Riparian buffer and density management influences on microclimate of young headwater forests of Western Oregon.

    Science.gov (United States)

    Paul D. Anderson; David J. Larson; Samuel S. Chan

    2007-01-01

    Thinning of 30- to 70-year-old Douglas-fir (Psuedotsuga menziesii [Mirb.] Franco) stands is a common silvicultural activity on federal forest lands of the Pacific Northwest, United States. Empirical relationships among riparian functions, silvicultural treatments, and different riparian buffer widths are not well documented for small headwater...

  9. Structure, composition and regeneration of riparian forest along an altitudinal gradient in northern Iran

    Science.gov (United States)

    Mohammad Naghi Adel; Hassan Pourbabaei; Ali Salehi; Seyed Jalil Alavi; Daniel C. Dey

    2017-01-01

    In order to protect and understand the regeneration of riparian forests, it is important to understand the environmental conditions that lead to their vegetation differentiation. We evaluated the structure, composition, density and regeneration of woody species in forests along the river Safaroud in Ramsar forest in northern Iran in relation to elevation, soil...

  10. Chinese Privet (Ligustrum sinense) removal and its effect on native plant communities of Riparian Forests

    Science.gov (United States)

    James Hanula; Scott Horn; John W. Taylor

    2010-01-01

    Chinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. Weremoved privet shrubs from four riparian forests in October 2005 with a GyrotracH mulching machine or by handfelling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant...

  11. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    Science.gov (United States)

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  12. Establishment and early management of Populus species in southern Sweden

    OpenAIRE

    Mc Carthy, Rebecka

    2016-01-01

    Populus species are among the most productive tree species in Sweden. Interest in growing them has increased during the 21st century due to political goals to increase the share of renewable energy and to increase the proportion of hardwood species in forests. Populus species have been shown to be potentially profitable, but currently they are mostly planted on abandoned agricultural land. There is a lack of knowledge about the establishment of Populus species on forest sites. There is also a...

  13. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    Science.gov (United States)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution ( 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar amounts of aboveground carbon

  14. The multi-objective Spanish National Forest Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-11-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  15. The multi-objective Spanish National Forest Inventory

    International Nuclear Information System (INIS)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-01-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  16. Structure and Composition of Old-Growth and Unmanaged Second-Growth Riparian Forests at Redwood National Park, USA

    Directory of Open Access Journals (Sweden)

    Christopher R. Keyes

    2014-02-01

    Full Text Available Restoration of second-growth riparian stands has become an important issue for managers of redwood (Sequoia sempervirens [D. Don] Endl. forest reserves. Identifying differences between old-growth and second-growth forest vegetation is a necessary step in evaluating restoration needs and targets. The objective of this study was to characterize and contrast vegetation structure and composition in old-growth and unmanaged second-growth riparian forests in adjacent, geomorphologically similar watersheds at Redwood National Park. In the old-growth, redwood was the dominant overstory species in terms of stem density, basal area, and importance values. Second-growth was dominated by red alder (Alnus rubra Bong., Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco, and redwood. Understory species were similar in both forests, with several key differences: Oxalis oregana Nutt. and Trillium ovatum Pursh had greater importance values in the old-growth, and Vaccinium parvifolium Sm., Dryopteris spp. and sedges Carex spp. had greater importance values in the second-growth. Notable differences in structure and composition suggest that restoration practices such as thinning could expedite the acquisition of old-growth characteristics in second-growth riparian forests.

  17. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly

  18. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    Science.gov (United States)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  19. Thinning and riparian buffer configuration effects on down wood abundance in headwater streams in coniferous forests

    Science.gov (United States)

    Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...

  20. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes de Oliveira Machado Filho

    2015-09-01

    Full Text Available Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  1. The intertwining paths of the density managment and riparian buffer study and the Northwest Forest Plan

    Science.gov (United States)

    Kenneth J. Ruzicka; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Initiated simultaneously, the Density Management and Riparian Buff er Study of western Oregon and the Northwest Forest Plan have had intertwining paths related to federal forest management and policy changes in the Pacifi c Northwest over the last 15 to 20 years. We briefl y discuss the development of the Northwest Forest Plan and how it changed the way forest policy...

  2. Quantifying change in riparian ash forests following the introduction of EAB in Michigan and Indiana

    Science.gov (United States)

    Susan J. Crocker; Dacia M. Meneguzzo

    2012-01-01

    The emerald ash borer (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae; EAB) is an introduced beetle that kills ash (Fraxinus spp.) trees. While most EAB-related ash mortality has been documented in urban areas, the effects of EAB in forested settings, particularly in riparian forests, are not well known. This study utilizes...

  3. The multi-objective Spanish National Forest Inventory

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2017-10-01

    Full Text Available Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra  in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  4. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera in Cerrado areas

    Directory of Open Access Journals (Sweden)

    Helena S.R. Cabette

    Full Text Available ABSTRACT Preserved riparian vegetation usually has greater environmental complexity than the riparian vegetation modified by human actions. These systems may have a greater availability and diversity of food resources for the species. Our objective was to evaluate the effect of changes on the structure of the riparian forest on species richness, beta diversity and composition of butterfly species in the Cerrado of Mato Grosso. We tested the hypotheses that: (i higher species richness and (ii beta diversity would be recorded in more preserved environments; and (iii species composition would be more homogeneous in disturbed habitats. For hypothesis testing, the riparian vegetation of eight streams were sampled in four periods of the year in a fixed transect of 100 m along the shores. The richness of butterfly species is lower in disturbed than in preserved areas. However, species richness is not affected by habitat integrity. Beta diversity differed among sites, such that preserved sites have greater beta diversity, showing greater variation in species composition. In addition, beta diversity was positively affected by environmental heterogeneity. A total of 23 of the 84 species sampled occurred only in the changed environment, 42 were exclusive to preserved sites and 19 occurred in both environments. The environmental change caused by riparian forest removal drastically affects the butterfly community. Therefore, riparian vegetation is extremely important for butterfly preservation in the Cerrado and may be a true biodiversity oasis, especially during the dry periods, when the biome undergoes water stress and resource supply is more limited.

  5. Floristic composition of the riparian forest in the lower Gramame river, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Thiago da Silva Farias

    2015-04-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n3p23 Riparian forest has a key ecological and economic significance to productive chains associated with it. This study aimed to conduct a floristic survey of riparian forest stretches in the Gramame river, state of Paraíba, Brazilian Northeast region, and analyze the floristic similarity with Brazilian riparian vegetation fragments. We found 136 species belonging to 106 genera and 43 families. The most representative families were: Fabaceae (19 spp., Cyperaceae (16 spp., and Rubiaceae (11 spp.. The predominant habit was herbaceous and the best represented biological spectrum was camephyte. Regarding the geographic distribution, there was a predominance of widely distributed species associated with the Neotropical province. The distribution patterns have shown a low similarity between areas, and largely distributed species stand out. Similarity analysis pointed out that the area was floristically related to other two coastal areas in the Brazilian Northeast and Southeast regions. Only species typically related to estuarine environments might explain the floristic connections detected.

  6. Removing Chinese privet from riparian forests still benefits pollinators five years later

    Science.gov (United States)

    Jacob R. Hudson; James Hanula; Scott Horn

    2014-01-01

    Chinese privet (Ligustrum sinense) is an invasive shrub of the Southeastern U.S. that forms dense stands and limits biodiversity. It was removed from heavily infested riparian forests of the Georgia Piedmont in 2005 by mulching machine or chainsaw felling and subsequent herbicide application. Abundance and species richness of bees and butterflies...

  7. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Science.gov (United States)

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  8. Removing an exotic shrub from riparian forests increases butterfly abundance and diversity

    Science.gov (United States)

    James Hanula; Scott Horn

    2011-01-01

    Invasive plants are one of the greatest threats to endangered insect species and a major threat to Lepidoptera in eastern North America. We investigated the effects of the invasive shrub Chinese privet (Ligustrum sinense) and two methods (mulching or hand-felling) of removing it from riparian forests on butterfly communities and compared them to untreated, heavily...

  9. Genetic basis of aboveground productivity in two native Populus species and their hybrids.

    Science.gov (United States)

    Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C

    2009-09-01

    Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.

  10. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  11. Variable density management in riparian reserves: lessons learned from an operational study in managed forests of western Oregon, USA.

    Science.gov (United States)

    Samuel Chan; Paul Anderson; John Cissel; Larry Lateen; Charley Thompson

    2004-01-01

    A large-scale operational study has been undertaken to investigate variable density management in conjunction with riparian buffers as a means to accelerate development of late-seral habitat, facilitate rare species management, and maintain riparian functions in 40-70 year-old headwater forests in western Oregon, USA. Upland variable retention treatments include...

  12. ASSESSMENT OF A 5-YEAR-OLD REHABILITATED RIPARIAN FOREST: IS IT ALREADY SUSTAINABLE?

    Directory of Open Access Journals (Sweden)

    Vinícius Londe

    2015-08-01

    Full Text Available ABSTRACTAs important as the establishment of projects of ecological restoration is its assessment post-implementation to know whether the area is becoming self-sustainable or need to be redirected. In this way, this study aimed to know the current situation of a 5-year-old rehabilitated riparian forest,inserted in an anthropogenic impacted region,at the das Velhas River, Minas Gerais State, studying the canopy openness and recruitment of seedlings as plant indicators. 15 plots were allocated in the forest, where hemispherical photographs were taken to analyze the canopy openness and evaluate all seedlings from 0.30 m to 1.30 m height.Canopy openness ranged from 23.7% to 38.8% between seasons and only 192 seedlings were found,from 13 species, five of them exotic and aggressive. Although canopy openness was low, it seems that lateral penetration of light has been favoring the development and dominancy of plants from invasive species, whereas few native ones have been recruited. The exotic/invasive plants may compromise the success of restoration mainly by competition with native planted species. The outcomes evidenced an unsustainability of the riparian forest and the requirement of some management actions to control exotic and invasive plants and ensure the preservation of the area and its ecological roles over time.

  13. Effectiveness monitoring for the aquatic and riparian component of the Northwest Forest Plan: conceptual framework and options.

    Science.gov (United States)

    Gordon H. Reeves; David B. Hohler; David P. Larsen; David E. Busch; Kim Kratz; Keith Reynolds; Karl F. Stein; Thomas Atzet; Polly Hays; Michael. Tehan

    2004-01-01

    An Aquatic and Riparian Effectiveness Monitoring Plan (AREMP) for the Northwest Forest Plan is intended to characterize the ecological condition of watersheds and aquatic ecosystems. So to determine the effectiveness of the Northwest Forest Plan to meet relevant objectives, this report presents the conceptual foundation of options for use in pilot testing and...

  14. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    Science.gov (United States)

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China

    Science.gov (United States)

    Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping

    2017-05-01

    Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure

  16. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  17. An initial evaluation of potential options for managing riparian reserves of the Aquatic Conservation Strategy of the Northwest Forest Plan

    Science.gov (United States)

    Gordon H. Reeves; Brian R. Pickard; K. Norman. Johnson

    2016-01-01

    The Aquatic Conservation Strategy (ACS) of the Northwest Forest Plan guides management of riparian and aquatic ecosystems on federal lands in western Oregon, western Washington, and northern California. We applied new scientific findings and tools to evaluate two potential options, A and B, for refining interim riparian reserves to meet ACS goals and likely challenges...

  18. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine(Pinus contorta) forests in Colorado, USA

    Science.gov (United States)

    Grizelle Gonzalez; Timothy R. Seastedt; Zugeily Donato

    2003-01-01

    We compared the abundance and community composition of earthworms, soil macroarthropods, and litter microarthropods to test faunal effects on plant litter decomposition rates in two forests in the subalpine in Colorado, USA. Litterbags containing recently senesced litter of Populus tremuloides (aspen) and Pinus contorta (lodgepole pine) were placed in aspen and pine...

  19. Nest-site selection and nest survival of Lewis's woodpecker in aspen riparian woodlands

    Science.gov (United States)

    Karen R. Newlon; Victoria A. Saab

    2011-01-01

    Riparian woodlands of aspen (Populus tremuloides) provide valuable breeding habitat for several cavity-nesting birds. Although anecdotal information for this habitat is available for Lewis's Woodpecker (Melanerpes lewis), no study has previously examined the importance of aspen woodlands to this species' breeding biology. From 2002 to 2004, we monitored 76...

  20. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  1. Nesting characteristics of mourning doves in central New Mexico: Response to riparian forest change

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; David L. Hawksworth

    2012-01-01

    Riparian forests of the American Southwest are especially prone to changes in composition and structure due to natural and anthropogenic factors. To determine how breeding mourning doves (Zenaida macroura) respond to these changes, we examined nest site use and nest survival in control plots, fuel reduction plots before and after mechanical thinning, and post-wildfire...

  2. Rhododendron maximum impacts seed bank composition and richness following Tsuga canadensis loss in riparian forests

    Science.gov (United States)

    Tristan M. Cofer; Katherine J. Elliott; Janis K. Bush; Chelcy F. Miniat

    2018-01-01

    Southern Appalachian riparian forests have undergone changes in composition and function from invasive pathogens and pests. Castanea dentata mortality in the 1930s from chestnut blight (Cryphonectria parasitica) and Tsuga canadensis mortality in the 2000s from the hemlock woolly adelgid (Adelges tsugae) have led to the expansion and...

  3. Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson A. Müller

    2012-03-01

    Full Text Available Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil. Human-attracted mosquitoes were collected for one hour, around sunset time (half hour before and half after, from April to December 2006, in two environments (riparian forest and near houses, in Tibagi river basin, Palmeira municipality, State of Paraná. Seven-hundred forty-nine mosquitoes, belonging to 13 species, were collected. Psorophora champerico Dyar & Knab, 1906 (42.86% and Psorophora discrucians (Walker, 1856 (40.59% were the most frequent species. No significant differences between quantities of Ps. champerico (t = -0.792; d.f. = 16; p = 0.43 and Ps. discrucians (t = 0.689; d.f. = 16; p = 0.49 obtained in riparian forest and near houses were observed, indicating similar conditions for crepuscular activity of these species in both environments. Psorophora champerico and Ps. discrucians responded (haematophagic activity to environmental stimuli associated with the twilight hours differently in distinct habitats studied. The former species is registered for the first time in the Atlantic forest biome.

  4. Trading Natural Riparian Forests for Urban Shelterbelt Plantations—A Sustainability Assessment of the Kökyar Protection Forest in NW China

    Directory of Open Access Journals (Sweden)

    Siegmund Missall

    2018-03-01

    Full Text Available Cities at the fringe of the Taklimakan desert in NW China are prone to dust and sand storms with serious consequences for human well-being. The Kökyar Protection Forest was established in the 1980s as an ecological engineering project with the intent of protecting the city of Aksu, NW China, from these impacts. It is designed as a combination of poplar shelterbelts and orchards, irrigated by river water from the Aksu River, the main tributary of the Tarim River. Prevalent literature describes it as an afforestation project for combatting desertification with manifold positive effects for the economic, social, and environmental dimension of sustainable development. This paper sets out to challenge these claims by a sustainability assessment in which the plantation is examined from a broader perspective, embedding it to the wider context of social and environmental problems in South Xinjiang. Methods comprise evapotranspiration calculations, interviews, a socioeconomic household survey, stakeholder dialogues, and literature research. Results affirm its economic sustainability, but see a mixed record for the social sphere. From the nature conservation point of view, it has to be classified as unsustainable because its high irrigation water consumption results in the downstream desiccation and desertification of natural riparian forests along the Tarim River, causing a forest loss in the downstream area twice the size of the forest gain in the upstream area. There is a trade-off between artificial shelterbelt plantations for urban ecosystem services on the one hand side, and natural riparian forests and their biodiversity on the other hand side. The paper recommends restricting agricultural extension, and using locally adapted less water consuming agroforestry schemes to protect urban dwellers from dust stress.

  5. Black-chinned hummingbird nest-site selection and nest survival in response to fuel reduction in a southwestern riparian forest

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; David L. Hawksworth

    2009-01-01

    Despite widespread efforts to avert wildfire by reducing the density of flammable vegetation, little is known about the effects of this practice on the reproductive biology of forest birds. We examined nest-site selection and nest survival of the Black-chinned Hummingbird (Archilochus alexandri) in New Mexico riparian forests treated or not for fuel...

  6. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    Science.gov (United States)

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  7. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  8. Populus (Salicaceae plantations

    Directory of Open Access Journals (Sweden)

    Gonzalo M. Romano

    2013-01-01

    Full Text Available Aunque los cultivos forestales son comunidades artificiales, modifican condiciones ambientales que pueden alterar la diversidad fúngica nativa. Se estudiaron los efectos del manejo forestal de una plantación de sauces (Salix y álamos (Populus sobre la biodiversidad de Agaromycetes durante un año en una isla del Delta del Paraná, Argentina. Se midieron el peso seco y el número de basidiomas. Se identificaron 28 especies pertenecientes a los Agaricomycetes: 26 especies de Agaricales, una de Polyporales y una de Russulales. Nuestros resultados sugieren que el manejo forestal de dicha plantación no afecta la abundancia ni la diversidad de basidiomas de Agaricomycetes.

  9. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    Science.gov (United States)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to

  10. Caloric content of leaves of five tree species from the riparian vegetation in a forest fragment from South Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Fabrício Fiori

    2015-09-01

    Full Text Available Abstract Aim: The measurement of the caloric content evidences the amount of energy that remains in the leaf and that can be released to the aquatic trophic chain. We assessed the energy content of leaves from five riparian tree species of a forest fragment in south Brazil and analyzed whether leaf caloric content varied between leaf species and between seasons (dry and wet. The studied sites are located in Northwest of Paraná State, inside a Semi-Deciduous Forest fragment beside two headwater streams. Methods Sampling sites were located along the riparian vegetation of these two water bodies, and due to its proximity and absence of statistical differences of caloric values, analyzed as one compartment. Results Caloric content varied significantly among species and among all pairs of species, with exception of Nectandra cuspidata Ness and Calophyllum brasiliensis Cambess. Two species presented significant differences between seasons, Sloanea guianensis (Aubl. Ben and Calophyllum brasiliensis Cambess. Conclusions The absence of significant seasonal differences of energy content for some species may be due to the characteristics of the tropical forest, in which temperature did not varied dramatically between seasons. However, the energy differed between species and seasons for some species, emphasizing the necessity of a preliminary inspection of energy content, before tracing energy fluxes instead of using a single value to all species from riparian vegetation.

  11. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  12. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    Science.gov (United States)

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  13. Nesting ecology of Greater Sandhill Cranes (Grus canadensis tabida) in riparian and palustrine wetlands of eastern Idaho

    Science.gov (United States)

    McWethy, D.B.; Austin, J.E.

    2009-01-01

    Little information exists on breeding Greater Sandhill Cranes (Grus canadensis tabida) in riparian wetlands of the Intermountain West. We examined the nesting ecology of Sandhill Cranes associated with riparian and palustrine wetlands in the Henry's Fork Watershed in eastern Idaho in 2003. We located 36 active crane nests, 19 in riparian wetlands and 17 in palustrine wetlands. Nesting sites were dominated by rushes (Juncus spp.), sedges (Carex spp.), Broad-leaved Cattail (Typha latifolia) and willow (Salix spp.), and adjacent foraging areas were primarily composed of sagebrush (Artemisia spp.), cinquefoil (Potentilla spp.),Rabbitbrush (Ericameria bloomeri) bunch grasses, upland forbs, Quaking Aspen (Populus tremuloides) and cottonwood (Populus spp.). Mean water depth surrounding nests was 23 cm (SD = 22). A majority of nests (61%) were surrounded by vegetation between 3060 cm, 23% by vegetation 60 cm in height. We were able to determine the fate of 29 nests, of which 20 were successful (69%). Daily nest survival was 0.986 (95% LCI 0.963, UCI 0.995), equivalent to a Mayfield nest success of 0.654 (95% LCI 0.324, UCI 0.853). Model selection favored models with the covariates vegetation type, vegetation height, and water depth. Nest survival increased with increasing water depth surrounding nest sites. Mean water depth was higher around successful nests (30 cm, SD = 21) than unsuccessful nests (15 cm, SD 22). Further research is needed to evaluate the relative contribution of cranes nesting in palustrine and riparian wetlands distributed widely across the Intermountain West.

  14. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  15. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  16. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides

    OpenAIRE

    Ling-Feng Miao; Fan Yang; Chun-Yu Han; Yu-Jin Pu; Yang Ding; Li-Jia Zhang

    2017-01-01

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of ph...

  17. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  18. Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment

    Science.gov (United States)

    Blackburn, M.; Ledesma, José L. J.; Näsholm, Torgny; Laudon, Hjalmar; Sponseller, Ryan A.

    2017-02-01

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  19. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Science.gov (United States)

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  20. Scaling up and error analysis of transpiration for Populus euphratica in a desert riparian forest

    Science.gov (United States)

    Si, J.; Li, W.; Feng, Q.

    2013-12-01

    Water consumption information of the forest stand is the most important factor for regional water resources management. However, water consumption of individual trees are usually measured based on the limited sample trees , so, it is an important issue how to realize eventual scaling up of data from a series of sample trees to entire stand. Estimation of sap flow flux density (Fd) and stand sapwood area (AS-stand) are among the most critical factors for determining forest stand transpiration using sap flow measurement. To estimate Fd, the various links in sap flow technology have great impact on the measurement of sap flow, to estimate AS-stand, an appropriate indirect technique for measuring each tree sapwood area (AS-tree) is required, because it is impossible to measure the AS-tree of all trees in a forest stand. In this study, Fd was measured in 2 mature P. euphratic trees at several radial depths, 0~10, 10~30mm, using sap flow sensors with the heat ratio method, the relationship model between AS-tree and stem diameter (DBH), growth model of AS-tree were established, using investigative original data of DBH, tree-age, and AS-tree. The results revealed that it can achieve scaling up of transpiration from sample trees to entire forest stand using AS-tree and Fd, however, the transpiration of forest stand (E) will be overvalued by 12.6% if using Fd of 0~10mm, and it will be underestimated by 25.3% if using Fd of 10~30mm, it implied that major uncertainties in mean stand Fd estimations are caused by radial variations in Fd. E will be obviously overvalued when the AS-stand is constant, this result imply that it is the key to improve the prediction accuracy that how to simulate the AS-stand changes in the day scale; They also showed that the potential errors in transpiration with a sample size of approximately ≥30 were almost stable for P.euphrtica, this suggests that to make an allometric equation it might be necessary to sample at least 30 trees.

  1. The Importance and Future Condition of Western Riparian Ecosystems as Migratory Bird Habitat

    Science.gov (United States)

    Susan K. Skagen; Rob Hazlewood; Michael L. Scott

    2005-01-01

    Riparian forests have long been considered important habitats for breeding western landbirds, and growing evidence reinforces their importance during the migratory period as well. Extensive modification of natural flow regimes, grazing, and forest clearing along many rivers in the western U.S. have led to loss and simplification of native riparian forests and to...

  2. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  3. Eighteen microsatellite loci in Salix arbutifolia (Salicaceae) and cross-species amplification in Salix and Populus species.

    Science.gov (United States)

    Hoshikawa, Takeshi; Kikuchi, Satoshi; Nagamitsu, Teruyoshi; Tomaru, Nobuhiro

    2009-07-01

    Salix arbutifolia is a riparian dioecious tree species that is of conservation concern in Japan because of its highly restricted distribution. Eighteen polymorphic loci of dinucleotide microsatellites were isolated and characterized. Among these, estimates of the expected heterozygosity ranged from 0.350 to 0.879. Cross-species amplification was successful at 9-13 loci among six Salix species and at three loci in one Populus species. © 2009 Blackwell Publishing Ltd.

  4. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  5. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages.

    Science.gov (United States)

    Fierro, Pablo; Bertrán, Carlos; Tapia, Jaime; Hauenstein, Enrique; Peña-Cortés, Fernando; Vergara, Carolina; Cerna, Cindy; Vargas-Chacoff, Luis

    2017-12-31

    Land-use change is a principal factor affecting riparian vegetation and river biodiversity. In Chile, land-use change has drastically intensified over the last decade, with native forests converted to exotic forest plantations and agricultural land. However, the effects thereof on aquatic ecosystems are not well understood. Closing this knowledge gap first requires understanding how human perturbations affect riparian and stream biota. Identified biological indicators could then be applied to determine the health of fluvial ecosystems. Therefore, this study investigated the effects of land-use change on the health of riparian and aquatic ecosystems by assessing riparian vegetation, water quality, benthic macroinvertebrate assemblages, and functional feeding groups. Twenty-one sites in catchment areas with different land-uses (i.e. pristine forests, native forests, exotic forest plantations, and agricultural land) were selected and sampled during the 2010 to 2012 dry seasons. Riparian vegetation quality was highest in pristine forests. Per the modified Macroinvertebrate Family Biotic Index for Chilean species, the best conditions existed in native forests and the worst in agricultural catchments. Water quality and macroinvertebrate assemblages significantly varied across land-use areas, with forest plantations and agricultural land having high nutrient concentrations, conductivity, suspended solids, and apparent color. Macroinvertebrate assemblage diversity was lowest for agricultural and exotic forest plantation catchments, with notable non-insect representation. Collector-gatherers were the most abundant functional feeding group, suggesting importance independent of land-use. Land-use areas showed no significant differences in functional feeding groups. In conclusion, anthropogenic land-use changes were detectable through riparian quality, water quality, and macroinvertebrate assemblages, but not through functional feeding groups. These data, particularly the

  6. GIS applications in riparian management

    Science.gov (United States)

    Carrie Christman; Douglas W. Shaw; Charles L. Spann; Penny Luehring

    1996-01-01

    GIS was used to prioritize watersheds for treatment needs across the USDA Forest Service Southwestern Region. Factors in this analysis included soil condition, riparian habitat, population centers and mining sites.

  7. Colonization by benthic macroinvertebrates in two artificial substrate types of a Riparian Forest

    Directory of Open Access Journals (Sweden)

    Lívia Borges dos Santos

    Full Text Available Abstract: Aim To analyze the efficiency of organic and inorganic substrates in samples of benthic macroinvertebrates of riparian forests from the Cerrado. Specific objectives (i characterize the ecological succession and taxonomic richness of benthic macroinvertebrates in stream affluent of a riparian forest; (ii analyze the influence of seasonality on the colonization of macroinvertebrates; and (iii determine the effect of the types of artificial substrates on the richness, composition and abundance of the benthic community. Methods Sampling was carried out in the rainy and dry seasons, and we installed in the watercourse two types of substrates: organic (leaf packs and inorganic (bricks, organized in pairs. Six samples per season were done to verify colonization, succession, richness and abundance of benthic community. The substrates were carefully sorted and the organisms were identified to the lowest possible taxonomic level. Results The ecological succession was clearly observed, with the initial occurrence of Chironomidae and Baetidae (considered early colonizers, and a late occurrence of organisms such as Helotrephidae and Trichoptera (considered late colonizers. No significant difference was found in the richness and abundance among the studied seasons (rainy and dry, but the organic substrate was significantly higher than the inorganic substrate for these parameters. Conclusion Organic artificial substrates are more efficient in characterizing the community of benthic macroinvertebrates in the study area, because they are more similar to the conditions of the substrate found naturally in the environment.

  8. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Science.gov (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  9. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  10. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  11. Abundance and species richness of snakes along the Middle Rio Grande riparian forest in New Mexico

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell; Deborah M. Finch

    2009-01-01

    To understand the effects of removal of non-native plants and fuels on wildlife in the riparian forest of the Middle Rio Grande in New Mexico, we monitored snakes from 2000 to 2006 using trap arrays of drift fences, pitfalls, and funnel traps. We recorded 158 captures of 13 species of snakes from 12 study sites. We captured more snakes in funnel traps than in pitfalls...

  12. Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species

    OpenAIRE

    Casey, Céline; Stölting, Kai N.; Barbará, Thelma; González-Martínez, Santiago C.; Lexer, Christian

    2015-01-01

    Resistance genes (R-genes) are essential for long-lived organisms such as forest trees, which are exposed to diverse herbivores and pathogens. In short-lived model species, R-genes have been shown to be involved in species isolation. Here, we studied more than 400 trees from two natural hybrid zones of the European Populus species Populus alba and Populus tremula for microsatellite markers located in three R-gene clusters, including one cluster situated in the incipient sex chromosome region....

  13. Initial riparian down wood dynamics in relation to thinning and buffer width

    Science.gov (United States)

    Paul D. Anderson; Deanna H. Olson; Adrian. Ares

    2013-01-01

    Down wood plays many functional roles in aquatic and riparian ecosystems. Simplifi cation of forest structure and low abundance of down wood in stream channels and riparian areas is a common legacy of historical management in headwater forests west of the Cascade Range in the US northwest. Contemporary management practices emphasize the implementation of vegetation...

  14. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    Science.gov (United States)

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf

  15. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  16. Niche construction within riparian corridors. Part I: Exploring biogeomorphic feedback windows of three pioneer riparian species (Allier River, France)

    Science.gov (United States)

    Hortobágyi, Borbála; Corenblit, Dov; Steiger, Johannes; Peiry, Jean-Luc

    2018-03-01

    Within riparian corridors, biotic-abiotic feedback mechanisms occur between woody vegetation strongly influenced by hydrogeomorphic constraints (e.g., sediment transport and deposition, shear stress, hydrological variability), fluvial landforms, and morphodynamics, which in turn are modulated by the established vegetation. During field investigations in spring 2015, we studied 16 alluvial bars (e.g., point and lateral bars) within the dynamic riparian corridor of the Allier River (France) to assess the aptitude of three pioneer riparian Salicaceae species (Populus nigra L., Salix purpurea L., and Salix alba L.) to establish and act as ecosystem engineers by trapping sediment and constructing fluvial landforms. Our aim is to empirically identify the preferential establishment area (EA; i.e., the local areas where species become established) and the preferential biogeomorphic feedback window (BFW; i.e., where and to what extent the species and geomorphology interact) of these three species on alluvial bars within a 20-km-long river reach. Our results show that the EA and BFW of all three species vary significantly along the longitudinal profile, i.e., upstream-downstream exposure on the alluvial bars, as well as transversally, i.e., the main hydrological connectivity gradient from the river channel toward the floodplain. In the present-day context of the Allier River, P. nigra is the most abundant species, appearing to act as the main engineer species affecting landform dynamics at the bar scale; S. purpurea is established and acts as an ecosystem engineer at locations on alluvial bars that are most exposed to hydrosedimentary flow dynamics, while S. alba is established on the bar tail close to secondary channels and affects the geomorphology in mixed patches along with P. nigra. Our study highlights the role of functional trait diversity of riparian engineer species in controlling the extent of fluvial landform construction along geomorphic gradients within riparian

  17. Riparian zone controls on base cation concentrations in boreal streams

    Science.gov (United States)

    Ledesma, J. L. J.; Grabs, T.; Futter, M. N.; Bishop, K. H.; Laudon, H.; Köhler, S. J.

    2013-01-01

    Forest riparian zones are a major in control of surface water quality. Base cation (BC) concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM) was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  18. Creation and genomic analysis of irradiation hybrids in Populus

    Science.gov (United States)

    Matthew S. Zinkgraf; K. Haiby; M.C. Lieberman; L. Comai; I.M. Henry; Andrew Groover

    2016-01-01

    Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in...

  19. Oldman river dam mitigation program downstream vegetation project report, Volume II: The potential effects of an operating plan for the Oldman River dam on Riparian cottonwood forests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.M.

    1993-01-01

    Extensive cottonwood (poplar) forests exist in the Oldman River valley downstream of the Oldman River dam. Studies of similar forests in nearby river valleys and elsewhere on the western prairies have found significant declines of some riparian forests following river damming. This investigation was initiated to determine the causes of cottonwood forest decline downstream from existing dams in southern Alberta; inventory the existing river valley forests in the Oldman Basin; establish study sites in the Oldman River forests to monitor changes in forest status following commissioning of the Oldman River dam, and evaluate the probable impact of proposed operating plans for the Oldman River dam and associated water control structures on downstream forests. This report summarizes the progress made in the analyses of the probable effects on the survival of the forests, including a discussion of the hydrological conditions essential for cottonwood forest regeneration and an explanation of the effects of altering these characteristics on riparian forests; the hydrological alterations expected along various river reaches in the Oldman Basin with the implementation of the proposed OD05 Oldman Dam operating plan; and preliminary analyses of the problem impacts of the OD05 operating plan on the cottonwood forests along these reaches.

  20. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  1. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability.

    Science.gov (United States)

    Li, J; Yu, B; Zhao, C; Nowak, Robert S; Zhao, Z; Sheng, Y; Li, J

    2013-01-01

    Riparian plants in arid areas are subject to frequent hydrological fluctuations induced through natural flow variation and water use by humans. Although many studies have focused on the success of Tamarix ramosissima Ledeb. in its invaded ranges, its major competitor in its home range, Populus euphratica Oliv., historically has dominated riparian forests where both species occur naturally. Thus, identifying ecophysiological differences between T. ramosissima and its co-evolved competitor under varying hydrological conditions may help us understand how flow regimes affect dominance in its home range and promote invasion in new ranges. We examined ecophysiological responses of T. ramosissima and P. euphratica, which are both native to the Tarim River Basin, northwest China, to experimental alterations in groundwater. Seedlings of both species were grown in lysimeters, first under well-watered conditions and then exposed to different groundwater treatments: inundation, drought, and relatively shallow, moderate and deep groundwater. Under inundation, T. ramosissima showed little growth whereas P. euphratica died after ~45 days. Droughted seedlings of both species suffered from considerable water stress evidenced by slow growth, decreased total leaf area and specific leaf area, and decreased xylem water potential (ψ), maximum photosynthetic rate and carboxylation efficiency. Both species had better ecophysiological performances under shallow and moderate groundwater conditions. When groundwater declined below rooting depth, seedlings of both species initially experienced decreased ψ, but ψ of T. ramosissima recovered late in the experiment whereas P. euphratica maintained decreased ψ. This ability of T. ramosissima to recover from water deficit might result from its rapid root elongation and subsequent ability to acquire groundwater, which in turn likely provides ecophysiological advantages over P. euphratica. Our results suggest that recent groundwater declines

  2. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    Science.gov (United States)

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C 16 :0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments. © 2016 Scandinavian Plant Physiology Society.

  3. Climate, streamflow, and legacy effects on growth of riparian Populus angustifolia in the arid San Luis Valley, Colorado

    Science.gov (United States)

    Andersen, Douglas

    2016-01-01

    Knowledge of the factors affecting the vigor of desert riparian trees is important for their conservation and management. I used multiple regression to assess effects of streamflow and climate (12–14 years of data) or climate alone (up to 60 years of data) on radial growth of clonal narrowleaf cottonwood (Populus angustifolia), a foundation species in the arid, Closed Basin portion of the San Luis Valley, Colorado. I collected increment cores from trees (14–90 cm DBH) at four sites along each of Sand and Deadman creeks (total N = 85), including both perennial and ephemeral reaches. Analyses on trees conditions was common. Models for trees farther from the channel or over a deep water table explained 23–71% of SGI variability, and 4 of 5 contained a streamflow variable. Analyses using solely climate variables over longer time periods explained 17–85% of SGI variability, and 10 of 12 included a variable indexing summer precipitation. Three large, abrupt shifts in recent decades from wet to dry conditions (indexed by a seasonal Palmer Drought Severity Index) coincided with dramatically reduced radial growth. Each shift was presumably associated with branch dieback that produced a legacy effect apparent in many SGI series: uncharacteristically low SGI in the year following the shift. My results suggest trees in locations distant from the active channel rely on the regional shallow unconfined aquifer, summer rainfall, or both to meet water demands. The landscape-level differences in the water supplies sustaining these trees imply variable effects from shifts in winter-versus monsoon-related precipitation, and from climate change versus streamflow or groundwater management.

  4. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    Science.gov (United States)

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  5. Captures of Crawford's gray shrews (Notiosorex crawfordi) along the Rio Grande in central New Mexico

    Science.gov (United States)

    Alice Chung-MacCoubrey; Heather L. Bateman; Deborah M. Finch

    2009-01-01

    We captured >2000 Crawford's gray shrews (Notiosorex crawfordi) in a riparian forest mainly consisting of cottonwoods (Populus deltoides) along the Rio Grande in central New Mexico. Little has been published about abundance and habitat of Crawford's gray shrew throughout its distributional range. During 7 summers, we...

  6. Forestry Best Management Practices Relationships with Aquatic and Riparian Fauna: A Review

    Directory of Open Access Journals (Sweden)

    Brooke M. Warrington

    2017-09-01

    Full Text Available Forestry best management practices (BMPs were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1 a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2 data-specific relationships between forestry BMPs and reviewed species are limited; (3 forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs are important particularly for protection of water quality and aquatic species; (4 stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5 SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  7. Forestry best management practices relationships with aquatic and riparian fauna: A review

    Science.gov (United States)

    Warrington, Brooke M.; Aust, W. Michael; Barrett, Scott M.; Ford, W. Mark; Dolloff, C. Andrew; Schilling, Erik B.; Wigley, T. Bently; Bolding, M. Chad

    2017-01-01

    Forestry best management practices (BMPs) were developed to minimize water pollution from forestry operations by primarily addressing sediment and sediment transport, which is the leading source of pollution from silviculture. Implementation of water quality BMPs may also benefit riparian and aquatic wildlife, although wildlife benefits were not driving forces for BMP development. Therefore, we reviewed literature regarding potential contributions of sediment-reducing BMPs to conservation of riparian and aquatic wildlife, while realizing that BMPs also minimize thermal, nutrient, and chemical pollution. We reached five important conclusions: (1) a significant body of research confirms that forestry BMPs contribute to the protection of water quality and riparian forest structure; (2) data-specific relationships between forestry BMPs and reviewed species are limited; (3) forestry BMPs for forest road construction and maintenance, skid trails, stream crossings, and streamside management zones (SMZs) are important particularly for protection of water quality and aquatic species; (4) stream crossings should be carefully selected and installed to minimize sediment inputs and stream channel alterations; and (5) SMZs promote retention of older-age riparian habitat with benefits extending from water bodies to surrounding uplands. Overall, BMPs developed for protection of water quality should benefit a variety of riparian and aquatic species that are sensitive to changes in water quality or forest structure.

  8. Assessing the Effects of Periodic Flooding on the Population Structure and Recruitment Rates of Riparian Tree Forests

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien Berthelot

    2014-08-01

    Full Text Available Riparian forest stands are subjected to a variety of hydrological stresses as a result of annual fluctuations in water levels during the growing season. Spring floods create additional water-related stress as a result of a major inflow of water that floods riverside land. This exploratory study assesses the impacts of successive floods on tree dynamics and regeneration in an active sedimentation area, while determining the age of the stands using the recruitment rates, tree structure and tree rings based on dendrochronological analysis. Environmental data were also recorded for each vegetation quadrat. In total, 2633 tree stems were tallied throughout the quadrats (200 m2, and tree specimens were analyzed based on the various flood zones. A total of 720 specimens were counted (100 m2 strip to measure natural regeneration. Higher recruitment rates are noted for the no-flood zones and lower rates in active floodplains. During the period of the establishment of tree species, the survival rates are comparable between the flood zones and the no-flood zones. Tree diameter distribution reveals a strong predominance of young trees in flooded areas. Different factors appear to come into play in the dynamics of riparian forest stands, including the disruptions associated with successive flooding.

  9. Survey of vegetation and its diametric distribution in an area of cerrado sensu stricto and riparian forest fragment at Dois Irmãos stream in the Area of Environmental Protection (APA of Cafuringa, Federal District, Brazil.

    Directory of Open Access Journals (Sweden)

    José Elias de Paula

    2009-09-01

    Full Text Available All individual trees with a diameter at breast height (DBH of over 5cm, as well as the natural succession, were identified in 2,500m2 of the savannah (cerrado sensu stricto area and in 5,000m2 of the “Dois Irmãos” riparian forest vegetation (15º30’19”S and 48º06’18”W. The floristic composition of the cerrado sensu stricto was composed by 100 trees distributed in 25 species, and the riparian forest consisted of 155 trees distributed in 55 species. The natural regeneration was formed with 211 and 287 individuals in the cerrado sensu stricto and riparian forest distributed into 38 and 55 species respectively. The basal areas of the trees occupied 3.40m2.ha-1 in the cerrado sensu stricto and 5.08m2.ha-1 in the riparian forest. The diametric distribution curves for both plant communities, adjusted by the Meyers equation, demonstrated a typical tendency of reversed-J shape with strongly antropic action in the 11 to 17cm diametric classes.

  10. Riparian adaptive management symposium: a conversation between scientists and management

    Science.gov (United States)

    Douglas F. Ryan; John M. Calhoun

    2010-01-01

    Scientists, land managers and policy makers discussed whether riparian (stream side) forest management and policy for state, federal and private lands in western Washington are consistent with current science. Answers were mixed: some aspects of riparian policy and management have a strong basis in current science, while other aspects may not. Participants agreed that...

  11. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  12. Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States

    Science.gov (United States)

    James L. Hanula; Scott Horn

    2011-01-01

    1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...

  13. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  14. Populus species from diverse habitats maintain high night-time conductance under drought.

    Science.gov (United States)

    Cirelli, Damián; Equiza, María Alejandra; Lieffers, Victor James; Tyree, Melvin Thomas

    2016-02-01

    We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among

  15. Effects of riparian buffers on hydrology of northern seasonal ponds

    Science.gov (United States)

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  16. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    Igor do Vale

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; the areas had low richness and low diversity index of Shannon, when compared with data from the secondary forests. The floristic composition was heterogeneous, and the floristic similarity is higher between areas that are closer geographically. In the secondary forests were found 175 species; the areas showed high abundance of individuals, high species richness, diversity and evenness. Secondary forests were separated according to geographic proximity and age, which is directly linked to the successional stage. The PCA analysis established the ecological importance of 29 tree species; however only ten species had enough silvicultural information. Due to a greater ecological importance and viable silvicultural techniques available in the literature, Carapa guianensis, Pachira aquatica, Spondias mombin, Tapirira guianensis and Virola guianensis are the most suitable species to restore the degraded areas, in association with Inga edulis, Jacaranda copaia, Pseudopiptadenia psilostachya, Simarouba amara and Vismia guianensis of the secondary forests, that can be planted in the borders and in the nearby areas of igapó forests.

  17. Post-wildfire recovery of riparian vegetation during a period of water scarcity in the southwestern USA

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Christian Gunning; Roy Jemison; Jeffrey F. Kelly

    2009-01-01

    Wildland fires occur with increasing frequency in southwestern riparian forests, yet little is known about the effects of fire on populations of native and exotic vegetation. From 2003 to 2006, we monitored recovering woody vegetation in wildfire sites in the bosque (riparian forest) along the Middle Rio Grande of central New Mexico, USA. To examine recovery potential...

  18. Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement

    Science.gov (United States)

    Gavin Ferris; Vincent D' Amico; Christopher K. Williams

    2012-01-01

    Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...

  19. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Leonhard Suchenwirth

    2014-07-01

    Full Text Available Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM and the k-nearest neighbor (kNN algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE. Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations.

  20. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  1. Assessment of a subtropical riparian forest focusing on botanical, meteorological, ecological characterization and chemical analysis of rainwater

    Directory of Open Access Journals (Sweden)

    Vanessa Graeff

    2018-05-01

    Full Text Available Riparian forests are heterogeneous environments, in which epiphytes find ideal conditions to develop. These plants absorb the necessary nutrients for survival from the atmosphere, and their occurrence and distribution can be influenced by the quality and quantity of precipitation. The objective of this research was to perform an integrated analysis of botanical, meteorological and chemical precipitation parameters so as to compare them in fragments of the riparian forest in the lower (São Leopoldo-SL and upper (Caraá-CA stretches of the Rio dos Sinos Hydrographic Basin (RSHB, RS, Brazil. Rainwater was chemically analyzed, the community structure of epiphytic ferns was surveyed and the ecological characterization was evaluated through the Rapid Habitat Assessment Protocol (RHAP. The results showed that the chemical composition of rainwater is influenced by the environment of each area. In the upper stretch (CA, for instance, the main contribution is that of marine ions, while in the lower stretch (SL, the most impacting aspects are urbanization and industrialization. Similarly, the results depict a reduction of richness and a simplification of the community structure of epiphytic ferns and their environmental quality according to the RHAP categories, towards the base level of the RSHB. The integrated analysis, in which different methods were applied, proved to be an efficient tool to evaluate environmental quality. This analysis considers that a greater number of biotic and abiotic variables may be applied in different scenarios.

  2. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  3. Tree mortality in mature riparian forest: Implications for Fremont cottonwood conservation in the American southwest

    Science.gov (United States)

    Andersen, Douglas

    2015-01-01

    Mature tree mortality rates are poorly documented in desert riparian woodlands. I monitored deaths and calculated annual survivorship probability (Ps) in 2 groups of large (27–114 cm DBH), old (≥40 years old) Fremont cottonwood (Populus fremontii Wats.) in a stand along the free-flowing Yampa River in semiarid northwestern Colorado. Ps = 0.993 year-1 in a group (n = 126) monitored over 2003–2013, whereas Ps = 0.985 year-1 in a group (n = 179) monitored over the same period plus 3 earlier years (2000–2003) that included drought and a defoliating insect outbreak. Assuming Ps was the same for both groups during the 10-year postdrought period, the data indicate that Ps = 0.958 year-1 during the drought. I found no difference in canopy dieback level between male and female survivors. Mortality was equal among size classes, suggesting Ps is independent of age, but published longevity data imply that either Ps eventually declines with age or, as suggested in this study, periods with high Ps are interrupted by episodes of increased mortality. Stochastic population models featuring episodes of low Ps suggest a potential for an abrupt decline in mature tree numbers where recruitment is low. The modeling results have implications for woodland conservation, especially for relictual stands along regulated desert rivers.

  4. REMM: The Riparian Ecosystem Management Model

    Energy Technology Data Exchange (ETDEWEB)

    Lowrance, R.; Altier, L.S.; Williams, R.G.; Inamdar, S.P.; Sheridan, J.M.; Bosch, D.D.; Hubbard, R.K.; Thomas, D.L.

    2000-03-01

    Riparian buffer zones are effective in mitigating nonpoint source pollution and have been recommended as a best management practice (BMP). The Riparian Ecosystem Management Model (REMM) has been developed for researchers and natural resource agencies as a modeling tool that can help quantify the water quality benefits of riparian buffers under varying site conditions. Processes simulated in REMM include surface and subsurface hydrology; sediment transport and deposition; carbon, nitrogen, and phosphorus transport, removal, and cycling; and vegetation growth. Management options, such as vegetation type, size of the buffer zone, and biomass harvesting also can be simulated. REMM can be used in conjunction with upland models, empirical data, or estimated loadings to examine scenarios of buffer zone design for a hillslope. Evaluation of REMM simulations with field observations shows generally good agreement between simulated and observed data for groundwater nitrate concentrations and water table depths in a mature riparian forest buffer. Sensitivity analysis showed that changes that influenced the water balance or soil moisture storage affected the streamflow output. Parameter changes that influence either hydrology or rates of nutrient cycling affected total N transport and plant N uptake.

  5. Stem respiration of Populus species in the third year of free-air CO2 enrichment

    OpenAIRE

    GIELEN, Birgit; Scarascia-Mugnozza, G.; Ceulemans, R.

    2003-01-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2 ] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-...

  6. Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa

    Science.gov (United States)

    Scott-Shaw, Bruce C.; Everson, Colin S.; Clulow, Alistair D.

    2017-09-01

    In South Africa, the invasion of riparian forests by alien trees has the potential to affect the country's limited water resources. Tree water-use measurements have therefore become an important component of recent hydrological studies. It is difficult for South African government initiatives, such as the Working for Water (WfW) alien clearing program, to justify alien tree removal and implement rehabilitation unless hydrological benefits are known. Consequently, water use within a riparian forest along the Buffeljags River in the Western Cape of South Africa was monitored over a 3-year period. The site consisted of an indigenous stand of Western Cape afrotemperate forest adjacent to a large stand of introduced Acacia mearnsii. The heat ratio method of the heat pulse velocity sap flow technique was used to measure the sap flow of a selection of indigenous species in the indigenous stand, a selection of A. mearnsii trees in the alien stand and two clusters of indigenous species within the alien stand. The indigenous trees in the alien stand at Buffeljags River showed significant intraspecific differences in the daily sap flow rates varying from 15 to 32 L day-1 in summer (sap flow being directly proportional to tree size). In winter (June), this was reduced to only 7 L day-1 when limited energy was available to drive the transpiration process. The water use in the A. mearnsii trees showed peaks in transpiration during the months of March 2012, September 2012 and February 2013. These periods had high average temperatures, rainfall and high daily vapor pressure deficits (VPDs - average of 1.26 kPa). The average daily sap flow ranged from 25 to 35 L in summer and approximately 10 L in the winter. The combined accumulated daily sap flow per year for the three Vepris lanceolata and three A. mearnsii trees was 5700 and 9200 L, respectively, clearly demonstrating the higher water use of the introduced Acacia trees during the winter months. After spatially upscaling the

  7. Effects of Construction of the Digital Multipurpose Range Complex (DMPRC) on Riparian and Stream Ecosystems at Fort Benning, Georgia. Addendum

    Science.gov (United States)

    2009-06-01

    root dynamics in riparian forests. Soil Science Society of America 69(3):729-737. Houser, J. N., P. J. Mulholland, and K. O. Maloney. 2006. Upland...Forested Wetlands, D. M. Amatya and J. Nettles (eds). New Bern, NC. American Society of Agricultural and Biological Engineers, St. Joseph, MI...primary productivity, vegetation composition, structure, and fine root dynamics in riparian forests. Kelly O. Maloney, Ph.D. in Biological Sciences

  8. Best management practices for riparian areas

    Science.gov (United States)

    Michael J. Phillips; Lloyd W. Swift; Charles R. Blinn

    2000-01-01

    Forest streams, lakes, and other water bodies create unique conditions along their margins that control and influence transfers of energy, nutrients, and sediments between aquatic and terrestrial systems. These riparian areas are among the most critical features of the landscape because they contain a rich diversity of plants and animals and help to maintain water...

  9. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Science.gov (United States)

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  10. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    Science.gov (United States)

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  11. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian

    Directory of Open Access Journals (Sweden)

    LEANDRO VALLE FERREIRA

    2013-09-01

    Full Text Available The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  12. Altered stream-flow regimes and invasive plant species: The Tamarix case

    Science.gov (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  13. Evaluation of the riparian forest state program in Pitangueiras county, Parana / Avaliação do programa estadual “Mata Ciliar” no município de Pitangueiras, Paraná

    Directory of Open Access Journals (Sweden)

    Cristovon Videira Ripol

    2009-10-01

    Full Text Available Riparian forest restoration is fundamental for maintenance of vegetable, animal and human life. The objective of this study was to evaluate the efficiency of a Riparian Forest state program in the enlargement of the riparian forests in Pitangueiras county, state of Paraná, in the period of 2004 to 2006. Concerning the riparian reforestation, it was ansewered the reasons that convinced the farmers to join the program, the main difficulties found in its execution, and their views on environmental preservation and law. The results by means of interviews with the farmers and county leaders. It was concluded that the reparian forest state program was efficient due to the partner ship between Pitangueiras City Hall, Government Department of Environment and Coffee Farmer Association. The installation of a native tree nursery in Pitangueiras offered plants to farmers at the opportune period for planting; the farmers have conscience about the necessity of planting riparing forests; and is necessary to do a public policy to include the farmers in the carbon credict projects created with the riparian forest restoration.O uso de extratos vegetais com propriedades nematicidas no controle de fitonematóides representa mais uma alternativa para os pequenos produtores, com valor prático e econômico, e sem riscos de contaminação do ambiente. A adição ao solo dos extratos aquosos de 20 espécies de plantas foi avaliada sobre a população de Meloidogyne javanica em plantas de tomateiro, em casa de vegetação. Estas foram divididas em dois grupos e avaliadas em dois experimentos separados. No mesmo dia em que se infestou o solo com 5.000 ovos do nematóide, adicionou-se 20 mL dos extratos aquosos obtidos de folhas de artemísia (Chrysanthemum parthenium, bardana (Arctium lappa, capim cidreira (Cymbopogon citratus, carqueja (Bacharis trimera, cavalinha (Equisetum sp., cinamomo (Melia azedarach, hortelã (Mentha sp., mamona (Ricinus communis, manjeric

  14. Stream channel designs for riparian and wet meadow rangelands in the southwestern United States

    Science.gov (United States)

    Roy Jemison; Daniel G. Neary

    2000-01-01

    Inappropriate land uses have degraded wetland and riparian ecosystems throughout the Southwestern United States. In 1996, the Cibola National Forest in New Mexico implemented a channel relocation project, as part of a road improvement project, to determine the feasibility of restoring wet meadow and riparian ecosystems degraded by inappropriately located roads and...

  15. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  16. Incorporating climate change and exotic species into forecasts of riparian forest distribution.

    Directory of Open Access Journals (Sweden)

    Dana H Ikeda

    Full Text Available We examined the impact climate change (CC will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B. Four major findings emerged. 1 Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2 Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3 Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4 By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent and P. fremontii (13 percent. In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC.

  17. Width of riparian buffer and structure of adjacent plantations influence occupancy of conservation priority birds

    Science.gov (United States)

    Roger W. Perry; T. Bently Wigley; M. Anthony Melchiors; Ronald E. Thill; Philip A. Tappe; Darren A. Miller

    2011-01-01

    Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across...

  18. Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

    Directory of Open Access Journals (Sweden)

    S. Poblador

    2017-09-01

    Full Text Available Riparian zones play a fundamental role in regulating the amount of carbon (C and nitrogen (N that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2 and nitrous oxide (N2O from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1 than N2O (0.001–0.2 mg N m−2 d−1 to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.

  19. Long-term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: the Upper San Pedro, Arizona, United States

    Science.gov (United States)

    Nguyen, Uyen; Glenn, Edward P.; Nagler, Pamela L.; Scott, Russell L.

    2015-01-01

    The Upper San Pedro River is one of the few remaining undammed rivers that maintain a vibrant riparian ecosystem in the southwest United States. However, its riparian forest is threatened by diminishing groundwater and surface water inputs, due to either changes in watershed characteristics such as changes in riparian and upland vegetation, or human activities such as regional groundwater pumping. We used satellite vegetation indices to quantify the green leaf density of the groundwater-dependent riparian forest from 1984 to 2012. The river was divided into a southern, upstream (mainly perennial flow) reach and a northern, downstream (mainly intermittent and ephemeral flow) reach. Pre-monsoon (June) Landsat normalized difference vegetation index (NDVI) values showed a 20% drop for the northern reach (P  0·05). NDVI and enhanced vegetation index values were positively correlated (P deterioration of the riparian forest in the northern reach.

  20. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon.

    Science.gov (United States)

    Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de

    2014-01-27

    Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood

  2. Evapotranspiration Calculation on the Basis of the Riparian Zone Water Balance

    Directory of Open Access Journals (Sweden)

    SZILÁGYI, József

    2008-01-01

    Full Text Available Riparian forests have a strong influence on groundwater levels and groundwater sustainedstream baseflow. An empirical and a hydraulic version of a new method were developed to calculateevapotranspiration values from riparian zone groundwater levels. The new technique was tested on thehydrometeorological data set of the Hidegvíz Valley (located in Sopron Hills at the eastern foothills ofthe Alps experimental catchment. Evapotranspiration values of this new method were compared tothe Penman-Monteith evapotranspiration values on a half hourly scale and to the White methodevapotranspiration values on a daily scale. Sensitivity analysis showed that the more reliable hydraulicversion of our ET estimation technique is most sensitive (i.e., linearly to the values of the saturatedhydraulic conductivity and specific yield taken from the riparian zone.

  3. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers

    Science.gov (United States)

    David M. Merritt; N. Leroy Poff

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight...

  4. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, Julien [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Gagnon, Daniel [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada); Truax, Benoit; Lambert, France [Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada)

    2010-07-15

    In this paper the potential of five hybrid poplar clones (Populus spp.) to provide biomass and wood volume in the riparian zone is assessed in four agroecosystems of southern Quebec (Canada). For all variables measured, significant Site effects were detected. Survival, biomass yield and volume yield were highest at the Bromptonville site. After 6 years of growth, total aboveground biomass production (stems + branches + leaves) reached 112.8 tDM/ha and total leafless biomass production (stems + branches) reached 101.1 tDM/ha at this site, while stem wood volume attained 237.5 m{sup 3}/ha. Yields as low as 14.2 tDM/ha for total biomass and 24.8 m{sup 3}/ha for total stem volume were also observed at the Magog site. Highest yields were obtained on the most fertile sites, particularly in terms of NO{sub 3} supply rate. Mean stem volume per tree was highly correlated with NO{sub 3} supply rate in soils (R{sup 2} = 0.58, p < 0.001). Clone effects were also detected for most of the variables measured. Total aboveground biomass and total stem volume production were high for clone 3729 (Populus nigra x P. maximowiczii) (73.1 tDM/ha and 134.2 m{sup 3}/ha), although not statistically different from clone 915311 (P. maximowiczii x P. balsamifera). However, mean whole-tree biomass (including leaves) was significantly higher for clone 3729 (38.8 kgDM/tree). Multifunctional agroforestry systems such as hybrid poplar riparian buffer strips are among the most sustainable ways to produce a high amount of biomass and wood in a short time period, while contributing to alleviate environmental problems such as agricultural non-point source pollution. (author)

  5. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Science.gov (United States)

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  7. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  8. Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.

    Science.gov (United States)

    Macaya-Sanz, D; Suter, L; Joseph, J; Barbará, T; Alba, N; González-Martínez, S C; Widmer, A; Lexer, C

    2011-10-01

    Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.

  9. Power and Conflict in Adaptive Management: Analyzing the Discourse of Riparian Management on Public Lands

    Directory of Open Access Journals (Sweden)

    Jennifer S. Arnold

    2012-03-01

    Full Text Available Adaptive collaborative management emphasizes stakeholder engagement as a crucial component of resilient social-ecological systems. Collaboration among diverse stakeholders is expected to enhance learning, build social legitimacy for decision making, and establish relationships that support learning and adaptation in the long term. However, simply bringing together diverse stakeholders does not guarantee productive engagement. Using critical discourse analysis, we examined how diverse stakeholders negotiated knowledge and power in a workshop designed to inform adaptive management of riparian livestock grazing on a National Forest in the southwestern USA. Publicly recognized as a successful component of a larger collaborative effort, we found that the workshop effectively brought together diverse participants, yet still restricted dialogue in important ways. Notably, workshop facilitators took on the additional roles of riparian experts and instructors. As they guided workshop participants toward a consensus view of riparian conditions and management recommendations, they used their status as riparian experts to emphasize commonalities with stakeholders supportive of riparian grazing and accentuate differences with stakeholders skeptical of riparian grazing, including some Forest Service staff with power to influence management decisions. Ultimately, the management plan published one year later did not fully adopt the consensus view from the workshop, but rather included and acknowledged a broader diversity of stakeholder perspectives. Our findings suggest that leaders and facilitators of adaptive collaborative management can more effectively manage for productive stakeholder engagement and, thus, social-ecological resilience if they are more tentative in their convictions, more critical of the role of expert knowledge, and more attentive to the knowledge, interests, and power of diverse stakeholders.

  10. Wood property variation in Populus

    Science.gov (United States)

    Dean W. Einspahr; Miles K. Benson; John R. Peckham

    1968-01-01

    The use of bigtooth aspen (Populus grandidentata Michx.), quaking aspen (P. tremuloides Michx.), and cottonwood (P. deltoides Bartr.) by the pulp and paper industry has increased greatly during the past decade. This expanded use has stimulated research on the genetic improvement of Populus. For the past 12 years...

  11. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  12. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  13. Surface runoff water quality in a managed three zone riparian buffer.

    Science.gov (United States)

    Lowrance, Richard; Sheridan, Joseph M

    2005-01-01

    Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.

  14. Functional species traits of carabid beetles living in two riparian alder forests of the Sila plateau subject to different disturbance factors (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Antonio Mazzei

    2015-06-01

    Full Text Available We studied carabid beetle assemblages found in riparian black alder forests in the Sila plateau (Southern Apennines. These carabid assemblages are characterized by a high incidence of endemic small-sized, low dispersal, highly stenotopic (hygrophilic, and trophycally specialized species. To evaluate the influence of anthropogenic disturbance on these insects, we compared carabid assemblage of an old undisturbed forest (65-170y, wilderness landscape with that of a younger, partly grazed stand (40-60y, cropland landscape. The carabid assemblage of the disturbed stand was characterized by a higher number of species, but showed a lower incidence of zoophagous specialists and brachypterous beetles, with many species probably coming from an adjacent cropland. However, the disturbed stand maintains almost 80% of the core species found in the older forest, which suggests that these insects are not particularly sensitive to disturbance factors represented by periodic wood harvesting and extensive cattle grazing.

  15. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest.

    Directory of Open Access Journals (Sweden)

    Scott F Pearson

    Full Text Available Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1-2 years and long-term (~10 years avian community responses (occupancy and abundance to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13 m forested buffers on each side of the stream, and sites with wider (~30 m and more variable width unharvested buffer. Buffer treatments exhibited a 31-44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63-74% relative to the controls (29%. We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29% and Wide buffers (short-term: 21%; long-term 93% relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that

  16. Biodiversity and Phytosociological Studies of Upstream and Downstream Riparian Areas of Pakistan: Special Reference to Taunsa Wildlife Sanctuary and Keti Shah Forests

    International Nuclear Information System (INIS)

    Arfeen, R. Z.; Saleem, A.; Mirza, S. N.; Tayyab, H. M.; Akmal, M.; Afzal, O.

    2015-01-01

    Pakistan riparian zone mostly belongs to Sindh and Punjab provinces and prone to climatic problems and anthropogenic activities. The research was conduct to estimate and compare the structure and composition of riverine floral diversity in low riparian zone of River Indus. The data was collected from Keti Shah forest and Taunsa wildlife sanctuary. Total 14259 plants/individuals were recorded, which belong to 54 plant species with 18 different families. In Taunsa pre-monsoon survey, total 30 plant species were found with 4476 plants from 16 different families. In Taunsa post-monsoon survey total 3348 individuals were recorded from 20 plant species and 9 families. Similarly, in Keti Shah forest, total 3975 individual were recorded from 22 species and 11 families during the pre-monsoon season and 2460 plants were recorded in post-monsoon season, belonging to 16 species and 10 families. These species mostly belong to Fabaceae, Poaceae, Cyperaceae and Asclepiadaceae. Different phytosociological parameters indicate Tamarix dioca, Cynodon dactylon, Desmostachya bipinnata, Imperata cylindrica, Fimbristylis hispidula, Acacia nilotica, Phragmites karka, Tamarix sp. and Saccharum bengalense as dominant species. The biodiversity in upstream and downstream areas were rich in pre-monsoon season in comparison to post-monsoon season in surveyed areas. This study is useful for management of the area in the future as conservation strategies can be made through considering the adaptive tree species in future plantation and endangered species can be conserved. (author)

  17. Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson A. Müller

    2012-03-01

    Full Text Available Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil. Human-attracted mosquitoes were collected for one hour, around sunset time (half hour before and half after, from April to December 2006, in two environments (riparian forest and near houses, in Tibagi river basin, Palmeira municipality, State of Paraná. Seven-hundred forty-nine mosquitoes, belonging to 13 species, were collected. Psorophora champerico Dyar & Knab, 1906 (42.86% and Psorophora discrucians (Walker, 1856 (40.59% were the most frequent species. No significant differences between quantities of Ps. champerico (t = -0.792; d.f. = 16; p = 0.43 and Ps. discrucians (t = 0.689; d.f. = 16; p = 0.49 obtained in riparian forest and near houses were observed, indicating similar conditions for crepuscular activity of these species in both environments. Psorophora champerico and Ps. discrucians responded (haematophagic activity to environmental stimuli associated with the twilight hours differently in distinct habitats studied. The former species is registered for the first time in the Atlantic forest biome.Atividade crepuscular de culicídeos (Diptera, Culicidae no peridomicílio e remanescentes de matas ciliares do Rio Tibagi. Estado do Paraná, Brasil. Mosquitos atraídos por humanos foram coletados por uma hora em torno do crepúsculo vespertino (meia hora antes e meia hora depois, de abril a dezembro de 2006, em dois locais (mata ciliar e peridomicílio na bacia do Rio Tibagi, município de Palmeira, Estado do Paraná. Foram capturados 749 mosquitos distribuídos em 13 espécies. Psorophora champerico Dyar & Knab, 1906 (42,86% e Ps. discrucians (Walker, 1856 (40,59% foram as espécies mais freqüentes. Não foram registradas diferenças significativas entre as médias de indivíduos capturados entre os pontos de mata ciliar e peridomicílio para Ps. champerico (t = -0,792; g.l. = 16; p = 0

  18. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Science.gov (United States)

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  19. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009–2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival–i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides–the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation

  20. Tree mortality in response to typhoon-induced floods and mudslides is determined by tree species, size, and position in a riparian Formosan gum forest in subtropical Taiwan.

    Science.gov (United States)

    Tzeng, Hsy-Yu; Wang, Wei; Tseng, Yen-Hsueh; Chiu, Ching-An; Kuo, Chu-Chia; Tsai, Shang-Te

    2018-01-01

    Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the

  1. Growth of Populus and Salix Species under Compost Leachate Irrigation

    OpenAIRE

    Tooba Abedi; Shamim Moghaddami; Ebrahim Lashkar Bolouki

    2014-01-01

    According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran....

  2. Rocky Mountain Riparian Digest

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Rocky Mountain Riparian Digest presents the many facets of riparian research at the station. Included are articles about protecting the riparian habitat, the social and economic values of riparian environments, watershed restoration, remote sensing tools, and getting kids interested in the science.

  3. Riparian influences on the biophysical characteristics of seston in headwater streams.

    Science.gov (United States)

    Scott R. Elliott; Robert J. Naiman; Peter A. Bisson

    2004-01-01

    Suspended particles (seston) in streams are an important source of nutrition for many invertebrates, forming a strong trophic link between plant and animal production. In forested regions the management of riparian corridors may alter alloehthonous and autochthonous contributions to streams, ultimately changing the biophysical characteristics of seston. This article...

  4. Density management and riparian buffer study in Western Oregon: Phase 1 results, launch of phase 2 [brochure

    Science.gov (United States)

    Rhonda Mazza

    2009-01-01

    Can we expedite the development of late-successional forest conditions by applying thinning treatments to young forest stands? What effect will these thinning treatments have on headwater ecosystems? These broad questions lie at the foundation of the Density Management and Riparian Buffer Study (DMS) of western Oregon.

  5. Influence of microtopography on soil chemistry and understory riparian vegetation

    Science.gov (United States)

    Irene M. Unger; Rose-Marie Muzika

    2008-01-01

    The success of riparian forest restoration efforts depends in part on an understanding of the relationship between soil characteristics and vegetation patterns and how these change with site conditions. To examine these relationships for floodplains in northern Missouri, we chose three unchannelized streams as study areas. A sampling grid was established at two plots...

  6. Effects of light regime and IBA concentration on adventitious rooting of an eastern cottonwood (Populus deltoides) clone

    Science.gov (United States)

    Alexander P. Hoffman; Joshua P. Adams; Andrew Nelson

    2016-01-01

    Eastern cottonwood (Populus deltoides) has received a substantial amount of interest from invitro studies within the past decade. The ability to efficiently multiply the stock of established clones such as clone 110412 is a valuable asset for forest endeavors. However, a common problem encountered is initiating adventitious rooting in new micropropagation protocols....

  7. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  8. RICHNESS AND FLORISTIC COMPOSITION OF THE FERN COMMUNITY IN RIPARIAN FOREST OF THE RIVER ‘CADEIA’, IN RIO GRANDE DO SUL STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanete Teresinha Mallmann

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813327The present study analyzed richness and specific composition of the fern community in fragments fromthe riparian forest of river ‘Cadeia’, under different levels of human impact, in Santa Maria do Herval, RioGrande do Sul state, Brazil. An amount of 120 sample units were delimited, equitably distributed in threefragments (FI, II and III in which all species were surveyed and the richness was recorded. The floristiccomposition among fragments was compared using Jaccard’s index and spatial distribution of units wasevaluated through multidimensional scaling. Richness data were presented in the form of rarefaction curvesbased on samples and non-parametric diversity estimators. A total of 40 species were found, belonging to13 families. The greater floristic similarity was between FI and FII. Sample units from FI formed the mostdefined grouping and they had more exclusive species than the others. The rarefaction curve for the totalsampling almost reached the asymptote and estimators indicated a maximum of 45 species, which meansthat the majority of species was surveyed at the study site. A decreasing gradient of mean richness per unitwas observed as the urbanization increased in the matrix habitat of the fragments. These results form a database to be used in management, conservation and reforestation measures in degraded riparian forests. Theycan be directly compared to results from other studies that used rarefaction and richness estimators, whichis not possible to do with many of the surveys accomplished in Brazil so far.

  9. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  10. The Phytophthora species assemblage and diversity in riparian alder ecosystems of western Oregon, USA.

    Science.gov (United States)

    Sims, Laura Lee; Sutton, Wendy; Reeser, Paul; Hansen, Everett M

    2015-01-01

    Phytophthora species were systematically sampled, isolated, identified and compared for presence in streams, soil and roots of alder (Alnus species) dominated riparian ecosystems in western Oregon. We describe the species assemblage and evaluate Phytophthora diversity associated with alder. We recovered 1250 isolates of 20 Phytophthora species. Only three species were recovered from all substrates (streams, soil, alder roots): P. gonapodyides, the informally described "P. taxon Pgchlamydo", and P. siskiyouensis. P. alni ssp. uniformis along with five other species not previously recovered in Oregon forests are included in the assemblage: P.citricola s.l., P. gregata, P. gallica, P. nicotianae and P. parsiana. Phytophthora species diversity was greatest in downstream riparian locations. There was no significant difference in species diversity comparing soil and unwashed roots (the rhizosphere) to stream water. There was a difference between the predominating species from the rhizosphere compared to stream water. The most numerous species was the informally described "P. taxon Oaksoil", which was mainly recovered from, and most predominant in, stream water. The most common species from riparian forest soils and alder root systems was P. gonapodyides. © 2015 by The Mycological Society of America.

  11. Evaluation of sampling methods to quantify abundance of hardwoods and snags within conifer-dominated riparian zones

    Science.gov (United States)

    Theresa Marquardt; Hailemariam Temesgen; Paul D. Anderson; Bianca. Eskelson

    2012-01-01

    Six sampling alternatives were examined for their ability to quantify selected attributes of snags and hardwoods in conifer-dominated riparian areas of managed headwater forests in western Oregon. Each alternative was simulated 500 times at eight headwater forest locations based on a 0.52-ha square stem map. The alternatives were evaluated based on how well they...

  12. Impacts of climate and insect defoliators on productivity and function of trembling aspen (Populus tremuloides) in Alaskan boreal forests

    Science.gov (United States)

    Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.

    2017-12-01

    Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This

  13. High temporal resolution photography for observing riparian area use and grazing behavior

    Science.gov (United States)

    In 2014, a 2.4 hectare site within the Apache-Sitgreaves National Forest in northeastern Arizona, USA was selected to characterize temporal and spatial patterns of riparian area use. Three consecutive 30, 8, and 46 day time periods representing 1) unrestricted access, 2) prescribed cattle use, and 3...

  14. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    Science.gov (United States)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  15. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. [Distribution pattern of rare plants along riparian zone and its implication for conservation in Shennongjia area].

    Science.gov (United States)

    Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua

    2002-11-01

    Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.

  17. VEGETATIVNO RAZMNOŽEVANJE TOPOLOV (Populus spp.) S POTAKNJENCI

    OpenAIRE

    Sternad, Rebeka

    2010-01-01

    Raziskava je bila opravljena na treh vrstah topolov: črnem topolu (Populus nigra L.), belem topolu (Populus alba L.) in trepetliki (Populus tremula L.). Namen diplomskega dela je bil proučiti ukoreninjenje potaknjencev topolov glede na okolje koreninjenja, termin potikanja in vrsto uporabljenega substrata. Zeleni in pololeseneli potaknjenci so bili večinoma nabrani v okolici celjske regije in Žalca. Koreninjeni so bili v šestih terminih (od junija do septembra) v okolju meglenja in neposredne...

  18. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  19. Quantifying the contribution of riparian soils to the provision of ecosystem services.

    Science.gov (United States)

    de Sosa, Laura L; Glanville, Helen C; Marshall, Miles R; Prysor Williams, A; Jones, Davey L

    2018-05-15

    Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research

  20. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  1. Sex-Specific Response to Stress in Populus

    Directory of Open Access Journals (Sweden)

    Nataliya V. Melnikova

    2017-10-01

    Full Text Available Populus is an effective model for genetic studies in trees. The genus Populus includes dioecious species, and the differences exhibited in males and females have been intensively studied. This review focused on the distinctions between male and female poplar and aspen plants under stress conditions, such as drought, salinity, heavy metals, and nutrient deficiency on morphological, physiological, proteome, and gene expression levels. In most studies, males of Populus species were more adaptive to the majority of the stress conditions and showed less damage, better growth, and higher photosynthetic capacity and antioxidant activity than that of the females. However, in two recent studies, no differences in non-reproductive traits were revealed for male and female trees. This discrepancy of the results could be associated with experimental design: different species and genotypes, stress conditions, types of plant materials, sampling sizes. Knowledge of sex-specific differences is crucial for basic and applied research in Populus species.

  2. Allelopathic potential of populus euphratica olivier

    International Nuclear Information System (INIS)

    Sher, Z.; Hussain, F.; Ahmad, B.; Wahab, M.

    2011-01-01

    Populus euphratica Olivier is frequently cultivated deciduous tree in Pakistan on agricultural land for its shade, fodder, timber and fuel wood. A relatively reduced under storey is often observed below it. Therefore the present study was conducted to assess the allelopathic potential of Populus euphratica against some crop species. Plant material of Populus euphratica were collected from the agriculture fields of Lahor, District Swabi in 2008 and were dried at room temperature (258 deg. C-308 deg. C). Allelopathic studies conducted by using aqueous extracts from various parts including young leaves, mature leaves, bark, litter and mulching in various experiments invariably retarded the germination, plumule, radical growth, fresh and dry weight of Sorghum vulgare Perse, Setaria italica (L.) P. Beauv and Triticum aestivum L., in laboratory experiments. The aqueous extracts obtained after 48 h were more inhibitory than 24 h. Leaves were more toxic than bark. Litter and mulching experiments also proved to be inhibitory. It is suggested that the various assayed parts of Populus euphratica have strong allelopathic potential at least against the tested species. Further investigation is required to see its allelopathic behavior under field condition against its associated species and to identify the toxic principles. (author)

  3. Where the Rubber Meets the Road; Varied Techniques for Measuring the Land-Atmosphere Exchange of Water and Energy in a California Watershed and the Driving Influences on this Exchange

    Science.gov (United States)

    Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.

    2005-12-01

    In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.

  4. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  5. Effects on the forest of sulfur dioxide from a sulfur fire near Edson, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, D

    1975-01-01

    Sulfur was burnt in a sanitary landfill during August 9 and 10, 1974. Resulting sulfur dioxide impinged on the surrounding mixed forest for 29 h. About 4 ha of forest displayed visible injury symptoms of varying intensity soon after. However, only .4 ha remained permanently injured the next season. Here, white spruce (Picea glauca (Moench) Voss) and scattered individuals of balsam poplar (Populus balsamifera L.), alder (Alnus tenuifolia Nutt.), and trembling aspen (Populus tremuloides Michx.) were killed. This report describes the extent of injury, relative sensitivities of affected plant species, and recovery in the spring in 1975.

  6. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    Science.gov (United States)

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Stem respiration of Populus species in the third year of free-air CO2 enrichment.

    Science.gov (United States)

    Gielen, Birgit; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO2 concentrations. Regarding this question, effects of elevated [CO2] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO2 enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density.

  8. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  9. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  10. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  12. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  13. Quantifying Phosphorus Retnention in Soils of Riparian Buffers Influenced by Different Land Use Practices

    Science.gov (United States)

    Lancellotti, B.; Ross, D. S.; Adair, C.; Schroth, A. W.; Perdrial, J. N.

    2017-12-01

    Excess phosphorus (P) loading to freshwater systems can lead to eutrophication, resulting in algal blooms and subsequent fish kills. Lake Champlain, located between Vermont, New York, and Quebec, has historically exhibited negative effects of eutrophication due to P overloading from non-point sources. To reduce P inputs to the Lake, the Vermont Agency of Natural Resources requires and provides guidelines for the management of riparian buffers, which help protect adjacent water bodies from nutrient and sediment runoff. To better understand how phosphorous retention in riparian buffers is influenced by soil wetness and adjacent land use, we explored differences in P content between riparian buffers located in forested and agricultural watersheds. Within each land use type, we focused on two paired riparian buffers with contrasting soil moisture levels (one wet transect and one dry transect). At each of the four sites, soil pits were dug along a transect perpendicular to the streambank and were placed strategically to capture convergent and divergent landscape positions. Soil samples were collected from each horizon within 0-30cm. In each of these samples, we measured orthophosphate, degree of phosphorus saturation (DPS), and trace elements. We investigated the relationship between DPS and aluminum (Al) and iron (Fe) concentrations to determine how much of the variability in DPS was explained by Al and Fe concentrations, and compared these relationships between the four riparian buffer sites. We also assessed how these relationships varied with depth in the soil profile. The results of these analyses allow us to identify the characteristics of riparian buffers that promote the most effective P sequestration, which is beneficial to the effective management of riparian areas within the Lake Champlain basin.

  14. Phenology of Guarea macrophylla Vahl (Meliaceae in subtropical riparian forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    A. Müller

    2017-08-01

    Full Text Available Abstract Climate is one of the main factors that affect plant behavior. The phenology of Guarea macrophylla Vahl, which is a small tree used for reforestation of degraded areas, was monitored for 18 months in a riparian forest at the Schmidt Stream, Campo Bom, in the state of Rio Grande do Sul, southern Brazil. Vegetative (leaf fall and leaf flushing and reproductive events were observed, with the latter divided into flowering (flower buds and anthesis and fruiting (unripe, ripening and ripe fruit. Phenological events were related to temperature, photoperiod and precipitation and their seasonality was verified by circular statistical analysis. Vegetative phenophases were continuous; they were not related to climate factors and presented low intensity, emphasizing the perennial aspect of the species. Flowering occurred during spring and summer. Both flower buds and anthesis were related to temperature and photoperiod. Fruiting was constant and went through all stages of development. Unripe fruits developed during the months with the lowest photoperiod and ripen more intensely in winter, on colder days. Ripe fruit became available for dispersal in spring, in times of longer photoperiod and higher temperatures. Except for leaf fall, all other phenological events showed seasonality in their manifestation. The one-month difference between the onsets of the flowering phases observed in this study indicated that local climate changes induced the early occurrence of this phenophase.

  15. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Dwire

    2018-04-01

    Full Text Available Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that a warmer climate may bring. Areas associated with springs and small streams will probably experience near-term changes, and some riparian areas and wetlands may decrease in size over time. A warmer climate and reduced soil moisture could lead to a transition from riparian hardwood species to more drought tolerant conifers and shrubs. Increased frequency and spatial extent of wildfire spreading from upland forests could also affect riparian species composition. The specific effects of climate change will vary, depending on local hydrology (especially groundwater, topography, streamside microclimates, and current conditions and land use. Keywords: Climate change, Groundwater-dependent ecosystems, Riparian areas, Springs, Wetlands

  16. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  17. Where are the forests in the United States "not disturbed" over a quarter century?

    Science.gov (United States)

    Huang, C.; Zhao, F. A.; Goward, S. N.; Schleeweis, K.; Michaelis, A.; Masek, J. G.; Dungan, J. L.; Cohen, W. B.; Moisen, G.; Rishmawi, K.

    2015-12-01

    Forests provide many important ecosystem services. Logging, fire, and other disturbances can disrupt or even diminish the provision of these services. Although many map products and inventory data can be used to estimate the total forested area in the United States, it is not clear how much of the country's forest remained undisturbed in recent decades. Through the North American Forest Dynamics (NAFD) study, we have mapped both disturbed and undisturbed forests over the conterminous United States (CONUS) using sub-annual time series of Landsat observations. The results revealed that 33.6% of the land area of CONUS had forest cover during some or all of the years between 1986 and 2010. About two thirds of the nation's forests remained undisturbed during the 25-year period. Most of these undisturbed forests were distributed in western and northern parts of the eastern US. The percentage of undisturbed forest in the southeastern states were lower, about 50% or less. In these states, much of the undisturbed forest was distributed along riparian zones or in protected areas, including national parks and national forests. In the northeastern and western US, riparian zones did not have a significantly higher proportion of undisturbed forests than non-riparian areas. While most protected areas had a high percentage of undisturbed forests, some of them had lower percentages than the average values of their surrounding regions. Topography may also have played a role in keeping forests "undisturbed". Many ecoregions in the western and northern US had a substantially higher percentage of undisturbed forests at high elevations than at low elevations.

  18. Soil properties and aspen development five years after compaction and forest floor removal

    Science.gov (United States)

    Douglas M. Stone; John D. Elioff

    1998-01-01

    Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic...

  19. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.

    Science.gov (United States)

    Godoi, Mauricio N; Souza, Edivaldo O DE

    2016-01-01

    Different vegetation types are distributed in mountains according to altitude, topography and soil. The composition and structure of bird communities in these areas can change in relation to the vegetation gradient, with particular communities occupying each habitat type. In this study we present the changes in composition, species richness and bird abundance over the gradient of forests, savannas and altitudinal grasslands of Maciço do Urucum, a mountainous region located in the Chiquitano Dry Forests domain in western Brazil. We recorded 165 bird species through qualitative and quantitative methods. Forested savannas, riparian forests and submontane forests presented the highest richness and abundance of birds, while arboreal savannas and altitudinal grasslands had intermediate and low values, respectively. The bird composition was similar between riparian and submontane forests, while other vegetation types present more dissimilar bird communities. Our results show differences in composition, richness and bird abundance among the vegetation types present at Maciço do Urucum, and highlight an important function of vegetation gradients for the conservation of bird communities in mountains. Additionally, this is the first study of the bird communities in the Brazilian Chiquitano Dry Forests, an important domain in the west of Brazil which has been poorly studied.

  20. Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoides x Populus nigra).

    Science.gov (United States)

    McBain, M C; Warland, J S; McBride, R A; Wagner-Riddle, C

    2004-12-01

    The purpose of this study was to determine whether or not young hybrid poplar (Populus deltoides x Populus nigra) could transport landfill biogas internally from the root zone to the atmosphere, thereby acting as conduits for landfill gas release. Fluxes of methane (CH4) and nitrous oxide (N2O) from the seedlings to the atmosphere were measured under controlled conditions using dynamic flux chambers and a tunable diode laser trace gas analyser (TDLTGA). Nitrous oxide was emitted from the seedlings, but only when extremely high soil N2O concentrations were applied to the root zone. In contrast, no detectable emissions of CH4 were measured in a similar experimental trial. Visible plant morphological responses, characteristic of flood-tolerant trees attempting to cope with the negative effects of soil hypoxia, were observed during the CH4 experiments. Leaf chlorosis, leaf abscission and adventitious roots were all visible plant responses. In addition, seedling survival was observed to be highest in the biogas 'hot spot' areas of a local municipal solid waste landfill involved in this study. Based on the available literature, these observations suggest that CH4 can be transported internally by Populus deltoides x Populus nigra seedlings in trace amounts, although future research is required to fully test this hypothesis.

  1. From soil water to surface water – how the riparian zone controls element transport from a boreal forest to a stream

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2017-06-01

    Full Text Available Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr and other parameters such as sulfate and total organic carbon (TOC. The results showed that the concentrations of most investigated elements increased substantially (up to 60 times as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the

  2. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2015-01-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species' range. Disease may accelerate tree species' declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry. To assess the role of disease in mediating mortality risk in quaking aspen (Populus tremuloides), we developed hierarchical Bayesian models for both disease prevalence in live aspen stems and the resulting survival rates of healthy and diseased aspen near the species' southern range limit using 5088 individual trees on 281 United States Forest Service Forest Inventory and Analysis plots in the southwestern United States.

  3. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the kerian river basin, perak, malaysia.

    Science.gov (United States)

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-12-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.

  4. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  5. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  6. Legal ecotones: A comparative analysis of riparian policy protection in the Oregon Coast Range, USA.

    Science.gov (United States)

    Boisjolie, Brett A; Santelmann, Mary V; Flitcroft, Rebecca L; Duncan, Sally L

    2017-07-15

    Waterways of the USA are protected under the public trust doctrine, placing responsibility on the state to safeguard public resources for the benefit of current and future generations. This responsibility has led to the development of management standards for lands adjacent to streams. In the state of Oregon, policy protection for riparian areas varies by ownership (e.g., federal, state, or private), land use (e.g., forest, agriculture, rural residential, or urban) and stream attributes, creating varying standards for riparian land-management practices along the stream corridor. Here, we compare state and federal riparian land-management standards in four major policies that apply to private and public lands in the Oregon Coast Range. We use a standard template to categorize elements of policy protection: (1) the regulatory approach, (2) policy goals, (3) stream attributes, and (4) management standards. All four policies have similar goals for achieving water-quality standards, but differ in their regulatory approach. Plans for agricultural lands rely on outcome-based standards to treat pollution, in contrast with the prescriptive policy approaches for federal, state, and private forest lands, which set specific standards with the intent of preventing pollution. Policies also differ regarding the stream attributes considered when specifying management standards. Across all policies, 25 categories of unique standards are identified. Buffer widths vary from 0 to ∼152 m, with no buffer requirements for streams in agricultural areas or small, non-fish-bearing, seasonal streams on private forest land; narrow buffer requirements for small, non-fish-bearing perennial streams on private forest land (3 m); and the widest buffer requirements for fish-bearing streams on federal land (two site-potential tree-heights, up to an estimated 152 m). Results provide insight into how ecosystem concerns are addressed by variable policy approaches in multi-ownership landscapes, an

  7. Demographic histories of adaptively diverged riparian and non-riparian species of Ainsliaea (Asteraceae) inferred from coalescent analyses using multiple nuclear loci.

    Science.gov (United States)

    Mitsui, Yuki; Setoguchi, Hiroaki

    2012-12-28

    Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian

  8. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. Growth and biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  10. Stem respiration of Populus species in the third year of free-air CO{sub 2} enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Bielen, B.; Geulemans, R. [Univ. of Antwerp, Dept. of Biology, Research Group of Plant and Vegetation Ecology, Wilrijk (Belgium); Scarascia-Mugnozza, G. [Univ. degli Studi della Tuscia, Dept. of Forest Environment and Resources, Viterbo (Italy)

    2003-04-01

    Carbon cycling in ecosystems, and especially in forests, is intensively studied to predict the effects of global climate change, and the role which forests may play in 'changing climate change'. One of the questions is whether the carbon balance of forests will be affected by increasing atmospheric CO{sub 2} concentrations. Regarding this question, effects of elevated [CO{sub 2}] on woody-tissue respiration have frequently been neglected. Stem respiration of three Populus species (P. alba L. (Clone 2AS-11), P. nigra L. (Clone Jean Pourtet), and P. x euramericana (Clone I-214)) was measured in a managed, high-density forest plantation exposed to free-air CO{sub 2} enrichment (POPFACE). During the period of measurements, in May of the third year, stem respiration rates were not affected by the FACE treatment. Moreover, FACE did not influence the relationships between respiration rate and both stem temperature and relative growth rate. The results were supported by the reported absence of a FACE-effect on growth and stem wood density. (au)

  11. The riparian ecosystem management study: response of small mammals to streamside buffers in western Washington

    Science.gov (United States)

    Martin G. Raphael; Randall J. Wilk

    2013-01-01

    One of the fundamental concepts behind the conservation strategy in the U.S. federal Northwest Forest Plan is the importance of habitat buff ers in providing functional stream and streamside ecosystems. To better understand the importance of riparian buff ers in providing habitat for associated organisms, we investigated responses of small mammals to various streamside...

  12. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Science.gov (United States)

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  13. Preliminary indicators for restoration assessment in riparian reforestations

    Directory of Open Access Journals (Sweden)

    Daniele Nogueira dos Reis

    2014-12-01

    Full Text Available The restoration success in forest ecosystems can be adequately assessed by correct selection of indicators that represent the achievement of established goals. The discriminant analysis technique on indicators selection consists of separation and classification of new observations on pre-defined groups, reducing the number of variables that are discriminant functions linearly dependent of the original variables. This study aims to define an index composed by structural attributes (number of species and individuals planted, height, basal area, number of regenerant species and individuals and chemical and pedological soil attributes to classify riparian reforested environments regarding to restoration taking as reference reforestation around the the Volta Grande reservoir, Minas Gerais State, Brazil. Eleven variables were used for previous classification of plots in partially restored or unrestored groups and also used for discriminant analysis. Variables selected by the discriminant function generated were: number of species and basal area of planted individuals, number of regenerant species and individuals litter accumulation and soil cation exchange capacity. Compatibility of 98% from previous plot classifications and after index formation, show the representativeness of the selected variables on evaluation of restoration of riparian reforestations.

  14. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal.

    Science.gov (United States)

    Hultine, K R; Bush, S E; Ehleringer, J R

    2010-03-01

    Riparian cottonwood/willow forest assemblages are highly valued in the southwestern United States for their wildlife habitat, biodiversity, and watershed protection. Yet these forests are under considerable threat from climate change impacts on water resources and land-use activities to support human enterprise. Stream diversions, groundwater pumping, and extended drought have resulted in the decline of cottonwood/willow forests along many riparian corridors in the Southwest and, in many cases, the replacement of these forests with less desirable invasive shrubs and trees. Nevertheless, ecophysiological responses of cottonwood and willow, along with associated ecohydrological feedbacks of soil water depletion, are not well understood. Ecophysiological processes of mature Fremont cottonwood and coyote willow stands were examined over four consecutive growing seasons (2004-2007) near Salt Lake City, Utah, USA. The tree stands occurred near the inlet of a reservoir that was drained in the spring of 2005 and remained empty until mid-summer of 2006, effectively removing the primary water source for most of two growing seasons. Stem sap flux density (Js) in cottonwood was highly correlated with volumetric soil moisture (theta) in the upper 60 cm and decreased sevenfold as soil moisture dropped from 12% to 7% after the reservoir was drained. Conversely, Js in willow was marginally correlated with 0 and decreased by only 25% during the same period. Opposite patterns emerged during the following growing season: willow had a lower whole-plant conductance (kt) in June and higher leaf carbon isotope ratios (delta13C) than cottonwood in August, whereas k(t) and delta13C were otherwise similar between species. Water relations in both species recovered quickly from soil water depletion, with the exception that sapwood area to stem area (As:Ast) was significantly lower in both species after the 2007 growing season compared to 2004. Results suggest that cottonwood has a greater

  15. Soil Quality under Riparian Forest at Different Stages of Ecological Succession and Cultivated with Sugarcane

    Science.gov (United States)

    Silva, Luiz Gabriel; Casagrande, José Carlos; Colato, Alexandre; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2014-05-01

    This work aimed at evaluating the quality of the soil through its chemical, physical and microbiological attributes, using additive pondered model, as well as studying the characteristics of the linear method of combination of data, figures of merit (FoMs), the process of assigning weights and standard score functions, using measurements collected in three areas (two riparian forests and a commercial crop of sugarcane) in two soil types (Oxisol and Podzol) located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. The soil was sampled in the depths of 0-0.2 and 0.2-0.4m, and was determined some of its chemical attributes (nutrient content and organic matter, cationic exchange capacity - CEC, etc.), physical (particle size distribution, density and porosity) and microbiological (microbial biomass and basal respiration). Two models were built, one containing two hierarchical levels of FoMs (Mod1), and another containing three levels (Mod2), in order to try to isolate FoMs highly correlated from each other within a top-level FoM. At FoMs of Mod1 were assigned various combinations of weights, and those of Mod2 were assigned weights from three methods, distribution from fixed value, classification and pair-wise comparison. In the Mod1, in virtually all combinations of weights used, values of Soil Quality Index (SQI) were superior in older forests, while the most recent forest presented the lowest SQI, for both types of soil. The variation of SQI values obtained from the sets of weights used also differed between the combinations tested, with the set of values of the ancient forest showing smaller amplitude. It could also be observed that the sets of values of Oxisol showed higher SQI and lower amplitude in relation to that of Podzol. It was observed that these facts are due mainly to the soil organic matter content (MO), which differs between the vegetations and soil types, and influences many parameters used in the model. Thus, in the structures where MO had

  16. Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars

    NARCIS (Netherlands)

    Thompson, S.L.; Lamothe, M.; Meirmans, P.G.; Périnet, P.; Isabel, N.

    2010-01-01

    As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus

  17. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  18. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management

    Science.gov (United States)

    Doug P. Aubrey; David R. Coyle; Mark D. Coleman

    2012-01-01

    Background and aims Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus...

  19. A hierarchical spatial framework for forest landscape planning.

    Science.gov (United States)

    Pete Bettinger; Marie Lennette; K. Norman Johnson; Thomas A. Spies

    2005-01-01

    A hierarchical spatial framework for large-scale, long-term forest landscape planning is presented along with example policy analyses for a 560,000 ha area of the Oregon Coast Range. The modeling framework suggests utilizing the detail provided by satellite imagery to track forest vegetation condition and for representation of fine-scale features, such as riparian...

  20. Growth of Populus and Salix Species under Compost Leachate Irrigation

    Directory of Open Access Journals (Sweden)

    Tooba Abedi

    2014-12-01

    Full Text Available According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran. The highest diameter growth rate was exhibited for all three plant species by the 1:1 treatment with an average of 0.26, 0.22 and 0.16 cm in eight months period for P. euroamericana, P. deltoides and S. alba, respectively. Over a period of eight months a higher growth rate of height was observed in (P and (1:1 treatment for S. alba (33.70 and 15.77 cm, respectively and in (C treatment for P. deltoides (16.51 cm. P. deltoides and S. alba produced significantly (p<0.05 smaller aboveground biomass in (P treatment compared to all species. P. deltoides exhibited greater mean aboveground biomass in the (1:1 treatment compared to other species. There were significant differences (p<0.05 in the growth of roots between P. deltoides, P. euramericana and S. alba in all of the treatments.

  1. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  2. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  3. Influence of flooding and landform properties on riparian plant communities in an old-growth northern hardwood watershed

    Science.gov (United States)

    P. Charles Goebel; Kurt S. Pregitzer; Brian J. Palik

    2012-01-01

    In most forested landscapes, the organization of plant communities across stream valleys is thought to be regulated by a complex set of interactions including flooding, landform properties, and vegetation. However, few studies have directly examined the relative influence of frequent and infrequent flooding, as well as landform properties, on riparian plant community...

  4. Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles.

    Directory of Open Access Journals (Sweden)

    Luke J Evans

    Full Text Available Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.

  5. Changes in soil organic matter compositrion after introduction of riparian vegetation on shores of hydroelectric reservoires (Southeast of Brazil)

    NARCIS (Netherlands)

    Alcantara, de F.A.; Buurman, P.; Curi, N.; Furtini Neto, A.E.; Lagen, van B.; Meijer, E.M.

    2004-01-01

    This work is part of a research program with the general objective of evaluating soil sustainability in areas surrounding hydroelectric reservoirs, which have been planted with riparian forest. The specific aims were: (i) to assess if and how the soil organic matter (SOM) chemical composition has

  6. Riparian planning in Yogyakarta City

    Science.gov (United States)

    Rachmawati, R.; Prakoso, E.; Sadali, M. I.; Yusuf, M. G.

    2018-04-01

    Riparian is a potential for slums in urban areas. The city of Yogyakarta is passed by three rivers namely Code, Gajahwong, and Winongo, crossing the city. Riparian in the three rivers are potential for slum if the area is not well managed. This paper is based on the survey results of the structured interview with the people living in the riparian area in Yogyakarta City. They were 75 respondents from the three riparian. The result shows that several reasons why people prefer to remain living in the area are limited spaces and high land price in the city as well as inherited from their parents. The facts that there are still several problems related to the condition of settlement environment in the riparian, i.e., The condition of densely-populated areas, limited availability of land, and limited public spaces. Efforts that can be done to solve problems related to the riparian planning are anticipating disasters like flood and landslide, paying attention to densely-populated and unwell-planned areas, and handling garbage that has been abandoned into the river. The program expected by those living along both riversides is intended to give priorities on providing some aid for those whose houses are not in good condition, controlling buildings without a permit, and building a dike along the river. Efficiency can be made by making use of the space adequately between the one for settlement and the other one for open-green space for both aesthetic and economic purposes.

  7. Evolutionary Quantitative Genomics of Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance was investigated for signatures of selection (comparing QST-FST using clustering of individuals by climate of origin (temperature and precipitation. 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation; 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes were associated with adaptive traits (based on significant QST. Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show

  8. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  9. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Natural Resource Agency — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  10. Biogeomorphic feedbacks within riparian corridors: the role of positive interactions between riparian plants

    Science.gov (United States)

    Corenblit, Dov; Steiger, Johannes; Till-Bottraud, Irène

    2017-04-01

    Riparian vegetation affects hydrogeomorphic processes and leads to the construction of wooded fluvial landforms within riparian corridors. Multiple plants form dense multi- and mono-specific stands that enhance plant resistance as grouped plants are less prone to be uprooted than free-standing individuals. Riparian plants which grow in dense stands also enhance their role as ecosystem engineers through the trapping of sediment, organic matter and nutrients. The wooded biogeomorphic landforms which originate from the effect of vegetation on geomorphology lead in return to an improved capacity of the plants to survive, exploit resources, and reach sexual maturity in the intervals between destructive floods. Thus, these vegetated biogeomorphic landforms likely represent a positive niche construction of riparian plants. The nature and intensity of biotic interactions between riparian plants of different species (inter-specific) or the same species (intra-specific) which form dense stands and construct together the niche remain unclear. We strongly suspect that indirect inter-specific positive interactions (facilitation) occur between plants but that more direct intra-specific interactions, such as cooperation and altruism, also operate during the niche construction process. Our aim is to propose an original theoretical framework of inter and intra-specific positive interactions between riparian plants. We suggest that positive interactions between riparian plants are maximized in river reaches with an intermediate level of hydrogeomorphic disturbance. During establishment, plants that grow within dense stands improve their survival and growth because individuals protect each other from shear stress. In addition to the improved capacity to trap mineral and organic matter, individuals which constitute the dense stand can cooperate to mutually support a mycorrhizal fungi network that will connect plants, soil and ground water and influence nutrient transfer, cycling and

  11. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Science.gov (United States)

    Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto

    2018-01-01

    Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

  12. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    Science.gov (United States)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  13. Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zicheng; Apps, M.J.; Bhatti, J.S. [Canadan Forest Service, Edmonton (Canada). Northern Forestry Centre

    2002-06-01

    Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43,530 kg-C/ha) than either Populus (25,500 kg-C/ha) or Pinus (19,400 kg-C/ha). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic-matter decomposition, which in turn affect the ecosystem C-dynamics. During forest succession after a stand-replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C-transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.

  14. Buffer Strips for Riparian Zone Management

    National Research Council Canada - National Science Library

    1991-01-01

    This study provides a review of technical literature concerning the width of riparian buffer strips needed to protect water quality and maintain other important values provided by riparian ecosystem...

  15. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species.

    Science.gov (United States)

    Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A

    1996-10-01

    Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.

  16. Wildlife Response to Riparian Restoration on the Sacramento River

    Directory of Open Access Journals (Sweden)

    Gregory H Golet

    2008-06-01

    Full Text Available Studies that assess the success of riparian restoration projects seldom focus on wildlife. More generally, vegetation characteristics are studied, with the assumption that animal populations will recover once adequate habitats are established. On the Sacramento River, millions of dollars have been spent on habitat restoration, yet few studies of wildlife response have been published. Here we present the major findings of a suite of studies that assessed responses of four taxonomic groups (insects, birds, bats, and rodents. Study designs fell primarily into two broad categories: comparisons of restoration sites of different ages, and comparisons of restoration sites with agricultural and remnant riparian sites. Older restoration sites showed increased abundances of many species of landbirds and bats relative to younger sites, and the same trend was observed for the Valley elderberry longhorn beetle (Desmocerus californicus dimorphus, a federally threatened species. Species richness of landbirds and ground-dwelling beetles appeared to increase as restoration sites matured. Young restoration sites provided benefits to species that utilize early successional riparian habitats, and after about 10 years, the sites appeared to provide many of the complex structural habitat elements that are characteristic of remnant forest patches. Eleven-year old sites were occupied by both cavity-nesting birds and special-status crevice-roosting bats. Restored sites also supported a wide diversity of bee species, and had richness similar to remnant sites. Remnant sites had species compositions of beetles and rodents more similar to older sites than to younger sites. Because study durations were short for all but landbirds, results should be viewed as preliminary. Nonetheless, in aggregate, they provide convincing evidence that restoration along the Sacramento River has been successful in restoring riparian habitats for a broad suite of faunal species. Not only did

  17. Historical patterns in lichen communities of montane quaking aspen forests

    Science.gov (United States)

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  18. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  19. Arsenic in terrestrial invertebrates from riparian areas of the Piracicaba River Basin, Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Franca, E.J.; Magalhaes, M.R.L.; Santos, M.L.O.; Nadai Fernandes, E.A. de; Fonseca, F.Y.

    2017-01-01

    There is no information on arsenic distribution in terrestrial invertebrates from riparian forests of urban and rural areas in Brazil. The objective of this study was to evaluate the As levels in invertebrates from riverine forests of the Piracicaba River Basin, Sao Paulo, Brazil, using the instrumental neutron activation analysis, k 0 -comparator method. After correction of mass fractions, values higher than 0.10 mg kg -1 were quantified in invertebrates from both urban and agricultural areas. An unexpected As mass fraction of 13 mg kg -1 obtained in the Coleopteran pest Macrodactylus pumilio indicated resistance to As-containing-pesticides. (author)

  20. Characterization of MORE AXILLARY GROWTH genes in Populus.

    Directory of Open Access Journals (Sweden)

    Olaf Czarnecki

    Full Text Available Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1, MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

  1. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    Science.gov (United States)

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  2. Effects of metals and arsenic on riparian communities in southwest Montana.

    Science.gov (United States)

    Lejeune, K; Galbraith, H; Lipton, J; Kapustka, L A

    1996-10-01

    : Concentrations of metals and arsenic in floodplain soils of Silver Bow Creek and the upper Clark Fork River in southwest Montana were related to phytotoxic responses by individual plants in laboratory experiments, vegetative community structure and composition in the field and wildlife habitat. Samples collected from barren or very sparsely vegetated mixed mine tailings and alluvium deposits (slickens) in the floodplains along Silver Bow Creek and the Clark Fork River had concentrations of As, Cd, Cu, Pb and Zn that were significantly elevated relative to reference sites. Laboratory phytotoxicity tests demonstrated severe and rapid effects of the elevated concentrations of metals and As on hybrid poplar and standard test species (alfalfa, lettuce and wheat): growth inhibition of hybrid poplars was nearly 100% and of standard test species ≥75%. Vegetation community measurements revealed that slickens have replaced riparian forest, shrub, hay fields and pasture land; in doing so, the slickens have reduced both the compositional and structural heterogeneity of the riparian habitat. This reduction in habitat complexity has reduced the capacity of the area to provide a diversity of suitable wildlife habitat.

  3. Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction

    Science.gov (United States)

    Ryan McShane,; Daniel Auerbach,; Friedman, Jonathan M.; Auble, Gregor T.; Shafroth, Patrick B.; Michael Merigliano,; Scott, Michael L.; N. Leroy Poff,

    2015-01-01

    Management of riparian plant invasions across the landscape requires understanding the combined influence of climate, hydrology, geologic constraints and patterns of introduction. We measured abundance of nine riparian woody taxa at 456 stream gages across the western USA. We constructed conditional inference recursive binary partitioning models to discriminate the influence of eleven environmental variables on plant occurrence and abundance, focusing on the two most abundant non-native taxa, Tamarix spp. and Elaeagnus angustifolia, and their native competitor Populus deltoides. River reaches in this study were distributed along a composite gradient from cooler, wetter higher-elevation reaches with higher stream power and earlier snowmelt flood peaks to warmer, drier lower-elevation reaches with lower power and later peaks. Plant distributions were strongly related to climate, hydrologic and geomorphic factors, and introduction history. The strongest associations were with temperature and then precipitation. Among hydrologic and geomorphic variables, stream power, peak flow timing and 10-yr flood magnitude had stronger associations than did peak flow predictability, low-flow magnitude, mean annual flow and channel confinement. Nearby intentional planting of Elaeagnus was the best predictor of its occurrence, but planting of Tamarix was rare. Higher temperatures were associated with greater abundance of Tamarix relative to P. deltoides, and greater abundance of P. deltoides relative toElaeagnus. Populus deltoides abundance was more strongly related to peak flow timing than was that of Elaeagnus or Tamarix. Higher stream power and larger 10-yr floods were associated with greater abundance of P. deltoides and Tamarix relative to Elaeagnus. Therefore, increases in temperature could increase abundance of Tamarix and decrease that of Elaeagnus relative to P. deltoides, changes in peak flow timing caused by climate change or dam operations could

  4. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  5. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  6. Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder - Conifer forests in southeast Alaska

    Science.gov (United States)

    Gomi, T.; Johnson, A.C.; Deal, R.L.; Hennon, P.E.; Orlikowska, E.H.; Wipfli, M.S.

    2006-01-01

    Factors (riparian stand condition, management regimes, and channel properties) affecting distributions of wood, detritus (leaves and branches), and sediment were examined in headwater streams draining young-growth red alder (Alnus rubra Bong.) - conifer riparian forests (40 years old) remained in channels and provided sites for sediment and organic matter storage. Despite various alder-conifer mixtures and past harvesting effects, the abundance of large wood, fine wood, and detritus accumulations significantly decreased with increasing channel bank-full width (0.5-3.5 m) along relatively short channel distances (up to 700 m). Changes in wood, detritus, and sediment accumulations together with changes in riparian stand characteristics create spatial and temporal variability of in-channel conditions in headwater systems. A component of alder within young-growth riparian forests may benefit both wood production and biological recovery in disturbed headwater stream channels. ?? 2006 NRC.

  7. Riparian ecotone: A functional definition and delineation for resource assessment

    Science.gov (United States)

    E. S Verry; C. A Dolloff; M. E. Manning

    2004-01-01

    We propose a geomorphic basis for defining riparian areas using the term: riparian ecotone, discuss how past definitions fall short, and illustrate how a linked sequence of definition, delineation, and riparian sampling are used to accurately assess riparian resources on the ground. Our riparian ecotone is based on the width of the valley (its floodprone area width)...

  8. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas

    Science.gov (United States)

    Castilho, Camila S.; Hackbart, Vivian C. S.; Pivello, Vânia R.; dos Santos, Rozely F.

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  9. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas.

    Science.gov (United States)

    Castilho, Camila S; Hackbart, Vivian C S; Pivello, Vânia R; dos Santos, Rozely F

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  10. Biodiversity management approaches for stream-riparian areas: perspectives for Pacific Northwest headwater forests, microclimates, and amphibians.

    Science.gov (United States)

    D.H. Olson; P.D. Anderson; C.A. Frissell; H.H. Welsh; D.F. Bradford

    2007-01-01

    New science insights are redefining stream riparian zones, particularly relative to headwaters, microclimate conditions, and fauna such as amphibians. We synthesize data on these topics, and propose management approaches to target sensitive biota at reach to landscape scales.

  11. Applying four principles of headwater system aquatic biology to forest management

    Science.gov (United States)

    Robert J. Danehy; Sherri L. Johnson

    2013-01-01

    Headwater systems, including the channel and the adjacent riparian forest, are a dominant landscape feature in forested watersheds, draining most of the watershed area, and comprising the majority of channel length in drainage networks. Being at the upper extent of watersheds, these systems are smaller and steeper than large streams, and create microhabitats that...

  12. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Miguel Ángel. De Labra-Hernández

    2017-06-01

    Full Text Available The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013 and breeding (March 2014 seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest. Overall, parrot density was high in the breeding season, with few parrots present during the nonbreeding season. During the breeding season, primary forest had significantly greater density of 18.9 parrots/km² in evergreen forest and 35.9 parrots/km² in riparian forest, compared with only 3.4 parrots/km² in secondary forest. Secondary forest had significantly lower tree species richness, density, diameter, total height, and major branch ramification height, as well as distinct tree species composition compared with both types of primary forest. The number of parrots recorded at point counts was related to density of large, tall trees, characteristic of primary forest, and parrots used riparian forest more than expected by availability. Hence, the increased conversion of tropical moist forest to secondary forest is likely to lead to reduced densities of forest-dependent species such as the Northern Mealy Amazon. Furthermore, the species' requirement for primary tropical moist forest highlights the need to reevaluate

  13. Phosphorus retention in riparian buffers: review of their efficiency.

    Science.gov (United States)

    Hoffmann, Carl Christian; Kjaergaard, Charlotte; Uusi-Kämppä, Jaana; Hansen, Hans Christian Bruun; Kronvang, Brian

    2009-01-01

    Ground water and surface water interactions are of fundamental importance for the biogeochemical processes governing phosphorus (P) dynamics in riparian buffers. The four most important conceptual hydrological pathways for P losses from and P retention in riparian buffers are reviewed in this paper: (i) The diffuse flow path with ground water flow through the riparian aquifer, (ii) the overland flow path across the riparian buffer with water coming from adjacent agricultural fields, (iii) irrigation of the riparian buffer with tile drainage water from agricultural fields where disconnected tile drains irrigate the riparian buffer, and (iv) inundation of the riparian buffer (floodplain) with river water during short or longer periods. We have examined how the different flow paths in the riparian buffer influence P retention mechanisms theoretically and from empirical evidence. The different hydrological flow paths determine where and how water-borne P compounds meet and interact with iron and aluminum oxides or other minerals in the geochemical cycling of P in the complex and dynamic environment that constitutes a riparian buffer. The main physical process in the riparian buffer-sedimentation-is active along several flow paths and may account for P retention rates of up to 128 kg P ha(-1) yr(-1), while plant uptake may temporarily immobilize up to 15 kg P ha(-1) yr(-1). Retention of dissolved P in riparian buffers is not as pronounced as retention of particulate P and is often below 0.5 kg P ha(-1) yr(-1). Several studies show significant release of dissolved P (i.e., up to 8 kg P ha(-1) yr(-1)).

  14. Survival of Saplings in Recovery of Riparian Vegetation of Pandeiros River (MG)

    OpenAIRE

    Nathalle Cristine Alencar Fagundes; Lílian de Lima Braga; Wesley Alves Silva; Chirley Alves Coutinho; Walter Viana Neves; Ricardo Almeida de Souza; Maria das Dores Magalhães Veloso; Yule Roberta Ferreira Nunes

    2018-01-01

    ABSTRACT This study monitored the survival of saplings planted according to different recovery models in a riparian forest of the Pandeiros river (Januária, MG). The models consisted of planting the saplings in lines of 2 or 4 m with presence (T2S and T4S, respectively) or absence of direct seeding (T2 and T4, respectively). We planted 16,259 saplings of 17 botanical families, 32 genera and 33 species. The saplings, in general, presented a survival rate after one year of 34.4% (±1.8). The spe...

  15. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  16. ANALYSIS OF GROWTH AND GAS EXCHANGE OF PLANTS Lonchocarpus sericeus (Poir. D.C. IN FLOODING FOR THE RECOVERY OF THE RIPARIAN FORESTS

    Directory of Open Access Journals (Sweden)

    Jean Marcel Sousa Lira

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812349In order to select species for using in the restoration of riparian forests on the banks of the Sao FranciscoRiver, in the state of Sergipe, an experiment was conducted to evaluate the growth and gas exchange ofplants Lonchocarpus sericeus (Poir. D.C., subject to flooding conditions in the nursery. The experimentwas conducted at Forest Nursery, Department of Forest Sciences, Federal University of Sergipe (UFS,the municipality of São Cristóvão, (11 º 01 'S latitude and 37 º 12' longitude W, altitude 20 m , stateof Sergipe, Brazil, from October 2006 to January 2007 under ambient conditions. We used a completelyrandomized design (CRD, factorial (2x7, two treatments (control - T0, plants at field capacity and flooded- T1 and days after flooding (0, 15, 30, 45, 60, 75 and 90 days. To simulate the condition of flooding,the plants were placed in plastic pots of black color with a volume of 5 L and more substrate. Followingthese pots were attached to pots with a volume of 10 L, which was added water until it reaches a waterdepth of 5 cm above the top of the plants. The control plants kept in pots with a volume of 5 L substratemaintained at field capacity. In non-destructive variables were used four replicates per treatment evaluatedevery fifteen days, where each replicate consists of six plants, totaling 24. Destructive variables used were4 replicates per treatment, determined biweekly from 15 days after flooding, where each replicate consistsof a plant totaling 24 plants. Therefore, 48 plants were used per treatment. The non-destructive variableswere height, diameter and number of leaves. While the destructive variables analyzed were dry weight ofroots, dry weight of shoots and dry weight of root / shoot ratio. In addition, we carried out analysis of gasexchange on a monthly basis and evaluated twelve plants per treatment, with two sampling leaves, fullyexpanded, per plant. The biometric variables were

  17. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    Science.gov (United States)

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-06-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.

  18. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    Science.gov (United States)

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  19. Effect of the riparian vegetation removal on the trophic network of Neotropical stream fish assemblage

    Directory of Open Access Journals (Sweden)

    Pedro Sartori Manoel

    2018-02-01

    Full Text Available The study of the diet of fish is an important tool to assess different levels of environmental degradation, since the availability of food in the environment is a key factor for the fish occurrence. The removal of riparian vegetation usually degrades environmental quality, as this vegetation has an important role in providing energy to the ecosystem. This study investigates the effects of the removal of riparian vegetation on the fish assemblage trophic network. The study was carried out in two stretches of a southeastern Brazilian stream, one in a forest fragment and another in a pasture, during the wet and dry seasons of 2014. We analyzed the items consumed by each fish species using the frequency of occurrence and area of each item, which were combined to calculate the alimentary index, which was used to determine the food niche overlap of the fish and the specialization index of the trophic network. Aquatic Hexapoda, vegetal debris and organic matter dominated the trophic network of the two stretches. We detected higher values of food niche overlap in the forested stretch and more complex trophic networks in the pasture stretch. We found few seasonal variations in the items consumed and calculated indices in both stretches studied. The presence of grass on the banks in the pasture stretch and the importation of food resources from the upstream area may have provided a higher diversity of resources and consequently showed a more complex trophic network when compared to the forested stretch.

  20. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  1. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  2. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  3. Opportunity costs of implementing forest plans

    Science.gov (United States)

    Fox, Bruce; Keller, Mary Anne; Schlosberg, Andrew J.; Vlahovich, James E.

    1989-01-01

    Intellectual concern with the National Forest Management Act of 1976 has followed a course emphasizing the planning aspects of the legislation associated with the development of forest plans. Once approved, however, forest plans must be implemented. Due to the complex nature of the ecological systems of interest, and the multiple and often conflicting desires of user clientele groups, the feasibility and costs of implementing forest plans require immediate investigation. For one timber sale on the Coconino National Forest in Arizona, forest plan constraints were applied and resulting resource outputs predicted using the terrestrial ecosystem analysis and modeling system (TEAMS), a computer-based decision support system developed at the School of Forestry, Northern Arizona University, With forest plan constraints for wildlife habitat, visual diversity, riparian area protection, and soil and slope harvesting restrictions, the maximum timber harvest obtainable was reduced 58% from the maximum obtainable without plan constraints.

  4. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    Science.gov (United States)

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  5. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Directory of Open Access Journals (Sweden)

    L. M. Sanders

    2018-01-01

    Full Text Available Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers. A sediment accumulation rate of  ∼ 4 mm yr−1 for the previous  ∼ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m−2 yr−1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in

  6. Composição da avifauna em duas matas ciliares na bacia do rio Jacaré-Pepira, São Paulo, Brasil Bird community composition of two riparian forests at Jacaré-Pepira river, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Elisa de Castro Almeida

    1999-01-01

    Full Text Available A quali-quantitative survey was carried out in two riparian forests fragmente (approximately 40 ha each at Jacaré-Pepira river. Our intention was to characterize its bird community conceming richness, abundance and species occurrence in these areas. The qualitative survey showed 130 species at Santa Elisa (Brotas, São Paulo and 151 at Morro Chato (Dourado, São Paulo, whereas the quantitative survey revealed the presence of 69 and 75 species at Santa Elisa and Morro Chato, respectively. The small size and the isolation might be responsible for the low number of species found. Observing the abundance index values (IPA we realize that there are a few number of species with a high IPA on the one hand, while on the other there is a large number of species with intermediate and low IPA rates. A high detection coefficient (vocalization, low predatoiy rates and competition might have contributed for the higher abundance values found among these species. Furthermore, we have also registered species which are abundant in a fragment, but absent in the other, which might be explained by initial exclusion or local extinction. In spite of the riparian forests being protected by law, its clearing process has not stopped yet. Therefore, the study of this bird community is of uppermost impoitance for the elaboration of both conservation and management projects regarding these areas.

  7. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  8. Methods for evaluating riparian habitats with applications to management

    Science.gov (United States)

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  9. Mitochondrial DNA variation and genetic relationships of Populus species.

    Science.gov (United States)

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  10. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides.

    Science.gov (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia

    2017-05-31

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  11. Principles for Establishing Ecologically Successful Riparian Corridors

    Science.gov (United States)

    Principles for establishing riparian areas. Riparian areas are three‐dimensional ecotones of interaction that include terrestrial and aquatic ecosystems, that extend down into the groundwater, up above the canopy, outward across the floodplain.

  12. Adapting forest management to climate change using bioclimate models with topographic drivers

    Science.gov (United States)

    Gerald E. Rehfeldt; James J. Worrall; Suzanne B. Marchetti; Nicholas L. Crookston

    2015-01-01

    Bioclimate models incorporating topographic predictors as surrogates for microclimate effects are developed for Populus tremuloides and Picea engelmannii to provide the fine-grained specificity to local terrain required for adapting management of three Colorado (USA) national forests (1.28 million ha) and their periphery to climate change. Models were built with the...

  13. Riparian landscapes: Linking geodiversity with habitat and biodiversity

    Science.gov (United States)

    Chmieleski, Jana; Danzeisen, Laura

    2017-04-01

    Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with

  14. Monitoring Bird Populations in Relation to Fuel Loads and Fuel Treatments in Riparian Woodlands with Tamarisk and Russian Olive Understories

    Science.gov (United States)

    Deborah M. Finch; June Galloway; David Hawksworth

    2006-01-01

    Over the past decade, wild fire events in riparian bosque (forested) areas along the Middle Rio Grande between Elephant Butte and Albuquerque have increased dramatically owing to flood suppression and accumulation of dead wood and exotic Tamarisk and Russian olive. This problem culminated in a large wild fire in July 1993 that resulted in the evacuation of hundreds of...

  15. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  16. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Science.gov (United States)

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  17. Development and application of multi-proxy indices of land use change for riparian soils in southern New England, USA.

    Science.gov (United States)

    Ricker, M C; Donohue, S W; Stolt, M H; Zavada, M S

    2012-03-01

    Understanding the effects of land use on riparian systems is dependent upon the development of methodologies to recognize changes in sedimentation related to shifts in land use. Land use trends in southern New England consist of shifts from forested precolonial conditions, to colonial and agrarian land uses, and toward modern industrial-urban landscapes. The goals of this study were to develop a set of stratigraphic indices that reflect these land use periods and to illustrate their applications. Twenty-four riparian sites from first- and second-order watersheds were chosen for study. Soil morphological features, such as buried surface horizons (layers), were useful to identify periods of watershed instability. The presence of human artifacts and increases in heavy metal concentration above background levels, were also effective indicators of industrial-urban land use periods. Increases and peak abundance of non-arboreal weed pollen (Ambrosia) were identified as stratigraphic markers indicative of agricultural land uses. Twelve 14C dates from riparian soils indicated that the rise in non-arboreal pollen corresponds to the start of regional deforestation (AD 1749 +/- 56 cal yr; mean +/- 2 SD) and peak non-arboreal pollen concentration corresponds to maximum agricultural land use (AD 1820 +/- 51 cal yr). These indices were applied to elucidate the impact of land use on riparian sedimentation and soil carbon (C) dynamics. This analysis indicated that the majority of sediment and soil organic carbon (SOC) stored in regional riparian soils is of postcolonial origins. Mean net sedimentation rates increased -100-fold during postcolonial time periods, and net SOC sequestration rates showed an approximate 200-fold increase since precolonial times. These results suggest that headwater riparian zones have acted as an effective sink for alluvial sediment and SOC associated with postcolonial land use.

  18. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression.

    Science.gov (United States)

    Lexer, C; Fay, M F; Joseph, J A; Nica, M-S; Heinze, B

    2005-04-01

    The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.

  19. The Riparianness of a Desert Herpetofauna

    Science.gov (United States)

    Charles H. Lowe

    1989-01-01

    Within the Mojave, Sonoran, and Chihuahuan Desert subdivisions of the North American Desert in the U.S., more than half of 143 total amphibian and reptilian species perform as riparian and/or wetland taxa. For the reptiles, but not the amphibians, there is a significant inverse relationship between riparianness (obligate through preferential and facultative to...

  20. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  1. Riparian area protection and outdoor recreation: lessons from the Northwest Forest Plan

    Science.gov (United States)

    Patrick Impero Wilson; Troy E. Hall; Linda E. Kruger

    2012-01-01

    The Northwest Forest Plan required the US Forest Service (USFS) to shift its management focus to ecological values rather than the utilitarian ones that had dominated forest policy in the region. This article examines the effects of this shift on the USFS's historic mission to provide recreational access to the region's forests. Focusing on six national...

  2. Effect of organic matter and roots in soil respiration in a Mediterranean riparian areas in Central Spain

    Science.gov (United States)

    Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora

    2010-05-01

    Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and

  3. Potential effects of forestry operations and associated best management practices on riparian wildlife species in the southeastern United States

    Science.gov (United States)

    Brooke M. Warrington; W. Michael Aust; Scott M. Barrett; W. Mark Ford; M. Chad Bolding; Andy Dolloff

    2016-01-01

    The US Fish and Wildlife Service is considering the addition of 374 riparian and aquatic species in the southeastern United States to the federal Threated and Endangered Species List. This recommendation is a result of a 2011 petition, which recognized forest operations as having negative effects on 51 percent of the listed species, citing research conducted in the...

  4. Legal Mechanisms for Protecting Riparian Resource Values

    Science.gov (United States)

    Lamb, Berton L.; Lord, Eric

    1992-04-01

    Riparian resources include the borders of rivers, lakes, ponds, and potholes. These border areas are very important for a number of reasons, including stream channel maintenance, flood control, aesthetics, erosion control, fish and wildlife habitat, recreation, and water quality maintenance. These diverse functions are not well protected by law or policy. We reviewed law and policies regarding endangered species habitat designation, land use planning, grazing management, water allocation, takings, and federal permits and licenses, along with the roles of federal, state, and local governments. We discuss the politics of implementing these policies, focusing on the difficulties in changing entrenched water and land use practices. Our review indicates a lack of direct attention to riparian ecosystem issues in almost all environmental and land use programs at every level of government. Protection of riparian resource values requires a means to integrate existing programs to focus on riparian zones.

  5. Tribal experiences and lessons learned in riparian ecosystem restoration

    Science.gov (United States)

    Ronald K. Miller; James E. Enote; Cameron L. Martinez

    1996-01-01

    Riparian ecosystems have been part of the culture of land use of native peoples in the Southwest United States for thousands of years. The experiences of tribal riparian initiatives to incorporate modern elements of environment and development with cultural needs are relatively few. This paper describes tribal case examples and approaches in riparian management which...

  6. Riparian Raptors on USACE Projects: Osprey (Pandion haliaetus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma A; Wolters, M. S

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit riparian zones surrounding streams and lakes on Corps project lands but may seasonally use adjacent...

  7. Phytoremediation of landfill leachate using Populus

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  8. Biomass and genotype × environment interactions of Populus energy crops in the midwestern United States

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Richard B. Hall; Jill A. Zalesny; Bernard G. McMahon; William E. Berguson; Glen R. Stanosz

    2009-01-01

    Using Populus feedstocks for biofuels, bioenergy, and bioproducts is becoming economically feasible as global fossil fuel prices increase. Maximizing Populus biomass production across regional landscapes largely depends on understanding genotype × environment interactions, given broad genetic variation at strategic (...

  9. Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations

    International Nuclear Information System (INIS)

    Lenz, Kathryn E.; Host, George E.; Roskoski, Kyle; Noormets, Asko; Sober, Anu; Karnosky, David F.

    2010-01-01

    The balance of mechanistic detail with mathematical simplicity contributes to the broad use of the Farquhar, von Caemmerer and Berry (FvCB) photosynthetic rate model. Here the FvCB model was coupled with a stomatal conductance model to form an [A,g s ] model, and parameterized for mature Populus tremuloides leaves under varying CO 2 and temperature levels. Data were selected to be within typical forest light, CO 2 and temperature ranges, reducing artifacts associated with data collected at extreme values. The error between model-predicted photosynthetic rate (A) and A data was measured in three ways and found to be up to three times greater for each of two independent data sets than for a base-line evaluation using parameterization data. The evaluation methods used here apply to comparisons of model validation results among data sets varying in number and distribution of data, as well as to performance comparisons of [A,g s ] models differing in internal-process components. - A photosynthetic rate model is parameterized for Populus tremuloides and evaluated based on its ability to predict dependent as well as independent data.

  10. Forest Creeks Research Natural Area: guidebook supplement 39

    Science.gov (United States)

    Reid Schuller; Ron Halvorson

    2010-01-01

    This guidebook describes Forest Creeks Research Natural Area, a 164-ha (405-ac) area comprising two geographically distinct canyons and associated drainages. The two units have been established as examples of first- to third-order streams originating within a ponderosa pine (Pinus ponderosa) zone. The two riparian areas also represent examples of...

  11. Het geslacht Populus in verband met zijn beteekenis voor de houtteelt = The genus populus and its significance in silviculture

    NARCIS (Netherlands)

    Houtzagers, G.

    1937-01-01

    The genus Populus L. can be divided into 5 sections. This study deals with the classification and description of the species and varieties of the section Aigeiros Duby (black poplars), which contains almost all the important cultivated types in the Netherlands. The botanical information was

  12. Effects of past logging and grazing on understory plant communities in a montane Colorado forest

    Science.gov (United States)

    Fornwalt, P.J.; Kaufmann, M.R.; Huckaby, L.S.; Stohlgren, T.J.

    2009-01-01

    Throughout Pinus ponderosa-Pseudotsuga menziesii forests of the southern Colorado Front Range, USA, intense logging and domestic grazing began at the time of Euro-American settlement in the late 1800s and continued until the early 1900s. We investigated the long-term impacts of these settlement-era activities on understory plant communities by comparing understory composition at a historically logged and grazed site to that of an environmentally similar site which was protected from past use. We found that species richness and cover within functional groups rarely differed between sites in either upland or riparian areas. Multivariate analyses revealed little difference in species composition between sites on uplands, though compositional differences were apparent in riparian zones. Our findings suggest that settlement-era logging and grazing have had only minor long-term impacts on understories of upland Front Range P. ponderosa-P. menziesii forests, though they have had a greater long-term influence on riparian understories, where these activities were likely the most intense. ?? 2008 Springer Science+Business Media B.V.

  13. From leaf to basin: evaluating the impacts of introduced plant species on evapotranspiration fluxes from riparian ecosystems in the southwestern U.S

    Science.gov (United States)

    Hultine, K. R.; Bush, S.; Nagler, P. L.; Morino, K.; Burtch, K.; Dennison, P. E.; Glenn, E. P.; Ehleringer, J.

    2010-12-01

    Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of introduced plant species in riparian areas along streams, canals and rivers in geographically arid regions. The question of whether these invasive species have had or will have impacts on water resources is currently under intense debate. We identify a framework for assessing when and where introduced riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semi-arid river systems. We focus on three introduced plant systems that currently dominate southwestern U.S. riparian forests: tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). Our framework focuses on two main criteria: 1) the ecophysiological traits that promote establishment of invasive species across environmental gradients, and 2) an assessment of how hydrologic fluxes are altered by the establishment of introduced species at varying scales. The framework identifies when and where introduced species should have the highest potential impact on the water cycle. This framework will assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given limited economic resources.

  14. Does tree harvesting in riparian areas increase stream sedimentation and turbidity - world-wide experience relative to Australia.

    Science.gov (United States)

    Neary, D.; Smethurst, P.; Petrone, K.

    2009-04-01

    A typical improved-pasture property in the high-rainfall zone of Australia contains 0.5-2.0 km of waterways per 100 ha. Nationwide, some 25-30 million ha of improved pasture contains about 100,000 km of streams, of which about 75% are currently un-buffered and contributing to soil and water degradation. Farmers and natural resource managers are considering ways to enhance environmental outcomes at farm and catchment scales using stream-side buffers of trees and other perennial vegetation. Benefits of buffers include improved water quality, biodiversity, carbon sequestration and aesthetics. Lack of sound information and funding for establishing and managing buffer zones is hindering wide-scale adoption of this practice. Stream-side areas of farms are generally highly productive (wet and nutrient-rich) and contain a high biodiversity, but they are also high-risk zones for soil and water values and stock safety. Development of options based on a balance between environmental and economic outcomes would potentially promote wider adoption. Australian codes of forest practice currently discourage or prevent harvesting of trees in streamside buffers. These codes were developed exclusively for large-scale native forests and industrial-scale plantations, and were applicable to farm forestry as now required. In countries including USA and Germany trees in stream-side buffers are harvested using Best Management Practices. Trees may grow at a faster rate in riparian zones and provide a commercial return, but the impacts of tree establishment and harvesting on water yield and quality must be evaluated. However, there have been few designed experiments investigating this problem. Australia has recently initiated studies to explore the use of high-value timber species and associated vegetation in riparian zones to improve water quality, particularly suspended sediment. Preliminary information from the Yan Yan Gurt Catchment in Victoria indicate that forested riparian strips can

  15. An Application of BLM's Riparian Inventory Procedure to Rangeland Riparian Resources in the Kern and Kaweah River Watersheds

    Science.gov (United States)

    Patricia Gradek; Lawrence Saslaw; Steven Nelson

    1989-01-01

    The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...

  16. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Use of stable nitrogen isotope signatures of riparian macrophytes as an indicator of anthropogenic N inputs to river ecosystems.

    Science.gov (United States)

    Kohzu, Ayato; Miyajima, Toshihiro; Tayasu, Ichiro; Yoshimizu, Chikage; Hyodo, Fujio; Matsui, Kiyoshi; Nakano, Takanori; Wada, Eitaro; Fujita, Noboru; Nagata, Toshi

    2008-11-01

    Deterioration of aquatic ecosystems resulting from enhanced anthropogenic N loading has become an issue of increasing concern worldwide, and methods are needed to trace sources of N in rivers. Because nitrate from sewage is enriched in 15N relative to nitrate from natural soils, delta(15)N values of stream nitrate (delta(15)Nnitrate) should be an appropriate index of anthropogenic N loading to rivers, as should the delta(15)N values of riparian plants (delta(15)Nplant) because they are consumers of nitrate. We determined the delta(15)N values of stream nitrate and six species of riparian macrophytes in 31 rivers in the Lake Biwa Basin in Japan. We then tested the correlation between these values and various land-use parameters, including the percentage of land used for residential and agricultural purposes as well as for natural areas. These delta(15)N values were significantly positively correlated with land use (%) that had a high N load (i.e., residential or agricultural use) and significantly negatively correlated with forest (%). These findings indicate that delta(15)N values of stream nitrate and riparian plants might be good indicators of anthropogenic inputs of nitrogen.

  18. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Directory of Open Access Journals (Sweden)

    Xue Han

    2013-01-01

    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  19. Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina

    Science.gov (United States)

    David R. Coyle; Mark D. Coleman; Jaclin A. Durant; Lee A. Newman

    2006-01-01

    Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the...

  20. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

    Directory of Open Access Journals (Sweden)

    Rachael V Adams

    Full Text Available Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus, along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart, but also within river systems by large treeless canyons (>100 km. Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic

  1. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  2. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  3. Analysis of carbon and nitrogen dynamics in riparian soils: model development.

    Science.gov (United States)

    Brovelli, A; Batlle-Aguilar, J; Barry, D A

    2012-07-01

    The quality of riparian soils and their ability to buffer contaminant releases to aquifers and streams are connected intimately to moisture content and nutrient dynamics, in particular of carbon (C) and nitrogen (N). A multi-compartment model-named the Riparian Soil Model (RSM)-was developed to help investigate the influence and importance of environmental parameters, climatic factors and management practices on soil ecosystem functioning in riparian areas. The model improves existing tools, in particular regarding its capability to simulate a wide range of temporal scales, from days to centuries, along with its ability to predict the concentration and vertical distribution of dissolved organic matter (DOM). It was found that DOM concentration controls the amount of soil organic matter (SOM) stored in the soil as well as the respiration rate. The moisture content was computed using a detailed water budget approach, assuming that within each time step all the water above field capacity drains to the layer underneath, until it becomes fully saturated. A mass balance approach was also used for nutrient transport, whereas the biogeochemical reaction network was developed as an extension of an existing C and N turnover model. Temperature changes across the soil profile were simulated analytically, assuming periodic temperature changes in the topsoil. To verify the consistency of model predictions and to illustrate its capabilities, a synthetic but realistic soil profile in a deciduous forest was simulated. Model parameters were taken from the literature, and model predictions were consistent with experimental observations for a similar scenario. Modelling results stressed the importance of environmental conditions on SOM cycling in soils. The mineral and organic C and N stocks fluctuate at different time scales in response to oscillations in climatic conditions and vegetation inputs/uptake. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  5. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  6. Expansion of the agricultural frontier on riparian vegetation of Santa Cruz River, Cuba

    Directory of Open Access Journals (Sweden)

    Felipe Carricarte Rodríguez

    2016-12-01

    Full Text Available The work was developed in the Los Amaros, the Santa Cruz river, Artemisa, Cuba. The objective was to evaluate how it influences the expansion of the agricultural frontier on riparian vegetation where the semi-deciduous mesophytic forest (BsdMe predominates. A floristic characterization was performed, identifying the effects of disturbances on the structure and composition of these forests and their relation to human disturbance. A semi-structured interview was applied to all landowners in the study area. Species richness, dominance, basal area, total number of individuals, width of the strip covered by trees and shrubs, and area without vegetation on both banks of the river, respectively were considered as variables. There are differences in the structure and patterns of diversity of the studied forest, as a result of disturbances, with the consequent reduction of species; also anthropogenic disturbances, are the main factors that explain changes in the structure of these forests. They are identified as major species: Cupania macrophylla A. Rich., Roystonea regia HBK O. F. Cook., Guarea guidonia L. Sleumer and Trichilia hirta  L. It is proposed to deepen the effect of the expansion of agriculture into other sectors of the river in interaction with local communities.

  7. META-ANALYSIS OF NITROGEN REMOVAL IN RIPARIAN BUFFERS

    Science.gov (United States)

    Riparian buffer zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Riparian buffer width may be positively related to nitrogen removal effectiveness by influencing nitrog...

  8. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  9. Variation in experimental flood impacts and ecogeomorphic feedbacks among native and exotic riparian tree seedlings

    Science.gov (United States)

    Kui, L.; Stella, J. C.; Skorko, K.; Lightbody, A.; Wilcox, A. C.; Bywater-Reyes, S.

    2012-12-01

    Flooding interacts with riparian plants on a variety of scales, resulting in coevolution of geomorphic surfaces with plant vegetation communities. Our research aims to develop a mechanistic understanding of riparian seedling damage from small floods, with a focus on differential responses among species (native and non-native), ecogeomorphic feedbacks, and implications for riparian restoration. We tested the effects of controlled flood events on cottonwood (Populus fremontii) and tamarisk (Tamarix spp.) seedlings in an experimental meandering stream channel. We hypothesized that seedling dislodgement and burial would be influenced by individual plant height, species-specific morphology, patch density, and differences in hydraulic forces (as a function of location on the bar). Four experimental floods were tested, with different combinations of plant species and seedling densities. For each flood run, rooted seedlings were installed within a 1.5-m-wide sandbar during low flow conditions and stream discharge was increased to a constant flood level for approximately 8 hours, after which seedling response was assessed. Seedling damage was analyzed within a logistic regression framework that predicted the probability of dislodgement or burial as a function of the explanatory variables. Plant dislodgement depended on root length and the location on the sandbar, whereas burial depended on plant height, species-specific morphology, and location. For every centimeter increase in plant height, the odds of plant burial decreased by 10 percent, illustrating the rate at which plants developed flood resistance as they grow taller. With every meter closer to the thalweg, plant dislodgement was four times more likely, and plant burial was 2.6 times more likely. The probability of burial was twice as great for tamarisk seedlings as for cottonwood. The increased sedimentation within tamarisk patches was associated with a denser foliage and a more compact crown for this species. The

  10. Processesof Tamarix invasion and floodplain development along the lower Green River, Utah.

    Science.gov (United States)

    Birken, Adam S; Cooper, David J

    2006-06-01

    Significant ecological, hydrologic, and geomorphic changes have occurred during the 20th century along many large floodplain rivers in the American Southwest. Native Populus forests have declined, while the exotic Eurasian shrub, Tamarix, has proliferated and now dominates most floodplain ecosystems. Photographs from late 19th and early 20th centuries illustrate wide river channels with largely bare in-channel landforms and shrubby higher channel margin floodplains. However, by the mid-20th century, floodplains supporting dense Tamarix stands had expanded, and river channels had narrowed. Along the lower Green River in eastern Utah, the causal mechanism of channel and floodplain changes remains ambiguous due to the confounding effects of climatically driven reductions in flood magnitude, river regulation by Flaming Gorge Dam, and Tamarix invasion. This study addressed whether Tamarix establishment and spread followed climate- or dam-induced reductions in annual peak flows or whether Tamarix was potentially a driver of floodplain changes. We aged 235 Tamarix and 57 Populus individuals, determined the hydrologic and geomorphic processes that controlled recruitment, identified the spatial relationships of germination sites within floodplain stratigraphic transects, and mapped woody riparian vegetation cohorts along three segments of the lower Green River. The oldest Tamarix established along several sampling reaches in 1938, and 1.50-2.25 m of alluvium has accreted above their germination surfaces. Nearly 90% of the Tamarix and Populus samples established during flood years that exceeded the 2.5-year recurrence interval. Recruitment was most common when large floods were followed by years with smaller peak flows. The majority of Tamarix establishment and Green River channel narrowing occurred long before river regulation by Flaming Gorge Dam. Tamarix initially colonized bare instream sand deposits (e.g., islands and bars), and most channel and floodplain changes

  11. Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest

    Science.gov (United States)

    Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly

    2014-01-01

    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...

  12. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  13. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Erosion and deposition in a field/forest system estimated using cesium-137 activity

    International Nuclear Information System (INIS)

    Lowrance, R.; McIntyre, S.; Lance, C.

    1988-01-01

    Soil erosion and deposition were estimated using Cs-137 activity within a 7.25-ha field/forest system in the southeastern coastal plain. Sol eroded from the field was deposited both in the riparian forest ecosystem and in downslope areas of the field. Total activity, depth to peak activity, and depth to zero activity increased downslope from field to stream. Erosion and deposition rates, estimated by changes in activity per unit area from a reference undisturbed forest site, showed that about twice as much total deposition had taken place as total erosion. Excess deposition was attributed to deposition from the upstream portions of the watershed. Erosion and deposition rates estimated with this method were about 63 and 256 Mg/ha/yr, respectively. Erosion and deposition rates estimated by two different calculation techniques were nearly identical. These rates were considerably higher than rates estimated in an earlier study. The rates may be overestimated because the differential rates of Cs-137 movement on clay particles were not considered. The riparian ecosystem acted as a very efficient sediment trap. 19 refs., 5 figs., 3 tabs

  15. Riparian Raptors on USACE Projects: Bald Eagle (Haliaeetus leucocephalus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit the riparian zones surrounding streams and lakes of Corps projects but may seasonally use adjacent...

  16. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference.

    Science.gov (United States)

    Cabra-Rivas, Isabel; Castro-Díez, Pilar

    2016-01-01

    A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna). Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue.

  17. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  18. In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed

    Science.gov (United States)

    Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.

    2017-12-01

    The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing

  19. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or

  20. Insertional mutagenesis in Populus: relevance and feasibility

    Science.gov (United States)

    Victor Busov; Matthias Fladung; Andrew Groover; Steven Strauss

    2005-01-01

    The recent sequencing of the first tree genome, that of the black cottonwood (Populus trichocarpa), opens a new chapter in tree functional genomics. While the completion of the genome is a milestone, mobilizing this significant resource for better understanding the growth and development of woody perennials will be an even greater undertaking in the...

  1. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  2. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    Science.gov (United States)

    Andersen, Douglas C.

    2016-01-01

    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  3. Demographic controls of aboveground forest biomass across North America.

    Science.gov (United States)

    Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W

    2016-04-01

    Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.

  4. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  5. Human uses of forested watersheds and riparian corridors: hazard mitigation as an ecosystem service, with examples from Panama, Puerto Rico, and Venezuela

    Science.gov (United States)

    Larsen, M. C.

    2015-12-01

    Humans have long favored settlement along rivers for access to water supply for drinking and agriculture, for transport corridors, and for food sources. Additionally, settlement in or near montane forests include benefits such as food sources, wood supply, esthetic values, and high quality water resources derived from watersheds where upstream human disturbance and environmental degradation is generally reduced. However, the advantages afforded by these riparian and montane settings pose episodic risks for communities located there as floods, landslides, and wildfires cause loss of life, destroy infrastructure, and damage or destroy crops. A basic understanding of flood probability and magnitude as well as hillslope stability by residents in these environments can mitigate these risks. Early humans presumably developed some degree of knowledge about these risks by means of their long periods of occupation in these environments and their observations of seasonal and storm rainfall patterns and river discharge, which became more refined as agriculture developed over the past 10,000 years. Modern global urbanization, particularly in regions of rapid economic growth, has resulted in much of this "organic" knowledge being lost, as rural populations move into megacities, many of which encroach on floodplains and mountain fronts. Moreover, the most likely occupants of these hazardous locations are often economically constrained, increasing their vulnerabity. Effective stewardship of river floodplains and upstream montane forests yields a key ecosystem service, which in addition to the well-known services, ie. water, hydroelectric energy, etc., provides a risk mitigation service, by reducing hazard and vulnerability. Puerto Rico, Panama, and Venezuela illustrate a range of practices and results, providing useful examples for planners and land use managers.

  6. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration

    Directory of Open Access Journals (Sweden)

    Aline Luiza Tomazi

    2010-09-01

    Full Text Available Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Brazil, by the characterization of the seed rain and natural regeneration. In two years we collected 21,864 seeds of 51 morphospecies, and recorded 42 colonizing species. Zoochoric seeds belonging to 15 plant families comprised 17% of the seed rain and 19.05% of the spontaneously regenerating plant species. Asteraceae and Poaceae were the most represented families. The artificial perches performed the nucleating function through the increase of zoochoric seed rain. However, possibly due to different barriers that were not evaluated in this study, part of these seeds was not recruited. We recommend the application of this technique for the attraction of dispersers in degraded areas similar to the study site.

  7. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration.

    Directory of Open Access Journals (Sweden)

    Aline Luiza Tomazi

    2010-01-01

    Full Text Available Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Brazil, by the characterization of the seed rain and natural regeneration. In two years we collected 21,864 seeds of 51 morphospecies, and recorded 42 colonizing species. Zoochoric seeds belonging to 15 plant families comprised 17% of the seed rain and 19.05% of the spontaneously regenerating plant species. Asteraceae and Poaceae were the most represented families. The artificial perches performed the nucleating function through the increase of zoochoric seed rain. However, possibly due to different barriers that were not evaluated in this study, part of these seeds was not recruited. We recommend the application of this technique for the attraction of dispersers in degraded areas similar to the study site.

  8. Riparian Vegetation Mapping Along the Hanford Reach

    International Nuclear Information System (INIS)

    FOGWELL, T.W.

    2003-01-01

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  9. Riparian Vegetation Mapping Along the Hanford Reach

    Energy Technology Data Exchange (ETDEWEB)

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY

  10. Assessment of Vegetation Density and Soil Macrofauna Relationship in Riparian Forest of Karkhe River for the Determination of Rivers Buffer Zone

    Directory of Open Access Journals (Sweden)

    SH. Gholami

    2014-06-01

    Full Text Available The spatial distribution of soil organisms is influenced by the plant cover, thus resulting in a horizontal mosaic of areas subjected to gradients of nutrient availability and microclimatic conditions.This study was conducted to investigate the spatial variability of soil macrofauna in relation to vegetation density in the riparian forest landscape of Karkhe. The vegetation density was determined by calculating the NDVI index. Soil macrofauna were sampled using 200 sampling points along parallel transects (perpendicular to the river. The maximum distance between samples was 0.5 km. Soil macrofauna were extracted from 50 cm×50 cm×25 cm soil monolith by the hand-sorting procedure. Abundance, diversity (Shannon H’ index, richness (Menhinick index and evenness (Sheldon index were calculated. Soil macrofauna and NDVI data were analyzed using geostatistics (variogram in order to describe and quantify the spatial continuity. The variograms were spherical, revealing the presence of spatial autocorrelation. The range of influence was 1724 m for abundance, 1326 m for diversity, 1825 m for richness, 1450 for evenness and 1977 m for NDVI. The kriging maps showed that the NDVI Index and soil macrofauna had spatial variability. The spatial pattern of soil macrofauna abundance and biodiversity were similar to the spatial pattern of vegetation density as shown in the correlation.

  11. Post-wildfire natural restoration of riparian vegetation under stable hydro-geomorphic conditions: Nahal Grar, Northern Negev Desert, Israel

    Science.gov (United States)

    Egozi, Roey

    2015-04-01

    Wildfires are common to the Mediterranean region due to its defined dry season and long historical anthropogenic activities. Most of post-wildfire studies focus on mountains areas and thus refer to the hill-slope and its physical characteristics, e.g. morphology, length, angles, and aspect; its soil characteristics, e.g. type, infiltration rate, repellency; and its vegetative covers, e.g. planted trees vs. natural forest or native vs. exotic vegetation. In contrary there is very limited literature focusing on ecological and hydro-geomorphic aspects of post-wildfire of riparian vegetation / zone probably because of its negligible burned area relative to the spread of the fire, sometimes, over the whole watershed area. The limited literature on the topic is surprising given the fact that riparian vegetation zone has been acknowledged as a unique and important habitat supporting rich biodiversity. Herein we report on a wildfire event occurred on October 14th 2009 in a river section of Nahal Grar, Northern Negev Desert, Israel. The wildfire although was limited in its area (only 3 hectare) extended over the channel alone from bank to bank and thus provide a unique case study of completely burn down of riparian vegetation, mainly dense stands of Common Red (Australis Phragmites. Therefore a detailed study of this event provides an opportunity to tackle one of the basics questions which is determining the rate of natural restoration process that act at the immediate time after the wildfire event occurred. This type of information is most valuable to professional and stakeholders for better management of post-fire riparian zones. The results of the study suggest that under stable conditions, i.e. no major flood events occurred; disturbance time was short and ranged over 200 days due to, almost, immediate recovery of the riparian vegetation. However the re-growth of the riparian vegetation was not even but rather deferential and more complex then reported in the literature

  12. Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale.

    Science.gov (United States)

    Beck, Jeffrey L; Dauwalter, Daniel C; Gerow, Kenneth G; Hayward, Gregory D

    2010-05-01

    Wildlife conservationists design monitoring programs to assess population dynamics, project future population states, and evaluate the impacts of management actions on populations. Because agency mandates and conservation laws call for monitoring data to elicit management responses, it is imperative to design programs that match the administrative scale for which management decisions are made. We describe a program to monitor population trends in American beaver (Castor canadensis) on the US Department of Agriculture, Black Hills National Forest (BHNF) in southwestern South Dakota and northeastern Wyoming, USA. Beaver have been designated as a management indicator species on the BHNF because of their association with riparian and aquatic habitats and its status as a keystone species. We designed our program to monitor the density of beaver food caches (abundance) within sampling units with beaver and the proportion of sampling units with beavers present at the scale of a national forest. We designated watersheds as sampling units in a stratified random sampling design that we developed based on habitat modeling results. Habitat modeling indicated that the most suitable beaver habitat was near perennial water, near aspen (Populus tremuloides) and willow (Salix spp.), and in low gradient streams at lower elevations. Results from the initial monitoring period in October 2007 allowed us to assess costs and logistical considerations, validate our habitat model, and conduct power analyses to assess whether our sampling design could detect the level of declines in beaver stated in the monitoring objectives. Beaver food caches were located in 20 of 52 sampled watersheds. Monitoring 20 to 25 watersheds with beaver should provide sufficient power to detect 15-40% declines in the beaver food cache index as well as a twofold decline in the odds of beaver being present in watersheds. Indices of abundance, such as the beaver food cache index, provide a practical measure of

  13. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, Maud; Brisson, Jacques [Departement de Sciences biologiques, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Quebec (Canada); Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Teodorescu, Traian I.; Labrecque, Michel [Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Sauve, Sebastien [Departement de chimie, Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec (Canada)

    2009-09-15

    On a plantation established in 2004 from stem cuttings at a density of 20,000 trees per hectare, we investigated growth and nutritional plant response to a high hydraulic regime for two species (Salix viminalis and Populus nigra x Populus maximowiczii), using a comparative approach with measurements from irrigated and control plots. The plantation was irrigated from June to September 2005 with about 140 mm per day. The equivalent of 120 Kg NO{sub 3}-N, 40 Kg P{sub 2}O{sub 5}-P and 85 Kg K{sub 2}O-K per hectare per year was applied by means of irrigation with wastewater. No mortality occurred and stem biomass production of both poplar and willow species were not statistically different on irrigated and control areas. However, S. viminalis revealed to be more tolerant to flooded conditions since these corresponded more closely to its nutritional requirements (foliar concentration of 20 mgN g{sup -1}). The capacity of S. viminalis to withstand waterlogged conditions could play an important role in the sustainability of a plantation for the filtration of effluent at low pollutant concentration. (author)

  14. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  15. Riparian plant community responses to increased flooding: a meta-analysis.

    Science.gov (United States)

    Garssen, Annemarie G; Baattrup-Pedersen, Annette; Voesenek, Laurentius A C J; Verhoeven, Jos T A; Soons, Merel B

    2015-08-01

    A future higher risk of severe flooding of streams and rivers has been projected to change riparian plant community composition and species richness, but the extent and direction of the expected change remain uncertain. We conducted a meta-analysis to synthesize globally available experimental evidence and assess the effects of increased flooding on (1) riparian adult plant and seedling survival, (2) riparian plant biomass and (3) riparian plant species composition and richness. We evaluated which plant traits are of key importance for the response of riparian plant species to flooding. We identified and analysed 53 papers from ISI Web of Knowledge which presented quantitative experimental results on flooding treatments and corresponding control situations. Our meta-analysis demonstrated how longer duration of flooding, greater depth of flooding and, particularly, their combination reduce seedling survival of most riparian species. Plant height above water level, ability to elongate shoots and plasticity in root porosity were decisive for adult plant survival and growth during longer periods of flooding. Both 'quiescence' and 'escape' proved to be successful strategies promoting riparian plant survival, which was reflected in the wide variation in survival (full range between 0 and 100%) under fully submerged conditions, while plants that protrude above the water level (>20 cm) almost all survive. Our survey confirmed that the projected increase in the duration and depth of flooding periods is sufficient to result in species shifts. These shifts may lead to increased or decreased riparian species richness depending on the nutrient, climatic and hydrological status of the catchment. Species richness was generally reduced at flooded sites in nutrient-rich catchments and sites that previously experienced relatively stable hydrographs (e.g. rain-fed lowland streams). Species richness usually increased at sites in desert and semi-arid climate regions (e.g. intermittent

  16. Riparian Habitat Management for Mammals on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Martin, Chester

    2002-01-01

    .... This note provides an overview of the importance of riparian ecosystems to mammals, discusses regional variation in mammal communities characteristic of riparian zones, identifies potential impacts...

  17. Effects of Clone, Silvicultural, and Miticide Treatments on Cottonwood Leafcurl Mite (Acari: Eriophyidae) Damage in Plantation Populus

    Science.gov (United States)

    David R. Coyle

    2002-01-01

    Aculops lobuliferus (Keifer) is a little known pest of plantation Populus spp., which is capable of causing substantial damage. This is the First documented occurrence of A. lobuliferus in South Carolina. Previous anecdotal data indicated clonal variation in Populus susceptibility to A...

  18. Diatom Responses to Watershed Development and Potential Moderating Effects of Near-Stream Forest and Wetland Cover

    Science.gov (United States)

    Watershed development alters hydrology and delivers anthropogenic stressors to streams via pathways affected by impervious cover. We characterized relationships of diatom communities and metrics with upstream watershed % impervious cover (IC) and with riparian % forest and wetlan...

  19. Genetic variation of the riparian pioneer tree species populus nigra. II. Variation In susceptibility to the foliar rust melampsora larici-populina

    Science.gov (United States)

    Legionnet; Muranty; Lefevre

    1999-04-01

    Partial resistance of Populus nigra L. to three races of the foliar rust Melampsora larici-populina Kleb. was studied in a field trial and in laboratory tests, using a collection of P. nigra originating from different places throughout France. No total resistance was found. The partial resistance was split into epidemiological components, which proved to be under genetic control. Various patterns of association of epidemiological components values were found. Principal components analysis revealed their relationships. Only 24% of the variance of the field susceptibility could be explained by the variation of the epidemiological components of susceptibility. This variable was significantly correlated with susceptibility to the most ancient and widespread race of the pathogen, and with the variables related to the size of the lesions of the different races. Analysis of variance showed significant differences in susceptibility between regions and between stands within one region. Up to 20% of variation was between regions, and up to 22% between stands, so that these genetic factors appeared to be more differentiated than the neutral diversity (up to 3.5% Legionnet & Lefevre, 1996). However, no clear pattern of geographical distribution of diversity was detected.

  20. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  1. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  2. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference.

    Directory of Open Access Journals (Sweden)

    Isabel Cabra-Rivas

    Full Text Available A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill. Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna. Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue.

  3. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  4. Riparian Raptors on USACE Projects: Red-Shouldered Hawk (Buteo lineatus)

    National Research Council Canada - National Science Library

    Mitchell, Wilma

    2000-01-01

    ...) reservoir operations. For management purposes, these raptors are considered riparian generalists because they inhabit the riparian zones surrounding streams and lakes on Corps project lands but may seasonally use adjacent...

  5. Leaf stomatal traits variation within and among black poplar native populations in Serbia

    OpenAIRE

    Cortan, Dijana; Vilotic, Dragica; Sijacic-Nikolic, Mirjana; Miljkovic, Danijela

    2017-01-01

    Populus nigra as a keystone riparian pioneer tree species is one of the rarest and most endangered species in Europe due to the loss of its natural habitats. Genetic diversity existence is a key factor in survival of one species, and stomata as genetically controlled trait could be used for differentiation studies. With the aim of proving stomatal phenotypic variation of the four native populations of Populus nigra located on the banks of three biggest river valleys (Dunabe, Tisa and Sava) in...

  6. INFLUENCE OF ECOLOGICAL GROUP COMPOSITION, PLANTATION SPACING AND ARRANGEMENT IN THE RESTORATION OF RIPARIAN FOREST ON RESERVOIR SHORES

    Directory of Open Access Journals (Sweden)

    Alvaro Augusto Vieira Soares

    2016-01-01

    Full Text Available This work aimed to assess the effect of spacing, arrangement and ecological group composition of planted seedlings on the restoration process of artificial reservoir shores in southeastern Brazil. The assessments were performed 12 years after the settlement of the experiment in which five mixed stand models were tested. First, a general evaluation of the stand was performed when we surveyed the overstory and understory, seed bank and soil for chemical analysis.Then, the restoration indicators survival of planted trees, basal area and density of the tree community, litter accumulated on the soil and canopy closure index were utilized to compare the plantation models and to assess the influence the experimental factors on these parameters. In the general analysis, we found that the studied stand presents low diversity, poor regeneration, and seed bank dominated mostly by one planted exotic tree species and weeds, which may jeopardize the self- maintenance of the stand in the future. The factor that most influenced the models was the ecological group composition with the best performance found for models in which both pioneer and non-pioneer groups were used. Probably, the plantation arrangement and spacing did not have greater influence due to both plant mortality and natural regeneration that has developed to this age. Hence, it is not recommended the use of only pioneer species in the implantation of riparian forest and the proportion of 50% pioneers and 50% non-pioneers using as much species as possible is indicated for areas that might present constraints for the natural regeneration.

  7. Monitoring Natura 2000 habitats: habitat 92A0 in central Italy as an example

    Directory of Open Access Journals (Sweden)

    Emanuela Carli

    2016-10-01

    Full Text Available The evaluation and the subsequent monitoring of the conservation status of habitats is one of the key steps in nature protection. While some European countries have tested suitable methodologies, others, including Italy, lack procedures tested at the national level. The aim of this work is to propose a method to assess the conservation status of habitat 92A0 (Salix alba and Populus alba galleries in central Italy, and to test the method using data from the Molise region. We selected parameters that highlight the conservation status of the flora and vegetation in order to assess habitat structures and functions at the site level. After selecting the parameters, we tested them on a training dataset of 22 unpublished phytosociological relevés taken from the whole dataset, which consists of 119 relevés (49 unpublished relevés for the study area, and 70 published relevés for central Italy. We detected the most serious conservation problems in the middle and lower course of the Biferno river: the past use of river terraces for agriculture and continual human interventions on the river water flow have drastically reduced the riparian forests of Molise. Our results show that in areas in which forest structure and floristic composition have been substantially modified, certain alien plant species, particularly Robinia pseudoacacia, Amorpha fruticosa and Erigeron canadensis, have spread extensively along rivers. In the management of riparian forests, actions aimed at maintaining the stratification of the forest, its uneven-agedness and tree species richness may help to ensure the conservation status, as well as favour the restoration, of habitat 92A0.

  8. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    Science.gov (United States)

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  9. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  10. Legacies of flood reduction on a dryland river

    Science.gov (United States)

    Stromberg, J.C.; Shafroth, P.B.; Hazelton, A.F.

    2012-01-01

    The Bill Williams (Arizona) is a regulated dryland river that is being managed, in part, for biodiversity via flow management. To inform management, we contrasted riparian plant communities between the Bill Williams and an upstream free-flowing tributary (Santa Maria). Goals of a first study (1996-1997) were to identify environmental controls on herbaceous species richness and compare richness among forest types. Analyses revealed that herbaceous species richness was negatively related to woody stem density, basal area and litter cover and positively related to light levels. Introduced Tamarix spp. was more frequent at the Bill Williams, but all three main forest types (Tamarix, Salix/Populus, Prosopis) had low understory richness, as well as high stem density and low light, on the Bill Williams as compared to the Santa Maria. The few edaphic differences between rivers (higher salinity at Bill Williams) had only weak connections with richness. A second study (2006-2007) focused on floristic richness at larger spatial scales. It revealed that during spring, and for the study cumulatively (spring and fall samplings combined), the riparian zone of the unregulated river had considerably more plant species. Annuals (vs. herbaceous perennials and woody species) showed the largest between-river difference. Relative richness of exotic (vs. native) species did not differ. We conclude that: (1) The legacy of reduced scouring frequency and extent at the Bill Williams has reduced the open space available for colonization by annuals; and (2) Change in forest biomass structure, more so than change in forest composition, is the major driver of changes in plant species richness along this flow-altered river. Our study informs dryland river management options by revealing trade-offs that exist between forest biomass structure and plant species richness. ?? 2010 John Wiley & Sons, Ltd.

  11. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    Science.gov (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  12. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  13. Riparian Habitat Management for Reptiles and Amphibians on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Dickerson, Dena

    2001-01-01

    ... important taxonomic groups such as reptiles and amphibians. This note provides an overview of the importance of riparian habitat at Corps projects for reptiles and amphibians, identifies riparian zone functions and habitat characteristics, provides examples of representative taxa and regional comparisons, and describes impacts of riparian habitat modification.

  14. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  15. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Science.gov (United States)

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  16. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Directory of Open Access Journals (Sweden)

    Celine Caseys

    Full Text Available The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar and P. tremula (European aspen and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS. We detected 41 quantitative trait loci (QTL for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  17. Dung beetles in a Caatinga Natural Reserve: a threatened Brazilian dry-forest with high biological value

    Directory of Open Access Journals (Sweden)

    Letícia Vieira

    2017-12-01

    Full Text Available ABSTRACT The Caatinga is an endemic and threatened dry-forest biome distributed across northern Brazil. We evaluated the conservation value of a Caatinga Natural Reserve (NR - Floresta Nacional (FLONA Contendas do Sincorá - using Scarabaeinae dung beetles as a biodiversity indicator. Specifically, we contrasted two zones impacted by two distinct intensity of selective logging that happened inside the NR until 1997. Dung beetles were collected 14 years after logging, using baited pitfall traps within three main habitats (riparian forest, regenerating Caatinga or arboreal Caatinga found in two zones (Preservation and Management Zones. A total of 1,214 individuals from 21 species were sampled. The two zones presented distinct species composition, although the habitats did not exhibit such differences. Our results indicated that the secondary areas are in a conservation status similar to arboreal Caatinga and riparian forest, 14 y after logging. Furthermore, we identified seven habitat-indicator species, two of them typical to Caatinga biome, highlighting the importance of updates in NR management plan considering the Scarabaeinae regional diversity management.

  18. The influence of chemical characteristics of precipitation on tree health in Banjica Forest (Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Radovanović M.

    2012-01-01

    Full Text Available The most represented tree species in the Banjica Forest are Acer negundo, Quercus robur, Acer pseudoplatanus, Populus nigra, Fraxinus pennsylvanica, Fraxinus ornus and Robinia pseudoacacia. According to the ICP Forests combined assessment (degree of defoliation and decolorization, endangered species are Populus nigra (64.3% of heavily damaged trees, Quercus robur (45.5%, Fraxinus pennsylvanica (37.0% and Acer negundo (26.6%, while the situation is much better for Acer pseudoplatanus and Fraxinus ornus. For Robinia pseudoacacia, 83% of trees are without decolorization, however, defoliation is established. In the period from April to October 2009, the average pH of rainwater was 5.46, and 5.18 in the period from November 2009 to March 2010. The concentration of SO42- in the period from April to October 2009 amounted to an average of 24.21 mg/l, and 28.87 mg/l in the period from November 2009 to March 2010. The concentration of SO42- and pH values is a possible explanation for the condition of the trees. [Acknowledgments. The results are a part of the project III47007 funded by the Ministry of Education and Science of the Republic of Serbia.

  19. Reconstructing Historical Riparian Conditions of Two River Basins in Eastern Oregon, USA

    Science.gov (United States)

    McAllister, Lynne S.

    2008-09-01

    As land use continues to alter riparian areas, historical information is increasingly needed to help establish reference conditions for monitoring and assessment. I developed and applied a procedure in the John Day and Deschutes river basins of eastern Oregon for synthesizing historical documentary records available across broad spatial areas to reconstruct 19th-century riparian conditions. The study area was stratified by ecoregion and stream physical characteristics to partition regional variability. Three primary data sources—General Land Office survey notes, historical photographs, and written accounts—provided descriptive records, which were grouped by topic to develop common riparian attributes. The number of records for each attribute was tallied by stratum to compare and contrast riparian structure and composition across strata and ecoregions. Detailed descriptions of historical riparian conditions using the original documentary records further illustrated the unique riparian conditions in each stratum. Similarities and differences in historical riparian structure and composition at the stratum and ecoregion levels were evident based on the distributional pattern and numbers of records of attributes across strata. A high number of repeated observations within and among primary data sources helped to corroborate descriptive data. Although these reference data cannot provide the detail needed for rigorous quantitative assessments, they do describe a range of conditions approaching a minimally disturbed condition and provide an important perspective for conducting riparian assessments in highly disturbed regions where least-disturbed reference sites are often poor examples of a desired condition.

  20. Successful grafting in poplar species (Populus spp.) breeding

    Science.gov (United States)

    A. Assibi Mahama; Brian Sparks; Ronald S., Zalesny; Richard B. Hall

    2006-01-01

    Poor rooting of Populus deltoides Bartr. ex Marsh hardwood cuttings often has contributed to delays in breeding progress as a result of failures of scion wood before and/or after pollination. Seventeen clones were used, and the study was conducted in the greenhouse to test an "intervenous feeding" (IV) method, along with three different...

  1. Long-term forest dynamics at Gribskov, eastern Denmark with early-Holocene evidence for thermophilous broadleaved tree species

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Nielsen, Anne Birgitte; Hannon, Gina E.

    2012-01-01

    two periods of the early Holocene and from c. 3000 cal. BP to present. The early-Holocene part of the record indicates a highly disturbed forest ecosystem with frequent fires and abundant macrofossils of particularly Betula sp. and Populus sp. The sediment stratigraphy and age–depth relationships give......We report on a full-Holocene pollen, charcoal and macrofossil record from a small forest hollow in Gribskov, eastern Denmark. The Fagus sylvatica pollen record suggests the establishment of a small Fagus population at Gribskov in the early Holocene together with early establishment of other...

  2. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  3. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  4. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species.

    Science.gov (United States)

    Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo

    2015-10-01

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. © 2015 John Wiley & Sons Ltd.

  5. Genome-Wide Analysis of a TaLEA-Introduced Transgenic Populus simonii × Populus nigra Dwarf Mutant

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2012-03-01

    Full Text Available A dwarf mutant (dwf1 was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1 displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210. Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.

  6. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late. We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity and the landscape level (forest cover, area and diversity of patches. Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in

  7. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  8. Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: A review from an ecophysiological perspective

    Science.gov (United States)

    Hultine, K. R.; Bush, S. E.

    2011-07-01

    Protecting water resources for expanding human enterprise while conserving valued natural habitat is among the greatest challenges of the 21st century. Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of non-native plant species in riparian areas along streams, canals and rivers in geographically arid regions. This paper sets out to identify when and where non-native riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semiarid river systems. We develop an ecophysiological framework that focuses on two main criteria: (1) examination of the physiological traits that promote non-native species establishment and persistence across environmental gradients, and (2) assessment of where and to what extent hydrologic fluxes are potentially altered by the establishment of introduced species at varying scales from individual plants, to small river reaches, to entire river basins. We highlight three non-native plant species that currently dominate southwestern United States riparian forests. These include tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). As with other recent reviews, we suspect that in many cases the removal of these, and other non-native species will have little or no impact on either streamflow volume or groundwater levels. However, we identify potential exceptions where the expansion of non-native plant species could have significant impact on ecohydrologic processes associated with southwestern United States river systems. Future research needs are outlined that will ultimately assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given

  9. Associations between fish assemblage and riparian vegetation in the Corumbataí River Basin (SP Associações entre assembléia de peixes e a mata ciliar na bacia do rio Corumbataí (SP

    Directory of Open Access Journals (Sweden)

    M. Cetra

    2007-05-01

    Full Text Available This work intends to examine if there are associations between fish species and the state of conservation of the riparian forest in the Corumbataí River Basin. Four main rivers were chosen for this study with three sites on each. Collections were carried out from March to June and from September to December 2001. Multivariate techniques were applied to determine the correlation between species richness and the order of the rivers, preservation level of the riparian forest, shade level, presence or absence of Eucalyptus, sugar cane and pastures, and surrounding declivity stability of the sites. Species richness was highest at locations with greater vegetation cover and preserved riparian forest.Este trabalho teve o objetivo de examinar se existem associações entre as espécies de peixes e o estado de conservação das matas ciliares na bacia do rio Corumbataí. Foram escolhidos 4 rios principais com 3 pontos de coleta em cada um. Foram realizadas coletas nos períodos de março a junho e de setembro a dezembro de 2001. Técnicas multivariadas foram aplicadas para determinar a correlação entre a riqueza de espécies e a ordem dos rios, estado de preservação da mata ciliar, sombreamento, presença ou ausência de Eucalyptus, cana-de-açúcar e pastagens, e nível de estabilidade do barranco ao redor dos pontos de coleta. A riqueza de espécies foi maior em locais com maior cobertura vegetal e mata ciliar preservada.

  10. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  11. PHYTOREMEDIATION OF CHLORPYRIFOS BY POPULUS AND SALIX

    OpenAIRE

    Young Lee, Keum; Strand, Stuart E.; Doty, Sharon L.

    2012-01-01

    Chlorpyrifos is one of the commonly used organophosphorus insecticides that are implicated in serious environmental and human health problems. To evaluate plant potential for uptake of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated. Chlorpyrifos was taken up from nutrient solution by all seven plant species. Significant amounts of chlorpyrifos accumulated in plant tissues, and roots accumulated higher concentrations of chlorpyrifos than di...

  12. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  13. Riparian bird density decline in response to biocontrol of Tamarix from riparian ecosystems along the Dolores River in SW Colorado, USA

    Science.gov (United States)

    Darrah, Abigail J.; van Riper, Charles

    2018-01-01

    Biocontrol of invasive tamarisk (Tamarix spp.) in the arid Southwest using the introduced tamarisk beetle (Diorhabda elongata) has been hypothesized to negatively affect some breeding bird species, but no studies to date have documented the effects of beetle-induced defoliation on riparian bird abundance. We assessed the effects of tamarisk defoliation by monitoring defoliation rates, changes in vegetation composition, and changes in density of six obligate riparian breeding bird species at two sites along the Dolores River in Colorado following the arrival of tamarisk beetles. We conducted bird point counts from 2010 to 2014 and modeled bird density as a function of native vegetation density and extent of defoliation using hierarchical distance sampling. Maximum annual defoliation decreased throughout the study period, peaking at 32–37% in 2009–2010 and dropping to 0.5–15% from 2011–2014. Stem density of both tamarisk and native plants declined throughout the study period until 2014. Density of all bird species declined throughout most of the study, with Song Sparrow disappearing from the study sites after 2011. Blue Grosbeak, Yellow-breasted Chat, and Yellow Warbler densities were negatively related to defoliation in the previous year, while Lazuli Bunting exhibited a positive relationship with defoliation. These findings corroborate earlier predictions of species expected to be sensitive to defoliation as a result of nest site selection. Tamarisk defoliation thus had short-term negative impacts on riparian bird species; active restoration may be needed to encourage the regrowth of native riparian vegetation, which in the longer-term may result in increased riparian bird density.

  14. Explaining landholders' decisions about riparian zone management: the role of behavioural, normative, and control beliefs.

    Science.gov (United States)

    Fielding, Kelly S; Terry, Deborah J; Masser, Barbara M; Bordia, Prashant; Hogg, Michael A

    2005-10-01

    Water quality is a key concern in the current global environment, with the need to promote practices that help to protect water quality, such as riparian zone management, being paramount. The present study used the theory of planned behaviour as a framework for understanding how beliefs influence decisions about riparian zone management. Respondents completed a survey that assessed their behavioural, normative, and control beliefs in relation to intentions to manage riparian zones on their property. The results of the study showed that, overall, landholders with strong intentions to manage their riparian zones differed significantly in terms of their beliefs compared to landholders who had weak intentions to manage their riparian zones. Strong intentions to manage riparian zones were associated with a favourable cost-benefit analysis, greater perceptions of normative support for the practice and lower perceptions of the extent to which barriers would impede management of riparian zones. It was also evident that willingness to comply with the recommendations of salient referents, beliefs about the benefits of riparian zone management and perceptions of the extent to which barriers would impede riparian zone management were most important for determining intentions to manage riparian zones. Implications for policy and extension practice are discussed.

  15. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S.

    Directory of Open Access Journals (Sweden)

    Eric D. Vance

    2014-05-01

    Full Text Available Short rotation woody crops (SRWC, fast growing tree species that are harvested on short, repeated intervals, can augment traditional fiber sources. These crops have economic and environmental benefits stemming from their capability of supplying fiber on a reduced land base in close proximity to users and when sensitive sites cannot be accessed. Eucalyptus and Populus appear to be genera with the greatest potential to provide supplemental fiber in the U.S. Optimal productivity can be achieved through practices that overcome site limitations and by choosing the most appropriate sites, species, and clones. Some Eucalyptus species are potentially invasive, yet field studies across multiple continents suggest they are slower to disperse than predicted by risk assessments. Some studies have found lower plant and animal diversity in SRWC systems compared to mature, native forests, but greater than some alterative land uses and strongly influenced by stand management, land use history, and landscape context. Eucalyptus established in place of grasslands, arable lands, and, in some cases, native forests can reduce streamflow and lower water tables due to higher interception and transpiration rates but results vary widely, are scale dependent, and are most evident in drier regions.

  16. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  17. The current state of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom

    International Nuclear Information System (INIS)

    Abrahamova, A.

    2009-01-01

    Area of interest lies in the central part of the Danube plain and extends along both sides of the river Vah. Naturally occurring habitats close to small-scale, and are considerable anthropicly contingent either directly (forestry) or indirectly (modified water regime). The contribution gives phyto-sociological characteristics of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom. We drew up the 21 phyto-sociological entries characterizing forest vegetation, which we classified into two associations Salici-Populetum, Fraxino Ulmetum-and community-Crataegus monogyna Populus nigra.

  18. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  19. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  20. Trinucleotide repeat microsatellite markers for Black Poplar (Populus nigra L.)

    NARCIS (Netherlands)

    Smulders, M.J.M.; Schoot, van der J.; Arens, P.; Vosman, B.

    2001-01-01

    Using an enrichment procedure, we have cloned microsatellite repeats from black poplar (Populus nigra L.) and developed primers for microsatellite marker analysis. Ten primer pairs, mostly for trinucleotide repeats, produced polymorphic fragments in P. nigra. Some of them also showed amplification

  1. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  2. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    Science.gov (United States)

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  3. Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers--essential for comprehensible and reliable poplar breeding.

    Science.gov (United States)

    Schroeder, H; Hoeltken, A M; Fladung, M

    2012-03-01

    Within the genus Populus several species belonging to different sections are cross-compatible. Hence, high numbers of interspecies hybrids occur naturally and, additionally, have been artificially produced in huge breeding programmes during the last 100 years. Therefore, determination of a single poplar species, used for the production of 'multi-species hybrids' is often difficult, and represents a great challenge for the use of molecular markers in species identification. Within this study, over 20 chloroplast regions, both intergenic spacers and coding regions, have been tested for their ability to differentiate different poplar species using 23 already published barcoding primer combinations and 17 newly designed primer combinations. About half of the published barcoding primers yielded amplification products, whereas the new primers designed on the basis of the total sequenced cpDNA genome of Populus trichocarpa Torr. & Gray yielded much higher amplification success. Intergenic spacers were found to be more variable than coding regions within the genus Populus. The highest discrimination power of Populus species was found in the combination of two intergenic spacers (trnG-psbK, psbK-psbl) and the coding region rpoC. In barcoding projects, the coding regions matK and rbcL are often recommended, but within the genus Populus they only show moderate variability and are not efficient in species discrimination. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses

    Science.gov (United States)

    Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee. Taylor

    2011-01-01

    The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera)...

  5. Assessing Riparian Vegetation Condition and Function in Disturbed Sites of the Arid Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Lara Cornejo-Denman

    2018-01-01

    Full Text Available Transformation or modification of vegetation distribution and structure in arid riparian ecosystems can lead to the loss of ecological function. Mexico has 101,500,000 ha of arid lands, however there is a general lack of information regarding how arid riparian ecosystems are being modified. To assess these modifications, we use eight sites in the San Miguel River (central Sonora to analyze (1 riparian vegetation composition, structure and distribution using field sampling and remote sensing data from Unmanned Aerial Vehicles (UAV; (2 productivity (proxies, using vegetation indices derived from satellite data; and (3 variability posed by riparian vegetation and vegetation adjacent to riparian habitats. The development of a simple yet informative Anthropogenic-disturbance Index (ADI allowed us to classify and describe each study site. We found sharp differences in vegetation composition and structure between sites due to the absence/presence of obligate-riparian species. We also report significant difference between EVI (Enhanced Vegetation Index values for the dry season among vegetation types that develop near the edges of the river but differ in composition, suggesting that land cover changes form obligate-riparian to facultative-riparian species can lead to a loss in potential productivity. Finally, our tests suggest that sites with higher disturbance present lower photosynthetic activity.

  6. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams

    Directory of Open Access Journals (Sweden)

    Cordero–Rivera, A.

    2017-01-01

    Full Text Available Land use patterns of a river basin have a significant effect on the structure and function of river ecosystems. Changes in the composition of riparian plant communities modify the quantity, quality and seasonality of leaf–litter inputs, determining changes in macroinvertebrate colonization and activity. The main goal of this study was to test the effect of land–use modifications, and particularly the impact of eucalypt plantations, on the macroinvertebrate communities of sixteen headwater streams. Macroinvertebrates were counted and identified to family level. Land uses were classified in five categories using aerial photography: native forest, eucalypt plantations, agricultural land, shrubland, and urban areas. We found that macroinvertebrate diversity increased with basin size and with the proportion of basin covered by native forest. This variable correlated negatively with the land occupied by eucalypt plantations. Macroinvertebrate richness diminished with the increase of land surface covered by eucalypt plantations, and a similar tendency was observed with diversity. Furthermore, streams whose drainage basin was mainly covered by Eucalyptus were more likely to dry up in summer. This observation adds to evidence from previous studies that concluded that fast–growing tree plantations affect hydric resources, an important ecosystem service in the context of global warming. To minimize the impact of industrial sylviculture, we suggest that maintaining and/or restoring riparian forests could mitigate the effects of intensive eucalypt monocultures.

  7. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  8. Protocols for Mapping and Characterizing Land Use/Land Cover in Riparian Zones

    National Research Council Canada - National Science Library

    Johnson, Michaela R; Zelt, Ronald B

    2005-01-01

    .... Characterization of riparian systems is critical to a comprehensive understanding of nutrient enrichment effects on stream ecosystems because riparian functions provide an important ecological...

  9. The Pen Branch Project: Restoration of a Forested Wetland in South Carolina

    Science.gov (United States)

    Randall K. Kolka; Eric A. Nelson; Ronald E. Bonar; Neil C. Dulohery; David Gartner

    1998-01-01

    The Pen Branch Project is a program to restore a forested riparian wetland that has been subject to thermal disturbance caused by nuclear reactor operations at the Department of Energy's (DOE) Savannah River Site (SRS), an 80,200-hectare nuclear facility located in South Carolina. Various levels of thermal discharges to streams located across the US. have occurred...

  10. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  11. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  12. Preparation and Characterization of Lignocellulosic Oil Sorbent by Hydrothermal Treatment of Populus Fiber

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-09-01

    Full Text Available This study is aimed at achieving the optimum conditions of hydrothermal treatment and acetylation of Populus fiber to improve its oil sorption capacity (OSC in an oil-water mixture. The characteristics of the hydrolyzed and acetylated fibers were comparatively investigated by FT-IR, CP-MAS 13C-NMR, SEM and TGA. The optimum conditions of the hydrothermal treatment and acetylation were obtained at170 °C for 1 h and 120 °C for 2 h, respectively. The maximum OSC of the hydrolyzed fiber (16.78 g/g was slightly lower than that of the acetylated fiber (21.57 g/g, but they were both higher than the maximum OSC of the unmodified fiber (3.94 g/g. In addition, acetylation after hydrothermal treatment for the Populus fiber was unnecessary as the increment of the maximum OSC was only 3.53 g/g. The hydrolyzed and the acetylated Populus fibers both displayed a lumen orifice enabling a high oil entrapment. The thermal stability of the modified fibers was shown to be increased in comparison with that of the raw fiber. The hydrothermal treatment offers a new approach to prepare lignocellulosic oil sorbent.

  13. The effects of site, supplemental food, and age on survivorship of Carolina Chickadees and implications for dispersal through- riparian corridors

    Science.gov (United States)

    Doherty, P.F.; Grubb, T.G.

    2000-01-01

    Few studies have examined survivorship of animals in forest fragments differing in size, and none has used appropriate mark-recapture analysis techniques taking into account probability of recapture. Using Program MARK, a flexible mark-recapture software package, we estimated annual survival rates of Carolina Chickadees over a 5-yr period in a fragmented landscape in Ohio. The probability of survival was related to site (riparian woodland or woodlot area) and increased with the presence of supplemental food. While there was little evidence for an age difference in apparent survival in woodlots, young birds appeared to survive less well in forested river corridors. This last result was quite likely due, at least in part, to age-specific dispersal, suggesting that river corridors function as important dispersal routes for young birds.

  14. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    Nikula, Suvi; Vapaavuori, Elina; Manninen, Sirkku

    2010-01-01

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  15. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  16. Concentrated flow paths in riparian buffer zones of southern Illinois

    Science.gov (United States)

    R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards

    2012-01-01

    Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...

  17. Riparian Meadow Response to Modern Conservation Grazing Management

    Science.gov (United States)

    Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  18. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes

    OpenAIRE

    Tonin, Alan M.; Gon?alves, Jos? F.; Bambi, Paulino; Couceiro, Sheyla R. M.; Feitoza, Lorrane A. M.; Fontana, Lucas E.; Hamada, Neusa; Hepp, Luiz U.; Lezan-Kowalczuk, V?nia G.; Leite, Gustavo F. M.; Lemes-Silva, Aurea L.; Lisboa, Leonardo K.; Loureiro, Rafael C.; Martins, Renato T.; Medeiros, Adriana O.

    2017-01-01

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even?though the tropics occupy 40% of the Earth?s land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Ama...

  19. Metal concentrations in urban riparian sediments along an urbanization gradient

    Science.gov (United States)

    Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...

  20. Vertical distribution of earwigs (Dermaptera: Forficulidae) in a temperate lowland forest, based on sampling with a mobile aerial lift platform

    Czech Academy of Sciences Publication Activity Database

    Kirstová, M.; Pyszko, P.; Šipoš, Jan; Drozd, P.; Kočárek, P.

    2017-01-01

    Roč. 20, č. 1 (2017), s. 57-64 ISSN 1343-8786 Institutional support: RVO:67985939 Keywords : Apterygida media * Palearctic region * riparian hardwood forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Entomology Impact factor: 1.262, year: 2016

  1. Carbon stock and turnover in riparian soils under lowland rainforest transformation systems on Sumatra, Indonesia

    Science.gov (United States)

    Hennings, Nina; Kuzyakov, Yakov

    2017-04-01

    In many tropical areas, rainforests are being cleared in order to exploit timber and other forest products as well as plant crops for food, feed and fuel use. The determinants of different patterns of deforestation and the roles of resulting transformation systems of tropical riparian rainforests for ecological functions have yet received little attention in scientific research. Especially C stocks in riparian zones are strongly affected by climate and land use changes that lead to changes in water regime and ground water level drops. We investigated the effects of land transformations in riparian ecosystems of Sumatra, on soil C content, stocks and decomposability at the landscape scale. We compare C losses in transformation systems and rainforests and estimate the contribution of soil erosion and organic matter mineralization. Further, these losses are related to changing water level and temperature increase along increasing distance to the stream. This approach is based on changing δ13C values of SOC in the topsoil as compared to those in subsoil. The shift of δ13C of SOC in the topsoil from the linear regression calculated by δ13C value with log(SOC) in the topsoil represents the modification of the C turnover rate in the top soil. Erosion is estimated by the shift of the δ13C value of SOC in the subsoil under plantations. Further, the δ13C and δ15N soil profiles and their comparison with litter of local vegetation, can be used to estimate the contribution of autochthonous and allochthonous organics to soil C stocks. Preliminary results show strong increase of erosive losses, increased decomposition with land-use transformation and decrease of C stocks with decreasing water table.

  2. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York State.

    Science.gov (United States)

    Schuster, W S F; Griffin, K L; Roth, H; Turnbull, M H; Whitehead, D; Tissue, D T

    2008-04-01

    We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.

  3. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers

    Directory of Open Access Journals (Sweden)

    Naoki Kabeya

    2014-06-01

    Full Text Available Two-component hydrograph separation using oxygen-18 concentrations was conducted at a sediment runoff observation weir installed in a small subcatchment of a forested gneiss catchment in Japan. The mean soil thickness of this catchment is 7.27 m, which comprises 3.29 m of brown forest soil (A and B layers and a 3.98-m layer of heavily weathered gneiss. Data were collected for a storm on 20–21 May 2003, and the percentage of event water separated by the stable isotope ratio in comparison with the total rainfall amount was about 1%. This value is within the ratio of a riparian zone in a drainage area. Temporal variation of suspended sediment concentration exhibited higher correlation with the event water component than with the total runoff or pre-event water component. This shows that the riparian zone causes rainwater to flow out quickly during a rain event, and that this is an important area of sediment production and transportation in a forested headwater with thick soil and weathered gneiss layers.

  4. Radiosensitivity and recovery of tree crowns in a gamma-irradiated northern forest community

    International Nuclear Information System (INIS)

    Buech, R.R.

    1977-01-01

    Crown mortality was observed on 13 tree species in a gamma-irradiated forest community located near Rhinelander, Wis. Observations at the end of the first (1973) and second (1974) postirradiation growing seasons are presented for each species. Crown mortality was most severe during 1973 for Acer rubrum, A. saccharum, Ostrya virginiana, Populus tremuloides, Prunus serotina, Quercus rubra, and Ulmus americana. For some species, however, crown mortality was most severe during 1974. These were Betula alleghaniensis, B. papyrifera, Tilia americana, and possibly Fraxinus americana and F. nigra. These differences in year of primary response are explained on the basis of bud differentiation and mortality. The most resistant species were A. saccharum, O. virginiana, and Populus tremuloides, and the most sensitive were T. americana and U. americana. Others were intermediate in sensitivity. Taken collectively, exposures less than 2 or 3 kr did not seriously affect crowns of most species, whereas exposures exceeding about 40 kr were lethal to the crowns of all tree species. The observed zonation of tree mortality closely approximated predictions published by others except for underestimating the resistance of A. saccharum and overestimating the resistance of T. americana, F. americana, and Prunus serotina. Not surprisingly, the tree stratum of the northern forest community was found to be more radiosensitive than lichen, grassland, or herbaceous communities in other irradiation studies

  5. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Science.gov (United States)

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  6. 77 FR 70414 - White River National Forest; Eagle County, CO; Vail Mountain Recreation Enhancements Projects EIS

    Science.gov (United States)

    2012-11-26

    ... engage in dispersed recreational activities (i.e., hiking, biking and camping); and (2) those who seek... Flyer Rappel Activity at Adventure Ridge Expanded Hiking and Mountain Bike Trails Riparian Experience at... harmonize with, and benefit from, the natural setting of the NFS lands within Vail's existing Forest Service...

  7. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    Science.gov (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (warming and negative drying effects on the soil N cycle may counterbalance each other.

  8. A framework for profiling a lake's riparian area development potential

    Science.gov (United States)

    Pamela J. Jakes; Ciara Schlichting; Dorothy H. Anderson

    2003-01-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems -in a lake`s riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework...

  9. Population and Habitat Objectives for Avian Conservation in California's Central Valley Riparian Ecosystems

    Directory of Open Access Journals (Sweden)

    Kristen E. Dybala

    2017-03-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss1art5Riparian ecosystems provide important ecosystem services and recreational opportunities for people, and habitat for wildlife. In California’s Central Valley, government agencies and private organizations are working together to protect and restore riparian ecosystems, and the Central Valley Joint Venture provides leadership in the formulation of goals and objectives for avian conservation in riparian ecosystems. We defined a long-term conservation goal as the establishment of riparian ecosystems that provide sufficient habitat to support genetically robust, self-sustaining, and resilient bird populations. To achieve this goal, we selected a suite of 12 breeding riparian landbird focal species as indicators of the state of riparian ecosystems in each of four major Central Valley planning regions. Using recent bird survey data, we estimated that over half of the regional focal species populations are currently small (< 10,000 and may be vulnerable to extirpation, and two species have steeply declining population trends. For each focal species in each region, we defined long-term (100-year population objectives that are intended to be conservation endpoints that we expect to meet the goal of genetically robust, self-sustaining, and resilient populations. We then estimated the long-term species density and riparian restoration objectives required to achieve the long-term population objectives. To track progress toward the long-term objectives, we propose short-term (10- year objectives, including the addition of 12,919 ha (31,923 ac of riparian vegetation in the Central Valley (by planning region: 3,390 ha in Sacramento, 2,390 ha in Yolo–Delta, 3,386 ha in San Joaquin, and 3,753 ha in Tulare. We expect that reaching these population, density, and habitat objectives through threat abatement, habitat restoration, and habitat enhancement will result in improvements to riparian ecosystem function and

  10. Genetic Modification of Lignin in Hybrid Poplar (Populus alba × Populus tremula) Does Not Substantially Alter Plant Defense or Arthropod Communities.

    Science.gov (United States)

    Buhl, Christine; Meilan, Richard; Lindroth, Richard L

    2017-05-01

    Lignin impedes access to cellulose during biofuel production and pulping but trees can be genetically modified to improve processing efficiency. Modification of lignin may have nontarget effects on mechanical and chemical resistance and subsequent arthropod community responses with respect to pest susceptibility and arthropod biodiversity. We quantified foliar mechanical and chemical resistance traits in lignin-modified and wild-type (WT) poplar (Populus alba × Populus tremula) grown in a plantation and censused arthropods present on these trees to determine total abundance, as well as species richness, diversity and community composition. Our results indicate that mechanical resistance was not affected by lignin modification and only one genetic construct resulted in a (modest) change in chemical resistance. Arthropod abundance and community composition were consistent across modified and WT trees, but transgenics produced using one construct exhibited higher species richness and diversity relative to the WT. Our findings indicate that modification of lignin in poplar does not negatively affect herbivore resistance traits or arthropod community response, and may even result in a source of increased genetic diversity in trees and arthropod communities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  11. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    Science.gov (United States)

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  12. Community Structure of Riparian Community of Sematang Borang River of South Sumatera

    Directory of Open Access Journals (Sweden)

    Yetty Hastiana

    2015-12-01

    Full Text Available Vegetasi riparian adalah sebagai ekoton antara habitat teresterial dengan sistem perairan (sungai. Penyangga riparian berfungsi untuk menjaga kelestarian fungsi sungai dengan cara menahan atau menangkap tanah (lumpur yang tererosi serta unsur hara dan bahan kimia termasuk pestisida yang terbawa dari lahan dibagian kiri kanan sungai agar tidak masuk ke perairan. Sungai Sematang Borang merupakan bagian dari Daerah Aliran Sungai (DAS Musi, Sungai Sematang Borang memiliki karaketeristik struktur sungai dengan panjang seitar 5 km, lebar sungai mencapai 70 m dan kedalaman sekitar 10 m. Saat ini sungai ini mulai terancam mengalami penurunan kualitas baik fisik, kimia maupun biologi Selain kehilangan habitat alami ikan yang akan berdampak pada penurunan kelimpahan dan biodiversity, perairan ini juga mengalami abrasi pada sisi kiri kanan tebing sungai. Keberadaan vegetasi riparian menjadi penting, selain untuk mencegah abrasi, juga berperan dalam produksi serasah. Produksi serasah berkontribusi dalam transfer bahan organik vegetasi ke dalam tanah. Unsur hara yang dhasilkan dari proses dekomposisi serasah dalam tanah sangat penting bagi kelangsungan hidup vegetasi dan sebagai sumber detritus bagi ekosistem dalam menyokong kehidupan organisme akuatik. Pentingnya kontribusi vegetasi riparian dalam suatu ekosistem, maka perlu dilakukan penelitian terhadap diversitas dan profil vegetasi. Kajian aspek vegetasi, diperkuat dengan melakukan pengamatan terhadap kondisi fisik kimia perairan Sematang Borang. Parameter fisik kimiaperairan yang diamati meliputi: suhu, kedalaman, kecepatan arus, COD, BOD, DO, pH, dan Salinitas. Penelitian menerapkan metode ekologi deskriptif kuantitatif dan kualitatif, untuk analisis kualitas fisik kimia perairan didukung analisis laboratorium dan survei. Hasil penelitian teridentifikasi 15 species riparian dengan kategori indeks keanekaragaman riparian 0,09-1,03 dan memiliki pola penyebaran cenderung berkelompok

  13. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  14. Occurrence of termites (Isoptera on living and standing dead trees in a tropical dry forest in Mexico

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    2018-05-01

    Full Text Available Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2 than in riparian forests (0.022 and 0.027 trees/m2, even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2 than in larger class sizes (0–0.02 trees/m2. Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  15. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    Science.gov (United States)

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  16. Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations?

    International Nuclear Information System (INIS)

    Dorea, Jose G.

    2003-01-01

    The Amazon rain forest extends over an area of 7.8x10 6 km 2 in nine countries. It harbors a diverse human population distributed in dense cities and isolated communities with extreme levels of infrastructure. Amazonian forest people, either autochthons or frontier riparians (ribeirinhos) living in isolated areas, share the same environment for survival and nutritional status. The peculiarities of the hydrological cycle determine disease patterns, agricultural conditions, and food availability. Feeding strategies depend heavily on cassava products and fish. These two foods carry toxic substances such as linamarin (naturally present in cassava) and monomethyl mercury (MMHg) (bioconcentrated in fish flesh) that cause neurotoxic diseases in other parts of the world but not in Amazonia, where neurotoxic cases of food origin are rare and not related to these staples. While cassava detoxification processes may partly explain its safe consumption, the Hg concentrations in Amazonian fish are within traditionally safe limits for this population and contribute to an important metabolic interaction with cassava. The gold rush of the 1970s and 1980s brought large-scale environmental disruption and physical destruction of ecosystems at impact points, along with a heavy discharge of metallic Hg. The discharged Hg has not yet impacted on MMHg concentrations in fish or in hair of fish consumers. Hair Hg concentration, used as a biomarker of fish consumption, indicates that the Amazonian riparians are acquiring an excellent source of protein carrying important nutrients, the lack of which could aggravate their existing health problems. Therefore, in a scenario of insufficient health services and an unhealthy environment, food habits based on fish consumption are part of a successful survival strategy and recommendations for changes are not yet justifiable

  17. Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations?

    Science.gov (United States)

    Dorea, Jose G

    2003-07-01

    The Amazon rain forest extends over an area of 7.8x10(6)km(2) in nine countries. It harbors a diverse human population distributed in dense cities and isolated communities with extreme levels of infrastructure. Amazonian forest people, either autochthons or frontier riparians (ribeirinhos) living in isolated areas, share the same environment for survival and nutritional status. The peculiarities of the hydrological cycle determine disease patterns, agricultural conditions, and food availability. Feeding strategies depend heavily on cassava products and fish. These two foods carry toxic substances such as linamarin (naturally present in cassava) and monomethyl mercury (MMHg) (bioconcentrated in fish flesh) that cause neurotoxic diseases in other parts of the world but not in Amazonia, where neurotoxic cases of food origin are rare and not related to these staples. While cassava detoxification processes may partly explain its safe consumption, the Hg concentrations in Amazonian fish are within traditionally safe limits for this population and contribute to an important metabolic interaction with cassava. The gold rush of the 1970s and 1980s brought large-scale environmental disruption and physical destruction of ecosystems at impact points, along with a heavy discharge of metallic Hg. The discharged Hg has not yet impacted on MMHg concentrations in fish or in hair of fish consumers. Hair Hg concentration, used as a biomarker of fish consumption, indicates that the Amazonian riparians are acquiring an excellent source of protein carrying important nutrients, the lack of which could aggravate their existing health problems. Therefore, in a scenario of insufficient health services and an unhealthy environment, food habits based on fish consumption are part of a successful survival strategy and recommendations for changes are not yet justifiable.

  18. Characterising the water use and hydraulic properties of riparian ...

    African Journals Online (AJOL)

    2018-04-10

    Apr 10, 2018 ... Invasive alien plants (IAPs) pose a serious threat to the already limited water resources ... impacts of key species such as Populus canescens (P. canescens) ..... mearnsii): implications for the link between removal of invading.

  19. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation.

  20. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments

    Science.gov (United States)

    Katherine J. Elliott; James M. Vose

    2016-01-01

    In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of...

  1. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    Science.gov (United States)

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  2. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  3. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fuzhong [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Yang Wanqin, E-mail: scyangwq@163.com [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Zhang Jian; Zhou Liqiang [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China)

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 {+-} 19.22 and 576.75 {+-} 40.55 {mu}g cadmium per plant with 110.77 {+-} 12.68 and 202.54 {+-} 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  4. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  5. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    Science.gov (United States)

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  7. Where should buffers go? modeling riparian habitat connectivity in northeast Kansas

    Science.gov (United States)

    Gary Bentrup; Todd Kellerman

    2004-01-01

    Through many funding programs, riparian buffers are being created on agricultural lands to address significant water quality problems. Society and landowners are demanding many other environmental and social services (e.g., wildlife habitat and income diversification) from this practice. Resource planners therefore need to design riparian buffer systems in the right...

  8. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  9. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil.

    Science.gov (United States)

    de Paula, Felipe Rossetti; Ferraz, Silvio Frosini de Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.

  10. Chemical and microbiological properties of an eutrophic Oxisol under riparian forest buffer reforestation and pasture. Propriedades químicas e microbiológicas de um Latossolo Vermelho eutrófico sob reflorestamento de mata ciliar e pastagem.

    Directory of Open Access Journals (Sweden)

    Fabiana Marise PULITANO

    2013-06-01

    Full Text Available Regardless of their ecological importance, riparian forest strips are frequently suppressed to allow greater expansion of arable and urban areas. Agroforestry might be an effective alternative to recompose riparian forests. Soil chemical and microbial properties are important environmental indicators to evaluate the reclamation process. This study tested the hypothesis that, in the course of time, reforestation by means of agroforestry improved soil microbial and chemical properties in a riparian forest buffer. Soil samples were collected from three layers (0.0-2.5; 2.5-7.5; 7.5-20 cm in two sectors of a reforested riparian buffer strip in Cananéia Farm, São Paulo state, Brazil, one 18 years old and other 28 years old, and in an adjacent pasture area. The samples were assessed for pHH2O, available P and K, exchangeable, Ca, Mg and Al, H+Al, sum of bases (SB, pH 7.0 CEC, percent base saturation (V, soil organic matter (SOM and light organic matter (LOM. Microbial biomass carbon (MBC and nitrogen (MBN were analyzed only in the first layer. The pattern for Ca, Mg, SB and V (all layers was 28-year-old sector = 18-year-old-sector > pasture. The SOM at 0.0-2.5 cm was higher in the 28-year-old sector. The LOM pattern was 28-year-old sector > 18-year-old sector > pasture. MBC did not differ among areas. MBN was significantly higher comparing the 28-year-old sector and the pasture area. The results probably reflected the higher litterfall and the N-richer organic matter in the reforested sectors. Reforestation by means of agroforestry improved soil quality, contributing to the ecosystem sustainability. Independentemente de sua importância ecológica, matas ciliares são frequentemente suprimidas e ocupadas por lavouras e cidades. Agroflorestas podem ser eficazes para a recomposição dessas áreas. Propriedades químicas e microbiológicas do solo são importantes indicadores ambientais para avaliar o processo de recomposição. Este estudo testou a

  11. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  12. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  13. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  14. A Regional Guidebook for Conducting Functional Assessments of Forested Wetlands and Riparian Areas in the Ozark Mountains Region of Arkansas

    Science.gov (United States)

    2008-09-01

    declines in the black bear and Florida panther . The extent to which patch size affects animal populations has been most thoroughly investi- gated with... animal communities. Reservoir construction and agricultural practices have eliminated or severely degraded many of the wetlands and riparian areas...oak (Q. falcata), and black oak (Q. velutina), and a variety of hickories, including mockernut (Carya tomentosa), pignut (C. glabra), and shagbark

  15. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Science.gov (United States)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  16. Survival of Saplings in Recovery of Riparian Vegetation of Pandeiros River (MG

    Directory of Open Access Journals (Sweden)

    Nathalle Cristine Alencar Fagundes

    2018-02-01

    Full Text Available ABSTRACT This study monitored the survival of saplings planted according to different recovery models in a riparian forest of the Pandeiros river (Januária, MG. The models consisted of planting the saplings in lines of 2 or 4 m with presence (T2S and T4S, respectively or absence of direct seeding (T2 and T4, respectively. We planted 16,259 saplings of 17 botanical families, 32 genera and 33 species. The saplings, in general, presented a survival rate after one year of 34.4% (±1.8. The species with highest survival rates were Jacaranda brasiliana, with 85.0% (±13.5 of survival, Anadenanthera colubrina, with 70.1% (±7.0, and Triplaris gardneriana, with 69.3% (±9.1. Survival did not vary between the models tested, probably due to the short evaluation period (12 months.

  17. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    scenarios with changing conditions for flow (steady state with no flooding or transient with flooding), hydrogeology, denitrification rate, and extent of flooding it is demonstrated how flow paths, residence times, and nitrate removal are affected. With this previous conceptual models on the hydrology......The PhD study presents research results from two re-established Danish riparian zones, Brynemade and Skallebanke, located along Odense River on the island Funen, Denmark. The overall objectives of the PhD study have been to improve the understanding of flow and transport in riparian zones....... The methodology focuses on; construction of field sites along Odense River, understanding flow and transport, and performing numerical/analytical model assessments of flow and transport. An initial 2D simulation study was performed with a conceptual setup based on the Brynemade site. Through a series of 2D model...

  18. Beyond cool: adapting upland streams for climate change using riparian woodlands.

    Science.gov (United States)

    Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J

    2016-01-01

    Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem

  19. Functional differentiation between fish assemblages from forested and deforested streams

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We tested the hypothesis that streams in deforested areas shelter different fish communities to nearby forested areas, and that these disparities are due to environmental parameters that limit or benefit different species according to their functional traits. We compared the community composition of three south east Brazilian streams flanked by riparian forest with three nearby streams in deforested areas. The following functional traits were considered: diet, habitat use, water flow preference, size, and hypoxia tolerance. Differentiation between forested and deforested streams corresponded with the different contributions of three functional groups. Species reported in the literature to be hypoxia tolerant, and exhibiting a variable combination of the other traits prevailed in deforested streams, although we did not find substantial differences in oxygen levels between forested and deforested streams. In forested streams, benthic species associated with a high water flow and an insectivorous diet were dominant. Changes in streams induced by deforestation which are associated with habitat availability, food resources, and physicochemical conditions appear to restrict the occurrence of specialized species and instead benefit tolerant generalists.

  20. Do invasive riparian Tamarix alter hydrology of riparian areas of arid and semi-arid regions under climate change scenarios?

    Science.gov (United States)

    Bhattarai, M. P.; Acharya, K.; Chen, L.

    2012-12-01

    Competitiveness of riparian invasive species, Tamarix, in arid and semi-arid riparian areas of the southwestern United States under climate change scenario (SRES A2) was investigated. Tamarix has been replacing native vegetation along the riparian corridors of these areas for the past several decades and is thought to alter water balance. Changes in depth to groundwater, soil moisture distribution and flood frequency are critical in survival and growth of a facultative phreatophyte such as Tamarix. In this study, a fully coupled 2d surface flow and 3d subsurface flow hydrologic model, HydroGeoSphere, was used to simulate surface-subsurface hydrology of the lower Virgin River basin (4500 sq. km), located in Nevada, Utah and Arizona. The hydrologic model results, depth to groundwater and soil saturation, were then applied to the species distribution model, Maxent, along with other bioclimatic parameters to asses future Tamarix distribution probability. Simulations were made for the climate scenarios of the end of 21st centry conditions. Depth to groundwater is found to be the most important predictor variable to the Maxent model. Future Tamarix distribution range is not uniform across the basin. It is likely to decrease at lower elevations and increase in some higher elevation areas.